Sample records for slow control system

  1. The Slow Control System of the Auger Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.

    2003-07-01

    The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.

  2. Slow Control System for the NIFFTE Collaboration TPC

    NASA Astrophysics Data System (ADS)

    Ringle, Erik; Niffte Collaboration Collaboration

    2011-10-01

    As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.

  3. CompactPCI/Linux Platform in FTU Slow Control System

    NASA Astrophysics Data System (ADS)

    Iannone, F.; Wang, L.; Centioli, C.; Panella, M.; Mazza, G.; Vitale, V.

    2004-12-01

    In large fusion experiments, such as tokamak devices, there is a common trend for slow control systems. Because of complexity of the plants, the so-called `Standard Model' (SM) in slow control has been adopted on several tokamak machines. This model is based on a three-level hierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-Level Control (MLC) to interface and concentrate I/O field equipments; 3) Low-Level Control (LLC) with hard real-time I/O function, often managed by PLCs. FTU control system designed with SM concepts has underwent several stages of developments in its fifteen years duration of runs. The latest evolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 with OS9 operating system. A large amount of C code was developed for that platform to route the data flow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000 field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64 platform. Therefore, we have to look for cost-effective solutions and finally a CompactPCI-Intel x86 platform with Linux operating system was chosen. A software porting has been done, taking into account the differences between OS9 and Linux operating system in terms of Inter/Network Processes Communications and I/O multi-ports serial driver. This paper describes the hardware/software architecture of the new MLC system, emphasizing the reliability and the low costs of the open source solutions. Moreover, a huge amount of software packages available in open source environment will assure a less painful maintenance, and will open the way to further improvements of the system itself.

  4. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  6. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  7. The Slow Controls System of the New Muon g-2 Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Eads, Michael; New Muon g-2 Collaboration

    2015-04-01

    The goal of the new muon g-2 experiment (E-989), currently under construction at Fermi National Accelerator Laboratory, is to measure the anomalous gyromagnetic ratio of the muon with unprecedented precision. The uncertainty goal of the experiment, 0.14ppm, represents a four-fold improvement over the current best measurement of this value and has the potential to increase the current three standard deviation disagreement with the predicted standard model value to five standard deviations. Measuring the operating conditions of the experiment will be essential to achieving these uncertainty goals. This talk will describe the design and the current status of E-989's slow controls system. This system, based on the MIDAS Slow Control Bus, will be used to measure and record currents, voltages, temperatures, humidities, pressures, flows, and other data which is collected asynchronously with the injection of the muon beam. The system consists of a variety of sensors and front-end electronics which interface to back-end data acquisition, data storage, and data monitoring systems. Parts of the system are all already operational and the full system will be completed before beam commissioning begins in 2017.

  8. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  9. Development of slow control system for the Belle II ARICH counter

    NASA Astrophysics Data System (ADS)

    Yonenaga, M.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yusa, Y.

    2017-12-01

    A slow control system (SCS) for the Aerogel Ring Imaging Cherenkov (ARICH) counter in the Belle II experiment was newly developed and coded in the development frameworks of the Belle II DAQ software. The ARICH is based on 420 Hybrid Avalanche Photo-Detectors (HAPDs). Each HAPD has 144 pixels to be readout and requires 6 power supply (PS) channels, therefore a total number of 2520 PS channels and 60,480 pixels have to be configured and controlled. Graphical User Interfaces (GUIs) with detector oriented view and device oriented view, were also implemented to ease the detector operation. The ARICH SCS is in operation for detector construction and cosmic rays tests. The paper describes the detailed features of the SCS and preliminary results of operation of a reduced set of hardware which confirm the scalability to the full detector.

  10. Birth control - slow release methods

    MedlinePlus

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  11. Magnetic-field-dependent slow light in strontium atom-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  12. Slow Controls Using the Axiom M5235BCC

    NASA Astrophysics Data System (ADS)

    Hague, Tyler

    2008-10-01

    The Forward Vertex Detector group at PHENIX plans to adopt the Axiom M5235 Business Card Controller for use as slow controls. It is also being evaluated for slow controls on FermiLab e906. This controller features the Freescale MCF5235 microprocessor. It also has three parallel buses, these being the MCU port, BUS port, and enhanced Time Processing Unit (eTPU) port. The BUS port uses a chip select module with three external chip selects to communicate with peripherals. This will be used to communicate with and configure Field Programmable Gate Arrays (FPGAs). The controller also has an Ethernet port which can use several different protocols such as TCP and UDP. This will be used to transfer files with computers on a network. The M5235 Business Card Controller will be placed in a VME crate along with VME card and a Spartan-3 FPGA.

  13. Slow Monitoring Systems for CUORE

    NASA Astrophysics Data System (ADS)

    Dutta, Suryabrata; Cuore Collaboration

    2016-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 10 mK. We have developed slow monitoring systems to monitor the cryostat during detector installation, commissioning, data taking, and other crucial phases of the experiment. Our systems use responsive LabVIEW virtual instruments and video streams of the cryostat. We built a website using the Angular, Bootstrap, and MongoDB frameworks to display this data in real-time. The website can also display archival data and send alarms. I will present how we constructed these slow monitoring systems to be robust, accurate, and secure, while maintaining reliable access for the entire collaboration from any platform in order to ensure efficient communications and fast diagnoses of all CUORE systems.

  14. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations

  15. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  16. Acute effects on cardiovascular oscillations during controlled slow yogic breathing.

    PubMed

    Bhagat, Om Lata; Kharya, Chhaya; Jaryal, Ashok; Deepak, Kishore Kumar

    2017-04-01

    Breathing exercises are believed to modulate the cardiovascular oscillations in the body. To assess the validity of the assumption and understand the underlying mechanism, the key autonomic regulatory parameters such as heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were recorded during controlled slow yogic breathing. Alternate nostril breathing (ANB) was selected as the yogic manoeuvre. Twelve healthy volunteers (age 30±3.8 yr) participated in the study. ANB was performed at a breathing frequency of 5 breaths per minute (bpm). In each participant, the electrocardiogram, respiratory movements, beat-to-beat BP and end-tidal carbon dioxide were recorded for five minutes each: before, during and after ANB. The records were analyzed for HRV, BPV and BRS. During ANB, HRV analysis showed significant increase in the standard deviation of all NN intervals, low-frequency (LF) component, LF/HF (low frequency/high frequency) ratio and significant decrease in the HF component. BPV analysis showed a significant increase in total power in systolic BPV (SBPV), diastolic BPV (DBPV) and mean BPV. BRS analysis showed a significant increase in the total number of sequences in SBPV and DBPV and significant augmentation of α-LF and reduction in α-HF. The power spectrum showed a dominant peak in HRV at 0.08 Hz (LF component) similar to the respiratory frequency. The acute short-term change in circulatory control system declined immediately after the cessation of slow yogic breathing (ANB) and remained elevated in post-ANB stage as compared to the pre-ANB. Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as

  17. Vertical-angle control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei

    2000-10-01

    A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.

  18. The CUORE slow monitoring systems

    NASA Astrophysics Data System (ADS)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  19. The CUORE slow monitoring systems

    DOE PAGES

    Gladstone, L.; Biare, D.; Cappelli, L.; ...

    2017-09-20

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  20. The CUORE slow monitoring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladstone, L.; Biare, D.; Cappelli, L.

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  1. Temporal Heterogeneity and the Value of Slowness in Robotic Systems

    DTIC Science & Technology

    2015-11-01

    DIMENSIONS OF HETEROGENEITY By now, we have become reasonably good at designing distributed control strategies for teams of networked agents in order...possible is the recent emergence of a relatively mature theory of how to coordinate control decisions across teams of networked agents. In fact...Loris, illustrated in Figure 2. Figure 2: Slow mammals that serve as bio-inspiration for SlowBot Behavior [Wikipedia] Top: Tree

  2. Control of slow-to-fast light and single-to-double optomechanically induced transparency in a compound resonator system: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid

    2017-10-01

    The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.

  3. Slow Invariant Manifolds in Chemically Reactive Systems

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  4. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.; Ikuta, R.; Imoto, N.

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less

  5. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  6. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  7. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  8. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  9. The manual control of vehicles undergoing slow transitions in dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Moriarty, T. E.

    1974-01-01

    The manual control was studied of a vehicle with slowly time-varying dynamics to develop analytic and computer techniques necessary for the study of time-varying systems. The human operator is considered as he controls a time-varying plant in which the changes are neither abrupt nor so slow that the time variations are unimportant. An experiment in which pilots controlled the longitudinal mode of a simulated time-varying aircraft is described. The vehicle changed from a pure double integrator to a damped second order system, either instantaneously or smoothly over time intervals of 30, 75, or 120 seconds. The regulator task consisted of trying to null the error term resulting from injected random disturbances with bandwidths of 0.8, 1.4, and 2.0 radians per second. Each of the twelve experimental conditons was replicated ten times. It is shown that the pilot's performance in the time-varying task is essentially equivalent to his performance in stationary tasks which correspond to various points in the transition. A rudimentary model for the pilot-vehicle-regulator is presented.

  10. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Das, Trishna

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less

  11. Possible control of subduction zone slow-earthquake periodicity by silica enrichment.

    PubMed

    Audet, Pascal; Bürgmann, Roland

    2014-06-19

    Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years. In Cascadia, slow slip is segmented along strike and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface. Observations and models of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature, and deposition prevails near the base of the forearc crust. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution-precipitation creep can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also

  12. Slow Movements of Bio-Inspired Limbs

    NASA Astrophysics Data System (ADS)

    Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva

    2016-10-01

    Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.

  13. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  14. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  15. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Slow-release fluoride devices for the control of dental decay.

    PubMed

    Chong, Lee Yee; Clarkson, Jan E; Dobbyn-Ross, Lorna; Bhakta, Smriti

    2014-11-28

    Slow-release fluoride devices have been investigated as a potentially cost-effective method of reducing dental caries in people with high risk of disease. To evaluate the effectiveness and safety of different types of slow-release fluoride devices on preventing, arresting, or reversing the progression of carious lesions on all surface types of primary (deciduous) and permanent teeth. We searched the following electronic databases: the Cochrane Oral Health Group Trials Register (to 13 August 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 7), MEDLINE via Ovid (1946 to 13 August 2014), and EMBASE via Ovid (1980 to 13 August 2014). We searched the US National Institutes of Health Trials Register and the World Health Organization (WHO) International Clinical Trials Registry Platform. We placed no restrictions on the language or date of publication when searching the electronic databases.We first published the review in 2006. The update in 2013 found 302 abstracts, but none of these met the inclusion criteria of the review. Parallel randomised controlled trials (RCTs) comparing slow-release fluoride devices with an alternative fluoride treatment, placebo, or no intervention in all age groups. The main outcomes measures sought were changes in numbers of decayed, missing, and filled teeth or surfaces (DMFT/DMFS in permanent teeth or dmft/dmfs in primary teeth), and progression of carious lesions through enamel and into dentine. We conducted data collection and analysis using standard Cochrane review methods. At least two review authors independently performed all the key steps in the review such as screening of abstracts, application of inclusion criteria, data extraction, and risk of bias assessment. We resolved discrepancies through discussions or arbitration by a third or fourth review author. We found no evidence comparing slow-release fluoride devices against other types of fluoride therapy.We found only one double-blind RCT involving

  17. Slow-release fluoride devices for the control of dental decay.

    PubMed

    Chong, Lee-Yee; Clarkson, Jan E; Dobbyn-Ross, Lorna; Bhakta, Smriti

    2018-03-01

    Slow-release fluoride devices have been investigated as a potentially cost-effective method of reducing dental caries in people with high risk of disease. This is the second update of the Cochrane Review first published in 2006 and previously updated in 2014. To evaluate the effectiveness and safety of different types of slow-release fluoride devices on preventing, arresting, or reversing the progression of carious lesions on all surface types of primary (deciduous) and permanent teeth. Cochrane Oral Health's Information Specialist searched the following electronic databases: Cochrane Oral Health's Trials Register (to 23 January 2018); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 12) in the Cochrane Library (searched 23 January 2018); MEDLINE Ovid (1946 to 23 January 2018); and Embase Ovid (1980 to 23 January 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials (23 January 2018). We placed no restrictions on the language or date of publication when searching the electronic databases. Parallel randomised controlled trials (RCTs) comparing slow-release fluoride devices with an alternative fluoride treatment, placebo, or no intervention in all age groups. The main outcome measures sought were changes in numbers of decayed, missing, and filled teeth or surfaces (DMFT/DMFS in permanent teeth or dmft/dmfs in primary teeth), and progression of carious lesions through enamel and into dentine. We conducted data collection and analysis using standard Cochrane review methods. At least two review authors independently performed all the key steps in the review such as screening of abstracts, application of inclusion criteria, data extraction, and risk of bias assessment. We resolved discrepancies through discussions or arbitration by a third or fourth review author. We found no evidence comparing slow

  18. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and

  19. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.

    PubMed

    Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C

    2012-06-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/

  20. A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings

    PubMed Central

    Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.

    2012-01-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054

  1. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  2. Direct imaging of slow, stored and stationary EIT polaritons

    NASA Astrophysics Data System (ADS)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  3. Critical Slowing Down Governs the Transition to Neuron Spiking

    PubMed Central

    Meisel, Christian; Klaus, Andreas; Kuehn, Christian; Plenz, Dietmar

    2015-01-01

    Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which are sudden changes to a qualitatively different system state. These changes can profoundly impact the functioning of a system ranging from controlled state switching to a catastrophic break-down; signals that predict critical transitions are therefore highly desirable. To this end, research efforts have focused on utilizing qualitative changes in markers related to a system’s tendency to recover more slowly from a perturbation the closer it gets to the transition—a phenomenon called critical slowing down. The recently studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify the transition mechanism and improve transition prediction using scaling laws. Here, we outline and apply this strategy for the first time in a real-world system by studying the transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf bifurcation. Although theory provides precise predictions on signatures of critical slowing down near the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1) the transition to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2) the scaling laws suggest a saddle-node bifurcation governing slowing down, and 3) these precise scaling laws can be used to predict the bifurcation point from a limited window of observation. To our knowledge this is the first report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling laws of critical slowing down as a

  4. Proactive Control: Neural Oscillatory Correlates of Conflict Anticipation and Response Slowing.

    PubMed

    Chang, Andrew; Ide, Jaime S; Li, Hsin-Hung; Chen, Chien-Chung; Li, Chiang-Shan R

    2017-01-01

    Proactive control allows us to anticipate environmental changes and adjust behavioral strategy. In the laboratory, investigators have used a number of different behavioral paradigms, including the stop-signal task (SST), to examine the neural processes of proactive control. Previous functional MRI studies of the SST have demonstrated regional responses to conflict anticipation-the likelihood of a stop signal or P(stop) as estimated by a Bayesian model-and reaction time (RT) slowing and how these responses are interrelated. Here, in an electrophysiological study, we investigated the time-frequency domain substrates of proactive control. The results showed that conflict anticipation as indexed by P(stop) was positively correlated with the power in low-theta band (3-5 Hz) in the fixation (trial onset)-locked interval, and go-RT was negatively correlated with the power in delta-theta band (2-8 Hz) in the go-locked interval. Stimulus prediction error was positively correlated with the power in the low-beta band (12-22 Hz) in the stop-locked interval. Further, the power of the P(stop) and go-RT clusters was negatively correlated, providing a mechanism relating conflict anticipation to RT slowing in the SST. Source reconstruction with beamformer localized these time-frequency activities close to brain regions as revealed by functional MRI in earlier work. These are the novel results to show oscillatory electrophysiological substrates in support of trial-by-trial behavioral adjustment for proactive control.

  5. Proactive Control: Neural Oscillatory Correlates of Conflict Anticipation and Response Slowing

    PubMed Central

    Ide, Jaime S.

    2017-01-01

    Abstract Proactive control allows us to anticipate environmental changes and adjust behavioral strategy. In the laboratory, investigators have used a number of different behavioral paradigms, including the stop-signal task (SST), to examine the neural processes of proactive control. Previous functional MRI studies of the SST have demonstrated regional responses to conflict anticipation—the likelihood of a stop signal or P(stop) as estimated by a Bayesian model—and reaction time (RT) slowing and how these responses are interrelated. Here, in an electrophysiological study, we investigated the time–frequency domain substrates of proactive control. The results showed that conflict anticipation as indexed by P(stop) was positively correlated with the power in low-theta band (3–5 Hz) in the fixation (trial onset)-locked interval, and go-RT was negatively correlated with the power in delta-theta band (2–8 Hz) in the go-locked interval. Stimulus prediction error was positively correlated with the power in the low-beta band (12–22 Hz) in the stop-locked interval. Further, the power of the P(stop) and go-RT clusters was negatively correlated, providing a mechanism relating conflict anticipation to RT slowing in the SST. Source reconstruction with beamformer localized these time–frequency activities close to brain regions as revealed by functional MRI in earlier work. These are the novel results to show oscillatory electrophysiological substrates in support of trial-by-trial behavioral adjustment for proactive control. PMID:28560315

  6. Slow Orbit Feedback at the ALS Using Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.

    1999-03-25

    The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less

  7. Revealing the cluster of slow transients behind a large slow slip event.

    PubMed

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  8. Soil clay content controls the turnover of slow soil carbon across Chinese cropland

    NASA Astrophysics Data System (ADS)

    Feng, W.; Jiang, J.; Li, J.

    2017-12-01

    Improving the prediction of changes in global soil organic carbon (SOC) lies in accurate estimate of C inputs to soils and SOC turnover time. Since C inputs to soils in cropland can be estimated due to well documented data of crop yields, SOC turnover rate becomes critical for accurate prediction of changes in SOC. The laboratory incubation is widely used but cannot well represent the turnover of slow soil C that accounts for the majority of total SOC, while the long-term observation of temporal changes in SOC stock offers an opportunity to estimate the turnover of slow soil C. Using time series data of SOC stock of twenty long-term agricultural trials that have initiated since 1990 in China, we estimated SOC turnover rates based on changes in soil C pool size and aimed to identify the dominant controls on SOC turnover rate across Chinese cropland. We used the two-pool first-order kinetic soil C model and the inverse modeling with Markov chain the Monte Carlo algorithm, and estimated humification coefficient (h) of C inputs to soils, turnover rates of fast and slow soil C pools, and the transfer coefficient between these two soil C pools. The preliminary results show that the turnover rate of slow soil C is positively correlated with climate (i.e. mean annual temperature and precipitation) but negatively correlated with the clay content, demonstrating that the clay content is important in regulating SOC turnover rates. The ratio of humification coefficient to C turnover rate (h/k) that indicates soil C sequestration efficiency, is negatively correlated with climate and positively correlated with the clay content. In addition, the quantity of C inputs is correlated with h/k and the turnover rate of slow soil C, suggesting that the quantity of C inputs plays an important role in mediating C sequestration efficiency. Further results will inform us the main controls on SOC turnover in Chinese cropland. Keywords: SOC; turnover; long-term trial; temporal change; clay

  9. Simulation of traffic control signal systems

    NASA Technical Reports Server (NTRS)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  10. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    NASA Astrophysics Data System (ADS)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  11. Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Tong, Hua; Tanaka, Hajime

    2018-01-01

    The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two

  12. Stabilization of model-based networked control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less

  13. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  14. Natural extension of fast-slow decomposition for dynamical systems

    NASA Astrophysics Data System (ADS)

    Rubin, J. E.; Krauskopf, B.; Osinga, H. M.

    2018-01-01

    Modeling and parameter estimation to capture the dynamics of physical systems are often challenging because many parameters can range over orders of magnitude and are difficult to measure experimentally. Moreover, selecting a suitable model complexity requires a sufficient understanding of the model's potential use, such as highlighting essential mechanisms underlying qualitative behavior or precisely quantifying realistic dynamics. We present an approach that can guide model development and tuning to achieve desired qualitative and quantitative solution properties. It relies on the presence of disparate time scales and employs techniques of separating the dynamics of fast and slow variables, which are well known in the analysis of qualitative solution features. We build on these methods to show how it is also possible to obtain quantitative solution features by imposing designed dynamics for the slow variables in the form of specified two-dimensional paths in a bifurcation-parameter landscape.

  15. [Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea.

    PubMed

    Sun, Xiang Xin; Li, Dong Po; Wu, Zhi Jie; Cui, Ya Lan; Han, Mei; Li, Yong Hua; Yang, De Fu; Cui, Yong Kun

    2016-06-01

    The characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil were examined under 9-year application of different slow/controlled release urea with the common large granule urea (U) as the control. The results showed that compared with the control, all slow/controlled release urea treatments, except 25.8% increase of ammonia volatilization under 1% 3,4-dimethylpyrazole phosphate (DMPP)+U, could decrease the ammonia volatilization. Polymer coated urea (PCU) dominated the highest reduction of 73.4% compared to U, followed by sulfur coated urea (SCU) (72.2%), 0.5% N-(N-butyl) thiophosphoric triamide (NBPT)+1% DMPP+U (71.9%), 1% hydroquinone (HQ)+3% dicyandiamide (DCD)+U (46.9%), 0.5% NBPT+U (43.2%), 1% HQ +U (40.2%), 3% DCD+U (25.5%), and the ammonia volatilization under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). 1% DMPP+U caused the lowest emission of N 2 O under different slow/controlled release urea treatments. The slow/controlled release urea also had a significant potential of N 2 O emission reduction: 1% DMPP+U showed the highest reduction of 74.9% compared to U, followed by PCU (62.1%), 1% HQ+3% DCD+U (54.7%), 0.5% NBPT+1% DMPP+U (42.2%), 3% DCD+U (35.9%), 1% HQ +U (28.9%), 0.5% NBPT+U (17.7%), SCU (14.5%), and N 2 O emissions under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). The comprehensive analysis showed that 0.5% NBPT+1% DMPP+U, SCU and PCU had similar effects on decreasing the ammonia volatilization and N 2 O emission and were remarkably better than the other treatments. The slow release urea with the combination of urease and nitrification inhibitors should be the first choice for reducing N loss and environmental pollution in paddy field, in view of the higher costs of coated urea fertilizers.

  16. A Simple and Inexpensive Device for Slow, Controlled Addition of a Solution to a Reaction Mixture

    NASA Astrophysics Data System (ADS)

    Osvath, Peter

    1995-07-01

    particular needle length/bore is determined, the tap on the addition funnel is turned fully on, so no adjustment is necessary. When needles with a particularly fine bore are used, a small plug of glass wool should be inserted in the constriction above the tap, to filter the solution and prevent blockage of the needle. An inert atmosphere is readily maintained throughout the system. The elimination of atmospheric contamination, containment of odors and controlled slow addition have led to improved yields and less complaints from fellow inhabitants of the laboratory! Literature Cited 1. Osvath, P.; Sargeson, A. M.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1991, 1036. Osvath. P.; Sargeson, A. J. Chem. Soc., Chem. Commun. 1993, 40.

  17. Effects of Slow Deep Breathing at High Altitude on Oxygen Saturation, Pulmonary and Systemic Hemodynamics

    PubMed Central

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (SpO2) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2–3 days (Study A; N = 39) or at 5400 m for 12–16 days (Study B; N = 28). Study variables, including SpO2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in SpO2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion. PMID:23152851

  18. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    PubMed

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  19. More pain, more gain: Blocking the opioid system boosts adaptive cognitive control.

    PubMed

    van Steenbergen, Henk; Weissman, Daniel H; Stein, Dan J; Malcolm-Smith, Susan; van Honk, Jack

    2017-06-01

    The ability to adaptively increase cognitive control in response to cognitive challenges is crucial for goal-directed behavior. Recent findings suggest that aversive arousal triggers adaptive increases of control, but the neurochemical mechanisms underlying these effects remain unclear. Given the known contributions of the opioid system to hedonic states, we investigated whether blocking this system increases adaptive control modulations. To do so, we conducted a double-blind, placebo-controlled psychopharmacological study (n=52 females) involving a Stroop-like task. Specifically, we assessed the effect of naltrexone, an opioid blocker most selective to the mu-opioid system, on two measures of adaptive control that are thought to depend differentially on aversive arousal: post-error slowing and conflict adaptation. Consistent with our hypothesis, relative to placebo, naltrexone increased post-error slowing without influencing conflict adaptation. This finding not only supports the view that aversive arousal triggers adaptive control but also reveals a novel role for the opioid system in modulating such effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Meter for very slow flows

    NASA Technical Reports Server (NTRS)

    Baxter, W. J., Jr.; Frant, M. S.; West, S. J.

    1978-01-01

    Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.

  1. A quantitative model of application slow-down in multi-resource shared systems

    DOE PAGES

    Lim, Seung-Hwan; Kim, Youngjae

    2016-12-26

    Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price-resource contention among jobs increases job completion time. In this study, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job ismore » characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We extended the D-factor model to capture the slow-down of applications when multiple identical resources exist such as multi-core environments and multi-disks environments. Finally, validation results of the extended D-factor model with HPC checkpoint applications on the parallel file systems show that D-factor accurately captures the slow down of concurrent applications in such environments.« less

  2. A quantitative model of application slow-down in multi-resource shared systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Kim, Youngjae

    Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price-resource contention among jobs increases job completion time. In this study, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job ismore » characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We extended the D-factor model to capture the slow-down of applications when multiple identical resources exist such as multi-core environments and multi-disks environments. Finally, validation results of the extended D-factor model with HPC checkpoint applications on the parallel file systems show that D-factor accurately captures the slow down of concurrent applications in such environments.« less

  3. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong

    2012-09-25

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region,more » slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.« less

  4. The physiological effects of slow breathing in the healthy human

    PubMed Central

    Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean

    2017-01-01

    Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide

  5. A data-driven prediction method for fast-slow systems

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  6. Global Intracellular Slow-Wave Dynamics of the Thalamocortical System

    PubMed Central

    Sheroziya, Maxim

    2014-01-01

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387

  7. Slow opening valve. [valve design for shuttle portable oxygen system

    NASA Technical Reports Server (NTRS)

    Drapeau, D. F. (Inventor)

    1984-01-01

    A valve control is described having a valve body with an actuator stem and a rotating handle connected to the actuator stem by a differential drive mechanism which, during uniform movement of the handle in one direction, initially opens the valve at a relatively slow rate and, thereafter, complete the valve movement at a substantially faster rate. A series of stop rings are received about the body in frictional abutting relationship and serially rotated by the handle to uniformly resist handle movement independently of the extent of handle movement.

  8. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  9. RISK FACTORS FOR SLOW GAIT SPEED: A NESTED CASE-CONTROL SECONDARY ANALYSIS OF THE MEXICAN HEALTH AND AGING STUDY.

    PubMed

    Pérez-Zepeda, M U; González-Chavero, J G; Salinas-Martinez, R; Gutiérrez-Robledo, L M

    2015-01-01

    Physical performance tests play a major role in the geriatric assessment. In particular, gait speed has shown to be useful for predicting adverse outcomes. However, risk factors for slow gait speed (slowness) are not clearly described. To determine risk factors associated with slowness in Mexican older adults. A two-step process was adopted for exploring the antecedent risk factors of slow gait speed. First, the cut-off values for gait speed were determined in a representative sample of Mexican older adults. Then, antecedent risk factors of slow gait speed (defined using the identified cut-points) were explored in a nested, cohort case-control study. One representative sample of a cross-sectional survey for the first step and the Mexican Health and Aging Study (a cohort characterized by a 10-year follow-up). A 4-meter usual gait speed test was conducted. Lowest gender and height-stratified groups were considered as defining slow gait speed. Sociodemographic characteristics, comorbidities, psychological and health-care related variables were explored to find those associated with the subsequent development of slow gait speed. Unadjusted and adjusted logistic regression models were performed. In the final model, age, diabetes, hypertension, and history of fractures were associated with the development of slow gait speed. Early identification of subjects at risk of developing slow gait speed may halt the path to disability due to the robust association of this physical performance test with functional decline.

  10. RISK FACTORS FOR SLOW GAIT SPEED: A NESTED CASE-CONTROL SECONDARY ANALYSIS OF THE MEXICAN HEALTH AND AGING STUDY

    PubMed Central

    Pérez-Zepeda, M.U.; González-Chavero, J.G.; Salinas-Martinez, R.; Gutiérrez-Robledo, L.M.

    2016-01-01

    Background Physical performance tests play a major role in the geriatric assessment. In particular, gait speed has shown to be useful for predicting adverse outcomes. However, risk factors for slow gait speed (slowness) are not clearly described. Objectives To determine risk factors associated with slowness in Mexican older adults. Design A two-step process was adopted for exploring the antecedent risk factors of slow gait speed. First, the cut-off values for gait speed were determined in a representative sample of Mexican older adults. Then, antecedent risk factors of slow gait speed (defined using the identified cut-points) were explored in a nested, cohort case-control study. Setting, participants One representative sample of a cross-sectional survey for the first step and the Mexican Health and Aging Study (a cohort characterized by a 10-year follow-up). Measurements A 4-meter usual gait speed test was conducted. Lowest gender and height-stratified groups were considered as defining slow gait speed. Sociodemographic characteristics, comorbidities, psychological and health-care related variables were explored to find those associated with the subsequent development of slow gait speed. Unadjusted and adjusted logistic regression models were performed. Results In the final model, age, diabetes, hypertension, and history of fractures were associated with the development of slow gait speed. Conclusions Early identification of subjects at risk of developing slow gait speed may halt the path to disability due to the robust association of this physical performance test with functional decline. PMID:26889463

  11. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  12. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  13. Development of compact long-term broadband ocean bottom seismometer for seafloor observation of slow earthquakes

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Shiobara, H.

