Sample records for skull base

  1. Skull Base Anatomy.

    PubMed

    Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W

    2016-02-01

    The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Endonasal skull base endoscopy].

    PubMed

    Simal-Julián, Juan Antonio; Miranda-Lloret, Pablo; Pancucci, Giovanni; Evangelista-Zamora, Rocío; Pérez-Borredá, Pedro; Sanromán-Álvarez, Pablo; Perez-de-Sanromán, Laila; Botella-Asunción, Carlos

    2013-01-01

    The endoscopic endonasal techniques used in skull base surgery have evolved greatly in recent years. Our study objective was to perform a qualitative systematic review of the likewise systematic reviews in published English language literature, to examine the evidence and conclusions reached in these studies comparing transcranial and endoscopic approaches in skull base surgery. We searched the references on the MEDLINE and EMBASE electronic databases selecting the systematic reviews, meta-analyses and evidence based medicine reviews on skull based pathologies published from January 2000 until January 2013. We focused on endoscopic impact and on microsurgical and endoscopic technique comparisons. Full endoscopic endonasal approaches achieved gross total removal rates of craniopharyngiomas and chordomas higher than those for transcranial approaches. In anterior skull base meningiomas, complete resections were more frequently achieved after transcranial approaches, with a trend in favour of endoscopy with respect to visual prognosis. Endoscopic endonasal approaches minimised the postoperative complications after the treatment of cerebrospinal fluid (CSF) leaks, encephaloceles, meningoceles, craniopharyngiomas and chordomas, with the exception of postoperative CSF leaks. Randomized multicenter studies are necessary to resolve the controversy over endoscopic and microsurgical approaches in skull base surgery. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  3. Imaging of the Posterior Skull Base.

    PubMed

    Job, Joici; Branstetter, Barton F

    2017-01-01

    The posterior skull base can be involved by a variety of pathologic processes. They can be broadly classified as: traumatic, neoplastic, vascular, and inflammatory. Pathology in the posterior skull base usually involves the lower cranial nerves, either as a source of pathology or a secondary source of symptoms. This review will categorize pathology arising in the posterior skull base and describe how it affects the skull base itself and surrounding structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.

  5. Management Strategies for Skull Base Inverted Papilloma.

    PubMed

    Grayson, Jessica W; Khichi, Sunny S; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A

    2016-07-01

    Inverted papilloma attached to the ventral skull base presents a surgical dilemma because surgical removal of the bony pedicle is critical to decrease risk of recurrence. The objective of this study is to evaluate the effectiveness of endoscopic management of skull base inverted papilloma. Case series with planned data collection. Tertiary medical center. Patients with skull base inverted papilloma. Over 7 years, 49 patients with skull base inverted papilloma were referred for surgical resection. Demographics, operative technique, pathology, complications, recurrence, and postoperative follow-up were evaluated. Average age at presentation was 57 years. Twenty-six patients (53%) had prior attempts at resection elsewhere, and 5 had squamous cell carcinoma (SCCA) arising in an inverted papilloma. Six patients (12%) suffered major complications, including skull base osteomyelitis in 2 previously irradiated patients, cerebrospinal fluid leak with pneumocephalus (n = 1), meningitis (n = 1), invasive fungal sinusitis (n = 1), and cerebrovascular accident (n = 1). The mean disease-free interval was 29 months (range, 10-78 months). One patient with SCCA recurred in the nasopharynx (overall 2% recurrence rate). He is disease-free 3 years following endoscopic nasopharyngectomy. Three patients with SCCA had endoscopic resection of the skull base, while 1 subject with inverted papilloma pedicled on the superior orbital roof had an osteoplastic flap in conjunction with a Draf III procedure. All others received endoscopic resection. Removal of the bony pedicle resulted in excellent local control of skull base inverted papillomas. Our experience demonstrates that disease eradication with limited morbidity is attainable with this approach. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  6. Skull base trauma: diagnosis and management.

    PubMed

    Samii, Madjid; Tatagiba, Marcos

    2002-03-01

    The singular anatomical relationship of the base of the skull is responsible for the particular problems that may arise after injury. Extensive dural laceration and severe neurovascular damage may accompany skull base injuries. Trauma to the anterior skull base is frequently related to the paranasal sinuses, and trauma to the middle and the posterior skull base usually affects the petrous bone. Injury to the anterior fossa including the paranasal sinuses may produce CSF leakage, damage the olfactory nerves, optic nerves, and orbita contents. Fractures may affect the carotid canal, injure the internal carotid artery and result in carotid-cavernous fistula. Trauma to the petrous bone may cause facial palsy and deafness, and CSF leakage with otorrhoea or paradoxal rhinoliquorrhoea. Trauma to the posterior fossa may lacerate the major venous sinuses, and affect the cranio-cervical stability. Each one of these injuries will need a particular strategy. Decision making for management as a whole must consider all aspects, including the fact that these injuries frequently involve polytraumatized patients. Decisions regarding the timing of surgery and the sequence of the surgical procedures must be made with great care. Modern surgical techniques and recent technologies including functional preservation of the olfactory nerves in frontobasal trauma, visual evoked potentials, assisted optic nerve decompression, facial nerve reconstruction, interventional technique for intravascular repair of vascular injuries, and recent developments in cochlea implants and brain stem implants, all contributed significantly to improve outcome and enhance the quality of life of patients. This article reviews basic principles of management of skull base trauma stressing the role of these advanced techniques.

  7. Skull base tumors: a kaleidoscope of challenge.

    PubMed

    Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna

    2014-08-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.

  8. Skull Base Tumors: A Kaleidoscope of Challenge

    PubMed Central

    Khanna, J.N.; Natrajan, Srivalli; Galinde, Jyotsna

    2014-01-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions. PMID:25083368

  9. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  10. Skull Base Erosion Resulting From Primary Tumors of the Temporomandibular Joint and Skull Base Region: Our Classification and Reconstruction Experience.

    PubMed

    Chen, Min-Jie; Yang, Chi; Zheng, Ji-Si; Bai, Guo; Han, Zi-Xiang; Wang, Yi-Wen

    2018-06-01

    We sought to introduce our classification and reconstruction protocol for skull base erosions in the temporomandibular joint and skull base region. Patients with neoplasms in the temporomandibular joint and skull base region treated from January 2006 to March 2017 were reviewed. Skull base erosion was classified into 3 types according to the size of the defect. We included 33 patients, of whom 5 (15.2%) had type I defects (including 3 in whom free fat grafts were placed and 2 in whom deep temporal fascial fat flaps were placed). There were 8 patients (24.2%) with type II defects, all of whom received deep temporal fascial fat flaps. A total of 20 patients (60.6%) had type III defects, including 17 in whom autogenous bone grafts were placed, 1 in whom titanium mesh was placed, and 2 who received total alloplastic joints. The mean follow-up period was 50 months. All of the patients exhibited stable occlusion and good facial symmetry. No recurrence was noted. Our classification and reconstruction principles allowed reliable morpho-functional skull base reconstruction. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Management of osteomyelitis of the skull base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benecke, J.E. Jr.

    1989-12-01

    Osteomyelitis of the skull base is the most severe form of malignant otitis externa. As a result of having treated 13 patients with skull base osteomyelitis over a 4-year period, we have developed a method of staging and monitoring this malady using gallium and technetium scanning techniques. Stage I is localized to soft tissues, stage II is limited osteomyelitis, and stage III represents extensive skull base osteomyelitis. All stages are treated with appropriate antipseudomonal antibiotics. The duration of therapy depends upon the clearing of inflammation as shown on the gallium scan. Each case must be looked at independently and notmore » subjected to an arbitrary treatment protocol.« less

  12. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  13. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    PubMed

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Skull Base Tumors

    NASA Astrophysics Data System (ADS)

    Schulz-Ertner, Daniela

    In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.

  15. [Three-dimensional endoscopic endonasal study of skull base anatomy].

    PubMed

    Abarca-Olivas, Javier; Monjas-Cánovas, Irene; López-Álvarez, Beatriz; Lloret-García, Jaime; Sanchez-del Campo, Jose; Gras-Albert, Juan Ramon; Moreno-López, Pedro

    2014-01-01

    Training in dissection of the paranasal sinuses and the skull base is essential for anatomical understanding and correct surgical techniques. Three-dimensional (3D) visualisation of endoscopic skull base anatomy increases spatial orientation and allows depth perception. To show endoscopic skull base anatomy based on the 3D technique. We performed endoscopic dissection in cadaveric specimens fixed with formalin and with the Thiel technique, both prepared using intravascular injection of coloured material. Endonasal approaches were performed with conventional 2D endoscopes. Then we applied the 3D anaglyph technique to illustrate the pictures in 3D. The most important anatomical structures and landmarks of the sellar region under endonasal endoscopic vision are illustrated in 3D images. The skull base consists of complex bony and neurovascular structures. Experience with cadaver dissection is essential to understand complex anatomy and develop surgical skills. A 3D view constitutes a useful tool for understanding skull base anatomy. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Taking a fresh look at the skull base in otorhinolaryngology with web-based simulation: Student's Interactive Skull-Base Trainer (SISTer).

    PubMed

    von Sass, Peter Freiherr; Scheckenbach, Kathrin; Wagenmann, Martin; Klenzner, Thomas; Schipper, Joerg; Chaker, Adam

    2015-02-01

    The increasing amount of medical knowledge and necessity for time-effective teaching and learning have given rise to emerging online, or e-learning, applications. The base of the skull is a challenging anatomic area in the otorhinolaryngology (ORL) department-for both students and lecturers. Technology-enhanced learning might be an expedient approach to benefit both learners and lecturers. To investigate and create for advanced medical students a self-assessed adaptive e-learning application for the skull base within our curriculum of otolaryngology at the University Medical Center of Heinrich Heine University, Düsseldorf, Germany. Pilot approach with prospective evaluation of a newly implemented web-based e-learning simulation. The e-learning application (Student's Interactive Skull-Base Trainer) was made accessible as an elective course to a total of 269 enrolled medical students during the first 2 semesters after web launch. Spatiotemporal independent e-learning application for the skull base. Self-assessed evaluation with focus on general acceptance and personal value as well as usage data analysis. The application was well accepted by the learners. More than 80% of the participating students found the application to be a beneficial tool for enhancing their analytical and clinical problem-solving skills. Although the general matter of the skull base seemed to be of lesser interest, the concept of anchored instructions with the use of high-end, interactive, multimedia-based content was considered to be particularly suitable for this challenging topic. Most of the students would have appreciated an extension of optional e-learning modules. With this pilot approach we were able to implement a useful and now well-accepted tool for blended learning. We showed that it is possible to raise interest even in this very specialized subspecialty of ORL with overall individual learning benefit for the students. There is a demand for more e-learning and web-based simulation

  17. The transnasal approach to the skull base. From sinus surgery to skull base surgery

    PubMed Central

    Wagenmann, Martin; Schipper, Jörg

    2012-01-01

    The indications for endonasal endoscopic approaches to diseases of the skull base and its adjacent structures have expanded considerably during the last decades. This is not only due to improved technical possibilities such as intraoperative navigation, the development of specialized instruments, and the compilation of anatomical studies from the endoscopic perspective but also related to the accumulating experience with endoscopic procedures of the skull base by multidisciplinary centers. Endoscopic endonasal operations permit new approaches to deeply seated lesions and are characterized by a reduced manipulation of neurovascular structures and brain parenchyma while at the same time providing improved visualization. They reduce the trauma caused by the approach, avoid skin incisions and minimize the surgical morbidity. Transnasal endoscopic procedures for the closure of small and large skull base defects have proven to be reliable and more successful than operations with craniotomies. The development of new local and regional vascularized flaps like the Hadad-flap have contributed to this. These reconstructive techniques are furthermore effectively utilized in tumor surgery in this region. This review delineates the classification of expanded endonasal approaches in detail. They provide access to lesions of the anterior, middle and partly also to the posterior cranial fossa. Successful management of these complex procedures requires a close interdisciplinary collaboration as well as continuous education and training of all team members. PMID:22558058

  18. Augmented reality-assisted skull base surgery.

    PubMed

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  20. Open Approaches to the Anterior Skull Base in Children: Review of the Literature.

    PubMed

    Wasserzug, Oshri; DeRowe, Ari; Ringel, Barak; Fishman, Gadi; Fliss, Dan M

    2018-02-01

    Introduction  Skull base lesions in children and adolescents are rare, and comprise only 5.6% of all skull base surgery. Anterior skull base lesions dominate, averaging slightly more than 50% of the cases. Until recently, surgery of the anterior skull base was dominated by open procedures and endoscopic skull base surgery was reserved for benign pathologies. Endoscopic skull base surgery is gradually gaining popularity. In spite of that, open skull base surgery is still considered the "gold standard" for the treatment of anterior skull base lesions, and it is the preferred approach in selected cases. Objective  This article reviews current concepts and open approaches to the anterior skull base in children in the era of endoscopic surgery. Materials and Methods  Comprehensive literature review. Results  Extensive intracranial-intradural invasion, extensive orbital invasion, encasement of the optic nerve or the internal carotid artery, lateral supraorbital dural involvement and involvement of the anterior table of the frontal sinus or lateral portion of the frontal sinus precludes endoscopic surgery, and mandates open skull base surgery. The open approaches which are used most frequently for surgical resection of anterior skull base tumors are the transfacial/transmaxillary, subcranial, and subfrontal approaches. Reconstruction of anterior skull base defects is discussed in a separate article in this supplement. Discussion  Although endoscopic skull base surgery in children is gaining popularity in developed countries, in many cases open surgery is still required. In addition, in developing countries, which accounts for more than 80% of the world's population, limited access to expensive equipment precludes the use of endoscopic surgery. Several open surgical approaches are still employed to resect anterior skull base lesions in the pediatric population. With this large armamentarium of surgical approaches, tailoring the most suitable approach to a

  1. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Bert W.; Weinstein, Gregory S.

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach wasmore » investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.« less

  2. Pedicled Extranasal Flaps in Skull Base Reconstruction

    PubMed Central

    Kim, Grace G.; Hang, Anna X.; Mitchell, Candace; Zanation, Adam M.

    2013-01-01

    Cerebrospinal fluid (CSF) leaks most commonly arise during or after skull base surgery, although they occasionally present spontaneously. Recent advances in the repair of CSF leaks have enabled endoscopic endonasal surgery to become the preferred option for management of skull base pathology. Small defects (<1cm) can be repaired by multilayered free grafts. For large defects (>3cm), pedicled vascular flaps are the repair method of choice, resulting in much lower rates of postoperative CSF leaks. The pedicled nasoseptal flap (NSF) constitutes the primary reconstructive option for the vast majority of skull base defects. It has a large area of potential coverage and high rates of success. However, preoperative planning is required to avoid sacrificing the NSF during resection. In cases where the NSF is unavailable, often due to tumor involvement of the septum or previous resection removing or compromising the flap, other flaps may be considered. These flaps include intranasal options—inferior turbinate (IT) or middle turbinate (MT) flaps—as well as regional pedicled flaps: pericranial flap (PCF), temporoparietal fascial flap (TPFF), or palatal flap (PF). More recently, novel alternatives such as the pedicled facial buccinator flap (FAB) and the pedicled occipital galeopericranial flap (OGP) have been added to the arsenal of options for skull base reconstruction. Characteristics of and appropriate uses for each flap are described. PMID:23257554

  3. Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note.

    PubMed

    Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou

    2008-12-01

    Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.

  4. The inferior turbinate flap in skull base reconstruction

    PubMed Central

    2013-01-01

    Background As the indications for expanded endonasal approaches continue to evolve, alternative reconstructive techniques are needed to address increasingly complex surgical skull base defects. In the absence of the nasoseptal flap, we describe our experience with the posterior pedicle inferior turbinate flap (PPITF) in skull base reconstruction. Design Case series. Setting Academic tertiary care centre. Methods Patients who underwent reconstruction of the skull base with the PPITF were identified. Medical records were reviewed for demographic, presentation, treatment, follow-up, surgical and outcomes data. Main outcome measures Flap survival, adequacy of seal, and complications. Results Two patients with residual/recurrent pituitary adenomas met the inclusion criteria. The nasoseptal flap was unavailable in each case due to a prior septectomy. Salvage of the original nasoseptal flap was not possible, as it did not provide adequate coverage of the resultant defect due to contraction from healing. All PPITFs healed uneventfully and covered the entire defect. No complications were observed in the early post-operative period. Endoscopic techniques and limitations of the PPITF are also discussed. Conclusions Our clinical experience supports the PPITF to be a viable alternative for reconstruction of the skull base in the absence of the nasoseptal flap. PMID:23663897

  5. Skull Base Invasion Patterns and Survival Outcomes of Nonmelanoma Skin Cancers

    PubMed Central

    Dundar, Yusuf; Cannon, Richard B.; Monroe, Marcus M.; Buchmann, Luke Oliver; Hunt, Jason Patrick

    2016-01-01

    Objective Report routes of skull base invasion for head and neck nonmelanoma skin cancers (NMSCs) and their survival outcomes. Design Retrospective. Participants Ninety patients with NMSC with skull base invasion between 2004 and 2014. Major Outcome Measures Demographic, tumor characteristics, and treatments associated with different types of skull base invasion and disease-specific survival (DSS) and overall survival (OS). Results Perineural invasion (PNI) to the skull base occurred in 69% of patients, whereas 38% had direct skull base invasion. Age, histology, orbital invasion, active immunosuppression, cranial nerve (CN) involved, and type of skull base invasion were significantly associated with DSS and OS (p < 0.05). Patients with basal cell carcinoma (BCC) had significantly improved DSS and OS compared with other histologies (p < 0.05). Patients with CN V PNI had significantly improved DSS and OS compared with CN VII PNI (p < 0.05). Patients with zone II PNI had significantly improved DSS and OS compared with those with direct invasion or zone III PNI (p < 0.05). Nonsurgical therapy was rarely used and is associated with a reduction in DSS and OS (p < 0.05). Conclusion Patterns and survival outcomes for NMSC skull base invasion are reported. Zone II PNI, BCC, and CN V PNI are associated with improved survival outcomes. PMID:28321381

  6. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-08-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  7. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-11-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  8. Microsurgical resection of skull base meningioma-expanding the operative corridor.

    PubMed

    Raheja, Amol; Couldwell, William T

    2016-11-01

    A better understanding of surgical anatomy, marked improvement in illumination devices, provision of improved hemostatic agents, greater availability of more precise surgical instruments, and better modalities for skull base reconstruction have led to an inevitable evolution of skull base neurosurgery. For the past few decades, many skull base neurosurgeons have worked relentlessly to improve the surgical approach and trajectory for the expansion of operative corridor. With the advent of newer techniques and their rapid adaptation, it is foundational, especially for young neurosurgeons, to understand the basics and nuances of modifications of traditional neurosurgical approaches. The goal of this topic review is to discuss the evolution of, concepts in, and technical nuances regarding the operative corridor expansion in the field of skull base surgery for intracranial meningioma as they pertain to achieving optimal functional outcome.

  9. Surgical outcomes after reoperation for recurrent skull base meningiomas.

    PubMed

    Magill, Stephen T; Lee, David S; Yen, Adam J; Lucas, Calixto-Hope G; Raleigh, David R; Aghi, Manish K; Theodosopoulos, Philip V; McDermott, Michael W

    2018-05-04

    OBJECTIVE Skull base meningiomas are surgically challenging tumors due to the intricate skull base anatomy and the proximity of cranial nerves and critical cerebral vasculature. Many studies have reported outcomes after primary resection of skull base meningiomas; however, little is known about outcomes after reoperation for recurrent skull base meningiomas. Since reoperation is one treatment option for patients with recurrent meningioma, the authors sought to define the risk profile for reoperation of skull base meningiomas. METHODS A retrospective review of 2120 patients who underwent resection of meningiomas between 1985 and 2016 was conducted. Clinical information was extracted from the medical records, radiology data, and pathology data. All records of patients with recurrent skull base meningiomas were reviewed. Demographic data, presenting symptoms, surgical management, outcomes, and complications data were collected. Kaplan-Meier analysis was used to evaluate survival after reoperation. Logistic regression was used to evaluate for risk factors associated with complications. RESULTS Seventy-eight patients underwent 100 reoperations for recurrent skull base meningiomas. Seventeen patients had 2 reoperations, 3 had 3 reoperations, and 2 had 4 or more reoperations. The median age at diagnosis was 52 years, and 64% of patients were female. The median follow-up was 8.5 years. Presenting symptoms included cranial neuropathy, headache, seizure, proptosis, and weakness. The median time from initial resection to first reoperation was 4.4 years and 4.1 years from first to second reoperation. Seventy-two percent of tumors were WHO grade I, 22% were WHO grade II, and 6% were WHO grade III. The sphenoid wing was the most common location (31%), followed by cerebellopontine angle (14%), cavernous sinus (13%), olfactory groove (12%), tuberculum sellae (12%), and middle fossa floor (5%). Forty-four (54%) tumors were ≥ 3 cm in maximum diameter at the time of the first

  10. A symbolic shaped-based retrieval of skull images.

    PubMed

    Lin, H Jill; Ruiz-Correa, Salvador; Shapiro, Linda G; Cunningham, Michael L; Sze, Raymond W

    2005-01-01

    In this work, we describe a novel symbolic representation of shapes for quantifying skull abnormalities in children with craniosynostosis. We show the efficacy of our work by demonstrating an application of this representation in shape-based retrieval of skull morphologies. This tool will enable correlation with potential pathogenesis and prognosis in order to enhance medical care.

  11. [The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].

    PubMed

    Seemann, Sophie

    2016-01-01

    Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.

  12. Genomic and transcriptomic characterization of skull base chordoma

    PubMed Central

    Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-01

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492

  13. Genomic and transcriptomic characterization of skull base chordoma.

    PubMed

    Sa, Jason K; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-03

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma.

  14. Osseointegrated Implants and Prosthetic Reconstruction Following Skull Base Surgery.

    PubMed

    Hu, Shirley; Arnaoutakis, Demetri; Kadakia, Sameep; Vest, Allison; Sawhney, Raja; Ducic, Yadranko

    2017-11-01

    Rehabilitation following ablative skull base surgery remains a challenging task, given the complexity of the anatomical region, despite the recent advances in reconstructive surgery. Remnant defects following resection of skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction, including local rotational muscle flaps, pedicled flaps with skin paddle, or even free tissue transfer. However, not all patients are appropriate surgical candidates and therefore may instead benefit from nonsurgical options for functional and aesthetic restoration. Osseointegrated implants and biocompatible prostheses provide a viable alternative for such a patient population. The purpose of this review serves to highlight current options for prosthetic rehabilitation of skull base defects and describe their indications, advantages, and disadvantages.

  15. Osseointegrated Implant Applications in Cosmetic and Functional Skull Base Rehabilitation

    PubMed Central

    Benscoter, Brent J.; Jaber, James J.; Kircher, Matthew L.; Marzo, Sam J.; Leonetti, John P.

    2011-01-01

    This study discusses the indications, outcomes, and complications in patients that underwent osseointegrated implantation for skull base rehabilitation. We conducted a retrospective review of eight patients with skull base defects who had undergone implantation of a facial prosthetic retention device ± bone-anchored hearing aid at a tertiary academic referral center. Descriptive analysis of applications, techniques, outcomes, and complications were reviewed. The majority of patients were males (n = 6) with previously diagnosed skull base malignancy (n = 5) with an average age of 46 (range, 14 to 77). All patients received an implanted facial prosthetic device either for an aural (n = 7) or orbital (n = 1) prosthesis. There were only two complications that included infection (n = 1) and implant extrusion (n = 1). Osseointegrated implantation of abutments for anchoring prosthetic devices in patients for skull base rehabilitation provides an excellent cosmetic option with minimal complications. PMID:22451830

  16. Minimally invasive surgery of the anterior skull base: transorbital approaches

    PubMed Central

    Gassner, Holger G.; Schwan, Franziska; Schebesch, Karl-Michael

    2016-01-01

    Minimally invasive approaches are becoming increasingly popular to access the anterior skull base. With interdisciplinary cooperation, in particular endonasal endoscopic approaches have seen an impressive expansion of indications over the past decades. The more recently described transorbital approaches represent minimally invasive alternatives with a differing spectrum of access corridors. The purpose of the present paper is to discuss transorbital approaches to the anterior skull base in the light of the current literature. The transorbital approaches allow excellent exposure of areas that are difficult to reach like the anterior and posterior wall of the frontal sinus; working angles may be more favorable and the paranasal sinus system can be preserved while exposing the skull base. Because of their minimal morbidity and the cosmetically excellent results, the transorbital approaches represent an important addition to established endonasal endoscopic and open approaches to the anterior skull base. Their execution requires an interdisciplinary team approach. PMID:27453759

  17. High activity iodine 125 endocurietherapy for recurrent skull base tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.P.; Good, R.R.; Leibrock, L.G.

    1988-04-15

    Experience with endocurietherapy of skull base tumors is reviewed. We present our cases of recurrent pituitary hemangiopericytoma, radiation-induced recurrent meningioma, recurrent clival chordoma, recurrent nasopharyngeal cancer involving the cavernous sinus, and recurrent parotid carcinoma of the skull base which were all successfully retreated with high-activity 125-iodine (I-125) permanent implantation.76 references.

  18. Reconstruction Using Locoregional Flaps for Large Skull Base Defects.

    PubMed

    Hatano, Takaharu; Motomura, Hisashi; Ayabe, Shinobu

    2015-06-01

    We present a modified locoregional flap for the reconstruction of large anterior skull base defects that should be reconstructed with a free flap according to Yano's algorithm. No classification of skull base defects had been proposed for a long time. Yano et al suggested a new classification in 2012. The lb defect of Yano's classification extends horizontally from the cribriform plate to the orbital roof. According to Yano's algorithm for subsequent skull base reconstructive procedures, a lb defect should be reconstructed with a free flap such as an anterolateral thigh free flap or rectus abdominis myocutaneous free flap. However, our modified locoregional flap has also enabled reconstruction of lb defects. In this case series, we used a locoregional flap for lb defects. No major postoperative complications occurred. We present our modified locoregional flap that enables reconstruction of lb defects.

  19. High Resolution Three-Dimensional MR Imaging of the Skull Base: Compartments, Boundaries, and Critical Structures.

    PubMed

    Blitz, Ari Meir; Aygun, Nafi; Herzka, Daniel A; Ishii, Masaru; Gallia, Gary L

    2017-01-01

    High-resolution 3D MRI of the skull base allows for a more detailed and accurate assessment of normal anatomic structures as well as the location and extent of skull base pathologies than has previously been possible. This article describes the techniques employed for high-resolution skull base MRI including pre- and post-contrast constructive interference in the steady state (CISS) imaging and their utility for evaluation of the many small structures of the skull base, focusing on those regions and concepts most pertinent to localization of cranial nerve palsies and in providing pre-operative guidance and post-operative assessment. The concept of skull base compartments as a means of conceptualizing the various layers of the skull base and their importance in assessment of masses of the skull base is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Complications and pitfalls in surgery of the ear/lateral skull base].

    PubMed

    Schick, B; Dlugaiczyk, J

    2013-04-01

    Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills.Following a summary about general aspects in pre-, intra- and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation, surgery of vestibular schwannomas, and jugulotympanal paragangliomas. Based on these exemplary procedures, basic "do's and don'ts" of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed.An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Skull base erosion and associated complications in sphenoid sinus fungal balls

    PubMed Central

    Meier, Josh C.; Remenschneider, Aaron K.; Sadow, Peter; Chambers, Kyle; Dedmon, Matt; Lin, Derrick T.; Holbrook, Eric H.; Metson, Ralph; Gray, Stacey T.

    2016-01-01

    Background: Sphenoid sinus fungal balls (SSFB) are rare entities that can result in serious orbital and intracranial complications. There are few published reports of complications that result from SSFB. Objective: To review the incidence of skull base erosion and orbital or intracranial complications in patients who present with SSFB. Methods: A retrospective review was performed of all the patients with SSFB who were treated at the Massachusetts Eye and Ear Infirmary from 2006 to 2014. Presenting clinical data, radiology, operative reports, pathology, and postoperative course were reviewed. Results: Forty-three patients with SSFB were identified. Demographic data were compared between patients with (39.5%) and those without (61.5%) skull base erosion. Two patients underwent emergent surgery for acute complications of SSFB (one patient with blindness, one patient who had a seizure). Both patients with acute complications had evidence of skull base erosion, whereas no patients with an intact skull base developed an orbital or intracranial complication (p = 0.15). All the patients were surgically managed via an endoscopic approach. Conclusion: SSFBs are rare but may cause significant skull base erosion and potentially severe orbital and intracranial complications if not treated appropriately. Endoscopic sphenoidotomy is effective in treating SSFB and should be performed emergently in patients who presented with associated complications. PMID:28683250

  2. Lumbar subarachnoid drainage in cerebrospinal fluid leaks after lateral skull base surgery.

    PubMed

    Allen, Kyle P; Isaacson, Brandon; Purcell, Patricia; Kutz, Joe Walter; Roland, Peter S

    2011-12-01

    To determine the efficacy of lumbar drainage in managing cerebrospinal fluid (CSF) leak after lateral skull base surgery. Retrospective case review. Academic tertiary referral center. Patients who had a lumbar subarachnoid drain placed after a lateral skull base procedure between July 1999 and February 2010 were included. Patients were identified by searching medical records for lateral skull base approach Current Procedural Terminology codes. The following variables were recorded for each subject: diagnosis, type of lateral skull base operation, duration of lumbar drainage, need for revision surgery, and presence of meningitis. Successful cessation of postoperative CSF leakage. Five hundred eight charts were reviewed, and 63 patients were identified who received a lumbar drain after a lateral skull base operation. The most common diagnosis was acoustic neuroma in 61.9%. The most common skull base approaches were the translabyrinthine, middle fossa, and transpetrosal approaches. Approximately 60.3% of patients had CSF rhinorrhea, 23.8% had an incisional leak, and 14.3% had otorrhea. The mean duration of lumbar drainage was 4.6 days. Forty eight (76.2%) study subjects had resolution of their CSF leak with lumbar drainage. Fifteen patients (23.8%) required revision surgery to stop the CSF leak. Lumbar drainage was successful in 90% of leaks after the translabyrinthine approach but in only 50% of those undergoing a suboccipital approach, which was a statistically significant difference. Postoperative CSF leaks after lateral skull base surgery can be managed with a lumbar subarachnoid drain in a majority of cases but is more successful after the translabyrinthine than the suboccipital approach. Recurrent CSF leaks after lumbar drainage is likely to require a revision operation.

  3. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    PubMed

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  4. Surgery of the ear and the lateral skull base: pitfalls and complications

    PubMed Central

    Schick, Bernhard; Dlugaiczyk, Julia

    2013-01-01

    Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills. Following a summary about general aspects in pre-, intra-and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation and surgery of vestibular schwannomas and jugulotympanal paragangliomas. Based on these exemplary procedures, basic “dos and don’ts” of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed. An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. PMID:24403973

  5. Skull base bony lesions: Management nuances; a retrospective analysis from a Tertiary Care Centre

    PubMed Central

    Singh, Amit Kumar; Srivastava, Arun Kumar; Sardhara, Jayesh; Bhaisora, Kamlesh Singh; Das, Kuntal Kanti; Mehrotra, Anant; Sahu, Rabi Narayan; Jaiswal, Awadhesh Kumar; Behari, Sanjay

    2017-01-01

    Background: Skull base lesions are not uncommon, but their management has been challenging for surgeons. There is large no of bony tumors at the skull base which has not been studied in detail as a group. These tumors are difficult not only because of their location but also due to their variability in the involvement of important local structure. Through this retrospective analysis from a Tertiary Care Centre, we are summarizing the details of skull base bony lesions and its management nuances. Materials and Methods: The histopathologically, radiologically, and surgically proven cases of skull base bony tumors or lesions involving bone were analyzed from the neurosurgery, neuropathology record of our Tertiary Care Institute from January 2009 to January 2014. All available preoperative and postoperative details were noted from their case files. The extent of excision was ascertained from operation records and postoperative magnetic resonance imaging if available. Results: We have surgically managed 41 cases of skull base bony tumors. It includes 11 patients of anterior skull base, 13 middle skull base, and 17 posterior skull base bony tumors. The most common bony tumor was chordoma 15 (36.6%), followed by fibrous dysplasia 5 (12.2%), chondrosarcoma (12.2%), and ewings sarcoma-peripheral primitive neuroectodermal tumor (EWS-pPNET) five cases (12.2%) each. There were more malignant lesions (n = 29, 70.7%) at skull base than benign (n = 12, 29.3%) lesions. The surgical approach employed depended on location of tumor and pathology. Total mortality was 8 (20%) of whom 5 patients were of histological proven EWS-pPNET. Conclusions: Bony skull base lesion consists of wide variety of lesions, and requires multispecialty management. The complex lesions required tailored approaches surgery of these lesions. With the advent of microsurgical and endoscopic techniques, and use of navigation better outcomes are being seen, but these lesions require further study for development

  6. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas

    PubMed Central

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-01-01

    Background Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Methods Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. Results All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. Conclusions This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique. PMID:25561762

  7. The Making of a Skull Base Team and the Value of Multidisciplinary Approach in the Management of Sinonasal and Ventral Skull Base Malignancies.

    PubMed

    Snyderman, Carl H; Wang, Eric W; Fernandez-Miranda, Juan C; Gardner, Paul A

    2017-04-01

    The management of sinonasal and ventral skull base malignancies is best performed by a team. Although the composition of the team may vary, it is important to have multidisciplinary representation. There are multiple obstacles, both individual and institutional, that must be overcome to develop a highly functioning team. Adequate training is an important part of team-building and can be fostered with surgical telementoring. A quality improvement program should be incorporated into the activities of a skull base team. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Relationship between the cranial base and the mandible in artificially deformed skulls.

    PubMed

    Ferros, I; Mora, M J; Obeso, I F; Jimenez, P; Martinez-Insua, A

    2016-11-01

    There is controversy regarding the relationship between mandibular position and alterations of the cranial base that provoke a more anterior location of the glenoid fossa. Artificially deformed skulls display marked alterations of the cranial base. This study evaluates mandibular changes as function of the morphology of the cranial base in these skulls. A geometric morphometric study was performed on lateral cephalometric X-rays of three groups of skulls: 32 with anteroposterior deformity, 17 with circumferential deformity and 39 with no apparent deformity. In artificially deformed skulls, the cranial base was deformed causing the mandibular condyle to be in a more anterior position. There was a complete remodelling of the mandible involving narrowing and elongation of the mandibular ramus, rotation of the corpus of the mandible and increased vertical height of the symphysis. Forward displacement did not occur. Integration between mandible and cranial base is not altered by deformation of the skull. Deformity of the cranial vault exerts an influence on the mandible, supporting the theory of modular units in complete integration. This also supports the theory that mandibular prognathism is a multifactorial result and not a direct effect of displacement of the cranial base. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  10. Harvey Cushing's Treatment of Skull Base Infections: The Johns Hopkins Experience

    PubMed Central

    Somasundaram, Aravind; Pendleton, Courtney; Raza, Shaan M.; Boahene, Kofi; Quinones-Hinojosa, Alfredo

    2012-01-01

    Objectives In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to infections of the skull base. Design Following institutional review board (IRB) approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Setting The Johns Hopkins Hospital, 1896 to 1912. Participants Eleven patients underwent operative treatment for suspected infections of the skull base. Main Outcome Measures The main outcome measure was operative approach, postoperative mortality, and condition recorded at the time of discharge. Results Eleven patients underwent operative intervention for infections of the skull base. The mean age was 30 years (range: 9 to 63). Of these patients, seven (64%) were female. The mean length of stay was 16.5 days (range: 4 to 34). Postoperatively eight patients were discharged in “well” or “good” condition, one patient remained “unimproved,” and two patients died during their admission. Conclusion Cushing's careful preoperative observation of patients, meticulous operative technique, and judicious use of postoperative drainage catheters contributed to a remarkably low mortality rate in his series of skull base infections. PMID:24083129

  11. Low-grade fibrosarcoma of the anterior skull base: endoscopic resection and repair.

    PubMed

    Kuhn, Frederick A; Javer, Amin R

    2003-01-01

    Fibrosarcomas of the paranasal sinuses and skull base are uncommon tumors. Traditionally, "open approach" surgery remains the mainstay for treatment of choice for these tumors. A 49-year-old man underwent resection of a right anterior skull base fibrosarcoma using the endoscopic approach. Close follow-up using both endoscopic and imaging methods over a period of four years has revealed a well-healed skull base with no evidence of recurrence. Significant resistance exists at present for such a technique to deal with malignant diseases of the head and neck but results from advanced centers continue to prove that this may be a technique worth mastering and improving on.

  12. Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.

    PubMed

    Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander

    2013-12-01

    Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Neck swelling due to skull base (pseudo)meningocele protruding through a congenital skull base bone defect: a case report.

    PubMed

    Sharma, Rajeev; Singh, Bhoopendra; Kedia, Shweta; Laythalling, Rajinder Kumar

    2017-02-01

    Meningocele is defined as a protrusion of the meninges through an opening in the skull or spinal column, forming a bulge or sac filled with cerebrospinal fluid. A pseudomeningocele is defined as a cerebrospinal fluid (CSF) collection formed due to escape of CSF through a dural defect with trapping of CSF into the surrounding soft tissues. We herby report rare occurrence of a large (pseudo)meningocele in a young patient with congenital skull base defect presenting as upper lateral neck swelling. We present the case of a 17-year-old boy who had painless progressive swelling right side of the upper neck without any history of meningitis or CSF leak. He had a history of undergoing cranioplasty using steel plates for nontraumatic boggy swelling right parieto-occipital region at the age of 5 years at another hospital. Clinical examination showed painless swelling right side of the upper neck, with positive cough impulse and transillumination. CT head with cisternography showed a large right skull base defect through which a large pseudomeningocele was herniating, thus producing upper neck swelling and compressing oral cavity. The neck swelling and intraoral bulge reduced in size after the coperitoneal shunt. Differential diagnosis of (pseudo)meningocele should be considered while evaluating a painless progressive upper neck swelling having cough impulse and transillumination in a young patient.

  14. Readability analysis of internet-based patient information regarding skull base tumors.

    PubMed

    Misra, Poonam; Kasabwala, Khushabu; Agarwal, Nitin; Eloy, Jean Anderson; Liu, James K

    2012-09-01

    Readability is an important consideration in assessing healthcare-related literature. In order for a source of information to be the most beneficial to patients, it should be written at a level appropriate for the audience. The National Institute of Health recommends that health literature be written at a maximum level of sixth grade. This is not uniformly found in current health literature, putting patients with lower reading levels at a disadvantage. In February 2012, healthcare-oriented education resources were retrieved from websites obtained using the Google search phrase skull base tumors. Of the first 25 consecutive, unique website hits, 18 websites were found to contain information for patients. Ten different assessment scales were utilized to assess the readability of the patient-specific web pages. Patient-oriented material found online for skull base tumors was written at a significantly higher level than the reading level of the average US patient. The average reading level of this material was found to be at a minimum of eleventh grade across all ten scales. Health related material related to skull base tumors available through the internet can be improved to reach a larger audience without sacrificing the necessary information. Revisions of this material can provide significant benefit for average patients and improve their health care.

  15. The Comprehensive AOCMF Classification: Skull Base and Cranial Vault Fractures – Level 2 and 3 Tutorial

    PubMed Central

    Ieva, Antonio Di; Audigé, Laurent; Kellman, Robert M.; Shumrick, Kevin A.; Ringl, Helmut; Prein, Joachim; Matula, Christian

    2014-01-01

    The AOCMF Classification Group developed a hierarchical three-level craniomaxillofacial classification system with increasing level of complexity and details. The highest level 1 system distinguish four major anatomical units, including the mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). This tutorial presents the level 2 and more detailed level 3 systems for the skull base and cranial vault units. The level 2 system describes fracture location outlining the topographic boundaries of the anatomic regions, considering in particular the endocranial and exocranial skull base surfaces. The endocranial skull base is divided into nine regions; a central skull base adjoining a left and right side are divided into the anterior, middle, and posterior skull base. The exocranial skull base surface and cranial vault are divided in regions defined by the names of the bones involved: frontal, parietal, temporal, sphenoid, and occipital bones. The level 3 system allows assessing fracture morphology described by the presence of fracture fragmentation, displacement, and bone loss. A documentation of associated intracranial diagnostic features is proposed. This tutorial is organized in a sequence of sections dealing with the description of the classification system with illustrations of the topographical skull base and cranial vault regions along with rules for fracture location and coding, a series of case examples with clinical imaging and a general discussion on the design of this classification. PMID:25489394

  16. Collagen matrix as an inlay in endoscopic skull base reconstruction.

    PubMed

    Oakley, G M; Christensen, J M; Winder, M; Jonker, B P; Davidson, A; Steel, T; Teo, C; Harvey, R J

    2018-03-01

    Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described. A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined. Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients. Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.

  17. Facial artery musculomucosal flap for reconstruction of skull base defects: a cadaveric study.

    PubMed

    Xie, Liyue; Lavigne, François; Rahal, Akram; Moubayed, Sami Pierre; Ayad, Tareck

    2013-08-01

    Failure in skull base defects reconstruction following tumor resection can have serious consequences such as ascending meningitis and pneumocephaly. The nasoseptal flap showed a very low incidence of cerebrospinal fluid leak but is not always available. The superiorly pedicled facial artery musculomucosal (FAMM) flap has been successfully used for reconstruction of head and neck defects. Our objective is to show that the FAMM flap can be used as a new alternative in skull base reconstruction. Cadaveric study. Feasibility. Thirteen specimens underwent bilateral FAMM flap dissection. Two new modifications of the traditional FAMM flap have been developed. Feasibility in FAMM flap transfer to the skull base was investigated through endoscopic skull base dissection and maxillectomy in four specimens. Measurements were recorded for each harvested flap. The mean surface area of the modified FAMM flap efficient for reconstruction was 15.90 cm(2) . The flaps easily covered the simulated defects of the frontal sinus and the fovea ethmoidalis areas. Modifications of the traditional FAMM flap were necessary for a tension-free coverage of the planum sphenoidale and sella turcica. The FAMM flap holds high potential as a new alternative vascular flap in skull base reconstruction. However, it has not been used in patients yet and should be considered only when other options are not available. New modifications developed in this article can elongate the traditional FAMM flap, potentially contributing to a tighter seal of the skull base defect than FAMM flap alone. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Image guidance systems for minimally invasive sinus and skull base surgery in children.

    PubMed

    Benoit, Margo McKenna; Silvera, V Michelle; Nichollas, Richard; Jones, Dwight; McGill, Trevor; Rahbar, Reza

    2009-10-01

    The use of image guidance for sinonasal and skull base surgery has been well-characterized in adults but there is limited information on the use of these systems in the pediatric population, despite their widespread use. The aim of this study is to evaluate the use of image guidance systems to facilitate an endoscopic minimally invasive approach to sinonasal and skull base surgery in a pediatric population. A retrospective cohort study was performed at a tertiary pediatric hospital. Thirty-three children presented with complications of sinusitis, tumors, traumatic, or congenital lesions of the skull base and underwent endoscopic surgery using image guidance from March 2000 to April 2007. Patient variables including diagnosis, extent of disease, and complications were extracted from paper and computer charts. Additional surgical variables including set-up time, accuracy, surgeon satisfaction index and number of uses per case were also reviewed. Twenty-eight patients (85%) underwent sinonasal surgery and five (15%) underwent skull base surgery. Indications included infectious complications of acute sinusitis (N=15), neoplasms (N=12), choanal atresia (N=4), and cerebrospinal fluid leak (N=2). Thirty-one patients (94%) required only one procedure. No surgical complications were reported. Surgeon satisfaction, mean accuracy and number of uses per procedure increased over time (p<0.05). Image guidance systems are safe and effective tools that facilitate a minimally invasive approach to sinonasal and skull base surgery in children. Consistent with adult literature, usage and surgeon comfort increased with experience. The additional anatomical information obtained by image guidance systems facilitates a minimally invasive endoscopic approach for sinonasal and skull base pathologies.

  19. Knowledge of skull base anatomy and surgical implications of human sacrifice among pre-Columbian Mesoamerican cultures.

    PubMed

    Lopez-Serna, Raul; Gomez-Amador, Juan Luis; Barges-Coll, Juan; Arriada-Mendicoa, Nicasio; Romero-Vargas, Samuel; Ramos-Peek, Miguel; Celis-Lopez, Miguel Angel; Revuelta-Gutierrez, Rogelio; Portocarrero-Ortiz, Lesly

    2012-08-01

    Human sacrifice became a common cultural trait during the advanced phases of Mesoamerican civilizations. This phenomenon, influenced by complex religious beliefs, included several practices such as decapitation, cranial deformation, and the use of human cranial bones for skull mask manufacturing. Archaeological evidence suggests that all of these practices required specialized knowledge of skull base and upper cervical anatomy. The authors conducted a systematic search for information on skull base anatomical and surgical knowledge among Mesoamerican civilizations. A detailed exposition of these results is presented, along with some interesting information extracted from historical documents and pictorial codices to provide a better understanding of skull base surgical practices among these cultures. Paleoforensic evidence from the Great Temple of Tenochtitlan indicates that Aztec priests used a specialized decapitation technique, based on a deep anatomical knowledge. Trophy skulls were submitted through a stepwise technique for skull mask fabrication, based on skull base anatomical landmarks. Understanding pre-Columbian Mesoamerican religions can only be realized by considering them in their own time and according to their own perspective. Several contributions to medical practice might have arisen from anatomical knowledge emerging from human sacrifice and decapitation techniques.

  20. Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.

    PubMed

    Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T

    2005-03-01

    Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.

  1. Lesson to be remembered from a skull base tumor.

    PubMed

    Briet, C; Bernard, F; Rodien, P

    2017-09-01

    The natural history of giant prolactinomas is not known. While it is commonly accepted that the enlargement of microadenoma is rare and more limited than macroadenoma, it is so far uncommon that macroadenoma progress to giant adenoma. Thus, spontaneous enlargement of adenomas is poorly documented. We report the unusual history of undiagnosed microprolactinoma, revealed 12years later at the stage of a giant adenoma presenting as a skull base tumor. This unique observation provides information on the natural history of giant adenomas and arguments for particular attention to microadenomas with signs of invasion. Moreover, this clinical case highlights the need for a prolactin dosage for all midline skull base tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Skull fracture

    MedlinePlus

    Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...

  3. Clinical diagnostic dilemma of intracranial germinoma manifesting as wide skull base extension.

    PubMed

    Zhou, Zhi-hang; Zhang, Hai-bo; Rao, Jun; Bian, Xiu-wu

    2014-09-01

    The aims of this study were to present an uncommon intracranial germinoma manifesting as skull base extension and analyze its clinical characteristics to give valuable insight into such uncommon radiologic variant. This is a clinical study of a 15-year-old girl with intracranial germinoma manifesting as skull base extension. Clinical characteristics, magnetic resonance imaging scan observations, pathologic findings, and flow of the treatment procedure were presented and analyzed. She had a 5-month history of diuresis and diplopia. magnetic resonance imaging observation displayed a neoplasm located in the right-side central skull base and suprasellar area with wide extension into the cavernous sinus, intraorbital region, ethmoidal sinus, sphenoid sinus, and pituitary fossa. After administration of contrast medium, strong and heterogeneous enhancement of the mass was observed, with a dural tail sign along the right cerebellar tentorial. Right pterional approach was performed, and intraoperative histologic examination suspected the diagnosis of germinoma; partial resection was achieved, and postoperative radiotherapy was administered. Cranial nerve palsy improved greatly 6 months postoperatively. Although highly unusual, germinoma should be included in the differential diagnosis of all masses with extension along the midline region of skull base, especially when it happens in young female patients.

  4. Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study.

    PubMed

    Swaney, Philip J; Gilbert, Hunter B; Webster, Robert J; Russell, Paul T; Weaver, Kyle D

    2015-03-01

    Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.

  5. Skull base osteomyelitis: current microbiology and management.

    PubMed

    Spielmann, P M; Yu, R; Neeff, M

    2013-01-01

    Skull base osteomyelitis typically presents in an immunocompromised patient with severe otalgia and otorrhoea. Pseudomonas aeruginosa is the commonest pathogenic micro-organism, and reports of resistance to fluoroquinolones are now emerging, complicating management. We reviewed our experience of this condition, and of the local pathogenic organisms. A retrospective review from 2004 to 2011 was performed. Patients were identified by their admission diagnostic code, and computerised records examined. Twenty patients were identified. A facial palsy was present in 12 patients (60 per cent). Blood cultures were uniformly negative, and culture of ear canal granulations was non-diagnostic in 71 per cent of cases. Pseudomonas aeruginosa was isolated in only 10 (50 per cent) cases; one strain was resistant to ciprofloxacin but all were sensitive to ceftazidime. Two cases of fungal skull base osteomyelitis were identified. The mortality rate was 15 per cent. The patients' treatment algorithm is presented. Our treatment algorithm reflects the need for multidisciplinary input, early microbial culture of specimens, appropriate imaging, and prolonged and systemic antimicrobial treatment. Resolution of infection must be confirmed by close follow up and imaging.

  6. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  7. [Anatomy of the skull base and the cranial nerves in slice imaging].

    PubMed

    Bink, A; Berkefeld, J; Zanella, F

    2009-07-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.

  8. Skull base lesions: extracranial origins.

    PubMed

    Mosier, Kristine M

    2013-10-01

    A number of extracranial anatomical sites, including the nasopharynx, paranasal sinuses, and masticator space, may give rise to lesions involving the skull base. Implicit in the nature of an invasive lesion, the majority of these lesions are malignant. Accordingly, for optimal patient outcomes and treatment planning, it is imperative to include a search pattern for extracranial sites and to assess accurately the character and extent of these diverse lesions. Of particular importance to radiologists are lesions arising from each extracranial site, the search patterns, and relevant information important to convey to the referring clinician. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.

    PubMed

    Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto

    2016-04-01

    MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.

  10. Endoscopic Skull Base Surgery

    PubMed Central

    Senior, Brent A

    2008-01-01

    Endoscopic skull base surgery has undergone rapid advancement in the past decade moving from pituitary surgery to suprasellar lesions and now to a myriad of lesions extending from the cribriform plate to C2 and laterally out to the infratemporal fossa and petrous apex. Evolution of several technological advances as well as advances in understanding of endoscopic anatomy and the development of surgical techniques both in resection and reconstruction have fostered this capability. Management of benign disease via endoscopic methods is largely accepted now but more data is needed before the controversy on the role of endoscopic management of malignant disease is decided. Continued advances in surgical technique, navigation systems, endoscopic imaging technology, and robotics assure continued brisk evolution in this expanding field. PMID:19434274

  11. Management of Anterior Skull Base Defect Depending on Its Size and Location

    PubMed Central

    Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Enriquez, Karla; Viscovich, Liza; Agredo-Lemos, Freddy Enrique; Alobid, Isam

    2014-01-01

    Introduction. We present our experience in the reconstruction of these leaks depending on their size and location. Material and Methods. Fifty-four patients who underwent advanced skull base surgery (large defects, >20 mm) and 62 patients with CSF leaks of different origin (small, 2–10 mm, and midsize, 11–20 mm, defects) were included in the retrospective study. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata. In small and midsized leaks. Fascia lata in an underlay position was used for its reconstruction covered with mucoperiosteum of either the middle or the inferior turbinate. Results. The most frequent etiology for small and midsized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%). The success rate after the first surgical reconstruction was 91% and 98% in large skull base defects and small/midsized, respectively. Rescue surgery achieved 100%. Conclusions. Endoscopic surgery for any type of skull base defect is the gold standard. The size of the defects does not seem to play a significant role in the success rate. Fascia lata and mucoperiosteum of the turbinate allow a two-layer reconstruction of small and midsized defects. For larger skull base defects, a combination of fat, fascia lata, and nasoseptal pedicled flaps provides a successful reconstruction. PMID:24895567

  12. Skull Base Inverted Papilloma: A Comprehensive Review

    PubMed Central

    Wassef, Shafik N.; Batra, Pete S.; Barnett, Samuel

    2012-01-01

    Skull base inverted papilloma (IP) is an unusual entity for many neurosurgeons. IP is renowned for its high rate of recurrence, its ability to cause local destruction, and its association with malignancy. This paper is a comprehensive review of the reports, studies, and reviews published in the current biomedical literature from 1947 to September 2010 and synthesize this information to focus on its potential invasion to the base of the skull and possible intradural extension. The objective is to familiarize the clinician with the different aspects of this unusual disease. The role of modern diagnostic tools in medical imaging in order to assess clearly the limits of the tumors and to enhance the efficiency and the safety in the choice of a surgical approach is pointed out. The treatment guidelines for IP have undergone a complex evolution that continues today. Radical excision of the tumour is technically difficult and often incomplete. Successful management of IP requires resection of the affected mucosa which could be achieved with open surgery, endoscopic, or combined approach. Radio and chemotherapy were used for certain indications. More optimally research would be a multicenter randomized trials with large size cohorts. PMID:23346418

  13. Preoperative Embolization of Skull Base Meningiomas: Outcomes in the Onyx Era.

    PubMed

    Przybylowski, Colin J; Baranoski, Jacob F; See, Alfred P; Flores, Bruno C; Almefty, Rami O; Ding, Dale; Chapple, Kristina M; Sanai, Nader; Ducruet, Andrew F; Albuquerque, Felipe C

    2018-05-09

    Preoperative embolization may facilitate skull base meningioma resection, but its safety and efficacy in the Onyx era have not been investigated. In this retrospective cohort study, we evaluated the outcomes of preoperative embolization of skull base meningiomas using Onyx as the primary embolysate. We queried an endovascular database for patients with skull base meningiomas who underwent preoperative embolization at our institution in 2007-2017. Patient, tumor, procedure, and outcome data were analyzed. Twenty-eight patients (28 meningiomas) underwent successful preoperative meningioma embolization. The mean patient age ± SD was 56 ± 13 years, and 18 patients (64%) were women. The mean tumor size was 49 cm 3 . There were 1, 2, or 3 arterial pedicles embolized in 21 cases (75%), 6 cases (21%), and 1 case (4%), respectively. The embolized pedicles included branches of the middle meningeal artery in 19 cases (68%), the internal maxillary artery in 8 cases (29%), the ascending pharyngeal artery in 2 cases (7%), and the posterior auricular, ophthalmic, occipital, and anterior cerebral arteries in 1 case each (4%). The embolysates used were Onyx alone in 20 cases (71%), n-butyl cyanoacrylate alone in 3 cases (11%), coils/particles and Onyx/n-butyl cyanoacrylate in 2 cases each (7%), and Onyx and coils in 1 case (4%). The median degree of tumor devascularization was 60%. Significant neurologic morbidity occurred in 1 patient (4%) who developed symptomatic peritumoral edema after Onyx embolization. For appropriately selected skull base meningiomas supplied by dura mater-based arterial pedicles without distal cranial nerve supply, preoperative embolization with current embolysate technology affords substantial tumor devascularization with a low complication rate. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Chordomas of the Skull Base, Mobile Spine, and Sacrum: An Epidemiologic Investigation of Presentation, Treatment, and Survival.

    PubMed

    Zuckerman, Scott L; Bilsky, Mark H; Laufer, Ilya

    2018-05-01

    Chordomas are rare primary bone tumors that arise from the axial skeleton. Our objective was to analyze trends in radiation and surgery over time and determine location-based survival predictors for chordomas of the skull base, mobile spine, and sacrum. A retrospective cohort study of the SEER (Surveillance Epidemiology and End Results) database from 1973 to 2013 was conducted. All patients had histologically confirmed chordomas. The principal outcome measure was overall survival (OS). The cohort included 1616 patients: skull base (664), mobile spine (444), and sacrum (508). Skull base tumors presented earliest in life (47.4 years) and sacral tumors presented latest (62.7 years). Rates of radiation remained stable for skull base and mobile spine tumors but declined for sacral tumors (P = 0.006). Rates of surgical resection remained stable for skull base and sacral tumors but declined for mobile spine tumors (P = 0.046). Skull base chordomas had the longest median survival (162 months) compared with mobile spine (94 months) and sacral tumors (87 months). Being married was independently associated with improved OS for skull base tumors (hazard ratio, 0.73; 95% confidence interval, 0.53-0.99; P = 0.044). Surgical resection was independently associated with improved OS for sacral chordomas (hazard ratio, 0.48; 95% confidence interval, 0.34-0.69; P < 0.001). Surgical resection for mobile spine chordomas and radiation for sacral chordomas decreased over time. Patients with skull base tumors survived longer than did patients with mobile spine and sacral chordomas, and surgical resection was associated with improved survival in sacral chordomas only. Understanding the behavior of these tumors can help cranial and spinal surgeons improve treatment in this patient population. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Harvey Cushing's Approaches to Tumors in His Early Career: From the Skull Base to the Cranial Vault

    PubMed Central

    Pendleton, Courtney; Raza, Shaan M.; Gallia, Gary L.; Quiñones-Hinojosa, Alfredo

    2011-01-01

    In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to tumors of the skull base and cranial vault. Following Institutional Review Board approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Participants included four adult patients and one child who underwent surgical resection of bony tumors of the skull base and the cranial vault. The main outcome measures were operative approach and condition recorded at the time of discharge. The indications for surgery included unspecified malignant tumor of the basal meninges and temporal bone, basal cell carcinoma, osteoma of the posterior skull base, and osteomas of the frontal and parietofrontal cranial vault. While Cushing's experience with selected skull base pathology has been previously reported, the breadth of his contributions to operative approaches to the skull base has been neglected. PMID:22470271

  16. Subcranial approach in the surgical treatment of anterior skull base trauma.

    PubMed

    Schaller, B

    2005-04-01

    Fractures of the anterior skull base, because of the region's anatomical relationships, are readily complicated by neurological damage to the brain or cranial nerves. This review highlights the use of a subcranial approach in the operative treatment of injuries of the anterior skull base and compares it to the more traditional neurosurgical transcranial approach. The extended anterior subcranial approach takes advantage of the specific features of injuries in this region and allows direct access to the central anterior cranial base in order to repair fractures, close CSF fistulae and relieve of optic nerve compression. It avoids extensive frontal lobe manipulation. The success of the approach in achieving the aims of surgery with low morbidity is reviewed.

  17. Usefulness of an Osteotomy Template for Skull Tumorectomy and Simultaneous Skull Reconstruction.

    PubMed

    Oji, Tomito; Sakamoto, Yoshiaki; Miwa, Tomoru; Nakagawa, Yu; Yoshida, Kazunari; Kishi, Kazuo

    2016-09-01

    Simultaneous tumor resection and cranioplasty with hydroxyapatite osteosynthesis are sometimes necessary in patients of skull neoplasms or skull-invasive tumors. However, the disadvantage of simultaneous surgery is that mismatches often occur between the skull defect and the hydroxyapatite implant. To solve this problem, the authors developed a customized template for designing the craniotomy line. Before each operation, the craniotomy design was discussed with a neurosurgeon. Based on the discussion, 2 hydroxyapatite implants were customized for each patient on the basis of models prepared using computed tomography data. The first implant was an onlay template for the preoperative cranium, which was customized for designing the osteotomy line. The other implant was used for the skull defect. Using the template, the osteotomy line was drawn along the template edge, osteotomy was performed along this line, and the implant was placed in the skull defect. This technique was performed in 3 patients. No implant or defect trimming was required in any patient, good cosmetic outcomes were noted in all patients, and no complications occurred. Use of predesigned hydroxyapatite templates for craniotomy during simultaneous skull tumor resection and cranioplasty has some clinical advantages: the precise craniotomy line can be designed, the implant and skull defect fit better and show effective osteoconduction, trimming of the implant or defect is minimized, and the operation time is shortened.

  18. Prevertebral corridor: posterior pathway for reconstruction of the ventral skull base.

    PubMed

    Durmaz, Abdullah; Fernandez-Miranda, Juan; Snyderman, Carl H; Rivera-Serrano, Carlos; Tosun, Fuat

    2011-05-01

    Regional vascularized flaps, such as the pericranial and temporoparietal fascia flaps, are currently used for reconstruction of skull base defects after endoscopic endonasal surgery whenever local vascularized flaps, such as the nasoseptal flap, are not available. Two different transposition pathways, infratemporal transpterygoid and subfrontal, have been proposed for regional flaps. The objective of this study was to describe and assess the feasibility of the transposition of a vascularized pedicled flap from the occipital galeopericranium via the prevertebral space corridor into the nasopharynx. Ten heads were injected with colored silicone. An endoscopic endonasal anterior craniofacial resection and panclival approach were performed in each specimen. The occipital flap was harvested using a previously described technique. The prevertebral corridor, extending from the neck to the nasopharynx, was dissected superficial to the paraspinal muscles. Computed tomography-based image guidance was used to assess the relationship between the corridor and adjacent neurovascular structures. Length of the corridor and pedicle and area of the donor flap were measured. The flap was harvested and successfully transposed into the nasopharynx using the proposed corridor in all studied specimens (10 heads, 20 sides). All flaps provided complete coverage of the skull base defects. The average length of the pedicle was 70.5 (SD, 6.5) mm, and the average length and width of the flap were 99.9 (SD, 14.6) mm and 59.3 (SD, 10.9) mm, respectively. The average length of the prevertebral corridor was 49.7 (SD, 4.8) mm. The occipital flap has favorable anatomic characteristics for use in skull base reconstruction. Transposition of the flap via the prevertebral corridor is a suitable option for vascularized reconstruction of expanded endonasal skull base defects when other local or regional flaps are not available. Additional clinical studies are necessary to define its role in endoscopic

  19. [Anatomy of the skull].

    PubMed

    Pásztor, Emil

    2010-01-01

    The anatomy of the human body based on a special teleological system is one of the greatest miracles of the world. The skull's primary function is the defence of the brain, so every alteration or disease of the brain results in some alteration of the skull. This analogy is to be identified even in the human embryo. Proportions of the 22 bones constituting the skull and of sizes of sutures are not only the result of the phylogeny, but those of the ontogeny as well. E.g. the age of the skeletons in archaeological findings could be identified according to these facts. Present paper outlines the ontogeny and development of the tissues of the skull, of the structure of the bone-tissue, of the changes of the size of the skull and of its parts during the different periods of human life, reflecting to the aesthetics of the skull as well. "Only the human scull can give me an impression of beauty. In spite of all genetical colseness, a skull of a chimpanzee cannot impress me aesthetically"--author confesses. In the second part of the treatise those authors are listed, who contributed to the perfection of our knowledge regarding the skull. First of all the great founder of modern anatomy, Andreas Vesalius, then Pierre Paul Broca, Jacob Benignus Winslow are mentioned here. The most important Hungarian contributors were as follow: Sámuel Rácz, Pál Bugát or--the former assistant of Broca--Aurél Török. A widely used tool for measurement of the size of the skull, the craniometer was invented by the latter. The members of the family Lenhossék have had also important results in this field of research, while descriptive anatomy of the skull was completed by microsopical anatomy thanks the activity of Géza Mihálkovits.

  20. Surgical resection of a huge cemento-ossifying fibroma in skull base by intraoral approach.

    PubMed

    Cheng, Xiao-Bing; Li, Yun-Peng; Lei, De-Lin; Li, Xiao-Dong; Tian, Lei

    2011-03-01

    Cemento-ossifying fibroma, also known as ossifying fibroma, usually occurs in the mandible and less commonly in the maxilla. The huge example in the skull base is even rare. We present a case of a huge cemento-ossifying fibroma arising below the skull base of a 30-year-old woman patient. Radiologic investigations showed a giant, lobulated, heterogeneous calcified hard tissue mass, which is well circumscribed and is a mixture of radiolucent and radiopaque, situated at the rear of the right maxilla to the middle skull base. The tumor expands into the right maxillary sinus and the orbital cavity, fusing with the right maxilla at the maxillary tuberosity and blocking the bilateral choanas, which caused marked proptosis and blurred vision. The tumor was resected successfully by intraoral approach, and pathologic examination confirmed the lesion to be a cemento-ossifying fibroma. This case demonstrates that cemento-ossifying fibroma in the maxilla, not like in the mandible, may appear more aggressive because the extensive growth is unimpeded by anatomic obstacles and that the intraoral approach can be used to excise the tumor in the skull base.

  1. Endoscopic endonasal double flap technique for reconstruction of large anterior skull base defects: technical note.

    PubMed

    Dolci, Ricardo Landini Lutaif; Todeschini, Alexandre Bossi; Santos, Américo Rubens Leite Dos; Lazarini, Paulo Roberto

    2018-04-19

    One of the main concerns in endoscopic endonasal approaches to the skull base has been the high incidence and morbidity associated with cerebrospinal fluid leaks. The introduction and routine use of vascularized flaps allowed a marked decrease in this complication followed by a great expansion in the indications and techniques used in endoscopic endonasal approaches, extending to defects from huge tumours and previously inaccessible areas of the skull base. Describe the technique of performing endoscopic double flap multi-layered reconstruction of the anterior skull base without craniotomy. Step by step description of the endoscopic double flap technique (nasoseptal and pericranial vascularized flaps and fascia lata free graft) as used and illustrated in two patients with an olfactory groove meningioma who underwent an endoscopic approach. Both patients achieved a gross total resection: subsequent reconstruction of the anterior skull base was performed with the nasoseptal and pericranial flaps onlay and a fascia lata free graft inlay. Both patients showed an excellent recovery, no signs of cerebrospinal fluid leak, meningitis, flap necrosis, chronic meningeal or sinonasal inflammation or cerebral herniation having developed. This endoscopic double flap technique we have described is a viable, versatile and safe option for anterior skull base reconstructions, decreasing the incidence of complications in endoscopic endonasal approaches. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. [Application of neuroendoscope in the treatment of skull base chordoma].

    PubMed

    Zhang, Ya-Zhuo; Wang, Zong-Cheng; Zong, Xu-Yi; Wang, Xin-Sheng; Gui, Song-Bai; Zhao, Peng; Li, Chu-Zhong; He, Yue; Wang, Hong-Yun

    2011-07-05

    To further explore the application, approach, indication and prognosis of neuroendoscope treatment for skull base chordoma. A total of 101 patients of skull base chordoma were admitted at our hospital from May 2000 to April 2010. There were 59 males and 42 females. Their major clinical manifestations included headache, cranial nerve damage and dyspnea. They were classified according to the patterns of tumor growth: Type I (n = 13): tumor location at a single component of skull base, i. e. clivus or sphenoid sinus with intact cranial dura; Type II (n = 56): tumor involving more than two components of skull e. g clivus, sphenoid and nasal/oral cavity, etc. But there was no intracranial invasion; Type III (n = 32) : tumor extending widely and intradurally forming compression of brain stems and multiple cranial nerves. Based on the types of chordoma, different endoscopic approaches were employed, viz. transnasal, transoral, trans-subtemporal fossa and plus microsurgical craniotomy for staging in some complex cases. Among all patients, total resection was achieved (n = 19), subtotal (n = 58) and partial (n = 24). In partial resection cases, 16 cases were considered to be subtotal due to a second-stage operation. Most cases had conspicuous clinical improvements. Self-care recovery within one week post-operation accounted for 58.4%, two weeks 30.7%, one month 6.9% and more than one month 1.9%. Postoperative complications occurred in 13 cases (12.8%) and included CSF leakage (n = 4) cranial nerve palsy (n = 5), hemorrhagic nasal wounds (n = 3) and delayed intracranial hemorrhage (n = 1). All of these were cured or improved after an appropriate treatment. A follow-up of 6 - 60 months was conducted in 56 cases. Early detection and early treatment are crucial for achieving a better outcome in chordoma. Neuroendoscopic treatment plays an important role in managing those complicated cases. Precise endoscopic techniques plus different surgical approaches and staging procedures

  3. Construction and validation of the midsagittal reference plane based on the skull base symmetry for three-dimensional cephalometric craniofacial analysis.

    PubMed

    Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy

    2014-03-01

    The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.

  4. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  5. A retrospective study of skull base neoplasia in 42 dogs.

    PubMed

    Rissi, Daniel R

    2015-11-01

    This study describes the prevalence and distribution of 42 cases of skull base neoplasia in dogs between 2000 and 2014. The average age of affected individuals was 9.5 years, and there was no sex or breed predisposition. The most common skull base neoplasms were meningioma (25 cases) and pituitary adenoma (9 cases). Less common tumors included craniopharyngioma (2 cases), nerve sheath tumor (2 cases), and 1 case each of pituitary carcinoma, meningeal oligodendrogliomatosis, presumed nasal or sinonasal carcinoma, and multilobular tumor of bone. All neoplasms caused some degree of compression of adjacent structures. The distribution of the tumors was greatest in the sellar region (n = 18), followed by the paranasal region (n = 12), caudal cranial fossa (n = 10), central cranial fossa (n = 1), and rostral cranial fossa (n = 1). © 2015 The Author(s).

  6. Morphometry and CT measurements of useful bony landmarks of skull base.

    PubMed

    Ray, Biswabina; Rajagopal, K V; Rajesh, T; Gayathri, B M V; D'Souza, A S; Swarnashri, J V; Saxena, Alok

    2011-01-01

    Aim of this study was to determine the distance between Henle's spine (HS) on the temporal bone to the clinically important bony landmarks on the dry skulls that will act as a guide in various surgical procedures on skull base. Distances from the head of malleus (HOM) to surgically relevant landmarks were also studied on CT images. Thirty-nine adult preserved dry skulls were studied bilaterally. The parapetrosal triangle bounded by spinopterygoidal, bispinal and the midsagittal lines was identified. The location of the HS and its distance from the various important anatomical structures were measured. In addition, five CT images, where distances from the HOM to various anatomical landmarks were measured. The mean and range of distances from the HS to various important anatomical landmarks on the spinopterygoidal line, bispinal line and in the parapetrosal triangle were tabulated. The mean and range of CT-based measurements of distances from HOM to other anatomical landmarks were also noted. The knowledge of unvarying relationship of the HS and the HOM to the various structures of the skull would assume significance while planning surgeries around the temporal bone by guiding the direction and degree of bone removal. Statistical differences between the two genders showed significant difference only in the distance between the HS to the medial margin of the external orifice of carotid canal. Therefore, these landmarks can also be applied as references for various surgeries of middle cranial fossa, as well as transpetrosal and transmastoid approaches.

  7. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement.

    PubMed

    Dröge, L H; Hinsche, T; Canis, M; Alt-Epping, B; Hess, C F; Wolff, H A

    2014-02-01

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting.

  8. The accuracy of an electromagnetic navigation system in lateral skull base approaches.

    PubMed

    Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L

    2017-02-01

    Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Locoregional and Microvascular Free Tissue Reconstruction of the Lateral Skull Base.

    PubMed

    Arnaoutakis, Demetri; Kadakia, Sameep; Abraham, Manoj; Lee, Thomas; Ducic, Yadranko

    2017-11-01

    The goals of reconstruction following any oncologic extirpation are preservation of function, restoration of cosmesis, and avoidance of morbidity. Anatomically, the lateral skull base is complex and conceptually intricate due to its three-dimensional morphology. The temporal bone articulates with five other cranial bones and forms many sutures and foramina through which pass critical neural and vascular structures. Remnant defects following resection of lateral skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction including local rotational muscle flaps, pedicled flaps with skin paddle, or free tissue transfer. In this review, the advantages and disadvantages of each reconstructive method will be discussed as well as their potential complications.

  10. Intraoperative biopsy of the major cranial nerves in the surgical strategy for adenoid cystic carcinoma close to the skull base.

    PubMed

    Tarsitano, Achille; Pizzigallo, Angelo; Gessaroli, Manlio; Sturiale, Carmelo; Marchetti, Claudio

    2012-02-01

    Adenoid cystic carcinoma of the salivary glands has a propensity for perineural invasion, which could favor spread along the major cranial nerves, sometimes to the skull base and through the foramina to the brain parenchyma. This study evaluated the relationship between neural spread and relapse in the skull base. During surgery, we performed multiple biopsies with extemporaneous examination of the major nerves close to the tumor to guide the surgical resection. The percentage of actuarial local control at 5 years for patients with a positive named nerve and skull base infiltration was 12.5%, compared with 90.0% in patients who were named nerve-negative and without infiltration of the skull base (P = .001). Our study shows that local control of disease for patients who are named nerve-positive with skull base infiltration is significantly more complex compared with patients who are named nerve-negative without infiltration of the skull base. Copyright © 2012. Published by Mosby, Inc.

  11. Endoscopic endonasal approaches for the management of skull base meningiomas. Selection criteria and clinical outcomes.

    PubMed

    Todeschini, Alexandre B; Otto, Bradley A; Carrau, Ricardo L; Prevedello, Daniel M

    2018-05-28

    Meningiomas are the most common primary intracranial tumor, arising from different locations, including the skull base. Despite advances in adjuvant treatments, surgical resection remains the main and best treatment for meningiomas. New surgical strategies, such as the endoscopic endonasal approach, have greatly contributed in achieving maximum and total safe resection, preserving the patient's neurological function. Based on the senior authors large experience and a review of the current literature, we have compiled this chapter. We review the surgical technique used at our institution and the most relevant aspects of patient selection when considering resecting a skull base meningioma using the the EEA. Further consideration is given to some skull base meningiomas arising from specific locations with some case examples. The EEA is not an ideal approach for every skull base meningioma. Careful evaluation of the surrounding neurovascular structures surrounding the tumor is imperative to select the appropriate surgical corridor for a safe resection. Nevertheless, for appropriately selected cases, the endoscopic technique is a very valuable tool with some evidences of being superior to the microscopic transcranial approach. A dual-trained surgeon, in both endoscopic and transcranial approaches, is the best alternative to achieve the best patient outcome.

  12. The pioneering contribution of italian surgeons to skull base surgery.

    PubMed

    Priola, Stefano M; Raffa, Giovanni; Abbritti, Rosaria V; Merlo, Lucia; Angileri, Filippo F; La Torre, Domenico; Conti, Alfredo; Germanò, Antonino; Tomasello, Francesco

    2014-01-01

    The origin of neurosurgery as a modern, successful, and separate branch of surgery could be dated back to the end of the 19th century. The most important development of surgery occurred in Europe, particularly in Italy, where there was a unique environment, allowing brilliant open-minded surgeons to perform, with success, neurosurgical operations. Neurosurgery began at the skull base. In everyday practice, we still pay tribute to early Italian neuroanatomists and pioneer neurosurgeons who represented a starting point in a new, obscure, and still challenging field of medicine and surgery during their times. In this paper, we report at a glance the contributions of Tito Vanzetti from Padua (1809-1888), for his operation on a destructive skull base cyst that had, indeed, an intracranial expansion; of Davide Giordano (1864-1954) from Venice, who described the first transnasal approach to the pituitary gland; and, most importantly, of Francesco Durante from Messina (1844-1934), who was the first surgeon in the history of neurosurgery to successfully remove a cranial base meningioma. They carried out the first detailed reported surgical excision of intracranial lesions at the skull base, diagnosed only through clinical signs; used many of the advances of the 19th century; and conceived and performed new operative strategies and approaches. Their operations were radical enough to allow the patient to survive the surgery and, in the case of Durante, for the first time, to obtain more than 12 years of good survival at a time when a tumor of this type would have been fatal. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2015-07-01

    Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Taken

  14. Skull Practice.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1988-01-01

    Disguises a lesson about skulls with some fun to cause less fear among students. Outlines strategies, questions, and answers for use. Includes a skull mask which can be photocopied and distributed to students as a learning tool and a fun Halloween treat. Also shown is a picture of skull parts. (RT)

  15. Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C

    2015-01-01

    Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  16. [Management of occult malformations at the lateral skull base].

    PubMed

    Bryson, E; Draf, W; Hofmann, E; Bockmühl, U

    2005-12-01

    Occult malformations of the lateral skull base are rare anomalies, but can cause severe complications such as recurrent meningitis. Therefore, they need to be precisely delineated and sufficient surgical closure is mandatory. Between 1986 and 2004 twenty patients (10 children and 10 adults) with occult malformations at the lateral skull base were treated surgically at the ENT-Department of the Hospital Fulda gAG. Of these 3 Mondini-malformations, 11 defects of the tegmen tympani or the mastoidal roof, 2 dural lesions to the posterior fossa and 4 malformations within the pyramidal apex have been found. Four patients have had multiple anomalies. Routing symptom was in all cases at least one previous meningitis. Radiological diagnostics included high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) as well as CT- or MR-cisternography. Depending on type and localisation of the defect the following surgical algorithm was carried out: The trans-mastoidal approach was used in all cases of Mondini-malformation (including obliteration of the ear), in case of lesions to the posterior fossa as well as partly in anomalies at the tegmen tympani and mastoidal roof, respectively. Defects of the pyramidal apex should be explored via the trans-mastoidal way if the lesion is located caudally to the inner auditory canal (IAC), whereas the trans-temporal approach should be used if the lesion is situated ventral to the IAC and dorso-medially to the internal carotid artery (ICA). The trans-temporal approach was also performed in large defects of the tegmen tympani and mastoidal roof as well as in recurrences. In all cases of recurrent meningitis caused by agents of the upper airway tract the basic principle should be to search for occult skull base malformations radiologically as well as by sodium fluorescein endoscopy as long as the anomaly is detected.

  17. Panorama of Reconstruction of Skull Base Defects: From Traditional Open to Endonasal Endoscopic Approaches, from Free Grafts to Microvascular Flaps

    PubMed Central

    Reyes, Camilo; Mason, Eric; Solares, C. Arturo

    2014-01-01

    Introduction A substantial body of literature has been devoted to the distinct characteristics and surgical options to repair the skull base. However, the skull base is an anatomically challenging location that requires a three-dimensional reconstruction approach. Furthermore, advances in endoscopic skull base surgery encompass a wide range of surgical pathology, from benign tumors to sinonasal cancer. This has resulted in the creation of wide defects that yield a new challenge in skull base reconstruction. Progress in technology and imaging has made this approach an internationally accepted method to repair these defects. Objectives Discuss historical developments and flaps available for skull base reconstruction. Data Synthesis Free grafts in skull base reconstruction are a viable option in small defects and low-flow leaks. Vascularized flaps pose a distinct advantage in large defects and high-flow leaks. When open techniques are used, free flap reconstruction techniques are often necessary to repair large entry wound defects. Conclusions Reconstruction of skull base defects requires a thorough knowledge of surgical anatomy, disease, and patient risk factors associated with high-flow cerebrospinal fluid leaks. Various reconstruction techniques are available, from free tissue grafting to vascularized flaps. Possible complications that can befall after these procedures need to be considered. Although endonasal techniques are being used with increasing frequency, open techniques are still necessary in selected cases. PMID:25992142

  18. Isolated Petroclival Craniopharyngioma with Aggressive Skull Base Destruction

    PubMed Central

    Lee, Young-Hen; Lim, Dong-Jun; Park, Jung-Yul; Chung, Yong-Gu; Kim, Young-Sik

    2009-01-01

    We report a rare case of petroclival craniopharyngioma with no connection to the sellar or suprasellar region. MRI and CT images revealed a homogenously enhancing retroclival solid mass with aggressive skull base destruction, mimicking chordoma or aggressive sarcoma. However, there was no calcification or cystic change found in the mass. Here, we report the clinical features and radiographic investigation of this uncommon craniopharyngioma arising primarily in the petroclival region. PMID:19881982

  19. History of endonasal skull base surgery.

    PubMed

    Wang, Amy J; Zaidi, Hasan A; Laws, Edward D

    2016-12-01

    While the endonasal approach to the skull base continues to advance, this paper invokes its long history. The centuries of medieval neuroanatomy and early neurosurgery enabled the conception of the first transfacial approaches in the late 1800s; Henry Schloffer performed the first transsphenoidal surgery in 1907. Although the procedure was initially met with much interest, Harvey Cushing eventually led the field of neurosurgery to abandon the transsphenoidal approach in the 1920s. The following three generations of neurosurgeons contained several key figures including Norman Dott, Gerard Guiot, and Jules Hardy who were steadfast in preserving the technique as well as in addressing its shortcomings. The endoscopic approach developed simultaneously, and advances in magnifying and fiberoptics further resolved limitations previously inherent to the transsphenoidal approach. At last, in the 1960s, the transsphenoidal approach entered its renaissance. Today, the momentum of its development persists in the endoscopic endonasal approach, which has recently expanded the indications for transsphenoidal surgery across the skull base, far beyond its original jurisdiction of the sella. Continued progress must not take for granted the rich history of the transsphenoidal approach, which was developed over centuries by surgeons around the world. The authors present the evolution of modern endonasal surgery as a dynamic interplay between technology, medicine, and surgery over the past 100 years. Progress can be attributed to courageous surgeons who affirmed their contemporary practices despite gaps in technology or medicine, and to visionary individuals who produced and incorporated new elements into transsphenoidal surgery. And so while the new endoscopic technique brings forth new challenges, its development reaffirms the principles laid down by the pioneers of transsphenoidal surgery.

  20. Endoscopic Approach to Remove Intra-extracranial Tumors in Various Skull Base Regions: 10-year Experience of a Single Center

    PubMed Central

    Zhang, Qiu-Hang; Wang, Zhen-Lin; Guo, Hong-Chuan; Kong, Feng; Yan, Bo; Li, Ming-Chu; Chen, Ge; Liang, Jian-Tao; Bao, Yu-Hai; Ling, Feng

    2017-01-01

    Background: Some problems have been found in the usually adopted combined approach for the removal of intra-extracranial tumors in skull base. Herein, we described a pure endoscopic transnasal or transoral approach (ETA) for the removal of intra-extracranial tumors in various skull base regions. Methods: Retrospectively, clinical data, major surgical complications, pre- and postoperative images, and follow-up information of a series of 85 patients with intra-extracranial tumors in various skull base regions who were treated by surgery via ETA in our skull base center during the past 10 years were reviewed and analyzed. Results: Gross total tumor removal was achieved in 80/85 cases (94.1%) in this study. All 37 cases with tumors in anterior skull base and all 14 cases with tumors in jugular foramen received total tumor removal. Thirteen and three cases with tumors in clivus received total and subtotal tumor removal, respectively. Total and subtotal tumor removal was performed for 16 cases and 2 cases in lateral skull base, respectively. The complications in this study included: cerebrospinal fluid leakage (n = 3), meningitis (n = 3), and new cranial nerve deficits (n = 3; recovered in 3 months after surgery). In the follow-up period of 40–151 months (median: 77 months), seven patients (8.8%) out of the 80 cases of total tumor removal experienced recurrence. Conclusions: Complete resection of intra-extracranial growing tumors in various skull base regions can be achieved via the pure ETA in one stage in selected cases. Surgical procedure for radical removal of tumors is feasible and safe. PMID:29237926

  1. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    PubMed Central

    Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.

    2016-01-01

    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route. PMID:27293965

  2. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.

    PubMed

    Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann

    2017-06-15

    Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Calvarial and skull base metastases: expanding the clinical utility of Gamma Knife surgery.

    PubMed

    Kotecha, Rupesh; Angelov, Lilyana; Barnett, Gene H; Reddy, Chandana A; Suh, John H; Murphy, Erin S; Neyman, Gennady; Chao, Samuel T

    2014-12-01

    Traditionally, the treatment of choice for patients with metastases to the calvaria or skull base has been conventional radiation therapy. Because patients with systemic malignancies are also at risk for intracranial metastases, the utility of Gamma Knife surgery (GKS) for these patients has been explored to reduce excess radiation exposure to the perilesional brain parenchyma. The purpose of this study was to report the efficacy of GKS for the treatment of calvarial metastases and skull base lesions. The authors performed a retrospective chart review of 21 patients with at least 1 calvarial or skull base metastatic lesion treated with GKS during 2001-2013. For 7 calvarial lesions, a novel technique, in which a bolus was placed over the treatment site, was used. For determination of local control or disease progression, radiation therapy data were examined and posttreatment MR images and oncology records were reviewed. Survival times from the date of procedure were estimated by using Kaplan-Meier analyses. The median patient age at treatment was 57 years (range 29-84 years). A total of 19 (90%) patients received treatment for single lesions, 1 patient received treatment for 3 lesions, and 1 patient received treatment for 4 lesions. The most common primary tumor was breast cancer (24% of patients). Per lesion, the median clinical and radiographic follow-up times were 10.3 months (range 0-71.9 months) and 7.1 months (range 0-61.3 months), respectively. Of the 26 lesions analyzed, 14 (54%) were located in calvarial bones and 12 (46%) were located in the skull base. The median lesion volume was 5.3 cm(3) (range 0.3-55.6 cm(3)), and the median prescription margin dose was 15 Gy (range 13-24 Gy). The median overall survival time for all patients was 35.9 months, and the 1-year local control rate was 88.9% (95% CI 74.4%-100%). Local control rates did not differ between lesions treated with the bolus technique and those treated with traditional methods or between calvarial

  4. Sinonasal outcomes following endoscopic anterior skull base surgery with nasoseptal flap reconstruction: a prospective study.

    PubMed

    Hanson, M; Patel, P M; Betz, C; Olson, S; Panizza, B; Wallwork, B

    2015-07-01

    To assess nasal morbidity resulting from nasoseptal flap use in the repair of skull base defects in endoscopic anterior skull base surgery. Thirty-six patients awaiting endoscopic anterior skull base surgery were prospectively recruited. A nasoseptal flap was used for reconstruction in all cases. Patients were assessed pre-operatively and 90 days post-operatively via the Sino-Nasal Outcome Test 20 questionnaire and visual analogue scales for nasal obstruction, pain, secretions and smell; endoscopic examination findings and mucociliary clearance times were also recorded. Sino-Nasal Outcome Test 20 questionnaire data and visual analogue scale scores for pain, smell and secretions showed no significant differences between pre- and post-operative outcomes, with visual analogue scale scores for nasal obstruction actually showing a significant improvement (p = 0.0007). A significant deterioration for both flap and non-flap sides was demonstrated post-operatively on endoscopic examination (p = 0.002 and p = 0.02 respectively). Whilst elevation of a nasoseptal flap in endoscopic surgery of the anterior skull base engendered significant clinical deterioration on examination post-operatively, quality of life outcomes showed that no such deterioration was subjectively experienced by the patient. In fact, there was significant nasal airway improvement following nasoseptal flap reconstruction.

  5. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].

    PubMed

    Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio

    2015-01-01

    The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  6. A checklist for endonasal transsphenoidal anterior skull base surgery.

    PubMed

    Laws, Edward R; Wong, Judith M; Smith, Timothy R; de Los Reyes, Kenneth; Aglio, Linda S; Thorne, Alison J; Cote, David J; Esposito, Felice; Cappabianca, Paolo; Gawande, Atul

    2016-06-01

    OBJECT Approximately 250 million surgical procedures are performed annually worldwide, and data suggest that major complications occur in 3%-17% of them. Many of these complications can be classified as avoidable, and previous studies have demonstrated that preoperative checklists improve operating room teamwork and decrease complication rates. Although the authors' institution has instituted a general preoperative "time-out" designed to streamline communication, flatten vertical authority gradients, and decrease procedural errors, there is no specific checklist for transnasal transsphenoidal anterior skull base surgery, with or without endoscopy. Such minimally invasive cranial surgery uses a completely different conceptual approach, set-up, instrumentation, and operative procedure. Therefore, it can be associated with different types of complications as compared with open cranial surgery. The authors hypothesized that a detailed, procedure-specific, preoperative checklist would be useful to reduce errors, improve outcomes, decrease delays, and maximize both teambuilding and operational efficiency. Thus, the object of this study was to develop such a checklist for endonasal transsphenoidal anterior skull base surgery. METHODS An expert panel was convened that consisted of all members of the typical surgical team for transsphenoidal endoscopic cases: neurosurgeons, anesthesiologists, circulating nurses, scrub technicians, surgical operations managers, and technical assistants. Beginning with a general checklist, procedure-specific items were added and categorized into 4 pauses: Anesthesia Pause, Surgical Pause, Equipment Pause, and Closure Pause. RESULTS The final endonasal transsphenoidal anterior skull base surgery checklist is composed of the following 4 pauses. The Anesthesia Pause consists of patient identification, diagnosis, pertinent laboratory studies, medications, surgical preparation, patient positioning, intravenous/arterial access, fluid management

  7. Lateral skull base approaches in the management of benign parapharyngeal space tumors.

    PubMed

    Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario

    2015-06-01

    To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  9. Intraventricular and skull base neuroendoscopy in 2012: a global survey of usage patterns and the role of intraoperative neuronavigation.

    PubMed

    Esposito, Felice; Di Rocco, Federico; Zada, Gabriel; Cinalli, Giuseppe; Schroeder, Henry W S; Mallucci, Conor; Cavallo, Luigi M; Decq, Philippe; Chiaramonte, Carmela; Cappabianca, Paolo

    2013-12-01

    During the past decade, endoscopic intraventricular and skull base operations have become widely used for a variety of evolving indications. A global survey of practicing endoscopic neurosurgeons was performed to characterize patterns of usage regarding endoscopy equipment, instrumentation, and the indications for using image-guided surgery systems (IGSs). An online survey consisting of 8 questions was completed by 235 neurosurgeons with endoscopic surgical experience. Responses were entered into a database and subsequently analyzed. The median number of operations performed per year by intraventricular and skull base endoscopic surgeons was 27 and 25, respectively. Data regarding endoscopic equipment brand, diameter, and length are presented. The most commonly reported indications for IGSs during intraventricular endoscopic surgery were tumor biopsy/resection, intraventricular cyst fenestration, septostomy/pellucidotomy, endoscopic third ventriculostomy, and aqueductal stent placement. Intraventricular surgeons reported using IGSs for all cases in 16.6% and never in 24.4%. Overall, endoscopic skull base surgeons reported using IGSs for all cases in 23.9% and never in 18.9%. The most commonly reported indications for IGSs during endoscopic skull base operations were complex sinus/skull base anatomy, extended approaches, and reoperation. Many variations and permutations for performing intraventricular and skull base endoscopic surgery exist worldwide. Much can be learned by studying the patterns and indications for using various types of equipment and operative adjuncts such as IGSs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept.

    PubMed

    Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F

    2018-03-02

    OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.

  11. Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study

    PubMed Central

    Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama

    2015-01-01

    Background: Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. Methods: To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Results: Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Conclusion: Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients. PMID:26674155

  12. Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study.

    PubMed

    Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama

    2015-01-01

    Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.

  13. Dimensional, Geometrical, and Physical Constraints in Skull Growth.

    PubMed

    Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain

    2017-06-16

    After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.

  14. Dimensional, Geometrical, and Physical Constraints in Skull Growth

    NASA Astrophysics Data System (ADS)

    Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain

    2017-06-01

    After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.

  15. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  16. The anterior interhemispheric approach: a safe and effective approach to anterior skull base lesions.

    PubMed

    Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit

    2014-04-01

    Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach

  17. Expanded Endoscopic Endonasal Approaches to Skull Base Meningiomas

    PubMed Central

    Prosser, J. Drew; Vender, John R.; Alleyne, Cargill H.; Solares, C. Arturo

    2012-01-01

    Anterior cranial base meningiomas have traditionally been addressed via frontal or frontolateral approaches. However, with the advances in endoscopic endonasal treatment of pituitary lesions, the transphenoidal approach is being expanded to address lesions of the petrous ridge, anterior clinoid, clivus, sella, parasellar region, tuberculum, planum, olfactory groove, and crista galli regions. The expanded endoscopic endonasal approach (EEEA) has the advantage of limiting brain retraction and resultant brain edema, as well as minimizing manipulation of neural structures. Herein, we describe the techniques of transclival, transphenoidal, transplanum, and transcribiform resections of anterior skull base meningiomas. Selected cases are presented. PMID:23730542

  18. [Anterior skull-base schwannoma].

    PubMed

    Esquivel-Miranda, Miguel; De la O Ríos, Elier; Vargas-Valenciano, Emmanuelle; Moreno-Medina, Eva

    Schwannomas are nerve sheath tumours that originate in Schwann cells. They are usually solitary and sporadic and manifest on peripheral, spinal or cranial nerves. Intracranial schwannomas tend to manifest on the eighth cranial nerve, particularly in patients with neurofibromatosis type2. Anterior skull-base schwannomas represent less than 1% of all intracranial schwannomas. They are more frequent in young people and are typically benign. These tumours represent a diagnostic challenge due to their rarity and difficult differential diagnosis, and numerous theories have been postulated concerning their origin and development. In this article, we present the case of a 13-year-old male with a single anterior cranial-base tumour not associated with neurofibromatosis who presented with headache, papilloedema, eye pain and loss of visual acuity. Complete resection of the tumour was performed, which was histopathologically diagnosed as a schwannoma. The patient made a complete clinical recovery with abatement of all symptoms. We conducted a review of the literature and found 66 cases worldwide with this diagnosis. We describe the most relevant epidemiological and clinical characteristics of this kind of tumour and its relation with the recently discovered and similar olfactory schwannoma. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.

    PubMed

    Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake

    2006-11-07

    We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.

  20. Safety of drilling for clinoidectomy and optic canal unroofing in anterior skull base surgery.

    PubMed

    Spektor, Sergey; Dotan, Shlomo; Mizrahi, Cezar José

    2013-06-01

    Skull base drilling is a necessary and important element of skull base surgery; however, drilling around vulnerable neurovascular structures has certain risks. We aimed to assess the frequency of complications related to drilling the anterior skull base in the area of the optic nerve (ON) and internal carotid artery (ICA), in a large series of patients. We included anterior skull base surgeries performed from 2000 to 2012 that demanded unroofing of the optic canal, with extra- or intradural clinoidectomy and/or drilling of the clinoidal process and lateral aspect of the tuberculum sella. Data was retrieved from a prospective database and supplementary retrospective file review. Our IRB waived the requirement for informed consent. The nature and location of pathology, clinical presentation, surgical techniques, surgical morbidity and mortality, pre- and postoperative vision, and neurological outcomes were reviewed. There were 205 surgeries, including 22 procedures with bilateral optic canal unroofing (227 optic canals unroofed). There was no mortality, drilling-related vascular damage, or brain trauma. Complications possibly related to drilling included CSF leak (6 patients, 2.9 %), new ipsilateral blindness (3 patients, 1.5 %), visual deterioration (3 patients, 1.5 %), and transient oculomotor palsy (5 patients, 2.4 %). In all patients with new neuropathies, the optic and oculomotor nerves were manipulated during tumor removal; thus, new deficits could have resulted from drilling, or tumor dissection, or both. Drilling of the clinoid process and tuberculum sella, and optic canal unroofing are important surgical techniques, which may be performed relatively safely by a skilled neurosurgeon.