    2017-12-01

    It is important to understand coupling between plates in a subduction zone for studies of earthquake generation. Recently low frequency tremor and very low frequency earthquake (VLFE) were discovered in plate boundary near a trench. These events (slow earthquakes) in shallow plate boundary should be related to slow slip on a plate boundary. For observation of slow earthquakes, Broad Band Ocean Bottom Seismometer (BBOBS) is useful, however a number of BBOBSs are limited due to cost. On the other hand, a number of Long-term OBSs (LT-OBSs) with recording period of one year are available. However, the LT-OBS has seismometer with a natural period of 1 second. Therefore frequency band of observation is slightly narrow for slow earthquakes. Therefore we developed a compact long-term broad-band OBS by replacement of the seismic sensor of the LT-OBSs to broadband seismometer.We adopted seismic sensor with natural period of 20 seconds (Trillium Compact Broadband Seismometer, Nanometrics). Because tilt of OBS on seafloor can not be controlled due to free-fall, leveling system for seismic sensor is necessary. The broadband seismic senor has cylinder shape with diameter of 90 mm and height of 100 mm, and the developed levelling system can mount the seismic sensor with no modification of shape. The levelling system has diameter of 160 mm and height of 110 mm, which is the same size as existing levelling system of the LT-OBS. The levelling system has two horizontal axes and each axis is driven by motor. Leveling can be performed up to 20 degrees by using micro-processor (Arduino). Resolution of levelling is less than one degree. The system immediately starts leveling by the power-on of controller. After levelling, the the seismic senor is powered and the controller records angles of levelling to SD RAM. Then the controller is shut down to consume no power. Compact long-term broadband ocean bottom seismometer is useful for observation of slow earthquakes on seafloor. In addition

  14. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  15. Analysis of slow- and fast-α band asymmetry during performance of a saccadic eye movement task: dissociation between memory- and attention-driven systems.

    PubMed

    Sanfim, Antonio; Velasques, Bruna; Machado, Sergio; Arias-Carrión, Oscar; Paes, Flávia; Teixeira, Silmar; Santos, Joana Luz; Bittencourt, Juliana; Basile, Luis F; Cagy, Mauricio; Piedade, Roberto; Sack, Alexander T; Nardi, Antonio Egídio; Ribeiro, Pedro

    2012-01-15

    This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A study on the quality control of slow burning polyester

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Yinglei; Yan, Zhengfeng; Yu, Tao

    2018-04-01

    In this paper, the influence of the alcohol/acid mole ratio, reaction temperature, warm-up mode, end-capping, vacuity to the quality of slow burning polyester was studied. The hydroxyl value will increase when the alcohol/acid mole ratio increase, but the acid value and molecular weight will decrease. The molecular weight and molecular weight distribution of the polyester consistent with the designed one can be obtained by stepped heating up. Monobasic alcohol end-capping can be used to control the molecular weight effectively and reduce acid value. Stripping process narrow the molecular weight distribution and reduce the hydroxyl value. Decompression is in favor of the decrease of acid value and increase of the reaction speed to get qualified production.

  17. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  18. The role of aluminum in slow sand filtration.

    PubMed

    Weber-Shirk, Monroe L; Chan, Kwok Loon

    2007-03-01

    Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.

  19. Slow Release Of Reagent Chemicals From Gel Matrices

    NASA Technical Reports Server (NTRS)

    Debnam, William J.; Barber, Patrick G.; Coleman, James

    1988-01-01

    Procedure developed for slow release of reagent chemicals into solutions. Simple and inexpensive and not subject to failure of equipment. Use of toothpaste-type tube or pump dispenser conceivably provides more controlled technique for storage and dispensation of gel matrix. Possible uses include controlled, slow release of reagents in chemical reactions, crystal growth, space-flight experiments, and preformed gel medications from packets.

  20. A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity

    PubMed Central

    Bull, Simon H.; O’Grady, Gregory; Du, Peng

    2015-01-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024

  1. A system and method for online high-resolution mapping of gastric slow-wave activity.

    PubMed

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  2. MAP Attitude Control System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  3. [Disease concept of the slow virus infection].

    PubMed

    Takasu, Toshiaki

    2007-08-01

    This article gives a brief history of the terminology of slow virus infection, the conceptual change that occurred in it, the features common to slow infection and the current concept of slow virus infection. Björn Sigurdsson from the field of veterinary medicine proposed slow virus infection as unique mode of infection in 1954. Its initial concept was remodeled along with the general acceptance of prion theory of sheep scrapie that was proposed in 1982. The features common to slow infection include very long latency, unanimous poor prognosis, central nervous system involvement, etc. Currently the slow infection comprises those caused by slow conventional viruses that is the slow virus infection (for example subacute sclerosing panencephalitis and progressive multifocal encephalopathy in human and visna-maedi in sheep) and prion diseases (for example kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome in human, scrapie and bovine spongiform encephalopathy).

  4. Analysis of the stability of nonlinear suspension system with slow-varying sprung mass under dual-excitation

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Zhang, Jinqiu; Zhao, Mingmei; Li, Xin

    2018-07-01

    This study investigated the stability of vibration in a nonlinear suspension system with slow-varying sprung mass under dual-excitation. A mathematical model of the system was first established and then solved using the multi-scale method. Finally, the amplitude-frequency curve of vehicle vibration, the solution's stable region and time-domain curve in Hopf bifurcation were derived. The obtained results revealed that an increase in the lower excitation would reduce the system's stability while an increase in the upper excitation can make the system more stable. The slow-varying sprung mass will change the system's damping from negative to positive, leading to the appearance of limit cycle and Hopf bifurcation. As a result, the vehicle's vibration state is forced to change. The stability of this system is extremely fragile under the effect of dynamic Hopf bifurcation as well as static bifurcation.

  5. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.

  6. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    PubMed

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  7. A comparison of position and rate control for telemanipulations with consideration of manipulator system dynamics

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tendick, Frank; Stark, Lawrence W.; Ellis, Stephen R.

    1987-01-01

    Position and rate control are the two common manual control modes in teleoperations. Human operator performance using the two modes is evaluated and compared. Simulated three-axis pick-and-place operations are used as the primary task for evaluation. First, ideal position and rate control are compared by considering several factors, such as joystick gain, joystick type, display mode, task, and manipulator work space size. Then the effects of the manipulator system dynamics are investigated by varying the natural frequency and speed limit. Experimental results show that ideal position control is superior to ideal rate control, regardless of joystick type or display mode, when the manipulation work space is small or comparable to the human operator's control space. Results also show that when the manipulator system is slow, the superiority of position control disappears. Position control is recommended for small-work-space telemanipulation tasks, while rate control is recommended for slow wide-work-space telemanipulation tasks.

  8. Suppression of chaos at slow variables by rapidly mixing fast dynamics

    NASA Astrophysics Data System (ADS)

    Abramov, R.

    2012-04-01

    One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.

  9. Power flow control based solely on slow feedback loop for heart pump applications.

    PubMed

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  10. Intelligent Control Electromagnetic Actuated Continuously Variable Transmission System for Passenger Car

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Sharif, Sazzad; Mohiuddin, AKM; Faris Ismail, Ahmed; Izan, Sany Ihsan

    2017-03-01

    Continuously variable transmission (CVT) system transmits the engine /battery power to the car driving wheel smoothly and efficiently. Cars with CVT produces some noise and slow acceleration to meet the car power demand on initial start-ups and slow speed. The car noise is produced as a result of CVT adjustment the engine speed with the hydraulic pressure. The current CVT problems incurred due to the slow response of hydraulic pressure and CVT fluid viscosity due to the development of heat.The aim of this study is to develop electromagnetic actuated CVT (EMA-CVT) with intelligent switching controlling system (ICS). The experimental results of ¼ scale EMA shows that it make the acceleration time of the car in 3.5-5 sec which is 40% less than the hydraulic CVT in the market. The EMA develops the electromagnetic force in the ranged of 350 -1200 N for the supply current in the range of 10-15 amp. This study introduced fuzzy intelligent system (FIS) to predict the EMA system dynamic behaviour in order to identify the current control for the EMA actuation during operation of the CVT. It is expecting that the up scale EMA-CVT would reduce the 75% of vehicle power transmission loss by accelerating vehicle in 5 sec and save the IC engine power consumption about 20% which will makes the vehicle energy efficient (EEV) and reduction of green house gas reduction.

  11. Establishment of a radiotelemetric recording technique in mice to investigate gastric slow waves: Modulatory role of putative neurotransmitter systems.

    PubMed

    Wang, Huichuan; Lu, Zengbing; Liu, Yuen Hang; Sun, Yayi; Tu, Longlong; Ngan, Man P; Yeung, Chi-Kong; Rudd, John A

    2018-06-01

    What is the central question of this study? Gastric slow waves originating from the interstitial cells of Cajal-smooth muscle syncytium are usually studied in culture or in tissue segments, but nobody has described recordings of slow waves from awake, freely moving mice. Can radiotelemetry be used to record slow waves, and do they respond predictably to drug treatment? What is the main finding and its importance? Radiotelemetry can be used to record slow waves from awake, freely moving mice, permitting an examination of drug actions in vivo, which is crucial to drug discovery projects for characterizing the effects of drugs and metabolites on gastrointestinal function. The mouse is the most commonly used species in preclinical research, and isolated tissues are used to study slow waves from the interstitial cells of Cajal-smooth muscle syncytium of the gastrointestinal tract. The aim of this study was to establish a radiotelemetric technique in awake mice to record gastric myoelectric activity from the antrum to gain insight into the effects of endogenous modulatory systems on slow waves. Under general anaesthesia, two biopotential wires from a telemetry transmitter were sutured into the antrum of male ICR (imprinting control region) mice. The animals were allowed 1 week to recover from surgery before the i.p. administration of drugs to stimulate or inhibit slow waves. The basal dominant frequency of slow waves was 6.96 ± 0.43 c.p.m., and the percentages of power in the bradygastric, normogastric and tachygastric ranges were 6.89 ± 0.98, 37.32 ± 1.72 and 34.38 ± 0.77%, respectively (n = 74). Nicotine at 1 mg kg -1 increased normogastric power, but at 3 mg kg -1 it increased bradygastric power (P < 0.05). Metoclopramide at 10 mg kg -1 increased normogastric power; sodium nitroprusside at 10 mg kg -1 had latent effects on tachygastric power (P < 0.05); and l-NAME at 10 mg kg -1 had no effect (P > 0.05). Nicotine and bethanechol also

  12. Slow rupture of frictional interfaces

    NASA Astrophysics Data System (ADS)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  13. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  14. Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors

    PubMed Central

    El-Far, Mohamed; Kouassi, Pascale; Sylla, Mohamed; Zhang, Yuwei; Fouda, Ahmed; Fabre, Thomas; Goulet, Jean-Philippe; van Grevenynghe, Julien; Lee, Terry; Singer, Joel; Harris, Marianne; Baril, Jean-Guy; Trottier, Benoit; Ancuta, Petronela; Routy, Jean-Pierre; Bernard, Nicole; Tremblay, Cécile L.; Angel, Jonathan; Conway, Brian; Côté, Pierre; Gill, John; Johnston, Lynn; Kovacs, Colin; Loutfy, Mona; Logue, Kenneth; Piché, Alain; Rachlis, Anita; Rouleau, Danielle; Thompson, Bill; Thomas, Réjean; Trottier, Sylvie; Walmsley, Sharon; Wobeser, Wendy

    2016-01-01

    HIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood, a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV+ Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly β and γ) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts, increased viral load, lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target. PMID:26978598

  15. D0 Superconducting Solenoid Quench Data and Slow Dump Data Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markley, D.; /Fermilab

    1998-06-09

    This Dzero Engineering note describes the method for which the 2 Tesla Superconducting Solenoid Fast Dump and Slow Dump data are accumulated, tracked and stored. The 2 Tesla Solenoid has eleven data points that need to be tracked and then stored when a fast dump or a slow dump occur. The TI555(Texas Instruments) PLC(Programmable Logic Controller) which controls the DC power circuit that powers the Solenoid, also has access to all the voltage taps and other equipment in the circuit. The TI555 constantly logs these eleven points in a rotating memory buffer. When either a fast dump(dump switch opens) ormore » a slow dump (power supply turns off) occurs, the TI555 organizes the respective data and will down load the data to a file on DO-CCRS2. This data in this file is moved over ethernet and is stored in a CSV (comma separated format) file which can easily be examined by Microsoft Excel or any other spreadsheet. The 2 Tesla solenoid control system also locks in first fault information. The TI555 decodes the first fault and passes it along to the program collecting the data and storing it on DO-CCRS2. This first fault information is then part of the file.« less

  16. The ALICE-HMPID Detector Control System: Its evolution towards an expert and adaptive system

    NASA Astrophysics Data System (ADS)

    De Cataldo, G.; Franco, A.; Pastore, C.; Sgura, I.; Volpe, G.

    2011-05-01

    The High Momentum Particle IDentification (HMPID) detector is a proximity focusing Ring Imaging Cherenkov (RICH) for charged hadron identification. The HMPID is based on liquid C 6F 14 as the radiator medium and on a 10 m 2 CsI coated, pad segmented photocathode of MWPCs for UV Cherenkov photon detection. To ensure full remote control, the HMPID is equipped with a detector control system (DCS) responding to industrial standards for robustness and reliability. It has been implemented using PVSS as Slow Control And Data Acquisition (SCADA) environment, Programmable Logic Controller as control devices and Finite State Machines for modular and automatic command execution. In the perspective of reducing human presence at the experiment site, this paper focuses on DCS evolution towards an expert and adaptive control system, providing, respectively, automatic error recovery and stable detector performance. HAL9000, the first prototype of the HMPID expert system, is then presented. Finally an analysis of the possible application of the adaptive features is provided.

  17. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  18. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  19. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  20. Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk.

    PubMed

    Guttal, Vishwesha; Raghavendra, Srinivas; Goel, Nikunj; Hoarau, Quentin

    2016-01-01

    Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.

  1. Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk

    PubMed Central

    Hoarau, Quentin

    2016-01-01

    Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms. PMID:26761792

  2. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    PubMed

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  3. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlledsystem. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  4. Experimental demonstration of spinor slow light

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  5. Slow dynamics in translation-invariant quantum lattice models

    NASA Astrophysics Data System (ADS)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  6. The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5.

    PubMed

    Gameiro, Armanda; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2011-06-08

    Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  8. Does the Slow-Growth, High-Mortality Hypothesis Apply Below Ground?

    PubMed

    Hourston, James E; Bennett, Alison E; Johnson, Scott N; Gange, Alan C

    2016-01-01

    Belowground tri-trophic study systems present a challenging environment in which to study plant-herbivore-natural enemy interactions. For this reason, belowground examples are rarely available for testing general ecological theories. To redress this imbalance, we present, for the first time, data on a belowground tri-trophic system to test the slow growth, high mortality hypothesis. We investigated whether the differing performance of entomopathogenic nematodes (EPNs) in controlling the common pest black vine weevil Otiorhynchus sulcatus could be linked to differently resistant cultivars of the red raspberry Rubus idaeus. The O. sulcatus larvae recovered from R. idaeus plants showed significantly slower growth and higher mortality on the Glen Rosa cultivar, relative to the more commercially favored Glen Ample cultivar creating a convenient system for testing this hypothesis. Heterorhabditis megidis was found to be less effective at controlling O. sulcatus than Steinernema kraussei, but conformed to the hypothesis. However, S. kraussei maintained high levels of O. sulcatus mortality regardless of how larval growth was influenced by R. idaeus cultivar. We link this to direct effects that S. kraussei had on reducing O. sulcatus larval mass, indicating potential sub-lethal effects of S. kraussei, which the slow-growth, high-mortality hypothesis does not account for. Possible origins of these sub-lethal effects of EPN infection and how they may impact on a hypothesis designed and tested with aboveground predator and parasitoid systems are discussed.

  9. Slow Earthquakes and The Mechanics of Slow Frictional Stick-Slip

    NASA Astrophysics Data System (ADS)

    Marone, Chris; Scuderi, Marco; Leeman, John; Saffer, Demian; Collettini, Cristiano; Johnson, Paul

    2015-04-01

    Slow earthquakes represent one mode of the spectrum of fault slip behaviors ranging from steady aseismic slip to normal earthquakes. Like normal earthquakes, slow earthquakes can occur repetitively, such that a fault fails in a form of stick-slip failure defined by interseismic strain accumulation and slow, quasidynamic slip. The mechanics of frictional stick-slip and seismogenic faulting appear to apply to slow earthquakes, however, the mechanisms that limit dynamic slip velocity, rupture propagation speed, and the scaling between moment and duration of slow earthquakes are poorly understood. Here, we describe laboratory experiments that explore the mechanics of repetitive, slow frictional stick-slip failure. We document the role of loading stiffness and friction constitutive behavior in dictating the properties of repetitive, frictional stick-slip. Our results show that a spectrum of dynamic and quasidynamic slip velocities can occur in stick-slip events depending on the relation between loading stiffness k and the rheologic critical stiffness kc given, in the context of rate and state friction, by the ratio of the friction rate parameter (b-a) divided by the critical friction distance Dc. Slow slip is favored by conditions for which k is ~ equal to kc, whereas normal, fast stick slip occurs when k/kc < 1. We explore the role of elastic coupling and spatially extended slip propagation by comparing slow slip results for shear in a layer driven by forcing blocks of varying stiffness. We evaluate our data in the framework of rate and state friction laws and focus on the frictional mechanics of slow stick-slip failure with special attention paid to the connections between quasidynamic failure and mechanisms of the brittle-ductile transition in fault rocks.

  10. Long-term control of HIV-1 in hemophiliacs carrying slow-progressing allele HLA-B*5101.

    PubMed

    Kawashima, Yuka; Kuse, Nozomi; Gatanaga, Hiroyuki; Naruto, Takuya; Fujiwara, Mamoru; Dohki, Sachi; Akahoshi, Tomohiro; Maenaka, Katsumi; Goulder, Philip; Oka, Shinichi; Takiguchi, Masafumi

    2010-07-01

    HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101(+) hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101(+) hemophiliacs showed that the frequency of Pol283-8-specific CD8(+) T cells was inversely correlated with the viral load, whereas the frequencies of CD8(+) T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101(+) hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101(+) hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8(+) T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants.

  11. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  12. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants.

    PubMed

    Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin

    2017-10-06

    Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.

  13. Slow Heartbeat

    MedlinePlus

    ... Back to Symptoms & Diagnosis Slow Heartbeat Slow heartbeat (heart rate), called bradycardia , is an arrhythmia , or disorder of ... 60 to 100 times a minute. Changes in heart rate caused by activity, diet, medications, and age are ...

  14. Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Maury, Julie

    2018-04-01

    Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.

  15. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  16. Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Xiao, Yanni

    A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.

  17. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  18. Revealing the cascade of slow transients behind a large slow slip event

    NASA Astrophysics Data System (ADS)

    Frank, W.; Rousset, B.; Lasserre, C.; Campillo, M.

    2017-12-01

    Capable of reaching similar magnitudes to large megathrust earthquakes (Mw > 7), slow slip events play a major role in accommodating tectonic motion on plate boundaries. These slip transients are the slow release of built-up tectonic stress that are geodetically imaged as a predominantly aseismic rupture, which is smooth in both time and space. We demonstrate here that large slow slip events are in fact a complex cascade of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the Mw 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement as recorded by GPS suggests a six month duration, motion in the direction of tectonic release only sporadically occurs over 55 days and its surface signature is attenuated by rapid relocking of the plate interface. These results demonstrate that our current conceptual model of slow and continuous rupture is an artifact of low-resolution geodetic observations of a superposition of small, clustered slip events. Our proposed description of slow slip as a cascade of slow transients implies that we systematically overestimate the duration T and underestimate the moment magnitude M of large slow slip events.

  19. Escape for the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    Plasma from the Sun known as the slow solar wind has been observed far away from where scientists thought it was produced. Now new simulations may have resolved the puzzle of where the slow solar wind comes from and how it escapes the Sun to travel through our solar system.An Origin PuzzleA full view of a coronal hole (dark portion) from SDO. The edges of the coronal hole mark the boundary between open and closed magnetic field lines. [SDO; adapted from Higginson et al. 2017]The Suns atmosphere, known as the corona, is divided into two types of regions based on the behavior of magnetic field lines. In closed-field regions, the magnetic field is firmly anchored in the photosphere at both ends of field lines, so traveling plasma is confined to coronal loops and must return to the Suns surface. In open-field regions, only one end of each magnetic field line is anchored in the photosphere, so plasma is able to stream from the Suns surface out into the solar system.This second type of region known as a coronal hole is thought to be the origin of fast-moving plasma measured in our solar system and known as the fast solar wind. But we also observe a slow solar wind: plasma that moves at speeds of less than 500 km/s.The slow solar wind presents a conundrum. Its observational properties strongly suggest it originates in the hot, closed corona rather than the cooler, open regions. But if the slow solar wind plasma originates in closed-field regions of the Suns atmosphere, then how does it escape from the Sun?Slow Wind from Closed FieldsA team of scientists led by Aleida Higginson (University of Michigan) has now used high-resolution, three-dimensional magnetohydrodynamic simulations to show how the slow solar wind can be generated from plasma that starts outin closed-field parts of the Sun.A simulated heliospheric arc, composed of open magnetic field lines. [Higginson et al. 2017]Motions on the Suns surface near the boundary between open and closed-field regions the boundary

  20. On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus.

    PubMed Central

    Yasui, S; Young, L R

    1984-01-01

    Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954

  1. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.

    PubMed

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  2. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less

  3. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).

  4. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).

  5. [Comparative study between fast and slow induction of propofol given by target-controlled infusion: expected propofol concentration at the effect site. Randomized controlled trial].

    PubMed

    Simoni, Ricardo Francisco; Miziara, Luiz Eduardo de Paula Gomes; Esteves, Luis Otávio; Silva, Diógenes de Oliveira; Ribeiro, Cristina Alves; Smith, Mariana Oki; Paula, Leonardo Ferreira de; Cangiani, Luis Henrique

    2015-01-01

    studies have shown that rate of propofol infusion may influence the predicted propofol concentration at the effect site (Es). The aim of this study was to evaluate the Es predicted by the Marsh pharmacokinetic model (ke0 0.26min(-1)) in loss of consciousness during fast or slow induction. the study included 28 patients randomly divided into two equal groups. In slow induction group (S), target-controlled infusion (TCI) of propofol with plasma, Marsh pharmacokinetic model (ke0 0.26min(-1)) with target concentration (Tc) at 2.0-μg.mL(-1) were administered. When the predicted propofol concentration at the effect site (Es) reached half of Es value, Es was increased to previous Es + 1μg.mL(-1), successively, until loss of consciousness. In rapid induction group (R), patients were induced with TCI of propofol with plasma (6.0μg.ml(-1)) at Es, and waited until loss of consciousness. in rapid induction group, Tc for loss of consciousness was significantly lower compared to slow induction group (1.67±0.76 and 2.50±0.56μg.mL(-1), respectively, p=0.004). the predicted propofol concentration at the effect site for loss of consciousness is different for rapid induction and slow induction, even with the same pharmacokinetic model of propofol and the same balance constant between plasma and effect site. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  7. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis.

    PubMed

    Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H

    2016-01-01

    During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered.

  8. Real-Time Load-Side Control of Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Changhong

    a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  9. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  10. Resonant slow fault slip in subduction zones forced by climatic load stress.

    PubMed

    Lowry, Anthony R

    2006-08-17

    Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.

  11. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  12. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  13. Adaptation of Slow Myofibers: The Effect of Sustained BDNF Treatment of Extraocular Muscles in Infant Nonhuman Primates

    PubMed Central

    Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.

    2015-01-01

    Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102

  14. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates.

    PubMed

    Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K

    2015-06-01

    We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.

  15. Post-conflict slowing: cognitive adaptation after conflict processing.

    PubMed

    Verguts, Tom; Notebaert, Wim; Kunde, Wilfried; Wühr, Peter

    2011-02-01

    The aftereffects of error and conflict (i.e., stimulus or response incongruency) have been extensively studied in the cognitive control literature. Each has been characterized by its own behavioral signature on the following trial. Conflict leads to a reduced congruency effect (Gratton effect), whereas an error leads to increased response time (post-error slowing). The reason for this dissociation has remained unclear. Here, we show that post-conflict slowing is not typically observed because it is masked by the processing of the irrelevant stimulus dimension. We demonstrate that post-conflict slowing does occur when tested in pure trials where helpful or detrimental impacts from irrelevant stimulus dimensions are removed (i.e., univalent stimuli).

  16. Slow-motion scattering and coalescence of maximally charged black holes

    NASA Technical Reports Server (NTRS)

    Ferrell, Robert C.; Eardley, Douglas M.

    1987-01-01

    Systems consisting of several maximally charged, nonrotating black holes ('Reissner-Nordstrom' black holes) interacting with one another are studied. An effective action for the system in the slow-motion, fully strong-field regime is presented. An exact calculation of black-hole-black-hole scattering and coalescence in the slow-motion (but strong-field) limit is given.

  17. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  18. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    PubMed

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.

  19. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  20. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  1. Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage

    PubMed Central

    Gupta, Alisha; Singh, Jaswant; Dufort, Isabelle; Robert, Claude; Dias, Fernanda Caminha Faustino

    2017-01-01

    Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae were subjected to microarray analysis and compared with blastocysts developed from unfrozen control morulae for differential gene expression. Morula to blastocyst conversion rate was higher (P < 0.05) in control (72%) and vitrified (77%) than in slow-frozen (34%) morulae. Total 20 genes were upregulated and 44 genes were downregulated in blastocysts developed from vitrified morulae (fold change ≥ ± 2, P < 0.05) in comparison with blastocysts developed from control morulae. In blastocysts developed from slow-frozen morulae, 102 genes were upregulated and 63 genes were downregulated (fold change ≥ ± 1.5, P < 0.05). Blastocysts developed from vitrified morulae exhibited significant changes in gene expression mainly involving embryo implantation (PTGS2, CALB1), lipid peroxidation and reactive oxygen species generation (HSD3B1, AKR1B1, APOA1) and cell differentiation (KRT19, CLDN23). However, blastocysts developed from slow-frozen morulae showed changes in the expression of genes related to cell signaling (SPP1), cell structure and differentiation (DCLK2, JAM2 and VIM), and lipid metabolism (PLA2R1 and SMPD3). In silico comparison between blastocysts developed form vitrified and slow-frozen morulae revealed similar changes in gene expression as between blastocysts developed from vitrified and control morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better post-warming survival than blastocysts developed from slow-frozen morulae but their gene expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation changed significantly (≥ 2 fold). Slow freezing method killed more morulae than vitrification but those which survived up to

  2. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  3. Intermittent slow sand filtration for preventing diarrhoea among children in Kenyan households using unimproved water sources: randomized controlled trial.

    PubMed

    Tiwari, Sangya-Sangam K; Schmidt, Wolf-Peter; Darby, Jeannie; Kariuki, Z G; Jenkins, Marion W

    2009-11-01

    Measure effectiveness of intermittent slow sand filtration for reducing child diarrhoea among households using unimproved water sources in rural Kenya. A randomized controlled trail was conducted among populations meeting a high-risk profile for child diarrhoea from drinking river water in the River Njoro watershed. Intervention households (30) were provided the concrete BioSand Filter and instructed on filter use and maintenance. Control households (29) continued normal practices. Longitudinal monthly monitoring of diarrhoea (seven-day daily prevalence recall) and of influent, effluent, and drinking water quality for fecal coliform was conducted for 6 months. Intervention households had better drinking water quality than control households (fecal coliform geometric mean, 30.0 CFU vs. 89.0 CFU/100 ml, P < 0.001) and reported significantly fewer diarrhoea days (86 days over 626 child-weeks) compared to controls (203 days over 558 child-weeks) among children up to 15 (age-adjusted RR 0.46; 95 % CI = 0.22, 0.96). Greater child diarrhoea reduction due to the intervention (age-adjusted RR 0.23, 95 % CI = 0.10, 0.51) was observed among the sub-group using unimproved water sources all of the time. Intermittent slow sand filtration, a non-commercial technology, produces similar observed effects on child diarrhoea as commercial POU products, adding to the range of effective options for poor populations (chlorination, ceramic filtration, solar disinfection, flocculation/disinfection).

  4. Hidden slow pulsars in binaries

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  5. The Nucleus Reuniens Controls Long-Range Hippocampo-Prefrontal Gamma Synchronization during Slow Oscillations.

    PubMed

    Ferraris, Maëva; Ghestem, Antoine; Vicente, Ana F; Nallet-Khosrofian, Lauriane; Bernard, Christophe; Quilichini, Pascale P

    2018-03-21

    Gamma oscillations are involved in long-range coupling of distant regions that support various cognitive operations. Here we show in adult male rats that synchronized bursts of gamma oscillations bind the hippocampus (HPC) and prefrontal cortex (mPFC) during slow oscillations and slow-wave sleep, a brain state that is central for consolidation of memory traces. These gamma bursts entrained the firing of the local HPC and mPFC neuronal populations. Neurons of the nucleus reuniens (NR), which is a structural and functional hub between HPC and mPFC, demonstrated a specific increase in their firing before gamma burst onset, suggesting their involvement in HPC-mPFC binding. Chemical inactivation of NR disrupted the temporal pattern of gamma bursts and their synchronization, as well as mPFC neuronal firing. We propose that the NR drives long-range hippocampo-prefrontal coupling via gamma bursts providing temporal windows for information exchange between the HPC and mPFC during slow-wave sleep. SIGNIFICANCE STATEMENT Long-range coupling between hippocampus (HPC) and prefrontal cortex (mPFC) is believed to support numerous cognitive functions, including memory consolidation occurring during sleep. Gamma-band synchronization is a fundamental process in many neuronal operations and is instrumental in long-range coupling. Recent evidence highlights the role of nucleus reuniens (NR) in consolidation; however, how it influences hippocampo-prefrontal coupling is unknown. In this study, we show that HPC and mPFC are synchronized by gamma bursts during slow oscillations in anesthesia and natural sleep. By manipulating and recording the NR-HPC-mPFC network, we provide evidence that the NR actively promotes this long-range gamma coupling. This coupling provides the hippocampo-prefrontal circuit with a novel mechanism to exchange information during slow-wave sleep. Copyright © 2018 the authors 0270-6474/18/383026-13$15.00/0.