  1. Prospective analysis of neuropsychological deficits following resection of benign skull base meningiomas.

    PubMed

    Zweckberger, Klaus; Hallek, Eveline; Vogt, Lidia; Giese, Henrik; Schick, Uta; Unterberg, Andreas W

    2017-12-01

    OBJECTIVE Resection of skull base tumors is challenging. The introduction of alternative treatment options, such as radiotherapy, has sparked discussion regarding outcome in terms of quality of life and neuropsychological deficits. So far, however, no prospective data are available on this topic. METHODS A total of 58 patients with skull base meningiomas who underwent surgery for the first time were enrolled in this prospective single-center trial. The average age of the patients was 56.4 ± 12.5 years. Seventy-nine percent of the tumors were located within the anterior skull base. Neurological examinations and neuropsychological testing were performed at 3 time points: 1 day prior to surgery (T1), 3-5 months after surgery (T2), and 9-12 months after surgery (T3). The average follow-up duration was 13.8 months. Neuropsychological assessment consisted of quality of life, depression and anxiety, verbal learning and memory, cognitive speed, attention and concentration, figural memory, and visual-motor speed. RESULTS Following surgery, 23% of patients showed transient neurological deficits and 12% showed permanent new neurological deficits with varying grades of manifestation. Postoperative quality of life, however, remained stable and was slightly improved at follow-up examinations at T3 (60.6 ± 21.5 vs 63.6 ± 24.1 points), and there was no observed effect on anxiety and depression. Long-term verbal memory, working memory, and executive functioning were slightly affected within the first months following surgery and appeared to be the most vulnerable to impairment by the tumor or the resection but were stable or improved in the majority of patients at long-term follow-up examinations after 1 year. CONCLUSIONS This report describes the first prospective study of neuropsychological outcomes following resection of skull base meningiomas and, as such, contributes to a better understanding of postoperative impairment in these patients. Despite deterioration in a minority

  2. The journey of discovering skull base anatomy in ancient Egypt and the special influence of Alexandria.

    PubMed

    Elhadi, Ali M; Kalb, Samuel; Perez-Orribo, Luis; Little, Andrew S; Spetzler, Robert F; Preul, Mark C

    2012-08-01

    The field of anatomy, one of the most ancient sciences, first evolved in Egypt. From the Early Dynastic Period (3100 BC) until the time of Galen at the end of the 2nd century ad, Egypt was the center of anatomical knowledge, including neuroanatomy. Knowledge of neuroanatomy first became important so that sacred rituals could be performed by ancient Egyptian embalmers during mummification procedures. Later, neuroanatomy became a science to be studied by wise men at the ancient temple of Memphis. As religious conflicts developed, the study of the human body became restricted. Myths started to replace scientific research, squelching further exploration of the human body until Alexander the Great founded the city of Alexandria. This period witnessed a revolution in the study of anatomy and functional anatomy. Herophilus of Chalcedon, Erasistratus of Chios, Rufus of Ephesus, and Galen of Pergamon were prominent physicians who studied at the medical school of Alexandria and contributed greatly to knowledge about the anatomy of the skull base. After the Royal Library of Alexandria was burned and laws were passed prohibiting human dissections based on religious and cultural factors, knowledge of human skull base anatomy plateaued for almost 1500 years. In this article the authors consider the beginning of this journey, from the earliest descriptions of skull base anatomy to the establishment of basic skull base anatomy in ancient Egypt.

  3. Skull (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  4. Intraoperative Magnetic Resonance Imaging in Skull Base Surgery: A Review of 71 Consecutive Cases.

    PubMed

    Ashour, Ramsey; Reintjes, Stephen; Park, Michael S; Sivakanthan, Sananthan; van Loveren, Harry; Agazzi, Siviero

    2016-09-01

    Although intraoperative magnetic resonance imaging (iMRI) increasingly is used during glioma resection, its role in skull base surgery has not been well documented. In this study, we evaluate our experience with iMRI for skull base surgery. Medical records were reviewed retrospectively on all neurosurgical cases performed at our institution in the IMRIS iMRI suite between April 2014 and July 2015. During the study period, the iMRI suite was used for 71 skull base tumors. iMRI was performed in 23 of 71 cases. Additional tumor resection was pursued after scanning in 7 of 23 patients. There was a significant difference in procedure length between the scanned versus nonscanned groups, and this was likely attributable to a greater proportion of petroclival meningiomas in the scanned group. Further analyses revealed significant increases in procedure length for the following scanned subgroups: anterolateral approach, anterolateral and petroclival lesion locations, and meningiomas. The rate of non-neurologic complications was significantly greater in the scanned group, particularly for patients with tumors >3 cm. Despite the unique challenges associated with skull base tumor surgery, iMRI can be safely obtained while adding a modest although not prohibitive amount of time to the procedure. The immediate evidence of residual tumor with a patient still in position to have additional resection may influence the surgeon to alter the surgical plan and attempt further resection in a critical area. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology.

    PubMed

    Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui

    2016-01-01

    To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.

  6. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  7. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  8. Comparative diagnostic value of 18F-fluoride PET-CT versus MRI for skull-base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue

    2016-10-01

    This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.

  9. Reconstruction of the anterior skull base after major trauma or extensive tumour resection.

    PubMed

    König, Stefan Alexander; Ranguis, Sebastian; Gramlich, Veronika; Spetzger, Uwe

    2015-01-01

    The authors describe their experience with the reconstruction of complex anterior skull base defects after trauma or tumour resection using a "sandwich" technique with pericranial flap, titanium mesh and TachoSil. Description of surgical anatomy, surgical technique, indications, limitations, complications, specific perioperative considerations and specific information to give to the patient about surgery and potential risks. A summary of ten key points is given. After a bifrontal craniotomy and a subfrontal approach, it is possible to achieve a reliable reconstruction of the anterior skull base in a watertight manner by fixing a pericranial flap or a fascia lata graft to the orbital roofs and planum sphenoidale with an individually tailored titanium mesh and closing the frontobasal dura leasion with TachoSil.

  10. Repair of bony lateral skull base defects equal to or larger than 10 mm by extracorporeally sewed unit-sandwich graft.

    PubMed

    Indorewala, Shabbir; Nemade, Gaurav; Indorewala, Abuzar; Mahajan, Gauri

    2018-06-23

    To see effectiveness of the senior author's repair technique for repair of large (equal to or larger than 10 mm) bony lateral skull base defects. Retrospective. Secondary/tertiary care center. We performed retrospective review of 9 surgeries done in our institution between January 2010 and December 2013 for repair of large lateral bony skull base defects. We defined skull base defects extra-cranially and repaired them intra-cranially. We made an extracorporeal sandwich of autologous fascia-bone-fascia (fascia lata and nasal septal bone) and sewed it together to make it into a unit-sandwich graft. This extracorporeally sewed unit-sandwich graft was then inserted to close the large skull base defects either via (1) a cranial slit-window, or (2) the skull base defect itself. Since skull base is bony, bony repair is preferred. Bone plates that are easily available for skull base repair are calvarial and nasal septal bone. Occasionally, harvest of split calvarial bone carries risk of major complications. We preferred nasal septal bone. Harvesting of septal bone even in children using a posterior incision should not disturb the cartilage growth centers. All nine patients were operated by this technique. We had four patients with cerebrospinal fluid leak, and five patients with brain herniation. All these patients had complete reversal of herniation of cranial contents and cessation of cerebrospinal fluid leak. On imaging, in 6 cases the bone graft remained in original intended position after 12 months of surgery. The bone graft was not identifiable in 3 cases. The senior author's technique using autologous multi-layered graft is simple to master, repeatable and very effective.

  11. Juvenile psammomatoid ossifying fibroma in paranasal sinus and skull base.

    PubMed

    Wang, Mingjie; Zhou, Bing; Cui, Shunjiu; Li, Yunchuan

    2017-07-01

    The endoscopic transnasal approach with IGS is a safe and effective technique, allowing completely resection of JPOF, with minimal morbidity and recurrence. JPOF is a benign but locally aggressive fibro-osseous lesion. This study presents a series of JPOF cases, involving anterior skull base and orbit, treated by endoscopic transnasal approach with image guidance system (IGS) to resect the mass completely. This study retrospectively reviewed the clinical presentations, surgical procedures, and complications of 11 patients with JPOF who were treated by endoscopic approach from May 2009 to April 2014. All patients were followed by endoscopic and CT scan evaluations during follow-up. All of the 11 cases were boys, with a mean age of 11.8 years (range = 6-17 years). The size of mass in the paranasal sinus ranged from 2.5-4.6 cm in greatest dimension (mean = 3.7 cm), and the medial orbital wall and cranial base were involved in all patients. All 11 patients received successful operation and were relieved from symptoms without mortality and major complications. During follow-up (range from 17-67 months; mean follow-up = 25.8 months), only one patient was recurrent in local position. The skull base partial resected during surgery was found to rebuild after 1 year.

  12. Atlas and feature based 3D pathway visualization enhancement for skull base pre-operative fast planning from head CT

    NASA Astrophysics Data System (ADS)

    Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake

    2015-03-01

    Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional

  13. Earliest Directly-Dated Human Skull-Cups

    PubMed Central

    Bello, Silvia M.; Parfitt, Simon A.; Stringer, Chris B.

    2011-01-01

    Background The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP) and skull-cup preparation is an element of this tradition. Principal Findings Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England) and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow), accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also ‘retouched’, possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. Conclusions Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles. PMID:21359211

  14. Extended endoscopic endonasal skull base surgery: from the sella to the anterior and posterior cranial fossa.

    PubMed

    Oostra, Amanda; van Furth, Wouter; Georgalas, Christos

    2012-03-01

    Skull base surgery has gone through significant changes with the development of extended endoscopic endonasal approaches over the last decade. Initially used for the transphenoidal removal of hypophyseal adenomas, the endoscopic transnasal approach gradually evolved into a way of accessing the whole ventral skull base. Improved visualization, avoidance of brain retraction, the ability to access directly tumours with minimal damage to critical neurosurgical structures as well lack of external scars are among its obvious benefits. However, it presents the surgeons with a number of challenges, including the need to deal endoscopically with potential arterial bleeding, complicated reconstruction requirements as well as the need for a true team approach. In this review drawing from our experience as well as published series, we present an overview of current indications, challenges and limitations of the expanded endonasal approaches to the skull base. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  15. Removal of a foreign body from the skull base using a customized computer-designed guide bar.

    PubMed

    Wei, Ran; Xiang-Zhen, Liu; Bing, Guo; Da-Long, Shu; Ze-Ming, Tan

    2010-06-01

    Foreign bodies located at the base of the skull pose a surgical challenge. Here, a customized computer-designed surgical guide bar was designed to facilitate removal of a skull base foreign body. Within 24h of the patient's presentation, a guide bar and mounting platform were designed to remove a foreign body located adjacent to the transverse process of the atlas and pressing against the internal carotid artery. The foreign body was successfully located and removed using the custom designed guide bar and computer operative planning. Ten months postoperatively the patient was free of complaints and lacked any complications such as restricted opening of the mouth or false aneurysm. The inferior alveolar nerve damage noted immediately postoperatively (a consequence of mandibular osteotomy) was slightly reduced at follow-up, but labial numbness persisted. The navigation tools described herein were successfully employed to aid foreign body removal from the skull base. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Neurophysiological Identification of Cranial Nerves During Endoscopic Endonasal Surgery of Skull Base Tumors: Pilot Study Technical Report.

    PubMed

    Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich

    2017-02-01

    Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endoscopic endonasal skull base surgery: advantages, limitations, and our techniques to overcome cerebrospinal fluid leakage: technical note.

    PubMed

    Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Morita, Akio

    2014-01-01

    In recent years, resections of midline skull base tumors have been conducted using endoscopic endonasal skull base (EESB) approaches. Nevertheless, many surgeons reported that cerebrospinal fluid (CSF) leakage is still a major complication of these approaches. Here, we report the results of our 42 EESB surgeries and discuss the advantages and limits of this approach for resecting various types of tumors, and also report our technique to overcome CSF leakage. All 42 cases involved midline skull base tumors resected using the EESB technique. Dural incisions were closed using nasoseptal flaps and fascia patch inlay sutures. Total removal of the tumor was accomplished in seven pituitary adenomas (33.3%), five craniopharyngiomas (62.5%), five tuberculum sellae meningiomas (83.3%), three clival chordomas (100%), and one suprasellar ependymoma. Residual regions included the cavernous sinus, the outside of the intracranial part of the internal carotid artery, the lower lateral part of the posterior clivus, and the posterior pituitary stalk. Overall incidence of CSF leakage was 7.1%. Even though the versatility of the approach is limited, EESB surgery has many advantages compared to the transcranial approach for managing mid-line skull base lesions. To avoid CSF leakage, surgeons should have skills and techniques for complete closure, including use of the nasoseptal flap and fascia patch inlay techniques.

  18. Infant skull fracture (image)

    MedlinePlus

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  19. Treatment of anterior skull base defects by a transnasal endoscopic approach in children.

    PubMed

    Di Rocco, Federico; Couloigner, Vincent; Dastoli, Patricia; Sainte-Rose, Christian; Zerah, Michel; Roger, Gilles

    2010-11-01

    The object of this study was to assess the efficacy and complications of endoscopic management of anterior skull base defects. The authors reviewed the medical records of 28 children (20 boys and 8 girls) undergoing endoscopic repair of anterior skull base defects in their tertiary referral center between 2001 and 2008; 18 cases were congenital and 10 cases posttraumatic. During the endoscopic procedure, rigid telescopes--2.7 or 4 mm in diameter, with 0° or 30° lenses--were used. In 23 patients the anterior skull base defect was sealed with fragments of middle turbinate (bone and mucosa). In the remaining 5 patients it was sealed with cartilage harvested from the nasal septum (3 cases) or from the auricle (2 cases), fibrin glue, and oxidized cellulose. A combined external and endoscopic approach was required in 3 cases because of the size and extensions of the encephalocele. Outcome was primarily assessed by means of clinical examination, nasal fibroscopy, and imaging. The mean duration of follow-up was 26.7 months (range 9-57 months). One patient treated by a combined approach died of meningitis 2 years after surgery. In the remaining 27 patients, there was no recurrence of CSF leak, meningitis, or encephalocele. An iatrogenic frontal or ethmoidal mucocele was observed in 4 cases. The endoscopic approach is a minimally invasive, safe, and efficient technique for removing nasal encephaloceles in children.

  20. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  1. Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.

    PubMed

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  2. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    PubMed Central

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes. PMID:25105146

  3. Endoscopic Endonasal Skull Base Surgery: Advantages, Limitations, and Our Techniques to Overcome Cerebrospinal Fluid Leakage: Technical Note

    PubMed Central

    ISHII, Yudo; TAHARA, Shigeyuki; TERAMOTO, Akira; MORITA, Akio

    2014-01-01

    In recent years, resections of midline skull base tumors have been conducted using endoscopic endonasal skull base (EESB) approaches. Nevertheless, many surgeons reported that cerebrospinal fluid (CSF) leakage is still a major complication of these approaches. Here, we report the results of our 42 EESB surgeries and discuss the advantages and limits of this approach for resecting various types of tumors, and also report our technique to overcome CSF leakage. All 42 cases involved midline skull base tumors resected using the EESB technique. Dural incisions were closed using nasoseptal flaps and fascia patch inlay sutures. Total removal of the tumor was accomplished in seven pituitary adenomas (33.3%), five craniopharyngiomas (62.5%), five tuberculum sellae meningiomas (83.3%), three clival chordomas (100%), and one suprasellar ependymoma. Residual regions included the cavernous sinus, the outside of the intracranial part of the internal carotid artery, the lower lateral part of the posterior clivus, and the posterior pituitary stalk. Overall incidence of CSF leakage was 7.1%. Even though the versatility of the approach is limited, EESB surgery has many advantages compared to the transcranial approach for managing mid-line skull base lesions. To avoid CSF leakage, surgeons should have skills and techniques for complete closure, including use of the nasoseptal flap and fascia patch inlay techniques. PMID:25446379

  4. Early harvesting of the vascularized pedicled nasoseptal flap during endoscopic skull base surgery.

    PubMed

    Eloy, Jean Anderson; Patel, Amit A; Shukla, Pratik A; Choudhry, Osamah J; Liu, James K

    2013-01-01

    The vascularized pedicled nasoseptal flap (PNSF) represents a successful option for reconstruction of large skull base defects after expanded endoscopic endonasal approaches (EEA). This vascularized flap can be harvested early or late in the operation depending on the anticipation of high-flow CSF leaks. Each harvesting technique (early vs. late) is associated with different advantages and disadvantages. In this study, we evaluate our experience with early harvesting of the PNSF for repair of large skull base defects after EEA. A retrospective review was performed at a tertiary care medical center on patients who underwent early PNSF harvesting during reconstruction of intraoperative high-flow CSF leaks after EEA between December 2008 and March 2012. Demographic data, repair materials, surgical approach, and incidence of PNSF usage were collected. Eighty-seven patients meeting the inclusion criteria were identified. In 86 procedures (98.9%), the PNSF harvested at the beginning of the operation was used. In 1 case (1.1%), the PNSF was not used because a high-flow intraoperative CSF leak was not encountered. This patient had recurrence of intradural disease 8months later, and the previously elevated PNSF was subsequent used after tumor resection. Based on our data, a high-flow CSF leak and need for a PNSF can be accurately anticipated in patients undergoing EEA for skull base lesions. Because of the advantages of early harvesting of the PNSF and the high preoperative predictive value of CSF leak anticipations, this technique represents a feasible harvesting practice for EEA surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Stereotactic radiotherapy using Novalis for skull base metastases developing with cranial nerve symptoms.

    PubMed

    Mori, Yoshimasa; Hashizume, Chisa; Kobayashi, Tatsuya; Shibamoto, Yuta; Kosaki, Katsura; Nagai, Aiko

    2010-06-01

    Skull base metastases are challenging situations because they often involve critical structures such as cranial nerves. We evaluated the role of stereotactic radiotherapy (SRT) which can give high doses to the tumors sparing normal structures. We treated 11 cases of skull base metastases from other visceral carcinomas. They had neurological symptoms due to cranial nerve involvement including optic nerve (3 patients), oculomotor (3), trigeminal (6), abducens (1), facial (4), acoustic (1), and lower cranial nerves (1). The interval between the onset of cranial nerve symptoms and Novalis SRT was 1 week to 7 months. Eleven tumors of 8-112 ml in volume were treated by Novalis SRT with 30-50 Gy in 10-14 fractions. The tumors were covered by 90-95% isodose. Imaging and clinical follow-up has been obtained in all 11 patients for 5-36 months after SRT. Seven patients among 11 died from primary carcinoma or other visceral metastases 9-36 months after Novalis SRT. All 11 metastatic tumors were locally controlled until the end of the follow-up time or patient death, though retreatment for re-growth was done in 1 patient. In 10 of 11 patients, cranial nerve deficits were improved completely or partially. In some patients, the cranial nerve symptoms were relieved even during the period of fractionated SRT. Novalis SRT is thought to be safe and effective treatment for skull base metastases with involvement of cranial nerves and it may improve cranial nerve symptoms quickly.

  6. Required Reading: The Most Impactful Articles in Endoscopic Endonasal Skull Base Surgery.

    PubMed

    Zhang, Michael; Singh, Harminder; Almodovar-Mercado, Gustavo J; Anand, Vijay K; Schwartz, Theodore H

    2016-08-01

    Endoscopic endonasal skull base surgery has become widely accepted in neurosurgery and otolaryngology over the last 15 years. However, there has yet to be a formal curation of the most impactful articles for an introductory curriculum to its technical evolution. The Science Citation Index Expanded was used to generate a citation rank list (October 2015) on articles relevant to endoscopic skull base surgery. The top 35 cited articles overall, as well as the top 15 since 2009, were identified. Journal, year, author, study population, article format, and level of evidence were compiled. Additional surgeon experts were polled and made recommendations for significant contributions to the literature. The top 35 publications ranged from 98 to 467 citations and were published in 10 different journals. Four articles had more than 250 citations. A period of frequent contribution occurred between 2005 and 2009, when 21/35 reports were published. 18/35 articles were case series, and 13/35 were technical reports. There were 11/35 articles focused primarily on pituitary surgery and 10/35 on extrasellar lesions. The top 15 articles since 2009 had 8/15 articles focused on extrasellar lesions. Polled surgeons consistently identified the most prominently cited articles, and their recommendations drew attention to cerebrospinal fluid leak as well as extrasellar management. Identification of the most cited works within endoscopic endonasal skull base surgery shows greater anatomic access and safety over the last 2 decades. These articles can serve as an educational tool for novices or midlevel practitioners wishing to obtain a greater understanding of the field. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Endoscopic Endonasal Anterior Skull Base Surgery: A Systematic Review of Complications During the Past 65 Years.

    PubMed

    Borg, Anouk; Kirkman, Matthew A; Choi, David

    2016-11-01

    Endoscopic skull base surgery is becoming more popular as an approach to the anterior skull base for tumors and cerebrospinal fluid (CSF) fistulae. It offers the advantages of better cosmesis and improved quality of life after surgery. We reviewed the complication rates reported in the literature. A literature search was performed in the electronic database Ovid MEDLINE (1950 to August 25, 2015) with the search item "([Anterior] AND Skull base surgery) AND endoscopic." We identified 82 relevant studies that included 7460 cases. An average overall complication rate of 17.1% (range 0%-68.0%) and a mortality rate of 0.4% (0%-10.0%) were demonstrated in a total of 82 studies that included 7460 cases. The average CSF leak rate for all studies was 8.9% (0%-40.0%) with meningiomas and clival lesions having the greatest CSF leak rates. The most frequent benign pathology encountered was pituitary adenomas (n = 3720, 49.8% of all cases) and the most frequent malignant tumor was esthesioneuroblastoma (n = 120, 1.6% of all cases). Studies that included only CSF fistula repairs had a lower average total complication rate (12.9%) but a greater rate of meningitis compared with studies that reported mixed pathology (2.4% vs. 1.3%). A trend towards a lower total complication rate with increasing study size was observed. The endoscopic approach is an increasingly accepted technique for anterior skull base tumor surgery and is associated with acceptable complication rates. Increasing experience with this technique can decrease rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Endoscopic Resection of Skull Base Teratoma in Klippel-Feil Syndrome through Use of Combined Ultrasonic and Bipolar Diathermy Platforms

    PubMed Central

    Psaltis, Alkis J.; Williams, Ryan A.; Charville, Gregory W.; Dodd, Robert L.

    2017-01-01

    Klippel-Feil syndrome (KFS) is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline palatal and cerebral defects, most notably pituitary and vertebrobasilar arteriolar duplications. A multidisciplinary workup and a complete endoscopic, transnasal surgical approach between otolaryngology and neurosurgery were undertaken. Out of concern for vascular control of the fibrofatty dense tumor stalk at the skull base and need for complete teratoma resection, we successfully employed a tissue resection tool with combined ultrasonic and bipolar diathermy to the tumor pedicle at the sphenoid/clivus junction. No CSF leak or major hemorrhage was noted using this endonasal approach, and no concerning postoperative sequelae were encountered. The patient continues to do well now 3 years after tumor extirpation, with resolution of all preoperative symptoms and absence of teratoma recurrence. KFS, teratoma biology, endocrine gland duplication, and the complex considerations required for successfully addressing this type of advanced skull base pathology are all reviewed herein. PMID:28133560

  9. Skull anatomy (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  10. Radio-anatomical analysis of the pericranial flap "money box approach" for ventral skull base reconstruction.

    PubMed

    Santamaría, Alfonso; Langdon, Cristóbal; López-Chacon, Mauricio; Cordero, Arturo; Enseñat, Joaquim; Carrau, Ricardo; Bernal-Sprekelsen, Manuel; Alobid, Isam

    2017-11-01

    To evaluate the versatility of the pericranial flap (PCF) to reconstruct the ventral skull base, using the frontal sinus as a gate for its passage into the sinonasal corridor "money box approach." Anatomic-radiological study and case series. Various approaches and their respective defects (cribriform, transtuberculum, clival, and craniovertebral junction) were completed in 10 injected specimens. The PCF was introduced into the nose through the uppermost portion of the frontal sinus (money box approach). Computed tomography (CT) scans (n = 50) were used to measure the dimensions of the PCF and the skull base defects. The vertical projection of the external ear canal was used as the reference point to standardize the incisions for the PCF. The surface area and maximum length of the PCF were 121.5 ± 19.4 cm 2 and 18.3 ± 1.3 cm, respectively. Using CT scans, we determined that to reconstruct defects secondary to transcribriform, transtuberculum, clival, and craniovertebral approaches, the PCF distal incision must be placed respectively at -3.7 ± 2.0 cm (angle -17.4 ± 8.5°), -0.2 ± 2.0 cm (angle -1.0 ± 9.3°), +5.5 ± 2.3 cm (angle +24.4 ± 9.7°), +8.4 ± 2.4 cm (angle +36.6 ± 11.5°), as related to the reference point. Skull base defects in our clinical cohort (n = 6) were completely reconstructed uneventfully with the PCF. The PCF renders enough surface area to reconstruct all possible defects in the ventral and median skull base. Using the uppermost frontal sinus as a gateway into the nose (money box approach) is feasible and simple. NA. Laryngoscope, 127:2482-2489, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Orbital shape in intentional skull deformations and adult sagittal craniosynostoses.

    PubMed

    Sandy, Ronak; Hennocq, Quentin; Nysjö, Johan; Giran, Guillaume; Friess, Martin; Khonsari, Roman Hossein

    2018-06-21

    Intentional cranial deformations are the result of external mechanical forces exerted on the skull vault that modify the morphology of various craniofacial structures such as the skull base, the orbits and the zygoma. In this controlled study, we investigated the 3D shape of the orbital inner mould and the orbital volume in various types of intentional deformations and in adult non-operated scaphocephaly - the most common type of craniosynostosis - using dedicated morphometric methods. CT scans were performed on 32 adult skulls with intentional deformations, 21 adult skull with scaphocephaly and 17 non-deformed adult skulls from the collections of the Muséum national d'Histoire naturelle in Paris, France. The intentional deformations group included six skulls with Toulouse deformations, eight skulls with circumferential deformations and 18 skulls with antero-posterior deformations. Mean shape models were generated based on a semi-automatic segmentation technique. Orbits were then aligned and compared qualitatively and quantitatively using colour-coded distance maps and by computing the mean absolute distance, the Hausdorff distance, and the Dice similarity coefficient. Orbital symmetry was assessed after mirroring, superimposition and Dice similarity coefficient computation. We showed that orbital shapes were significantly and symmetrically modified in intentional deformations and scaphocephaly compared with non-deformed control skulls. Antero-posterior and circumferential deformations demonstrated a similar and severe orbital deformation pattern resulting in significant smaller orbital volumes. Scaphocephaly and Toulouse deformations had similar deformation patterns but had no effect on orbital volumes. This study showed that intentional deformations and scaphocephaly significantly interact with orbital growth. Our approach was nevertheless not sufficient to identify specific modifications caused by the different types of skull deformations or by scaphocephaly.

  12. [Skull base meningiomas: a predictive system to know the extent of their surgical resection and patient outcome].

    PubMed

    Morales, F; Maillo, A; Díaz-Alvarez, A; Merino, M; Muñoz-Herrera, A; Hernández, J; Santamarta, D

    2005-12-01

    The aim of this study was to build a preoperative predictive system which could provide reliable information about: 1 degrees which skull base meningiomas can be total or partially removed, and 2 degrees their surgical outcome. Patient histories and imaging data were reviewed retrospectively from 85 consecutive skull base meningiomas patients who underwent surgery from 1990 and 2002. From the preoperative data, nine variables were selected for conventional statistical analysis as regards their relationship with: 1 degrees total vs partial tumor resection and 2 degrees with patients outcome according to the degree of tumour removal. From the nine variables analysed only two had a statistical association with the type of tumour resection performed (total vs partial) and the patient outcome: 1) arteries encasement and 2) cranial nerves involvement. Upon correlating these two variables with the type of tumour resection performed (total vs partial) and with the Karnofsky'scale to evaluate patients surgical outcome, the following grading groups were identified: Grade I: skull base meningiomas which did not involve cranial nerves or artery or only encased one artery or one cranial nerve. In these cases the incidence of gross tumour resection was 98.3% (p< 0.0001) and the perspective to reach 70 points in the Karnofsky'scale was of 96.5% ( p=0.001). Grade II: skull base meningiomas which involved one cranial nerve and encased, at least, two main cerebral arteries. In these cases, the frequency of total resection, decreased to 83.3% (p<0.0001) and the probability to reach 70 points in the Karnofsky'scale was 70.6% (p=0.001). Grade III: skull base meningiomas which involved two or more cranial nerves and encased several arteries In this group, the frequency of a total resection was of 42.9% (p<0.0001) and the probability of reaching 70 points in the Karnofsky'scale was only 60% (p=0.001). We propose a preoperative grading system for skull base meningiomas that helps

  13. Olfaction in Endoscopic Sinus and Skull Base Surgery.

    PubMed

    Thompson, Christopher F; Kern, Robert C; Conley, David B

    2015-10-01

    Olfactory dysfunction is a common complaint for patients with chronic rhinosinusitis, because smell loss decreases a patient's quality of life. Smell loss is caused by obstruction from polyps, nasal discharge, and mucosal edema, as well as inflammatory changes within the olfactory epithelium. Addressing olfaction before endoscopic sinus and skull base surgery is important in order to set postoperative expectations, because an improvement in smell is difficult to predict. Several commercially available olfactory testing measures are available and can easily be administered in clinic. During surgery, careful dissection within the olfactory cleft is recommended in order to optimize postoperative olfactory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Endoscopic endonasal approach for the treatment of anterior skull base tumours.

    PubMed

    López, Fernando; Suárez, Vanessa; Costales, María; Rodrigo, Juan P; Suárez, Carlos; Llorente, José Luis

    2012-01-01

    The increasing expertise of transnasal endoscopic surgery has recently expanded its indications to include the management of tumours affecting the skull base. We report our experience with endoscopic management of these tumours, emphasising the indications and surgical technique used. A retrospective analysis was performed of patients treated by an endoscopic endonasal approach (EEA) in our department from 2004 until 2011. Sixty-three patients were analysed. We performed an endoscopic craniofacial resection in 32 patients (51%), an expanded EEA in 22 (35%), a transclival approach in 6 (9%) and a transpterygoid approach in 3 (5%). The most frequent benign tumour was nasopharyngeal angiofibroma (24%), while adenocarcinoma (30%) was the most common among malignancies. Mean follow-up was 26 months (range: 6 to 84 months). The complication rate was 5% and resection was complete in 56 cases (89%). The 5-year overall-survival was 71% in patients with malignant tumours and the effectiveness was 100% in benign tumours. Our results support that endoscopic surgery, when properly planned, represents a valid alternative to standard surgical approaches for the management of skull base tumours. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images.

    PubMed

    Moldovanu, Simona; Moraru, Luminița; Biswas, Anjan

    2015-12-01

    This paper proposes a new method for simple, efficient, and robust removal of the non-brain tissues in MR images based on an irrational mask for filtration within a binary morphological operation framework. The proposed skull-stripping segmentation is based on two irrational 3 × 3 and 5 × 5 masks, having the sum of its weights equal to the transcendental number π value provided by the Gregory-Leibniz infinite series. It allows maintaining a lower rate of useful pixel loss. The proposed method has been tested in two ways. First, it has been validated as a binary method by comparing and contrasting with Otsu's, Sauvola's, Niblack's, and Bernsen's binary methods. Secondly, its accuracy has been verified against three state-of-the-art skull-stripping methods: the graph cuts method, the method based on Chan-Vese active contour model, and the simplex mesh and histogram analysis skull stripping. The performance of the proposed method has been assessed using the Dice scores, overlap and extra fractions, and sensitivity and specificity as statistical methods. The gold standard has been provided by two neurologist experts. The proposed method has been tested and validated on 26 image series which contain 216 images from two publicly available databases: the Whole Brain Atlas and the Internet Brain Segmentation Repository that include a highly variable sample population (with reference to age, sex, healthy/diseased). The approach performs accurately on both standardized databases. The main advantage of the proposed method is its robustness and speed.

  16. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  17. Balloon-assisted embolization of skull base meningioma with liquid embolic agent.

    PubMed

    Abdel Kerim, Amr; Bonneville, Fabrice; Jean, Betty; Cornu, Philippe; LeJean, Lise; Chiras, Jacques

    2010-01-01

    The authors report a novel technique of balloon-assisted embolization of a skull base meningioma supplied by a branch of the cavernous segment of the internal carotid artery using liquid embolic agent. A temporarily inflated balloon distal to the meningioma's feeding vessel may improve the access to this small branch and may reduce the chances of unintended reflux during delivery of the liquid embolic agent.

  18. First Application of 7-T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors.

    PubMed

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2017-07-01

    Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. First Application of 7T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors

    PubMed Central

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2018-01-01

    Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922

  20. Construction of a three-dimensional interactive model of the skull base and cranial nerves.

    PubMed

    Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L

    2007-05-01

    The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.

  1. [Congenital skull base defect causing recurrent bacterial meningitis].

    PubMed

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  2. Flow-diverter in radiation-induced skull base carotid blowout syndrome: do not write it off!

    PubMed

    Anil, Gopinathan; Zhang, Junwei; Ong, Yew Kwang; Hui, Francis

    2017-10-01

    Post-radiotherapy carotid blowout syndrome (CBS) of the skull base is a rare but often catastrophic complication of head and neck malignancies. The existing literature on the treatment of this condition with flow-diverting devices (FDD) is extremely limited and disappointing. We present a case of impending CBS in a patient previously irradiated for nasopharyngeal cancer that was successfully treated with use of multiple FDDs, adjunctive endonasal packing and delayed reinforcement with pedicled naso-septal flap, yielding an excellent outcome at 14-months follow-up. Notwithstanding the discouraging results in literature, our anecdotal experience suggests that endovascular reconstruction using FDD could be an option with long-term viability in post-radiotherapy CBS involving the skull base when reinforced with a vascularised naso-septal flap.

  3. Management of Dropped Skull Flaps.

    PubMed

    Abdelfatah, Mohamed AbdelRahman

    2017-01-01

    Dropping a skull flap on the floor is an uncommon and avoidable mistake in the neurosurgical operating theater. This study retrospectively reviewed all incidents of dropped skull flaps in Ain-Shams University hospitals during a 10-year period to show how to manage this problem and its outcome. Thirty-one incidents of dropped skull flaps occurred from January 2004 to January 2014 out of more than 10,000 craniotomies. Follow-up period varied from 20 to 44 months. The bone flap was dropped while elevating the bone (n = 16), while drilling the bone on the operating table (n = 5), and during insertion of the bone flap (n = 10). Treatment included re-insertion of the skull flap after soaking it in povidone iodine and antibiotic solution (n = 17) or after autoclaving (n = 11), or discarding the skull flap and replacing it with a mesh cranioplasty in the same operation (n = 3). No bone or wound infection was noted during the follow-up period. Management of dropped skull flap is its prevention. Replacement of the skull flap, after decontamination, is an option that avoids the expense and time of cranioplasty.

  4. Cloverleaf skull and thanatophoric dwarfism

    PubMed Central

    Partington, M. W.; Gonzales-Crussi, F.; Khakee, S. G.; Wollin, D. G.

    1971-01-01

    Four cases of the cloverleaf skull syndrome are reported, 3 from Britain and 1 from Canada in a family of German/Irish descent. All cases had generalized chondrodysplastic changes and died at or just after birth. It is suggested that a cloverleaf skull is a previously unrecognized feature of thanatophoric dwarfism. Two affected girls from the same sibship are reported for the first time, suggesting an autosomal recessive type of inheritance. A review of the published material indicates that there may be three distinct syndromes in patients with the cloverleaf skull deformity. (1) The cloverleaf skull is associated with thanatophoric dwarfism and death in the perinatal period. (2) There are localized bony lesions of the skeleton outside the skull. (3) The skeleton outside the skull is normal. In the last two syndromes death may occur at birth, but survival into later childhood is the rule. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8 PMID:5315768

  5. Endoscopic endonasal surgery for benign fibro-osseous lesions of the pediatric skull base.

    PubMed

    Stapleton, Amanda L; Tyler-Kabara, Elizabeth C; Gardner, Paul A; Snyderman, Carl H

    2015-09-01

    To describe the presentation, treatment, and outcomes of benign fibro-osseous tumors involving the skull base in a pediatric population. Retrospective chart review from January 2002 to September 2013 of pediatric patients (ages 0-18 years) who underwent endoscopic endonasal surgery (EES) for benign fibro-osseous tumors involving the skull base. Fourteen patients were identified with an age range of 2.7 to 17.9 years (mean, 12.5 years). Six juvenile ossifying fibromas, five benign fibro-osseous lesions, two osteomas, and one fibrous dysplasia were treated. Ocular symptoms and nasal obstruction were the most common presenting symptoms in nine (64%) and six (43%) of patients, respectively; five (36%) presented with proptosis and four (29%) with diplopia. Two (14%) patients had cranial nerve VI palsy. Transsellar and transclival approaches were used in five (36%) of patients. Orbital and optic nerve decompressions were the most common components of the approaches performed in nine (64%) of the surgeries. Gross total resection (GTR) was achieved with single-stage surgery in 10 (71%) patients; two additional patients underwent staged GTR. Two intraoperative cerebrospinal fluid (CSF) leaks occurred and were repaired endoscopically. There were no postoperative CSF leaks or infectious complications. Two patients had transient diplopia, and two had transient diabetes insipidus, all of which resolved. The mean follow-up was 13.8 months. Two patients had a recurrence, and both required additional EES achieving GTR. EES for benign fibro-osseous tumors of the skull base is a safe and effective treatment for excision of these lesions in the pediatric population. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Shi, Junfen; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. PMID:22216358

  7. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  8. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates or...

  9. Internal Carotid Artery Sacrifice for Radical Resection of Skull Base Tumors

    PubMed Central

    Lawton, Michael T.; Spetzler, Robert F.

    1996-01-01

    When dealing with skull base tumors that encase the internal carotid artery (ICA), the surgeon must decide between ICA preservation and incomplete tumor resection, or radical resection with ICA sacrifice. In our experience with more than 300 anterior skull base tumors, the ICA was sacrificed in only 10 patients. These tumors were malignant, except for one meningioma that occluded the ICA and produced translent ischemic symptoms. All patients had the ICA resected with the tumor, and all patients underwent revascularization (cervical ICA-MCA saphenous bypass, n = 4; cervical-to-supraclinoid bypass, n = 1; petrous-to-supraclinoid bypass, n = 3; bonnet bypass, n = 2). This small patient series reflects our practice of preserving the ICA whenever possible. We recommend preserving the ICA with benign tumors because they do not invade the artery, or do so only to a limited extent. In addition, similar rates of tumor recurrence are seen after aggressive resection with or without ICA sacrifice. In contrast, we recommend radical tumor resection and sacrifice of the ICA with malignant tumors because they directly threaten the integrity of the ICA and the patient's survival. The ICA should not be considered a limitation to radical tumor resection because the ICA can be reconstructed safely with an appropriate bypass procedure. PMID:17170986

  10. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  11. Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

    PubMed

    Curtis, Neil; Jones, Marc E H; Shi, Junfen; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. © 2011 Curtis et al.

  12. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery.

    PubMed

    Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2014-04-01

    Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  13. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury

    PubMed Central

    Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.

    2016-01-01

    Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758

  14. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury.

    PubMed

    Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M

    2017-02-01

    Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.

  15. [Neurophysiological identification of the cranial nerves in endoscopic endonasal surgery of skull base tumors].

    PubMed

    Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V

    2016-01-01

    Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.

  16. Facial paralysis caused by malignant skull base neoplasms.

    PubMed

    Marzo, Sam J; Leonetti, John P; Petruzzelli, Guy

    2002-12-01

    Bell palsy remains the most common cause of facial paralysis. Unfortunately, this term is often erroneously applied to all cases of facial paralysis. The authors performed a retrospective review of data obtained in 11 patients who were treated at a university-based referral practice between July 1988 and September 2001 and who presented with acute facial nerve paralysis mimicking Bell palsy. All patients were subsequently found to harbor an occult skull base neoplasm. A delay in diagnosis was demonstrated in all cases. Seven patients died of their disease, and four patients are currently free of disease. Although Bell palsy remains the most common cause of peripheral facial nerve paralysis, patients in whom neoplasms invade the facial nerve may present with acute paralysis mimicking Bell palsy that fails to resolve. Delays in diagnosis and treatment in such cases may result in increased rates of mortality and morbidity.

  17. Facial paralysis caused by malignant skull base neoplasms.

    PubMed

    Marzo, Sam J; Leonetti, John P; Petruzzelli, Guy

    2002-05-15

    Bell palsy remains the most common cause of facial paralysis. Unfortunately, this term is often erroneously applied to all cases of facial paralysis. The authors performed a retrospective review of data obtained in 11 patients who were treated at a university-based referral practice between July 1988 and September 2001 and who presented with acute facial nerve paralysis mimicking Bell palsy. All patients were subsequently found to harbor an occult skull base neoplasm. A delay in diagnosis was demonstrated in all cases. Seven patients died of their disease, and four patients are currently free of disease. Although Bell palsy remains the most common cause of peripheral facial nerve paralysis, patients in whom neoplasms invade of the facial nerve may present with acute paralysis mimicking Bell palsy that fails to resolve. Delays in diagnosis and treatment in such cases may result in increased rates of mortality and morbidity.

  18. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu; Barkhoudarian, Garni; Safaee, Michael

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded.more » Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should

  19. The combined endonasal and transoral approach for the management of skull base and nasopharyngeal pathology: a case series.

    PubMed

    Sreenath, Satyan B; Rawal, Rounak B; Zanation, Adam M

    2014-01-01

    The posterior skull base and the nasopharynx have historically represented technically difficult regions to approach surgically given their central anatomical locations. Through continued improvements in endoscopic instrumentation and technology, the expanded endonasal approach (EEA) has introduced a new array of surgical options in the management of pathology involving these anatomically complex areas. Similarly, the transoral robotic surgical (TORS) approach was introduced as a minimally invasive surgical option to approach tongue base, nasopharyngeal, parapharyngeal, and laryngeal lesions. Although both the EEA and the TORS approach have been extensively described as viable surgical options in managing nasopharyngeal and centrally located head and neck pathology, both endonasal and transoral techniques have inherent limitations. Given these limitations, several institutions have published feasibility studies with the combined EEA and TORS approaches for a variety of skull base and nasopharyngeal pathologies. In this article, the authors present their clinical experience with the combined endonasal and transoral approach through a case series presentation, and discuss advantages and limitations of this approach for surgical management of the middle and posterior skull base and nasopharynx. In addition, a presentation is included of a unique, simultaneous endonasal and transoral dissection of the nasopharynx through an innovative intraoperative setup.

  20. Autogenous Bone Reconstruction of Large Secondary Skull Defects.

    PubMed

    Fearon, Jeffrey A; Griner, Devan; Ditthakasem, Kanlaya; Herbert, Morley

    2017-02-01

    The authors sought to ascertain the upper limits of secondary skull defect size amenable to autogenous reconstructions and to examine outcomes of a surgical series. Published data for autogenous and alloplastic skull reconstructions were also examined to explore associations that might guide treatment. A retrospective review of autogenously reconstructed secondary skull defects was undertaken. A structured literature review was also performed to assess potential differences in reported outcomes between autogenous bone and synthetic alloplastic skull reconstructions. Weighted risks were calculated for statistical testing. Ninety-six patients underwent autogenous skull reconstruction for an average defect size of 93 cm (range, 4 to 506 cm) at a mean age of 12.9 years. The mean operative time was 3.4 hours, 2 percent required allogeneic blood transfusions, and the average length of stay was less than 3 days. The mean length of follow-up was 28 months. There were no postoperative infections requiring surgery, but one patient underwent secondary grafting for partial bone resorption. An analysis of 34 studies revealed that complications, infections, and reoperations were more commonly reported with alloplastic than with autogenous reconstructions (relative risk, 1.57, 4.8, and 1.48, respectively). Autogenous reconstructions are feasible, with minimal associated morbidity, for patients with skull defect sizes as large as 500 cm. A structured literature review suggests that autogenous bone reconstructions are associated with lower reported infection, complication, and reoperation rates compared with synthetic alloplasts. Based on these findings, surgeons might consider using autogenous reconstructions even for larger skull defects. Therapeutic, IV.

  1. Risk factors for cerebrospinal fluid leak in pediatric patients undergoing endoscopic endonasal skull base surgery.

    PubMed

    Stapleton, Amanda L; Tyler-Kabara, Elizabeth C; Gardner, Paul A; Snyderman, Carl H; Wang, Eric W

    2017-02-01

    To determine the risk factors associated with cerebrospinal fluid (CSF) leak following endoscopic endonasal surgery (EES) for pediatric skull base lesions. Retrospective chart review of pediatric patients (ages 1 month to 18 years) treated for skull base lesions with EES from 1999 to 2014. Five pathologies were reviewed: craniopharyngioma, clival chordoma, pituitary adenoma, pituitary carcinoma, and Rathke's cleft cyst. Fisher's exact tests were used to evaluate the different factors to determine which had a statistically higher risk of leading to a post-operative CSF leak. 55 pediatric patients were identified who underwent 70 EES's for tumor resection. Of the 70 surgeries, 47 surgeries had intraoperative CSF leaks that were repaired at the time of surgery. 11 of 47 (23%) surgeries had post-operative CSF leaks that required secondary operative repair. Clival chordomas had the highest CSF leak rate at 36%. There was no statistical difference in leak rate based on the type of reconstruction, although 28% of cases that used a vascularized flap had a post-operative leak, whereas only 9% of those cases not using a vascularized flap had a leak. Post-operative hydrocephalus and perioperative use of a lumbar drain were not significant risk factors. Pediatric patients with an intra-operative CSF leak during EES of the skull base have a high rate of post-operative CSF leaks. Clival chordomas appear to be a particularly high-risk group. The use of vascularized flaps and perioperative lumbar drains did not statistically decrease the rate of post-operative CSF leak. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.

    PubMed

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-09-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  3. Endoscopic Endonasal Approach in Skull Base Chondrosarcoma Associated with Maffucci Syndrome: Case Series and Literature Review.

    PubMed

    Beer-Furlan, André; Balsalobre, Leonardo; Vellutini, Eduardo A S; Stamm, Aldo C

    2016-01-01

    Maffucci syndrome is a nonhereditary disorder in which patients develop multiple enchondromas and cutaneous, visceral, or soft tissue hemangiomas. The potential malignant progression of enchondroma into a secondary chondrosarcoma is a well-known fact. Nevertheless, chondrosarcoma located at the skull base in patients with Maffuci syndrome is a very rare condition, with only 18 cases reported in the literature. We report 2 other cases successfully treated through an expanded endoscopic endonasal approach and discuss the condition based on the literature review. Skull base chondrosarcoma associated with Maffucci syndrome is a rare condition. The disease cannot be cured, therefore surgical treatment should be performed in symptomatic patients aiming for maximal tumor resection with function preservation. The endoscopic endonasal approach is a safe and reliable alternative for the management of these tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Derivation of the mammalian skull vault

    PubMed Central

    MORRISS-KAY, GILLIAN M.

    2001-01-01

    This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816

  5. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  6. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  7. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    PubMed

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  8. Skull Base Meningiomas and Cranial Nerves Contrast Using Sodium Fluorescein: A New Application of an Old Tool

    PubMed Central

    da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga

    2014-01-01

    Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast. PMID:27054056

  9. Skull Base Meningiomas and Cranial Nerves Contrast Using Sodium Fluorescein: A New Application of an Old Tool.

    PubMed

    da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga

    2014-08-01

    Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast.

  10. Comparison of Intraoperative Portable CT Scanners in Skull Base and Endoscopic Sinus Surgery: Single Center Case Series

    PubMed Central

    Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.

    2011-01-01

    Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270

  11. The endonasal endoscopic harvest and anatomy of the buccal fat pad flap for closure of skull base defects.

    PubMed

    Markey, Jeff; Benet, Arnau; El-Sayed, Ivan H

    2015-10-01

    Extirpation via expanded endonasal approaches (EEA) to the skull base can result in defects requiring vascularized rotational flap reconstruction. The buccal fat pad (BFP) is a vascularized graft described in open skull base resections, but its harvest and adequacy of vascular supply have not been examined for use with EEA. A transfacial cadaveric dissection was carried forth in a latex-injected specimen to characterize the BFP blood supply. Then a cadaveric dissection series was performed involving the endoscopic harvest and rotation of 10 buccal fat pads in five cadaveric specimens to assess defect coverage. An endoscopic medial maxillectomy combined with an anterior maxillotomy was performed prior to endoscopic harvest in cadaveric specimens. The BFP was rotated to assess its capability to reconstruct seven possible ventral skull base defects. Finally, the BFP vascular anatomy was further characterized following harvest and transposition. The BFP reconstructed defects at the greater sphenoid wing, inferior and superior clivus, sella, planum, and bilateral ethmoids in all cadaveric specimens. In some cases it covered two sites concurrently. The BFP pedicled rotational flap is a potential alternate flap following EEA in select cases. NA © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Chimeric anterolateral thigh free flap for reconstruction of complex cranio-orbito-facial defects after skull base cancers resection.