  6. Disuse Induced Changes in the Cholinergic System of Sciatic Nerve and Slow and Fast Twitch Muscle of Rats

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    Hindlimb suspension was used as a model of disuse in experiments studing the effects of reduced muscle activity on AChE and its molecular forms, choline acetyltransferase and nicotinic receptor binding in innervated slow and fast muscle. The weight of SOL was reduced to 64% within one week and continued to decrease progressively up to the third week when the weight was reduced to 40% as compared to controls. EDL showed a significant decrease in its weight only at the end of three weeks hypokinesia when it was reduced to 71% of control. Biochemical and histochemical findings are summarized. From these data and from morphological findings it is evident that some properties of skeletal muscles are strongly dependent on patterns and level of loadbearing and on motor unit activiy. With suspension-induced disuse, the usually slow SOL appeared to change its characteristics such as fiber type distribution and AChE activity to one that more resembled a faster muscle. It is important to note that hypokinesia induced changes either physiological, biochemical or morphological, are totally reversible as the induced changes returned to control levels within a week after cessation of disuse.

  7. Unmasking the linear behaviour of slow motor adaptation to prolonged convergence.

    PubMed

    Erkelens, Ian M; Thompson, Benjamin; Bobier, William R

    2016-06-01

    Adaptation to changing environmental demands is central to maintaining optimal motor system function. Current theories suggest that adaptation in both the skeletal-motor and oculomotor systems involves a combination of fast (reflexive) and slow (recalibration) mechanisms. Here we used the oculomotor vergence system as a model to investigate the mechanisms underlying slow motor adaptation. Unlike reaching with the upper limbs, vergence is less susceptible to changes in cognitive strategy that can affect the behaviour of motor adaptation. We tested the hypothesis that mechanisms of slow motor adaptation reflect early neural processing by assessing the linearity of adaptive responses over a large range of stimuli. Using varied disparity stimuli in conflict with accommodation, the slow adaptation of tonic vergence was found to exhibit a linear response whereby the rate (R(2)  = 0.85, P < 0.0001) and amplitude (R(2)  = 0.65, P < 0.0001) of the adaptive effects increased proportionally with stimulus amplitude. These results suggest that this slow adaptive mechanism is an early neural process, implying a fundamental physiological nature that is potentially dominated by subcortical and cerebellar substrates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  9. Slow Growth and Urban Sprawl: Support for a New Regional Agenda?

    ERIC Educational Resources Information Center

    Gainsborough, Juliet F.

    2002-01-01

    Assessed the possibilities for coalition building around growth related concerns, exploring support for slowing growth in New York City and Los Angeles. Analyzed data from surveys of urban and suburban dwellers regarding support for growth control measures. Suburbanites were much more receptive to slow growth policies than were urbanites, though…

  10. Hunting for shallow slow-slip events at Cascadia

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.

    2017-12-01

    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  11. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    NASA Astrophysics Data System (ADS)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  12. Long-Term Control of HIV-1 in Hemophiliacs Carrying Slow-Progressing Allele HLA-B*5101▿ †

    PubMed Central

    Kawashima, Yuka; Kuse, Nozomi; Gatanaga, Hiroyuki; Naruto, Takuya; Fujiwara, Mamoru; Dohki, Sachi; Akahoshi, Tomohiro; Maenaka, Katsumi; Goulder, Philip; Oka, Shinichi; Takiguchi, Masafumi

    2010-01-01

    HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101+ hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101+ hemophiliacs showed that the frequency of Pol283-8-specific CD8+ T cells was inversely correlated with the viral load, whereas the frequencies of CD8+ T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101+ hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101+ hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8+ T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants. PMID:20410273

  13. Effects of cervical self-stretching on slow vital capacity.

    PubMed

    Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo

    2015-07-01

    [Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.

  14. A new energy-efficient control approach for astronomical telescope drive system

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Wang, Y.

    2012-12-01

    Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  15. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    PubMed Central

    von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-01-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow

  16. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  17. Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.

    PubMed

    Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H

    2017-01-01

    Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.

  18. The Mechanics of Transient Fault Slip and Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Marone, C.; Leeman, J.; Scuderi, M.; Saffer, D. M.; Collettini, C.

    2015-12-01

    Earthquakes are understood as frictional stick-slip instabilities in which stored elastic energy is released suddenly, driving catastrophic failure. In normal (fast) earthquakes the rupture zone expands at a rate dictated by elastic wave speeds, a few km/s, and fault slip rates reach 1-10 m/s. However, tectonic faults also fail in slow earthquakes with rupture durations of months and fault slip speeds of ~100 micron/s or less. We know very little about the mechanics of slow earthquakes. What determines the rupture propagation velocity in slow earthquakes and in other forms of quasi-dynamic rupture? What processes limit stress drop and fault slip speed in slow earthquakes? Existing lab studies provide some help via observations of complex forms of stick-slip, creep-slip, or, in a few cases, slow slip. However, these are mainly anecdotal and rarely include examples of repetitive slow slip or systematic measurements that could be used to isolate the underlying mechanisms. Numerical studies based on rate and state friction also shed light on transiently accelerating slip, showing that slow slip can occur if: 1) fault rheology involves a change in friction rate dependence (a-b) with velocity or unusually large values of the frictional weakening distance Dc, or 2) fault zone elastic stiffness equals the critical frictional weakening rate kc = (b-a)/Dc. Recent laboratory work shows that the latter can occur much more commonly that previously thought. We document the complete spectrum of stick-slip behaviors from transient slow slip to fast stick-slip for a narrow range of conditions around k/kc = 1.0. Slow slip occurs near the threshold between stable and unstable failure, controlled by the interplay of fault zone frictional properties, normal stress, and elastic stiffness of the surrounding rock. Our results provide a generic mechanism for slow earthquakes, consistent with the wide range of conditions for which slow slip has been observed.

  19. Performance of slow rate systems for treatment of domestic wastewater.

    PubMed

    Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N

    2007-01-01

    The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.

  20. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    PubMed

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to < 0.1 mm. The rapid activation of SOCE upon Ca(2+) release was consistent with the presence of STIM1L in both fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2

  1. Design of feedback control systems for stable plants with saturating actuators

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.

  2. Psychological predictors of the antihypertensive effects of music-guided slow breathing.

    PubMed

    Modesti, Pietro Amedeo; Ferrari, Antonella; Bazzini, Cristina; Costanzo, Giusi; Simonetti, Ignazio; Taddei, Stefano; Biggeri, Annibale; Parati, Gianfranco; Gensini, Gian Franco; Sirigatti, Saulo

    2010-05-01

    The possibility that daily sessions of music-guided slow breathing may reduce 24-h ambulatory blood pressure (ABP), and predictors of efficacy were explored in a randomized, placebo-controlled trial with parallel design. Age-matched and sex-matched hypertensive patients were randomized to music-guided slow breathing exercises (4-6 breaths/min; 1: 2 ratio of inspiration: expiration duration) (Intervention; n = 29) or to control groups who were thought to relax while either listening to slow music (Control-M; n = 26) or reading a book (Control-R; n = 31). At baseline and at follow-up visits (1 week and 1, 3 and 6 months), ABP monitoring was performed. At mixed model analysis, intervention was associated with a significant reduction of 24-h (P = 0.001) and night-time (0100-0600 h) (P < 0.0001) systolic ABP. The average reduction of systolic 24-h ABP at 6 months was 4.6 mmHg [confidence limits at 95% 1.93-7.35] and 4.1 mmHg (95% confidence limits 1.59-6.67) vs. Control-M and Control-R groups, respectively, (P < 0.001 for both). Antihypertensive treatment was selected as negative predictor of BP reduction at multivariate stepwise analysis. When antihypertensive treatment was inserted as covariate in a generalized linear model, psychological subscales assessed at baseline by the Mental Health Inventory questionnaire were found to affect systolic blood pressure reduction at 6-month follow-up (general positive affect P < 0.001; emotional ties, P < 0.001; loss of behavioral control, P = 0.035). In particular, a level of general positive affect higher than the 75th percentiles was found to be significantly associated with low treatment efficacy (odds ratio 0.09; 95% confidence limits 0.01-0.93). Daily sessions of voluntary music-guided slow breathing significantly reduce 24-h systolic ABP, and psychological predictors of efficacy can be identified.

  3. Slowing techniques for loading a magneto-optical trap of CaF molecules

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  4. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  5. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-10-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  6. Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Manabu

    2006-08-15

    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less

  7. Air/fuel ratio control system for internal combustion engine having rotary valve and step motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.

    A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less

  8. Laser Slowing of CaF Molecules and Progress towards a Dual-MOT for Li and CaF

    NASA Astrophysics Data System (ADS)

    Chae, Eunmi

    Diatomic molecules are considered good candidates for the study of strongly correlated systems and precision measurement searches due to their combination of complex internal states and strong long-range interactions. Cooling molecules down to ultracold temperatures is often a necessary step for fully utilizing the power of the molecule. This requires a trap for molecules and the ability to cool molecules to the mK regime and below. A magneto-optical trap (MOT) is a good tool for achieving mK temperatures. However, extra care is needed for molecules to form the necessary quasi-closed cycling transitions due to molecule's complicated energy structure. In our work with CaF, we use two repump lasers to block vibrational leakage and selection rules for the rotational degree of freedom to achieve about 105 photon cycles. The two-stage buffer gas beam source is a general method to generate a cold and slow beam of molecules with a forward velocity of about 50 m/s. The compatibility of the buffer-gas source with a MOT is studied and we confirm that such beams can be nicely compatible with MOTs using various atomic species. In order to load molecules into a MOT from even such a slow beam, additional slowing is required due to the low capture velocity of a molecular MOT (< 10 m/s). We apply a frequency-broadened "white-light" slowing on CaF from a two-stage source, demonstrating slowing of CaF below 10 m/s. An AC MOT, which provides active remixing of dark substates, is also developed and Li atoms are slowed and trapped. These are crucial ingredients for co-trapping CaF molecules and Li atoms and study their collisional properties, which would lead to sympathetic cooling of molecules down to ultracold temperatures. The achievement of slowing and development of this system allowed for the detailed study of the CaF laser cooling system, as well as physical processes involved with AC MOTs and the proposed MOT for CaF. Crucial knowledge of this archetypal system provides

  9. Slow slip events and seismic tremor at circum-Pacific subduction zones

    NASA Astrophysics Data System (ADS)

    Schwartz, Susan Y.; Rokosky, Juliana M.

    2007-09-01

    common phenomena observed at almost all subduction zones with instrumentation capable of recording it, (2) different frictional properties likely control fast versus slow slip, (3) the depth range of slow slip may be related to the thermal properties of the plate interface, and (4) the equivalent seismic moment of slow slip events is proportional to their duration (Moατ), different from the Moατ3 scaling observed for earthquakes.

  10. Movement - uncontrolled or slow

    MedlinePlus

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  11. Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

    2000-01-01

    This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

  12. Modeling fast and slow earthquakes at various scales

    PubMed Central

    IDE, Satoshi

    2014-01-01

    Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes. PMID:25311138

  13. Modeling fast and slow earthquakes at various scales.

    PubMed

    Ide, Satoshi

    2014-01-01

    Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes.

  14. DESIGN OF A SIMPLE SLOW COOLING DEVICE FOR CRYOPRESERVATION OF SMALL BIOLOGICAL SAMPLES.

    PubMed

    de Paz, Leonardo Juan; Robert, Maria Celeste; Graf, Daniel Adolfo; Guibert, Edgardo Elvio; Rodriguez, Joaquin Valentin

    2015-01-01

    Slow cooling is a cryopreservation methodology where samples are cooled to its storage temperature at controlled cooling rates. Design, construction and evaluation of a simple and low cost device for slow cooling of small biological samples. The device was constructed based on Pye's freezer idea. A Dewar flask filled with liquid nitrogen was used as heat sink and a methanol bath containing the sample was cooled at constant rates using copper bars as heat conductor. Sample temperature may be lowered at controlled cooling rate (ranging from 0.4°C/min to 6.0°C/min) down to ~-60°C, where it could be conserved at lower temperatures. An example involving the cryopreservation of Neuro-2A cell line showed a marked influence of cooling rate over post preservation cell viability with optimal values between 2.6 and 4.6°C/min. The cooling device proved to be a valuable alternative to more expensive systems allowing the assessment of different cooling rates to evaluate the optimal condition for cryopreservation of such samples.

  15. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation.

    PubMed

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-08-15

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.

  16. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  17. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    PubMed

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  18. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia

    PubMed Central

    Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.

    2012-01-01

    Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237

  19. On the optimal use of a slow server in two-stage queueing systems

    NASA Astrophysics Data System (ADS)

    Papachristos, Ioannis; Pandelis, Dimitrios G.

    2017-07-01

    We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.

  20. Post-conflict slowing after incongruent stimuli: from general to conflict-specific.

    PubMed

    Rey-Mermet, Alodie; Meier, Beat

    2017-05-01

    Encountering a cognitive conflict not only slows current performance, but it can also affect subsequent performance, in particular when the conflict is induced with bivalent stimuli (i.e., stimuli with relevant features for two different tasks) or with incongruent trials (i.e., stimuli with relevant features for two response alternatives). The post-conflict slowing following bivalent stimuli, called "bivalency effect", affects all subsequent stimuli, irrespective of whether the subsequent stimuli share relevant features with the conflict stimuli. To date, it is unknown whether the conflict induced by incongruent stimuli results in a similar post-conflict slowing. To investigate this, we performed six experiments in which participants switched between two tasks. In one task, incongruent stimuli appeared occasionally; in the other task, stimuli shared no feature with the incongruent trials. The results showed an initial performance slowing that affected all tasks after incongruent trials. On further trials, however, the slowing only affected the task sharing features with the conflict stimuli. Therefore, the post-conflict slowing following incongruent stimuli is first general and then becomes conflict-specific across trials. These findings are discussed within current task switching and cognitive control accounts.

  1. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    PubMed

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P < .05), and shifted respiratory peak toward left (P < .05). Compared to 16 breaths/minute, traditional spectral analysis showed increased LF power and LF/HF ratio, decreased HF power of HRV at 8 breaths per minute (P < .05). As breathing rate decreased, corrected spectral analysis showed increased HF power, decreased LF power, LF/HF ratio of HRV (P < .05). Compared to controls, resting baroreflex sensitivity decreased in hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P < .05) and controls (from 88.49 ± 6.01 to 112.91 ± 7.29 ms/mm Hg, P < .05).Slow breathing can increase HF power and decrease LF power and LF/HF ratio in essential hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  2. Contact lenses to slow progression of myopia.

    PubMed

    Sankaridurg, Padmaja

    2017-09-01

    The prevalence of myopia has been steadily rising, with 28 per cent of the global population said to be affected in 2010 and to rise to affect nearly 50 per cent by 2050. Increasing levels of myopia increase the risk of vision impairment and in particular, high myopia is associated with the risk of serious and permanent visual disability due to associated sight-threatening complications. To stem the burden associated with higher levels of myopia, there are efforts to slow the progression of myopia, and several optical and pharmaceutical strategies have been found useful in slowing myopia to varying degrees. More recently, numerous multifocal soft contact lenses and extended depth of focus soft contact lenses (collectively referred to as myopia control contact lenses) were found effective in slowing myopia. As opposed to overnight orthokeratology, myopia control contact lenses are worn during the day and the hypotheses proposed to explain the efficacy of these lenses are generally based on the premise that the stimulus for eye growth is a defocused retinal image with hyperopic blur either centrally or peripherally. Although the individual power profiles of the lenses vary, the contact lens generally incorporates 'positive power' to reduce the hyperopic blur and/or impose myopic defocus or in the case of the extended depth of focus lens, has a power profile designed to optimise retinal image quality for points on or in front of the retina. The use of soft contact lenses as a platform for myopia control offers an exciting and effective avenue to manage myopia but there is a need for further research on issues such as the mechanism underlying control of myopia, improving efficacy with lenses, and understanding rebound on discontinuation. More significantly, although contact lenses are generally safe and improve quality of life in older children, one of the major challenges for improved uptake and acceptance of contact lenses centres on the perceived risk of

  3. No evidence of reaction time slowing in autism spectrum disorder.

    PubMed

    Ferraro, F Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.

  4. Slow oscillation amplitudes and up-state lengths relate to memory improvement.

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Zeitlhofer, Josef; Gruber, Georg; Klimesch, Wolfgang; Schabus, Manuel

    2013-01-01

    There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.

  5. A new energy-efficient control approach for space telescope drive system

    NASA Astrophysics Data System (ADS)

    Zhou, Wangping; Wang, Yong

    Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  6. Slow oscillations orchestrating fast oscillations and memory consolidation.

    PubMed

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Evaluation of Nano Structured Slow Release Fertilizer on the Soil Fertility, Yield and Nutritional Profile of Vigna radiata.

    PubMed

    Mala, Rajendran; Selvaraj, Ruby Celsia Arul; Sundaram, Vidhya Barathi; Rajan, Raja Blessina Siva Shanmuga; Gurusamy, Uma Maheswari

    2017-01-01

    The excessive use of fertilizers and pesticides has distorted soil composition, fertility and integrity with non-desirable environmental and ecological consequences. A strategy was designed to prepare a nano structured slow release fertilizer system that delivers nutrients and plant growth promoting rhizobacteria simultaneously. Slow release nano phosphate and potash fertilizer was prepared by blending the nano emulsion of fertilizer with neem cake and PGPR. Slow release nano phosphate and potash fertilizer was prepared by blending the nano emulsion of fertilizer with neem cake and PGPR. Few patents relevant to the topic have been reviewed and cited. The influence of nano structured slow release fertilizer on the biochemical characteristics, soil and yield attributes of Vigna radiata was studied in the field by randomized block design. The treatments used to evaluate the effect of nano SRF were a control (without any fertilizer), neem cake, chemical fertilizer, PGPR and nano SRF. Germination, specific activity of enzymes, carbohydrates, protein, photosynthetic pigments, root nodule number and microbial population were assessed by standard methods. The size of the nano urea slow release fertilizer ranged from 52.41 nm to 69.86 nm, and the size of the phosphate and potash fertilizer ranged from 81.85 nm to 87 nm. The weights of 1000 grains were 31.8 g, 33.28 g, 33.39 g, 36.65 g and 44.90 g in the control, neem cake, chemical fertilizer, PGPR and nano SRF, respectively. The protein concentrations were 162 mg g-1 in the control, 231 mg g-1 in the neem cake, 192 mg g-1 in the chemical fertilizer, 285 mg g-1 in the PGPR and 336 mg g-1 in the nano SRF. Nano slow release fertilizer treatment has stimulated germination and biochemical characteristics in Vigna radiata that are positively reflected in the yield attributes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Comparison of delay enhancement mechanisms for SBS-based slow light systems.

    PubMed

    Schneider, Thomas; Henker, Ronny; Lauterbach, Kai-Uwe; Junker, Markus

    2007-07-23

    We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.

  9. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2014-10-01

    To compare the properties of sleep spindles between healthy subjects and medicated patients with major depressive episode, including frequency range, spectra power, and spatial distribution of spindle power. Continuous 16-channel EEG was used to record nocturnal sleep in healthy control subjects and medicated depressive patients. Recordings were analyzed for changes in EEG power spectra and power topography. Additionally, we graphically demonstrated the pattern of spatial distribution of each type of sleep spindle, divided into fast (12.5-14 Hz) and slow spindles (11-12.5 Hz). Sleep EEG records of depressive subjects exhibited a significantly higher amplitude of slow spindles in the prefrontal region, compared with the healthy controls (P < 0.01). Fast spindles were dominant in the centroparietal region in both depressive patients and the control group. Enhanced slow spindles in the prefrontal region were observed in the medicated depressive patients and not in the healthy controls. The frequency of fast spindles in depressive patients was globally higher than that in healthy participants. The alteration in sleep spindles seen in medicated depressive subjects may reflect a pharmacological modulation of synaptic function involving the thalamic-reticular and thalamocortical mechanisms.

  10. Slow motion increases perceived intent

    PubMed Central

    Caruso, Eugene M.; Burns, Zachary C.; Converse, Benjamin A.

    2016-01-01

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor’s intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in “slow motion.” Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  11. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  12. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  13. Control of polymer network topology in semi-batch systems

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  14. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  15. PT -symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  16. PT -symmetric slowing down of decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  17. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken.

    PubMed

    Wang, K H; Shi, S R; Dou, T C; Sun, H J

    2009-10-01

    Experiments were conducted to evaluate the effect of free-range raising systems on growth performance, carcass yield, and meat quality of slow-growing chickens. Slow-growing female chickens, Gushi chickens, were selected as the experimental birds. Two hundred 1-d-old female chicks were raised in a pen for 35 d. On d 36, ninety healthy birds, with similar BW (353.7+/-32.1g), were selected and randomly assigned to 2 treatments (indoor treatment and free-range treatment, P>0.05). Each treatment was represented by 3 groups containing 15 birds (45 birds per treatment). During the indoor treatment, the chickens were raised in floor pens in a conventional poultry research house (7 birds/m2). In the free-range treatment, the chickens were housed in a similar indoor house (7 birds/m2); in addition, they also had a free-range grass paddock (1 bird/m2). All birds were provided with the same starter and finisher diets and were raised for 112 d. Results showed that the BW and weight gain of the chickens in the free-range treatment were much lower than that of the chickens in the indoor floor treatments (P<0.05). There was no effect of the free-range raising system on eviscerated carcass, breast, thigh, and wing yield (P>0.05). However, the abdominal fat yield and tibia strength (P<0.05) significantly declined. The nutrient composition (water, protein, and fat), water-holding capacity, shear force, and pH of the muscle were largely unaffected (P>0.05) by the free-range raising system. The data indicated that the free-range raising system could significantly reduce growth performance, abdominal fat, and tibia strength, but with no effect on carcass traits and meat quality in slow-growing chickens.

  18. Conduction Slowing in Diabetic Sensorimotor Polyneuropathy

    PubMed Central

    Dunnigan, Samantha K.; Ebadi, Hamid; Breiner, Ari; Katzberg, Hans D.; Lovblom, Leif E.; Perkins, Bruce A.; Bril, Vera

    2013-01-01

    OBJECTIVE Mild demyelination may contribute more to the pathophysiology of nerve fiber injury in diabetic sensorimotor polyneuropathy (DSP) than previously thought. We investigated the clinical and electrodiagnostic classifications of nerve injury in diabetic patients to detect evidence of conduction slowing in DSP. RESEARCH DESIGN AND METHODS Type 1 diabetic subjects (n = 62) and type 2 diabetic subjects (n = 111) with a broad spectrum of DSP underwent clinical examination and nerve conduction studies (NCS). Patients were classified as having axonal (group A), conduction slowing (group D), or combined (group C) DSP based on electrodiagnostic criteria. Patients with chronic immune-mediated neuropathies were not included. The groups were compared using ANOVA, contingency tables, and Kruskal-Wallis analyses. RESULTS Of the 173 type 1 and type 2 diabetic subjects with a mean age of 59.1 ± 13.6 years and hemoglobin A1c (HbA1c) of 8.0 ± 1.8% (64 ± 19.7 mmol/mol), 46% were in group A, 32% were in group D, and 22% were in group C. The severity of DSP increased across groups A, D, and C, respectively, based on clinical and NCS parameters. The mean HbA1c for group D subjects (8.9 ± 2.3% [74 ± 25.1 mmol/mol]) was higher than for group A and group C subjects (7.7 ± 1.4% [61 ± 15.3 mmol/mol] and 7.5 ± 1.3% [58 ± 14.2 mmol/mol]; P = 0.003), and this difference was observed in those with type 1 diabetes. CONCLUSIONS The presence of conduction slowing in patients with suboptimally controlled type 1 diabetes indicates the possibility that this stage of DSP may be amenable to intervention via improved glycemic control. PMID:24026550

  19. The relationship between two fast/slow analysis techniques for bursting oscillations

    PubMed Central

    Teka, Wondimu; Tabak, Joël; Bertram, Richard

    2012-01-01

    Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have often been studied in mathematical models by splitting the equations into fast and slow subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary branch) and a Hopf bifurcation that gives rise to a branch of periodic spiking solutions. In models of bursting in pituitary cells, we have recently used a different approach that focuses on the dynamics of the slow subsystem. Characteristic features of this approach are folded node singularities and a critical manifold. In this article, we investigate the relationships between the key structures of the two analysis techniques. We find that the z-curve and Hopf bifurcation of the two-fast/one-slow decomposition are closely related to the voltage nullcline and folded node singularity of the one-fast/two-slow decomposition, respectively. They become identical in the double singular limit in which voltage is infinitely fast and calcium is infinitely slow. PMID:23278052

  20. Fast and Slow Spindles during the Sleep Slow Oscillation: Disparate Coalescence and Engagement in Memory Processing

    PubMed Central

    Mölle, Matthias; Bergmann, Til O.; Marshall, Lisa; Born, Jan

    2011-01-01

    Study Objectives: Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Design: Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Measurements and Results: Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for “initial” SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. Conclusions: The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing. Citation: Mölle M; Bergmann TO; Marshall L; Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. SLEEP 2011;34(10):1411–1421. PMID:21966073

  1. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  2. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  3. Slow magnetic monopoles search in NOvA

    NASA Astrophysics Data System (ADS)

    Antoshkin, Alexander; Frank, Martin

    2018-04-01

    The NOvA far detector is well suited for finding exotic particles due to its technical features (see [1]). One type of those exotic particles is a "slow" magnetic monopole. It is assumed that the energy deposition of such monopoles should be enough to be registered (see [2]). Measurement of the expected signals was performed on the NOvA test bench at JINR (see [3]). Result of this measurement allows us to perform slow monopole's research using NOvA software and hardware with high efficiency. As a whole, the research can lead to a discovery, or it can limit the existence of monopoles in a wide range of parameters, previously unreachable in other experiments (MACRO, SLIM, RICE, IceCube). Several special software tools have been developed. Slow Monopole Trigger has been created and implemented in the NOvA Data-Driven-Trigger system. Also, an online reconstruction algorithm has been developed and tested on 5% of the data. A technical description of these tools and current results of the analysis are presented in this work.

  4. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    PubMed

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P < 0.0001), time up and go (95% CI = -79.1 to 5.0, P < 0.0030), and Fugl-Meyer Assessment (95% CI = 24.1 to 45.1, P < 0.0001). The fast group had statistically significant improvement on Berg Balance Scale (95% CI = 1.5 to 10.5, P = 0.02). In initial stages of robot-assisted locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  5. Automatic and controlled processing in the corticocerebellar system.

    PubMed

    Ramnani, Narender

    2014-01-01

    During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms. © 2014 Elsevier B.V. All rights reserved.

  6. Rescuing Students from the Slow Learner Trap

    ERIC Educational Resources Information Center

    Shaw, Steven R.

    2010-01-01

    Slow learners, such as students with borderline intellectual functioning, represent one of the most challenging student populations for administrators and teachers. Standard systems and supports are often ineffective--even counterproductive--because they fail to meet students' specific learning needs and instead create a cycle of failure. This…

  7. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Post-Stop-Signal Slowing: Strategies Dominate Reflexes and Implicit Learning

    ERIC Educational Resources Information Center

    Bissett, Patrick G.; Logan, Gordon D.

    2012-01-01

    Control adjustments are necessary to balance competing cognitive demands. One task that is well-suited to explore control adjustments is the stop-signal paradigm, in which subjects must balance initiation and inhibition. One common adjustment in the stop-signal paradigm is post-stop-signal slowing. Existing models of sequential adjustments in the…

  9. Slow transit constipation: a review of a colonic functional disorder.

    PubMed

    Frattini, Jared C; Nogueras, Juan J

    2008-05-01

    Constipation is a common gastrointestinal complaint that can cause significant physical and psychosocial problems. It has been categorized as slow transit constipation, normal transit constipation, and obstructed defecation. Both the definition and pathophysiology of constipation are unclear, but attempts to describe each of the three types have been made. Slow transit constipation, a functional colonic disorder represents approximately 15 to 30% of constipated patients. The theorized etiologies are disorders of the autonomic and enteric nervous system and/or a dysfunctional neuroendocrine system. Slow transit constipation can be diagnosed with a complete history, physical exam, and a battery of specific diagnostic studies. Once the diagnosis is affirmed and medical management has failed, there are several treatment options. Biofeedback, sacral nerve stimulation, segmental colectomy, and subtotal colectomy with various anastomoses have all been used. Of those treatment options, a subtotal colectomy with ileorectal anastomosis is the most efficacious with the data to support its use.

  10. Relationship between platelet-to-lymphocyte ratio and coronary slow flow.

    PubMed

    Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri

    2015-05-01

    The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.

  11. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output systems with multiple saturations. The methodology can be applied to stable and unstable open loop plants with magnitude and/or rate control saturations and to systems in which state limitations are desired. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated by numerous simulations, including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 (unstable) aircraft.

  12. Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    PubMed Central

    Dauwels, Justin; Srinivasan, K.; Ramasubba Reddy, M.; Musha, Toshimitsu; Vialatte, François-Benoît; Latchoumane, Charles; Jeong, Jaeseung; Cichocki, Andrzej

    2011-01-01

    Medical studies have shown that EEG of Alzheimer's disease (AD) patients is “slower” (i.e., contains more low-frequency power) and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and 98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone. PMID:21584257

  13. Modelling and control of solid oxide fuel cell generation system in microgrid

    NASA Astrophysics Data System (ADS)

    Zhou, Niancheng; Li, Chunyan; Sun, Fangqing; Wang, Qianggang

    2017-11-01

    Compared with other kinds of fuel cells, solid oxide fuel cell (SOFC) has been widely used in microgrids because of its higher efficiency and longer operation life. The weakness of SOFC lies in its slow response speed when grid disturbance occurs. This paper presents a control strategy that can promote the response speed and limit the fault current impulse for SOFC systems integrated into microgrids. First, the hysteretic control of the bidirectional DC-DC converter, which joins the SOFC and DC bus together, is explored. In addition, an improved droop control with limited current protection is applied in the DC-AC inverter, and the active synchronization control is applied to ensure a smooth transition of the microgrid between the grid-connected mode and the islanded mode. To validate the effectiveness of this control strategy, the control model was built and simulated in PSCAD/EMTDC.

  14. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    PubMed

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p < 0.05). The comparison of T Max within the test groups showed that drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p < 0.042). Temperature behavior at crestal and apical areas was similar being lower for slow drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p < 0.05). A single-drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time

  15. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  17. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    PubMed

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  18. Slowing down bubbles with sound

    NASA Astrophysics Data System (ADS)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  19. Mitochondrial proteostasis as a shared characteristic of slowed aging: the importance of considering cell proliferation.

    PubMed

    Hamilton, Karyn L; Miller, Benjamin F

    2017-10-15

    Proteostasis is one of the seven "pillars of aging research" identified by the Trans-NIH Geroscience Initiative and loss of proteostasis is associated with aging and age-related chronic disease. Accumulated protein damage and resultant cellular dysfunction are consequences of limited protein repair systems and slowed protein turnover. When relatively high rates of protein turnover are maintained despite advancing age, damaged proteins are more quickly degraded and replaced, maintaining proteome fidelity. Therefore, maintenance of protein turnover represents an important proteostatic mechanism. However, measurement of protein synthesis without consideration for cell proliferation can result in an incomplete picture, devoid of information about how new proteins are being allocated. Simultaneous measurement of protein and DNA synthesis provides necessary mechanistic insight about proteins apportioned for newly proliferating cells versus for somatic maintenance. Using this approach with a number of murine models of slowed aging shows that, compared to controls, energetic resources are directed more toward somatic maintenance and proteostasis, and away from cell growth and proliferation. In particular, slowed aging models are associated with heightened mechanisms of mitochondrial proteostatic maintenance. Taking cell proliferation into account may explain the paradoxical findings that aging itself and slowed aging interventions can both be characterized by slower rates of protein synthesis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Slow-release fertilizers 101

    Treesearch

    Robin Rose

    2002-01-01

    Slow release fertilizers have been in common use within the horticultural industry for decades. Probably the mostly commonly heard of product is Scott's Osmocote which has been around for a quite a long time. However, some time ago slow release fertilizers moved out of the potted greenhouse environment and onto golf courses, suburban lawns and bushes, and orchards...

  1. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  2. QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scully, Marlan

    2007-06-01

    In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].

  3. Cryopreservation of human embryos by vitrification or slow freezing: which one is better?

    PubMed

    Kolibianakis, Efstratios M; Venetis, Christos A; Tarlatzis, Basil C

    2009-06-01

    To summarize the available evidence from randomized controlled trials comparing vitrification versus slow freezing for cryopreservation of human embryos. Vitrification, as compared with slow freezing, appears to be better in terms of postthawing survival rates both for cleavage-stage embryos [odds ratio (OR): 6.35, 95% confidence interval (CI): 1.14-35.26, random effects model] and for blastocysts (OR: 4.09, 95% CI: 2.45-6.84, random effects model). Furthermore, postthawing blastocyst development of embryos cryopreserved in the cleavage stage is significantly higher with vitrification as compared with slow freezing (OR: 1.56, 95% CI: 1.07-2.27, fixed effects model). No significant difference in clinical pregnancy rates per transfer could be detected between the two cryopreservation methods (OR: 1.66, 95% CI: 0.98-2.79). Currently, vitrification does not appear to be associated with an increased probability of pregnancy. However, a significant advantage of vitrification over slow freezing in terms of postthawing survival rates is present for embryos cryopreserved both at the cleavage and at the blastocyst stages. The above conclusions are based on limited data, and thus further properly designed randomized controlled trials are needed.

  4. Preliminary Evidence for Reduced Post-Error Reaction Time Slowing in Hyperactive/Inattentive Preschool Children

    PubMed Central

    Berwid, Olga G.; Halperin, Jeffrey M.; Johnson, Ray E.; Marks, David J.

    2013-01-01

    Background Attention-Deficit/Hyperactivity Disorder has been associated with deficits in self-regulatory cognitive processes, some of which are thought to lie at the heart of the disorder. Slowing of reaction times (RTs) for correct responses following errors made during decision tasks has been interpreted as an indication of intact self-regulatory functioning and has been shown to be attenuated in school-aged children with ADHD. This study attempted to examine whether ADHD symptoms are associated with an early-emerging deficit in post-error slowing. Method A computerized two-choice RT task was administered to an ethnically diverse sample of preschool-aged children classified as either ‘control’ (n = 120) or ‘hyperactive/inattentive’ (HI; n = 148) using parent- and teacher-rated ADHD symptoms. Analyses were conducted to determine whether HI preschoolers exhibit a deficit in this self-regulatory ability. Results HI children exhibited reduced post-error slowing relative to controls on the trials selected for analysis. Supplementary analyses indicated that this may have been due to a reduced proportion of trials following errors on which HI children slowed rather than to a reduction in the absolute magnitude of slowing on all trials following errors. Conclusions High levels of ADHD symptoms in preschoolers may be associated with a deficit in error processing as indicated by post-error slowing. The results of supplementary analyses suggest that this deficit is perhaps more a result of failures to perceive errors than of difficulties with executive control. PMID:23387525

  5. Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative Sample.

    PubMed

    Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M; Faghihahmadabadi, Shawheen; Hutchison, Joanna L; Bennett, Ilana J; Motes, Michael A; Haley, Robert W; Rypma, Bart

    Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.

  6. Comparing slow and fast rupture in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.

    2017-12-01

    During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these

  7. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    NASA Astrophysics Data System (ADS)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  8. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  9. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    PubMed

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  10. Electroencephalographic slow waves prior to sleepwalking episodes.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2014-12-01

    Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  12. Every slow-wave impulse is associated with motor activity of the human stomach.

    PubMed

    Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas

    2009-04-01

    Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.

  13. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    PubMed

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca(2+) uptake was prevented, 1 mM H(2)O(2) increased SR Ca(2+) "leak" in fast twitch fibres by 24 +/- 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mM dithiothreitol (DTT). The changes in SR function caused by 1 mM H(2)O(2) were associated with an approximately 65% increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H(2)O(2); P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P < 0.05). Our results indicate that exogenous H(2)O(2) increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  14. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles

    PubMed Central

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-01-01

    The effect of exogenous hydrogen peroxide (H2O2) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mm H2O2 diminished the ability of the Ca2+-depleted SR to reload Ca2+ in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca2+ uptake was prevented, 1 mm H2O2 increased SR Ca2+ ‘leak’ in fast twitch fibres by 24 ± 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mm H2O2 also increased the peak force of low [caffeine] contracture by ∼45 % in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mm dithiothreitol (DTT). The changes in SR function caused by 1 mm H2O2 were associated with an ∼65 % increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H2O2; P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mm H2O2 treatment. Equilibration with 5 mm H2O2 induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mm DTT. Peak DICR was also increased ∼40 % by 5 mm H2O2 in slow twitch fibres compared to control (no H2O2; P < 0.05). Our results indicate that exogenous H2O2 increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca2+ release during contraction and/or an increase in Ca2+ sensitivity. PMID:11897857

  15. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  16. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  17. Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

    PubMed Central

    Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz

    2014-01-01

    The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948

  18. Slowing down as an early warning signal for abrupt climate change.

    PubMed

    Dakos, Vasilis; Scheffer, Marten; van Nes, Egbert H; Brovkin, Victor; Petoukhov, Vladimir; Held, Hermann

    2008-09-23

    In the Earth's history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. One explanation for such events of abrupt change is that they happened when the earth system reached a critical tipping point. However, this remains hard to prove for events in the remote past, and it is even more difficult to predict if and when we might reach a tipping point for abrupt climate change in the future. Here, we analyze eight ancient abrupt climate shifts and show that they were all preceded by a characteristic slowing down of the fluctuations starting well before the actual shift. Such slowing down, measured as increased autocorrelation, can be mathematically shown to be a hallmark of tipping points. Therefore, our results imply independent empirical evidence for the idea that past abrupt shifts were associated with the passing of critical thresholds. Because the mechanism causing slowing down is fundamentally inherent to tipping points, it follows that our way to detect slowing down might be used as a universal early warning signal for upcoming catastrophic change. Because tipping points in ecosystems and other complex systems are notoriously hard to predict in other ways, this is a promising perspective.

  19. Slowing down as an early warning signal for abrupt climate change

    PubMed Central

    Dakos, Vasilis; Scheffer, Marten; van Nes, Egbert H.; Brovkin, Victor; Petoukhov, Vladimir; Held, Hermann

    2008-01-01

    In the Earth's history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. One explanation for such events of abrupt change is that they happened when the earth system reached a critical tipping point. However, this remains hard to prove for events in the remote past, and it is even more difficult to predict if and when we might reach a tipping point for abrupt climate change in the future. Here, we analyze eight ancient abrupt climate shifts and show that they were all preceded by a characteristic slowing down of the fluctuations starting well before the actual shift. Such slowing down, measured as increased autocorrelation, can be mathematically shown to be a hallmark of tipping points. Therefore, our results imply independent empirical evidence for the idea that past abrupt shifts were associated with the passing of critical thresholds. Because the mechanism causing slowing down is fundamentally inherent to tipping points, it follows that our way to detect slowing down might be used as a universal early warning signal for upcoming catastrophic change. Because tipping points in ecosystems and other complex systems are notoriously hard to predict in other ways, this is a promising perspective. PMID:18787119

  20. Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction

    PubMed Central

    Cameron, Michelle H.; Horak, Fay B.; Herndon, Robert R.; Bourdette, Dennis

    2009-01-01

    Balance problems and falls are common in people with multiple sclerosis (MS) but their cause and nature are not well understood. It is known that MS affects many areas of the central nervous system that can impact postural responses to maintain balance, including the cerebellum and the spinal cord. Cerebellar balance disorders are associated with normal latencies but reduced scaling of postural responses. We therefore examined the latency and scaling of automatic postural responses, and their relationship to somatosensory evoked potentials (SSEPs), in 10 people with MS and imbalance and 10 age-, sex-matched, healthy controls. The latency and scaling of postural responses to backward surface translations of 5 different velocities and amplitudes, and the latency of spinal and supraspinal somatosensory conduction, were examined. Subjects with MS had large, but very delayed automatic postural response latencies compared to controls (161ms ± 31 vs 102 ± 21, p < 0.01) and these postural response latencies correlated with the latencies of their spinal SSEPs (r=0.73, p< 0.01). Subjects with MS also had normal or excessive scaling of postural response amplitude to perturbation velocity and amplitude. Longer latency postural responses were associated with less velocity scaling and more amplitude scaling. Balance deficits in people with MS appear to be caused by slowed spinal somatosensory conduction and not by cerebellar involvement. People with MS appear to compensate for their slowed spinal somatosensory conduction by increasing the amplitude scaling and the magnitude of their postural responses. PMID:18570015

  1. Controls on slow-moving landslides revealed by satellite and airborne InSAR

    NASA Astrophysics Data System (ADS)

    Handwerger, Alexander L.; Fielding, Eric J.

    2017-04-01

    Landslides display a wide variety of behaviors ranging from slow persistent motion to rapid acceleration and catastrophic failure. Given the variety of possible behaviors, improvements to our understanding of landslide mechanics are critical for accurate predictions of landslide dynamics. To better constrain the mechanisms that control landslide motion, we use recent SAR data collected by Copernicus Sentinel-1A/B, NASA UAVSAR, JAXA ALOS-2, and DLR TerraSAR-X to quantify the time-dependent kinematics of over 200 slow-moving landslides in the Central and Northern California Coast Ranges. These landslides are ideally suited for InSAR investigations due to their size (up to 5 km in length and 0.5 km in width), persistent downslope motion with low velocities (m/yr), and sparse vegetation. We quantify the seasonal and multi-year changes in velocity driven by changes in precipitation and find that landslide velocity varies over both timescales. Over seasonal timescales, each landslide displays a period of acceleration that occurs within weeks of the onset of seasonal rainfall suggesting that motion is governed by precipitation-induced changes in pore-water pressure. We also examine the effects of multi-year climate variations (i.e., recent historic California drought and the possible wet period that began in late 2016) on the activity of landslides. We find that the drought has led to a decrease in annual displacement over the past several years and predict that a resurgence in annual displacement will occur with an increase in annual rainfall. Lastly, we use UAVSAR data acquired at 4 different look directions to quantify 3D surface displacement of multiple landslides and invert for their subsurface geometry (i.e. basal slip surface) using recently developed 3D mass conservation techniques. The application of NASA's UAVSAR data represents a major advance from previous InSAR studies on landslides in this region and provides one of the first 3D dataset that contains

  2. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    NASA Astrophysics Data System (ADS)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  3. Relationships among neuroscore, magnetic resonance imaging features, and intracranial pressure in sheep affected by slow-growing brain lesions.

    PubMed

    Evangelisti, Maria A; Deiana, Roberta; Melosu, Valentino; Burrai, Giovanni P; Ballocco, Isabella; Varcasia, Antonio; Scala, Antonio; Manunta, Maria L

    2018-05-01

    Diagnosing high intracranial pressure by clinical and diagnostic imaging is particularly challenging for chronic or slow-growing lesions. The aim of this prospective case-control study is to determine whether the neuroscore and brain magnetic resonance imaging (MRI) are related to the direct measurement of intracranial pressure in sheep affected by intracranial slow-growing lesions due to chronic cerebral coenurosis (Coenurus cerebralis). Seventeen affected and 10 control sheep were included. All animals underwent a neurological examination, MRI of the brain, and direct measurement of intracranial pressure. The severity of clinical signs and MRI findings were scored. Data were statistically analyzed. The invasive intracranial pressure value was higher in affected animals. A severely altered neuroscore is related to an increased intracranial pressure beyond the normal threshold (P < 0.05). The volume of the calvarium was larger in affected animals than in control animals (P = 0.0001) and was positively influenced by the presence and volume of the parasitic cyst (r = 0.7881, P < 0.01). Several degrees of deviation and deformation of both the ventricular system and brain parenchyma were detected by MRI. Subjective MRI findings were not associated with intracranial hypertension. In conclusion, this study shows that in sheep affected by slow-growing lesions, severe alterations in the neuroscore and the results of objective MRI are related to an increased intracranial pressure beyond the normal threshold. © 2017 American College of Veterinary Radiology.

  4. Event-related potentials for post-error and post-conflict slowing.

    PubMed

    Chang, Andrew; Chen, Chien-Chung; Li, Hsin-Hung; Li, Chiang-Shan R

    2014-01-01

    In a reaction time task, people typically slow down following an error or conflict, each called post-error slowing (PES) and post-conflict slowing (PCS). Despite many studies of the cognitive mechanisms, the neural responses of PES and PCS continue to be debated. In this study, we combined high-density array EEG and a stop-signal task to examine event-related potentials of PES and PCS in sixteen young adult participants. The results showed that the amplitude of N2 is greater during PES but not PCS. In contrast, the peak latency of N2 is longer for PCS but not PES. Furthermore, error-positivity (Pe) but not error-related negativity (ERN) was greater in the stop error trials preceding PES than non-PES trials, suggesting that PES is related to participants' awareness of the error. Together, these findings extend earlier work of cognitive control by specifying the neural correlates of PES and PCS in the stop signal task.

  5. Reproducing the scaling laws for Slow and Fast ruptures

    NASA Astrophysics Data System (ADS)

    Romanet, Pierre; Bhat, Harsha; Madariaga, Raúl

    2017-04-01

    Modelling long term behaviour of large, natural fault systems, that are geometrically complex, is a challenging problem. This is why most of the research so far has concentrated on modelling the long term response of single planar fault system. To overcome this limitation, we appeal to a novel algorithm called the Fast Multipole Method which was developed in the context of modelling gravitational N-body problems. This method allows us to decrease the computational complexity of the calculation from O(N2) to O(N log N), N being the number of discretised elements on the fault. We then adapted this method to model the long term quasi-dynamic response of two faults, with step-over like geometry, that are governed by rate and state friction laws. We assume the faults have spatially uniform rate weakening friction. The results show that when stress interaction between faults is accounted, a complex spectrum of slip (including slow-slip events, dynamic ruptures and partial ruptures) emerges naturally. The simulated slow-slip and dynamic events follow the scaling law inferred by Ide et al. 2007 i. e. M ∝ T for slow-slip events and M ∝ T2 (in 2D) for dynamic events.

  6. Calcium activation of frog slow muscle fibres

    PubMed Central

    Costantin, L. L.; Podolsky, R. J.; Tice, Lois W.

    1967-01-01

    1. Skinned muscle fibres were prepared from the tonus bundle of the frog iliofibularis muscle and the contractile response elicited by applied calcium ions was studied. The fibre type was determined by electron microscopy. 2. Fast fibres shortened many times more rapidly than slow fibres, indicating that the slow contraction of slow fibres is an inherent property of the contractile mechanism. 3. The extent of spread of contraction following local calcium application was much greater in slow than in fast fibres, a difference which is consistent with the relative sparsity of the sarcoplasmic reticulum in slow fibres. 4. The ability of the sarcoplasmic reticulum of slow fibres to accumulate calcium was demonstrated by the in situ immobilization of calcium when oxalate solutions were added to the skinned fibre. ImagesPlate 1Plate 2Plate 3Plate 4Plate 5AB PMID:6030519

  7. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  8. Stochastic modelling of slow-progressing tumors: Analysis and applications to the cell interplay and control of low grade gliomas

    NASA Astrophysics Data System (ADS)

    Rodríguez, Clara Rojas; Fernández Calvo, Gabriel; Ramis-Conde, Ignacio; Belmonte-Beitia, Juan

    2017-08-01

    Tumor-normal cell interplay defines the course of a neoplastic malignancy. The outcome of this dual relation is the ultimate prevailing of one of the cells and the death or retreat of the other. In this paper we study the mathematical principles that underlay one important scenario: that of slow-progressing cancers. For this, we develop, within a stochastic framework, a mathematical model to account for tumor-normal cell interaction in such a clinically relevant situation and derive a number of deterministic approximations from the stochastic model. We consider in detail the existence and uniqueness of the solutions of the deterministic model and study the stability analysis. We then focus our model to the specific case of low grade gliomas, where we introduce an optimal control problem for different objective functionals under the administration of chemotherapy. We derive the conditions for which singular and bang-bang control exist and calculate the optimal control and states.

  9. Isolating Component Processes of Posterror Slowing with the Psychological Refractory Period Paradigm

    ERIC Educational Resources Information Center

    Steinhauser, Marco; Ernst, Benjamin; Ibald, Kevin W.

    2017-01-01

    Posterror slowing (PES) refers to an increased response time following errors. While PES has traditionally been attributed to control adjustments, recent evidence suggested that PES reflects interference. The present study investigated the hypothesis that control and interference represent 2 components of PES that differ with respect to their time…

  10. Slow diffusion by Markov random flights

    NASA Astrophysics Data System (ADS)

    Kolesnik, Alexander D.

    2018-06-01

    We present a conception of the slow diffusion processes in the Euclidean spaces Rm , m ≥ 1, based on the theory of random flights with small constant speed that are driven by a homogeneous Poisson process of small rate. The slow diffusion condition that, on long time intervals, leads to the stationary distributions, is given. The stationary distributions of slow diffusion processes in some Euclidean spaces of low dimensions, are presented.

  11. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  12. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  13. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be

  14. Formation of Heliospheric Arcs of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Higginson, A. K.; Antiochos, S. K.; Devore, C. R.; Wyper, P. F.; Zurbuchen, T. H.

    2017-01-01

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.

  15. Formation of Heliospheric Arcs of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchangemore » reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.« less

  16. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  17. Slow movement execution in event-related potentials (P300).

    PubMed

    Naruse, Kumi; Sakuma, Haruo; Hirai, Takane

    2002-02-01

    We examined whether slow movement execution has an effect on cognitive and information processing by measuring the P300 component. 8 subjects performed a continuous slow forearm rotational movement using 2 task speeds. Slow (a 30-50% decrease from the subject's Preferred speed) and Very Slow (a 60-80% decrease). The mean coefficient of variation for rotation speed under Very Slow was higher than that under Slow, showing that the subjects found it difficult to perform the Very Slow task smoothly. The EEG score of alpha-1 (8-10 Hz) under Slow Condition was increased significantly more than under the Preferred Condition; however, the increase under Very Slow was small when compared with Preferred. After performing the task. P300 latency under Very Slow increased significantly as compared to that at pretask. Further, P300 amplitude decreased tinder both speed conditions when compared to that at pretask, and a significant decrease was seen under the Slow Condition at Fz, whereas the decrease under the Very Slow Condition was small. These differences indicated that a more complicated neural composition and an increase in subjects' attention might have been involved when the task was performed under the Very Slow Condition. We concluded that slow movement execution may have an influence on cognitive function and may depend on the percentage of decrease from the Preferred speed of the individual.

  18. Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less

  19. Wastewater Treatment by a Prototype Slow Rate Land Treatment System,

    DTIC Science & Technology

    1981-08-01

    this application of K, crop yields ing rate. To average an application of 10 mg/L of and N uptake improved significantly. While this nitrate , a loading...RECIPIENT’S CATALOG NUMBER CRREL Report 81-14 ’ & TT~~g*&IS~ -S. TYPE OF REPORT &PERIO00 COVERED ,WASTEWATER jtREATMENT BY A ROTOTYPE SLOW RATE LAN~DjJEATMENT...soluble N, mainly nitrate . Nitrate concentrations in the percolate were found to D,~", W3 mouo~ MS~ ill SLETEUnclassified ~, tS9CUIt CLASSIFICATION OF

  20. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  1. Comparison of Carcass Characteristics, Meat Quality, and Blood Parameters of Slow and Fast Grown Female Broiler Chickens Raised in Organic or Conventional Production System

    PubMed Central

    Cömert, Muazzez; Şayan, Yılmaz; Kırkpınar, Figen; Bayraktar, Ö. Hakan; Mert, Selim

    2016-01-01

    The objective of the study was to compare the carcass characteristics, meat quality, and blood parameters of slow and fast grown female broiler chickens fed in organic or conventional production system. The two genotypes tested were medium slow-growing chickens (SG, Hubbard Red JA) and commercial fast-growing chickens (FG, Ross 308). Both genotypes (each represented by 400 chickens) were divided into two sub-groups fed either organic (O) or conventional (C) systems. Chickens of each genotype and system were raised in a semi environmentally controlled poultry house until 21 d of age and were assigned to 5 pens of 40 chickens each. Then, O system chickens were transferred into an open-side poultry house with an outdoor run. At 81 d of age, 10 female chickens from each genotype and from each production system (n = 40) were randomly chosen to provide material for analysis, and were weighed and brought to the slaughterhouse to assess carcass characteristics and meat quality. The blood parameters were determined by using 5 female chickens from each genotype and from each production system (n = 20). FG had the higher live weight, along with carcass, breast, and thigh-drumstick weights compared to SG (p<0.05). FG had the higher breast yield, whereas SG had the higher thigh-drumstick yield (p<0.05). The O system resulted in a higher amount of abdominal fat (p<0.05). In addition, the O system values were higher for dry matter, crude ash, crude protein, and pH15 values in breast meat, and for crude ash, crude protein, and pH15 values in drumstick meat (p<0.05). In addition, total saturated fatty acids, total mono-unsaturated fatty acids, and total omega 3 were significantly higher in the O system than in the C system. Thus, the O system showed a positive advantage compared to the C system regarding female chicken meat quality, primarily within the ash, protein, and total omega 3 fatty acid profiles. In conclusion, the present study indicated that the main factor affecting the

  2. Activated Omentum Slows Progression of CKD

    PubMed Central

    Garcia-Gomez, Ignacio; Pancholi, Nishit; Patel, Jilpa; Gudehithlu, Krishnamurthy P.; Sethupathi, Periannan; Hart, Peter; Dunea, George; Arruda, Jose A.L.

    2014-01-01

    Stem cells show promise in the treatment of AKI but do not survive long term after injection. However, organ repair has been achieved by extending and attaching the omentum, a fatty tissue lying above the stomach containing stem cells, to various organs. To examine whether fusing the omentum to a subtotally nephrectomized kidney could slow the progression of CKD, we used two groups of rats: an experimental group undergoing 5/6 nephrectomy only and a control group undergoing 5/6 nephrectomy and complete omentectomy. Polydextran gel particles were administered intraperitoneally before suture only in the experimental group to facilitate the fusion of the omentum to the injured kidney. After 12 weeks, experimental rats exhibited omentum fused to the remnant kidney and had lower plasma creatinine and urea nitrogen levels; less glomerulosclerosis, tubulointerstitial injury, and extracellular matrix; and reduced thickening of basement membranes compared with controls. A fusion zone formed between the injured kidney and the omentum contained abundant stem cells expressing stem cell antigen-1, Wilms’ tumor 1 (WT-1), and CD34, suggesting active, healing tissue. Furthermore, kidney extracts from experimental rats showed increases in expression levels of growth factors involved in renal repair, the number of proliferating cells, especially at the injured edge, the number of WT-1–positive cells in the glomeruli, and WT-1 gene expression. These results suggest that contact between the omentum and injured kidney slows the progression of CKD in the remnant organ, and this effect appears to be mediated by the presence of omental stem cells and their secretory products. PMID:24627352

  3. Control Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Boeing Commercial Airplane Company's Flight Control Department engineers relied on Langley developed software package known as ORACLS to develop an advanced control synthesis package for both continuous and discrete control system. Package was used by Boeing for computerized analysis of new system designs. Resulting applications include a multiple input/output control system for the terrain-following navigation equipment of the Air Forces B-1 Bomber, and another for controlling in flight changes of wing camber on an experimental airplane. ORACLS is one of 1,300 computer programs available from COSMIC.

  4. 49 CFR 236.813 - Speed, slow.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Speed, slow. 236.813 Section 236.813 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, slow. A speed not exceeding 20 miles per hour. ...

  5. 49 CFR 236.813 - Speed, slow.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, slow. 236.813 Section 236.813 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, slow. A speed not exceeding 20 miles per hour. ...

  6. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review

    NASA Astrophysics Data System (ADS)

    Audet, Pascal; Kim, YoungHee

    2016-02-01

    More than a decade after the discovery of deep episodic slow slip and tremor, or slow earthquakes, at subduction zones, much research has been carried out to investigate the structural and seismic properties of the environment in which they occur. Slow earthquakes generally occur on the megathrust fault some distance downdip of the great earthquake seismogenic zone in the vicinity of the mantle wedge corner, where three major structural elements are in contact: the subducting oceanic crust, the overriding forearc crust and the continental mantle. In this region, thermo-petrological models predict significant fluid production from the dehydrating oceanic crust and mantle due to prograde metamorphic reactions, and their consumption by hydrating the mantle wedge. These fluids are expected to affect the dynamic stability of the megathrust fault and enable slow slip by increasing pore-fluid pressure and/or reducing friction in fault gouges. Resolving the fine-scale structure of the deep megathrust fault and the in situ distribution of fluids where slow earthquakes occur is challenging, and most advances have been made using teleseismic scattering techniques (e.g., receiver functions). In this paper we review the teleseismic structure of six well-studied subduction zones (three hot, i.e., Cascadia, southwest Japan, central Mexico, and three cool, i.e., Costa Rica, Alaska, and Hikurangi) that exhibit slow earthquake processes and discuss the evidence of structural and geological controls on the slow earthquake behavior. We conclude that changes in the mechanical properties of geological materials downdip of the seismogenic zone play a dominant role in controlling slow earthquake behavior, and that near-lithostatic pore-fluid pressures near the megathrust fault may be a necessary but insufficient condition for their occurrence.

  7. Global Network of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-01-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  8. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    PubMed Central

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID

  9. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  10. Functional Roles of Slow Enzyme Conformational Changes in Network Dynamics

    PubMed Central

    Wu, Zhanghan; Xing, Jianhua

    2012-01-01

    Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR studies recently. We analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can filter upstream network noises, and can either resonantly respond to the system stimulus at certain frequencies or respond adaptively for sustained input signals of the network fluctuations. It thus can serve as a basic functional motif with properties that are normally for larger intermolecular networks in the field of systems biology. We further analyzed examples including enzymes functioning against pH fluctuations, metabolic state change of Artemia embryos, and kinetic insulation of fluctuations in metabolic networks. The study also suggests that hysteretic enzymes may be building blocks of synthetic networks with various properties such as narrow-banded filtering. The work fills the missing gap between studies on enzyme biophysics and network level dynamics, and reveals that the coupling between the two is functionally important; it also suggests that the conformational dynamics of some enzymes may be evolutionally selected. PMID:23009855

  11. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  12. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    PubMed

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  13. Crystal plastic earthquakes in dolostones: from slow to fast ruptures.

    NASA Astrophysics Data System (ADS)

    Passelegue, F. X.; Aubry, J.; Nicolas, A.; Fondriest, M.; Schubnel, A.; Di Toro, G.

    2017-12-01

    Dolostone is the most dominant lithology of the seismogenic upper crust around the Mediterranean Sea. Understanding the internal mechanisms controlling fault friction is crucial for understanding seismicity along active faults. Displacement in such fault zones is frequently highlighted by highly reflective (mirror-like) slip surfaces, created by thin films of nanogranular fault rock. Using saw-cut dolostone samples coming from natural fault zones, we conducted stick-slip experiments under triaxial loading conditions at 30, 60 and 90 MPa confining pressure and temperature ranging from 30 to 100 degrees C. At 30 and 65 degrees C, only slow rupture was observed and the experimental fault exhibits frictional behaviour, i.e. a dependence of normal stress on peak shear stress. At 65 degrees C, a strengthening behaviour is observed after the main rupture, leading to a succession of slow rupture. At 100 degrees C, the macroscopic behaviour of the fault becomes ductile, and no dependence of pressure on the peak shear stress is observed. In addition, the increase of the confining pressure up to 60 and 90 MPa allow the transition from slow to fast rupture, highlighted by the records of acoustic activity and by dynamic stress drop occurring in a few tens of microseconds. Using strain gages located along the fault surface and acoustic transducers, we were able to measure the rupture velocities during slow and fast rupture. Slow ruptures propagated around 0.1 m/s, in agreement with natural observations. Fast ruptures propagated up to supershear velocities, i.e. faster than the shear wave speed (>3500 m/s). A complete study of the microstructures was realized before and after ruptures. Slow ruptures lead to the production of mirror-like surface driven by the production of nanograins due to dislocation processes. Fast ruptures induce the production of amorphous material along the fault surface, which may come from decarbonation and melting processes. We demonstrate that the

  14. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty

  15. Slow potentials in a melody recognition task.

    PubMed

    Verleger, R; Schellberg, D

    1990-01-01

    In a previous study, slow negative shifts were found in the EEG of subjects listening to well-known melodies. The two experiments reported here were designed to investigate the variables to which these slow potentials are related. In the first experiment, two opposite hypotheses were tested: The slow shifts might express subjects' acquaintance with the melodies or, on the contrary, the effort invested to identify them. To this end, some of the melodies were presented in the rhythms of other melodies to make recognition more difficult. Further, melodies rated as very well-known and as very unknown were analysed separately. However, the slow shifts were not affected by these experimental variations. Therefore in the second experiment, on the one hand the purely physical parameters intensity and duration were varied, but this variation had no impact on the slow shifts either. On the other hand, recognition was made more difficult by monotonously repeating the pitch of the 4th tone for the rest of some melodies. The slow negative shifts were enhanced with these monotonous melodies. This enhancement supports the "effort" hypothesis. Accordingly, the ofter shifts obtained in both experiments might likewise reflect effort. But since the task was not demanding, it is suggested that these constant shifts reflect the effort invested for coping with the entire underarousing situation rather than with the task. Frequently, slow eye movements occurred in the same time range as the slow potentials, resulting in EOG potentials spreading to the EEG recording sites. Yet results did not change substantially when the EEG recordings were corrected for the influence of EOG potentials.