    PubMed

    Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi

    2017-01-01

    Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...

  14. Three-layer reconstruction for large defects of the anterior skull base.

    PubMed

    Sinha, Uttam K; Johnson, Terence E; Crockett, Dennis; Vadapalli, Satish; Gruen, Peter

    2002-03-01

    To evaluate and discuss a three-layer rigid reconstruction technique for large anterior skull base defects. Prospective, nonrandomized, non-blinded. Tertiary teaching medical center. Twenty consecutive patients underwent craniofacial resection for a variety of pathology. All patients had large anterior cranial base defects involving the cribriform plate, fovea ethmoidalis, and medial portion of the roof of the orbit at least on one side. A few patients had more extensive defects involving both roof of the orbits, planum sphenoidale, and bones of the upper third of the face. The defects were reconstructed with a three-layer technique. A watertight seal was obtained with a pericranial flap separating the neurocranium from the viscerocranium. Rigid support was provided by bone grafts fixed to a titanium mesh, anchored laterally to the orbital roofs. All patients had a computed tomography scan of the skull on the first or second postoperative day. Patients were observed for immediate and long-term postoperative complications after such reconstruction. Postoperative computed tomography scans showed small pneumocephalus in all patients. It resolved spontaneously and did not produce neurologic deficits in any patient. There was no cerebrospinal fluid leak, hematoma, or infection. On long-term follow-up, exposures of bone graft or mesh, brain herniation, or transmission of brain pulsation to the eyes were not observed in any patient. Three-layer reconstruction using bone grafts, titanium mesh, and pericranial flap provides an alternative technique for repair of large anterior cranial base defects. It is safe and effective, and provides rigid protection to the brain.

  15. Magnetoencephalography signals are influenced by skull defects.

    PubMed

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. [The transperygoid approach to the removal of a recurrent juvenile angiofibroma at the base of the skull without preoperative embolization].

    PubMed

    Grachev, N S; Vorozhtsov, I N

    The authors report a clinical case of successful elimination of a recurrent juvenile angiofibroma at the base of the skull (JAFBS) with the application of the optical navigation system and a cold plasma scalpel in the absence of preoperative embolization. It has been demonstrated using the proposed transperygoid approach to the extirpation of the tumour that a recurrent juvenile angiofibroma at the base of the skull can be efficiently removed by means of a modern minimally invasive and at the same time radical surgical method.

  17. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull punch. 882.4750 Section 882.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is...

  18. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-11-01

    The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose

  19. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul

    2017-04-01

    Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  1. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  2. Application of Ultrasonic Bone Curette in Endoscopic Endonasal Skull Base Surgery: Technical Note

    PubMed Central

    Rastelli, Milton M.; Pinheiro-Neto, Carlos D.; Fernandez-Miranda, Juan C.; Wang, Eric W.; Snyderman, Carl H.; Gardner, Paul A.

    2014-01-01

    Background Endoscopic endonasal surgery (EES) of the skull base often requires extensive bone work in proximity to critical neurovascular structures. Objective To demonstrate the application of an ultrasonic bone curette during EES. Methods Ten patients with skull base lesions underwent EES from September 2011 to April 2012 at the University of Pittsburgh Medical Center. Most of the bone work was done with high-speed drill and rongeurs. The ultrasonic curette was used to remove specific structures. Results All the patients were submitted to fully endoscopic endonasal procedures and had critical bony structures removed with the ultrasonic bone curette. Two patients with degenerative spine diseases underwent odontoid process removal. Five patients with clival and petroclival tumors underwent posterior clinoid removal. Two patients with anterior fossa tumors underwent crista galli removal. One patient underwent unilateral optic nerve decompression. No mechanical or heat injury resulted from the ultrasonic curette. The surrounding neurovascular structures and soft tissue were preserved in all cases. Conclusion In selected EES, the ultrasonic bone curette was successfully used to remove loose pieces of bone in narrow corridors, adjacent to neurovascular structures, and it has advantages to high-speed drills in these specific situations. PMID:24719795

  3. Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery

    PubMed Central

    Zhang, Lihui; Tai, Bruce L.; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J.

    2013-01-01

    This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3 mm in the traverse direction, and 3 mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. PMID:23683875

  4. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery.

    PubMed

    Zhang, Lihui; Tai, Bruce L; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J

    2013-10-01

    This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3mm in the traverse direction, and 3mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. [A case of pycnodysostosis--observation of the skull by CT scan].

    PubMed

    Anegawa, S; Bekki, Y; Furukawa, Y; Yokota, S; Torigoe, R

    1987-07-01

    A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows--proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtual loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorithm revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinuses and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethmoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfism. Pycnodysostosis is a generalized skeletal disease whose cardinal features are moderate generalized osteosclerosis and dwarfism. However, the detailed observation on the cranium by CT has not been reported. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics.

    PubMed

    Fuessinger, Marc Anton; Schwarz, Steffen; Cornelius, Carl-Peter; Metzger, Marc Christian; Ellis, Edward; Probst, Florian; Semper-Hogg, Wiebke; Gass, Mathieu; Schlager, Stefan

    2018-04-01

    Virtual reconstruction of large cranial defects is still a challenging task. The current reconstruction procedures depend on the surgeon's experience and skills in planning the reconstruction based on mirroring and manual adaptation. The aim of this study is to propose and evaluate a computer-based approach employing a statistical shape model (SSM) of the cranial vault. An SSM was created based on 131 CT scans of pathologically unaffected adult crania. After segmentation, the resulting surface mesh of one patient was established as template and subsequently registered to the entire sample. Using the registered surface meshes, an SSM was generated capturing the shape variability of the cranial vault. The knowledge about this shape variation in healthy patients was used to estimate the missing parts. The accuracy of the reconstruction was evaluated by using 31 CT scans not included in the SSM. Both unilateral and bilateral bony defects were created on each skull. The reconstruction was performed using the current gold standard of mirroring the intact to the affected side, and the result was compared to the outcome of our proposed SSM-driven method. The accuracy of the reconstruction was determined by calculating the distances to the corresponding parts on the intact skull. While unilateral defects could be reconstructed with both methods, the reconstruction of bilateral defects was, for obvious reasons, only possible employing the SSM-based method. Comparing all groups, the analysis shows a significantly higher precision of the SSM group, with a mean error of 0.47 mm compared to the mirroring group which exhibited a mean error of 1.13 mm. Reconstructions of bilateral defects yielded only slightly higher estimation errors than those of unilateral defects. The presented computer-based approach using SSM is a precise and simple tool in the field of computer-assisted surgery. It helps to reconstruct large-size defects of the skull considering the natural asymmetry of

  7. 3D cinematic rendering of the calvarium, maxillofacial structures, and skull base: preliminary observations.

    PubMed

    Rowe, Steven P; Zinreich, S James; Fishman, Elliot K

    2018-06-01

    Three-dimensional (3D) visualizations of volumetric data from CT have gained widespread clinical acceptance and are an important method for evaluating complex anatomy and pathology. Recently, cinematic rendering (CR), a new 3D visualization methodology, has become available. CR utilizes a lighting model that allows for the production of photorealistic images from isotropic voxel data. Given how new this technique is, studies to evaluate its clinical utility and any potential advantages or disadvantages relative to other 3D methods such as volume rendering have yet to be published. In this pictorial review, we provide examples of normal calvarial, maxillofacial, and skull base anatomy and pathological conditions that highlight the potential for CR images to aid in patient evaluation and treatment planning. The highly detailed images and nuanced shadowing that are intrinsic to CR are well suited to the display of the complex anatomy in this region of the body. We look forward to studies with CR that will ascertain the ultimate value of this methodology to evaluate calvarium, maxillofacial, and skull base morphology as well as other complex anatomic structures.

  8. Role of targeted magnetic resonance imaging sequences in the surgical management of anterior skull base pathology.

    PubMed

    Chawla, S; Bowman, J; Gandhi, M; Panizza, B

    2017-01-01

    The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.

  9. Adenoid cystic carcinoma of the skull base: results with an aggressive multidisciplinary approach.

    PubMed

    Ramakrishna, Rohan; Raza, Shaan M; Kupferman, Michael; Hanna, Ehab; DeMonte, Franco

    2016-01-01

    OBJECT Adenoid cystic carcinoma (ACC) is a locally aggressive tumor of salivary gland origin. Little data exist to guide treatment when this tumor extends to involve the structures of the skull base. METHODS Fifty-one patients with a diagnosis of ACC affecting the skull base were identified from a prospective database at MD Anderson Cancer Center (from 1992 to 2010). RESULTS Median follow-up for study patients was 6.75 years. The 5- and 10-year overall survival (OS) rates were 78% and 50%, respectively. Sixty-six percent of patients had progression of their disease. The 5- and 10-year progression-free survival (PFS) rates were 46.7% and 21.0%, respectively. Gross-total resection was achieved in 75% of patients, with 49% having microscopically negative margins at the time of first operation. On univariate analysis, resections with microscopically negative margins were associated with a significant OS advantage (20.1 ± 3.3 years) compared with resections that left residual disease, even if microscopic (10.3 ± 1.6 years, p = 0.035). In patients who underwent reoperation, the effect persisted, with improved OS in those with negative margins (21.4 ± 0.0 vs 16.7 ± 4.0 years, p = 0.06). The use of adjuvant radiotherapy was associated with an OS advantage (16.2 ± 2.5 vs 5.5 ± 2.2 years, p = 0.03) at initial diagnosis and improved PFS (7.8 ± 1.0 vs 2.1 ± 0.62 years, p = 0.005), whereas repeat irradiation provided no benefit. The use of adjuvant chemotherapy at diagnosis or at recurrence was not associated with any significant advantage. Multivariate analysis revealed margin-negative resection at initial operation and at recurrence retained OS significance, even after controlling for age, radiation therapy, and T stage. CONCLUSIONS ACC of the skull base is best treated with a multidisciplinary approach aimed at maximal, safe resection. Adjuvant radiotherapy should be offered, whereas chemotherapy does not confer benefit.

  10. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    PubMed Central

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  11. Transsphenoidal Approach in Endoscopic Endonasal Surgery for Skull Base Lesions: What Radiologists and Surgeons Need to Know.

    PubMed

    García-Garrigós, Elena; Arenas-Jiménez, Juan José; Monjas-Cánovas, Irene; Abarca-Olivas, Javier; Cortés-Vela, Jesús Julián; De La Hoz-Rosa, Javier; Guirau-Rubio, Maria Dolores

    2015-01-01

    In the last 2 decades, endoscopic endonasal transsphenoidal surgery has become the most popular choice of neurosurgeons and otolaryngologists to treat lesions of the skull base, with minimal invasiveness, lower incidence of complications, and lower morbidity and mortality rates compared with traditional approaches. The transsphenoidal route is the surgical approach of choice for most sellar tumors because of the relationship of the sphenoid bone to the nasal cavity below and the pituitary gland above. More recently, extended approaches have expanded the indications for transsphenoidal surgery by using different corridors leading to specific target areas, from the crista galli to the spinomedullary junction. Computer-assisted surgery is an evolving technology that allows real-time anatomic navigation during endoscopic surgery by linking preoperative triplanar radiologic images and intraoperative endoscopic views, thus helping the surgeon avoid damage to vital structures. Preoperative computed tomography is the preferred modality to show bone landmarks and vascular structures. Radiologists play an important role in surgical planning by reporting extension of sphenoid pneumatization, recesses and septations of the sinus, and other relevant anatomic variants. Radiologists should understand the relationships of the sphenoid bone and skull base structures, anatomic variants, and image-guided neuronavigation techniques to prevent surgical complications and allow effective treatment of skull base lesions with the endoscopic endonasal transsphenoidal approach. ©RSNA, 2015.

  12. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  13. Virtual surgical planning in endoscopic skull base surgery.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. New Insights into the Skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea)

    PubMed Central

    Witton, Mark P.

    2012-01-01

    The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds. PMID:22470442

  15. Proton beam therapy in the management of skull base chordomas: systematic review of indications, outcomes, and implications for neurosurgeons.

    PubMed

    Matloob, Samir A; Nasir, Haleema A; Choi, David

    2016-08-01

    Chordomas are rare tumours affecting the skull base. There is currently no clear consensus on the post-surgical radiation treatments that should be used after maximal tumour resection. However, high-dose proton beam therapy is an accepted option for post-operative radiotherapy to maximise local control, and in the UK, National Health Service approval for funding abroad is granted for specific patient criteria. To review the indications and efficacy of proton beam therapy in the management of skull base chordomas. The primary outcome measure for review was the efficacy of proton beam therapy in the prevention of local occurrence. A systematic review of English and non-English articles using MEDLINE (1946-present) and EMBASE (1974-present) databases was performed. Additional studies were reviewed when referenced in other studies and not available on these databases. Search terms included chordoma or chordomas. The PRISMA guidelines were followed for reporting our findings as a systematic review. A total of 76 articles met the inclusion and exclusion criteria for this review. Limitations included the lack of documentation of the extent of primary surgery, tumour size, and lack of standardised outcome measures. Level IIb/III evidence suggests proton beam therapy given post operatively for skull base chordomas results in better survival with less damage to surrounding tissue. Proton beam therapy is a grade B/C recommended treatment modality for post-operative radiation therapy to skull base chordomas. In comparison to other treatment modalities long-term local control and survival is probably improved with proton beam therapy. Further, studies are required to directly compare proton beam therapy to other treatment modalities in selected patients.

  16. Properties and architecture of the sperm whale skull amphitheatre.

    PubMed

    Alam, Parvez; Amini, Shahrouz; Tadayon, Maryam; Miserez, Ali; Chinsamy, Anusuya

    2016-02-01

    The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space. We contend that the amphitheatre will flex elastically to equilibrate forces transmitted via the spermaceti organ that arise through diving. We find that collisions from sperm whale aggression do not cause the amphitheatre to bend, but rather localise stress to the base of the amphitheatre on its anterior face. We consider, therefore, that the uniquely thin and extended construction of the amphitheatre, has relevance as an energy absorptive structure in diving. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Cadaveric in-situ testing of optical coherence tomography system-based skull base surgery guidance

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Khan, Osaama H.; Siegler, Peter; Jivraj, Jamil; Wong, Ronnie; Yang, Victor X. D.

    2015-03-01

    Optical Coherence Tomography (OCT) has extensive potential for producing clinical impact in the field of neurological diseases. A neurosurgical OCT hand-held forward viewing probe in Bayonet shape has been developed. In this study, we test the feasibility of integrating this imaging probe with modern navigation technology for guidance and monitoring of skull base surgery. Cadaver heads were used to simulate relevant surgical approaches for treatment of sellar, parasellar and skull base pathology. A high-resolution 3D CT scan was performed on the cadaver head to provide baseline data for navigation. The cadaver head was mounted on existing 3- or 4-point fixation systems. Tracking markers were attached to the OCT probe and the surgeon-probe-OCT interface was calibrated. 2D OCT images were shown in real time together with the optical tracking images to the surgeon during surgery. The intraoperative video and multimodality imaging data set, consisting of real time OCT images, OCT probe location registered to neurosurgical navigation were assessed. The integration of intraoperative OCT imaging with navigation technology provides the surgeon with updated image information, which is important to deal with tissue shifts and deformations during surgery. Preliminary results demonstrate that the clinical neurosurgical navigation system can provide the hand held OCT probe gross anatomical localization. The near-histological imaging resolution of intraoperative OCT can improve the identification of microstructural/morphology differences. The OCT imaging data, combined with the neurosurgical navigation tracking has the potential to improve image interpretation, precision and accuracy of the therapeutic procedure.

  18. Pervasive genetic integration directs the evolution of human skull shape.

    PubMed

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  19. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors.

    PubMed

    Lau, Steven K M; Patel, Kunal; Kim, Teddy; Knipprath, Erik; Kim, Gwe-Ya; Cerviño, Laura I; Lawson, Joshua D; Murphy, Kevin T; Sanghvi, Parag; Carter, Bob S; Chen, Clark C

    2017-04-01

    Frameless, surface imaging guided radiosurgery (SIG-RS) is a novel platform for stereotactic radiosurgery (SRS) wherein patient positioning is monitored in real-time through infra-red camera tracking of facial topography. Here we describe our initial clinical experience with SIG-RS for the treatment of benign neoplasms of the skull base. We identified 48 patients with benign skull base tumors consecutively treated with SIG-RS at a single institution between 2009 and 2011. Patients were diagnosed with meningioma (n = 22), vestibular schwannoma (n = 20), or nonfunctional pituitary adenoma (n = 6). Local control and treatment-related toxicity were retrospectively assessed. Median follow-up was 65 months (range 61-72 months). Prescription doses were 12-13 Gy in a single fraction (n = 18), 8 Gy × 3 fractions (n = 6), and 5 Gy × 5 fractions (n = 24). Actuarial tumor control rate at 5 years was 98%. No grade ≥3 treatment-related toxicity was observed. Grade ≤2 toxicity was associated with symptomatic lesions (p = 0.049) and single fraction treatment (p = 0.005). SIG-RS for benign skull base tumors produces clinical outcomes comparable to conventional frame-based SRS techniques while enhancing patient comfort.

  20. Management of Battlefield Injuries to the Skull Base

    PubMed Central

    Stevens, Jayne R.; Brennan, Joseph

    2016-01-01

    High velocity skull base injuries on the battlefield are unique in comparison to most civilian sector trauma. With more than 43,000 United States military personnel injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF), the most recent conflicts in Iraq and Afghanistan have significantly expanded the understanding of the physiology of modern battlefield trauma and how to appropriately address these injuries. The acute care principles of effective triage, airway management, and hemorrhage control in these injuries can be life saving and are reviewed here. Specific injury patterns and battlefield examples are reviewed as well, with a review of some of the lessons learned while providing care in a deployed setting. Utilization of the knowledge learned in Iraq and Afghanistan, which have improved casualty care of deployed service members, can be used both in future military conflicts and in civilian trauma care. PMID:27648400

  1. Radiological features of the skull in Klinefelter's syndrome and male hypogonadism.

    PubMed

    Kosowicz, J; Rzymski, K

    1975-07-01

    Skull radiographs were performed in 21 cases of Klinefelter's syndrome and in 30 cases of eunuchoidism. The radiographic changes of the skull in Klinefelter's syndrome are: temporal flattening, decreased width of the vault, narrowing of the mandible, decreased length of the skull, shortening of the anterior fossa cranii, decrease in the angle of the base, thinning of the vault bones at the major fontanelle, premature and excessive calcification of the coronal suture, deepening of the posterior fossa and shortening of the mandibular rami. In hypogonadotropic eunuchoidism the skull radiographs show: small mastoid processes, fine bones of the vault, small sella turcica, club-shaped clinoid processes, excessive development of sphenoidal sinuses and in the fourth and later decades of life a diminished bone density (osteoporosis).

  2. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome.

    PubMed

    Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan

    2017-01-01

    Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2 +/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2 +/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2 +/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2 +/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.

  3. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  4. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  5. Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.

    PubMed

    Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem

    2018-01-01

    Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Paleoneurosurgical aspects of Proto-Bulgarian artificial skull deformations.

    PubMed

    Enchev, Yavor; Nedelkov, Grigoriy; Atanassova-Timeva, Nadezhda; Jordanov, Jordan

    2010-12-01

    Paleoneurosurgery represents a comparatively new developing direction of neurosurgery dealing with archaeological skull and spine finds and studying their neurosurgical aspects. Artificial skull deformation, as a bone artifact, naturally has been one of the main paleoneurosurgical research topics. Traditionally, the relevant neurosurgical literature has analyzed in detail the intentional skull deformations in South America's tribes. However, little is known about the artificial skull deformations of the Proto-Bulgarians, and what information exists is mostly due to anthropological studies. The Proto-Bulgarians originated from Central Asia, and distributed their skull deformation ritual on the Balkan Peninsula by their migration and domination. Proto-Bulgarian artificial skull deformation was an erect or oblique form of the anular type, and was achieved by 1 or 2 pressure bandages that were tightened around a newborn's head for a sufficiently long period. The intentional skull deformation in Proto-Bulgarians was not associated with neurological deficits and/or mental retardation. No indirect signs of chronic elevated intracranial pressure were found on the 3D CT reconstruction of the artificially deformed skulls.

  7. Extensive traumatic anterior skull base fractures with cerebrospinal fluid leak: classification and repair techniques using combined vascularized tissue flaps.

    PubMed

    Archer, Jacob B; Sun, Hai; Bonney, Phillip A; Zhao, Yan Daniel; Hiebert, Jared C; Sanclement, Jose A; Little, Andrew S; Sughrue, Michael E; Theodore, Nicholas; James, Jeffrey; Safavi-Abbasi, Sam

    2016-03-01

    This article introduces a classification scheme for extensive traumatic anterior skull base fracture to help stratify surgical treatment options. The authors describe their multilayer repair technique for cerebrospinal fluid (CSF) leak resulting from extensive anterior skull base fracture using a combination of laterally pediculated temporalis fascial-pericranial, nasoseptal-pericranial, and anterior pericranial flaps. Retrospective chart review identified patients treated surgically between January 2004 and May 2014 for anterior skull base fractures with CSF fistulas. All patients were treated with bifrontal craniotomy and received pedicled tissue flaps. Cases were classified according to the extent of fracture: Class I (frontal bone/sinus involvement only); Class II (extent of involvement to ethmoid cribriform plate); and Class III (extent of involvement to sphenoid bone/sinus). Surgical repair techniques were tailored to the types of fractures. Patients were assessed for CSF leak at follow-up. The Fisher exact test was applied to investigate whether the repair techniques were associated with persistent postoperative CSF leak. Forty-three patients were identified in this series. Thirty-seven (86%) were male. The patients' mean age was 33 years (range 11-79 years). The mean overall length of follow-up was 14 months (range 5-45 months). Six fractures were classified as Class I, 8 as Class II, and 29 as Class III. The anterior pericranial flap alone was used in 33 patients (77%). Multiple flaps were used in 10 patients (3 salvage) (28%)--1 with Class II and 9 with Class III fractures. Five (17%) of the 30 patients with Class II or III fractures who received only a single anterior pericranial flap had persistent CSF leak (p < 0.31). No CSF leak was found in patients who received multiple flaps. Although postoperative CSF leak occurred only in high-grade fractures with single anterior flap repair, this finding was not significant. Extensive anterior skull base

  8. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Clinical anatomy and imaging of the cranial nerves and skull base.

    PubMed

    Jha, Ruchira M; Klein, Joshua P

    2012-09-01

    Evaluation of patients with cranial neuropathies requires an understanding of brainstem anatomy and nerve pathways. Advances in neuroimaging, particularly high spatial resolution magnetic resonance imaging (MRI), have enabled visualization of these tiny structures and their related pathology. This review provides an approach toward using imaging in the evaluation of cranial nerve (CN) and skull base anatomy and pathology. Because brainstem nuclei are inextricably linked to the information contained within CNs, they are briefly mentioned whenever relevant; however, a comprehensive discussion of brainstem syndromes is beyond the scope of this review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2017-12-01

    Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to

  11. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier Gmb

  12. Extended maxillotomy for skull base access in contemporary management of chordomas: Rationale and technical aspect.

    PubMed

    Abdul Jalil, Muhammad Fahmi; Story, Rowan D; Rogers, Myron

    2017-05-01

    Minimally invasive approaches to the central skull base have been popularized over the last decade and have to a large extent displaced 'open' procedures. However, traditional skull base surgery still has its role especially when dealing with a large clival chordoma where maximal surgical resection is the principal goal to maximize patient survival. In this paper, we present a case of a 25year-old male patient with chordoma in the inferior clivus which was initially debulked via a transnasal endoscopic approach. He unfortunately had a large recurrence of tumor requiring re-do resection. With the aim to achieve maximal surgical resection, we then chose the technique of a transoral approach with Le Fort 1 maxillotomy and midline palatal split. Post-operative course for the patient was uneventful and post-operative MRI confirmed significant debulking of the clival lesion. The technique employed for the surgical procedure is presented here in detail as is our experience over two decades using this technique for tumors, inflammatory lesions and congenital abnormalities at the cranio-cervical junction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome

    PubMed Central

    Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan

    2017-01-01

    Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS. PMID:28123344

  14. Broadband acoustic properties of a murine skull.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  15. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    PubMed

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  16. Anatomical features of skull base and oral cavity: a pilot study to determine the accessibility of the sella by transoral robotic-assisted surgery.

    PubMed

    Amelot, Aymeric; Trunet, Stephanie; Degos, Vincent; André, Olivier; Dionnet, Aurore; Cornu, Philippe; Hans, Stéphane; Chauvet, Dorian

    2015-10-01

    The role of transoral robotic surgery (TORS) in the skull base emerges and represents the natural progression toward miniinvasive resections in confined spaces. The accessibility of the sella via TORS has been recently described on fresh human cadavers. An anatomic study is mandatory to know if this approach would be feasible in the majority of patients regardless of their oral morphological features. From 30 skull base CT scans from patients who were asked to open their mouth as wide as they can, we measured specific dimensions of the oral cavity and the skull base, such as length of the palate, mouth opening and distance from the sella to the palate. All data were acquired on a sagittal midline plane and on a 25° rotation plane, which simulated the axis of the robotic instruments. Looking at the projection of the dental palatine line on the sella, we studied possible predictive factors of sellar accessibility and tried to bring objective data for surgical feasibility. We also proposed an angle α to study the working angle at the skull base. We observed that the maximal mouth opening was a good predictive factor of sellar accessibility by TORS (p < 0.05). The mouth aperture threshold value for a good sensitivity, over 80 %, was comparable to the mean value of mouth opening in our series, 38.9 and 39.4 mm respectively. Moreover, we showed a statistically significant increase of the working angle α at the skull base comparing the lateral access to the midline one (p < 0.05). This seemed to quantitatively demonstrate that the robotic arms placed at the labial commissure of the mouth can reach the sella. From these anatomical features and previous cadaveric dissections, we assume that TORS may be feasible on a majority of patients to remove pituitary adenomas.

  17. Relief of Headache by Cranioplasty After Skull Base Surgery

    PubMed Central

    Fetterman, Bruce L.; Lanman, Todd H.; House, John W.

    1997-01-01

    Headache after skull base surgery can cause profound morbidity in certain patients, resulting in significant impairment of their quality of life. Several methods to prevent postoperative headache have been described, including a modification of the skin/muscle incision replacing the craniotomy bone flap replacing the bone flap and filling in the residual defect with methyl methacrylate, using hydroxyapatite cement (HAC) to fill the craniectomy defect, and wiring hardened methyl methacrylate (MMA) into the defect. Ten patients with severe headache following craniectomy for a posterior fossa lesion underwent cranioplasty with MMA, which was placed exactly within the craniectomy defect and secured rigidly with miniplates and screws. The headache decreased in severity in all patients and resolved completely in 90%. Also, 78% of patients with dizziness improved. The procedure and its effect on headache and dizziness will be described. PMID:17171000

  18. Transfer of children with isolated linear skull fractures: is it worth the cost?

    PubMed

    White, Ian K; Pestereva, Ecaterina; Shaikh, Kashif A; Fulkerson, Daniel H

    2016-05-01

    OBJECTIVE Children with skull fractures are often transferred to hospitals with pediatric neurosurgical capabilities. Historical data suggest that a small percentage of patients with an isolated skull fracture will clinically decline. However, recent papers have suggested that the risk of decline in certain patients is low. There are few data regarding the financial costs associated with transporting patients at low risk for requiring specialty care. In this study, the clinical outcomes and financial costs of transferring of a population of children with isolated skull fractures to a Level 1 pediatric trauma center over a 9-year period were analyzed. METHODS A retrospective review of all children treated for head injury at Riley Hospital for Children (Indianapolis, Indiana) between 2005 and 2013 was performed. Patients with a skull fracture were identified based on ICD-9 codes. Patients with intracranial hematoma, brain parenchymal injury, or multisystem trauma were excluded. Children transferred to Riley Hospital from an outside facility were identified. The clinical and radiographic outcomes were recorded. A cost analysis was performed on patients who were transferred with an isolated, linear, nondisplaced skull fracture. RESULTS Between 2005 and 2013, a total of 619 pediatric patients with isolated skull fractures were transferred. Of these, 438 (70.8%) patients had a linear, nondisplaced skull fracture. Of these 438 patients, 399 (91.1%) were transferred by ambulance and 39 (8.9%) by helicopter. Based on the current ambulance and helicopter fees, a total of $1,834,727 (an average of $4188.90 per patient) was spent on transfer fees alone. No patient required neurosurgical intervention. All patients recovered with symptomatic treatment; no patient suffered late decline or epilepsy. CONCLUSIONS This study found that nearly $2 million was spent solely on transfer fees for 438 pediatric patients with isolated linear skull fractures over a 9-year period. All patients

  19. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  20. Management of Major Vascular Injury During Endoscopic Endonasal Skull Base Surgery.

    PubMed

    Gardner, Paul A; Snyderman, Carl H; Fernandez-Miranda, Juan C; Jankowitz, Brian T

    2016-06-01

    A major vascular injury is the most feared complication of endoscopic sinus and skull base surgery. Risk factors for vascular injury are discussed, and an algorithm for management of a major vascular injury is presented. A team of surgeons (otolaryngology and neurosurgery) is important for identification and control of a major vascular injury applying basic principles of vascular control. A variety of techniques can be used to control a major injury, including coagulation, a muscle patch, sacrifice of the artery, and angiographic stenting. Immediate and close angiographic follow-up is critical to prevent and manage subsequent complications of vascular injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Is there a role for conventional MRI and MR diffusion-weighted imaging for distinction of skull base chordoma and chondrosarcoma?

    PubMed

    Müller, Uta; Kubik-Huch, Rahel A; Ares, Carmen; Hug, Eugen B; Löw, Roland; Valavanis, Antonios; Ahlhelm, Frank J

    2016-02-01

    Chordoma and chondrosarcoma are locally invasive skull base tumors with similar clinical symptoms and anatomic imaging features as reported in the literature. To determine differentiation of chordoma and chondrosarcoma of the skull base with conventional magnetic resonance imaging (cMRI) and diffusion-weighted MR imaging (DWI) in comparison to histopathological diagnosis. This retrospective study comprised 96 (chordoma, n = 64; chondrosarcoma, n = 32) patients with skull base tumors referred to the Paul Scherrer Institute (PSI) for proton therapy. cMRI signal intensities of all tumors were investigated. In addition, median apparent diffusion coefficient (ADC) values were measured in a subgroup of 19 patients (chordoma, n = 11; chondrosarcoma, n = 8). The majority 81.2% (26/32) of chondrosarcomas displayed an off-midline growth pattern, 18.8% (6/32) showed clival invasion, 18.8% (6/32) were located more centrally. Only 4.7% (3/64) of chordomas revealed a lateral clival origin. Using cMRI no significant differences in MR signal intensities were observed in contrast to significantly different ADC values (subgroup of 19/96 patients examined by DWI), with the highest mean value of 2017.2 × 10(-6 )mm(2)/s (SD, 139.9( )mm(2)/s) for chondrosarcoma and significantly lower value of 1263.5 × 10(-6 )mm(2)/s (SD, 100.2 × 10(-6 )mm(2)/s) for chordoma (P = 0.001/median test). An off-midline growth pattern can differentiate chondrosarcoma from chordoma on cMRI in a majority of patients. Additional DWI is a promising tool for the differentiation of these skull base tumors. © The Foundation Acta Radiologica 2015.

  2. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...

  3. A Three-Dimensional Statistical Average Skull: Application of Biometric Morphing in Generating Missing Anatomy.

    PubMed

    Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M

    2015-07-01

    The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4  mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.

  4. Growth of the skull in young children in Baotou, China.

    PubMed

    Hou, Hai-dong; Liu, Ming; Gong, Ke-rui; Shao, Guo; Zhang, Chun-Yang

    2014-09-01

    There are some controversies about the optimal time to perform skull repair in very young Chinese children because of the rapid skull growth in this stage of life. The purpose of this current study is to describe the characteristics of skull growth and to discuss the optimal time for skull repair in young Chinese children with skull defects. A total of 112 children born in the First Affiliated Hospital of Baotou Medical College were measured for six consecutive years starting in 2006. Cranial length (CL, linear distance between the eyebrows to the pillow tuberosity), cranial width (CW, double-sided linear distance of connection of external auditory canal), ear over the top line (EOTL), the eyebrows-the posterior tuberosity line (EPTL), and head circumference (HC) were measured to describe the skull growth. The most rapid period of skull growth occurs during the first year of life. The second and third most rapid periods are the second and third years, respectively. Then, the skull growth slowed and the values of the skull growth index of 6-year-old children were close to those of adults. Children 0-1 years old should not receive skull repair due to their rapid skull growth. The indexes of children 3 years old or older were close to those of the adult; therefore, 3 years old or older may receive skull repair.

  5. The Development of Skull Prosthesis Through Active Contour Model.

    PubMed

    Chen, Yi-Wen; Shih, Cheng-Ting; Cheng, Chen-Yang; Lin, Yu-Cheng

    2017-09-09

    Skull defects result in brain infection and inadequate brain protection and pose a general danger to patient health. To avoid these situations and prevent re-injury, a prosthesis must be constructed and grafted onto the deficient region. With the development of rapid customization through additive manufacturing and 3D printing technology, skull prostheses can be fabricated accurately and efficiently prior to cranioplasty. However, an unfitted skull prosthesis made with a metal implant can cause repeated infection, potentially necessitating secondary surgery. This paper presents a method of creating suitably geometric graphics of skull defects to be applied in skull repair through active contour models. These models can be adjusted in each computed tomography slice according to the graphic features, and the curves representing the skull defect can be modeled. The generated graphics can adequately mimic the natural curvature of the complete skull. This method will enable clinical surgeons to rapidly implant customized prostheses, which is of particular importance in emergency surgery. The findings of this research can help surgeons provide patients with skull defects with treatment of the highest quality.

  6. Automated human skull landmarking with 2D Gabor wavelets

    NASA Astrophysics Data System (ADS)

    de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan

    2018-05-01

    Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

  7. A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.

    PubMed

    Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E

    2016-06-01

    Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.

  8. Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.

    PubMed

    Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C

    2013-01-01

    impact loading are lower than frequencies based on pressure wave propagation across the skull. This indicates that skull flexure has a local effect on intracranial pressures but that the integrated effect of a dome-like structure under load is a significant part of load transfer in the skull in blunt trauma.

  9. Hypertrophic Cranial Pachymeningitis and Skull Base Osteomyelitis by Pseudomonas Aeruginosa: Case Report and Review of the Literature

    PubMed Central

    Caldas, Ana Rita; Brandao, Mariana; Paula, Filipe Seguro; Castro, Elsa; Farinha, Fatima; Marinho, Antonio

    2012-01-01

    Hypertrophic cranial pachymeningitis (HCP) is an uncommon disorder characterized by localized or diffuse thickening of the dura mater, and it usually presents with multiple cranial neurophaties. It has been associated with a variety of inflammatory, infectious, traumatic, toxic and neoplasic diseases, when no specific cause is found the process is called idiopathic. The infectious cases occur in patients under systemic immunosuppression, which have an evident contiguous source or those who have undergone neurosurgical procedures. We describe a case of a 62-year-old immunosuppressed woman with diabetes and rheumatoid arthritis, which had HCP and osteomyelitis of the skull base caused by pseudomonas aeruginosa, presenting with headache and diplopia. We believe this is the second documented case of pachymeningitis secondary to this microorganism. As a multifactorial disease, it is essencial to determine the specific causative agent of HCP before making treatment decisions, and great care is needed with immunocompromised patients. Keywords Pseudomonas aeruginosa; Hypertrophic pachymeningitis; Ophtalmoplegia, optical neuropathy; Osteomyelitis; Skull base PMID:22505989

  10. Wooden Foreign Body in the Skull Base: How Did We Miss It?

    PubMed

    Jusué-Torres, Ignacio; Burks, S Shelby; Levine, Corinna G; Bhatia, Rita G; Casiano, Roy; Bullock, Ross

    2016-08-01

    Timely detection of intraorbital and skull base wooden foreign bodies is crucial. Wooden foreign bodies are difficult to detect on imaging. The radiologist may fail to identify wooden foreign bodies on two thirds of initial scans and can miss them in almost one third of total cases. A 66-year-old woman sustained a penetrating injury through the left upper eyelid with a small tree branch. The branch was immediately removed in the field, and she was provided with prompt medical care at a local hospital. Initial computed tomography (CT) scan diagnosis was "posttraumatic sinusitis," and this was treated empirically with vancomycin and piperacillin/tazobactam. On the eighth day after injury, she developed progressive swelling and pain of her eyelid with left trigeminal/supraorbital numbness and complete left ophthalmoplegia. A new CT scan showed an open "track" from the region of the left upper orbit/superior rectus to the contralateral sphenoid sinus, which raised suspicion for a retained foreign body. Further imaging confirmed the suspicion. Endoscopic sinus surgery was performed with extraction of the wooden object and evacuation of the left orbital infection. This case indicates that intraorbital and skull base wooden foreign bodies are elusive, demanding a high index of suspicion from both clinicians and radiologists to identify retained material in the setting of ocular or sinus trauma. For better identification of wooden foreign bodies, bone windows on CT should have a width of -1000 Hounsfield units with a soft tissue window level of -500 Hounsfield units. Published by Elsevier Inc.

  11. Modelling human skull growth: a validated computational model

    PubMed Central

    Marghoub, Arsalan; Johnson, David; Khonsari, Roman H.; Fagan, Michael J.; Moazen, Mehran

    2017-01-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. PMID:28566514

  12. Modelling human skull growth: a validated computational model.

    PubMed

    Libby, Joseph; Marghoub, Arsalan; Johnson, David; Khonsari, Roman H; Fagan, Michael J; Moazen, Mehran

    2017-05-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. © 2017 The Author(s).

  13. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with a...

  14. Looking Inside a Tyrannosaur’s Skull

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven; Nelson, Ron; Williamson, Tom

    2017-08-15

    Researchers using Los Alamos’ unique neutron-imaging and high-energy X-ray capabilities have exposed the inner structures of the fossil skull of a 74-million-year-old tyrannosauroid dinosaur nicknamed the Bisti Beast in the highest-resolution scan of tyrannosaur skull ever done.

  15. Implant-retained skull prosthesis to cover a large defect of the hairy skull resulting from treatment of a basal cell carcinoma: A clinical report.

    PubMed

    Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita

    2017-05-01

    Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted of resecting the tumor and external part of the skull bone. To protect the brain and to cover the defect of the hairy skull, an acrylic resin skull prosthesis with hair was designed to mask the defect. The skull prosthesis was retained on 8 extraoral implants placed at the margins of the defect in the skull bone. The patient was satisfied with the treatment outcome. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    PubMed Central

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  17. Skulls and Human Evolution: The Use of Casts of Anthropoid Skulls in Teaching Concepts of Human Evolution.

    ERIC Educational Resources Information Center

    Gipps, John

    1991-01-01

    Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)

  18. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography.

    PubMed

    Yin, Ziying; Sui, Yi; Trzasko, Joshua D; Rossman, Phillip J; Manduca, Armando; Ehman, Richard L; Huston, John

    2018-05-17

    To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Keyhole Fracture of the Skull

    DTIC Science & Technology

    2008-12-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keyhole Fracture of the Skull irrigation and drainage of the penetrating...skull injury without craniotomy , and repair of the laceration via advancement flap Fig. 3. Diagram of forces involved in creation of keyhole...midline shift was noted. Helical CT scan performed the following day after debridement, irrigation, drainage , and closure of the gunshot wound showed

  20. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. The 360 photography: a new anatomical insight of the sphenoid bone. Interest for anatomy teaching and skull base surgery.

    PubMed

    Jacquesson, Timothée; Mertens, Patrick; Berhouma, Moncef; Jouanneau, Emmanuel; Simon, Emile

    2017-01-01

    Skull base architecture is tough to understand because of its 3D complex shape and its numerous foramen, reliefs or joints. It is especially true for the sphenoid bone whom central location hinged with most of skull base components is unique. Recently, technological progress has led to develop new pedagogical tools. This way, we bought a new real-time three-dimensional insight of the sphenoid bone that could be useful for the teacher, the student and the surgeon. High-definition photography was taken all around an isolated dry skull base bone prepared with Beauchêne's technique. Pictures were then computed to provide an overview with rotation and magnification on demand. From anterior, posterior, lateral or oblique views and from in out looks, anatomical landmarks and subtleties were described step by step. Thus, the sella turcica, the optic canal, the superior orbital fissure, the sphenoid sinus, the vidian canal, pterygoid plates and all foramen were clearly placed relative to the others at each face of the sphenoid bone. In addition to be the first report of the 360 Photography tool, perspectives are promising as the development of a real-time interactive tridimensional space featuring the sphenoid bone. It allows to turn around the sphenoid bone and to better understand its own special shape, numerous foramen, neurovascular contents and anatomical relationships. This new technological tool may further apply for surgical planning and mostly for strengthening a basic anatomical knowledge firstly introduced.

  2. The Pedicled Buccal Fat Pad: Anatomical Study of the New Flap for Skull Base Defect Reconstruction After Endoscopic Endonasal Transpterygoid Surgery

    PubMed Central

    Golbin, Denis A.; Lasunin, Nikolay V.; Cherekaev, Vasily A.; Polev, Georgiy A.

    2016-01-01

    Objectives To evaluate the efficacy and safety of using a buccal fat pad for endoscopic skull base defect reconstruction. Design Descriptive anatomical study with an illustrative case presentation. Setting Anatomical study was performed on 12 fresh human cadaver specimens with injected arteries (24 sides). Internal carotid artery was exposed in the coronal plane via the endoscopic transpterygoid approach. The pedicled buccal fat pad was used for reconstruction. Participants: 12 human cadaver head specimens; one patient operated using the proposed technique. Main outcome measures: Proximity of the buccal fat pad flap to the defect, compliance of the flap, comfort and safety of harvesting procedure, and compatibility with the Hadad–Bassagasteguy nasoseptal flap. Results: Harvesting procedure was performed using anterior transmaxillary corridor. The pedicled buccal fat pad flap can be used to pack the sphenoid sinus or cover the internal carotid artery from cavernous to upper parapharyngeal segment. Conclusion The buccal fat pad can be safely harvested through the same approach without external incisions and is compliant enough to conform to the skull base defect. The proposed pedicled flap can replace free abdominal fat in central skull base reconstruction. The volume of the buccal fat pad allows obliteration of the sphenoid sinus or upper parapharyngeal space. PMID:28180047

  3. Two Immigrants with Tuberculosis of the Ear, Nose, and Throat Region with Skull Base and Cranial Nerve Involvement

    PubMed Central

    Richardus, Renate A.; Jansen, Jeroen C.; Steens, Stefan C. A.; Arend, Sandra M.

    2011-01-01

    We report two immigrants with tuberculosis of the skull base and a review of the literature. A Somalian man presented with bilateral otitis media, hearing loss, and facial and abducens palsy. Imaging showed involvement of both mastoid and petrous bones, extending via the skull base to the nasopharynx, suggesting tuberculosis which was confirmed by characteristic histology and positive auramine staining, while Ziehl-Neelsen staining and PCR were negative. A Sudanese man presented with torticollis and deviation of the uvula due to paresis of N. IX and XI. Imaging showed a retropharyngeal abscess and lysis of the clivus. Histology, acid-fast staining, and PCR were negative. Both patients had a positive Quantiferon TB Gold in-tube result and improved rapidly after empiric treatment for tuberculosis. Cultures eventually yielded M. tuberculosis. These unusual cases exemplify the many faces of tuberculosis and the importance to include tuberculosis in the differential diagnosis of unexplained problems. PMID:21541186

  4. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Skull counting in late stages after internal contamination by actinides.

    PubMed

    Tani, Kotaro; Shutt, Arron; Kurihara, Osamu; Kosako, Toshiso

    2015-02-01

    Monitoring preparation for internal contamination with actinides (e.g. Pu and Am) is required to assess internal doses at nuclear fuel cycle-related facilities. In this paper, the authors focus on skull counting in case of single-incident inhalation of (241)Am and propose an effective procedure for skull counting with an existing system, taking into account the biokinetic behaviour of (241)Am in the human body. The predicted response of the system to skull counting under a certain counting geometry was found to be only ∼1.0 × 10(-5) cps Bq(-1) 1y after intake. However, this disadvantage could be remedied by repeated measurements of the skull during the late stage of the intake due to the predicted response reaching a plateau at about the 1000th day after exposure and exceeding that in the lung counting. Further studies are needed for the development of a new detection system with higher sensitivity to perform reliable internal dose estimations based on direct measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A large, switchable optical clearing skull window for cerebrovascular imaging

    PubMed Central

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  7. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  8. The Genetics of Canine Skull Shape Variation

    PubMed Central

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2013-01-01

    A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. PMID:23396475

  9. Esthesioneuroblastoma: treatment of skull-base recurrence.

    PubMed

    Jackson, I T; Somers, P; Marsh, W R

    1985-08-01

    Thirty-nine patients with esthesioneuroblastoma are reviewed. The presentation of the tumor, symptomatology, investigation, and treatment are discussed. A recommended treatment regimen is outlined. Histologic typing is valueless in predicting tumor behavior. An illustrative and difficult case of recurrent base of skull esthesioneuroblastoma is presented. The resection performed is described, and the problem of extradural oropharyngeal communication is discussed. The solution was to use a temporalis and galeal frontalis flap. Reconstruction was with an external and intraoral prosthesis. Optimal treatment in a fresh lesion is radical surgery with or without radiation therapy. Esthesioneuroblastoma is a rare and often misdiagnosed malignant tumor of the olfactory epithelium. Originally described by Bergen et al. in 1924 as "esthesioneuroepithelioma olfactif," it was introduced into the North American literature by Schall and Lineback in 1951. Since then, fewer than 200 cases have been collected. The various terms used to describe it--olfactory esthesioneuroblastoma, esthesioneurocytoma, and olfactory neuroblastoma--all denote origin from the neural crest. The sensory nerves of smell are short bundles of fibers that originate in the olfactory bulb and pass through the cribriform plate to the olfactory area of the nasal mucosa. This mucosa is located in the most superior part of both nasal fossae. Thus the usual primary sites of occurrence include the superior nasal cavity or nasal septum, and turbinates, the ethmoid, or the cribriform plate, although an extranasal site of origin has been suggested. Symptoms are usually progressive and range from nasal obstruction or epistaxis to diplopia, ocular pain, and headaches in the more advanced disease state.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effectiveness of base-of-skull immobilization system in a compact proton therapy setting.