  16. Adaptive dynamic programming approach to experience-based systems identification and control.

    PubMed

    Lendaris, George G

    2009-01-01

    Humans have the ability to make use of experience while selecting their control actions for distinct and changing situations, and their process speeds up and have enhanced effectiveness as more experience is gained. In contrast, current technological implementations slow down as more knowledge is stored. A novel way of employing Approximate (or Adaptive) Dynamic Programming (ADP) is described that shifts the underlying Adaptive Critic type of Reinforcement Learning method "up a level", away from designing individual (optimal) controllers to that of developing on-line algorithms that efficiently and effectively select designs from a repository of existing controller solutions (perhaps previously developed via application of ADP methods). The resulting approach is called Higher-Level Learning Algorithm. The approach and its rationale are described and some examples of its application are given. The notions of context and context discernment are important to understanding the human abilities noted above. These are first defined, in a manner appropriate to controls and system-identification, and as a foundation relating to the application arena, a historical view of the various phases during development of the controls field is given, organized by how the notion 'context' was, or was not, involved in each phase.

  17. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  18. Live Birth from Slow-Frozen Rabbit Oocytes after In Vivo Fertilisation

    PubMed Central

    Jiménez-Trigos, Estrella; Vicente, José S.; Marco-Jiménez, Francisco

    2013-01-01

    In vivo fertilisation techniques such as intraoviductal oocyte transfer have been considered as alternatives to bypass the inadequacy of conventional in vitro fertilisation in rabbit. There is only one study in the literature, published in 1989, that reports live offspring from cryopreserved rabbit oocytes. The aim of the present study was to establish the in vivo fertilisation procedure to generate live offspring with frozen oocytes. First, the effect of two recipient models (i) ovariectomised or (ii) oviduct ligated immediately after transfer on the ability of fresh oocytes to fertilise were compared. Second, generation of live offspring from slow-frozen oocytes was carried out using the ligated oviduct recipient model. Throughout the experiment, recipients were artificially inseminated 9 hours prior to oocyte transfer. In the first experiment, two days after unilateral transfer of fresh oocytes, oviducts and uterine horns were flushed to assess embryo recovery rates. The embryo recovery rates were low compared to control in both ovariectomised and ligated oviduct groups. However, ligated oviduct recipient showed significantly (P<0.05) higher embryo recovery rates compared to ovariectomised and control-transferred. In the second experiment, using bilateral oviduct ligation model, all females that received slow-frozen oocytes became pregnant and delivered a total of 4 live young naturally. Thus, in vivo fertilisation is an effective technique to generate live offspring using slow-frozen oocytes in rabbits. PMID:24358281

  19. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap

    PubMed Central

    Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A. S.; Hause, Bettina; Neher, Erwin; Hedrich, Rainer

    2011-01-01

    Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca2+ signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca2+ signals. PMID:21896747

  20. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap.

    PubMed

    Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A S; Hause, Bettina; Neher, Erwin; Hedrich, Rainer

    2011-09-13

    Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca(2+) signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca(2+) signals.

  1. Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study.

    PubMed

    Schein, M H; Gavish, B; Herz, M; Rosner-Kahana, D; Naveh, P; Knishkowy, B; Zlotnikov, E; Ben-Zvi, N; Melmed, R N

    2001-04-01

    To examine the efficacy of a new device, which slows and regularises breathing, as a non-pharmacological treatment of hypertension and thus to evaluate the contribution of breathing modulation in the blood pressure (BP) reduction. Randomised, double-blind controlled study, carried out in three urban family practice clinics in Israel. Sixty-five male and female hypertensives, either receiving antihypertensive drug therapy or unmedicated. Four patients dropped out at the beginning of the study. Self treatment at home, 10 minutes daily for 8 consecutive weeks, using either the device (n = 32), which guides the user towards slow and regular breathing using musical sound patterns, or a Walkman, with which patients listened to quiet music (n = 29). Medication was unchanged 2 months prior to and during the study period. Systolic BP, diastolic BP and mean arterial pressure (MAP) changes from baseline. BP reduction in the device group was significantly greater than a predetermined 'clinically meaningful threshold' of 10.0, 5.0 and 6.7 mm Hg for the systolic BP, diastolic BP and MAP respectively (P = 0.035, P = 0.0002 and P = 0.001). Treatment with the device reduced systolic BP, diastolic BP and MAP by 15.2, 10.0 and 11.7 mm Hg respectively, as compared to 11.3, 5.6 and 7.5 mm Hg (P = 0.14, P = 0.008, P = 0.03) with the Walkman. Six months after treatment had stopped, diastolic BP reduction in the device group remained greater than the 'threshold' (P < 0.02) and also greater than in the walkman group (P = 0.001). The device was found to be efficacious in reducing high BP during 2 months of self-treatment by patients at home. Breathing pattern modification appears to be an important component in this reduction.

  2. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    PubMed

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Topological Origins of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro

    2008-01-01

    Although the slow solar wind has been studied for decades with both in situ and remote sensing observations, its origin is still a matter of intense debate. In the standard quasi-steady model, the slow wind is postulated to originate near coronal hole boundaries that define topologically well-behaved separatrices between open and closed field regions. In the interchange model, on the other hand, the slow wind is postulated to originate on open flux that is dynamically diffusing throughout the seemingly closed-field corona. We argue in favor of the quasi-steady scenario and propose that the slow wind is due to two effects: First, the open-closed boundary is highly complex due to the complexity of the photospheric flux distribution. Second, this boundary is continuously driven by the transport of magnetic helicity from the closed field region into the open. The implications of this model for the structure and dynamics of the corona and slow wind are discussed, and observational tests of the mode

  4. Slow adaptation of ventricular repolarization as a cause of arrhythmia?

    PubMed

    Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.

  5. Mechanism of abnormally slow crystal growth of CuZr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. Q.; Lü, Y. J., E-mail: yongjunlv@bit.edu.cn; State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. Wemore » find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.« less

  6. Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.

    PubMed

    Fearnside, Philip M

    2003-08-01

    Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.

  7. Slowed ageing, welfare, and population problems.

    PubMed

    Wareham, Christopher

    2015-10-01

    Biological studies have demonstrated that it is possible to slow the ageing process and extend lifespan in a wide variety of organisms, perhaps including humans. Making use of the findings of these studies, this article examines two problems concerning the effect of life extension on population size and welfare. The first--the problem of overpopulation--is that as a result of life extension too many people will co-exist at the same time, resulting in decreases in average welfare. The second--the problem of underpopulation--is that life extension will result in too few people existing across time, resulting in decreases in total welfare. I argue that overpopulation is highly unlikely to result from technologies that slow ageing. Moreover, I claim that the problem of underpopulation relies on claims about life extension that are false in the case of life extension by slowed ageing. The upshot of these arguments is that the population problems discussed provide scant reason to oppose life extension by slowed ageing.

  8. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

    PubMed Central

    Wei, Yina; Krishnan, Giri P.

    2016-01-01

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID

  9. Effects of cannabinoids on caffeine contractures in slow and fast skeletal muscle fibers of the frog.

    PubMed

    Huerta, Miguel; Ortiz-Mesina, Mónica; Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Vásquez, Clemente; Castro, Elena; Velasco, Raymundo; Montoya-Pérez, Rocío; Onetti, Carlos

    2009-05-01

    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 microM) caused a decrease in tension. These doses reduced maximum tension to 67.43 +/- 8.07% (P = 0.02, n = 5) and 79.4 +/- 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 +/- 7.17% and 75.10 +/- 3.60% (P = 0.002, n = 5), respectively. Using the CB(1) cannabinoid receptor agonist ACPA (1 microM) reduced the maximum tension of caffeine contractures by 68.70 +/- 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 +/- 6.89% (P = 0.02, n = 5) compared to controls. When the CB(1) receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 microM) also decreased tension; the maximum tension was reduced by 56.48 +/- 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 +/- 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB(1) receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism.

  10. Switching Systems: Controllability and Control Design

    DTIC Science & Technology

    2009-04-25

    controllable linear time invariant (LTI) systems ẋ = Ax+Bu are stabilizable and the stabilization can be always done by a...to control the system is bounded. As an application controllability conditions for a class of bimodal linear time invariant (LTI) systems are also...There exist a universal ( finite ) switching sequence σ such that the time varying system ẋ = A(σ)x+ B(σ)u is globally controllable . Proof: The

  11. Reading strategies of fast and slow readers.

    PubMed

    Haberlandt, K F; Graesser, A C; Schneider, N J

    1989-09-01

    In three subject-paced experiments we evaluated reading patterns at the word, line, and sentence level for fast and slow readers. A moving-window method was used to collect word reading times for natural texts. At the word level, reading times of word N were influenced by features of word N-1 for fast readers but not for slow readers. The lag effect exhibited by fast readers indicates that they continue to process a word when it is no longer in view, thus limiting the notion of immediate processing. Contrary to our initial expectation that fast readers would process only a single new argument from a sentence, whereas slow readers would process several new arguments, we found that both reader groups adopted a many-argument strategy. However, fast and slow readers differed in terms of the text units (lines vs. sentences) defining the new-argument effects: Fast readers exhibited greater new-argument effects relative to lines, whereas slow readers exhibited greater new-argument effects relative to sentences. Specifically, slow readers integrated the new arguments primarily at the end of the sentence, whereas fast readers did so at line boundaries. These results are discussed in terms of a buffer-and-integrate model of reading comprehension.

  12. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  13. Understanding rapid evolution in predator‐prey interactions using the theory of fast‐slow dynamical systems.

    PubMed

    Cortez, Michael H; Ellner, Stephen P

    2010-11-01

    The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.

  14. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  15. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow.

    PubMed

    Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan

    2006-04-04

    Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.

  16. Slow sluggish cognitive tempo symptoms are associated with poorer academic performance in children with ADHD.

    PubMed

    Tamm, Leanne; Garner, Annie A; Loren, Richard E A; Epstein, Jeffery N; Vaughn, Aaron J; Ciesielski, Heather A; Becker, Stephen P

    2016-08-30

    Sluggish cognitive tempo (SCT) symptoms may confer risk for academic impairment in attention-deficit/hyperactivity disorder (ADHD). We investigated SCT in relation to academic performance and impairment in 252 children (ages 6-12, 67% boys) with ADHD. Parents and teachers completed SCT and academic impairment ratings, and achievement in reading, math, and spelling was assessed. Simultaneous regressions controlling for IQ, ADHD, and comorbidities were conducted. Total SCT predicted parent-rated impairments in writing, mathematics, and overall school but not reading. Parent-rated SCT Slow predicted poorer reading and spelling, but not math achievement. Teacher-rated SCT Slow predicted poorer spelling and math, but not reading achievement. Parent-rated SCT Slow predicted greater academic impairment ratings across all domains, whereas teacher-rated SCT Slow predicted greater impairment in writing only. Age and gender did not moderate these relationships with the exception of math impairment; SCT slow predicted math impairment for younger but not older children. Parent and teacher SCT Sleepy and Daydreamy ratings were not significant predictors. SCT Slow appears to be uniquely related to academic problems in ADHD, and may be important to assess and potentially target in intervention. More work is needed to better understand the nature of SCT Slow symptoms in relation to inattention and amotivation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  18. View of slow sand filters with pump house/chlorinator in foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of slow sand filters with pump house/chlorinator in foreground. Clear well tank located behind pump house and trees. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  19. Geodynamic environments of ultra-slow spreading

    NASA Astrophysics Data System (ADS)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central

  20. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  1. Can Structural Optimization Explain Slow Dynamics of Rocks?

    NASA Astrophysics Data System (ADS)

    Kim, H.; Vistisen, O.; Tencate, J. A.

    2009-12-01

    Slow dynamics is a recovery process that describes the return to an equilibrium state after some external energy input is applied and then removed. Experimental studies on many rocks have shown that a modest acoustic energy input results in slow dynamics. The recovery process of the stiffness has consistently been found to be linear to log(time) for a wide range of geomaterials and the time constants appear to be unique to the material [TenCate JA, Shankland TJ (1996), Geophys Res Lett 23, 3019-3022]. Measurements of this nonequilibrium effect in rocks (e.g. sandstones and limestones) have been linked directly to the cement holding the individual grains together [Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004), Geophys Res Lett 31, L16604], also suggesting a potential link to porosity and permeability. Noting that slow dynamics consistently returns the overall stiffness of rocks to its maximum (original) state, it is hypothesized that the original state represents the global minimum strain energy state. Consequently the slow dynamics process represents the global minimization or optimization process. Structural optimization, which has been developed for engineering design, minimises the total strain energy by rearranging the material distribution [Kim H, Querin OM, Steven GP, Xie YM (2002), Struct Multidiscip Optim 24, 441-448]. The optimization process effectively rearranges the way the material is cemented. One of the established global optimization methods is simulated annealing (SA). Derived from cooling of metal to a thermal equilibrium, SA finds an optimum solution by iteratively moving the system towards the minimum energy state with a probability of 'uphill' moves. It has been established that the global optimum can be guaranteed by applying a log(time) linear cooling schedule [Hajek B (1988, Math Ops Res, 15, 311-329]. This work presents the original study of applying SA to the maximum stiffness optimization problem. Preliminary results

  2. The COMPASS Tokamak Plasma Control Software Performance

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir

    2011-08-01

    The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.

  3. Voltage-Gated Potassium Channel Antibodies in Slow-Progression Motor Neuron Disease.

    PubMed

    Godani, Massimiliano; Zoccarato, Marco; Beronio, Alessandro; Zuliani, Luigi; Benedetti, Luana; Giometto, Bruno; Del Sette, Massimo; Raggio, Elisa; Baldi, Roberta; Vincent, Angela

    2017-01-01

    The spectrum of autoimmune neurological diseases associated with voltage-gated potassium channel (VGKC)-complex antibodies (Abs) ranges from peripheral nerve disorders to limbic encephalitis. Recently, low titers of VGKC-complex Abs have also been reported in neurodegenerative disorders, but their clinical relevance is unknown. The aim of the study was to explore the prevalence of VGKC-complex Abs in slow-progression motor neuron disease (MND). We compared 11 patients affected by slow-progression MND with 9 patients presenting typical progression illness. Sera were tested for VGKC-complex Abs by radioimmunoassay. The distribution of VGKC-complex Abs was analyzed with the Mann-Whitney U test. The statistical analysis showed a significant difference between the mean values in the study and control groups. A case with long-survival MND harboring VGKC-complex Abs and treated with intravenous immunoglobulins is described. Although VGKC-complex Abs are not likely to be pathogenic, these results could reflect the coexistence of an immunological activation in patients with slow disease progression. © 2016 S. Karger AG, Basel.

  4. Nonlinear Control Systems

    DTIC Science & Technology

    2007-03-01

    Finite -dimensional regulators for a class of infinite dimensional systems ,” Systems and Control Letters, 3 (1983), 7-12. [11] B...semiglobal stabilizability by encoded state feedback,” to appear in Systems and Control Letters. 22 29. C. De Persis, A. Isidori, “Global stabilization of...nonequilibrium setting, for both finite and infinite dimensional control systems . Our objectives for distributed parameter systems included

  5. [Cost-effectiveness of hepatitis C treatment in slow virologic responders coinfected with HIV].

    PubMed

    Rodrigues, Marcus Paulo da Silva; Vianna, Cid Manso de Mello; Mosegui, Gabriela Bittencourt Gonzalez; Costa e Silva, Frances Valéria; Peregrino, Antonio Augusto de Freitas; Jardim, Fernando Nagib

    2013-11-01

    Recent evidence has demonstrated that slow responders may benefit from antiviral treatment in HCV/HIV coinfection. This study aimed to evaluate the cost-effectiveness of HCV treatment in individuals with genotype 1 coinfected with HIV, with peg-interferon in combination with ribavirin, compared to the inclusion (versus non-inclusion) of slow responders. A Markov model was developed that simulated the progression of liver disease in a hypothetical cohort of one thousand men over 40 years of age, considering the Brazilian Unified National Health System (SUS) perspective and a 30-year timeline. The extension of treatment to slow responders provided a 60% increase in the number of individuals who eliminated HCV and an incremental cost-effectiveness ratio of 44,171 BRL/QALY, below the acceptability threshold proposed by World Health Organization. Sensitivity analysis did not alter the results. The inclusion of HCV/ HIV-coinfected slow virologic responders in the treatment protocol is shown to be a cost-effective strategy for the SUS.

  6. Stochastic inflation in phase space: is slow roll a stochastic attractor?

    NASA Astrophysics Data System (ADS)

    Grain, Julien; Vennin, Vincent

    2017-05-01

    An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ``slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.

  7. Stochastic inflation in phase space: is slow roll a stochastic attractor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grain, Julien; Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk

    An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue.more » The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.« less

  8. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  9. Repeated drainage from megathrusts during episodic slow slip

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi; Uchida, Naoki

    2018-05-01

    Pore-fluid pressure levels are considered to regulate the frictional strength and slip behaviour at megathrusts, where the largest earthquakes on Earth occur. Some analyses have suggested that the breaking of permeability seals during megathrust earthquakes causes subsequent drainage from the megathrust. However, it is poorly understood whether drainage follows frequent occurrences of episodic slow slip events. Here we analyse seismic waveform data beneath Kanto, Japan, for the period from 2004 to 2015 and show that seismicity rates and seismic attenuation above the megathrust of the Philippine Sea slab change cyclically in response to accelerated slow slip. These observations are interpreted to represent intensive drainage during slow slip events that repeat at intervals of approximately one year and subsequent migration of fluids into the permeable overlying plate. Our observations suggest that if slow slip events occur under an impermeable overlying plate, fluids draining due to slow slip events could be forced to channel within the megathrust, potentially enhancing pore-fluid pressure at an up-dip, locked seismogenic megathrust. This process might increase the potential to trigger large earthquakes near slow slip areas. Although stress transfer is recognized as an important factor for triggering megathrust failure, fluid transfer accompanied by episodic slow slip events will thus play an additional and crucial part in megathrust weakening.

  10. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  11. Identifying factors contributing to slow growth in pigs.

    PubMed

    He, Y; Deen, J; Shurson, G C; Wang, L; Chen, C; Keisler, D H; Li, Y Z

    2016-05-01

    Pigs that grow slower than their contemporaries can cause complications for animal welfare and profitability. This study was conducted to investigate factors that may contribute to slow growth of pigs. Pigs ( = 440) farrowed by 65 sows were monitored from birth to market. Pigs were categorized as slow, average, and fast growers based on market weight adjusted to 170 d of age (slow growers were <105 kg, average growers were between 105 and 125 kg, and fast growers were >125 kg). Blood samples were collected from 48 focal pigs at 9 and 21 wk of age and analyzed for hormone and free AA concentrations. Data were analyzed using the Mixed and Logistic procedures of SAS. Slow-growing pigs accounted for 10% of pigs marketed, average growers accounted for 49% of pigs marketed, and fast growers accounted for 41% of pigs marketed. Compared with fast growers, slow growers were lighter at birth ( < 0.01), at weaning ( < 0.01), and at nursery exit ( < 0.01) and had less backfat ( < 0.01) and smaller loin muscle area ( < 0.01) at marketing at 21 wk of age. Slow growers had lower plasma concentrations of IGF-1 ( = 0.03) and insulin ( < 0.001) during the nursery period and lower concentrations of leptin ( < 0.001) and insulin ( < 0.001) during the finishing period compared with average and fast growers. Serum concentrations of several essential, nonessential, and total free AA were less for slow growers during both the nursery and finishing periods compared with average and fast growers. Gilts were more likely to become slow growers than barrows (odds ratio = 2.17, 95% confidence interval = 1.19 to 3.96, = 0.01). Litter size and parity of the pigs' dam were not associated with slow growth. These results suggest that low concentrations of IGF-1, insulin, leptin, and AA may contribute to or be associated with slow growth in pigs.

  12. Slow Learners' Attitudes toward Fundamental Freedoms.

    ERIC Educational Resources Information Center

    Curtis, Charles K.

    1981-01-01

    This article reports a study that compared slow learners' attitudes toward the freedoms described in the Canadian Bill of Rights with those of vocational and academic students. As a group, slow learners in Canada scored significantly below vocational and academic students, and the scores for each group suggested only a slight libertarian bias.…

  13. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  14. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  15. On factors controlling precursor slip fronts in the laboratory and their relation to slow slip events in nature

    NASA Astrophysics Data System (ADS)

    Selvadurai, Paul A.; Glaser, Steven D.; Parker, Jessica M.

    2017-03-01

    Spatial variations in frictional properties on natural faults are believed to be a factor influencing the presence of slow slip events (SSEs). This effect was tested on a laboratory frictional interface between two polymethyl methacrylate (PMMA) bodies. We studied the evolution of slip and slip rates that varied systematically based on the application of both high and low normal stress (σ0=0.8 or 0.4 MPa) and the far-field loading rate (VLP). A spontaneous, frictional rupture expanded from the central, weaker, and more compliant section of the fault that had fewer asperities. Slow rupture propagated at speeds Vslow˜0.8 to 26 mm s-1 with slip rates from 0.01 to 0.2 μm s-1, resulting in stress drops around 100 kPa. During certain nucleation sequences, the fault experienced a partial stress drop, referred to as precursor detachment fronts in tribology. Only at the higher level of normal stress did these fronts exist, and the slip and slip rates mimicked the moment and moment release rates during the 2013-2014 Boso SSE in Japan. The laboratory detachment fronts showed rupture propagation speeds Vslow/VR∈ (5 to 172) × 10-7 and stress drops ˜ 100 kPa, which both scaled to the aforementioned SSE. Distributions of asperities, measured using a pressure sensitive film, increased in complexity with additional normal stress—an increase in normal stress caused added complexity by increasing both the mean size and standard deviation of asperity distributions, and this appeared to control the presence of the detachment front.

  16. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  17. Slow Breathing Can Be Operantly Conditioned in the Rat and May Reduce Sensitivity to Experimental Stressors

    PubMed Central

    Noble, Donald J.; Goolsby, William N.; Garraway, Sandra M.; Martin, Karmarcha K.; Hochman, Shawn

    2017-01-01

    In humans, exercises involving slowed respiratory rate (SRR) counter autonomic sympathetic bias and reduce responses to stressors, including in individuals with various degrees of autonomic dysfunction. In the rat, we examined whether operant conditioning could lead to reductions in respiratory rate (RR) and performed preliminary studies to assess whether conditioned SRR was sufficient to decrease physiological and behavioral responsiveness to stressors. RR was continuously monitored during 20 2-h sessions using whole body plethysmography. SRR conditioned, but not yoked control rats, were able to turn off aversive visual stimulation (intermittent bright light) by slowing their breathing below a preset target of 80 breaths/min. SRR conditioned rats greatly increased the incidence of breaths below the target RR over training, with average resting RR decreasing from 92 to 81 breaths/min. These effects were significant as a group and vs. yoked controls. Preliminary studies in a subset of conditioned rats revealed behavioral changes suggestive of reduced reactivity to stressful and nociceptive stimuli. In these same rats, intermittent sessions without visual reinforcement and a post-training priming stressor (acute restraint) demonstrated that conditioned rats retained reduced RR vs. controls in the absence of conditioning. In conclusion, we present the first successful attempt to operantly condition reduced RR in an animal model. Although further studies are needed to clarify the physio-behavioral concomitants of slowed breathing, the developed model may aid subsequent neurophysiological inquiries on the role of slow breathing in stress reduction. PMID:29163199

  18. Toward standardization of slow earthquake catalog -Development of database website-

    NASA Astrophysics Data System (ADS)

    Kano, M.; Aso, N.; Annoura, S.; Arai, R.; Ito, Y.; Kamaya, N.; Maury, J.; Nakamura, M.; Nishimura, T.; Obana, K.; Sugioka, H.; Takagi, R.; Takahashi, T.; Takeo, A.; Yamashita, Y.; Matsuzawa, T.; Ide, S.; Obara, K.

    2017-12-01

    Slow earthquakes have now been widely discovered in the world based on the recent development of geodetic and seismic observations. Many researchers detect a wide frequency range of slow earthquakes including low frequency tremors, low frequency earthquakes, very low frequency earthquakes and slow slip events by using various methods. Catalogs of the detected slow earthquakes are open to us in different formats by each referring paper or through a website (e.g., Wech 2010; Idehara et al. 2014). However, we need to download catalogs from different sources, to deal with unformatted catalogs and to understand the characteristics of different catalogs, which may be somewhat complex especially for those who are not familiar with slow earthquakes. In order to standardize slow earthquake catalogs and to make such a complicated work easier, Scientific Research on Innovative Areas "Science of Slow Earthquakes" has been developing a slow earthquake catalog website. In the website, we can plot locations of various slow earthquakes via the Google Maps by compiling a variety of slow earthquake catalogs including slow slip events. This enables us to clearly visualize spatial relations among slow earthquakes at a glance and to compare the regional activities of slow earthquakes or the locations of different catalogs. In addition, we can download catalogs in the unified format and refer the information on each catalog on the single website. Such standardization will make it more convenient for users to utilize the previous achievements and to promote research on slow earthquakes, which eventually leads to collaborations with researchers in various fields and further understanding of the mechanisms, environmental conditions, and underlying physics of slow earthquakes. Furthermore, we expect that the website has a leading role in the international standardization of slow earthquake catalogs. We report the overview of the website and the progress of construction. Acknowledgment: This

  19. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip.

    PubMed

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.

  20. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    PubMed Central

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  1. General purpose algorithms for characterization of slow and fast phase nystagmus

    NASA Technical Reports Server (NTRS)

    Lessard, Charles S.

    1987-01-01

    In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs.

  2. Hierarchical Time-Lagged Independent Component Analysis: Computing Slow Modes and Reaction Coordinates for Large Molecular Systems.

    PubMed

    Pérez-Hernández, Guillermo; Noé, Frank

    2016-12-13

    Analysis of molecular dynamics, for example using Markov models, often requires the identification of order parameters that are good indicators of the rare events, i.e. good reaction coordinates. Recently, it has been shown that the time-lagged independent component analysis (TICA) finds the linear combinations of input coordinates that optimally represent the slow kinetic modes and may serve in order to define reaction coordinates between the metastable states of the molecular system. A limitation of the method is that both computing time and memory requirements scale with the square of the number of input features. For large protein systems, this exacerbates the use of extensive feature sets such as the distances between all pairs of residues or even heavy atoms. Here we derive a hierarchical TICA (hTICA) method that approximates the full TICA solution by a hierarchical, divide-and-conquer calculation. By using hTICA on distances between heavy atoms we identify previously unknown relaxation processes in the bovine pancreatic trypsin inhibitor.

  3. Saddle Slow Manifolds and Canard Orbits in [Formula: see text] and Application to the Full Hodgkin-Huxley Model.

    PubMed

    Hasan, Cris R; Krauskopf, Bernd; Osinga, Hinke M

    2018-04-19

    Many physiological phenomena have the property that some variables evolve much faster than others. For example, neuron models typically involve observable differences in time scales. The Hodgkin-Huxley model is well known for explaining the ionic mechanism that generates the action potential in the squid giant axon. Rubin and Wechselberger (Biol. Cybern. 97:5-32, 2007) nondimensionalized this model and obtained a singularly perturbed system with two fast, two slow variables, and an explicit time-scale ratio ε. The dynamics of this system are complex and feature periodic orbits with a series of action potentials separated by small-amplitude oscillations (SAOs); also referred to as mixed-mode oscillations (MMOs). The slow dynamics of this system are organized by two-dimensional locally invariant manifolds called slow manifolds which can be either attracting or of saddle type.In this paper, we introduce a general approach for computing two-dimensional saddle slow manifolds and their stable and unstable fast manifolds. We also develop a technique for detecting and continuing associated canard orbits, which arise from the interaction between attracting and saddle slow manifolds, and provide a mechanism for the organization of SAOs in [Formula: see text]. We first test our approach with an extended four-dimensional normal form of a folded node. Our results demonstrate that our computations give reliable approximations of slow manifolds and canard orbits of this model. Our computational approach is then utilized to investigate the role of saddle slow manifolds and associated canard orbits of the full Hodgkin-Huxley model in organizing MMOs and determining the firing rates of action potentials. For ε sufficiently large, canard orbits are arranged in pairs of twin canard orbits with the same number of SAOs. We illustrate how twin canard orbits partition the attracting slow manifold into a number of ribbons that play the role of sectors of rotations. The upshot is that we

  4. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  5. Beat-to-beat control of human optokinetic nystagmus slow phase durations

    PubMed Central

    Furman, Joseph M.