    PubMed

    Shafai-Erfani, Ghazal; Willoughby, Twyla; Ramakrishna, Naren; Meeks, Sanford; Kelly, Patrick; Zeidan, Omar

    2018-05-01

    The purpose of this study was to investigate daily repositioning accuracy by analyzing inter- and intra-fractional uncertainties associated with patients treated for intracranial or base of skull tumors in a compact proton therapy system with 6 degrees of freedom (DOF) robotic couch and a thermoplastic head mask indexed to a base of skull (BoS) frame. Daily orthogonal kV alignment images at setup position before and after daily treatments were analyzed for 33 patients. The system was composed of a new type of thermoplastic mask, a bite block, and carbon-fiber BoS couch-top insert specifically designed for proton therapy treatments. The correctional shifts in robotic treatment table with 6 DOF were evaluated and recorded based on over 1500 planar kV image pairs. Correctional shifts for patients with and without bite blocks were compared. Systematic and random errors were evaluated for all 6 DOF coordinates available for daily vector corrections. Uncertainties associated with geometrical errors and their sources, in addition to robustness analysis of various combinations of immobilization components were presented. Analysis of 644 fractions including patients with and without a bite block shows that the BoS immobilization system is capable of maintaining intra-fraction localization with submillimeter accuracy (in nearly 83%, 86%, 95% of cases along SI, LAT, and PA, respectively) in translational coordinates and subdegree precision (in 98.85%, 98.85%, and 96.4% of cases for roll, pitch, and yaw respectively) in rotational coordinates. The system overall fares better in intra-fraction localization precision compared to previously reported particle therapy immobilization systems. The use of a mask-attached type bite block has marginal impact on inter- or intra-fraction uncertainties compared to no bite block. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. [Skull cult. Trophy heads and tzantzas in pre-Columbian America].

    PubMed

    Carod-Artal, F J

    2012-07-16

    The skull cult is a cultural tradition that dates back to at least Neolithic times. Its main manifestations are trophy heads, skull masks, moulded skulls and shrunken heads. The article reviews the skull cult in both pre-Columbian America and the ethnographic present from a neuro-anthropological perspective. The tradition of shaping and painting the skulls of ancestors goes back to the Indo-European Neolithic period (Natufian culture and Gobekli Tepe). In Mesoamerica, post-mortem decapitation was the first step of a mortuary treatment that resulted in a trophy head, a skull for the tzompantli or a skull mask. The lithic technology utilised by the Mesoamerican cultures meant that disarticulation had to be performed in several stages. Tzompantli is a term that refers both to a construction where the heads of victims were kept and to the actual skulls themselves. Skull masks are skulls that have been artificially modified in order to separate and decorate the facial part; they have been found in the Templo Mayor of Tenochtitlan. The existence of trophy heads is well documented by means of iconographic representations on ceramic ware and textiles belonging to the Paraca, Nazca and Huari cultures of Peru. The Mundurucu Indians of Brazil and the Shuar or Jivaroan peoples of Amazonian Ecuador have maintained this custom down to the present day. The Shuar also shrink heads (tzantzas) in a ritual process. Spanish chroniclers such as Fray Toribio de Benavente 'Motolinia' and Gaspar de Carvajal spoke of these practices. In pre-Columbian America, the tradition of decapitating warriors in order to obtain trophy heads was a wide-spread and highly developed practice.

  12. Paleopathological findings in radiographs of ancient and modern Greek skulls.

    PubMed

    Papagrigorakis, Manolis J; Karamesinis, Kostas G; Daliouris, Kostas P; Kousoulis, Antonis A; Synodinos, Philippos N; Hatziantoniou, Michail D

    2012-12-01

    The skull, when portrayed radiologically, can be a useful tool in detecting signs of systemic diseases and results of pathological growth mechanisms. The aim of this study was therefore to examine, compare, and classify findings in cranial configuration of pathological origin, in modern and ancient skulls. The material consists of 240 modern and 141 ancient dry skulls. Three radiographs for each skull (lateral, anteroposterior, basilar) provide enough evidence for differential diagnoses. Cases of osteoporosis are among the interesting pathological findings. A prevalence of female modern skulls in those determined as osteoporotic skulls is noted. Special interest is placed on the area of the sella turcica and many variations, regarding the shape and texture, are recognized both in ancient and modern skulls. Malignancies and important causes of cranial destruction are identified in both skull collections. Diploid thickening and osteolytic areas appear commonly among ancient remains. Moreover, from the ancient skull collection, one case possibly recognizable as fibrous dysplasia is noted while another case with an unusual exostosis gives rise to many questions. Interpreted with caution, the results of the present study, which can serve as an approach of paleopathology and paleoradiology, indicate similarity trends in cranial configuration of pathologic origin in modern and ancient people. Radiography and cephalometry were the main diagnostic tools used to gather evidence and are evaluated as a quite appropriate method to examine anthropological material and assess the internal structure of skeletal remains since they are non-destructive techniques.

  13. Immunisations and antibiotics in patients with anterior skull base cerebrospinal fluid leaks.

    PubMed

    Rimmer, J; Belk, C; Lund, V J; Swift, A; White, P

    2014-07-01

    There are no UK guidelines for the use of antibiotics and/or immunisations in patients with an active anterior skull base cerebrospinal fluid leak. This study aimed to define current UK practice in this area and inform appropriate guidelines for ENT surgeons. A web-based survey of all members of the British Rhinological Society was carried out and the literature in this area was reviewed. Of those who responded to the survey, 14 per cent routinely give prophylactic antibiotics to patients with cerebrospinal fluid leaks, and 34.9 per cent recommend immunisation against at least one organism, most commonly Streptococcus pneumoniae (86.7 per cent). There is no evidence to support the use of antibiotic prophylaxis in patients with a cerebrospinal fluid leak. We propose that all such patients are advised to seek immunisation against pneumococcus, meningococcus and haemophilus.

  14. [Cloverleaf skull and bilateral facial clefts].

    PubMed

    Alvarez-Manassero, Denisse; Manassero-Morales, Gioconda

    2015-01-01

    Cloverleaf skull syndrome, or Kleeblattschädel syndrome, is a rare malformation in which the skull has a cloverleaf appearance. It is caused by the premature closure of several sutures, being evident before birth. To present our experience in a case of cloverleaf skull syndrome, and update the information from the literature. A female infant of 5 months of age, diagnosed at birth with cleft lip and palate and hydrocephaly. A peritoneal ventricle valve was implanted at 30 days of life, and an ocular enucleation was performed due to an infectious process. The patient was followed-up in Genetics, where it confirmed a macrocephaly and craniosynostosis type cloverleaf skull. The 46XX cytogenetic study and echocardiography were normal. The brain CT scan showed multiple anomalies associated with hydrocephaly and non-specific malformations. Cloverleaf skull may be present in isolated form or associated with other congenital abnormalities, leading to various craniosynostosis syndromes, such as Crouzon, Pfeiffer or Carpenter. It may also be a component of the amniotic rupture sequence or to different dysplasias, such as campomelic dysplasia, thanatophoric dysplasia type 2, or the asphyxiating thoracic dystrophy of Jeune. The case presented does not fulfil all the characteristics needed to be included within a specific syndrome, and on not having a family history that suggests a hereditary pattern or chromosome abnormalities, it is concluded that it is a case of a congenital anomaly of sporadic presentation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Intraoperative neurophysiological monitoring during endoscopic endonasal surgery for pediatric skull base tumors.

    PubMed

    Elangovan, Cheran; Singh, Supriya Palwinder; Gardner, Paul; Snyderman, Carl; Tyler-Kabara, Elizabeth C; Habeych, Miguel; Crammond, Donald; Balzer, Jeffrey; Thirumala, Parthasarathy D

    2016-02-01

    OBJECT The aim of this study was to evaluate the value of intraoperative neurophysiological monitoring (IONM) using electromyography (EMG), brainstem auditory evoked potentials (BAEPs), and somatosensory evoked potentials (SSEPs) to predict and/or prevent postoperative neurological deficits in pediatric patients undergoing endoscopic endonasal surgery (EES) for skull base tumors. METHODS All consecutive pediatric patients with skull base tumors who underwent EES with at least 1 modality of IONM (BAEP, SSEP, and/or EMG) at our institution between 1999 and 2013 were retrospectively reviewed. Staged procedures and repeat procedures were identified and analyzed separately. To evaluate the diagnostic accuracy of significant free-run EMG activity, the prevalence of cranial nerve (CN) deficits and the sensitivity, specificity, and positive and negative predictive values were calculated. RESULTS A total of 129 patients underwent 159 procedures; 6 patients had a total of 9 CN deficits. The incidences of CN deficits based on the total number of nerves monitored in the groups with and without significant free-run EMG activity were 9% and 1.5%, respectively. The incidences of CN deficits in the groups with 1 staged and more than 1 staged EES were 1.5% and 29%, respectively. The sensitivity, specificity, and negative predictive values (with 95% confidence intervals) of significant EMG to detect CN deficits in repeat procedures were 0.55 (0.22-0.84), 0.86 (0.79-0.9), and 0.97 (0.92-0.99), respectively. Two patients had significant changes in their BAEPs that were reversible with an increase in mean arterial pressure. CONCLUSIONS IONM can be applied effectively and reliably during EES in children. EMG monitoring is specific for detecting CN deficits and can be an effective guide for dissecting these procedures. Triggered EMG should be elicited intraoperatively to check the integrity of the CNs during and after tumor resection. Given the anatomical complexity of pediatric EES and

  16. The Skull of Phyllomedusa sauvagii (Anura, Hylidae).

    PubMed

    Ruiz-Monachesi, Mario R; Lavilla, Esteban O; Montero, Ricardo

    2016-05-01

    The hylid genus Phyllomedusa comprises charismatic frogs commonly known as monkey, leaf or green frogs, and is the most diverse genus of the subfamily Phyllomedusinae, including about 31 species. Although there is some information about the anatomy of these frogs, little is known about the osteology. Here the adult skull of Phyllomedusa sauvagii, both articulated and disarticulated, is described and the intraspecific variation is reported. Additionally, cartilage associated with the adult skull, such as the nasal capsules, auditory apparatus, and hyobranchial apparatus, are included in the analysis. Further examination of disarticulated bones reveals their remarkable complexity, specifically in the sphenethmoid and of the oocipital region. The description of disarticulated bones is useful for the identification of fossil remains as well as providing morphological characteristics that are phylogenetically informative. When comparing the skull morphology with the available information of other species of the genus, Phyllomesusa sauvagii skull resembles more that of P. vaillantii and P. venusta than P. atelopoides. © 2016 Wiley Periodicals, Inc.

  17. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    PubMed

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  18. Molding of top skull in the treatment of Apert syndrome.

    PubMed

    Shen, Weimin; Cui, Jie; Chen, Jianbin; Weiping, Shen

    2015-03-01

    Patients with Apert syndrome have bilateral coronal craniosynostosis, along with a distinguishing feature of their many deformity, called tower skull. Surgical correction of this deformity is the mainstay of treatment. We describe 3 patients molded top skull after front bone osteotomy orbital bar advancement. This successfully restricted growth of their top skull while allowing growth in other dimensions. Utilization of top-skull molding after cranial surgery shows promise of satisfaction in this setting.

  19. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a...

  20. Cerebrospinal fluid leakage and Chiari I malformation with Gorham's disease of the skull base: A case report.

    PubMed

    Nagashima, Hiroaki; Mizukawa, Katsu; Taniguchi, Masaaki; Yamamoto, Yusuke; Kohmura, Eiji

    Gorham's syndrome is a rare bone disorder characterized by massive osteolysis of unknown etiology. There are no reports of comorbidity involving cerebrospinal fluid (CSF) leakage and Chiari I malformation with Gorham's syndrome. Here, we report an unusual case of an acute presyrinx state complicated by bacterial meningitis due to CSF leakage and Chiari I malformation associated with Gorham's disease of the skull base. A 25-year-old woman with Chiari I malformation associated with Gorham's syndrome presented with aggressive paresthesia following bacterial meningitis. Axial magnetic resonance imaging (MRI) and computed tomography (CT) cisternography revealed CSF leakage in the right petrous apex. A presyrinx state was diagnosed based on the clinical symptoms and MRI findings. With resolution of the bacterial meningitis, the spinal edema and tonsillar ectopia also improved. Surgical repair of the CSF leakage was performed by an endoscopic endonasal transsphenoidal approach to prevent recurrence of meningitis. The postoperative course was uneventful. Skull base osteolysis in Gorham's syndrome may induce Chiari I malformation and CSF leakage. We should pay attention to acute progression of clinical symptoms because Gorham's syndrome may predispose to development of Chiari I malformation and may be complicated by CSF leakage. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Surveillance for work-related skull fractures in Michigan.

    PubMed

    Kica, Joanna; Rosenman, Kenneth D

    2014-12-01

    The objective was to develop a multisource surveillance system for work-related skull fractures. Records on work-related skull fractures were obtained from Michigan's 134 hospitals, Michigan's Workers' Compensation Agency and death certificates. Cases from the three sources were matched to eliminate duplicates from more than one source. Workplaces where the most severe injuries occurred were referred to OSHA for an enforcement inspection. There were 318 work related skull fractures, not including facial fractures, between 2010 and 2012. In 2012, after the inclusion of facial fractures, 316 fractures were identified of which 218 (69%) were facial fractures. The Bureau of Labor Statistic's (BLS) 2012 estimate of skull fractures in Michigan, which includes facial fractures, was 170, which was 53.8% of those identified from our review of medical records. The inclusion of facial fractures in the surveillance system increased the percentage of women identified from 15.4% to 31.2%, decreased severity (hospitalization went from 48.7% to 10.6% and loss of consciousness went from 56.5% to 17.8%), decreased falls from 48.2% to 27.6%, and increased assaults from 5.0% to 20.2%, shifted the most common industry from construction (13.3%) to health care and social assistance (15.0%) and the highest incidence rate from males 65+ (6.8 per 100,000) to young men, 20-24 years (9.6 per 100,000). Workplace inspections resulted in 45 violations and $62,750 in penalties. The Michigan multisource surveillance system of workplace injuries had two major advantages over the existing national system: (a) workplace investigations were initiated hazards identified and safety changes implemented at the facilities where the injuries occurred; and (b) a more accurate count was derived, with 86% more work-related skull fractures identified than BLS's employer based estimate. A more comprehensive system to identify and target interventions for workplace injuries was implemented using hospital and

  2. An investigation into the accuracy and reliability of skull-photo superimposition in a South African sample.

    PubMed

    Gordon, G M; Steyn, M

    2012-03-10

    One of the aims of forensic science is to determine the identities of victims of crime. In some cases the investigators may have ideas as to the identities of the victims and in these situations, ante mortem photographs of the victims could be used in order to try and establish identity through skull-photo superimposition. The aim of this study was to evaluate the accuracy of a newly developed digital photographic superimposition technique on a South African sample of cadaver photographs and skulls. Forty facial photographs were selected and for each photo, 10 skulls (including the skull corresponding to the photo) were used for superimposition. The investigator did not know which of the 10 skulls corresponded to the photograph in question. The skulls were scanned 3-dimensionally, using a Cyberware™ Model 3030 Colour-3D Scanhead scanner. The photos were also scanned. Superimposition was done in 3D Studio Max and involved a morphological superimposition, whereby a skull is superimposed over the photo and assessed for a morphological match. Superimposition using selected anatomical landmarks was also performed to assess the match. A total of 400 skull-photo superimpositions were carried out using the morphological assessment and another 400 using the anatomical landmarks. In 85% of cases the correct skull was included in the possible matches for a particular photo using morphological assessment. However, in all of these cases, between zero and three other skulls out of 10 possibilities could also match a specific photo. In the landmark based assessment, the correct skull was included in 80% of cases. Once again, however, between one and seven other skulls out of 10 possibilities also matched the photo. This indicates that skull-photo superimposition has limited use in the identification of human skeletal remains, but may be useful as an initial screening tool. Corroborative techniques should also be used in the identification process. Copyright © 2011 Elsevier

  3. Patterns of integration in the canine skull: an inside view into the relationship of the skull modules of domestic dogs and wolves.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-12-01

    The skull shape variation in domestic dogs exceeds that of grey wolves by far. The artificial selection of dogs has even led to breeds with mismatching upper and lower jaws and maloccluded teeth. For that reason, it has been advocated that their skulls (including the teeth) can be divided into more or less independent modules on the basis of genetics, development or function. In this study, we investigated whether the large diversity of dog skulls and the frequent occurrence of orofacial disproportions can be explained by a lower integration strength between the modules of the skull and by deviations in their covariation pattern when compared to wolves. For that purpose, we employed geometric morphometric methods on the basis of 99 3D-landmarks representing the cranium (subdivided into rostrum and braincase), the mandible (subdivided into ramus and corpus), and the upper and lower tooth rows. These were taken from CT images of 196 dog and wolf skulls. First, we calculated the shape disparity of the mandible and the cranium in dogs and wolves. Then we tested whether the integration strength (measured by RV coefficient) and the covariation pattern (as analysed by partial least squares analysis) of the modules subordinate to the cranium and the mandible can explain differing disparity results. We show, contrary to our expectations, that the higher skull shape diversity in dogs is not explained by less integrated skull modules. Also, the pattern of their covariation in the dog skull can be traced back to similar patterns in the wolf. This shows that existing differences between wolves and dogs are at the utmost a matter of degree and not absolute. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. The Ardipithecus ramidus skull and its implications for hominid origins.

    PubMed

    Suwa, Gen; Asfaw, Berhane; Kono, Reiko T; Kubo, Daisuke; Lovejoy, C Owen; White, Tim D

    2009-10-02

    The highly fragmented and distorted skull of the adult skeleton ARA-VP-6/500 includes most of the dentition and preserves substantial parts of the face, vault, and base. Anatomical comparisons and micro-computed tomography-based analysis of this and other remains reveal pre-Australopithecus hominid craniofacial morphology and structure. The Ardipithecus ramidus skull exhibits a small endocranial capacity (300 to 350 cubic centimeters), small cranial size relative to body size, considerable midfacial projection, and a lack of modern African ape-like extreme lower facial prognathism. Its short posterior cranial base differs from that of both Pan troglodytes and P. paniscus. Ar. ramidus lacks the broad, anteriorly situated zygomaxillary facial skeleton developed in later Australopithecus. This combination of features is apparently shared by Sahelanthropus, showing that the Mio-Pliocene hominid cranium differed substantially from those of both extant apes and Australopithecus.

  5. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  6. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].

    PubMed

    Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu

    2011-02-01

    To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.

  7. Diffuse skull base/cervical fusion syndromes in two siblings with spondylocostal dysostosis syndrome: analysis via three dimensional computed tomography scanning.

    PubMed

    Al Kaissi, Ali; Ben Chehida, Farid; Ben Ghachem, Maher; Klaushofer, Klaus; Grill, Franz

    2008-06-01

    A study on a pair of male sibs to reach for the etiological understanding of unusual skull base/spine maldevelopment. Previously, radiographs alone were used to formulate this diagnosis. Here, three-dimensional computed tomography (3D CT) studies further clarified the typical diagnostic findings associated with spondylocostal dysostosis (SCD). Interestingly, patients with SCD are at increased risk for diffuse skull base/cervical fusion syndromes and can result in severe neurologic deficits associated with any degree of trauma. Classically SCD is defined as a skeletal dysplasia with clinical and radiologic manifestations, consisting of short neck and trunk, nonprogressive scoliosis and abnormalities of vertebral segmentation and of the ribs. Radiograms have been adopted as the only modality for the classification and prognostication of patients with SCD. Detailed clinical and radiographic examinations were undertaken with emphasis on the significance of the 3D CT scanning. We observed extensive fusion of the clivus with the cervical/entire spine, resulting in a remarkable solid, immobile, and fixed bony ankylosis of extremely serious outcome. Patients with spondylcostal dysostosis are predisposed to develop extensive skull-base-cervical spine fusion. The latter might lead to the development of a solid, immobile, and fixed bony ankylosis. In children/adults trivial injuries and/or high-energy trauma can lead to serious intracranial and spinal cord injury. Comprehensive orthopedic and neurosurgeons management must follow the recognition of these anomalies. To the best of our knowledge, no previous CT studies of the spine have been published in patients with SCD.

  8. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    PubMed

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  9. Clinical outcome after high-precision radiotherapy for skull base meningiomas: Pooled data from three large German centers for radiation oncology.

    PubMed

    Combs, Stephanie E; Farzin, Mostafa; Boehmer, Julia; Oehlke, Oliver; Molls, Michael; Debus, Jürgen; Grosu, Anca-Ligia

    2018-05-01

    To evaluate outcome in patients with base of skull meningiomas treated with modern high precision radiation therapy (RT) techniques. 927 patients from three centers were treated with either radiosurgery or fractionated high-precision RT for meningiomas. Treatment planning was based on CT and MRI following institutional guidelines. For radiosurgery, a median dose of 13 Gy was applied, for fractionated treatments, a median dose of 54 Gy in 1.8 Gy single fractions was prescribed. Follow-up included a clinical examination as well as contrast-enhanced imaging. All patients were followed up prospectively after radiotherapy in the three departments within a strict follow-up regimen. The median follow-up time was 81 months (range 1-348 months). Median local control was 79 months (range 1-348 months). Local control (LC) was 98% at 1 year, 94% at 3 years, 92% at 5 years and 86% at 10 years. There was no difference between radiosurgery and fractionated RT. We analyzed the influence of higher doses on LC and could show that dose did not impact LC. Moreover, there was no difference between 54 Gy and 57.6 Gy in the fractionated group. Side effects were below 5% in both groups without any severe treatment-related complications. Based on the pooled data analysis this manuscript provides a large series of meningiomas of the skull base treated with modern high precision RT demonstrating excellent local control and low rates of side effects. Such data support the recommendation of RT for skull base meningiomas in the interdisciplinary tumor board discussions. The strong role of RT must influence treatment recommendations keeping in mind the individual risk-benefit profile of treatment alternatives. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    PubMed

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  11. A Giant Pliosaurid Skull from the Late Jurassic of England

    PubMed Central

    Benson, Roger B. J.; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard

    2013-01-01

    Pliosaurids were a long-lived and cosmopolitan group of marine predators that spanned 110 million years and occupied the upper tiers of marine ecosystems from the Middle Jurassic until the early Late Cretaceous. A well-preserved giant pliosaurid skull from the Late Jurassic Kimmeridge Clay Formation of Dorset, United Kingdom, represents a new species, Pliosaurus kevani. This specimen is described in detail, and the taxonomy and systematics of Late Jurassic pliosaurids is revised. We name two additional new species, Pliosaurus carpenteri and Pliosaurus westburyensis, based on previously described relatively complete, well-preserved remains. Most or all Late Jurassic pliosaurids represent a globally distributed monophyletic group (the genus Pliosaurus, excluding ‘Pliosaurus’ andrewsi). Despite its high species diversity, and geographically widespread, temporally extensive occurrence, Pliosaurus shows relatively less morphological and ecological variation than is seen in earlier, multi-genus pliosaurid assemblages such as that of the Middle Jurassic Oxford Clay Formation. It also shows less ecological variation than the pliosaurid-like Cretaceous clade Polycotylidae. Species of Pliosaurus had robust skulls, large body sizes (with skull lengths of 1.7–2.1 metres), and trihedral or subtrihedral teeth suggesting macropredaceous habits. Our data support a trend of decreasing length of the mandibular symphysis through Late Jurassic time, as previously suggested. This may be correlated with increasing adaptation to feeding on large prey. Maximum body size of pliosaurids increased from their first appearance in the Early Jurassic until the Early Cretaceous (skull lengths up to 2360 mm). However, some reduction occurred before their final extinction in the early Late Cretaceous (skull lengths up to 1750 mm). PMID:23741520

  12. Use of Pedicled Trapezius Myocutaneous Flap for Posterior Skull Reconstruction.

    PubMed

    Singh, Mansher; Rios Diaz, Arturo J; Cauley, Ryan; Smith, Timothy R; Caterson, E J

    2015-09-01

    Soft-tissue defects in posterior skull can be challenging for reconstruction. If related to tumor resection, these wound beds are generally irradiated and can be difficult from a recipient-vessel perspective for a free tissue transfer. Locoregional flaps might prove to be important reconstructive option in such patients. There is a very limited data on the usage of pedicled trapezius myocutaneous flaps for such defects. The authors reviewed existing study for usage of trapezius flap for posterior skull repair and used pedicled trapezius myocutaneous flaps based on the descending branch of superficial cervical artery (SCA) for reconstruction of posterior skull soft-tissue defect in an irradiated and infected wound. Two patients were operated for trapezius myocutaneous flap for posterior skull defects complicated by cerebrospinal fluid (CSF) leakage and epidural abscess. There was no recipient or donor-site complication at a mean follow-up of 12.5 months. Neither of the 2 patients had any functional deficits for the entire duration of the follow-up. Although this flap was able to help in controlling the CSF leakage in the first patient, it successfully healed the cavity generated from epidural abscess drainage in the second patient. The large angle of rotation coupled with the ability to complete the procedure without repositioning the patients makes trapezius myocutaneous flap an attractive option for posterior skull reconstruction. In our limited experience, the pedicled trapezius flaps are a reliable alternative as they are well vascularized and able to obliterate the soft-tissue defect completely. The recipient site healed completely in infected as well as irradiated wound beds. In addition, the donor site can be primarily closed with minimal donor-associated complication.

  13. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    PubMed

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.

  14. Pre-reconstruction of cervical-to-petrous internal carotid artery: An improved technique for treatment of vascular lesions involving internal carotid artery at the lateral skull base.

    PubMed

    Li, Fang-Da; Gao, Zhi-Qiang; Ren, Hua-Liang; Liu, Chang-Wei; Song, Xiao-Jun; Li, Yan-Feng; Zheng, Yue-Hong

    2016-04-01

    Reconstruction of the internal carotid artery (ICA) is an operative challenge for lesions involving the lateral skull base because of excessive blood loss, intraoperative cranial nerve injury, and difficulties in cerebral protection. Between January 2010 and October 2014, 9 patients with vascular lesions at the lateral skull base were treated with a "pre-reconstruction" technique, which means reconstruction of the ICA in advance of excising the lesions. All operations were technically successful with no mortality or strokes. The mean blood loss was 921 ± 210 mL. The mean total clamping time was 18 ± 5 minutes. Among the 5 patients without invasion of specific cranial nerves, no long-term sequelae occurred during the follow-up period ranging from 11 to 54 months. With less blood loss, slighter cranial nerve injuries, and shorter clamping time, the "pre-reconstruction" technique was safe and effective for the treatment of vascular lesions at the lateral skull base. © 2016 Wiley Periodicals, Inc. Head Neck 38: E1562-E1567, 2016. © 2016 Wiley Periodicals, Inc.

  15. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  16. Chondroblastoma of the skull.

    PubMed Central

    Feely, M; Keohane, C

    1984-01-01

    A case of chondroblastoma of the temporal bone is reported, and the pathology of the lesion outlined. The rarity of these neoplasms in the skull makes accurate prognosis impossible. Images PMID:6512556

  17. Study of Mastoid Canals and Grooves in North Karnataka Human Skulls

    PubMed Central

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-01-01

    Introduction: This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. Material and Methods: The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. Results: The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. Conclusion: The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding. PMID:24086832

  18. Study of mastoid canals and grooves in north karnataka human skulls.

    PubMed

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-08-01

    This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding.

  19. Severe skull base osteomyelitis caused by Pseudomonas aeruginosa with successful outcome after prolonged outpatient therapy with continuous infusion of ceftazidime and oral ciprofloxacin: a case report.

    PubMed

    Conde-Díaz, Cristina; Llenas-García, Jara; Parra Grande, Mónica; Terol Esclapez, Gertrudis; Masiá, Mar; Gutiérrez, Félix

    2017-02-21

    Skull base osteomyelitis is an uncommon disease that usually complicates a malignant external otitis with temporal bone involvement. It affects predominantly diabetic and immunocompromised males and has a high mortality rate. Pseudomonas aeruginosa is the most common causative organism. Currently, there is no consensus about the best therapeutic option. Here we describe a case of severe skull base osteomyelitis caused by Pseudomonas aeruginosa with progressive palsy of cranial nerves that was successfully managed with prolonged outpatient continuous infusion of ceftazidime plus oral ciprofloxacin. A 69-year-old Caucasian man presented with dysphagia, headache, and weight loss. He complained of left earache and purulent otorrhea. Over the following weeks he developed progressive palsy of IX, X, VI, and XII cranial nerves and papilledema. A petrous bone computed tomography scan showed a mass in the left jugular foramen with a strong lytic component that expanded to the cavum. A biopsy was then performed and microbiological cultures grew Pseudomonas aeruginosa. After 6 weeks of parenteral antibiotic treatment, our patient was discharged and treatment was continued with a domiciliary continuous infusion of a beta-lactam through a peripherally inserted central catheter, along with an oral fluoroquinolone for 10 months. Both radiological and clinical responses were excellent. Skull base osteomyelitis is a life-threating condition; clinical suspicion and correct microbiological identification are key to achieve an accurate and timely diagnosis. Due to the poor outcome of Pseudomonas aeruginosa skull base osteomyelitis, prolonged outpatient parenteral antibiotic therapy administered by continuous infusion could be a valuable option for these patients.

  20. Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: First Long-Term Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ares, Carmen, E-mail: carmen.ares@psi.c; Hug, Eugen B.; Lomax, Antony J.

    2009-11-15

    Purpose: To evaluate effectiveness and safety of spot-scanning-based proton radiotherapy (PT) in skull-base chordomas and chondrosarcomas. Methods and Materials: Between October 1998 and November 2005, 64 patients with skull-base chordomas (n = 42) and chondrosarcomas (n = 22) were treated at Paul Scherrer Institute with PT using spot-scanning technique. Median total dose for chordomas was 73.5 Gy(RBE) and 68.4 Gy(RBE) for chondrosarcomas at 1.8-2.0 Gy(RBE) dose per fraction. Local control (LC), disease specific survival (DSS), and overall survival (OS) rates were calculated. Toxicity was assessed according to CTCAE, v. 3.0. Results: Mean follow-up period was 38 months (range, 14-92 months).more » Five patients with chordoma and one patient with chondrosarcoma experienced local recurrence. Actuarial 5-year LC rates were 81% for chordomas and 94% for chondrosarcomas. Brainstem compression at the time of PT (p = 0.007) and gross tumor volume >25 mL (p = 0.03) were associated with lower LC rates. Five years rates of DSS and OS were 81% and 62% for chordomas and 100% and 91% for chondrosarcomas, respectively. High-grade late toxicity consisted of one patient with Grade 3 and one patient with Grade 4 unilateral optic neuropathy, and two patients with Grade 3 central nervous system necrosis. No patient experienced brainstem toxicity. Actuarial 5-year freedom from high-grade toxicity was 94%. Conclusions: Our data indicate safety and efficacy of spot-scanning based PT for skull-base chordomas and chondrosarcomas. With target definition, dose prescription and normal organ tolerance levels similar to passive-scattering based PT series, complication-free, tumor control and survival rates are at present comparable.« less

  1. Intracerebral haematoma without skull fracture by golf ball

    PubMed Central

    Etgen, Thorleif; Sander, Kerstin

    2008-01-01

    Serious head injury is very uncommon in golf and consists mostly of depressed skull fractures. A case of severe intracerebral haematoma without skull fracture caused by a stray golf ball is described and a review of head injuries in golf is provided. PMID:21716812

  2. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  3. Progress in carotid artery surgery at the base of the skull.

    PubMed

    Sandmann, W; Hennerici, M; Aulich, A; Kniemeyer, H; Kremer, K W

    1984-11-01

    From 1977 to 1984, 752 reconstructions of the supra-aortic arteries were performed at our service. In a group of 31 patients presenting with transient ischemic attacks (13) or minor strokes (15), preoperative multiplane angiograms identified lesions from various causes in extremely high locations (fibromuscular dysplasia, 10; atherosclerosis, 6; traumatic changes, 10; spontaneous dissection, 3; and mycotic aneurysms and others, 4) in 34 internal carotid arteries (aneurysms, 10; and stenosis, 24). Surgery was performed on 30 patients. Flow restoration was achieved by resection and vein graft replacement (20), gradual dilatation (5), thromboendarterectomy (6), and tangential clip for exclusion of a lateral aneurysm (1). Only one patient was treated with an extracranial-intracranial anastomosis because the stenosis extended into the carotid siphon. One patient was treated with heparin. Exposure of the internal carotid artery (ICA) at the base of the skull required dissection of the digastric muscle, careful mobilization of the cranial nerves, and detachment of the styloid process in 29 patients. Partial resection of the mastoid process was helpful in two patients. The carotid bone canal was opened from the lateral side in four cases to allow the most distal anastomosis 1 cm within the carotid canal. Back-bleeding was controlled by a balloon catheter. A shunt was impossible to use and clamping time averaged 62 +/- 40 minutes. Except for one recurrent stroke and two transient ischemic attacks no other neurologic deficits occurred. Cranial nerve damage could not be avoided in 21 cases (nervus recurrens, 7; nervus glossopharyngeus, 16; and nervus facialis, 4) but disappeared clinically within a 1- to 6-month period in all but two. Each surgical patient underwent control angiography, which demonstrated 30 arteries to be patent, two became occluded, and one had an insignificant stenosis. We conclude that standard surgical techniques are unsuitable for repair of highly

  4. Photogrammetric 3D skull/photo superimposition: A pilot study.

    PubMed

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-04-01

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Case of Atypical Skull Base Osteomyelitis with Septic Pulmonary Embolism

    PubMed Central

    Lee, Soon Jung; Weon, Young Cheol; Cha, Hee Jeong; Kim, Sun Young; Seo, Kwang Won; Jegal, Yangjin; Ahn, Jong-Joon

    2011-01-01

    Skull base osteomyelitis (SBO) is difficult to diagnose when a patient presents with multiple cranial nerve palsies but no obvious infectious focus. There is no report about SBO with septic pulmonary embolism. A 51-yr-old man presented to our hospital with headache, hoarseness, dysphagia, frequent choking, fever, cough, and sputum production. He was diagnosed of having masked mastoiditis complicated by SBO with multiple cranial nerve palsies, sigmoid sinus thrombosis, and septic pulmonary embolism. We successfully treated him with antibiotics and anticoagulants alone, with no surgical intervention. His neurologic deficits were completely recovered. Decrease of pulmonary nodules and thrombus in the sinus was evident on the follow-up imaging one month later. In selected cases of intracranial complications of SBO and septic pulmonary embolism, secondary to mastoiditis with early response to antibiotic therapy, conservative treatment may be considered and surgical intervention may be withheld. PMID:21738354

  6. Coexistence of Wormian Bones With Metopism, and Vice Versa, in Adult Skulls.

    PubMed

    Cirpan, Sibel; Aksu, Funda; Mas, Nuket; Magden, Abdurrahman Orhan

    2016-03-01

    The aim of the study is to investigate coexistence of Wormian bones with metopism, and vice versa, in adult skulls. A total of 160 dry adult human skulls of unknown sex and ages were randomly selected from the Gross Anatomy Laboratory of Medical School of Dokuz Eylul University. The skulls were examined for presence of metopism, Wormian bones (WB), and coexistence of WBs with metopism and vice versa. Topographic distribution of the WBs was macroscopically evaluated within the skulls including metopism. The photographs were being taken with Canon 400B (55 mm objective). The frequency of metopism and WBs in 160 skulls is 7.50% (12/160) and 59.3% (95/160), respectively, P < 0.05 (). The incidence of coexistence of WBs with metopism was found as 11 of 12 skulls (91.66%), whereas the incidence of coexistence of metopism with WBs was found as 11 of 95 skulls (11.58%), P < 0.05 (). There were totally 23 sutures including WBs in 11 skulls, which had metopism (). The number (%) of metopic skulls for each specific suture including WBs were found as: 11 lamdoid sutures in 7/11 (63.63%) skulls, 4 lambda in 4/11 (36.36%) skulls, 2 asterion in 2/11 (18.18%) skulls, 1 squamous in 1/11 (9.09%) skull, 2 sagittal in 2/11 (18.18%) skulls, and 3 parieromsatoid sutures in 2/11 (18.18%) skulls (). The distribution of these 23 WBs in sutures of 11 skulls including metopisms is determined as follows: 11/23 (47.82%) WBs at lambdoid sutures [5/23 (21.74%) at the right lambdoid sutures and 6/23 (26.08%) at the left lambdoid sutures, and 4 pair of 11 WBs bilaterally located]; 4 (17.39%) WBs at lambda; 2/23 (8.69%) WBs at asterion [1/23 (4.34%) at the right asterion and 1/23 (4.34%) at the left asterion of 2 diverse skulls]; 2/23 (8.69%) WBs at sagittal sutures; 1/23 (4.34%) WBs at the left squamous suture; 3/23 (13.04%) WBs at parietomastoid sutures [2/23 (8.69%) at the right parietomastoid sutures and 1/23 (4.34%) at the left parietomastoid suture and 1 pair of them bilaterally

  7. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    PubMed

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  8. Stereotactic radiosurgery for trigeminal pain secondary to recurrent malignant skull base tumors.

    PubMed

    Phan, Jack; Pollard, Courtney; Brown, Paul D; Guha-Thakurta, Nandita; Garden, Adam S; Rosenthal, David I; Fuller, Clifton D; Frank, Steven J; Gunn, G Brandon; Morrison, William H; Ho, Jennifer C; Li, Jing; Ghia, Amol J; Yang, James N; Luo, Dershan; Wang, He C; Su, Shirley Y; Raza, Shaan M; Gidley, Paul W; Hanna, Ehab Y; DeMonte, Franco

    2018-04-27

    OBJECTIVE The objective of this study was to assess outcomes after Gamma Knife radiosurgery (GKRS) re-irradiation for palliation of patients with trigeminal pain secondary to recurrent malignant skull base tumors. METHODS From 2009 to 2016, 26 patients who had previously undergone radiation treatment to the head and neck received GKRS for palliation of trigeminal neuropathic pain secondary to recurrence of malignant skull base tumors. Twenty-two patients received single-fraction GKRS to a median dose of 17 Gy (range 15-20 Gy) prescribed to the 50% isodose line (range 43%-55%). Four patients received fractionated Gamma Knife Extend therapy to a median dose of 24 Gy in 3 fractions (range 21-27 Gy) prescribed to the 50% isodose line (range 45%-50%). Those with at least a 3-month follow-up were assessed for symptom palliation. Self-reported pain was evaluated by the numeric rating scale (NRS) and MD Anderson Symptom Inventory-Head and Neck (MDASI-HN) pain score. Frequency of as-needed (PRN) analgesic use and opioid requirement were also assessed. Baseline opioid dose was reported as a fentanyl-equivalent dose (FED) and PRN for breakthrough pain use as oral morphine-equivalent dose (OMED). The chi-square and Student t-tests were used to determine differences before and after GKRS. RESULTS Seven patients (29%) were excluded due to local disease progression. Two experienced progression at the first follow-up, and 5 had local recurrence from disease outside the GKRS volume. Nineteen patients were assessed for symptom palliation with a median follow-up duration of 10.4 months (range 3.0-34.4 months). At 3 months after GKRS, the NRS scores (n = 19) decreased from 4.65 ± 3.45 to 1.47 ± 2.11 (p < 0.001); MDASI-HN pain scores (n = 13) decreased from 5.02 ± 1.68 to 2.02 ± 1.54 (p < 0.01); scheduled FED (n = 19) decreased from 62.4 ± 102.1 to 27.9 ± 45.5 mcg/hr (p < 0.01); PRN OMED (n = 19) decreased from 43.9 ± 77.5 to 10.9 ± 20.8 mg/day (p = 0.02); and frequency of any

  9. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab

    PubMed Central

    Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab’s learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab’s scientific process. Third, the lab’s exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom’s taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects. PMID:27513927

  10. Gender differences in D-aspartic acid content in skull bone.

    PubMed

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  11. Surgical resection of sinonasal hemangiopericytoma involving anterior skull base: Case reports and literature review.

    PubMed

    Simmonds, Jonathan C; Rebeiz, Elie E

    Hemangiopericytomas are soft tissue tumors composed of pericytic cells that are characterized by their "staghorn" vascular branching and their variable clinical presentation. Fifteen to 25% of all HPC occur in the head and neck, with only 5% found in the nose or paranasal sinuses. Sinonasal hemangiopericytoma (SNHPC) is considered distinct from its soft tissue counterpart - the former showing a more uniform cellular organization, has convincing pericytic differentiation and is associated with a far better prognosis. With less than 200 cases of SNHPC reported in the literature, only limited assumptions can be made about this rare tumor. The purpose of this article is to add to the growing body of literature on this disease. We report two new cases of SNHCP - both in female patients who presented with epistaxis and anosmia. Pulsatile vascular masses were visualized with nasal endoscopy - one in the left middle meatus and the second one near the cribriform plate. CT and MRI studies show enhancing masses in the left nasal cavities with thinning and erosion of the skull base. Diagnoses were confirmed by pathology which reported spindle cell neoplasm staining positively for VEGF, NSE, factor XIIIa, S-100 protein, and CD34, and negative for actin, desmin, CD31, and pankeratin, consistent with hemangiopericytoma. In one patient, embolization of the sphenopalatine and labial artery as well as pre-operative radiation therapy was performed before complete endoscopic resection was undertaken. The second patient had a tumor invading the skull base, so a craniofacial resection was performed. Both patients remained free of disease two years after surgery. Review of the literature and treatment options are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The oldest anatomical handmade skull of the world c. 1508: 'the ugliness of growing old' attributed to Leonardo da Vinci.

    PubMed

    Missinne, Stefaan J

    2014-06-01

    The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.

  13. The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data.

    PubMed

    Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron

    2016-10-25

    Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.

  14. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures.

    PubMed

    Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Sugo, Nobuo; Terazono, Sayaka; Okonogi, Shinichi; Sakaeyama, Yuki; Fuchinoue, Yutaka; Ando, Syunpei; Fukushima, Daisuke; Nomoto, Jun; Nemoto, Masaaki

    2016-06-01

    Deep regions are not visible in three-dimensional (3D) printed rapid prototyping (RP) models prepared from opaque materials, which is not the case with translucent images. The objectives of this study were to develop an RP model in which a skull base tumor was simulated using mesh, and to investigate its usefulness for surgical simulations by evaluating the visibility of its deep regions. A 3D printer that employs binder jetting and is mainly used to prepare plaster models was used. RP models containing a solid tumor, no tumor, and a mesh tumor were prepared based on computed tomography, magnetic resonance imaging, and angiographic data for four cases of petroclival tumor. Twelve neurosurgeons graded the three types of RP model into the following four categories: 'clearly visible,' 'visible,' 'difficult to see,' and 'invisible,' based on the visibility of the internal carotid artery, basilar artery, and brain stem through a craniotomy performed via the combined transpetrosal approach. In addition, the 3D positional relationships between these structures and the tumor were assessed. The internal carotid artery, basilar artery, and brain stem and the positional relationships of these structures with the tumor were significantly more visible in the RP models with mesh tumors than in the RP models with solid or no tumors. The deep regions of PR models containing mesh skull base tumors were easy to visualize. This 3D printing-based method might be applicable to various surgical simulations.

  15. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-targetmore » in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for

  16. Hand in glove: brain and skull in development and dysmorphogenesis

    PubMed Central

    Flaherty, Kevin

    2013-01-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  17. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    PubMed

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p < 0.01). The data shows a discrepancy between the model surgical plans and the actual correction of the upper jaw of 0.8 mm. Using the electromagnetic tracking, we could reduce the discrepancy of the maxillary transposition between the planned and actual orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  20. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    PubMed

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  1. Blunt forehead trauma and optic canal involvement: finite element analysis of anterior skull base and orbit on causes of vision impairment.

    PubMed

    Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas

    2015-10-01

    Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Brown tumors of the anterior skull base as the initial manifestation of true normocalcemic primary hyperparathyroidism: report of three cases and review of the literature.

    PubMed

    Khalatbari, Mahmoud Reza; Hamidi, Mehrdokht; Moharamzad, Yashar; Setayesh, Ali; Amirjamshidi, Abbas

    2013-01-01

    Brown tumor is a bone lesion secondary to hyperparathyroidism of various etiologies. Skeletal involvement in primary hyperparathyroidism secondary to parathyroid adenoma is very uncommon and brown tumor has become extremely a rare clinical entity. Hyperparathyroidism is usually associated with high levels of serum calcium. Brown tumor as the only and initial symptom of normocalcemic primary hyperparathyroidism is extremely rare. Moreover, involvement of the skull base and the orbit is exceedingly rare. The authors would report three cases of brown tumor of the anterior skull base that were associated with true normocalcemic primary hyperparathyroidism. Clinical manifestations, neuroimaging findings, pathological findings, diagnosis and treatment of the patients are discussed and the relevant literature is reviewed.

  3. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    PubMed

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evolutionary origin of the turtle skull.

    PubMed

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  5. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    PubMed

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  6. Reconstruction of posterior neck and skull with vertical trapezius musculocutaneous flap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathes, S.J.; Stevenson, T.R.

    1988-10-01

    The vertical trapezius musculocutaneous flap has been successfully utilized for reconstruction in 13 patients with complex posterior skull and neck defects. This flap based on its vascular pedicle, the descending branch of the transverse cervical artery, provides well-vascularized tissue for coverage of defects related to chronic osteomyelitis, tumor extirpation, osteoradionecrosis, and dehisced cervical laminectomy wounds. Emphasis on flap design, including the location of the skin island, allows adequate wound coverage, direct donor site closure, and muscle function preservation. With its large size and wide arc of rotation, the vertical trapezius musculocutaneous flap provides reliable coverage for posterior trunk, cervical, andmore » skull defects.« less

  7. The ontogenetic origins of skull shape disparity in the Triturus cristatus group.

    PubMed

    Cvijanović, Milena; Ivanović, Ana; Kalezić, Miloš L; Zelditch, Miriam L

    2014-09-01

    Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur. © 2014 Wiley Periodicals, Inc.

  8. 3D shape recovery of a newborn skull using thin-plate splines.

    PubMed

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  9. Computer-assisted shape descriptors for skull morphology in craniosynostosis.

    PubMed

    Shim, Kyu Won; Lee, Min Jin; Lee, Myung Chul; Park, Eun Kyung; Kim, Dong Seok; Hong, Helen; Kim, Yong Oock

    2016-03-01

    Our aim was to develop a novel method for characterizing common skull deformities with high sensitivity and specificity, based on two-dimensional (2D) shape descriptors in computed tomography (CT) images. Between 2003 and 2014, 44 normal subjects and 39 infants with craniosynostosis (sagittal, 29; bicoronal, 10) enrolled for analysis. Mean age overall was 16 months (range, 1-120 months), with a male:female ratio of 56:29. Two reference planes, sagittal (S-plane: through top of lateral ventricle) and coronal (C-plane: at maximum dimension of fourth ventricle), were utilized to formulate three 2D shape descriptors (cranial index [CI], cranial radius index [CR], and cranial extreme spot index [CES]), which were then applied to S- and C-plane target images of both groups. In infants with sagittal craniosynostosis, CI in S-plane (S-CI) usually was <1.0 (mean, 0.78; range, 0.67-0.95), with CR consistently at 3 and a characteristic CES pattern of two discrete hot spots oriented diagonally. In the bicoronal craniosynostosis subset, CI was >1.0 (mean 1.11; range, 1.04-1.25), with CR at -3 and a CES pattern of four discrete diagonally oriented hot spots. Scatter plots underscored the highly intuitive joint performance of CI and CES in distinguishing normal and deformed states. Altogether, these novel 2D shape descriptors enabled effective discrimination of sagittal and bicoronal skull deformities. Newly developed 2D shape descriptors for cranial CT imaging enabled recognition of common skull deformities with statistical significance, perhaps providing impetus for automated CT-based diagnosis of craniosynostosis.

  10. Study on the criteria for assessing skull-face correspondence in craniofacial superimposition.

    PubMed

    Ibáñez, Oscar; Valsecchi, Andrea; Cavalli, Fabio; Huete, María Isabel; Campomanes-Alvarez, Blanca Rosario; Campomanes-Alvarez, Carmen; Vicente, Ricardo; Navega, David; Ross, Ann; Wilkinson, Caroline; Jankauskas, Rimantas; Imaizumi, Kazuhiko; Hardiman, Rita; Jayaprakash, Paul Thomas; Ruiz, Elena; Molinero, Francisco; Lestón, Patricio; Veselovskaya, Elizaveta; Abramov, Alexey; Steyn, Maryna; Cardoso, Joao; Humpire, Daniel; Lusnig, Luca; Gibelli, Daniele; Mazzarelli, Debora; Gaudio, Daniel; Collini, Federica; Damas, Sergio

    2016-11-01

    Craniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Transversal craniofacial growth evaluated on children dry skulls using V2 and V 3 canal openings as references.

    PubMed

    Harnet, J C; Lombardi, T; Manière-Ezvan, A; Chamorey, E; Kahn, J L

    2013-11-01

    The aim of this study was to investigate the transversal relationships between two cephalometric landmarks and lines on the face using ovale, rotundum, greater palatine and infra-orbital foramina as references. Thirty-four children dry skulls, 19 males and 15 females aged 0-6 years, were examined by computed tomography scanning by using constructed tomographic axial and frontal planes. The cephalometric transversal dimensions of the face skull were measured between the right and left landmarks from the orbital lateral wall and from the zygomatic arch. The cephalometric transversal dimensions of the base skull were measured between the right and left ovale, rotundum, greater palatine and infra-orbital foramina. Statistical analysis using partial correlations, regardless of the age, showed strong relationships (p < 0.05) among transversal measurements with nerve canal openings and transversal distances of skull face. We showed that the cranial base transversal growth was very strongly related to facial transversal growth from the postnatal period up to 6 years of age.

  12. Demonstration of skull bones mobility using optical methods: practical importance in medicine

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander V.; Okushko, Vladimir R.; Vturin, Sergey A.; Moseychuk, Vladimir V.; Petrov, Aleksey A.; Suetenkov, Dmitry E.

    2014-01-01

    Unprompted skull bones mobility not related to breathing, heart beating and other physiological reactions, using installation of original construction with control of physiological parameters by biofeedback hardware-software complex BOS-lab and BOS-pulse appliance (COMSIB, Novosibirsk, Russia) has been confirmed. Teeth eruption occurs through odontiasis canals, emerging from the funiculus. The main driving force for promoting a tooth into odontiasis canal during eruption is the unprompted skull bones mobility. A simple optical installation was made for the visualization of skull bones mobility during the investigation of the median palatine and incisors sutures. Early detection of failures of unprompted skull bones mobility and its normalization can lead to prevention of impact teeth, malocclusion, extrudocclusion and other anomalies and deformations of teeth, teeth rows, TMJ and skull. The skull bones mobility should be considered during the early preventive treatment and therapy of the consequences of injuries and malfunction of the maxillofacial area.

  13. [Radiological anatomical examinations in skulls from anthropological collections (author's transl)].

    PubMed

    Wicke, L

    1976-01-01

    A total of 114 skulls dating from the Neolithic Age, the Bronze Age and the Iron Age, of Incas and Red Indians, of Asians from North and South China, as well as Negro skulls found in Turkey were radiologically analysed and compared with control skulls of recent origin. The 3 standard X-ray views were taken (postero-anterior, axial and lateral) and appropriate linear and angle measurements were carried out. The resultant 4120 values were compared by variance analysis and the differences between the groups are presented. The differences in linear values may be attributable merely to racial variation; the constancy of the obtained angle measurements is striking. The results were also compared by means of linear regression with measured volume values of the brain skull; it was thereby possible to develop a new formula by means of which the volume of the brain skull can be calculated from the parameter BPH (introduced by the author) and from the distance B with the help of a constant factor. The importance of Radiology in Anthropology is pointed out.

  14. A novel ciliopathic skull defect arising from excess neural crest.

    PubMed

    Tabler, Jacqueline M; Rice, Christopher P; Liu, Karen J; Wallingford, John B

    2016-09-01

    The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of the murine skull in optoacoustic brain microscopy.

    PubMed

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.

    PubMed

    Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina

    2016-01-01

    Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion. © 2015 American Academy of Forensic Sciences.

  17. Historical evidence of the 1936 Mojokerto skull discovery, East Java.

    PubMed

    Huffman, O Frank; Shipman, Pat; Hertler, Christine; de Vos, John; Aziz, Fachroel

    2005-04-01

    To resolve ambiguities in the literature, we detail the discovery history of the Mojokerto child's skull (Perning 1), employing letters, maps, photographs, reports, and newspaper accounts not previously used for this purpose. Andoyo, an experienced vertebrate-fossil collector with the Geological Survey of the Netherlands Indies, found the skull on February 13, 1936, while collecting for Johan Duyfjes, who had mapped the field area geologically. On February 18-19 Andoyo sent the fossil and a 1:25,000-topographic map showing the discovery point to Survey headquarters. The locality lies between Perning and Sumbertengu villages, approximately 10km northeast of Mojokerto city, East Java. G.H. Ralph von Koenigswald, Survey paleontologist, identified the specimen as Pithecanthropus and then named it Homo modjokertensis (it is now accepted as Homo erectus). Unfortunately he confused the discovery record in a March 28 newspaper article by characterizing the skull as a "surface find" [Dutch: oppervlaktevondst] while also attributing it to ancient beds. von Koenigswald probably had insufficient basis for either assertion, having not yet talked to Andoyo or Duyfjes. Eugene Dubois challenged von Koenigswald on the "surface-find" issue, Andoyo was consulted, and Duyfjes went to the site. Duyfjes and von Koenigswald then published scientific papers stating that the skull was unearthed 1m deep from a hill-slope outcrop of conglomeratic sandstone in Duyfjes' Pucangan formation. A cross section by Andoyo, which may show the Mojokerto site, also indicates a skull at 1m depth in conglomeratic sandstone. Photographs taken in 1936-1938 show a shallow pit at a single field location that fits Duyfjes' site description and is identified as the Mojokerto-skull site in 1940-1943 publications. By WWII the scientific community accepted the skull as an early hominid. Although von Koenigswald's "surface-find" comment remains a source of doubt in the record, we consider in situ discovery for the

  18. A Statistical Skull Geometry Model for Children 0-3 Years Old

    PubMed Central

    Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P.; Rupp, Jonathan D.; Hoff, Carrie N.; Hu, Jingwen

    2015-01-01

    Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0–3 YO population. In this study, head CT scans from fifty-six 0–3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models. PMID:25992998

  19. A statistical skull geometry model for children 0-3 years old.

    PubMed

    Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2015-01-01

    Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.

  20. The skull of Chios: trepanation in Hippocratic medicine.

    PubMed

    Tsermoulas, Georgios; Aidonis, Asterios; Flint, Graham

    2014-08-01

    Cranial trepanation is the oldest neurosurgical operation and its roots date back to prehistory. For many centuries, religion and mysticism were strongly linked to the cause of diseases, and trepanation was associated with superstitions such as releasing evil spirits from inside the skull. The Hippocratic treatise "On injuries of the head" was therefore a revolutionary work, as it presented a systematic approach to the management of cranial trauma, one that was devoid of spiritual elements. Unfortunately, there are only a limited number of skeletal findings that confirm that the practice of trepanation was performed as part of Hippocratic medicine. In this historical vignette, the authors present a trepanned skull that was found in Chios, Greece, as evidence of the procedure having been performed in accordance with the Hippocratic teaching. The skull bears a parietal bur hole in association with a linear fracture, and it is clear that the patient survived the procedure. In this analysis, the authors examine the application of the original Hippocratic teaching to the skull of Chios. The rationalization of trepanation was clearly a significant achievement in the evolution of neurosurgery.

  1. Temporal Lobe Toxicity Analysis After Proton Radiation Therapy for Skull Base Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pehlivan, Berrin; Ares, Carmen, E-mail: carmen.ares@psi.ch; Lomax, Antony J.

    2012-08-01

    Purpose: Temporal lobe (TL) parenchyma toxicity constitutes one of the most frequent late adverse event in high-dose proton therapy (PT) for tumors of the skull base. We analyzed clinical events with dosimetric parameters in our patients treated for skull base tumors with spot-scanning PT. Methods and Materials: Between 1998 and 2005, a total of 62 patients received PT to a median dose of 71.7 Gy (relative biologic effectiveness [RBE]) (range, 63-74 Gy). The dose-volume histogram of each TL and the entire brain parenchyma (BP) were analyzed according to maximum, mean, and minimum dose as well as doses to 0.5, 1,more » 2, and 3 cc of brain volume (D{sub 0.5}, D{sub 1}, D{sub 2}, D{sub 3}) and correlated with clinical events. Generalized equivalent uniform dose (gEUD) values were calculated. Results: At a mean follow-up of 38 months (range, 14-92 months), 2 patients had developed symptomatic Grade 3 and 5 patients asymptomatic Grade 1 TL toxicity. Mean doses to a 2-cc volume of BP increased from 71 {+-} 5 Gy (RBE) for no toxicity to 74 {+-} 5 Gy (RBE) for Grade 1 and to 76 {+-} 2 Gy (RBE) for Grade 3 toxicity. TL events occurred in 6 of 7 patients (86%) at or above dose levels of {>=}64 Gy (RBE) D{sub 3}, {>=}68 Gy (RBE) D{sub 2}, {>=}72 Gy (RBE) D{sub 1}, and {>=}73 Gy (RBE) D{sub 0.5}, respectively (p = NS). No statistically significant dose/volume threshold was detected between patients experiencing no toxicity vs. Grade 1 or Grade 3. A strong trend for Grade 1 and 3 events was observed, when the gEUD was 60 Gy. Conclusions: A statistically significant normal tissue threshold dose for BP has not been successfully defined. However, our data suggest that tolerance of TL and BP to fractionated radiotherapy appears to be correlated with tissue volume included in high-dose regions. Additional follow-up time and patient accrual is likely needed to achieve clinical significance for these dose-volume parameters investigated. Our findings support the importance of

  2. Transposition of the paraclival carotid artery: a novel concept of self-retaining vascular retraction during endoscopic endonasal skull base surgery technical report.

    PubMed

    Freeman, Jacob L; Sampath, Raghuram; Casey, Michael A; Quattlebaum, Steven Craig; Ramakrishnan, Vijay R; Youssef, A Samy

    2016-08-01

    Fixed retraction of the internal carotid artery (ICA) has previously been described for use during transcranial microscopic surgery. We report the novel use of a self-retaining microvascular retractor for static repositioning and protection of the ICA during expanded endonasal endoscopic approaches to the paramedian skull base. The transmaxillary, transpterygoid approach was performed in five cadaver heads (ten sides). The self-retaining microvascular retractor was used to laterally reposition the pterygopalatine fossa contents during exposure of the pterygoid base/plates and the paraclival ICA to expose the petrous apex. Maximum ICA retraction distance was measured in the x-axis for all ten sides. The average horizontal distance of ICA retraction measured at the mid-paraclival segment for all ten sides was 4.75 mm. In all cases, the carotid artery was repositioned without injury to the vessel or disruption of the surrounding neurovascular structures. Static repositioning of the ICA and other delicate neurovascular structures was effectively performed during endonasal, endoscopic cadaveric surgery of the skull base and has potential merits in live patients.

  3. Epigenetic control of skull morphogenesis by histone deacetylase 8

    PubMed Central

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  4. Two-Dimensional High Definition Versus Three-Dimensional Endoscopy in Endonasal Skull Base Surgery: A Comparative Preclinical Study.

    PubMed

    Rampinelli, Vittorio; Doglietto, Francesco; Mattavelli, Davide; Qiu, Jimmy; Raffetti, Elena; Schreiber, Alberto; Villaret, Andrea Bolzoni; Kucharczyk, Walter; Donato, Francesco; Fontanella, Marco Maria; Nicolai, Piero

    2017-09-01

    Three-dimensional (3D) endoscopy has been recently introduced in endonasal skull base surgery. Only a relatively limited number of studies have compared it to 2-dimensional, high definition technology. The objective was to compare, in a preclinical setting for endonasal endoscopic surgery, the surgical maneuverability of 2-dimensional, high definition and 3D endoscopy. A group of 68 volunteers, novice and experienced surgeons, were asked to perform 2 tasks, namely simulating grasping and dissection surgical maneuvers, in a model of the nasal cavities. Time to complete the tasks was recorded. A questionnaire to investigate subjective feelings during tasks was filled by each participant. In 25 subjects, the surgeons' movements were continuously tracked by a magnetic-based neuronavigator coupled with dedicated software (ApproachViewer, part of GTx-UHN) and the recorded trajectories were analyzed by comparing jitter, sum of square differences, and funnel index. Total execution time was significantly lower with 3D technology (P < 0.05) in beginners and experts. Questionnaires showed that beginners preferred 3D endoscopy more frequently than experts. A minority (14%) of beginners experienced discomfort with 3D endoscopy. Analysis of jitter showed a trend toward increased effectiveness of surgical maneuvers with 3D endoscopy. Sum of square differences and funnel index analyses documented better values with 3D endoscopy in experts. In a preclinical setting for endonasal skull base surgery, 3D technology appears to confer an advantage in terms of time of execution and precision of surgical maneuvers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Function-dependent shape characteristics of the human skull.

    PubMed

    Witzel, U; Preuschoft, H

    2002-06-01

    Using the FEM-program ANSYS 5.4, we have shaped a model of the human skull in which the flow of forces and the relative location and magnitudes of stresses are investigated. Forces are applied from below through the tooth row of the upper jaw. An ample volume is provided for the transmission of these bite forces upward to the roof of the braincase, where bearings counteract the forces from below. Within this volume, no other morphological features are considered than two cone-shaped orbits and a nasal channel which has a rounded, triangular cross section, extending upward between the orbits. Under loads (= bite forces) acting simultaneously in the directions and relative sizes of realistic bite- and chewing forces, there occurred stress concentrations inside the model which resemble closely the morphological characteristics of the human skull. The most remarkable pathways of stresses correspond to Toldt's and Benninghoff's nasal, zygomatic and pterygoid pillars. Aside from these stress concentrations, stress-free regions become visible at places, where the skull shows excavations: the vaulted palate with canalis incisivus, the canine fossa, superior and inferior orbital fissure, or cavities like the maxillary sinuses and cavum cranii. Behind the posterior molars and the pterygoid, the stresses disappear abruptly, and in the side wall of the nasal cavity a maxillary hiatus remains without stresses. A flow of forces comparable to, but not at the exact position of the zygomatic arch extends from the highly stressed zygomatic bone rearward and upward. In a later step of simulation, somewhat deeper, at the place of the really existing zygomatic arch, a series of small forces was applied, which correspond to the resultant force that is created by the redirection of the pull of the m. masseter into the temporal fascia. This--biologically reasonable--manipulation of the model leads to a reduction of the forces in the zygomatic bone, and to a downward shift of the zygomatic

  6. Double osteotomy of mandibula in the treatment of carotid body tumors with skull base extension.

    PubMed

    Prouse, Giorgio; Mazzaccaro, Daniela; Settembrini, Fernanda; Carmo, Michele; Biglioli, Federico; Settembrini, Piergiorgio G

    2013-08-01

    We report two patients with a carotid body paraganglioma that extended to the skull base, a position that is surgically inaccessible by means of a traditional lateral cervical approach. In both patients we were able to remove the lesion by performing a double mandibular osteotomy. Both patients underwent preoperative embolization to reduce the mass. In our experience, this approach has allowed a safe radical excision of exceptionally high lesions with only minor permanent nerve damage. In our opinion this advantage definitely outweighs the consequences of the increased invasiveness of this technique. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  7. Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes?

    PubMed Central

    Klaczko, Julia; Sherratt, Emma; Setz, Eleonore Z. F.

    2016-01-01

    Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes. PMID:26886549

  8. Efficacy and Safety of Adjuvant Proton Therapy Combined With Surgery for Chondrosarcoma of the Skull Base: A Retrospective, Population-Based Study.

    PubMed

    Feuvret, Loïc; Bracci, Stefano; Calugaru, Valentin; Bolle, Stéphanie; Mammar, Hamid; De Marzi, Ludovic; Bresson, Damien; Habrand, Jean-Louis; Mazeron, Jean-Jacques; Dendale, Rémi; Noël, Georges

    2016-05-01

    Chondrosarcoma is a rare malignant tumor of the cartilage affecting young adults. Surgery, followed by charged-particle irradiation, is considered the reference standard for the treatment of patients with grade I to II skull base chondrosarcoma. The present study was conducted to assess the effect of the quality of surgery and radiation therapy parameters on local control (LC) and overall survival (OS). From 1996 to 2013, 159 patients (median age 40 years, range 12-83) were treated with either protons alone or a combination of protons and photons. The median total dose delivered was 70.2 Gy (relative biologic effectiveness [RBE]; range 67-71). Debulking and biopsy were performed in 133 and 13 patients, respectively. With a median follow-up of 77 months (range 2-214), 5 tumors relapsed based on the initial gross tumor volume. The 5- and 10-year LC rates were 96.4% and 93.5%, respectively, and the 5- and 10-year OS rates were 94.9% and 87%, respectively. A total of 16 patients died (13 of intercurrent disease, 3 of disease progression). On multivariate analysis, age <40 years and primary disease status were independent favorable prognostic factors for progression-free survival and OS, and local tumor control was an independent favorable predictor of OS. In contrast, the extent of surgery, dosimetric parameters, and adjacent organs at risk were not prognostic factors for LC or OS. Systematic high-dose postoperative proton therapy for skull base chondrosarcoma can achieve a high LC rate with a low toxicity profile. Maximal safe surgery, followed by high-dose conformal proton therapy, is therefore recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A prospective study of postoperative symptoms in sinonasal quality-of-life following endoscopic skull-base surgery: dissociations based on specific symptoms.

    PubMed

    Bedrosian, Jeffrey C; McCoul, Edward D; Raithatha, Roheen; Akselrod, Olga A; Anand, Vijay K; Schwartz, Theodore H

    2013-08-01

    Endoscopic skull-base surgery (ESBS) is a minimal access approach to cranial base pathology; however, it significantly disrupts the intranasal mucosa and intranasal structures, the long-term effects of which are still being studied. We prospectively assessed postoperative changes in sinonasal QOL symptoms following ESBS. Eighty-five patients were prospectively assessed with the Anterior Skull Base Questionnaire (ASBQ), a validated QOL instrument, preoperatively and up to 1 year postoperatively at each subsequent office visit. A subset of these data was analyzed to assess the effect of endoscopic pituitary surgery on postoperative taste, smell, appetite, nasal secretions, and vision. ESBS patients were divided into 2 cohorts: those undergoing pituitary adenoma surgery and those undergoing ESBS for all other pathologies. Preoperative smell (3.11 vs 3.76, p = 0.03) and taste (3.04 vs 3.69, p = 0.03) were significantly lower in the nonpituitary group. Within the pituitary group both taste (3.69 vs 2.95, p = 0.03) and smell (3.76 vs 2.61, p ≤ 0.001) were significantly decreased by 6 weeks postoperatively. However, by 12 months both taste and smell scores returned to baseline. Vision scores improved by 3 weeks postoperatively with durable results at 1 year (2.80 vs 3.33, p = 0.04 vs 3.59, p = 0.03, respectively). Within the nonpituitary group, smell was decreased at 3 weeks, but was not significantly changed at any other time points. Our study indicates a dissociation between the nasal and visual QOL after ESBS. While nasal QOL transiently decreases, visual QOL progressively improves. These data should not be lumped together for the purposes of statistical analysis. © 2013 ARS-AAOA, LLC.

  10. Trans-zygomatic middle cranial fossa approach to access lesions around the cavernous sinus and anterior parahippocampus: a minimally invasive skull base approach.

    PubMed

    Melamed, Itay; Tubbs, R Shane; Payner, Troy D; Cohen-Gadol, Aaron A

    2009-08-01

    Exposure of the cavernous sinus or anterior parahippocampus often involves a wide exposure of the temporal lobe and mobilization of the temporalis muscle associated with temporal lobe retraction. The authors present a cadaveric study to illustrate the feasibility, advantages and landmarks necessary to perform a trans-zygomatic middle fossa approach to lesions around the cavernous sinus and anterior parahippocampus. The authors performed bilateral trans-zygomatic middle fossae exposures to reach the cavernous sinus and parahippocampus in five cadavers (10 sides). We assessed the morbidity associated with this procedure and compared the indications, advantages, and disadvantages of this method versus more extensive skull base approaches. A vertical linear incision along the middle portion of the zygomatic arch was extended one finger breadth inferior to the inferior edge of the zygomatic arch. Careful dissection inferior to the arch allowed preservation of facial nerve branches. A zygomatic osteotomy was followed via a linear incision through the temporalis muscle and exposure of the middle cranial fossa floor. A craniotomy along the inferolateral temporal bone and middle fossa floor allowed extradural dissection along the middle fossa floor and exposure of the cavernous sinus including all three divisions of the trigeminal nerve. Intradural inspection demonstrated adequate exposure of the parahippocampus. Exposure of the latter required minimal or no retraction of the temporal lobe. The trans-zygomatic middle fossa approach is a simplified skull base exposure using a linear incision, which may avoid the invasivity of more extensive skull base approaches while providing an adequate corridor for resection of cavernous sinus and parahippocampus lesions. The advantages of this approach include its efficiency, ease, minimalism, preservation of the temporalis muscle, and minimal retraction of the temporal lobe.

  11. Outcomes of endonasal endoscopic dacryocystorhinostomy after maxillectomy in patients with paranasal sinus and skull base tumors.

    PubMed

    Abu-Ghanem, Sara; Ben-Cnaan, Ran; Leibovitch, Igal; Horowitz, Gilad; Fishman, Gadi; Fliss, Dan M; Abergel, Avraham

    2014-06-01

    Maxillectomy followed by radiotherapy and/or chemotherapy can result in lacrimal blockage and the need for subsequent dacryocystorhinostomy (DCR). Endonasal endoscopic DCR, as opposed to external DCR, allows better accuracy and leaves no scar. To date no report was published regarding the results of endoscopic DCR in these patients. The current study presents a retrospective review of all patients with paranasal and skull base tumors who developed nasolacrimal duct blockage after ablative maxillectomy with or without radiotherapy and/or chemotherapy and underwent endonasal endoscopic DCR between January 2006 and October 2012 in a tertiary reference medical center. According to our results, ten patients underwent 11 subsequent endonasal endoscopic DCR. There were 6 men and 4 women with a median age of 55 years (range, 19-81 years); four suffered from benign tumors and six had malignant tumors. All underwent maxillectomy. Six received high-dose radiotherapy. Time interval between primary ablative surgery and endonasal endoscopic DCR was 18 months (range, 7-118 months). Silicone stents were removed after median period of 11 weeks (range, 1-57 weeks). Nine out of ten patients experienced symptomatic improvement following one endonasal endoscopic DCR. One patient had recurrent epiphora and underwent a successful endonasal endoscopic revision DCR. In conclusion, endonasal endoscopic DCR in patients with paranasal and skull base tumors, who previously underwent maxillectomy, is generally successful and not associated with a high rate of complications or failure. Moreover, our findings may suggest that silicone stents can be removed shortly after the operation with high success rate.

  12. Reappraisal of Pediatric Diastatic Skull Fractures in the 3-Dimensional CT Era: Clinical Characteristics and Comparison of Diagnostic Accuracy of Simple Skull X-Ray, 2-Dimensional CT, and 3-Dimensional CT.

    PubMed

    Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun

    2017-12-01

    Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P < 0.001). 3D CT was found to be markedly superior to skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Thickness and resistivity variations over the upper surface of the human skull.

    PubMed

    Law, S K

    1993-01-01

    A study of skull thickness and resistivity variations over the upper surface was made for an adult human skull. Physical measurements of thickness and qualitative analysis of photographs and CT scans of the skull were performed to determine internal and external features of the skull. Resistivity measurements were made using the four-electrode method and ranged from 1360 to 21400 Ohm-cm with an overall mean of 7560 +/- 4130 Ohm-cm. The presence of sutures was found to decrease resistivity substantially. The absence of cancellous bone was found to increase resistivity, particularly for samples from the temporal bone. An inverse relationship between skull thickness and resistivity was determined for trilayer bone (n = 12, p < 0.001). The results suggest that the skull cannot be considered a uniform layer and that local resistivity variations should be incorporated into realistic geometric and resistive head models to improve resolution in EEG. Influences of these variations on head models, methods for determining these variations, and incorporation into realistic head models, are discussed.

  14. Developmental changes in the skull morphology of common minke whales Balaenoptera acutorostrata.

    PubMed

    Nakamura, Gen; Kato, Hidehiro

    2014-10-01

    We investigated growth-related and sex-related morphological changes in the skulls of 144 North Pacific common minke whales Balaenoptera acutorostrata. Measurement was conducted at 39 points on the skull and mandible to extract individual allometric equations relating the length and zygomatic width of the skull. The results revealed no significant differences in skull morphology by sex except for width of occipital bone. The size relative to the skull of the anatomical parts involved in feeding, such as the rostrum and mandible, increased after birth. In contrast, the sensory organs and the anatomical regions involved in neurological function, such as the orbit, tympanic bullae, and foramen magnum, were fully developed at birth, and their relative size reduced over the course of development. This is the first study to investigate developmental changes in the skull morphology using more than 100 baleen whale specimens, and we believe the results of this study will contribute greatly to multiple areas of baleen whale research, including taxonomy and paleontology. © 2014 Wiley Periodicals, Inc.

  15. Facial asymmetry correction with moulded helmet therapy in infants with deformational skull base plagiocephaly.

    PubMed

    Kreutz, Matthias; Fitze, Brigitte; Blecher, Christoph; Marcello, Augello; Simon, Ruben; Cremer, Rebecca; Zeilhofer, Hans-Florian; Kunz, Christoph; Mayr, Johannes

    2018-01-01

    The recommendation issued by the American Academy of Pediatrics in the early 1990s to position infants on their back during sleep to prevent sudden infant death syndrome (SIDS) has dramatically reduced the number of deaths due to SIDS but has also markedly increased the prevalence of positional skull deformation in infants. Deformation of the base of the skull occurs predominantly in very severe deformational plagiocephaly and is accompanied by facial asymmetry, as well as an altered ear position, called ear shift. Moulded helmet therapy has become an accepted treatment strategy for infants with deformational plagiocephaly. The aim of this study was to determine whether facial asymmetry could be corrected by moulded helmet therapy. In this retrospective, single-centre study, we analysed facial asymmetry of 71 infants with severe deformational plagiocephaly with or without deformational brachycephaly who were undergoing moulded helmet therapy between 2009 and 2013. Computer-assisted, three-dimensional, soft-tissue photographic scanning was used to record the head shape before and after moulded helmet therapy. The distance between two landmarks in the midline of the face (i.e., root of the nose and nasal septum) and the right and left tragus were measured on computer-generated indirect and objective 3D photogrammetry images. A quotient was calculated between the two right- and left-sided distances to the midline. Quotients were compared before and after moulded helmet therapy. Infants without any therapy served as a control group. The median age of the infants before onset of moulded helmet therapy was 5 months (range 3-16 months). The median duration of moulded helmet therapy was 5 months (range 1-16 months). Comparison of the pre- and post-treatment quotients of the left vs. right distances measured between the tragus and root of the nose (n = 71) and nasal septum (n = 71) revealed a significant reduction of the asymmetry (Tragus-Nasion-Line Quotient: 0

  16. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  17. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance

  18. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  19. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  20. Inca - interparietal bones in neurocranium of human skulls in central India

    PubMed Central

    Marathe, RR; Yogesh, AS; Pandit, SV; Joshi, M; Trivedi, GN

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists. PMID:21799611

  1. Inca - interparietal bones in neurocranium of human skulls in central India.

    PubMed

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  2. Traumatic epistaxis: Skull base defects, intracranial complications and neurosurgical considerations.

    PubMed

    Veeravagu, Anand; Joseph, Richard; Jiang, Bowen; Lober, Robert M; Ludwig, Cassie; Torres, Roland; Singh, Harminder

    2013-01-01

    Endonasal procedures may be necessary during management of craniofacial trauma. When a skull base fracture is present, these procedures carry a high risk of violating the cranial vault and causing brain injury or central nervous system infection. A 52-year-old bicyclist was hit by an automobile at high speed. He sustained extensive maxillofacial fractures, including frontal and sphenoid sinus fractures (Fig. 1). He presented to the emergency room with brisk nasopharyngeal hemorrhage, and was intubated for airway protection. He underwent emergent stabilization of his nasal epistaxis by placement of a Foley catheter in his left nare and tamponade with the Foley balloon. A six-vessel angiogram showed no evidence of arterial dissection or laceration. Imaging revealed inadvertent insertion of the Foley catheter and deployment of the balloon in the frontal lobe (Fig. 2). The balloon was subsequently deflated and the Foley catheter removed. The patient underwent bifrontal craniotomy for dural repair of CSF leak. He also had placement of a ventriculoperitoneal shunt for development of post-traumatic hydrocephalus. Although the hospital course was a prolonged one, he did make a good neurological recovery. The authors review the literature involving violation of the intracranial compartment with medical devices in the settings of craniofacial trauma. Caution should be exercised while performing any endonasal procedure in the settings of trauma where disruption of the anterior cranial base is possible. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning

    PubMed Central

    Pierce, S E; Angielczyk, K D; Rayfield, E J

    2009-01-01

    Variation in modern crocodilian and extinct thalattosuchian crocodylomorph skull morphology is only weakly correlated with phylogeny, implying that factors other than evolutionary proximity play important roles in determining crocodile skull shape. To further explore factors potentially influencing morphological differentiation within the Thalattosuchia, we examine teleosaurid and metriorhynchid skull shape variation within a mechanical and dietary context using a combination of finite element modelling and multivariate statistics. Patterns of stress distribution through the skull were found to be very similar in teleosaurid and metriorhynchid species, with stress peaking at the posterior constriction of the snout and around the enlarged supratemporal fenestrae. However, the magnitudes of stresses differ, with metriorhynchids having generally stronger skulls. As with modern crocodilians, a strong linear relationship between skull length and skull strength exists, with short-snouted morphotypes experiencing less stress through the skull than long-snouted morphotypes under equivalent loads. Selection on snout shape related to dietary preference was found to work in orthogonal directions in the two families: diet is associated with snout length in teleosaurids and with snout width in metriorhynchids, suggesting that teleosaurid skulls were adapted for speed of attack and metriorhynchid skulls for force production. Evidence also indicates that morphological and functional differentiation of the skull occurred as a result of dietary preference, allowing closely related sympatric species to exploit a limited environment. Comparisons of the mechanical performance of the thalattosuchian skull with extant crocodilians show that teleosaurids and long-snouted metriorhynchids exhibit stress magnitudes similar to or greater than those of long-snouted modern forms, whereas short-snouted metriorhynchids display stress magnitudes converging on those found in short-snouted modern

  4. The application of finite element analysis in the skull biomechanics and dentistry.

    PubMed

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  5. Complex single step skull reconstruction in Gorham's disease - a technical report and review of the literature.

    PubMed

    Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M

    2015-03-11

    Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an

  6. Spring-assisted posterior skull expansion without osteotomies.

    PubMed

    Arnaud, Eric; Marchac, Alexandre; Jeblaoui, Yassine; Renier, Dominique; Di Rocco, Federico

    2012-09-01

    A posterior flatness of the skull vault can be observed in infants with brachycephaly. Such posterior deformation favours the development of turricephaly which is difficult to correct. To reduce the risk of such deformation, an early posterior skull remodelling has been suggested. Translambdoid springs can be used to allow for a distraction through the patent lambdoid sutures and obtain a progressive increase of the posterior skull volume. The procedure consists in a posterior scalp elevation, the patient being on a prone position. Springs made of stainless steel wire (1.5 mm in diameter) are bent in a U-type fashion, and strategically positioned across both lambdoid sutures. No drilling is usually necessary, as the lambdoid suture can be gently forced with a subperiosteal elevator in its middle and an indentation can be created with a bony rongeur on each side of the open suture to allow for a self-retention of bayonet-shaped extremity of the spring. Careful attention is addressed to the favoured prone position during the post-operative period. After a delay of 3-6 months, the springs can be removed during a second uneventful procedure, with limited incisions, usually as a preliminary step of the subsequent frontal remodelling. The concept of spring-assisted expansion across patent sutures under 6 months of age was confirmed in our experience (19 cases). Insertion of the springs allowed for immediate distraction across the suture. A posterior remodelling of the skull could be achieved with minimal morbidity allowing to delay safely a radical anterior surgery.

  7. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    PubMed Central

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  8. Does skull shape mediate the relationship between objective features and subjective impressions about the face?

    PubMed

    Marečková, Klára; Chakravarty, M Mallar; Huang, Mei; Lawrence, Claire; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2013-10-01

    In our previous work, we described facial features associated with a successful recognition of the sex of the face (Marečková et al., 2011). These features were based on landmarks placed on the surface of faces reconstructed from magnetic resonance (MR) images; their position was therefore influenced by both soft tissue (fat and muscle) and bone structure of the skull. Here, we ask whether bone structure has dissociable influences on observers' identification of the sex of the face. To answer this question, we used a novel method of studying skull morphology using MR images and explored the relationship between skull features, facial features, and sex recognition in a large sample of adolescents (n=876; including 475 adolescents from our original report). To determine whether skull features mediate the relationship between facial features and identification accuracy, we performed mediation analysis using bootstrapping. In males, skull features mediated fully the relationship between facial features and sex judgments. In females, the skull mediated this relationship only after adjusting facial features for the amount of body fat (estimated with bioimpedance). While body fat had a very slight positive influence on correct sex judgments about male faces, there was a robust negative influence of body fat on the correct sex judgments about female faces. Overall, these results suggest that craniofacial bone structure is essential for correct sex judgments about a male face. In females, body fat influences negatively the accuracy of sex judgments, and craniofacial bone structure alone cannot explain the relationship between facial features and identification of a face as female. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Efficacy and Safety of Adjuvant Proton Therapy Combined With Surgery for Chondrosarcoma of the Skull Base: A Retrospective, Population-Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuvret, Loïc, E-mail: loic.feuvret@psl.aphp.fr; Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d'Orsay; Bracci, Stefano

    Purpose: Chondrosarcoma is a rare malignant tumor of the cartilage affecting young adults. Surgery, followed by charged-particle irradiation, is considered the reference standard for the treatment of patients with grade I to II skull base chondrosarcoma. The present study was conducted to assess the effect of the quality of surgery and radiation therapy parameters on local control (LC) and overall survival (OS). Methods and Materials: From 1996 to 2013, 159 patients (median age 40 years, range 12-83) were treated with either protons alone or a combination of protons and photons. The median total dose delivered was 70.2 Gy (relative biologic effectiveness [RBE];more » range 67-71). Debulking and biopsy were performed in 133 and 13 patients, respectively. Results: With a median follow-up of 77 months (range 2-214), 5 tumors relapsed based on the initial gross tumor volume. The 5- and 10-year LC rates were 96.4% and 93.5%, respectively, and the 5- and 10-year OS rates were 94.9% and 87%, respectively. A total of 16 patients died (13 of intercurrent disease, 3 of disease progression). On multivariate analysis, age <40 years and primary disease status were independent favorable prognostic factors for progression-free survival and OS, and local tumor control was an independent favorable predictor of OS. In contrast, the extent of surgery, dosimetric parameters, and adjacent organs at risk were not prognostic factors for LC or OS. Conclusions: Systematic high-dose postoperative proton therapy for skull base chondrosarcoma can achieve a high LC rate with a low toxicity profile. Maximal safe surgery, followed by high-dose conformal proton therapy, is therefore recommended.« less

  10. Descriptive Anatomy and Three-Dimensional Reconstruction of the Skull of the Early Tetrapod Acanthostega gunnari Jarvik, 1952

    PubMed Central

    Porro, Laura B.; Rayfield, Emily J.; Clack, Jennifer A.

    2015-01-01

    The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals. PMID:25760343

  11. [Stab injuries of the skull and brain].

    PubMed

    Ritter, C; Adebahr, G

    1986-01-01

    A few cases of skull and brain stab wounds are described and the clinicodiagnostic problems discussed. The injuries often remain unrecognized because the external wound often appears harmless, there are no neurological symptoms, or the clinical picture is interpreted as drunkenness, blunt injury or as another disease. The importance of a precise physical examination of the whole patient's head is pointed out. The refined methods used in modern radiodiagnostics of the skull are the most helpful in correctly recognizing these injuries; there are reports of patients with severe injuries who recovered when the correct diagnosis had been established.

  12. Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull

    NASA Astrophysics Data System (ADS)

    Chang, You; Kim, Namkeun; Stenfelt, Stefan

    2015-12-01

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  13. Radiation-Induced Middle Ear and Mastoid Opacification in Skull Base Tumors Treated With Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Gary V.; Ahmed, Salmaan; Allen, Pamela

    Purpose: To assess the incidence of middle ear (ME) pathology in patients treated with radiotherapy (RT) for skull base tumors. Methods and Materials: A retrospective analysis of 61 patients treated with RT between 2003 and 2008 for skull base tumors was conducted. Clinical outcomes and demographics were reviewed. Dose-volume histogram analysis was performed on the eustachian canal (EC), ME, mastoid air cells, vestibular apparatus, cochlea, internal auditory canal, lateral and posterior nasopharynx, and temporal lobes to relate doses to symptoms and radiographic change. Otomastoid opacification was rated 0 (none), 1 (mild), 2 (moderate), and 3 (severe) by a neuroradiologist blindedmore » to clinical outcomes and doses. Results: The median prescribed dose was 50.4 Gy (range, 14-74 Gy). The ME mean dose was 14 Gy and 34 Gy for Grade 0-1 and 2-3 opacification, respectively (p < 0.0001). The mean mastoid dose was 10 Gy and 26 Gy for Grade 0-1 and 2-3, respectively (p < 0.0001). The mean EC dose was 17 Gy and 32 Gy for Grade 0-1 and 2-3, respectively (p = 0.0001). Otomastoid opacification resolved in 17 of 40 patients (42.5%), at a mean of 17 months after RT (range, 2-45 months). Otomastoid opacification persisted in 23 of 40 patients (57.5%), with a mean follow-up of 23 months (range, 2-55 months). Multivariate analysis showed that mastoid dose >30 Gy (odds ratio = 28.0, p < 0.001) and posterior nasopharynx dose of >30 Gy (odds ratio = 4.9, p = 0.009) were associated with Grade 2-3 effusions, whereas other factors including dose to EC and ME were not significant. Conclusions: A mean RT dose >30 Gy to the mastoid air cells or posterior nasopharynx is associated with increased risk of moderate to severe otomastoid opacification, which persisted in more than half of patients at 2-year follow-up.« less

  14. Skull shapes of the Lissodelphininae: radiation, adaptation and asymmetry.

    PubMed

    Galatius, Anders; Goodall, R Natalie P

    2016-06-01

    Within Delphinidae, the sub-family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub-family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3-dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C

  15. Effect of small and large animal skull bone on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Xu, Qiuyun; Volinski, Bridget; Hariri, Ali; Fatima, Afreen; Nasiriavanaki, Mohammadreza

    2017-03-01

    Photoacoustic imaging (PAI) has proved to be a promising non-invasive technique for diagnosis, prognosis and treatment monitoring of neurological disorders in small and large animals. Skull bone effects both light illumination and ultrasound propagation. Hence, the PA signal is largely affected. This study aims to quantify and compare the attenuation of PA signal due to the skull obstacle in the light illumination path, in the ultrasound propagation path, or in both. The effect of mouse, rat, and mesocephalic dog skull bones, ex-vivo, is quantitatively studied.

  16. Automated Surgical Approach Planning for Complex Skull Base Targets: Development and Validation of a Cost Function and Semantic At-las.

    PubMed

    Aghdasi, Nava; Whipple, Mark; Humphreys, Ian M; Moe, Kris S; Hannaford, Blake; Bly, Randall A

    2018-06-01

    Successful multidisciplinary treatment of skull base pathology requires precise preoperative planning. Current surgical approach (pathway) selection for these complex procedures depends on an individual surgeon's experiences and background training. Because of anatomical variation in both normal tissue and pathology (eg, tumor), a successful surgical pathway used on one patient is not necessarily the best approach on another patient. The question is how to define and obtain optimized patient-specific surgical approach pathways? In this article, we demonstrate that the surgeon's knowledge and decision making in preoperative planning can be modeled by a multiobjective cost function in a retrospective analysis of actual complex skull base cases. Two different approaches- weighted-sum approach and Pareto optimality-were used with a defined cost function to derive optimized surgical pathways based on preoperative computed tomography (CT) scans and manually designated pathology. With the first method, surgeon's preferences were input as a set of weights for each objective before the search. In the second approach, the surgeon's preferences were used to select a surgical pathway from the computed Pareto optimal set. Using preoperative CT and magnetic resonance imaging, the patient-specific surgical pathways derived by these methods were similar (85% agreement) to the actual approaches performed on patients. In one case where the actual surgical approach was different, revision surgery was required and was performed utilizing the computationally derived approach pathway.

  17. Skull deformations in craniosynostosis and endocrine disorders: morphological and tomographic analysis of the skull from the crypt of the Silesian Piasts in Brzeg (16th-17th century), Poland.

    PubMed

    Kozłowski, T; Cybulska, M; Błaszczyk, B; Krajewska, M; Jeśman, C

    2014-10-01

    of morphological and tomographic (CT) studies of the skull that was found in the crypt of the Silesian Piasts in the St. Jadwiga church in Brzeg (Silesia, Poland) are presented and discussed here. The established date of burial of probably a 20-30 years old male was 16th-17th century. The analyzed skull showed premature obliteration of the major skull sutures. It resulted in the braincase deformation, similar to the forms found in oxycephaly and microcephaly. Tomographic analysis revealed gross pathology. Signs of increased intracranial pressure, basilar invagination and hypoplasia of the occipital bone were observed. Those results suggested the occurrence of the very rare Arnold-Chiari syndrome. Lesions found in the sella turcica indicated the development of pituitary macroadenoma, which resulted in the occurrence of discreet features of acromegaly in the facial bones. The studied skull was characterized by a significantly smaller size of the neurocranium (horizontal circumference 471 mm, cranial capacity ∼ 1080 ml) and strongly expressed brachycephaly (cranial index=86.3), while its height remained within the range for non-deformed skulls. A narrow face, high eye-sockets and prognathism were also observed. Signs of alveolar process hypertrophy with rotation and displacement of the teeth were noted. The skull showed significant morphological differences compared to both normal and other pathological skulls such as those with pituitary gigantism, scaphocephaly and microcephaly. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Formation and Rupture of the Internal Carotid Artery Aneurysm after Multiple Courses of Intensity-Modulated Radiation Therapy for Management of the Skull Base Ewing Sarcoma/PNET: Case Report.

    PubMed

    Tamura, Manabu; Kogo, Kasei; Masuo, Osamu; Oura, Yoshinori; Matsumoto, Hiroyuki; Fujita, Koji; Nakao, Naoyuki; Uematsu, Yuji; Itakura, Toru; Chernov, Mikhail; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi

    2013-12-01

    Background Aneurysm formation after stereotactic irradiation of skull base tumors is rare. The formation and rupture of an internal carotid artery (ICA) aneurysm in a patient with skull base Ewing sarcoma/primitive neuroectodermal tumor (PNET), who underwent surgery followed by multiple courses of intensity-modulated radiation therapy (IMRT) and chemotherapy, is described. Case Description A 25-year-old man presented with a sinonasal tumor with intraorbital and intracranial growth. At that time cerebral angiography did not reveal any vascular abnormalities. The lesion was resected subtotally. Histopathologic diagnosis was Ewing sarcoma/PNET. The patient underwent multiple courses of chemotherapy and three courses of IMRT at 3, 28, and 42 months after initial surgery. The total biologically effective dose delivered to the right ICA was 220.2 Gy. Seven months after the third IMRT, the patient experienced profound nasal bleeding that resulted in hypovolemic shock. Angiography revealed a ruptured right C4-C5 aneurysm and irregular stenotic changes of the ICA. Lifesaving endovascular trapping of the right ICA was done. The patient recovered well after surgery but died due to tumor recurrence 6 months later. Conclusion Excessive irradiation of the ICA may occasionally result in aneurysm formation, which should be borne in mind during stereotactic irradiation of malignant skull base tumors.

  19. Trepanation and enlarged parietal foramen on skulls from the Loyalty Islands (Melanesia).

    PubMed

    Vasilyev, Sergey V; Sviridov, Alexey A

    2017-06-01

    The goal of this study is a comprehensive examination of openings discovered on two skulls in the collection of skeletal remains from the Loyalty Islands (Melanesia). The skull No. 1524 displayed an evidence of successful trepanation, and the skull No. 7985 revealed openings that were reminiscent of a trepanation, however, we are inclined to believe that in the latter case we are dealing with a rare genetic anomaly - enlarged parietal foramen.

  20. Langerhans cell histiocytosis of skull: a retrospective study of 18 cases.

    PubMed

    Zhang, Xiang-Heng; Zhang, Ji; Chen, Zheng-He; Sai, Ke; Chen, Yin-Sheng; Wang, Jian; Ke, Chao; Guo, Chen-Chen; Chen, Zhong-Ping; Mou, Yong-Gao

    2017-04-01

    The present study presents 18 cases of Chinese patients harboring a Langerhans cell histiocytosis (LCH) of the skull. Eighteen consecutive patients were diagnosed as LCH of the skull and confirmed pathologically between March 2002 and February 2014. In the present study, the patients of LCH without skull involvement were excluded. According to disease extent at diagnosis, the 18 LCH patients with skull involvement were divided into three groups: (I) unifocal-monosystem group, including ten cases with solitary skull lesion; (II) multifocal-monosystem group, including two cases with multiple bone lesions and no extra-skeletal involvement; (III) multisystem group, including six cases with LCH lesions involving both skeletal and extra-skeletal system. In unifocal-monosystem group, excision of the skull lesion was performed in eight of ten cases, a low dosage of local radiotherapy and a purposeful observation was accept by the remaining two cases of this group after biopsy respectively. In multifocal-monosystem group, both of the two cases were received chemotherapy. In multi-system group, all the six cases were managed with systemic chemotherapy, after their diagnoses of LCH were confirmed. The mean age at the time of diagnosis was 9.4 years. There was a male predominance in this disease male/female ratio was 3.5:1. In our cases, a skull mass with or without tenderness was the most common chief complaint (13 cases, 72.2%), and frontal bone was the most frequent affected locations of skull (6 cases, 33.3%). In unifocal-monosystem group, nine of ten remained free from LCH, the remain one lesion recurred 22 months after his surgical excision. In multifocal-monosystem group, a complete response (CR) was obtained in one of them, and a stable disease (SD) of multiple osseous lesions was obtained in another one. In the multi-system group, a CR in four cases and a partial response (PR) in one case were obtained, and a progressive disease (PD) was observed in the remaining one

  1. Reflections on the mechanical structure of the base of the skull and on the face. Part 1: Classical theories, observed structures.

    PubMed

    Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y

    1989-01-01

    Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.