    2016-01-01

    This study provides the first clear evidence that the generation of optokinetic nystagmus fast phases (FPs) is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). Ten subjects performed an auditory DRT during constant velocity optokinetic stimulation. Eye movements were measured in three dimensions with a magnetic search coil. Slow phase (SP) durations were defined as the interval between FPs. There were three main findings. Firstly, human optokinetic nystagmus SP durations are consistent with a model of a Gaussian basic interval generator (a type of biological clock), such that FPs can be triggered randomly at the end of a clock cycle (mean duration: 200–250 ms). Kolmogorov-Smirnov tests could not reject the modeled cumulative distribution for any data trials. Secondly, the FP need not be triggered at the end of a clock cycle, so that individual SP durations represent single or multiple clock cycles. Thirdly, the probability of generating a FP at the end of each interval generator cycle decreases significantly during performance of a DRT. These findings indicate that the alternation between SPs and FPs of optokinetic nystagmus is not purely reflexive. Rather, the triggering of the next FP is postponed more frequently if a recently presented DRT trial is pending action when the timing cycle expires. Hence, optokinetic nystagmus FPs show dual-task interference in a manner usually attributed to voluntary movements, including saccades. NEW & NOTEWORTHY This study provides the first clear evidence that the generation of optokinetic nystagmus (OKN) fast phases is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). The slow phase (SP) durations are consistent with a Gaussian basic interval generator and multiple interval SP durations occur more frequently in the presence of the DRT. Hence, OKN shows dual-task interference in a manner observed in voluntary

  6. Beat-to-beat control of human optokinetic nystagmus slow phase durations.

    PubMed

    Balaban, Carey D; Furman, Joseph M

    2017-01-01

    This study provides the first clear evidence that the generation of optokinetic nystagmus fast phases (FPs) is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). Ten subjects performed an auditory DRT during constant velocity optokinetic stimulation. Eye movements were measured in three dimensions with a magnetic search coil. Slow phase (SP) durations were defined as the interval between FPs. There were three main findings. Firstly, human optokinetic nystagmus SP durations are consistent with a model of a Gaussian basic interval generator (a type of biological clock), such that FPs can be triggered randomly at the end of a clock cycle (mean duration: 200-250 ms). Kolmogorov-Smirnov tests could not reject the modeled cumulative distribution for any data trials. Secondly, the FP need not be triggered at the end of a clock cycle, so that individual SP durations represent single or multiple clock cycles. Thirdly, the probability of generating a FP at the end of each interval generator cycle decreases significantly during performance of a DRT. These findings indicate that the alternation between SPs and FPs of optokinetic nystagmus is not purely reflexive. Rather, the triggering of the next FP is postponed more frequently if a recently presented DRT trial is pending action when the timing cycle expires. Hence, optokinetic nystagmus FPs show dual-task interference in a manner usually attributed to voluntary movements, including saccades. This study provides the first clear evidence that the generation of optokinetic nystagmus (OKN) fast phases is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). The slow phase (SP) durations are consistent with a Gaussian basic interval generator and multiple interval SP durations occur more frequently in the presence of the DRT. Hence, OKN shows dual-task interference in a manner observed in voluntary movements, such as

  7. Cascadia Slow Earthquakes: Strategies for Time Independent Inversion of Displacement Fields

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Miller, M. M.; Santillan, V. M.

    2004-12-01

    Continuous observations using Global Positioning System geodesy (CGPS) have revealed periodic slow or silent earthquakes along the Cascadia subduction zone with a spectrum of timing and periodicity. These creep events perturb time series of GPS observations and yield coherent displacement fields that relate to the extent and magnitude of fault displacement. In this study, time independent inversions of the surface displacement fields that accompany eight slow earthquakes characterize slip distributions along the plate interface for each event. The inversions employed in this study utilize Okada's elastic dislocation model and a non- negative least squares approach. Methodologies for optimizing the slip distribution smoothing parameter for a particular station distribution have also been investigated, significantly reducing the number of possible slip distributions and the range of estimates for total moment release for each event. The discretized slip distribution calculated for multiple creep events identifies areas of the Cascadia plate interface where slip persistently recurs. The current hypothesis, that slow earthquakes are modulated by forced fluid flow, leads to the possibility that some regions of the Cascadia plate interface may display fault patches preferentially exploited by fluid flow. Thus, the identification of regions of the plate interface that repeatedly slip during slow events may yield important information regarding the identification of these fluid pathways.

  8. Rapid fast to slow fiber transformation in response to chronic stimulation of immobilized muscles of the rabbit.

    PubMed

    Cotter, M; Phillips, P

    1986-09-01

    Limb immobilization causes muscle atrophy particularly of slow oxidative fibers which also suffer the greatest decrement in neural activation. In this study a fast muscle, tibialis anterior, was chronically stimulated using an activity pattern characteristic of nerve fibers to slow muscles to see whether or not this could prevent immobilization induced slow fiber atrophy. Four groups of rabbits were used: unoperated controls, stimulated (10 Hz, 8 h/day), immobilized (neutral position), and a stimulated plus immobilized group. The experimental period was 28 to 30 days or 44 to 50 days. Immobilization caused significant decrease in slow oxidative fiber area which was completely prevented by stimulation. In animals tested for the longer period there was 56% hypertrophy. In addition, the combination of stimulation and immobilization caused a two-fold increase in the number of slow oxidative fibers and greatly increased the proportion of intermediate fibers. Stimulation without immobilization had no effect. Slow fibers in stimulated immobilized muscles had a bimodal area distribution; the number of large fibers (mean area 7059 micron2) was the same as the number of slow oxidative fibers in contralateral muscles, suggesting that they were the preexisting slow fibers, and a small fiber population (mean area 3143 micron2) represented newly converted fast fibers. We conclude that slow muscle units benefit from restoration of activity by chronic stimulation. In addition, the combination of stimulation and immobilization accelerates fast to slow fiber conversion. We suggest that isometric conditions as well as enhanced glucocorticoid effects could account for these findings.

  9. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  10. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, J. A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  11. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  12. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  13. Cellular damage suffered by equine embryos after exposure to cryoprotectants or cryopreservation by slow-freezing or vitrification.

    PubMed

    Hendriks, W K; Roelen, B A J; Colenbrander, B; Stout, T A E

    2015-11-01

    Equine embryos are cryopreserved by slow-freezing or vitrification. While small embryos (<300 μm) survive cryopreservation reasonably well, larger embryos do not. It is not clear if slow-freezing or vitrification is less damaging to horse embryos. To compare the type and extent of cellular damage suffered by small and large embryos during cryopreservation by slow-freezing vs. vitrification. Sixty-three Day 6.5-7 embryos were subdivided by size and assigned to one of 5 treatments: control, exposure to slow-freezing or vitrification cryoprotectants (CPs), and cryopreservation by either technique. After thawing/CP removal, embryos were stained with fluorescent stains for various parameters of cellular integrity, and assessed by multiphoton microscopy. Exposing large embryos to vitrification CPs resulted in more dead cells (6.8 ± 1.3%: 95% confidence interval [CI], 3.1-10.4%) than exposure to slow-freezing media (0.3 ± 0.1%; 95% CI 0.0-0.6%: P = 0.001). Cryopreservation by either technique induced cell death and cytoskeleton disruption. Vitrification of small embryos resulted in a higher proportion of cells with fragmented or condensed (apoptotic) nuclei (P = 0.002) than slow-freezing (6.7 ± 1.5%, 95% CI 3.0-10.4% vs. 5.0 ± 2.1%, 95% CI 4.0-14.0%). Slow-freezing resulted in a higher incidence of disintegrated embryos (P = 0.01) than vitrification. Mitochondrial activity was low in control embryos, and was not differentially affected by cryopreservation technique, whereas vitrification changed mitochondrial distribution from a homogenous crystalline pattern in control embryos to a heterogeneous granulated distribution in vitrified embryos (P = 0.05). Cryopreservation caused more cellular damage to large embryos than smaller ones. While vitrification is more practical, it is not advisable for large embryos due to a higher incidence of dead cells. The choice is less obvious for small embryos, as vitrification led to occasionally very high

  14. Quantitative safety assessment of air traffic control systems through system control capacity

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing

    Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the

  15. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  16. Heart Rate Effects of Intraosseous Injections Using Slow and Fast Rates of Anesthetic Solution Deposition

    PubMed Central

    Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa

    2008-01-01

    The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe. PMID:18327970

  17. Heart rate effects of intraosseous injections using slow and fast rates of anesthetic solution deposition.

    PubMed

    Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa

    2008-01-01

    The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe.

  18. Organizational Systems Theory and Command and Control Concepts

    DTIC Science & Technology

    2013-03-01

    Decentralized C2 • Problem is determinable • Many solutions • Predictable results • Low Risk • Slow feedback loop • Plans: Engineered or designed • C2...of these concepts in the Art of Command and the Science of Control, but lacks a proper model to assist commanders in determining how to correctly...commanders in determining how to correctly apply the concepts based on the operational environment. The paper concludes with a recommendation that the

  19. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  20. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    PubMed

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  1. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    PubMed Central

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-01-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this ‘critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems. PMID:28598430

  2. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    NASA Astrophysics Data System (ADS)

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-06-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this `critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  3. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation.

    PubMed

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L; van der Wal, Daphne; Herman, Peter M J; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R; Bouma, Tjeerd J

    2017-06-09

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this 'critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  4. Nonlinear Control Systems

    DTIC Science & Technology

    2009-11-18

    J.M. Schumacher, Finite -dimensional regulators for a class of infinite dimensional systems . Systems and Control Letters, 3 (1983), 7-12. [39J J.M...for the control of certain examples or system classes us- ing particular feedback design methods ([20, 21, 16, 17, 19, 18]). Still, the control of...long time existence and asymptotic behavior for certain examples or system classes using particular feedback design methods (see, e.g., [20, 21, 16, 17

  5. Multi-asperity models of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Luo, Yingdi; Lengline, Olivier; Inbal, Asaf

    2016-04-01

    embedded in a matrix with either (A) velocity-strengthening friction or (B) a transition from velocity-weakening to velocity-strengthening at increasing slip velocity. The most conventional regime is tremor driven by slow slip. However, if the interaction between asperities mediated by intervening transient creep is strong enough, a regime of slow slip driven by tremors emerges. These two regimes lead to different statistics of inter-event times of LFE sequences, which we confront to observations from LFE catalogs in Mexico, Cascadia and Parkfield. These models also suggest that the depth dependence of tremor and slow slip behavior, for instance their shorter recurrence time and weaker amplitude with increasing depth, are not necessarily related to depth dependent size distribution of asperities, but could be due to depth-dependence of the properties of the intervening creep materials. Simplified fracture mechanics models illustrate how the resistance of the fault zone matrix can control the effective distance of interaction between asperities, and lead to transitions between Gutenberg-Richter to size-bounded (exponential) frequency-magnitude distributions. Structural fault zone properties such as the thickness of the damage zone can also introduce characteristic length scales that may affect the size distribution of tremors. Earthquake cycle simulations on heterogeneous faults also provide insight into the conditions that allow asperities to generate foreshock activity and high-frequency radiation during large earthquakes.

  6. Graphene-based active slow surface plasmon polaritons

    PubMed Central

    Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min

    2015-01-01

    Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462

  7. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  8. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  9. Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum.

    PubMed

    Sawamoto, N; Honda, M; Hanakawa, T; Aso, T; Inoue, M; Toyoda, H; Ishizu, K; Fukuyama, H; Shibasaki, H

    2007-03-27

    To investigate whether cognitive slowing in Parkinson disease (PD) reflects disruption of the basal ganglia or dysfunction of the frontal lobe by excluding an influence of abnormal brain activity due to motor deficits. We measured neuronal activity during a verbal mental-operation task with H(2)(15)O PET. This task enabled us to evaluate brain activity change associated with an increase in the cognitive speed without an influence on motor deficits. As the speed of the verbal mental-operation task increased, healthy controls exhibited proportional increase in activities in the anterior striatum and medial premotor cortex, suggesting the involvement of the corticobasal ganglia circuit in normal performance of the task. By contrast, patients with PD lacked an increase in the striatal activity, whereas the medial premotor cortex showed a proportional increase. Although the present study chose a liberal threshold and needs subsequent confirmation, the findings suggest that striatal disruption resulting in abnormal processing in the corticobasal ganglia circuit may contribute to cognitive slowing in Parkinson disease, as is the case in motor slowing.

  10. Exploring contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.

    2016-12-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia, including northern and central Sulawesi as well as eastern- and westernmost New Guinea. Periods of extension are associated with sedimentary basin growth and phases of crustal melting and rapid uplift. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes, indicating that extension rates can be up to an order of magnitude faster than the rates inferred for the more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). We explore a suite of numerical experiments comparing the evolution of these `fast' (20-100 mm/year full rate) rifting models to rifting at slow and ultra-slow extension rates (5-20 mm/year). The experiments focus on the 2-D margin architecture and predicted melt volumes. These extension episodes occurring in Eastern Indonesia take place under different thermal conditions. Thus, we also investigate the role of the initial thermal structure in controlling the evolution of rifting. We explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and infer that many of the extensional basins in SE Asia cannot be explained by simple rifting episodes of fragments of continental crust. Instead, fast extension appears to be initiated by subduction related processes that we will briefly discuss.

  11. Age-related slowing: perceptuomotor, decision, or attention decline?

    PubMed

    Godefroy, Olivier; Roussel, Martine; Despretz, Pascal; Quaglino, Véronique; Boucart, Muriel

    2010-04-01

    Age-related slowing is well documented but its origin remains unclear. A first validation study (Study 1) performed in 46 participants examined the effect of attention allocation (manipulated through a dual task) on various portions of individual simple reaction time (SRT) distribution (minimum, centile 5, centile 50, and centile 95 RTs). It showed that attention 'deprivation' due to a secondary task is not uniform throughout the distribution but impaired mainly the ability to produce a large number of fast responses. Study 2 investigated in 88 healthy participants age-related slowing of perceptual, motor, decision, and attentional processes using SRT and choice reaction time (CRT), finger tapping, and visual inspection time tests. It showed that the majority of SRT slowing after the age of 40 is due to lengthening of centile 5 RT, suggesting perceptuomotor slowing, an interpretation supported by longer visual inspection time and lower tapping frequency. After 60 years, SRT lengthening was due to a further lengthening of the centile 5-centile 50 SRT index, suggesting the participation of attentional decline. These findings support the hypothesis that age-related slowing in simple repetitive tasks is mainly related to slowing at the stage of perceptuomotor processes, and after 60 years, to additional decline of attention.

  12. Obsessional Slowness in College Students: Case Studies

    ERIC Educational Resources Information Center

    Johnson, Aleta

    2014-01-01

    Cases of obsessional slowness, a variant of obsessive compulsive disorder, have been documented in case literature regarding relatively low functioning populations. However, obsessional slowness can also present in higher functioning populations, including college and graduate students, as illustrated here by three case examples from a competitive…

  13. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  14. Influence of general anaesthesia on slow waves of intracranial pressure.

    PubMed

    Lalou, Despina A; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia

    2016-07-01

    Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.

  15. Myopia Control: A Review.

    PubMed

    Walline, Jeffrey J

    2016-01-01

    Slowing the progression of myopia has become a considerable concern for parents of myopic children. At the same time, clinical science is rapidly advancing the knowledge about methods to slow myopia progression. This article reviews the peer-reviewed literature regarding several modalities attempting to control myopia progression. Several strategies have been shown to be ineffective for myopia control, including undercorrection of myopic refractive error, alignment fit gas-permeable contact lenses, outdoor time, and bifocal of multifocal spectacles. However, a recent randomized clinical trial fitted progressing myopic children with executive bifocals for 3 years and found a 39% slowing of myopia progression for bifocal-only spectacles and 50% treatment effect for bifocal spectacles with base-in prism, although there was not a significant difference in progression between the bifocal-only and bifocal plus prism groups. Interestingly, outdoor time has shown to be effective for reducing the onset of myopia but not for slowing the progression of myopic refractive error. More effective methods of myopia control include orthokeratology, soft bifocal contact lenses, and antimuscarinic agents. Orthokeratology and soft bifocal contact lenses are both thought to provide myopic blur to the retina, which acts as a putative cue to slow myopic eye growth. Each of these myopia control methods provides, on average, slightly less than 50% slowing of myopia progression. All studies have shown clinically meaningful slowing of myopia progression, including several randomized clinical trials. The most investigated antimuscarinic agents include pirenzepine and atropine. Pirenzepine slows myopia progression by approximately 40%, but it is not commercially available in the United States. Atropine provides the best myopia control, but the cycloplegic and mydriatic side effects render it a rarely prescribed myopia control agent in the United States. However, low-concentration atropine has

  16. The effects of time pressure on chess skill: an investigation into fast and slow processes underlying expert performance.

    PubMed

    van Harreveld, Frenk; Wagenmakers, Eric-Jan; van der Maas, Han L J

    2007-09-01

    The ability to play chess is generally assumed to depend on two types of processes: slow processes such as search, and fast processes such as pattern recognition. It has been argued that an increase in time pressure during a game selectively hinders the ability to engage in slow processes. Here we study the effect of time pressure on expert chess performance in order to test the hypothesis that compared to weak players, strong players depend relatively heavily on fast processes. In the first study we examine the performance of players of various strengths at an online chess server, for games played under different time controls. In a second study we examine the effect of time controls on performance in world championship matches. Both studies consistently show that skill differences between players become less predictive of the game outcome as the time controls are tightened. This result indicates that slow processes are at least as important for strong players as they are for weak players. Our findings pose a challenge for current theorizing in the field of expertise and chess.

  17. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    PubMed

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  18. Supervisory Control and Data Acquisition System | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Supervisory Control and Data Acquisition System Supervisory Control supervisory control and data acquisition (SCADA) system monitors and controls safety systems and gathers real Energy Systems Integration Facility control room. The Energy Systems Integration Facility's SCADA system

  19. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  20. Slow crack growth in sintered silicon nitride

    NASA Technical Reports Server (NTRS)

    Khandelwal, P. K.; Chang, J.; Heitman, P. W.

    1986-01-01

    The strength and crack growth characteristics of a sintered silicon nitride were studied at 1000 C. Fractographic analysis of material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 6 ksi/min. This material can sustain a 40-ksi flexural stress at 1000 C for 400 h or more but is susceptible to both SCG and creep deformation at higher stress levels. The crack velocity exponent (N) determined both from dynamic and static fatigue experiments lies in a range from 13 to 22. The subcritical crack growth and creep behavior at 1000 C is primarily controlled by the deformation of an intergranular glassy phase.

  1. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro.

    PubMed

    Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A

    2008-05-01

    We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

  2. Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study.

    PubMed

    Roede, James R; Uppal, Karan; Park, Youngja; Lee, Kichun; Tran, Vilinh; Walker, Douglas; Strobel, Frederick H; Rhodes, Shannon L; Ritz, Beate; Jones, Dean P

    2013-01-01

    Progression of Parkinson's disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.

  3. Slow slip event at Kilauea Volcano

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  4. Comparison of filtering methods for extracellular gastric slow wave recordings.

    PubMed

    Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2013-01-01

    Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.

  5. Distortion management in slow-light pulse delay.

    PubMed

    Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J

    2005-12-12

    We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.

  6. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    PubMed

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  7. The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds.

    PubMed

    Roussel, Marc R; Tang, Terry

    2006-12-07

    A slow manifold is a low-dimensional invariant manifold to which trajectories nearby are rapidly attracted on the way to the equilibrium point. The exact computation of the slow manifold simplifies the model without sacrificing accuracy on the slow time scales of the system. The Maas-Pope intrinsic low-dimensional manifold (ILDM) [Combust. Flame 88, 239 (1992)] is frequently used as an approximation to the slow manifold. This approximation is based on a linearized analysis of the differential equations and thus neglects curvature. We present here an efficient way to calculate an approximation equivalent to the ILDM. Our method, called functional equation truncation (FET), first develops a hierarchy of functional equations involving higher derivatives which can then be truncated at second-derivative terms to explicitly neglect the curvature. We prove that the ILDM and FET-approximated (FETA) manifolds are identical for the one-dimensional slow manifold of any planar system. In higher-dimensional spaces, the ILDM and FETA manifolds agree to numerical accuracy almost everywhere. Solution of the FET equations is, however, expected to generally be faster than the ILDM method.

  8. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    NASA Astrophysics Data System (ADS)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by

  9. "Slow-scanning" in Ground-based Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  10. The sleep slow oscillation as a traveling wave.

    PubMed

    Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio

    2004-08-04

    During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.

  11. The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report

    DOT National Transportation Integrated Search

    1998-12-01

    Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...

  12. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  13. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  14. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow speed...

  15. 49 CFR 236.501 - Forestalling device and speed control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Forestalling device and speed control. 236.501... Train Stop, Train Control and Cab Signal Systems Standards § 236.501 Forestalling device and speed... the following features: (1) Low-speed restriction, requiring the train to proceed under slow speed...

  16. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  17. Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola

    2005-01-01

    Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).

  18. Slow movement resistance training using body weight improves muscle mass in the elderly: A randomized controlled trial.

    PubMed

    Tsuzuku, S; Kajioka, T; Sakakibara, H; Shimaoka, K

    2018-04-01

    To examine the effect of a 12-week slow movement resistance training using body weight as a load (SRT-BW) on muscle mass, strength, and fat distribution in healthy elderly people. Fifty-three men and 35 women aged 70 years old or older without experience in resistance training participated, and they were randomly assigned to a SRT-BW group or control group. The control group did not receive any intervention, but participants in this group underwent a repeat measurement 12 weeks later. The SRT-BW program consisted of 3 different exercises (squat, tabletop push-up, and sit-up), which were designed to stimulate anterior major muscles. Initially, these exercises were performed by 2 sets of 10 repetitions, and subsequently, the number of repetitions was increased progressively by 2 repetitions every 4 weeks. Participants were instructed to perform each eccentric and concentric phase of movement slowly (spending 4 seconds on each movement), covering the full range of motion. We evaluated muscle mass, strength, and fat distribution at baseline and after 12 weeks of training. Changes over 12 weeks were significantly greater in the SRT-BW group than in the control group, with a decrease in waist circumference, hip circumference, and abdominal preperitoneal and subcutaneous fat thickness, and an increase in thigh muscle thickness, knee extension strength, and hip flexion strength. In conclusion, relatively short-term SRT-BW was effective in improving muscle mass, strength, and fat distribution in healthy elderly people. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  20. Evidence accumulation detected in BOLD signal using slow perceptual decision making.

    PubMed

    Krueger, Paul M; van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D

    2017-04-01

    We assessed whether evidence accumulation could be observed in the BOLD signal during perceptual decision making. This presents a challenge since the hemodynamic response is slow, while perceptual decisions are typically fast. Guided by theoretical predictions of the drift diffusion model, we slowed down decisions by penalizing participants for incorrect responses. Second, we distinguished BOLD activity related to stimulus detection (modeled using a boxcar) from activity related to integration (modeled using a ramp) by minimizing the collinearity of GLM regressors. This was achieved by dissecting a boxcar into its two most orthogonal components: an "up-ramp" and a "down-ramp." Third, we used a control condition in which stimuli and responses were similar to the experimental condition, but that did not engage evidence accumulation of the stimuli. The results revealed an absence of areas in parietal cortex that have been proposed to drive perceptual decision making but have recently come into question; and newly identified regions that are candidates for involvement in evidence accumulation. Previous fMRI studies have either used fast perceptual decision making, which precludes the measurement of evidence accumulation, or slowed down responses by gradually revealing stimuli. The latter approach confounds perceptual detection with evidence accumulation because accumulation is constrained by perceptual input. We slowed down the decision making process itself while leaving perceptual information intact. This provided a more sensitive and selective observation of brain regions associated with the evidence accumulation processes underlying perceptual decision making than previous methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity

    PubMed Central

    Shih, Nathan P.; François, Paul; Delaune, Emilie A.; Amacher, Sharon L.

    2015-01-01

    The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity. PMID:25968314

  2. Epidemiological evaluations of the efficacy of slow-released praziquantel-medicated bars for dogs in the prevention and control of cystic echinococcosis in man and animals.

    PubMed

    Wei, Jiao; Cheng, Fu; Qun, Qu; Nurbek; Xu, Shi-Dong; Sun, Li-Feng; Han, Xin-Kui; Muhan; Han, Ling-Ling; Irixiati; Jie, Peng; Zhang, Ke-Jiu; Islayin; Chai, Jun-jie

    2005-12-01

    To assess the epidemiological efficacy of type SRP III slow-released praziquantel-medicated bars for dogs in the prevention and control of cystic echinococcosis in man and livestock, praziquantel-medicated bars were implanted subcutaneously in over 90% of dogs in villages in north Xinjiang, China, where cystic echinococcosis is highly endemic. After implantation, infection rate of Echinococcus granulosus in dogs, specific antibodies in children and prevalence of echinococcosis in one-year-old lambs were observed for 3 years. Coproantigen of E. granulosus was positive in 41.2% of the dogs at the start of experiment. In the second and third year after medicated-bar implantation, coproantigen was undetectable in any dogs examined, while 3.0% of dogs were positive at the end of the fourth year. The antibody positive rate in 7-year-old pupils, that was 41.2% before the experiment, declined gradually and it was 5.4% in the fourth year, while children in the non-intervention control area showed 30.6% seropositivity. The prevalence of hydatid disease in children aged 7-16 years also declined significantly. The prevalence of hydatidosis in lambs one year of age was 44.8% in the first year, dropping to 10.7% in the fourth year, while in the non-intervention control area the level of infection was 46.4%. These results demonstrated not only that the slow released praziquantel-medicated bars efficiently blocked reinfection in dogs at least for 2 years, but also the measure was effective in preventing transmission of cystic echinococcosis to both man and livestock.

  3. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

  4. A Neuro-Mechanical Model Explaining the Physiological Role of Fast and Slow Muscle Fibres at Stop and Start of Stepping of an Insect Leg

    PubMed Central

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too. PMID:24278108

  5. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  6. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  7. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    The slow-spreading Mid-Atlantic Ridges hosts a multitude of different types of hydrothermal systems. Here, we compare the fluxes and the plume dispersal at three high temperature sites located in very diverse settings at comparable depths (~3000m): The recently discovered sites Turtle Pits, and Nibelungen on the southern MAR, and the Logatchev field in the North Atlantic. Plume mapping for these sites on cruises between 2004 and 2009 consisted of CTD Towyo-, Yoyo,- and station work, including velocity profiling, as well as water sampling for analysis of trace gases (CH4, H2, 3He/4He) and metals; temperature measurements and fluid sampling at the vent sites were carried out with an ROV. The aim of this work is to gain a better understanding of how the setting of a vent site affects the dispersal of the particle plume, and what means can be used to infer possible locations of vent sites based on the hydrographic properties and plume observations, using high resolution bathymetric mapping and hydrographic information. The ultramafic-hosted Nibelungen site (8°18'S) consists of a single active smoking crater, along with several extinct smokers, which is located off-axis south of a non-transform offset. The setting is characterized by rugged topography, favorable for the generation of internal tides, internal wave breaking, and vertical mixing. Elevated mixing with turbulent diffusivities Kρ up to 0.1 m2 s-1, 3 to 4 orders of magnitude higher than open ocean values, was observed close to the vent site. The mixing as well as the flow field exhibited a strong tidal cycle; the plume dispersal is thus dominated by the fast and intermittent vertical exchange and characterized by small scale spatial and temporal variability. The Turtle Pits vent fields (4°48'S) are located on a sill in a north-south orientated rift valley. The site consists of three (known) high temperature fields: Turtle Pits, Comfortless Cove, and Red Lion. The particle plume is confined to the rift

  8. Temperature offset control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, M.

    1987-07-28

    This patent describes a temperature offset control system for controlling the operation of both heating and air conditioning systems simultaneously contained within the same premises each of which is set by local thermostats to operate at an appropriate temperature, the offset control system comprising: a central control station having means for presetting an offset temperature range, means for sensing the temperature at a central location, means for comparing the sensed temperature with the offset temperature range, means responsive to the comparison for producing a control signal indicative of whether the sensed temperature is within the offset temperature range or beyondmore » the offset temperature range, and means for transmitting the control signal onto the standard energy lines servicing the premises; and a receiving station respectively associated with each heating and air conditioning system, the receiving stations each comprising means for receiving the same transmitted control signal from the energy lines, and switch means for controlling the energization of the respective system in response to the received control signal. The heating systems and associated local thermostat are disabled by the control signal when the control signal originates from a sensed temperature above the lower end of the offset temperature range. The air conditioning systems and associated thermostats are disabled by the same control signal when the control signal originates from a sensed temperature below the upper end of the offset temperature range.« less

  9. Factors Affecting the Design of Slow Release Formulations of Herbicides Based on Clay-Surfactant Systems. A Methodological Approach

    PubMed Central

    Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  10. Can Fast and Slow Intelligence Be Differentiated?

    ERIC Educational Resources Information Center

    Partchev, Ivailo; De Boeck, Paul

    2012-01-01

    Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1. Are the processes involved different? 2. Are the…

  11. Wisdom Appliance Control System

    NASA Astrophysics Data System (ADS)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  12. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  13. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal

    PubMed Central

    Höller, Yvonne; Trinka, Eugen

    2015-01-01

    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal–neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic–clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance. PMID:26124717

  14. Use of Slow-Scan Television Systems in Telemedicine, Distance Education, Government, and Industrial Applications.

    ERIC Educational Resources Information Center

    Southworth, Glen

    Reducing the costs of teaching by television through slow-scan methods is discussed. Conventional television is costly to use, largely because the wide-band communications circuits required are in limited supply. One technical answer is bandwidth compression to fit an image into less spectrum space. A simpler and far less costly answer is to…

  15. Slow-release L-Cysteine (Acetium®) Lozenge Is an Effective New Method in Smoking Cessation. A Randomized, Double-blind, Placebo-controlled Intervention.

    PubMed

    Syrjänen, Kari; Eronen, Katja; Hendolin, Panu; Paloheimo, Lea; Eklund, Carita; Bäckström, Anna; Suovaniemi, Osmo

    2017-07-01

    Because of the major health problems and annual economic burden caused by cigarette smoking, effective new tools for smoking intervention are urgently needed. Our previous randomized controlled trial (RCT) provided promising results on the efficacy of slow-release L-cysteine lozenge in smoking intervention, but the study was not adequately powered. To confirm in an adequately-powered study the results of the previous RCT implicating that effective elimination of acetaldehyde in saliva by slow-release L-cysteine (Acetium® lozenge, Biohit Oyj, Helsinki), would assist in smoking cessation by reducing acetaldehyde-enhanced nicotine addiction. On this matter, we undertook a double-blind, randomized, placebo-controlled trial comparing Acetium® lozenge and placebo in smoking intervention. A cohort of 1,998 cigarette smokers were randomly allocated to intervention (n=996) and placebo arms (n=1,002). At baseline, smoking history was recorded by a questionnaire, with nicotine dependence testing according to the Fagerström scale (FTND). The subjects used smoking diary recording the daily numbers of cigarettes, lozenges and subjective sensations of smoking. The data were analysed separately for point prevalence of abstinence (PPA) and prolonged abstinence (PA) endpoints. Altogether, 753 study subjects completed the trial per protocol (PP), 944 with violations (mITT), and the rest (n=301) were lost to follow-up (LTF). During the 6-month intervention, 331 subjects stopped smoking; 181 (18.2%) in the intervention arm and 150 (15.0%) in the placebo arm (OR=1.43; 95%CI=1.09-1.88); p=0.010). In the PP group, 170 (45.3%) quitted smoking in the intervention arm compared to 134 (35.4%) in the placebo arm (OR=1.51, 95%CI=1.12-2.02; p=0.006). In multivariate (Poisson regression) model, decreased level of smoking pleasure (p=0.010) and "smoking sensations changed" were powerful independent predictors of quit events (IRR=12.01; 95%CI=1.5-95.6). Acetium® lozenge, herein confirmed in an

  16. Characterizing Slow Slip Applying Machine Learning

    NASA Astrophysics Data System (ADS)

    Hulbert, C.; Rouet-Leduc, B.; Bolton, D. C.; Ren, C. X.; Marone, C.; Johnson, P. A.

    2017-12-01

    Over the last two decades it has become apparent from strain and GPS measurements, that slow slip on earthquake faults is a widespread phenomenon. Slow slip is also inferred from small amplitude seismic signals known as tremor and low frequency earthquakes (LFE's) and has been reproduced in laboratory studies, providing useful physical insight into the frictional properties associated with the behavior. From such laboratory studies we ask whether we can obtain quantitative information regarding the physics of friction from only the recorded continuous acoustical data originating from the fault zone. We show that by applying machine learning to the acoustical signal, we can infer upcoming slow slip failure initiation as well as the slip termination, and that we can also infer the magnitudes by a second machine learning procedure based on predicted inter-event times. We speculate that by applying this or other machine learning approaches to continuous seismic data, new information regarding the physics of faulting could be obtained.

  17. Triggered Slow Slip and Afterslip on the Southern Hikurangi Subduction Zone Following the Kaikōura Earthquake

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul

    2018-05-01

    The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.

  18. Analysis and design of gain scheduled control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shamma, Jeff S.

    1988-01-01

    Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.

  19. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.

    PubMed

    Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K

    2013-05-01

    Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.

  20. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  1. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  2. What is the evidence for stress resistance and slowed aging?

    PubMed

    Hamilton, Karyn L; Miller, Benjamin F

    2016-09-01

    Stress resistance is thought to contribute to slowed-aging, although cause and effect between the two is controversial. On October 30, 2015 researchers gathered at the Front Range Consortium on Stress Resistance and Slowed Aging in Fort Collins, CO, to discuss what the current evidence is that stress resistance imparts slowed aging. Included in that discussion was defining stress resistance, distinguishing if there are key stresses to which resistance imparts slowed aging, what models aid in our understanding of stress resistance and aging, and how to translate that knowledge into slowed aging treatment. The following article is a brief summary of that discussion and recommendations for moving forward. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation

    PubMed Central

    Lemieux, Maxime; Chen, Jen-Yung; Lonjers, Peter; Bazhenov, Maxim

    2014-01-01

    Slow oscillation is the main brain rhythm observed during deep sleep in mammals. Although several studies have demonstrated its neocortical origin, the extent of the thalamic contribution is still a matter of discussion. Using electrophysiological recordings in vivo on cats and computational modeling, we found that the local thalamic inactivation or the complete isolation of the neocortical slabs maintained within the brain dramatically reduced the expression of slow and fast oscillations in affected cortical areas. The slow oscillation began to recover 12 h after thalamic inactivation. The slow oscillation, but not faster activities, nearly recovered after 30 h and persisted for weeks in the isolated slabs. We also observed an increase of the membrane potential fluctuations recorded in vivo several hours after thalamic inactivation. Mimicking this enhancement in a network computational model with an increased postsynaptic activity of long-range intracortical afferents or scaling K+ leak current, but not several other Na+ and K+ intrinsic currents was sufficient for recovering the slow oscillation. We conclude that, in the intact brain, the thalamus contributes to the generation of cortical active states of the slow oscillation and mediates its large-scale synchronization. Our study also suggests that the deafferentation-induced alterations of the sleep slow oscillation can be counteracted by compensatory intracortical mechanisms and that the sleep slow oscillation is a fundamental and intrinsic state of the neocortex. PMID:24741059

  4. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  5. 76 FR 8699 - Reporting Requirements for Positive Train Control Expenses and Investments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board 49 CFR Part 1201 [Docket No. EP 706] Reporting Requirements for Positive Train Control Expenses and Investments AGENCY: Surface Transportation... Train Control, a federally mandated safety system that will automatically stop or slow a train before an...

  6. Odors enhance slow-wave activity in non-rapid eye movement sleep

    PubMed Central

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam

    2016-01-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9–15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5–4 Hz) and slow spindle (9–12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. PMID:26888107

  7. Odors enhance slow-wave activity in non-rapid eye movement sleep.

    PubMed

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam; Hairston, Ilana S

    2016-05-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. Copyright © 2016 the American Physiological Society.

  8. Overnight changes in the slope of sleep slow waves during infancy.

    PubMed

    Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto

    2014-02-01

    Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P < 0.002). The decrease of the slope was also present in the cycle-by-cycle time course across the night (P < 0.001) at the age of 6 months when the alternating pattern of low-delta activity (0.75-1.75 Hz) is most prominent. Moreover, we found distinct topographical differences exhibiting the steepest slope over the occipital cortex. The results suggest an age-dependent increase in synchronization of cortical activity during infancy, which might be due to increasing synaptogenesis. Previous studies have shown that during early postnatal development synaptogenesis is most pronounced over the occipital cortex, which could explain why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.

  9. DESIGN PRINCIPLES FOR AN ON-LINE INFORMATION RETRIEVAL SYSTEM. TECHNICAL REPORT.

    ERIC Educational Resources Information Center

    LOWE, THOMAS C.

    AREAS INVESTIGATED INCLUDE SLOW MEMORY DATA STORAGE, THE PROBLEM OF DECODING FROM AN INDEX TO A SLOW MEMORY ADDRESS, THE STRUCTURE OF DATA LISTS AND DATA LIST OPERATORS, COMMUNICATIONS BETWEEN THE HUMAN USER AND THE SYSTEM, PROCESSING OF RETRIEVAL REQUESTS, AND THE USER'S CONTROL OVER THE RETURN OF INFORMATION RETRIEVED. LINEAR, LINKED AND…

  10. The nature of subslab slow velocity anomalies beneath South America

    NASA Astrophysics Data System (ADS)

    Portner, Daniel Evan; Beck, Susan; Zandt, George; Scire, Alissa

    2017-05-01

    Slow seismic velocity anomalies are commonly imaged beneath subducting slabs in tomographic studies, yet a unifying explanation for their distribution has not been agreed upon. In South America two such anomalies have been imaged associated with subduction of the Nazca Ridge in Peru and the Juan Fernández Ridge in Chile. Here we present new seismic images of the subslab slow velocity anomaly beneath Chile, which give a unique view of the nature of such anomalies. Slow seismic velocities within a large hole in the subducted Nazca slab connect with a subslab slow anomaly that appears correlated with the extent of the subducted Juan Fernández Ridge. The hole in the slab may allow the subslab material to rise into the mantle wedge, revealing the positive buoyancy of the slow material. We propose a new model for subslab slow velocity anomalies beneath the Nazca slab related to the entrainment of hot spot material.

  11. Interventions to slow progression of myopia in children

    PubMed Central

    Walline, Jeffrey J; Lindsley, Kristina; Vedula, Satyanarayana S; Cotter, Susan A; Mutti, Donald O; Twelker, J. Daniel

    2012-01-01

    Background Nearsightedness (myopia) causes blurry vision when looking at distant objects. Highly nearsighted people are at greater risk of several vision-threatening problems such as retinal detachments, choroidal atrophy, cataracts and glaucoma. Interventions that have been explored to slow the progression of myopia include bifocal spectacles, cycloplegic drops, intraocular pressure-lowering drugs, muscarinic receptor antagonists and contact lenses. The purpose of this review was to systematically assess the effectiveness of strategies to control progression of myopia in children. Objectives To assess the effects of several types of interventions, including eye drops, undercorrection of nearsightedness, multifocal spectacles and contact lenses, on the progression of nearsightedness in myopic children younger than 18 years. We compared the interventions of interest with each other, to single vision lenses (SVLs) (spectacles), placebo or no treatment. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 10), MEDLINE (January 1950 to October 2011), EMBASE (January 1980 to October 2011), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to October 2011), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) and ClinicalTrials.gov (http://clinicaltrials.gov). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 11 October 2011. We also searched the reference lists and Science Citation Index for additional, potentially relevant studies. Selection criteria We included randomized controlled trials (RCTs) in which participants were treated with spectacles, contact lenses or pharmaceutical agents for the purpose of controlling progression of myopia. We excluded trials where participants were older than 18 years at baseline or participants had less than −0

  12. Slow Rotating Asteroids: A Long Day's Journey into Night

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.

    2009-05-01

    While there is no formal definition of a "slow rotator" among asteroids, anything with a period of at least 24 hours can be considered to be at least at the fast end of the group. These objects are of particular interest to those studying the evolution and dynamics of the asteroids within the solar system for several reasons. Most important among them is to generalize theories regarding the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which is the thermal re-radiation of sunlight that can not only affect the orientation of an asteroid's spin axis but its rate of rotation as well. In those cases where the spin rate is decreased, an asteroid can eventually be sent into a state of "tumbling" (NPAR - non-principal axis rotation) that can last for millions of years. However, not all slow rotating asteroids appear to be tumbling. This is not expected and so careful studies of these objects are needed to determine if this is really the case or if the tumbling has reached a condition where the secondary frequency - the precession of the spin axis - has been reduced to near zero. Furthermore, there appears to be an excess of slow rotators among the NEA and inner main-belt populations. Determining whether or not this is true among the broader population of asteroids is also vital to understanding the forces at work among the asteroids.

  13. On using surface-source downhole-receiver logging to determine seismic slownesses

    USGS Publications Warehouse

    Boore, D.M.; Thompson, E.M.

    2007-01-01

    We present a method to solve for slowness models from surface-source downhole-receiver seismic travel-times. The method estimates the slownesses in a single inversion of the travel-times from all receiver depths and accounts for refractions at layer boundaries. The number and location of layer interfaces in the model can be selected based on lithologic changes or linear trends in the travel-time data. The interfaces based on linear trends in the data can be picked manually or by an automated algorithm. We illustrate the method with example sites for which geologic descriptions of the subsurface materials and independent slowness measurements are available. At each site we present slowness models that result from different interpretations of the data. The examples were carefully selected to address the reliability of interface-selection and the ability of the inversion to identify thin layers, large slowness contrasts, and slowness gradients. Additionally, we compare the models in terms of ground-motion amplification. These plots illustrate the sensitivity of site amplifications to the uncertainties in the slowness model. We show that one-dimensional site amplifications are insensitive to thin layers in the slowness models; although slowness is variable over short ranges of depth, this variability has little affect on ground-motion amplification at frequencies up to 5 Hz.

  14. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds

    PubMed Central

    Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France

    2015-01-01

    When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910

  15. Slow versus fast subcutaneous heparin injections for prevention of bruising and site-pain intensity.

    PubMed

    Akbari Sari, Ali; Janani, Leila; Mohammady, Mina; Nedjat, Saharnaz

    2014-07-18

    Heparin is an anticoagulant medication that is normally injected subcutaneously. Subcutaneous administration of heparin may result in complications such as bruising, haematoma and pain at the injection site. One of the factors that may affect pain, haematoma and bruising is injection speed. To assess the effects of the duration (speed) of subcutaneous heparin injection on pain, haematoma and bruising at the injection site in people admitted to hospitals or clinics who require treatment with unfractionated heparin or low molecular weight heparin. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched August 2013) and CENTRAL (2013, Issue 7). We searched MEDLINE, EMBASE, CINAHL and two Persian databases Iranmedex and SID (August 2013). We sought randomised controlled trials (RCTs) comparing the effects of different durations of subcutaneous injections of heparin on pain, bruising and haematoma at the injection site. Two review authors, working independently, extracted data onto a structured form and assessed study quality. We used the criteria recommended by the Cochrane Handbook to assess the quality of included studies. The study outcomes were summarised using quantitative and qualitative methods. One RCT was identified which met the inclusion criteria, involving 50 participants with a mean age of 55.25 (± 12.37) years. In this trial it was not possible to blind the participants and care givers. The method of sequence generation and allocation concealment was not described. The overall quality of the evidence was moderate due to the single small included study. Each participant had two injections, one in the left side and one in right side of the abdomen. One of these was injected slowly (intervention) and the other was injected fast (control). The second injection was 12 hours after the first injection. The duration of fast injection was 10 seconds and the duration of slow injection was 30

  16. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment

  17. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  18. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  19. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy: A Randomized Controlled Trial.

    PubMed

    Beyer, Rikke; Kongsgaard, Mads; Hougs Kjær, Birgitte; Øhlenschlæger, Tommy; Kjær, Michael; Magnusson, S Peter

    2015-07-01

    Previous studies have shown that eccentric training has a positive effect on Achilles tendinopathy, but few randomized controlled trials have compared it with other loading-based treatment regimens. To evaluate the effectiveness of eccentric training (ECC) and heavy slow resistance training (HSR) among patients with midportion Achilles tendinopathy. Randomized controlled trial; Level of evidence, 1. A total of 58 patients with chronic (>3 months) midportion Achilles tendinopathy were randomized to ECC or HSR for 12 weeks. Function and symptoms (Victorian Institute of Sports Assessment-Achilles), tendon pain during activity (visual analog scale), tendon swelling, tendon neovascularization, and treatment satisfaction were assessed at 0 and 12 weeks and at the 52-week follow-up. Analyses were performed on an intention-to-treat basis. Both groups showed significant (P < .0001) improvements in Victorian Institute of Sports Assessment-Achilles and visual analog scale from 0 to 12 weeks, and these improvements were maintained at the 52-week follow-up. Concomitant with the clinical improvement, there was a significant reduction in tendon thickness and neovascularization. None of these robust clinical and structural improvements differed between the ECC and HSR groups. However, patient satisfaction tended to be greater after 12 weeks with HSR (100%) than with ECC (80%; P = .052) but not after 52 weeks (HSR, 96%; ECC, 76%; P = .10), and the mean training session compliance rate was 78% in the ECC group and 92% in the HSR group, with a significant difference between groups (P < .005). The results of this study show that both traditional ECC and HSR yield positive, equally good, lasting clinical results in patients with Achilles tendinopathy and that the latter tends to be associated with greater patient satisfaction after 12 weeks but not after 52 weeks. © 2015 The Author(s).

  20. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  1. Hollow microspheres of diclofenac sodium - a gastroretentive controlled delivery system.

    PubMed

    Bv, Basavaraj; R, Deveswaran; S, Bharath; Abraham, Sindhu; Furtado, Sharon; V, Madhavan

    2008-10-01

    Most of the floating systems have an inherent drawback of high variability in the GI transit time, invariably affecting the bioavailability of drug. To overcome it, a multiple unit floating system with extended GI transit time, capable of distributing widely throughout the GIT for effective enteric release of the drug has been sought. Microballoons loaded with drug in their outer polymer shells were prepared by novel emulsion solvent diffusion method. The ethanol: dicloromethane solution of drug and Eudragit-S were poured into an aqueous solution of PVA that was thermally controlled at 40 degrees C. The gas phase generated in the dispersed polymer droplet by the evaporation of solvent formed an internal cavity in the microsphere of the polymer with the drug. The flowability of the resulting microballoons improved when compared to pure drug. The microballoons on floatation along with the surfactant, floated continuously for more than 12 hours in the acidic medium in-vitro conditions. The in-vitro drug release profile of the formulation in the simulated gastric buffer showed no drug release, which emphasizes the enteric release property and in simulated intestinal buffer, a slow and controlled drug release of 60 to 84% was obtained over a period of 8 hours. Drug release was significantly affected by increased drug to polymer concentration at pH 6.8. The formulation was found to be physically and chemically stable as per the ICH guidelines.

  2. Controllability of discrete bilinear systems with bounded control.

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Elliott, D. L.; Goka, T.

    1973-01-01

    The subject of this paper is the controllability of time-invariant discrete-time bilinear systems. Bilinear systems are classified into two categories; homogeneous and inhomogeneous. Sufficient conditions which ensure the global controllability of discrete-time bilinear systems are obtained by localized analysis in control variables.

  3. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    PubMed Central

    Marlow, Jeffrey J.; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, Victoria J.

    2016-01-01

    Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here

  4. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial

    PubMed Central

    Smith, Stephen M.; de Jager, Celeste A.; Whitbread, Philippa; Johnston, Carole; Agacinski, Grzegorz; Oulhaj, Abderrahim; Bradley, Kevin M.; Jacoby, Robin

    2010-01-01

    Background An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins. Objective To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159). Methods and Findings Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B6 and B12 in 271 individuals (of 646 screened) over 70 y old with mild cognitive impairment. A subset (187) volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d), vitamin B12 (0.5 mg/d) and vitamin B6 (20 mg/d), the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans. Results A total of 168 participants (85 in active treatment group; 83 receiving placebo) completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63–0.90] in the active treatment group and 1.08% [0.94–1.22] in the placebo group (P = 0.001). The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P = 0.001). A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category. Conclusions and Significance The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment with homocysteine

  5. Collisionless slow shocks in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.

  6. Good, Clean, Fair: The Rhetoric of the Slow Food Movement

    ERIC Educational Resources Information Center

    Schneider, Stephen

    2008-01-01

    This article outlines the origins of the Slow Food movement before examining the ways in which Slow Food rhetoric seeks to redefine gastronomy and combat the more deleterious effects of globalization. In articulating a new gastronomy, Slow Food founder Carlo Petrini attempts to reconstruct the gastronomy of Jean Anthelme Brillat-Savarin, at once…

  7. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  8. Memory improvement via slow-oscillatory stimulation during sleep in older adults.

    PubMed

    Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A

    2015-09-01

    We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  10. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  11. Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat.

    PubMed

    Sultan, K R; Dittrich, B T; Pette, D

    2000-09-01

    Fiber-type transitions in adult skeletal muscle induced by chronic low-frequency stimulation (CLFS) encompass coordinated exchanges of myofibrillar protein isoforms. CLFS-induced elevations in cytosolic Ca(2+) could activate proteases, especially calpains, the major Ca(2+)-regulated cytosolic proteases. Calpain activity determined by a fluorogenic substrate in the presence of unaltered endogenous calpastatin activities increased twofold in low-frequency-stimulated extensor digitorum longus (EDL) muscle, reaching a level intermediate between normal fast- and slow-twitch muscles. micro- and m-calpains were delineated by a calpain-specific zymographical assay that assessed total activities independent of calpastatin and distinguished between native and processed calpains. Contrary to normal EDL, structure-bound, namely myofibrillar and microsomal calpains, were abundant in soleus muscle. However, the fast-to-slow conversion of EDL was accompanied by an early translocation of cytosolic micro-calpain, suggesting that myofibrillar and microsomal micro-calpain was responsible for the twofold increase in activity and thus involved in controlled proteolysis during fiber transformation. This is in contrast to muscle regeneration where m-calpain translocation predominated. Taken together, we suggest that translocation is an important step in the control of calpain activity in skeletal muscle in vivo.

  12. Desynchronization of slow oscillations in the basal ganglia during natural sleep.

    PubMed

    Mizrahi-Kliger, Aviv D; Kaplan, Alexander; Israel, Zvi; Bergman, Hagai

    2018-05-01

    Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.

  13. Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light

    NASA Astrophysics Data System (ADS)

    Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo; Scalora, Michael; Biancalana, Fabio

    2013-05-01

    We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light.

  14. On forward inferences of fast and slow readers. An eye movement study

    PubMed Central

    Hawelka, Stefan; Schuster, Sarah; Gagl, Benjamin; Hutzler, Florian

    2015-01-01

    Unimpaired readers process words incredibly fast and hence it was assumed that top-down processing, such as predicting upcoming words, would be too slow to play an appreciable role in reading. This runs counter the major postulate of the predictive coding framework that our brain continually predicts probable upcoming sensory events. This means, it may generate predictions about the probable upcoming word during reading (dubbed forward inferences). Trying to asses these contradictory assumptions, we evaluated the effect of the predictability of words in sentences on eye movement control during silent reading. Participants were a group of fluent (i.e., fast) and a group of speed-impaired (i.e., slow) readers. The findings indicate that fast readers generate forward inferences, whereas speed-impaired readers do so to a reduced extent - indicating a significant role of predictive coding for fluent reading. PMID:25678030

  15. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities

    PubMed Central

    Du, Peng; Calder, Stefan; Angeli, Timothy R.; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K.

    2018-01-01

    Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of “entrainment,” which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed. PMID:29379448

  16. A slow earthquake sequence on the San Andreas fault

    USGS Publications Warehouse

    Linde, A.T.; Gladwin, M.T.; Johnston, M.J.S.; Gwyther, R.L.; Bilham, R.G.

    1996-01-01

    EARTHQUAKES typically release stored strain energy on timescales of the order of seconds, limited by the velocity of sound in rock. Over the past 20 years, observations and laboratory experiments have indicated that capture can also occur more slowly, with durations up to hours. Such events may be important in earthquake nucleation and in accounting for the excess of plate convergence over seismic slip in subduction zones. The detection of events with larger timescales requires near-field deformation measurements. In December 1992, two borehole strainmeters close to the San Andreas fault in California recorded a slow strain event of about a week in duration, and we show here that the strain changes were produced by a slow earthquake sequence (equivalent magnitude 4.8) with complexity similar to that of regular earthquakes. The largest earthquakes associated with these slow events were small (local magnitude 3.7) and contributed negligible strain release. The importance of slow earthquakes in the seismogenic process remains an open question, but these observations extend the observed timescale for slow events by two orders of magnitude.

  17. Plasmonic slow light waveguide with hyperbolic metamaterials claddings

    NASA Astrophysics Data System (ADS)

    Liang, Shuhai; Jiang, Chuhao; Yang, Zhiqiang; Li, Dacheng; Zhang, Wending; Mei, Ting; Zhang, Dawei

    2018-06-01

    Plasmonic waveguides with an insulator core sandwiched between hyperbolic metamaterials (HMMs) claddings, i.e. HIH waveguide, are investigated for achieving wide slow-light band with adjustable working wavelength. The transfer matrix method and the finite-difference-time-domain simulation are employed to study waveguide dispersion characteristics and pulse propagation. By selecting proper silver filling ratios for HMMs, the hetero-HIH waveguide presents a slow-light band with a zero group velocity dispersion wavelength of 1.55 μm and is capable of buffering pulses with pulse width as short as ∼20 fs. This type of waveguides might be applicable for ultrafast slow-light application.

  18. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    PubMed

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  19. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  20. Differing Patterns of Altered Slow-5 Oscillations in Healthy Aging and Ischemic Stroke.

    PubMed

    La, Christian; Mossahebi, Pouria; Nair, Veena A; Young, Brittany M; Stamm, Julie; Birn, Rasmus; Meyerand, Mary E; Prabhakaran, Vivek

    2016-01-01

    The 'default-mode' network (DMN) has been investigated in the presence of various disorders, such as Alzheimer's disease and Autism spectrum disorders. More recently, this investigation has expanded to include patients with ischemic injury. Here, we characterized the effects of ischemic injury in terms of its spectral distribution of resting-state low-frequency oscillations and further investigated whether those specific disruptions were unique to the DMN, or rather more general, affecting the global cortical system. With 43 young healthy adults, 42 older healthy adults, 14 stroke patients in their early stage (<7 days after stroke onset), and 16 stroke patients in their later stage (between 1 to 6 months after stroke onset), this study showed that patterns of cortical system disruption may differ between healthy aging and following the event of an ischemic stroke. The stroke group in the later stage demonstrated a global reduction in the amplitude of the slow-5 oscillations (0.01-0.027 Hz) in the DMN as well as in the primary visual and sensorimotor networks, two 'task-positive' networks. In comparison to the young healthy group, the older healthy subjects presented a decrease in the amplitude of the slow-5 oscillations specific to the components of the DMN, while exhibiting an increase in oscillation power in the task-positive networks. These two processes of a decrease DMN and an increase in 'task-positive' slow-5 oscillations may potentially be related, with a deficit in DMN inhibition, leading to an elevation of oscillations in non-DMN systems. These findings also suggest that disruptions of the slow-5 oscillations in healthy aging may be more specific to the DMN while the disruptions of those oscillations following a stroke through remote (diaschisis) effects may be more widespread, highlighting a non-specificity of disruption on the DMN in stroke population. The mechanisms underlying those differing modes of network disruption need to be further explored to

  1. Novel slow release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function

    USDA-ARS?s Scientific Manuscript database

    Efficient use of fertilizers, especially nitrogen, is essential and strategic to agricultural production. Among the technologies that can contribute to efficient use of fertilizers are slow or controlled release products. This paper describes the impact on structure, urea release rate and function i...

  2. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres

    PubMed Central

    Yuen, Michaela; Cooper, Sandra T.; Marston, Steve B.; Nowak, Kristen J.; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M.; Klinge, Lars; Beggs, Alan H.; North, Kathryn N.; Ottenheijm, Coen A.C.; Clarke, Nigel F.

    2015-01-01

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin–tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitizing drugs may represent a useful treatment for this condition. PMID:26307083

  3. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    PubMed

    Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F

    2015-11-15

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition. © The Author 2015. Published by Oxford University Press. All rights reserved

  4. Shaping the role of 'fast' and 'slow' drivers of change in forest-shrubland socio-ecological systems.

    PubMed

    Ferrara, Agostino; Kelly, Claire; Wilson, Geoff A; Nolè, Angelo; Mancino, Giuseppe; Bajocco, Sofia; Salvati, Luca

    2016-03-15

    The temporal speeds and spatial scales at which ecosystem processes operate are often at odds with the scale and speed at which natural resources such as soil, water and vegetation are managed those. Scale mismatches often occur as a result of the time-lag between policy development, implementation and observable changes in natural capital in particular. In this study, we analyse some of the transformations that can occur in complex forest-shrubland socio-ecological systems undergoing biophysical and socioeconomic change. We use a Multiway Factor Analysis (MFA) applied to a representative set of variables to assess changes in components of natural, economic and social capitals over time. Our results indicate similarities among variables and spatial units (i.e. municipalities) which allows us to rank the variables used to describe the SES according to their rapidity of change. The novelty of the proposed framework lies in the fact that the assessment of rapidity-to-change, based on the MFA, takes into account the multivariate relationships among the system's variables, identifying the net rate of change for the whole system, and the relative impact that individual variables exert on the system itself. The aim of this study was to assess the influence of fast and slow variables on the evolution of socio-economic systems based on simplified multivariate procedures applicable to vastly different socio-economic contexts and conditions. This study also contributes to quantitative analysis methods for long-established socio-ecological systems, which may help in designing more effective, and sustainable land management strategies in environmentally sensitive areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Slow crack growth test method for polyethylene gas pipes. Volume 1. Topical report, December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leis, B.; Ahmad, J.; Forte, T.

    1992-12-01

    In spite of the excellent performance record of polyethylene (PE) pipes used for gas distribution, a small number of leaks occur in distribution systems each year because of slow growth of cracks through pipe walls. The Slow Crack Growth Test (SCG) has been developed as a key element in a methodology for the assessment of the performance of polyethylene gas distribution systems to resist such leaks. This tropical report describes work conducted in the first part of the research directed at the initial development of the SCG test, including a critical evaluation of the applicability of the SCG test asmore » an element in PE gas pipe system performance methodology. Results of extensive experiments and analysis are reported. The results show that the SCG test should be very useful in performance assessment.« less

  6. Critical slowing down in driven-dissipative Bose-Hubbard lattices

    NASA Astrophysics Data System (ADS)

    Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano

    2018-01-01

    We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.

  7. Characterization of ictal slow waves in epileptic spasms.

    PubMed

    Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2015-12-01

    We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.

  8. Control of solar energy systems

    NASA Astrophysics Data System (ADS)

    Sizov, Iu. M.; Zakhidov, R. A.; Baranov, V. G.

    Two approaches to the control of large solar energy systems, i.e., programmed control and control systems relying on the use of orientation transducers and feedback, are briefly reviewed, with particular attention given to problems associated with these control systems. A new control system for large solar power plants is then proposed which is based on a combination of these approaches. The general design of the control system is shown and its principle of operation described. The efficiency and cost effectiveness of the approach proposed here are demonstrated.

  9. A Slowed Cell Cycle Stabilizes the Budding Yeast Genome.

    PubMed

    Vinton, Peter J; Weinert, Ted

    2017-06-01

    During cell division, aberrant DNA structures are detected by regulators called checkpoints that slow division to allow error correction. In addition to checkpoint-induced delay, it is widely assumed, though rarely shown, that merely slowing the cell cycle might allow more time for error detection and correction, thus resulting in a more stable genome. Fidelity by a slowed cell cycle might be independent of checkpoints. Here we tested the hypothesis that a slowed cell cycle stabilizes the genome, independent of checkpoints, in the budding yeast Saccharomyces cerevisiae We were led to this hypothesis when we identified a gene ( ERV14 , an ER cargo membrane protein) that when mutated, unexpectedly stabilized the genome, as measured by three different chromosome assays. After extensive studies of pathways rendered dysfunctional in erv14 mutant cells, we are led to the inference that no particular pathway is involved in stabilization, but rather the slowed cell cycle induced by erv14 stabilized the genome. We then demonstrated that, in genetic mutations and chemical treatments unrelated to ERV14 , a slowed cell cycle indeed correlates with a more stable genome, even in checkpoint-proficient cells. Data suggest a delay in G2/M may commonly stabilize the genome. We conclude that chromosome errors are more rarely made or are more readily corrected when the cell cycle is slowed (even ∼15 min longer in an ∼100-min cell cycle). And, some chromosome errors may not signal checkpoint-mediated responses, or do not sufficiently signal to allow correction, and their correction benefits from this "time checkpoint." Copyright © 2017 by the Genetics Society of America.