  2. Dietary hardness, loading behavior, and the evolution of skull form in bats.

    PubMed

    Santana, Sharlene E; Grosse, Ian R; Dumont, Elizabeth R

    2012-08-01

    The morphology and biomechanics of the vertebrate skull reflect the physical properties of diet and behaviors used in food acquisition and processing. We use phyllostomid bats, the most diverse mammalian dietary radiation, to investigate if and how changes in dietary hardness and loading behaviors during feeding shaped the evolution of skull morphology and biomechanics. When selective regimes of food hardness are modeled, we found that species consuming harder foods have evolved skull shapes that allow for more efficient bite force production. These species have shorter skulls and a greater reliance on the temporalis muscle, both of which contribute to a higher mechanical advantage at an intermediate gape angle. The evolution of cranial morphology and biomechanics also appears to be related to loading behaviors. Evolutionary changes in skull shape and the relative role of the temporalis and masseter in generating bite force are correlated with changes in the use of torsional and bending loading behaviors. Functional equivalence appears to have evolved independently among three lineages of species that feed on liquids and are not obviously morphologically similar. These trends in cranial morphology and biomechanics provide insights into behavioral and ecological factors shaping the skull of a trophically diverse clade of mammals. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. On the integral use of foundational concepts in verifying validity during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T

    2017-09-01

    Often cited reliability test on video superimposition method integrated scaling face-images in relation to skull-images, tragus-auditory meatus relationship in addition to exocanthion-Whitnall's tubercle relationship when orientating the skull-image and wipe mode imaging in addition to mix mode imaging when obtaining skull-face image overlay and evaluating the goodness of match. However, a report that found higher false positive matches in computer assisted superimposition method transited from the above foundational concepts and relied on images of unspecified sizes that are lesser than 'life-size', frontal plane landmarks in the skull- and face- images alone for orientating the skull-image and mix images alone for evaluating the goodness of match. Recently, arguing the use of 'life-size' images as 'archaic', the authors who tested the reliability in the computer assisted superimposition method have denied any method transition. This article describes that the use of images of unspecified sizes at lesser than 'life-size' eliminates the only possibility to quantify parameters during superimposition which alone enables dynamic skull orientation when overlaying a skull-image with a face-image in an anatomically acceptable orientation. The dynamic skull orientation process mandatorily requires aligning the tragus in the 2D face-image with the auditory meatus in the 3D skull-image for anatomically orientating the skull-image in relation to the posture in the face-image, a step not mentioned by the authors describing the computer assisted superimposition method. Furthermore, mere reliance on mix type images during image overlay eliminates the possibility to assess the relationship between the leading edges of the skull- and face-image outlines as also specific area match among the corresponding craniofacial organs during superimposition. Indicating the possibility of increased false positive matches as a consequence of the above method transitions, the need for testing

  4. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    PubMed

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  5. Contemporary skull development - palatal angle analysis.

    PubMed

    Dostalova, T; Eliasova, H; Gabcova, D; Feberova, J; Kaminek, M

    2015-01-01

    The palatal angle is an important angle of the craniofacial complex. It is significant for the diagnosis of craniofacial disorders mainly for nasopharyngeal soft-tissue patterns.Background The dentists and otorhinolaryngologists use this relationship to establish proper treatment mechanics and evaluate facial profile. The aims of this study were to provide comparative cephalometric analyses of historical and contemporary skulls. A total of 190 cephalograms of 2 groups of subjects were evaluated. Dolphin Imaging 11.0 - Cephalometric Tracing Analysis was used for the analysis. Unpaired two-tailed t-test assuming equality of variances was used for all variables (at the significance level p = 0.0001). The -modern forensic skulls had larger palatal angle at average value of 8.60 degrees ± 4.35, than that of archeological ones, the average value of which was 6.50 degrees ± 3.92. The difference was found significant. Unpaired two-tailed t-test assuming equality of variances showed that historical and contemporary skulls had statistically significant results. The difference was -2.09 with standard error of 0.60 (95% confidence interval from -3.29 to -0.89). Two-tailed probability attained value of P was less than 0.0001. The difference between both groups was found significant. An increase in the palatal angle can be directly connected with anterior rotation of upper jaw(Tab. 2, Fig. 5, Ref. 19).

  6. Use of Tranexamic Acid Is Associated with Reduced Blood Product Transfusion in Complex Skull Base Neurosurgical Procedures: A Retrospective Cohort Study.

    PubMed

    Mebel, Dmitry; Akagami, Ryojo; Flexman, Alana M

    2016-02-01

    Compared with other procedures, complex skull base neurosurgery has the potential for increased intraoperative blood loss yet coagulation near eloquent cranial structures should be minimized. The safety and efficacy of the antifibrinolytic, tranexamic acid in elective neurosurgical procedures is not known. Our primary objective was to determine the relationship between the use of tranexamic acid and transfusion at our institution. Our secondary objective was to determine the incidence of adverse events associated with the use of tranexamic acid. In this retrospective cohort study, we included all patients who underwent complex skull base neurosurgical procedures at our institution between 2001 and 2013. Tranexamic acid was introduced during these procedures in 2006. Patient and surgical variables, transfusion data, and adverse events in the perioperative period were abstracted from the medical record. The rates of transfusion and adverse events were compared between patients who did and did not receive tranexamic acid. Multivariate regression was used to identify independent predictors of perioperative transfusion. We compared 245 patients who received tranexamic acid with 274 patients who did not receive the drug during the study period. The 2 groups were similar, with the exception that patients who received tranexamic acid had larger tumors (mean, 3.5 vs 2.9 cm; P < 0.001) and longer procedures (mean, 7.2 vs 6.2 hours, P < 0.001). The rate of perioperative transfusion in patients who received tranexamic acid was lower (7% vs 13%, P = 0.04). After adjusting for preoperative hemoglobin, tumor diameter, and surgical procedure category, the use of tranexamic acid was independently predictive of perioperative transfusion (adjusted odds ratio, 0.32; 95% confidence interval, 0.15-0.65, P = 0.002). The rates of thromboembolic events and seizure were similar between the 2 groups. Our results demonstrate that tranexamic acid use is associated with reduced transfusion

  7. Traumas of the middle skull base with TMJ involvement. Case report.

    PubMed

    Bottini, D J; Gnoni, G; De Angelis, B; Savo, P; Trimarco, A; Cervelli, G; Cervelli, V

    2006-03-01

    The authors report their experience with temporomandibular joint (TMJ) traumas involving breakage of the roof of the glenoid cavity, an infrequent event that occurs in those cases in which, as a result of the condylar neck not fracturing, the traumatic energy is transmitted to the middle skull base. As the literature contains no valid series for establishing standardized protocols for the treatment of these fractures, we propose our own orthopedic-functional approach. The patient observed by us had suffered a cranio-facial trauma and presented the classical symptoms and signs of TMJ traumas and complete bilateral Bell paralysis. He was subjected to a CAT scan and then to 2-stage treatment consisting of functional rest with liquid diet followed by physiotherapy. An almost total recovery in TMJ function was observed after 1 month. At 1-year follow-up the facial paralysis had resolved completely. On the basis of our experience, breakages of the glenoid cavity can be compared, in terms of treatment procedure, to intracapsular fractures of the TMJ with surgery confined to cases of ankylosis sequelae. To avoid the onset of ankylosis careful control of clinical, functional and radiological follow-up is required.

  8. Skull metastases detecting on arterial spin labeling perfusion: Three case reports and review of literature.

    PubMed

    Ryu, Kyeong H; Baek, Hye J; Cho, Soo B; Moon, Jin I; Choi, Bo H; Park, Sung E; An, Hyo J

    2017-11-01

    Detection of skull metastases is as important as detection of brain metastases because early diagnosis of skull metastases is a crucial determinant of treatment. However, the skull can be a blind spot for assessing metastases on routine brain magnetic resonance imaging (MRI). To the best of our knowledge, the finding of skull metastases on arterial spin labeling (ASL) has not been reported. ASL is a specific MRI sequence for evaluating cerebral blood flow using magnetized endogenous inflow blood. This study uses ASL as a routine sequence of brain MRI protocol and describes 3 clinical cases of skull metastases identified by ASL. The study also highlights the clinical usefulness of ASL in detecting skull metastases. Three patients with known malignancy underwent brain MRI to evaluate for brain metastases. All of the skull metastases were conspicuously depicted on routine ASL images, and the lesions correlated well with other MRI sequences. Three patients received palliative chemotherapy. Three patients are being followed up regularly at the outpatient department. The routine use of ASL may help to detect lesions in blind spots, such as skull metastases, and to facilitate the evaluation of intracranial pathologies without the use of contrast materials in exceptional situations.

  9. Gamma knife radiosurgery for skull-base meningiomas.

    PubMed

    Takanashi, Masami; Fukuoka, Seiji; Hojyo, Atsufumi; Sasaki, Takehiko; Nakagawara, Jyoji; Nakamura, Hirohiko

    2009-01-01

    The primary purpose of this study was to evaluate the efficacy of gamma knife radiosurgery (GKRS) when used as a treatment modality for cavernous sinus or posterior fossa skull-base meningiomas (SBMs), with particular attention given to whether or not intentional partial resection followed by GKRS constitutes an appropriate combination treatment method for larger SBMs. Of the 101 SBM patients in this series, 38 were classified as having cavernous sinus meningiomas (CSMs), and 63 presented with posterior fossa meningiomas (PFMs). The patients with no history of prior surgery (19 CSMs, 57 PFMs) were treated according to a set protocol. Small to medium-sized SBMs were treated by GKRS only. To minimize the risk of functional deficits, larger tumors were treated with the combination of intentional partial resection followed by GKRS. Residual or recurrent tumors in patients who had undergone extirpations prior to GKRS (19 CSMs, 6 PFMs) are not eligible for this treatment method (due to the surgeries not being performed as part of a combination strategy designed to preserve neurological function as the first priority). The mean follow-up period was 51.9 months (range, 6-144 months). The overall tumor control rates were 95.5% in CSMs and 98.4% in PFMs. Nearly all tumors treated with GKRS alone were well controlled and the patients had no deficits. Furthermore, none of the patients who had undergone prior surgeries experienced new neurological deficits after GKRS. While new neurological deficits appeared far less often in those receiving the combination of partial resection with subsequent GKRS, extirpations tended to be associated with not only a higher incidence of new deficits but also a significant increase in the worsening of already-existing deficits. Our results indicate that GKRS is a safe and effective primary treatment for SBMs with small to moderate tumor volumes. We also found that larger SBMs compressing the optic pathway or brain stem can be effectively

  10. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  11. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  12. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  13. The remarkable convergence of skull shape in crocodilians and toothed whales

    PubMed Central

    Evans, Alistair R.; Fitzgerald, Erich M. G.; Adams, Justin W.; Clausen, Philip D.; McHenry, Colin R.

    2017-01-01

    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey. PMID:28275142

  14. The remarkable convergence of skull shape in crocodilians and toothed whales.

    PubMed

    McCurry, Matthew R; Evans, Alistair R; Fitzgerald, Erich M G; Adams, Justin W; Clausen, Philip D; McHenry, Colin R

    2017-03-15

    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey. © 2017 The Author(s).

  15. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes.

    PubMed

    Sahgal, Arjun; Chan, Michael W; Atenafu, Eshetu G; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J

    2015-06-01

    We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3-90 mo) in the chordoma cohort, and 67 months (range, 15-125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34-125). There were 8 radiation-induced late effects-the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Leg length, skull circumference, and the prevalence of dementia in low and middle income countries; a 10/66 population-based cross sectional survey

    PubMed Central

    Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Llibre Rodriguez, Juan J.; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D.; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E.; Ferri, Cleusa P.; Stewart, Robert; Gaona, Ciro; Jotheeswaran, AT.; Senthil Kumar, P; Li, Shuran; Llibre Guerra, Juan C.; Rodriguez, Diana; Rodriguez, Guillermina

    2017-01-01

    Background Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. Methods One phase cross-sectional surveys of all over 65 year old residents (n=14,960) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 Dementia, controlling for age, gender, education and family history of dementia. Results The pooled meta-analysed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Conclusions Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration. PMID:20701817

  17. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    PubMed

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  18. Digital preparation and osteology of the skull of Lesothosaurus diagnosticus (Ornithischia: Dinosauria).

    PubMed

    Porro, Laura B; Witmer, Lawrence M; Barrett, Paul M

    2015-01-01

    Several skulls of the ornithischian dinosaur Lesothosaurus diagnosticus (Lower Jurassic, southern Africa) are known, but all are either incomplete, deformed, or incompletely prepared. This has hampered attempts to provide a comprehensive description of skull osteology in this crucial early dinosaurian taxon. Using visualization software, computed tomographic scans of the Lesothosaurus syntypes were digitally segmented to remove matrix, and identify and separate individual cranial and mandibular bones, revealing new anatomical details such as sutural morphology and the presence of several previously undescribed elements. Together with visual inspection of exposed skull bones, these CT data enable a complete description of skull anatomy in this taxon. Comparisons with our new data suggest that two specimens previously identified as Lesothosaurus sp. (MNHN LES 17 and MNHN LES 18) probably represent additional individuals of Lesothosaurus diagnosticus.

  19. Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.

    PubMed

    Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E

    2014-10-01

    Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P < .0001), whereas the shape of the skull was significantly rounder compared to controls. Temporal muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.

  20. Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases.

    PubMed

    Topsakal, Cahide; Al-Mefty, Ossama; Bulsara, Ketan R; Williford, Veronica S

    2008-01-01

    The fundamental goal of skull base surgery is tumor removal with preservation of neurological function. Injury to the lower cranial nerves (LCN; CN 9-12) profoundly affects a patient's quality of life. Although intraoperative cranial nerve monitoring (IOM) is widely practiced for other cranial nerves, literature addressing the LCN is scant. We examined the utility of IOM of the LCN in a large patient series. One hundred twelve patients underwent 123 skull base operations with IOM between January 1994 to December 1999. The vagus nerve (n=37), spinal accessory nerve (n=118), and the hypoglossal nerve (n=83) were monitored intraoperatively. Electromyography (EMG) and compound muscle action potentials (CMAP) were recorded from the relevant muscles after electrical stimulation. This data was evaluated retrospectively. Patients who underwent IOM tended to have larger tumors with more intricate involvement of the lower cranial nerves. Worsening of preoperative lower cranial nerve function was seen in the monitored and unmonitored groups. With the use of IOM in the high risk group, LCN injury was reduced to a rate equivalent to that of the lower risk group (p>0.05). The immediate feedback obtained with IOM may prevent injury to the LCN due to surgical manipulation. It can also help identify the course of a nerve in patients with severely distorted anatomy. These factors may facilitate gross total tumor resection with cranial nerve preservation. The incidence of high false positive and negative CMAP and the variability in CMAP amplitude and threshold can vary depending on individual and technical factors.

  1. A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors

    PubMed Central

    Graffeo, Christopher S.; Dietrich, August R.; Grobelny, Bartosz; Zhang, Meng; Goldberg, Judith D.; Golfinos, John G.; Lebowitz, Richard; Kleinberg, David; Placantonakis, Dimitris G.

    2014-01-01

    Endoscopic endonasal surgery has been established as the safest approach to pituitary tumors, yet its role in other common skull base lesions has not been established. To answer this question, we carried out a systematic review of reported series of open and endoscopic endonasal approaches to four major skull base tumors: olfactory groove meningiomas (OGM), tuberculum sellae meningiomas (TSM), craniopharyngiomas (CRA), and clival chordomas (CHO). Data from 162 studies containing 5,701 patients were combined and compared for differences in perioperative mortality, gross total resection (GTR), cerebrospinal fluid (CSF) leak, neurological morbidity, post-operative visual function, post-operative anosmia, post-operative diabetes insipidus (DI), and post-operative obesity/hyperphagia. Weighted average rates for each outcome were calculated using relative study size. Our findings indicate similar rates of GTR and perioperative mortality between open and endoscopic approaches for all tumor types. CSF leak was increased after endoscopic surgery. Visual function symptoms were more likely to improve after endoscopic surgery for TSM, CRA, and CHO. Post-operative DI and obesity/hyperphagia were significantly increased after open resection in CRA. Recurrence rates per 1,000 patient-years of follow-up were higher in endoscopy for OGM, TSM, and CHO. Trends for open and endoscopic surgery suggested modest improvement in all outcomes over time. Our observations suggest that endonasal endoscopy is a safe alternative to craniotomy and may be preferred for certain tumor types. However, endoscopic surgery is associated with higher rates of CSF leak, and possibly increased recurrence rates. Prospective study with long-term follow-up is required to verify these preliminary observations. PMID:24014055

  2. A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors.

    PubMed

    Graffeo, Christopher S; Dietrich, August R; Grobelny, Bartosz; Zhang, Meng; Goldberg, Judith D; Golfinos, John G; Lebowitz, Richard; Kleinberg, David; Placantonakis, Dimitris G

    2014-08-01

    Endoscopic endonasal surgery has been established as the safest approach to pituitary tumors, yet its role in other common skull base lesions has not been established. To answer this question, we carried out a systematic review of reported series of open and endoscopic endonasal approaches to four major skull base tumors: olfactory groove meningiomas (OGM), tuberculum sellae meningiomas (TSM), craniopharyngiomas (CRA), and clival chordomas (CHO). Data from 162 studies containing 5,701 patients were combined and compared for differences in perioperative mortality, gross total resection (GTR), cerebrospinal fluid (CSF) leak, neurological morbidity, post-operative visual function, post-operative anosmia, post-operative diabetes insipidus (DI), and post-operative obesity/hyperphagia. Weighted average rates for each outcome were calculated using relative study size. Our findings indicate similar rates of GTR and perioperative mortality between open and endoscopic approaches for all tumor types. CSF leak was increased after endoscopic surgery. Visual function symptoms were more likely to improve after endoscopic surgery for TSM, CRA, and CHO. Post-operative DI and obesity/hyperphagia were significantly increased after open resection in CRA. Recurrence rates per 1,000 patient-years of follow-up were higher in endoscopy for OGM, TSM, and CHO. Trends for open and endoscopic surgery suggested modest improvement in all outcomes over time. Our observations suggest that endonasal endoscopy is a safe alternative to craniotomy and may be preferred for certain tumor types. However, endoscopic surgery is associated with higher rates of CSF leak, and possibly increased recurrence rates. Prospective study with long-term follow-up is required to verify these preliminary observations.

  3. Congenital intraosseous cavernous hemangioma of the skull: an unusual case.

    PubMed

    Rumana, Makhdoomi; Khursheed, Nayil; Farhat, Mustafa; Othman, Salim; Masood, Laharwal

    2013-01-01

    Intraosseous hemangiomas are benign vascular malformations mostly seen in the spine. They rarely occur in the skull. The usual age-group involved is the 2nd to 4th decades, and females outnumber males. We hereby report a rare case of congenital intraosseous cavernous hemangioma of the skull bone in a male infant. The patient underwent total excision of the lesion. © 2014 S. Karger AG, Basel.

  4. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    PubMed

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    PubMed

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the

  6. Leonardo da Vinci's "A skull sectioned": skull and dental formula revisited.

    PubMed

    Gerrits, Peter O; Veening, Jan G

    2013-05-01

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned paranasal sinuses and ductus nasolacrimalis. A dissected lateral wall of the maxilla is also present. Furthermore, at the level of the foramen mentale, the drawing displays compact and spongious bony components, together with a cross-section through the foramen mentale and its connection with the canalis mandibulae. Leonardo was the first to describe a correct dental formula (6424) and made efforts to place this formula above the related dental elements. However, taking into account, the morphological features of the individual elements of the maxilla, it can be suggested that Leonardo sketched a "peculiar dental element" on the position of the right maxillary premolar in the dental sketch. The fact that the author did not make any comment on that special element is remarkable. Leonardo could have had sufficient knowledge of the precise morphology of maxillary and mandibular premolars, since the author depicted these elements in the dissected skull. The fact that the author also had access to premolars in situ corroborates our suggestion that "something went wrong" in this part of the drawing. The present study shows that historical anatomical drawings are very useful for interactive learning of detailed anatomy for students in medicine and dentistry. Copyright © 2012 Wiley Periodicals, Inc.

  7. Vestibular evoked myogenic potentials in response to lateral skull taps are dependent on two different mechanisms.

    PubMed

    Brantberg, Krister; Westin, Magnus; Löfqvist, Lennart; Verrecchia, Luca; Tribukait, Arne

    2009-05-01

    To explore the mechanisms for skull tap induced vestibular evoked myogenic potentials (VEMP). The muscular responses were recorded over both sternocleidomastoid (SCM) muscles using skin electrodes. A skull tapper which provided a constant stimulus intensity was used to test cervical vestibular evoked myogenic potentials (VEMP) in response to lateral skull taps in healthy subjects (n=10) and in patients with severe unilateral loss of vestibular function (n=10). Skull taps applied approximately 2 cm above the outer ear canal caused highly reproducible VEMP. There were differences in VEMP in both normals and patients depending on side of tapping. In normals, there was a positive-negative ("normal") VEMP on the side contra-lateral to the skull tapping, but no significant VEMP ipsi-laterally. In patients, skull taps above the lesioned ear caused a contra-lateral positive-negative VEMP (as it did in the normals), in addition there was an ipsi-lateral negative-positive ("inverted") VEMP. When skull taps were presented above the healthy ear there was only a small contra-lateral positive-negative VEMP but, similar to the normals, no VEMP ipsi-laterally. The present data, in conjunction with earlier findings, support a theory that skull-tap VEMP responses are mediated by two different mechanisms. It is suggested that skull tapping causes both a purely ipsi-lateral stimulus side independent SCM response and a bilateral and of opposite polarity SCM response that is stimulus side dependent. Possibly, the skull tap induced VEMP responses are the sum of a stimulation of two species of vestibular receptors, one excited by vibration (which is rather stimulus site independent) and one excited by translation (which is more stimulus site dependent). Skull-tap VEMP probably have two different mechanisms. Separation of the two components might reveal the status of different labyrinthine functions.

  8. Evaluation of morphological changes in the adult skull with age and sex.

    PubMed

    Urban, Jillian E; Weaver, Ashley A; Lillie, Elizabeth M; Maldjian, Joseph A; Whitlow, Christopher T; Stitzel, Joel D

    2016-12-01

    The morphology of the brain and skull are important in the evaluation of the aging human; however, little is known about how the skull may change with age. The objective of this study was to evaluate the morphological changes of the adult skull using three-dimensional geometric morphometric analysis of thousands of landmarks with the focus on anatomic regions that may be correlated with brain atrophy and head injury. Computed tomography data were collected between ages 20 and 100. Each scan was segmented using thresholding techniques. An atlas image of a 50th percentile skull was registered to each subject scan by computing a series of rigid, affine, and non-linear transformations between atlas space and subject space. Landmarks on the atlas skull were transformed to each subject and partitioned into the inner and outer cranial vault and the cranial fossae. A generalized Procrustes analysis was completed for the landmark sets. The coordinate locations describing the shape of each region were regressed with age to generate a model predicting the landmark location with age. Permutation testing was performed to assess significant changes with age. For the males, all anatomic regions reveal significant changes in shape with age except for the posterior cranial fossa. For the females, only the middle cranial fossa and anterior cranial fossa were found to change significantly in shape. Results of this study are important for understanding the adult skull and how shape changes may pertain to brain atrophy, aging, and injury. © 2014 Anatomical Society.

  9. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    PubMed

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  10. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes

    PubMed Central

    Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.

    2017-01-01

    The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of

  11. Creating Physical 3D Stereolithograph Models of Brain and Skull

    PubMed Central

    Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.

    2007-01-01

    The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879

  12. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions.

    PubMed

    Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker

    2014-06-25

    18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions

  13. A modified transcondylar screw to accommodate anatomical skull base variations.

    PubMed

    Ghaly, R F; Lissounov, A

    2017-01-01

    Occipitocervical instability may be attributed to congenital, bony/ligamentous abnormalities, trauma, neoplasm, degenerative bone disease, and failed atlantoaxial fixation. Indications for occipitocervical fixation include the prevention of disabling pain, cranial nerve dysfunction, paralysis, or even sudden death. The screw trajectory for the modified transcondylar screw (mTCS) is optimally planned utilizing a three-dimensional skull reconstructed image. The modified mTCS technique is helpful where there is a loss of bone, such as after prior suboccipital craniotomy and/or an inadequate occipital condyle. The new proposed technique is similar to the classical transcondylar screw placement but follows a deeper course along the bony lip of foramen magnum toward clivus from a dorsolateral approach. The modified mTCS technique allows for direct visualization and, therefore, helps to avoid damage to the hypoglossal nerve and lateral aspect of brain stem.

  14. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    DTIC Science & Technology

    1979-08-01

    23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3

  15. A Comparative Taphonomic Analysis of 24 Trophy Skulls from Modern Forensic Cases.

    PubMed

    Yucha, Josephine M; Pokines, James T; Bartelink, Eric J

    2017-09-01

    Cranial remains retained from fallen enemies are commonly referred to as "trophy skulls," and many such crania were acquired as souvenirs by U.S. servicemembers during WWII and the Vietnam conflict. These remains increasingly have become the subject of forensic anthropological analysis as their possessors, typically veterans or their relatives, try to discard or repatriate them. The present research uses a qualitative analytical approach to review 24 cases of reported trophy skulls (14 previously unpublished cases and 10 from the literature) to determine which perimortem and postmortem characteristics are most useful for generating a taphonomic profile. Overall, the taphonomic signature of trophy remains includes traits relating to acquisition and preparation, ornamental display, and subsequent curation. Contextual evidence and the biological profile also are considered when determining the possible origin of human cranial remains as a trophy skull. Thorough taphonomic analysis will aid in identifying these types of remains as trophy skulls. © 2017 American Academy of Forensic Sciences.

  16. Healed Depressed Parasagittal Skull Fractures-A Feature of Archaic Australian Aboriginal Remains.

    PubMed

    Walshe, Keryn; Brophy, Brian; Cornish, Brian; Byard, Roger W

    2016-11-01

    The skeletal remains of eight Australian Aboriginals with healed depressed skull fractures were examined. Male:female ratio 5:3; age range 20-60 yrs. Burial dates by 14 C dating in three cases were 500 years BP (n = 2) and 1300 BP. There were 13 healed depressed skull fractures manifested by shallow indentations of cortical bone and thinning of diploe, with no significant disturbance of the inner skull tables. Nine (69%) were located within 35 mm of the sagittal suture/midline. These lesions represent another acquired feature that might be helpful in suggesting that a skull is from a tribal Aboriginal individual and may be particularly useful if the remains are represented by only fragments of calvarium. While obviously not a finding specific to this population, these healed injuries would be consistent with the possible results of certain types of conflict behavior reported in traditional Aboriginal groups that involved formalized inflicted blunt head trauma. © 2016 American Academy of Forensic Sciences.

  17. Robust skull stripping using multiple MR image contrasts insensitive to pathology.

    PubMed

    Roy, Snehashis; Butman, John A; Pham, Dzung L

    2017-02-01

    Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T 1 -w MR images of normal brains, especially because high resolution T 1 -w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T 1 -w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), 2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T 1 -w, T 2 -w were used to skull-strip these datasets. We show significant improvement in stripping

  18. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆

    PubMed Central

    Stenroos, Matti; Hauk, Olaf

    2013-01-01

    The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259

  19. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - A first step to create reliable customized simulators.

    PubMed

    Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety.

  20. Tracing the developmental origin of a lizard skull: Chondrocranial architecture, heterochrony, and variation in lacertids.

    PubMed

    Yaryhin, Oleksandr; Werneburg, Ingmar

    2018-06-08

    The sand lizard, Lacerta agilis, is a classical model species in herpetology. Its adult skull anatomy and its embryonic development are well known. The description of its fully formed primordial skull by Ernst Gaupp, in 1900, was a key publication in vertebrate morphology and influenced many comparative embryologists. Based on recent methodological considerations, we restudied the early cranial development of this species starting as early as the formation of mesenchymal condensations up to the fully formed chondrocranium. We traced the formation of the complex chondrocranial architecture in detail, clarified specific homologies for the first time, and uncovered major differences to old textbook descriptions. Comparison with other lacertid lizards revealed a very similar genesis of the primordial skull. However, we detected shifts in the developmental timing of particular cartilaginous elements, mainly in the nasal region, which may correlate to specific ecological adaptation in the adults. Late timing of nasal elements might be an important innovation for the successful wide range distribution of the well-known sand lizard. © 2018 Wiley Periodicals, Inc.

  1. Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial nerves, and intracranial vasculature.

    PubMed

    Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej

    2015-05-15

    Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry

    PubMed Central

    Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.

    2011-01-01

    Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792

  3. Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Al-Ansary, Mariam Luay Y.

    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull's geometry is known. Measuring the skull's geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15lambda +/- 0.11lambda or 0.09 +/- 0.07mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32lambda +/- 0.25lambda or 0.19 +/- 0.15mm from the actual profile.

  4. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  5. The first skull of the earliest giant panda

    PubMed Central

    Jin, Changzhu; Ciochon, Russell L.; Dong, Wei; Hunt, Robert M.; Liu, Jinyi; Jaeger, Marc; Zhu, Qizhi

    2007-01-01

    Fossils of the giant panda Ailuropoda (Order Carnivora, Family Ursidae) are largely isolated teeth, mandibles, and a few rare skulls, known from the late Pliocene to late Pleistocene in China and Southeast Asia. Much of this material represents a Pleistocene chronospecies, Ailuropoda baconi, an animal larger than the living giant panda, Ailuropoda melanoleuca. The earliest certain record of Ailuropoda is the late Pliocene chronospecies, Ailuropoda microta, smaller than either A. baconi or A. melanoleuca, and previously known only from teeth and a few mandibles from karst caves in south China. Here, we report the discovery of the first skull of A. microta, establishing its cranial anatomy and demonstrating that the specialized cranial and dental adaptations of Ailuropoda for durophagous feeding behavior centered on bamboo were already evident in this late Pliocene species. The skull from Jinyin cave (Guangxi) and dental remains from other karst localities in southeastern China show that Ailuropoda microta occupied south China from ≈2 to 2.4 Myr ago after a marked global climatic deterioration. Dental and basicranial anatomy indicate a less specialized morphology early in the history of the lineage and support derivation of the giant panda from the Miocene Asian ursid Ailurarctos PMID:17578912

  6. Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds.

    PubMed

    Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat

    2018-04-03

    Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft

  7. Long-term results following titanium cranioplasty of large skull defects.

    PubMed

    Cabraja, Mario; Klein, Martin; Lehmann, Thomas-Nikolas

    2009-06-01

    Decompressive craniectomy is an established procedure to lower intracranial pressure. Therefore, cranioplasty remains a necessity in neurosurgery as well. If the patient's own bone flap is not available, the surgeon can choose between various alloplast grafts. A review of the literature proves that 4-13.8% of polymethylmethacrylate plates and 2.6-10% of hydroxyapatite-based implants require replacement. In this retrospective study of large skull defects, the authors compared computer-assisted design/computer-assisted modeled (CAD/CAM) titanium implants for cranioplasty with other frequently used materials described in literature. Twenty-six patients underwent cranioplasty with CAD/CAM titanium implants (mean diameter 112 mm). With the aid of visual analog scales, the patients' pain and cosmesis were evaluated 6-12 years (mean 8.1 years) after insertion of the implants. None of the implants had to be removed. Of all patients, 68% declared their outcomes as excellent, 24% as good, 0.8% as fair, and 0% as poor. There was no resulting pain in 84% of the patients, and 88% were satisfied with the cosmetic result, noting > 75 mm on the visual analog scale of cosmesis. All patients would have chosen cranioplasty again, stating an improvement in their quality of life by the calvarial reconstruction. Nevertheless, follow-up images obtained in 4 patients undergoing removal of meningiomas was only suboptimal. With the aid of CAD technology, all currently used alloplastic materials are suited even for large skull defect cranioplasty. Analysis of the authors' data and the literature shows that cranioplasty with CAD/CAM titanium implants provides the lowest rate of complications, reasonable costs, and acceptable postoperative imaging. Polymethylmethacrylate is suited for primary cranioplasty or for long-term follow-up imaging of tumors. Titanium implants seem to be the material of choice for secondary cranioplasty of large skull defects resulting from decompressive craniectomy

  8. A case of bilateral lower cranial nerve palsies after base of skull trauma with complex management issues: case report and review of the literature.

    PubMed

    Lehn, Alexander Christoph; Lettieri, Jennie; Grimley, Rohan

    2012-05-01

    Fractures of the skull base can cause lower cranial nerve palsies because of involvement of the nerves as they traverse the skull. A variety of syndromes have been described, often involving multiple nerves. These are most commonly unilateral, and only a handful of cases of bilateral cranial nerve involvement have been reported. We describe a 64-year-old man with occipital condylar fracture complicated by bilateral palsies of IX and X nerves associated with dramatic physiological derangement causing severe management challenges. Apart from debilitating postural hypotension, he developed dysphagia, severe gastrointestinal dysmotility, issues with airway protection as well as airway obstruction, increased oropharyngeal secretions and variable respiratory control. This is the first report of a patient with traumatic bilateral cranial nerve IX and X nerve palsies. This detailed report and the summary of all 6 previous case reports of traumatic bilateral lower cranial nerve palsies illustrate clinical features, treatment strategies, and outcomes of these rare events.

  9. Dose–Volume Relationships Associated With Temporal Lobe Radiation Necrosis After Skull Base Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, Indiana; Linton, Okechukwu R.

    Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluatedmore » potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes

  10. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.

    PubMed

    Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels

    2015-01-01

    Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets. While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of

  11. Model-based surgical planning and simulation of cranial base surgery.

    PubMed

    Abe, M; Tabuchi, K; Goto, M; Uchino, A

    1998-11-01

    Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.

  12. The ecological origins of snakes as revealed by skull evolution.

    PubMed

    Da Silva, Filipe O; Fabre, Anne-Claire; Savriama, Yoland; Ollonen, Joni; Mahlow, Kristin; Herrel, Anthony; Müller, Johannes; Di-Poï, Nicolas

    2018-01-25

    The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.

  13. [The anatomy of a reduced skull model--visualisation of Leonardo da Vinci's anthropology].

    PubMed

    Ahner, E

    2008-04-02

    The article focuses on a rare example of a miniature skull of unknown origin. The profoundness of the anatomical details, conjoint with outstanding virtuosity, reminds of Leonardo da Vinci's anatomical skull studies and asks for additional interpretation beside the emblematic "memento mori"-character. Following the miscellaneous topics of his skull studies an anatomical-anthropological interpretation is proposed. For such a project the mergence of anthropology, history of medicine and history of art was mandatory. Concerning some discrepancies within the anatomical realism, the depiction of a pathology is discussed and beyond the visualisation of a historic concept of brain function.

  14. Skull lichens: a curious chapter in the history of phytotherapy.

    PubMed

    Modenesi, P

    2009-04-01

    Lichens growing on skulls were known in late medieval times as usnea or moss of a dead man's skull and were recommended as highly beneficial in various diseases. They were, in addition, the main ingredient of Unguentum armariun, a liniment used in a curious medical practice: the magnetic cure of wounds. We can place this chapter of the history of phytotherapy within the wider cultural context of the period, which saw the definition of nature become increasingly more fluid and open to a variety of novel interpretations.

  15. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  16. Morphometric appraisal of the skull of Caroline Crachami, the Sicilian "dwarf" 1815?-1824: a contribution to the study of primordial microcephalic dwarfism.

    PubMed

    Jeffery, Nathan; Berkovitz, B K B

    2002-08-15

    The skeleton of Caroline Crachami is a rare historical example of primordial microcephalic dwarfism (PMD). Studies show the condition to be heterogeneous, with at least three types, for which the assessment criteria rely on descriptive evaluations and/or simple measures with regard to cranial features. Advances in noninvasive imaging allow for a more complete morphometric examination of the skull of Caroline Crachami with the aim of clarifying aspects of the condition. In the present study, the skull of Caroline Crachami was three-dimensionally imaged with computed tomography (CT) and reconstructed in virtual space. Coordinates for a number of measurements were taken to represent interesting anatomies with an emphasis on those measures not easily replicated on the skull itself. Volumes of the endocranial cavity and sella turcica were also computed. These data were compared with normative values taken from the literature and measured from CT images of the Bosma collection. Findings indicate that the general size of the skull is equivalent to that of a 6- to 8-month-old, that the endocranial volume and cranial base angle are commensurate with that of a newborn, and that the sella volume is the same as that for an 8- to 15-month-old. Apart from these traits, the skull was well proportioned and within the range of normal variation for a skull aged between 2-9 years. We conclude that further quantitative analysis on related skulls is warranted in the study of PMD using the methods and techniques described. Copyright 2002 Wiley-Liss, Inc.

  17. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  18. A novel classification of frontal bone fractures: The prognostic significance of vertical fracture trajectory and skull base extension.

    PubMed

    Garg, Ravi K; Afifi, Ahmed M; Gassner, Jennifer; Hartman, Michael J; Leverson, Glen; King, Timothy W; Bentz, Michael L; Gentry, Lindell R

    2015-05-01

    The broad spectrum of frontal bone fractures, including those with orbital and skull base extension, is poorly understood. We propose a novel classification scheme for frontal bone fractures. Maxillofacial CT scans of trauma patients were reviewed over a five year period, and frontal bone fractures were classified: Type 1: Frontal sinus fracture without vertical extension. Type 2: Vertical fracture through the orbit without frontal sinus involvement. Type 3: Vertical fracture through the frontal sinus without orbit involvement. Type 4: Vertical fracture through the frontal sinus and ipsilateral orbit. Type 5: Vertical fracture through the frontal sinus and contralateral or bilateral orbits. We also identified the depth of skull base extension, and performed a chart review to identify associated complications. 149 frontal bone fractures, including 51 non-vertical frontal sinus (Type 1, 34.2%) and 98 vertical (Types 2-5, 65.8%) fractures were identified. Vertical fractures penetrated the middle or posterior cranial fossa significantly more often than non-vertical fractures (62.2 v. 15.7%, p = 0.0001) and had a significantly higher mortality rate (18.4 v. 0%, p < 0.05). Vertical fractures with frontal sinus and orbital extension, and fractures that penetrated the middle or posterior cranial fossa had the strongest association with intracranial injuries, optic neuropathy, disability, and death (p < 0.05). Vertical frontal bone fractures carry a worse prognosis than frontal bone fractures without a vertical pattern. In addition, vertical fractures with extension into the frontal sinus and orbit, or with extension into the middle or posterior cranial fossa have the highest complication rate and mortality. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Comparative finite element analysis of skull mechanical properties following parietal bone graft harvesting in adults.

    PubMed

    Haen, Pierre; Dubois, Guillaume; Goudot, Patrick; Schouman, Thomas

    2018-02-01

    Parietal bone grafts are commonly used in cranio-maxillo-facial surgery. Both the outer and the internal layer of the calvarium can be harvested. The bone defect created by this harvesting may induce significant weakening of the skull that has not been extensively evaluated. Our aim was to evaluate the consequences of parietal bone graft harvesting on mechanical properties of the skull using a finite element analysis. Finite elements models of the skull of 3 adult patients were created from CT scans. Parietal external and internal layer harvest models were created. Frontal, lateral, and parietal loading were modeled and von Mises stress distributions were compared. The maximal von Mises stress was higher for models of bone harvesting, both on the whole skull and at the harvested site. Maximal von Mises stress was even higher for models with internal layer defect. Harvesting parietal bone modifies the skull's mechanical strength and can increase the risk of skull fracture, mainly on the harvested site. Outer layer parietal graft harvesting is indicated. Graft harvesting located in the upper part of the parietal bone, close to the sagittal suture and with smooth internal edges and corners should limit the risk of fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Evolution of Skull and Mandible Shape in Cats (Carnivora: Felidae)

    PubMed Central

    Christiansen, Per

    2008-01-01

    The felid family consists of two major subgroups, the sabretoothed and the feline cats, to which all extant species belong, and are the most anatomically derived of all carnivores for predation on large prey with a precision killing bite. There has been much controversy and uncertainty about why the skulls and mandibles of sabretoothed and feline cats evolved to become so anatomically divergent, but previous models have focused on single characters and no unifying hypothesis of evolutionary shape changes has been formulated. Here I show that the shape of the skull and mandible in derived sabrecats occupy entirely different positions within overall morphospace from feline cats, and that the evolution of skull and mandible shape has followed very different paths in the two subgroups. When normalised for body-size differences, evolution of bite forces differ markedly in the two groups, and are much lower in derived sabrecats, and they show a significant relationship with size and cranial shape, whereas no such relationship is present in feline cats. Evolution of skull and mandible shape in modern cats has been governed by the need for uniform powerful biting irrespective of body size, whereas in sabrecats, shape evolution was governed by selective pressures for efficient predation with hypertrophied upper canines at high gape angles, and bite forces were secondary and became progressively weaker during sabrecat evolution. The current study emphasises combinations of new techniques for morphological shape analysis and biomechanical studies to formulate evolutionary hypotheses for difficult groups. PMID:18665225

  1. Outcome of surgically treated non-missile traumatic depressed skull fracture.

    PubMed

    Nnadi, M O N; Bankole, O B; Arigbabu, S O

    2014-12-01

    To determine the functional outcome and infection rate in patients who were surgically treated for non-missile traumatic depressed skull fractures. It is a prospective cross-sectional descriptive study carried out on computerised tomography scanned depressed skull fractures surgically treated in Lagos University Teaching Hospital, Lagos from October 2008 to September 2009. Data were collected using structured proforma in accident and emergency, theatre, wards, and in outpatient clinic. Data collected included age, gender, occupation, type of depressed fracture, aetiology, clinicaland radiological findings, type of surgery done, complications, and outcome of treatment. Data was analysed using EPI info 2002 software. A total of 17 patients were studied. There were 12males and 5females. Fifteen (88.2%) of the patients were0- 40years. The aetiology was road traffic accident in 82.4% of cases. Fourteen (82.4%) of the patients had open depressed skull fractures, while 17.6% had closed depressed skull fractures. Five (29.4%) of the patients had wound infection. Two (22.2%) of thepatients operated within 48hours had wound infection, while 37.5% of those operated after 48hours had wound infection. There was no infection among patients who had primary bone fragments replaced. Fifteen (88.2%) of the patients had good functional outcome. The functional outcome in this study is good but the infection rate is high. Primary bone fragments should be replaced whenever possible as it prevents the need for cranioplasty and there is no relative risk of increased infection rate.

  2. Neomorphosis and heterochrony of skull shape in dog domestication.

    PubMed

    Geiger, Madeleine; Evin, Allowen; Sánchez-Villagra, Marcelo R; Gascho, Dominic; Mainini, Cornelia; Zollikofer, Christoph P E

    2017-10-18

    The overall similarity of the skull shape of some dog breeds with that of juvenile wolves begs the question if and how ontogenetic changes such as paedomorphosis (evolutionary juvenilisation) played a role in domestication. Here we test for changes in patterns of development and growth during dog domestication. We present the first geometric morphometric study using ontogenetic series of dog and wolf crania, and samples of dogs with relatively ancestral morphology and from different time periods. We show that patterns of juvenile-to-adult morphological change are largely similar in wolves and domestic dogs, but differ in two ways. First, dog skulls show unique (neomorphic) features already shortly after birth, and these features persist throughout postnatal ontogeny. Second, at any given age, juvenile dogs exhibit skull shapes that resemble those of consistently younger wolves, even in dog breeds that do not exhibit a 'juvenilized' morphology as adults. These patterns exemplify the complex nature of evolutionary changes during dog domestication: the cranial morphology of adult dogs cannot simply be explained as either neomorphic or paedomorphic. The key to our understanding of dog domestication may lie in a closer comparative examination of developmental phases.

  3. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.

    PubMed

    Toro-Ibacache, Viviana; Zapata Muñoz, Víctor; O'Higgins, Paul

    2016-01-01

    The human skull is gracile when compared to many Middle Pleistocene hominins. It has been argued that it is less able to generate and withstand high masticatory forces, and that the morphology of the lower portion of the modern human face correlates most strongly with dietary characteristics. This study uses geometric morphometrics and finite element analysis (FEA) to assess the relationship between skull morphology, muscle force and cranial deformations arising from biting, which is relevant in understanding how skull morphology relates to mastication. The three-dimensional skull anatomies of 20 individuals were reconstructed from medical computed tomograms. Maximal contractile muscle forces were estimated from muscular anatomical cross-sectional areas (CSAs). Fifty-nine landmarks were used to represent skull morphology. A partial least squares analysis was performed to assess the association between skull shape and muscle force, and FEA was used to compare the deformation (strains) generated during incisor and molar bites in two individuals representing extremes of morphological variation in the sample. The results showed that only the proportion of total muscle CSA accounted for by the temporalis appears associated with skull morphology, albeit weekly. However, individuals with a large temporalis tend to possess a relatively wider face, a narrower, more vertically oriented maxilla and a lower positioning of the coronoid process. The FEAs showed that, despite differences in morphology, biting results in similar modes of deformation for both crania, but with localised lower magnitudes of strains arising in the individual with the narrowest, most vertically oriented maxilla. Our results suggest that the morphology of the maxilla modulates the transmission of forces generated during mastication to the rest of the cranium by deforming less in individuals with the ability to generate proportionately larger temporalis muscle forces. Copyright © 2015 Elsevier GmbH. All

  4. Surgical Exposure to Control the Distal Internal Carotid Artery at the Base of the Skull during Carotid Aneurysm Repair.

    PubMed

    Davis, Laura; Zeitouni, Anthony; Makhoul, Nicholas; Steinmetz, Oren K

    2016-07-01

    Extracranial carotid artery aneurysms are rare. Treatment options for these lesions include endovascular interventions, such as coiling and stenting, or surgical reconstruction, such as resection and primary reanastomosis, or interposition bypass grafting. In this report, we describe the surgical technique used to perform surgical repair of an internal carotid artery aneurysm extending up to the base of the skull. Anterior exposure of the infratemporal fossa and distal control of the carotid artery at the level of the carotid canal was achieved through a transcervical approach, performing double mandibular osteotomies with superior reflection of the middle mandibular section. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dog behavior co-varies with height, bodyweight and skull shape.

    PubMed

    McGreevy, Paul D; Georgevsky, Dana; Carrasco, Johanna; Valenzuela, Michael; Duffy, Deborah L; Serpell, James A

    2013-01-01

    Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (p<0.001) with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape

  6. The cranial base of Australopithecus afarensis: new insights from the female skull

    PubMed Central

    Kimbel, William H.; Rak, Yoel

    2010-01-01

    Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen's forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base. PMID:20855310

  7. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process.

    PubMed

    Huotilainen, Eero; Jaanimets, Risto; Valášek, Jiří; Marcián, Petr; Salmi, Mika; Tuomi, Jukka; Mäkitie, Antti; Wolff, Jan

    2014-07-01

    The process of fabricating physical medical skull models requires many steps, each of which is a potential source of geometric error. The aim of this study was to demonstrate inaccuracies and differences caused by DICOM to STL conversion in additively manufactured medical skull models. Three different institutes were requested to perform an automatic reconstruction from an identical DICOM data set of a patients undergoing tumour surgery into an STL file format using their software of preference. The acquired digitized STL data sets were assessed and compared and subsequently used to fabricate physical medical skull models. The three fabricated skull models were then scanned, and differences in the model geometries were assessed using established CAD inspection software methods. A large variation was noted in size and anatomical geometries of the three physical skull models fabricated from an identical (or "a single") DICOM data set. A medical skull model of the same individual can vary markedly depending on the DICOM to STL conversion software and the technical parameters used. Clinicians should be aware of this inaccuracy in certain applications. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. A Case of Recurrent Anaplastic Meningioma of the Skull Base with Radiologic Response to Hydroxyurea

    PubMed Central

    Gurberg, Joshua; Bouganim, Nathaniel; Shenouda, George; Zeitouni, Anthony

    2014-01-01

    Anaplastic meningiomas are rare and aggressive tumors with a high propensity for local recurrence. Surgical resection and postoperative radiotherapy are the standard of care for primary disease and local recurrences. Refractory disease is managed with chemotherapy with limited success. A highly efficacious, well-tolerated chemotherapeutic agent has yet to be found for this disease entity. Hydroxyurea is currently receiving renewed attention because of its efficacy in inducing apoptosis of meningioma cells in vitro and its favorable side-effect profile. Thus far, in humans, this agent has only induced stable disease. We describe the first patient showing a near complete/partial clinical and radiological regression after 5 months of 25 mg/kg of hydroxyurea once daily, given within 1 month after stereotactic fractionated reirradiation of a previously irradiated and operated anaplastic meningioma of the skull base. Magnetic resonance imaging showed a significant and sustained response with tumor shrinkage and cavitation. PMID:25083390

  9. How We Got Here: Evolutionary Changes in Skull Shape in Humans & Their Ancestors

    ERIC Educational Resources Information Center

    Price, Rebecca M.

    2012-01-01

    This activity uses inquiry to investigate how large changes in shape can evolve from small changes in the timing of development. Students measure skull shape in fetal, infant, juvenile, and adult chimpanzees and compare them to adult skulls of "Homo sapiens," "Homo erectus," and "Australopithecus afarensis." They conclude by re-interpreting their…

  10. Unusual presentation of a skull base mass lesion in sarcoidosis mimicking malignant neoplasm: a case report.

    PubMed

    Shijo, Katsunori; Moro, Nobuhiro; Sasano, Mari; Watanabe, Mitsuru; Yagasaki, Hiroshi; Takahashi, Shori; Homma, Taku; Yoshino, Atsuo

    2018-05-29

    Sarcoidosis is a multi-organ disease of unknown etiology characterised by the presence of epithelioid granulomas, without caseous necrosis. Systemic sarcoidosis is rare among children, while neurosarcoidosis in children is even rarer whether it is systemic or not. We described the case of a 12-year-old boy who presented with monocular vision loss accompanied by unusual MRI features of an extensive meningeal infiltrating mass lesion. The patient underwent surgical resection (biopsy) via a frontotemporal craniotomy to establish a definitive diagnosis based on the histopathology, since neurosarcoidosis remains a very difficult diagnosis to establish from neuroradiogenic imagings. Based on the histopathology of the resected mass lesion, neurosarcoidosis was diagnosed. On follow-up after 3 months of steroid therapy, the patient displayed a good response on the imaging studies. MRI revealed that the preexisting mass lesion had regressed extremely. We also conducted a small literature review on imaging studies, manifestations, appropriate treatments, etc., in particular neurosarcoidosis including children. Although extremely rare, neurosarcoidosis, even in children, should be considered in the differential diagnosis of skull base mass lesions to avoid unnecessary aggressive surgery and delay in treatment, since surgery may have little role in the treatment of sarcoidosis.

  11. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators

    PubMed Central

    Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Introduction Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Methods Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. Results All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6–3.5 times higher than in bone. For polycarbonate, forces applied were 1.6–2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Conclusion Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety. PMID:29252993

  12. Conceptual transitions in methods of skull-photo superimposition that impact the reliability of identification: a review.

    PubMed

    Jayaprakash, Paul T

    2015-01-01

    Establishing identification during skull-photo superimposition relies on correlating the salient morphological features of an unidentified skull with those of a face-image of a suspected dead individual using image overlay processes. Technical progression in the process of overlay has included the incorporation of video cameras, image-mixing devices and software that enables real-time vision-mixing. Conceptual transitions occur in the superimposition methods that involve 'life-size' images, that achieve orientation of the skull to the posture of the face in the photograph and that assess the extent of match. A recent report on the reliability of identification using the superimposition method adopted the currently prevalent methods and suggested an increased rate of failures when skulls were compared with related and unrelated face images. The reported reduction in the reliability of the superimposition method prompted a review of the transition in the concepts that are involved in skull-photo superimposition. The prevalent popular methods for visualizing the superimposed images at less than 'life-size', overlaying skull-face images by relying on the cranial and facial landmarks in the frontal plane when orienting the skull for matching and evaluating the match on a morphological basis by relying on mix-mode alone are the major departures in the methodology that may have reduced the identification reliability. The need to reassess the reliability of the method that incorporates the concepts which have been considered appropriate by the practitioners is stressed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The role of three-dimensional printed models of skull in anatomy education: a randomized controlled trail.

    PubMed

    Chen, Shi; Pan, Zhouxian; Wu, Yanyan; Gu, Zhaoqi; Li, Man; Liang, Ze; Zhu, Huijuan; Yao, Yong; Shui, Wuyang; Shen, Zhen; Zhao, Jun; Pan, Hui

    2017-04-03

    Three-dimensional (3D) printed models represent educational tools of high quality compared with traditional teaching aids. Colored skull models were produced by 3D printing technology. A randomized controlled trial (RCT) was conducted to compare the learning efficiency of 3D printed skulls with that of cadaveric skulls and atlas. Seventy-nine medical students, who never studied anatomy, were randomized into three groups by drawing lots, using 3D printed skulls, cadaveric skulls, and atlas, respectively, to study the anatomical structures in skull through an introductory lecture and small group discussions. All students completed identical tests, which composed of a theory test and a lab test, before and after a lecture. Pre-test scores showed no differences between the three groups. In post-test, the 3D group was better than the other two groups in total score (cadaver: 29.5 [IQR: 25-33], 3D: 31.5 [IQR: 29-36], atlas: 27.75 [IQR: 24.125-32]; p = 0.044) and scores of lab test (cadaver: 14 [IQR: 10.5-18], 3D: 16.5 [IQR: 14.375-21.625], atlas: 14.5 [IQR: 10-18.125]; p = 0.049). Scores involving theory test, however, showed no difference between the three groups. In this RCT, an inexpensive, precise and rapidly-produced skull model had advantages in assisting anatomy study, especially in structure recognition, compared with traditional education materials.

  14. The impact of skull bone intensity on the quality of compressed CT neuro images

    NASA Astrophysics Data System (ADS)

    Kowalik-Urbaniak, Ilona; Vrscay, Edward R.; Wang, Zhou; Cavaro-Menard, Christine; Koff, David; Wallace, Bill; Obara, Boguslaw

    2012-02-01

    The increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images.

  15. The relationship between facial skeleton morphology and bite force in people with a normal relation of the bases of jaws and skull.

    PubMed

    Sidorowicz, Ł; Szymańska, J

    2015-01-01

    Better knowledge on the relationship between craniofacial structure and bite force may serve as a reference point for prophylactic and therapeutic activities targeted at developmental age patients. The aim of the study was to assess the correlation between facial skeletal morphology and bite force. The study included 54 subjects aged 7-16 years with a normal relation of the bases of jaws and skull, according to Segner's and Hasund's analysis standards (ML-NL and ML-NSL angles values were 20.0 ± 7.0° and 28.0 ± 5.0°, respectively). The study group included patients who volunteered to diagnosis and possible orthodontic treatment. Bite force was tested with a digital dynamometer calibrated in Newtons. The measurement was performed at the level of the first permanent molars. Cephalometric analysis was based on lateral cephalometric radiographs. The vertical relations were assessed using the following measurements: ML-NSL, ML-NL, NL-NSL, N-Me, Sp-Me, SpMe:NMe, ms-NL, SGo:NMe. Bite force does not depend on the following factors: lower anterior face height (Sp-Me), lower anterior face height to total anterior face height ratio (SpMe:NMe), posterior to anterior face height ratio (SG0:NMe), and the value of ML-NL, ML-NSL and NL-NSL angles. The posterior height of the maxilla alveolar process (ms-NL) exerts the greatest influence on bite force in people with a normal relation of the bases of jaws and skull: with an increase in ms-NL value bite force is reduced.

  16. Bone mineral density of the skull in premenopausal women.

    PubMed

    Turner, A S; Maillet, J M; Mallinckrodt, C; Cordain, L

    1997-08-01

    Dual-energy X-ray absorptiometry (DXA) of the head has received little attention. We used DXA to measure bone mineral density (BMD) of the entire skull including the mandible (BMDHead) and BMD of the cranial vault (BMDVault) in 91 normal young women. We also measured BMD of the total body (BMDTotal body), proximal femur ("total femur"), and lumbar vertebrae (L1-L4). BMD (g/cm2; mean +/- SE) was 1.032 +/- 0.011 for L1-L4, 0.995 +/- 0.011 for total femur, and 2.283 +/- 0.028 for BMDVault (cranial vault) and the mean body weight of all subjects was 59.8 kg. Correlation between BMD Vault and BMDHead was -0.004 g/cm2 suggesting that these two measurements of bone mass of the skull were similar. To determine the correlation between the different variables after accounting for external sources of variation, partial correlation derived from multiple regression was determined. Correlations between BMD at the various locations and with BMDTotal body were moderate to strong. Although small in magnitude, the partial correlations of body weight with BMDTotal body, total femur, and L1-L4 were of equal value in predicting BMDTotal body and further, BMDVault was not influenced by body weight. Including body weight in multiple regression in addition to total femur or L1-L4 removed the extraneous variation due to body weight, and predictions of MBDTotal body were as reliable as when BMDVault was based on goodness of fit tests (P = 0.314). The techniques used to measure BMD of the cranial vault is a relatively new variation of DXA technology. The precision was as good as other measurements of bone mass of the entire skull (including the mandible). Because the cranial vault is less sensitive to mechanical influences, it may be a region where response to therapy could be evaluated. The cranial vault may be a useful area to study certain heritable diseases that affect the skeleton, skeletal artifact, or evaluation of oral bone loss.

  17. Evolution of skull shape in the family Salamandridae (Amphibia: Caudata).

    PubMed

    Ivanović, Ana; Arntzen, Jan W

    2018-03-01

    We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed. © 2017 Anatomical Society.

  18. Variations in leopard cat (Prionailurus bengalensis) skull morphology and body size: sexual and geographic influences

    PubMed Central

    Oliveira, Luiz Flamarion B.

    2015-01-01

    The leopard cat, Prionailurus bengalensis (Kerr, 1792), is one of the most widespread Asian cats, occurring in continental eastern and southeastern Asia. Since 1929, several studies have focused on the morphology, ecology, and taxonomy of leopard cats. Nevertheless, hitherto there has been no agreement on basic aspects of leopard cat biology, such as the presence or absence of sexual dimorphism, morphological skull and body differences between the eleven recognized subspecies, and the biogeography of the different morphotypes. Twenty measurements on 25 adult leopard cat skulls from different Asian localities were analyzed through univariate and multivariate statistical approaches. Skull and external body measurements from studies over the last 77 years were assembled and organized in two categories: full data and summary data. Most of this database comprises small samples, which have never been statistically tested and compared with each other. Full data sets were tested with univariate and multivariate statistical analyses; summary data sets (i.e., means, SDs, and ranges) were analyzed through suitable univariate approaches. The independent analyses of the data from these works confirmed our original results and improved the overview of sexual dimorphism and geographical morphological variation among subspecies. Continental leopard cats have larger skulls and body dimensions. Skulls of Indochinese morphotypes have broader and higher features than those of continental morphotypes, while individuals from the Sunda Islands have skulls with comparatively narrow and low profiles. Cranial sexual dimorphism is present in different degrees among subspecies. Most display subtle sex-related variations in a few skull features. However, in some cases, sexual dimorphism in skull morphology is absent, such as in P. b. sumatranus and P. b. borneoensis. External body measurement comparisons also indicate the low degree of sexual dimorphism. Apart from the gonads, the longer hind

  19. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.

    PubMed

    Marsac, L; Chauvet, D; La Greca, R; Boch, A-L; Chaumoitre, K; Tanter, M; Aubry, J-F

    2017-09-01

    Transcranial brain therapy has recently emerged as a non-invasive strategy for the treatment of various neurological diseases, such as essential tremor or neurogenic pain. However, treatments require millimetre-scale accuracy. The use of high frequencies (typically ≥1 MHz) decreases the ultrasonic wavelength to the millimetre scale, thereby increasing the clinical accuracy and lowering the probability of cavitation, which improves the safety of the technique compared with the use of low-frequency devices that operate at 220 kHz. Nevertheless, the skull produces greater distortions of high-frequency waves relative to low-frequency waves. High-frequency waves require high-performance adaptive focusing techniques, based on modelling the wave propagation through the skull. This study sought to optimise the acoustical modelling of the skull based on computed tomography (CT) for a 1 MHz clinical brain therapy system. The best model tested in this article corresponded to a maximum speed of sound of 4000 m.s -1 in the skull bone, and it restored 86% of the optimal pressure amplitude on average in a collection of six human skulls. Compared with uncorrected focusing, the optimised non-invasive correction led to an average increase of 99% in the maximum pressure amplitude around the target and an average decrease of 48% in the distance between the peak pressure and the selected target. The attenuation through the skulls was also assessed within the bandwidth of the transducers, and it was found to vary in the range of 10 ± 3 dB at 800 kHz and 16 ± 3 dB at 1.3 MHz.

  20. Verifying Three-Dimensional Skull Model Reconstruction Using Cranial Index of Symmetry

    PubMed Central

    Kung, Woon-Man; Chen, Shuo-Tsung; Lin, Chung-Hsiang; Lu, Yu-Mei; Chen, Tzu-Hsuan; Lin, Muh-Shi

    2013-01-01

    Background Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). Materials and methods From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. Results CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47–99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. Conclusions CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation. PMID:24204566

  1. Prospective transfrontal sheep model of skull-base reconstruction using vascularized mucosa.

    PubMed

    Mueller, Sarina K; Scangas, George; Amiji, Mansor M; Bleier, Benjamin S

    2018-05-01

    No high-fidelity animal model exists to examine prospective wound healing following vascularized reconstruction of the skull base. Such a model would require the ability to study the prospective behavior of vascularized mucosal repairs of large dural and arachnoid defects within the intranasal environment. The objective of this study was to therefore develop and validate a novel, in vivo, transfrontal sheep model of cranial base repair using vascularized sinonasal mucosa. Twelve transfrontal craniotomy and 1.5-cm durotomy reconstructions were performed in 60-kg to 70-kg Dorset/Ovis Aries sheep using vascularized mucosa with or without an adjunctive Biodesign™ underlay graft (n = 6 per group). Histologic outcomes were graded (scale, 0 to 4) by a blinded veterinary histopathologist after 7, 14, and 28 days for a range of wound healing parameters. All sheep tolerated the surgery, which required 148 ± 33 minutes. By day 7, the mucosa was fully adherent with complete partitioning of the sinus and intracranial compartments. Fibroblast infiltration and flap neovascularization scores significantly increased between day 7 (0.3 ± 0.5 and 0.0 ± 0.0) and day 28 (4.0 ± 0.0, p = 0.01 and 2.0 ± 0.8, p = 0.01; respectively), while hemorrhage scores significantly decreased from 2.5 ± 0.6 to 0.0 ± 0.0 (p = 0.01). The inflammatory scores were not significantly different between the heterologous graft and control sides. The described sheep model accurately reflects prospective intranasal wound healing following vascularized mucosal reconstruction of dural defects. This model can be used in future studies to examine novel reconstructive materials, tissue glues, and transmucosal drug delivery to the central nervous system. © 2017 ARS-AAOA, LLC.

  2. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  3. Skull shape and size variation within and between mendocinus and torquatus groups in the genus Ctenomys (Rodentia: Ctenomyidae) in chromosomal polymorphism context

    PubMed Central

    Fornel, Rodrigo; Cordeiro-Estrela, Pedro; de Freitas, Thales Renato O.

    2018-01-01

    Abstract We tested the association between chromosomal polymorphism and skull shape and size variation in two groups of the subterranean rodent Ctenomys. The hypothesis is based on the premise that chromosomal rearrangements in small populations, as it occurs in Ctenomys, produce reproductive isolation and allow the independent diversification of populations. The mendocinus group has species with low chromosomal diploid number variation (2n=46-48), while species from the torquatus group have a higher karyotype variation (2n=42-70). We analyzed the shape and size variation of skull and mandible by a geometric morphometric approach, with univariate and multivariate statistical analysis in 12 species from mendocinus and torquatus groups of the genus Ctenomys. We used 763 adult skulls in dorsal, ventral, and lateral views, and 515 mandibles in lateral view and 93 landmarks in four views. Although we expected more phenotypic variation in the torquatus than the mendocinus group, our results rejected the hypothesis of an association between chromosomal polymorphism and skull shape and size variation. Moreover, the torquatus group did not show more variation than mendocinus. Habitat heterogeneity associated to biomechanical constraints and other factors like geography, phylogeny, and demography, may affect skull morphological evolution in Ctenomys. PMID:29668015

  4. Micro-mechanical properties of different sites on woodpecker's skull.

    PubMed

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  5. Anatomical and Radiographic Study on the Skull and Mandible of the Common Opossum (Didelphis Marsupialis Linnaeus, 1758) in the Caribbean.

    PubMed

    Mohamed, Reda

    2018-04-23

    Common opossums ( Didelphis marsupialis ) are found throughout the Caribbean island of Trinidad and Tobago. The present work was conducted on 10 skulls and mandibles of the common opossum to describe the osteology and foramina of these skulls and mandibles grossly and radiographically. The information that is garnered can be used to detect, diagnose, and treat head affections, as well as for comparative studies with the skulls and mandibles of other similar species. The skulls and mandibles were prepared and cleaned using standard method. All of the characteristic features of various standards views of the skulls bones, including dorsal, lateral, caudal and midsagittal, and the lateral and caudal views of the mandibles as well as the foramina of the skulls and mandibles were described and discussed. Each skull was divided into long facial and short cranial regions. No supraorbital foramen was observed in the skulls. The tympanic bulla was absent while there was the tympanic process of the alisphenoid. The temporal process of the zygomatic bone, zygomatic process of maxilla, and zygomatic process of the squamosal bone formed the zygomatic arch. The dental formula was confirmed. The bones and foramina of the skull and mandible were similar to other marsupial species and were homologue to that of other mammals.

  6. Embryonic development of the skull of the Andean lizard Ptychoglossus bicolor (Squamata, Gymnophthalmidae)

    PubMed Central

    Hernández-Jaimes, Carlos; Jerez, Adriana; Ramírez-Pinilla, Martha Patricia

    2012-01-01

    The study of cranial design and development in Gymnophthalmidae is important to understand the ontogenetic processes behind the morphological diversity of the group and to examine the possible effects of microhabitat use and other ecological parameters, as well as phylogenetic constraints, on skull anatomy. Complete morphological descriptions of embryonic skull development within Gymnophthalmidae are non-existent. Likewise, very little is known about the complete chondrocranium of the family. Herein, the development of the skull of the semi-fossorial lizard Ptychoglossus bicolor is described along with an examination of the chondrocranium of other gymnophthalmid taxa and the teiid Cnemidophorus lemniscatus. Cranial chondrification begins with early condensations in the ethmoid, orbitotemporal and occipital regions of the chondrocranium as well as the viscerocranium. Ossification of the skull starts with elements of the dermatocranium (pterygoid, prefrontal, maxilla and jugal). The orbitosphenoid is the last chondral bone to appear. At birth, the skull is almost completely ossified and exhibits a large frontoparietal fontanelle. In general terms, the chondrocranium of the gymnophthalmids studied is characteristic of lacertiform terrestrial lizards, in spite of their life habits, and resembles the chondrocranium of C. lemniscatus in many aspects. However, the gymnophthalmids show great variation in the orbitosphenoid and a complex nasal capsule. The latter exhibits greater development of some nasal cartilages, which make it more complex than in C. lemniscatus. These characteristics might be related to microhabitat use and the well-developed olfactory and vomeronasal systems observed within this clade. PMID:22881276

  7. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Leg length, skull circumference, and the incidence of dementia in Latin America and China: A 10/66 population-based cohort study.

    PubMed

    Prince, Martin J; Acosta, Daisy; Guerra, Mariella; Huang, Yueqin; Jimenez-Velazquez, Ivonne Z; Llibre Rodriguez, Juan J; Salas, Aquiles; Sosa, Ana Luisa; Dewey, Michael E; Guerchet, Maelenn M; Liu, Zhaorui; Llibre Guerra, Jorge J; Prina, A Matthew

    2018-01-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. Cross-sectional studies indicate inverse associations with dementia risk, but there have been few prospective studies. Population-based cohort studies in urban sites in Cuba, Dominican Republic Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, and anthropometric measures taken, with ascertainment of incident dementia, and mortality, three to five years later. Of the original at risk cohort of 13,587 persons aged 65 years and over, 2,443 (18.0%) were lost to follow-up; 10,540 persons with skull circumference assessments were followed up for 40,466 person years, and 10,400 with leg length assessments were followed up for 39,954 person years. There were 1,009 cases of incident dementia, and 1,605 dementia free deaths. The fixed effect pooled meta-analysed adjusted subhazard ratio (ASHR) for leg length (highest vs. lowest quarter) was 0.80 (95% CI, 0.66-0.97) and for skull circumference was 1.02 (95% CI, 0.84-1.25), with no heterogeneity of effect between sites (I2 = 0%). Leg length measurements tended to be shorter at follow-up, particularly for those with baseline cognitive impairment and dementia. However, leg length change was not associated with dementia incidence (ASHR, per cm 1.006, 95% CI 0.992-1.020), and the effect of leg length was little altered after adjusting for baseline frailty (ASHR 0.82, 95% CI 0.67-0.99). A priori hypotheses regarding effect modification by gender or educational level were not supported. However, the effect of skull circumference was modified by gender (M vs F ASHR 0.86, 95% CI 0.75-0.98), but in the opposite direction to that hypothesized with a greater protective effect of larger skull dimensions in men. Consistent findings across settings provide quite strong support for an

  9. Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for gamma knife radiosurgery and planning microsurgical procedures for skull base tumors.

    PubMed

    Hayashi, Motohiro; Chernov, Mikhail F; Tamura, Noriko; Yomo, Shoji; Tamura, Manabu; Horiba, Ayako; Izawa, Masahiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Okada, Yoshikazu; Ivanov, Pavel; Régis, Jean; Takakura, Kintomo

    2013-01-01

    Gamma Knife radiosurgery (GKS) is currently performed with 0.1 mm preciseness, which can be designated microradiosurgery. It requires advanced methods for visualizing the target, which can be effectively attained by a neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state (CISS) images. Since 2003, the following thin-sliced images are routinely obtained before GKS of skull base lesions in our practice: axial CISS, gadolinium-enhanced axial CISS, gadolinium-enhanced axial modified time-of-flight (TOF), and axial computed tomography (CT). Fusion of "bone window" CT and magnetic resonance imaging (MRI), and detailed three-dimensional (3D) delineation of the anatomical structures are performed with the Leksell GammaPlan (Elekta Instruments AB). Recently, a similar technique has been also applied to evaluate neuroanatomy before open microsurgical procedures. Plain CISS images permit clear visualization of the cranial nerves in the subarachnoid space. Gadolinium-enhanced CISS images make the tumor "lucid" but do not affect the signal intensity of the cranial nerves, so they can be clearly delineated in the vicinity to the lesion. Gadolinium-enhanced TOF images are useful for 3D evaluation of the interrelations between the neoplasm and adjacent vessels. Fusion of "bone window" CT and MRI scans permits simultaneous assessment of both soft tissue and bone structures and allows 3D estimation and correction of MRI distortion artifacts. Detailed understanding of the neuroanatomy based on application of the advanced neuroimaging protocol permits performance of highly conformal and selective radiosurgical treatment. It also allows precise planning of the microsurgical procedures for skull base tumors.

  10. The skull roof tracks the brain during the evolution and development of reptiles including birds.

    PubMed

    Fabbri, Matteo; Mongiardino Koch, Nicolás; Pritchard, Adam C; Hanson, Michael; Hoffman, Eva; Bever, Gabriel S; Balanoff, Amy M; Morris, Zachary S; Field, Daniel J; Camacho, Jasmin; Rowe, Timothy B; Norell, Mark A; Smith, Roger M; Abzhanov, Arhat; Bhullar, Bhart-Anjan S

    2017-10-01

    Major transformations in brain size and proportions, such as the enlargement of the brain during the evolution of birds, are accompanied by profound modifications to the skull roof. However, the hypothesis of concerted evolution of shape between brain and skull roof over major phylogenetic transitions, and in particular of an ontogenetic relationship between specific regions of the brain and the skull roof, has never been formally tested. We performed 3D morphometric analyses to examine the deep history of brain and skull-roof morphology in Reptilia, focusing on changes during the well-documented transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds. Non-avialan taxa cluster tightly together in morphospace, whereas Archaeopteryx and crown birds occupy a separate region. There is a one-to-one correspondence between the forebrain and frontal bone and the midbrain and parietal bone. Furthermore, the position of the forebrain-midbrain boundary correlates significantly with the position of the frontoparietal suture across the phylogenetic breadth of Reptilia and during the ontogeny of individual taxa. Conservation of position and identity in the skull roof is apparent, and there is no support for previous hypotheses that the avian parietal is a transformed postparietal. The correlation and apparent developmental link between regions of the brain and bony skull elements are likely to be ancestral to Tetrapoda and may be fundamental to all of Osteichthyes, coeval with the origin of the dermatocranium.

  11. Skull trepanation in the Bismarck archipelago.

    PubMed

    Watters, David A K

    2007-01-01

    Skull trepanation is an ancient art and has been recognized in many, if not most, primitive societies. Papua New Guinea came into contact with Europeans in the late 1800s and therefore it was possible for the art to be documented at a time when cranial surgery in Europe was still in its infancy. A reviewof published articles and accounts of those who observed skull trepanation or spoke to those who had. Review of a video of trepanation as practised today in Lihir. Richard Parkinson was a trader turned amateur anthropologist who was able to observe the surgical procedure being practised in Blanche Bay (New Britain). Trepanation was also witnessed by Rev. J.A. Crump in the Duke of Yorks. In New Britain the operation was performed for trauma but in New Ireland it was also employed on conscious patients for epilepsy or severe headache, particularly in the first five years of life. There was, however, a tendency to operate on frontal depressed and open fractures, rather than temporoparietal ones. Once the decision to operate was made the wound was irrigated in coconut juice and this was also used to wash the hands of the surgeon. Anaesthesia was not required as the traumatized patient was unconscious. The procedure is described and the tools included local materials such as obsidian, shark's tooth, a sharpened shell, rattan, coconut shell and bamboo. Of particular interest is the observation of brain pulsations and their relationship to a successful outcome. The outcomes were good, in that 70% of patients were thought to survive, contrasting with a 75% mortality for cranial surgery in London in the 1870s. There is supporting evidence in that many trepanned skulls show evidence of healing and life long after the procedure was completed. Other societies have reported similar survival rates. The good outcomes may have been due to wise case selection as well as a high level of surgical skill following sound principles of wound debridement without necessarily being able to

  12. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  13. Shape similarities and differences in the skulls of scavenging raptors.

    PubMed

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  14. Traumatic aneurysms of the internal carotid artery at the base of the skull. Two cases treated surgically.

    PubMed

    Magnan, P E; Branchereau, A; Cannoni, M

    1992-01-01

    Internal carotid aneurysms at the base of the skull after blunt trauma are infrequent but their management is difficult, leading many surgeons to only attempt ligation. We report 2 cases presenting with high traumatic aneurysms, following motorcycle accidents. The 2 aneurysms underwent repair by a venous graft. The petrous portion of the carotid artery was approached and controlled by an ENT surgeon. This "infratemporal" approach was used exposing the facial nerve, combined with temporary anterior sub-luxation of the temporomaxillary joint to expose the lower part of the carotid canal which was opened up with a drill in order to control the carotid artery in the petrous canal. Both patients developed facial nerve palsies which improved within 3 months. Postoperative angiography showed patent vein grafts and the patients were doing well, without any symptoms 18 and 24 months later.

  15. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2015-07-20

    Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.

  16. The effect of the skull of low-birthweight neonates on applied potential tomography imaging of centralised resistivity changes.

    PubMed

    McArdle, F J; Brown, B H; Pearse, R G; Barber, D C

    1988-01-01

    An investigation is presented into the likely effects of the neonatal skull on impedance images produced by applied potential tomography (APT) by imaging impedance changes inside the skull of a human infant of occipito-frontal circumference 30 cm. Measurements have been made with the skull immersed in a tank of saline and electrodes fixed to the perimeter of the tank. Sensitivity measurements have been assessed for imaging a small target close to the centre of the skull as compared with images produced without the skull. The results obtained compare favourably with measurements on a more realistic model of the neonatal head constructed by filling the skull with agar jelly to leave only a thin exterior coating of jelly to simulate the scalp. These experiments suggest that in the central region of the head of a neonate, measured changes by the APT technique are about 44% of that expected from a homogeneous phantom, but that this might vary from 32% to 55% at different points in the image in a very complex manner.

  17. Skull 5 from Dmanisi: Descriptive anatomy, comparative studies, and evolutionary significance.

    PubMed

    Rightmire, G Philip; Ponce de León, Marcia S; Lordkipanidze, David; Margvelashvili, Ann; Zollikofer, Christoph P E

    2017-03-01

    A fifth hominin skull (cranium D4500 and mandible D2600) from Dmanisi is massively constructed, with a large face and a very small brain. Traits documented for the first time in a basal member of the Homo clade include the uniquely low ratio of endocranial volume to basicranial width, reduced vertex height, angular vault profile, smooth nasal sill coupled with a long and sloping maxillary clivus, elongated palate, and tall mandibular corpus. The convex clivus and receding symphysis of skull 5 produce a muzzle-like form similar to that of Australopithecus afarensis. While the Dmanisi cranium is very robust, differing from OH 13, OH 24, and KNM-ER 1813, it resembles Homo habilis specimens in the "squared off" outline of its maxilla in facial view, maxillary sulcus, rounded and receding zygomatic arch, and flexed zygomaticoalveolar pillar. These characters distinguish early Homo from species of Australopithecus and Paranthropus. Skull 5 is unlike Homo rudolfensis cranium KNM-ER 1470. Although it appears generally primitive, skull 5 possesses a bar-like supraorbital torus, elongated temporal squama, occipital transverse torus, and petrotympanic traits considered to be derived for Homo erectus. As a group, the Dmanisi crania and mandibles display substantial anatomical and metric variation. A key question is whether the fossils document age-related growth and sex dimorphism within a single population, or whether two (or more) distinct taxa may be present at the site. We use the coefficient of variation to compare Dmanisi with Paranthropus boisei, H. erectus, and recent Homo sapiens, finding few signals that the Dmanisi sample is excessively variable in comparison to these reference taxa. Using cranial measurements and principal components analysis, we explore the proposal that the Dmanisi skulls can be grouped within a regionally diverse hypodigm for H. erectus. Our results provide only weak support for this hypothesis. Finally, we consider all available morphological

  18. Endoscopic transpterygoid approach and skull base repair after sphenoid meningoencephalocele resection. Our experience.

    PubMed

    Martínez Arias, Àngels; Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Prats-Galino, Alberto; Alobid, Isam

    2015-01-01

    Cerebrospinal fluid leaks associated to meningoencephaloceles of the sphenoid lateral recess are rare entities. A congenital bony defect at this level results in the persistence of Sternberg's canal, or a lateral craniopharyngeal canal, which is supposed to be the origin of these lesions. Our objective was to show that the endoscopic transpterygoid approach is an effective technique for their treatment. We present a series of 5 cases of meningoencephaloceles of the sphenoid lateral recess treated with endoscopic sinus surgery (4 women and one man; mean age=59, range 37-72 years). Cerebrospinal fluid rhinorrhoea was present in all of them and they all underwent a transpterygoid approach with reconstruction of the skull base. We describe the surgical technique and review the literature. No complications were observed during surgery or the postoperative period. After a mean follow-up of 81 months, only one recurrence was seen. The transpterygoid approach has proven to be effective for the treatment of meningoencephaloceles of the sphenoid lateral recess. Providing wide access to identify the defect, followed by meningoencephalocele ablation, is the key for successful surgery. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  19. Penetrating skull fracture by a wooden object: Management dilemmas and literature review

    PubMed Central

    Arifin, Muhammad Zafrullah; Gill, Arwinder Singh; Faried, Ahmad

    2012-01-01

    Most penetrating skull injuries are caused by gun shot wounds or missiles. The compound depressed skull fracture represents an acute neurosurgical emergency. Management and diagnosis of such cases have been described, but its occurence following a fall onto a piece of wood is quite unusual. A 75-year-old female fell onto a piece of wood that penetrated her skull on the left frontal region and was treated in our department. The patient had no neurological deficits during presentation. She was managed surgically and removal of the wooden object was performed to prevent early or late infection complications. Wooden foreign bodies often pose a different set of challenges as far as penetrating injuries to the brain are concerned. Radiological difficulties and increased rates of infection due to its porous nature make these types of injuries particularly interesting. Their early diagnosis and appropriate treatment can minimize the risk of complications. PMID:23293668

  20. Cartilaginous metaplasia and overgrowth of neurocranium skull after X-irradiation in utero.

    PubMed

    Schmahl, W; Meyer, I; Kriegel, H; Tempel, K H

    1979-01-01

    Prenatal X-irradiation of mice in the late organogenesis stage either with a fractionated or a single exposure dose (3 X 160 R or 200 R) leads to remarkable, previously undescribed malformations of the skull. These malformations range from mild hyperostotic nodule formation in about 90% of the offspring to excessive formation of desmal bony tissues, which extend deep into the forebrain and are thus only detectable in histological sections. Metaplastic and hyperplastic formation of cartilage in all the neurocranial regions is observed in about 10% of the offspring. The pathogenesis of these overgrowth phenomena is presumably related to a growth disturbance of both the mesenchymal skull primordium and the brain. While malformation of the latter leads to a decrease of intracranial pressure and consequently to altered growth activity of the skull sutures, the reparative and proliferative capacities of the mesenchyme are also stimulated, in a hyperplastic direction, by X-irradiation.

  1. Preliminary experience with 4K ultra-high definition endoscope: analysis of pros and cons in skull base surgery.

    PubMed

    Rigante, M; La Rocca, G; Lauretti, L; D'Alessandris, G Q; Mangiola, A; Anile, C; Olivi, A; Paludetti, G

    2017-06-01

    During the last two decades endoscopic skull base surgery observed a continuous technical and technological development 3D endoscopy and ultra High Definition (HD) endoscopy have provided great advances in terms of visualisation and spatial resolution. Ultra-high definition (UHD) 4K systems, recently introduced in the clinical practice, will shape next steps forward especially in skull base surgery field. Patients were operated on through transnasal transsphenoidal endoscopic approaches performed using Olympus NBI 4K UHD endoscope with a 4 mm 0° Ultra Telescope, 300 W xenon lamp (CLV-S400) predisposed for narrow band imaging (NBI) technology connected through a camera head to a high-quality control unit (OTV-S400 - VISERA 4K UHD) (Olympus Corporation, Tokyo, Japan). Two screens are used, one 31" Monitor - (LMD-X310S) and one main ultra-HD 55" screen optimised for UHD image reproduction (LMD-X550S). In selected cases, we used a navigation system (Stealthstation S7, Medtronic, Minneapolis, MN, US). We evaluated 22 pituitary adenomas (86.3% macroadenomas; 13.7% microadenomas). 50% were not functional (NF), 22.8% GH, 18.2% ACTH, 9% PRL-secreting. Three of 22 were recurrences. In 91% of cases we achieved total removal, while in 9% near total resection. A mean follow-up of 187 days and average length of hospitalisation was 3.09 ± 0.61 days. Surgical duration was 128.18± 30.74 minutes. We experienced only 1 case of intraoperative low flow fistula with no further complications. None of the cases required any post- or intraoperative blood transfusion. The visualisation and high resolution of the operative field provided a very detailed view of all anatomical structures and pathologies allowing an improvement in safety and efficacy of the surgical procedure. The operative time was similar to the standard 2D HD and 3D procedures and the physical strain was also comparable to others in terms of ergonomics and weight. © Copyright by Società Italiana di Otorinolaringologia

  2. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull.

    PubMed

    Chang, Won Seok; Jung, Hyun Ho; Zadicario, Eyal; Rachmilevitch, Itay; Tlusty, Tal; Vitek, Shuki; Chang, Jin Woo

    2016-02-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.

  3. Morphometric analysis of infraorbital foramen in Indian dry skulls

    PubMed Central

    2011-01-01

    We analyzed the variability in position, shape, size and incidence of the infraorbital foramen in Indian dry skulls as little literature is available on this foramen in Indians to prevent clinical complications during maxillofacial surgery and regional block anesthesia. Fifty-five Indian skulls from the Department of Anatomy CSM Medical University were examined. The 110 sides (left and right) of the skulls were analyzed by measuring the infraorbital foramina distances from infraorbital margin and the piriform aperture on both sides. The vertical and horizontal dimensions were also measured. All measurements were taken with a compass transferred to calipers and analyzed statistically. The mean distances between the infraorbital foramen and the infraorbital margin on the right and left side were 6.12 mm and 6.19 mm, respectively. The mean distances between the infraorbital foramen and the piriform aperture were 15.31 mm and 15.80 mm on the right and left sides, respectively. The mean vertical dimensions on the right and left side were 3.39 mm and 3.75 mm, respectively. The mean horizontal dimensions on the two sides were 3.19 mm and 3.52 mm. These results provide detailed knowledge of the anatomical characteristics and clinical importance of the infraorbital foramina which are of paramount importance for surgeons when performing maxillofacial surgery and regional block anesthesia. PMID:21519552

  4. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review.

    PubMed

    Amichetti, Maurizio; Amelio, Dante; Minniti, Giuseppe

    2012-12-14

    Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS.Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons.The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions.Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated.A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique.

  5. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review

    PubMed Central

    2012-01-01

    Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS. Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons. The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions. Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated. A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique. PMID:23241206

  6. Comparison between diffuse infrared and acoustic transmission over the human skull.

    PubMed

    Wang, Q; Reganti, N; Yoshioka, Y; Howell, M; Clement, G T

    2015-01-01

    Skull-induced distortion and attenuation present a challenge to both transcranial imaging and therapy. Whereas therapeutic procedures have been successful in offsetting aberration using from prior CTs, this approach impractical for imaging. In effort to provide a simplified means for aberration correction, we have been investigating the use of diffuse infrared light as an indicator of acoustic properties. Infrared wavelengths were specifically selected for tissue penetration; however this preliminary study was performed through bone alone via a transmission mode to facilitate comparison with acoustic measurements. The inner surface of a half human skull, cut along the sagittal midline, was illuminated using an infrared heat lamp and images of the outer surface were acquired with an IR-sensitive camera. A range of source angles were acquired and averaged to eliminate source bias. Acoustic measurement were likewise obtained over the surface with a source (1MHz, 12.7mm-diam) oriented parallel to the skull surface and hydrophone receiver (1mm PVDF). Preliminary results reveal a positive correlation between sound speed and optical intensity, whereas poor correlation is observed between acoustic amplitude and optical intensity.

  7. Patients cured of acromegaly do not experience improvement of their skull deformities.

    PubMed

    Rick, Jonathan W; Jahangiri, Arman; Flanigan, Patrick M; Aghi, Manish K

    2017-04-01

    Acromegaly is a rare disease that is associated with many co-morbidities. This condition also causes progressive deformity of the skull which includes frontal bossing and cranial thickening. Surgical and/or medical management can cure this condition in many patients, but it is not understood if patients cured of acromegaly experience regression of their skull deformities. We performed a retrospective analysis on patients treated at our dedicated pituitary center from 2009 to 2014. We looked at all MRI images taken during the treatment of these patients and recorded measurements on eight skull dimensions. We then analyzed these measurements for changes over time. 29 patients underwent curative treatment for acromegaly within our timeframe. The mean age for this population was 45.0 years old (range 19-70) and 55.2 % (n = 16) were female. All of these patients were treated with a transsphenoidal resection for a somatotropic pituitary adenoma. 9 (31.1%) of these patients required further medical therapy to be cured. We found statically significant variation in the coronal width of the sella turcica after therapy, which is likely attributable to changes from transsphenoidal surgery. None of the other dimensions had significant variation over time after cure. Patients cured of acromegaly should not expect natural regression of their skull deformities. Our study suggests that both frontal bossing and cranial thickening do not return to normal after cure.

  8. Skull wounds linked with blunt trauma (hammer example). A report of two depressed skull fractures--elements of biomechanical explanation.

    PubMed

    Delannoy, Yann; Becart, Anne; Colard, Thomas; Delille, Rémi; Tournel, Gilles; Hedouin, Valéry; Gosset, Didier

    2012-09-01

    The lesions of the skull following perforating traumas can create complex fractures. The blunt traumas can, according to the swiftness and the shape of the object used, create a depressed fracture. The authors describe through two clinical cases the lesional characteristic of the blunt traumas, perforating the skull using a hammer. In both cases the cranial lesions were very typical: they were geometrical, square shaped, of the same size than the tool (head and tip of the hammer). On the outer table of the skull, the edges of the wounds were sharp and regular. On the inner table, the edges of the wounds were beveled and irregular. The bony penetration in the depressed fracture results from a rupture of the outer table of the bone under tension, in periphery, by the bend of the bone to the impact (outbending) and then, from the inner table with comminuted bony fragmentation. Breeding on the fractures of the size and the shape of the blunt objects used is inconstant and differs, that it is the objects of flat surface or wide in opposition to those of small surface area. Fractures morphologies depend on one hand on these extrinsic factors and on the other hand, of intrinsic factors (structure of the bone). To identify them, we had previously conducted experimental work on cranial bone samples. The bone was submitted to a device for three-point bending. This work had shown properties of thickness and stiffness of the various areas of the vault. Our cases are consistent with these results and illustrate the variability of bone lesions according to region and mode of use of blunt weapons. Many studies have identified criteria for identification of the weapons and the assistance of digital and biomechanical models will be an invaluable contribution with this aim in the future. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  10. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  12. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  13. Durable clinical remission of a skull metastasis under intralesional Viscum album extract therapy: Case report.

    PubMed

    Werthmann, Paul Georg; Huber, Roman; Kienle, Gunver Sophia

    2018-06-09

    Skull metastases are rare, they can eventually cause pain, and can invade the brain. Viscum album extracts (VAEs) are used as an adjuvant treatment in cancer. A 68-year-old patient with rectal cancer presented with lung metastases, and metastases to multiple bone sites, the chest wall, and the liver were later identified. Histological examination of one of the bone lesions revealed an additional thyroid carcinoma. An osteolytic parietal bone lesion progressed to a painful metastasis of the skull despite radiotherapy and chemotherapy. The VAEs were applied weekly into the metastasis, followed by pain relief and softening of the lesion. The lesion partially regressed (>50%) after 8 months of continued VAE treatment and remained stable for 2 years. This case shows a durable clinical remission of a skull metastasis under VAE. Further investigations of intratumoral VAE treatment seem worthwhile-especially in symptomatic skull metastases not responding to radiotherapy or systemic therapies. © 2018 The Authors Head & Neck Published by Wiley Periodicals, Inc.

  14. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects.

    PubMed

    Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won

    2016-06-01

    The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.

  15. Stories, skulls, and colonial collections.

    PubMed

    Roque, Ricardo

    2011-01-01

    The essay explores the hypothesis of colonial collecting processes involving the active addition of the colonial context and historical past to museum objects through the production of short stories. It examines the emergent historicity of collections through a focus on the "histories" that museum workers and colonial agents have been attaching to scientific collections of human skulls. Drawing on the notions of collection trajectory and historiographical work, it offers an alternative perspective from which to approach the creation of singular histories and individual archives for objects in collections.

  16. Variation of BMP3 Contributes to Dog Breed Skull Diversity

    PubMed Central

    Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.

    2012-01-01

    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193

  17. Surgical resection of skull-base chordomas: experience in case selection for surgical approach according to anatomical compartments and review of the literature.

    PubMed

    Shimony, Nir; Gonen, Lior; Shofty, Ben; Abergel, Avraham; Fliss, Dan M; Margalit, Nevo

    2017-10-01

    Chordoma is a rare bony malignancy known to have a high rate of local recurrence after surgery. The best treatment paradigm is still being evaluated. We report our experience and review the literature. We emphasize on the difference between endoscopic and open craniotomy in regard to the anatomical compartment harboring the tumor, the limitations of the approaches and the rate of surgical resection. We retrospectively collected all patients with skull-base chordomas operated on between 2004 and 2014. Detailed radiological description of the compartments being occupied by the tumor and the degree of surgical resection is discussed. Eighteen patients were operated on in our facility for skull-base chordoma. Seventeen endoscopic surgeries were done in 15 patients, and 7 craniotomies were done in 5 patients. The mean age was 48.9 years (±19.8 years). When reviewing the anatomical compartments, we found that the most common were the upper clivus (95.6%) and lower clivus (58.3%), left cavernous sinus (66.7%) and petrous apex (∼60%). Most of the patients had intradural tumor involvement (70.8%). In all craniotomy cases, there was residual tumor in multiple compartments. In the endoscopic cases, the most difficult compartments for total resection were the lower clivus, and lateral extensions to the petrous apex or cavernous sinus. Our experience shows that the endoscopic approach is a good option for midline tumors without significant lateral extension. In cases with very lateral or lower extensions, additional approaches should be added trying to achieve complete resection.

  18. Growth overshoot and seasonal size changes in the skulls of two weasel species

    PubMed Central

    Keicher, Lara; Wikelski, Martin; Zub, Karol; Dechmann, Dina K. N.

    2017-01-01

    Ontogenetic changes in mammalian skulls are complex. For a very few species (i.e. some Sorex shrews), these also include seasonally driven, bidirectional size changes within individuals, presumably to reduce energy requirements during low resource availabilities. These patterns are poorly understood, but are likely most pronounced in high-metabolic species with limited means for energy conservation. We used generalized additive models to quantify the effect of location, Julian day, age and sex on the length and depth of 512 and 847 skulls of stoat (Mustela erminea) and weasel (M. nivalis) specimens collected throughout the northern hemisphere. Skull length of both species varies between sexes and geographically, with stoat skull length positively correlated with latitude. Both species demonstrate seasonal and ontogenetic patterns, including a rare, absolute growth overshoot in juvenile braincase depth. Standardized braincase depths of both species peak in their first summer, then decrease in their first winter, followed by a remarkable regrowth that peaks again during their second summer. This seasonal pattern varies in magnitude and timing between geographical regions and the sexes, matching predictions of Dehnel's phenomenon. This suggests implications for the evolution of over-wintering strategies in mammals, justifying further research on their mechanisms and value, with implications for applied osteology research. PMID:28280592

  19. Geographical and functional-morphological variations of the skull in the gray-bellied squirrel.

    PubMed

    Endo, Hideki; Kimura, Junpei; Oshida, Tatsuo; Stafford, Brian J; Rerkamnuaychoke, Worawut; Nishida, Takao; Sasaki, Motoki; Hayashida, Akiko; Hayashi, Yoshihiro

    2004-03-01

    The geographical variations of the skulls were osteometrically examined in the gray-bellied squirrel (Callosciurus caniceps) from the populations of Korat, Ranong, southernmost Thailand, and Terutau Island. The skull size was larger in northern population than in the southern population in the continental mainland. The zoogeographical influences of the Isthmus of Kra remained unclear, since the plots from Korat population were intermingled with those from southernmost Thailand population in the principal component charts. Although Korat population has been thought to belong to north group, we suggest that Ranong and southernmost Thailand populations may contain individuals from both north and south groups separated by the ancient Kra barrier. Terutau Island population was similar to southernmost Thailand population in skull size, although Terutau population has been isolated in the island and separated from the south group of the Isthmus of Kra. In the proportional analysis the interorbital space was narrower and the binocular sense has been well-developed in Terutau population. It suggests that this population has been highly adapted to arboreal behavior. In contrast, the skull with larger interorbital space was more adaptive for terrestrial life in Korat population. The canonical discriminant analysis could clearly separate the four populations in the scattergrams of discriminant scores.

  20. Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models.

    PubMed

    Laarne, P H; Tenhunen-Eskelinen, M L; Hyttinen, J K; Eskola, H J

    2000-01-01

    The effect of number of EEG electrodes on the dipole localization was studied by comparing the results obtained using the 10-20 and 10-10 electrode systems. Two anatomically detailed models with resistivity values of 177.6 omega m and 67.0 omega m for the skull were applied. Simulated potential values generated by current dipoles were applied to different combinations of the volume conductors and electrode systems. High and low resistivity models differed slightly in favour of the lower skull resistivity model when dipole localization was based on noiseless data. The localization errors were approximately three times larger using low resistivity model for generating the potentials, but applying high resistivity model for the inverse solution. The difference between the two electrode systems was minor in favour of the 10-10 electrode system when simulated, noiseless potentials were used. In the presence of noise the dipole localization algorithm operated more accurately using the denser electrode system. In conclusion, increasing the number of recording electrodes seems to improve the localization accuracy in the presence of noise. The absolute skull resistivity value also affects the accuracy, but using an incorrect value in modelling calculations seems to be the most serious source of error.