  10. Current approaches to myopia control.

    PubMed

    Leo, Seo Wei

    2017-05-01

    Myopia is a global problem, being particularly prevalent in the urban areas of east and southeast Asia. In addition to the direct economic and social burdens, associated ocular complications may lead to substantial vision loss. With prevalence of myopia above 80% and high myopia over 20%, it is crucial to control myopia. The aim of this review to is provide an update on the interventions to slow the onset of myopia and retard its progression. The epidemic of myopia is characterized by increasingly early onset, combined with high myopia progression rates. There are two pathways for myopia control: firstly to slow the onset of myopia and secondly to reduce or prevent progression. Increased time outdoors can reduce the onset of myopia. Atropine 0.01% dose offers an appropriate risk-benefit ratio, with no clinically significant visual side effects balanced against a significant 50% reduction in myopia progression. Orthokeratology contact lenses can slow axial length elongation, but infective keratitis is a risk. Peripheral defocussing lenses may both have a role in slowing myopic progression in a subset of children and further help our understanding of the physiologic control of ocular growth. Myopia control can be achieved by slowing the onset of myopia, which now appears to be possible through increasing time outdoors and slowing the progression of myopia with interventions like atropine and orthokeratology.

  11. Estimation of Ksub Ic from slow bend precracked Charpy specimen strength ratios

    NASA Technical Reports Server (NTRS)

    Succop, G.; Brown, W. F., Jr.

    1976-01-01

    Strength ratios are reported which were derived from slow bend tests on 0.25 inch thick precracked Charpy specimens of steels, aluminum alloys, and a titanium alloy for which valid K sub Ic values were established. The strength ratios were used to develop calibration curves typical of those that could be useful in estimating K sub Ic for the purposes of alloy development of quality control.

  12. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification.

    PubMed

    Wang, Tian-ren; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhi, Xu; Zhu, Xiao-hui; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Yan, Li-ying; Qiao, Jie

    2016-04-01

    What is the effect of human ovarian tissue cryopreservation on single follicular development in vitro? Vitrification had a greater negative effect on growth and gene expression of human ovarian follicles when compared with fresh follicles. For human ovarian cortex cryopreservation, the conventional option is slow freezing while more recently vitrification has been demonstrated to maintain good quality and function of ovarian tissues. Ovarian tissues were collected from 11 patients. For every patient, the ovarian cortex was divided into three samples: Fresh, slow-rate freezing (Slow) and vitrification (Vit). Tissue histology was performed and follicles were isolated for single-cell mRNA analysis and in vitro culture (IVC) in 1% alginate for 8 days. Follicle morphology was assessed with hematoxylin-eosin analysis. Follicles were individually embedded in alginate (1% w/v) and cultured in vitro for 8 days. Follicle survival and growth were assessed by microscopy. Follicle viability was observed after Calcein-AM and ethidium homodimer-I (Ca-AM/EthD-I) staining. Expression of genes, including GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15) and ZP3 (zona pellucida glycoprotein 3) in oocytes and AMH (anti-Mullerian hormone), FSHR (FSH receptor), CYP11A (cholesterol side-chain cleavage cytochrome P450) and STAR (steroidogenic acute regulatory protein) in GCs, was evaluated by single-cell mRNA analysis. A total of 129 follicles were separated from ovarian cortex (Fresh n = 44; Slow n = 40; Vit n = 45). The percentage of damaged oocytes and granulosa cells was significantly higher in both the Slow and Vit groups, as compared with Fresh control (P< 0.05). The growth of follicles in vitro was significantly delayed in the Vit group compared with the Fresh group (P< 0.05). Both slow freezing (P< 0.05) and vitrification (P< 0.05) down-regulated the mRNA levels of ZP3 and CYP11A compared with Fresh group, while there was no significant difference

  13. [Slow-release recombinant human bone morphogenetic protein-2 suppresses chromium wear particle-induced osteolysis in rats].

    PubMed

    Li, Gan; Li, Qi; Lin, Li-Jun; Duan, Xin; Zhang, Xi-Qi

    2012-03-01

    To observe the effect of a slow-release recombinant human bone morphogenetic protein-2 (rhBMP-2) formulation on the expressions of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in a murine air pouch model of bone implantation. A cranial bone allograft was implanted in the air pouch induced on the back of the recipients. The rat models were then randomized into 5 groups, including a blank control group, chromium particle group, and 3 rhBMP-2 groups receiving 50, 100 or 200 µg/L slow-release rhBMP-2 in addition to chromium particles. Three weeks later, the expressions of RANKL and OPG in the air pouch was detected using Western blotting and RT-PCR, and the positively stained area for osteoclasts in the bone graft was determined with TRAP staining for drug effect assessment. RANKL and OPG expressions were found in the air pouches in all the 5 groups. RANKL and OPG protein and mRNA expressions, RANKL/OPG ratio and osteoclast staining area in the bone graft were the highest in chromium particle group (P<0.05), but were significantly decreased by treatment with the slow-release rhBMP-2 formulation (P<0.05); the measurements showed no significant differences between the blank control group and 200 µg/L rhBMP-2 group (P>0.05). Chromium particles can cause osteolysis by increasing the RANKL/OPG ratio in rats, and intervention with slow-release rhBMP-2 can significantly promote bone formation and suppress bone resorption by decreasing RANKL/OPG ratio.

  14. PRESSURE SYSTEM CONTROL

    DOEpatents

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  15. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  16. A multi-timescale view on the slow solar wind with MTOF

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Verena; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter; Ipavich, Fred M.; Paquette, John A.; Klecker, Bernard

    2013-04-01

    leads to an extensive picture of individual streams from MTOF, which can be combined with observations from other spacecraft in the future. In particular, identifying and understanding short-term variations of the slow solar wind has the potential to help distinguishing between different possible source regions and mechanisms. Further, with the long term goal of identifying possible different source mechanisms or regions, we analyze and compare the properties of individual streams on short time scales to focus on significant deviations from the average properties of slow solar wind. References [Antiochos2011] SK Antiochos, Z. Mikic, VS Titov, R. Lionello, and JA Linker. A model for the sources of the slow solar wind. The Astrophysical Journal, 731(2):112, 2011. [Hovestadt1995] D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, WI Axford, S. Livi, E. Marsch, et al. Celias-charge, element and isotope analysis system for soho. Solar Physics, 162(1):441-481, 1995. [Pagel2004] AC Pagel, NU Crooker, TH Zurbuchen, and JT Gosling. Correlation of solar wind entropy and oxygen ion charge state ratio. Journal of geophysical research, 109(A1):A01113, 2004. [Sakao2007] T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318(5856):1585-1588, 2007. [Schwadron2005] NA Schwadron, DJ McComas, HA Elliott, G. Gloeckler, J. Geiss, and R. Von Steiger. Solar wind from the coronal hole boundaries. Journal of geophysical research, 110(A4):A04104, 2005. [Tu2005] C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, and K. Wilhelm. Solar wind origin in coronal funnels. Science, 308(5721):519-523, 2005. [vonSteiger2000] R. Von Steiger, N. Schwadron, LA Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, RF Wimmer-Schweingruber, and TH Zurbuchen. Composition of quasi

  17. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  18. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  19. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  20. More Falls in Cerebellar Ataxia When Standing on a Slow Up-Moving Tilt of the Support Surface.

    PubMed

    Paquette, Caroline; Franzén, Erika; Horak, Fay B

    2016-06-01

    We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 min after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 min after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derive from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface.

  1. More falls in cerebellar ataxia when standing on a slow up-moving tilt of the support surface

    PubMed Central

    PAQUETTE, Caroline; FRANZÉN, Erika; HORAK, Fay B

    2016-01-01

    We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 minute after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 minutes after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derives from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface. PMID:26202671

  2. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.

    PubMed

    Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias

    2013-05-08

    Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. METHODS AND PSYCHOLOGY OF TEACHING THE SLOW LEARNER.

    ERIC Educational Resources Information Center

    MARTIN, RUTH; MARTIN, WILLIAM

    THE SPECIAL PSYCHOLOGICAL AND EDUCATIONAL NEEDS OF THE SLOW LEARNER ARE EMPHASIZED IN THIS PUBLIC SCHOOL CURRICULUM GUIDE. FOR THIS TYPE OF STUDENT MORE FOCUS MUST BE PLACED ON PERSONALITY DEVELOPMENT AND ADEQUACY IN BASIC SKILLS THAN ON ACADEMIC ACHIEVEMENT. THEREFORE THE OBJECTIVES OF A "BASIC WORK PROGRAM" FOR SLOW LEARNERS SHOULD STRESS THE…

  4. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  5. Face recognition using slow feature analysis and contourlet transform

    NASA Astrophysics Data System (ADS)

    Wang, Yuehao; Peng, Lingling; Zhe, Fuchuan

    2018-04-01

    In this paper we propose a novel face recognition approach based on slow feature analysis (SFA) in contourlet transform domain. This method firstly use contourlet transform to decompose the face image into low frequency and high frequency part, and then takes technological advantages of slow feature analysis for facial feature extraction. We named the new method combining the slow feature analysis and contourlet transform as CT-SFA. The experimental results on international standard face database demonstrate that the new face recognition method is effective and competitive.

  6. Component Control System for a Vehicle

    NASA Technical Reports Server (NTRS)

    Lee, Chunhao J. (Inventor); Fraser-Chanpong, Nathan (Inventor); Vitale, Robert L. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Dawson, Andrew D. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Spain, Ivan (Inventor); Bluethmann, William J. (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  7. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  8. Enhancing physics demos using iPhone slow motion

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2017-12-01

    Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will already have this technology in their pockets. The "S" series of iPhone has the slow motion video feature standard, which also includes simultaneous sound recording (somewhat unusual among slow motion cameras). In this article I share some of my experiences using this feature and provide advice on how to successfully use this technology in the classroom.

  9. Slow-binding inhibition of sialidase from influenza virus.

    PubMed

    Pegg, M S; von Itzstein, M

    1994-04-01

    Sialidase from influenza virus A (Tokyo/3/67, N2) is inhibited in slow-binding fashion by 2,3-didehydro-2,4-dideoxy-4-guanidino-N-acetyl-D-neuraminic acid. The Ki observed for the tightly-bound form at steady-state is 3 x 10(-11) M. Slow-binding, which is a consequence of the guanidinyl moiety of the inhibitor, is observed only for influenza virus A sialidase and not for influenza virus B or any other viral, bacterial, or mammalian sialidase investigated. The different results obtained for sialidases from influenza virus A and B, whose active sites are conserved, point to the involvement of the expulsion of a structural water molecule in the slow-binding mechanism.

  10. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  11. Constraints on Slow Slip from Landsliding and Faulting

    NASA Astrophysics Data System (ADS)

    Delbridge, Brent Gregory

    The discovery of slow-slip has radically changed the way we understand the relative movement of Earth's tectonic plates and the accumulation of stress in fault zones that fail in large earthquakes. Prior to the discovery of slow-slip, faults were thought to relieve stress either through continuous aseismic sliding, as is the case for continental creeping faults, or in near instantaneous failure. Aseismic deformation reflects fault slip that is slow enough that both inertial forces and seismic radiation are negligible. The durations of observed aseismic slip events range from days to years, with displacements of up to tens of centimeters. These events are not unique to a specific depth range and occur on faults in a variety of tectonic settings. This aseismic slip can sometimes also trigger more rapid slip somewhere else on the fault, such as small embedded asperities. This is thought to be the mechanism generating observed Low Frequency Earthquakes (LFEs) and small repeating earthquakes. I have preformed a series of studies to better understanding the nature of tectonic faulting which are compiled here. The first is entitled "3D surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide", and was originally published in the Journal of Geophysical Research in 2016. In order to understand how landslides respond to environmental forcing, we quantify how the hydro-mechanical forces controlling the Slumgullion Landslide express themselves kinematically in response to the infiltration of seasonal snowmelt. The well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to 2 cm/day is an ideal natural laboratory due to its large spatial extent and rapid deformation rates. The lateral boundaries of the landslide consist of strike-slip fault features, which over time have built up large flank ridges. The second study compiled here is entitled "Temporal variation of intermediate-depth earthquakes

  12. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  13. "Paradox of slow frequencies" - Are slow frequencies in upper cortical layers a neural predisposition of the level/state of consciousness (NPC)?

    PubMed

    Northoff, Georg

    2017-09-01

    Consciousness research has much focused on faster frequencies like alpha or gamma while neglecting the slower ones in the infraslow (0.001-0.1Hz) and slow (0.1-1Hz) frequency range. These slower frequency ranges have a "bad reputation" though; their increase in power can observed during the loss of consciousness as in sleep, anesthesia, and vegetative state. However, at the same time, slower frequencies have been conceived instrumental for consciousness. The present paper aims to resolve this paradox which I describe as "paradox of slow frequencies". I first show various data that suggest a central role of slower frequencies in integrating faster ones, i.e., "temporo-spatial integration and nestedness". Such "temporo-spatial integration and nestedness" is disrupted during the loss of consciousness as in anesthesia and sleep leading to "temporo-spatial fragmentation and isolation" between slow and fast frequencies. Slow frequencies are supposedly mediated by neural activity in upper cortical layers in higher-order associative regions as distinguished from lower cortical layers that are related to faster frequencies. Taken together, slower and faster frequencies take on different roles for the level/state of consciousness. Faster frequencies by themselves are sufficient and thus a neural correlate of consciousness (NCC) while slower frequencies are a necessary non-sufficient condition of possible consciousness, e.g., a neural predisposition of the level/state of consciousness (NPC). This resolves the "paradox of slow frequencies" in that it assigns different roles to slower and faster frequencies in consciousness, i.e., NCC and NPC. Taken as NCC and NPC, fast and slow frequencies including their relation as in "temporo-spatial integration and nestedness" can be considered a first "building bloc" of a future "temporo-spatial theory of consciousness" (TTC) (Northoff, 2013; Northoff, 2014b; Northoff & Huang, 2017). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Methods for slow axis beam quality improvement of high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  15. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.

    PubMed

    Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro

    2016-03-11

    Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans).

    PubMed

    Robert, Kylie A; Vleck, Carol; Bronikowski, Anne M

    2009-01-01

    During embryonic development, viviparous offspring are exposed to maternally circulating hormones. Maternal stress increases offspring exposure to corticosterone and this hormonal exposure has the potential to influence developmental, morphological and behavioral traits of the resulting offspring. We treated pregnant female garter snakes (Thamnophis elegans) with low levels of corticosterone after determining both natural corticosterone levels in the field and pre-treatment levels upon arrival in the lab. Additional measurements of plasma corticosterone were taken at days 1, 5, and 10 during the 10-day exposure, which occurred during the last third of gestation (of 4-month gestation). These pregnant snakes were from replicate populations of fast- and slow-growth ecotypes occurring in Northern California, with concomitant short and long lifespans. Field corticosterone levels of pregnant females of the slow-growth ecotype were an order of magnitude higher than fast-growth dams. In the laboratory, corticosterone levels increased over the 10 days of corticosterone manipulation for animals of both ecotypes, and reached similar plateaus for both control and treated dams. Despite similar plasma corticosterone levels in treated and control mothers, corticosterone-treated dams produced more stillborn offspring and exhibited higher total reproductive failure than control dams. At one month of age, offspring from fast-growth females had higher plasma corticosterone levels than offspring from slow-growth females, which is opposite the maternal pattern. Offspring from corticosterone-treated mothers, although unaffected in their slither speed, exhibited changes in escape behaviors and morphology that were dependent upon maternal ecotype. Offspring from corticosterone-treated fast-growth females exhibited less anti-predator reversal behavior; offspring from corticosterone-treated slow-growth females exhibited less anti-predator tail lashing behavior.

  17. Transitions towards either slow-oxidative or fast-glycolytic phenotype can be induced in the murine WTt myogenic cell line.

    PubMed

    Peltzer, J; Carpentier, G; Martelly, I; Courty, J; Keller, A

    2010-09-01

    Contraction and energy metabolism are functions of skeletal muscles co-regulated by still largely unknown signals. To help elucidating these interconnecting pathways, we are developing new cellular models that will allow to control the switch from a neonatal to an adult slow-oxidative or fast-glycolytic phenotype of myofibers, during in vitro differentiation. Thus, our purpose was to direct the differentiation of the newly characterized WTt clone, from a mixed towards either fast or slow phenotype, by modifying amounts of two transcription factors respectively involved in control of glycolytic and oxidative energy metabolism, namely HIF-1alpha and PPARdelta. Our data support the idea that HIF-1alpha protein stabilization would favor expression of fast phenotypic markers, accompanied or not by a decreased expression of slow markers, depending on treatment conditions. Conversely, PPARdelta over-expression appears to enhance the slow-oxidative phenotype of WTt myotubes. Furthermore, we have observed that expression of PGC-1alpha, a coregulator of PPAR, is also modified in this cell line upon conditions that stabilize HIF-1alpha protein. This observation points to the existence of a regulatory link between pathways controlled by the two transcription factors HIF-1alpha and PPARdelta. Therefore, these cells should be useful to analyze the balance between oxidative and glycolytic energy production as a function of phenotypic transitions occurring during myogenic maturation. The newly characterized murine WTt clone will be a good tool to investigate molecular mechanisms implicating HIF-1alpha and PPARdelta in the coordinated metabolic and contractile regulations involved in myogenesis. (c) 2010 Wiley-Liss, Inc.

  18. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  19. Attitude control system for a lightweight flapping wing MAV.

    PubMed

    Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E

    2018-03-14

    Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.

  20. Prevalence of Slow-Growth Vancomycin Nonsusceptibility in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Azechi, Takuya; Miyazaki, Motoyasu; Takata, Tohru; Sekine, Miwa; Matsui, Hidehito; Hanaki, Hideaki; Yahara, Koji; Sasano, Hiroshi; Asakura, Kota; Takaku, Tomoiku; Ochiai, Tomonori; Komatsu, Norio; Chambers, Henry F.

    2017-01-01

    ABSTRACT We previously reported a novel phenotype of vancomycin-intermediate Staphylococcus aureus (VISA), i.e., “slow VISA,” whose colonies appear only after 72 h of incubation. Slow-VISA strains can be difficult to detect because prolonged incubation is required and the phenotype is unstable. To develop a method for detection of slow-VISA isolates, we studied 23 slow-VISA isolates derived from the heterogeneous VISA (hVISA) clinical strain Mu3. We identified single nucleotide polymorphisms (SNPs) in genes involved in various pathways which have been implicated in the stringent response, such as purine/pyrimidine synthesis, cell metabolism, and cell wall peptidoglycan synthesis. We found that mupirocin, which also induces the stringent response, caused stable expression of vancomycin resistance. On the basis of these results, we developed a method for detection of slow-VISA strains by use of 0.032 μg/ml mupirocin (Yuki Katayama, 7 March 2017, patent application PCT/JP2017/008975). Using this method, we detected 53 (15.6%) slow-VISA isolates among clinical methicillin-resistant S. aureus (MRSA) isolates. In contrast, the VISA phenotype was detected in fewer than 1% of isolates. Deep-sequencing analysis showed that slow-VISA clones are present in small numbers among hVISA isolates and proliferate in the presence of vancomycin. This slow-VISA subpopulation may account in part for the recurrence and persistence of MRSA infection. PMID:28827421

  1. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue.

    PubMed

    Wei, Bin; Lu, Yingru; Jin, J-P

    2014-03-15

    The total loss of slow skeletal muscle troponin T (ssTnT encoded by TNNT1 gene) due to a nonsense mutation in codon Glu(180) causes a lethal form of recessively inherited nemaline myopathy (Amish nemaline myopathy, ANM). To investigate the pathogenesis and muscle pathophysiology of ANM, we studied the phenotypes of partial and total loss of ssTnT in Tnnt1 gene targeted mice. An insertion of neomycin resistance cassette in intron 10 of Tnnt1 gene caused an approximately 60% decrease in ssTnT protein expression whereas cre-loxP-mediated deletion of exons 11-13 resulted in total loss of ssTnT, as seen in ANM muscles. In diaphragm and soleus muscles of the knockdown and knockout mouse models, we demonstrated that ssTnT deficiency resulted in significantly decreased levels of other slow fibre-specific myofilament proteins whereas fast fibre-specific myofilament proteins were increased correspondingly. Immunohistochemical studies revealed that ssTnT deficiency produced significantly smaller type I slow fibres and compensatory growth of type II fast fibres. Along with the slow fibre atrophy and the changes in myofilament protein isoform contents, ssTnT deficiency significantly reduced the tolerance to fatigue in soleus muscle. ssTnT-deficient soleus muscle also contains significant numbers of small-sized central nuclei type I fibres, indicating active regeneration. The data provide strong support for the essential role of ssTnT in skeletal muscle function and the causal effect of its loss in the pathology of ANM. This observation further supports the hypothesis that the function of slow fibres can be restored in ANM patients if a therapeutic supplement of ssTnT is achieved.

  2. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue

    PubMed Central

    Wei, Bin; Lu, Yingru; Jin, J-P

    2014-01-01

    The total loss of slow skeletal muscle troponin T (ssTnT encoded by TNNT1 gene) due to a nonsense mutation in codon Glu180 causes a lethal form of recessively inherited nemaline myopathy (Amish nemaline myopathy, ANM). To investigate the pathogenesis and muscle pathophysiology of ANM, we studied the phenotypes of partial and total loss of ssTnT in Tnnt1 gene targeted mice. An insertion of neomycin resistance cassette in intron 10 of Tnnt1 gene caused an approximately 60% decrease in ssTnT protein expression whereas cre-loxP-mediated deletion of exons 11–13 resulted in total loss of ssTnT, as seen in ANM muscles. In diaphragm and soleus muscles of the knockdown and knockout mouse models, we demonstrated that ssTnT deficiency resulted in significantly decreased levels of other slow fibre-specific myofilament proteins whereas fast fibre-specific myofilament proteins were increased correspondingly. Immunohistochemical studies revealed that ssTnT deficiency produced significantly smaller type I slow fibres and compensatory growth of type II fast fibres. Along with the slow fibre atrophy and the changes in myofilament protein isoform contents, ssTnT deficiency significantly reduced the tolerance to fatigue in soleus muscle. ssTnT-deficient soleus muscle also contains significant numbers of small-sized central nuclei type I fibres, indicating active regeneration. The data provide strong support for the essential role of ssTnT in skeletal muscle function and the causal effect of its loss in the pathology of ANM. This observation further supports the hypothesis that the function of slow fibres can be restored in ANM patients if a therapeutic supplement of ssTnT is achieved. PMID:24445317

  3. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  4. Eclogitization of the Subducted Oceanic Crust and Its Implications for the Mechanism of Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Zhao, Dapeng; Suzuki, Haruhiko; Li, Jiabiao; Ruan, Aiguo

    2017-12-01

    The generating mechanism and process of slow earthquakes can help us to better understand the seismogenic process and the petrological evolution of the subduction system, but they are still not very clear. In this work we present robust P and S wave tomography and Poisson's ratio images of the subducting Philippine Sea Plate beneath the Kii peninsula in Southwest Japan. Our results clearly reveal the spatial extent and variation of a low-velocity and high Poisson's ratio layer which is interpreted as the remnant of the subducted oceanic crust. The low-velocity layer disappears at depths >50 km, which is attributed to crustal eclogitization and consumption of fluids. The crustal eclogitization and destruction of the impermeable seal play a key role in the generation of slow earthquakes. The Moho depth of the overlying plate is an important factor affecting the depth range of slow earthquakes in warm subduction zones due to the transition of interface permeability from low to high there. The possible mechanism of the deep slow earthquakes is the dehydrated oceanic crustal rupture and shear slip at the transition zone in response to the crustal eclogitization and the temporal stress/strain field. A potential cause of the slow event gap existing beneath easternmost Shikoku and the Kii channel is the premature rupture of the subducted oceanic crust due to the large tensional force.

  5. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odintsov, S.D.; Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces.more » In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.« less

  6. Opium addiction as an independent risk factor for coronary microvascular dysfunction: A case-control study of 250 consecutive patients with slow-flow angina.

    PubMed

    Esmaeili Nadimi, Ali; Pour Amiri, Farah; Sheikh Fathollahi, Mahmood; Hassanshahi, Gholamhossien; Ahmadi, Zahra; Sayadi, Ahmad Reza

    2016-09-15

    Approximately 20% to 30% of patients who undergo coronary angiography for assessment of typical cardiac chest pain display microvascular coronary dysfunction (MCD). This study aimed to determine potential relationships between baseline clinical characteristics and likelihood of MCD diagnosis in a large group of patients with stable angina symptoms, positive exercise test and angiographic ally normal epicardial coronary arteries. This cross-sectional study included 250 Iranian with documented evidence of cardiac ischemia on exercise testing, class I or II indication for coronary angiography, and either: (1) angiographically normal coronary arteries and diagnosis of MCD with slow-flow phenomenon, or (2) normal angiogram and no evidence of MCD. All patients completed a questionnaire designed to capture key data including clinical demographics, past medical history, and social factors. Data was evaluated using single and multivariable logistic regression models to identify potential individual patient factors that might help to predict a diagnosis of MCD. 125 (11.2% of total) patients were subsequently diagnosed with MCD. 125 consecutive control subjects were selected for comparison. The mean age was similar among the two groups (52.38 vs. 53.26%, p=ns), but there was a higher proportion of men in the study group compared to control (42.4 vs. 27.2%, p=0.012). No significant relationships were observed between traditional cardiovascular risk factors (diabetes, hypertension, and dyslipidemia) or body mass index (BMI), and likelihood of MCD diagnosis. However, opium addiction was found to be an independent predictor of MCD on single and multivariable logistic regression model (OR=3.575, 95%CI: 1.418-9.016; p=0.0069). We observed a significant relationship between opium addiction and microvascular angina. This novel finding provides a potential mechanistic insight into the pathogenesis of MCD with slow-flow phenomenon. Copyright © 2016 Elsevier Ireland Ltd. All rights

  7. Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis.

    PubMed

    Batista, Sonia; Zivadinov, Robert; Hoogs, Marietta; Bergsland, Niels; Heininen-Brown, Mari; Dwyer, Michael G; Weinstock-Guttman, Bianca; Benedict, Ralph H B

    2012-01-01

    Information-processing speed (IPS) slowing is a primary cognitive deficit in multiple sclerosis (MS). Basal ganglia, thalamus and neocortex are thought to have a key role for efficient information-processing, yet the specific relative contribution of these structures for MS-related IPS impairment is poorly understood. To determine if basal ganglia and thalamus atrophy independently contribute to visual and auditory IPS impairment in MS, after controlling for the influence of neocortical volume, we enrolled 86 consecutive MS patients and 25 normal controls undergoing 3T brain MRI and neuropsychological testing. Using Sienax and FIRST software, neocortical and deep gray matter (DGM) volumes were calculated. Neuropsychological testing contributed measures of auditory and visual IPS using the Paced Auditory Serial Addition Test (PASAT) and the Symbol Digit Modalities Test (SDMT), respectively. MS patients exhibited significantly slower IPS relative to controls and showed reduction in neocortex, caudate, putamen, globus pallidus, thalamus and nucleus accumbens volume. SDMT and PASAT were significantly correlated with all DGM regions. These effects were mitigated by controlling for the effects of neocortical volume, but all DGM volumes remained significantly correlated with SDMT, putamen (r = 0.409, p < 0.001) and thalamus (r = 0.362, p < 0.001) having the strongest effects, whereas for PASAT, the correlation was significant for putamen (r = 0.313, p < 0.01) but not for thalamus. We confirm the significant role of thalamus atrophy in MS-related IPS slowing and find that putamen atrophy is also a significant contributor to this disorder. These DGM structures have independent, significant roles, after controlling for the influence of neocortex atrophy.

  8. Solar Collector Control System.

    DTIC Science & Technology

    A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)

  9. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A review of slow-release fluoride devices.

    PubMed

    Toumba, K J; Al-Ibrahim, N S; Curzon, M E J

    2009-09-01

    Fluoride has been used to combat dental caries using a number of different clinical approaches. An exciting relatively new development is fluoride slow-releasing devices that consistently elevate intra-oral fluoride levels of plaque and saliva for prolonged periods of up to two years. The literature on the use of slow-releasing fluoride devices in dentistry were reviewed. A Medline search on key words was carried out. All papers in English were individually reviewed. Slow-releasing fluoride devices have been shown to be effective in elevating salivary fluoride levels in both animals and human studies and to enhance the remineralisation of dental enamel. They have been demonstrated to be safe to use and without the risk of fluoride toxicity. A double blind randomised clinical trial demonstrated 76% fewer new carious surface increment in high caries-risk children after two years. These devices have a number of potential uses in dentistry and in particular have great potential for caries prevention of non-compliant high caries-risk groups.

  11. From slow to fast rupture during laboratory earthquakes in dolostones

    NASA Astrophysics Data System (ADS)

    Passelegue, F. X.; Fondriest, M.; Nicolas, A.; Aubry, J.; Schubnel, A.; Di Toro, G.

    2016-12-01

    Dolostones are the dominant lithology of the shallow portions of many seismically active regions (e.g., Italian Apennines). Displacement in natural fault zones cutting dolostones and exhumed from < 3-4 km depth is frequently localized on highly reflective (mirror-like) slip surfaces, coated with thin films of nano-granular fault rock. Using saw-cut dolostone samples, we conducted stick-slip experiments under upper crustal stress conditions (confining pressures and temperatures of 30, 60 and 90 MPa at 30, 65 and 100 °C, respectively). Samples were equipped with 15 piezoelectric transducers allowing the record of acoustic activity. At 30 and 65 °C, only slow ruptures (Vr < 200 m/s) were observed and the experimental faults exhibited ductile behaviour. At 65 °C, a slip strengthening behaviour was observed after the main slow rupture, leading to a succession of slow ruptures. At T = 100 °C and 30 MPa confining pressure, fault strengthening increased after each rupture, allowing, while the rupture processes remained slow (no acoustic activity), a sequence of slow stick-slip events. Instead, at the same ambient temperature but under larger confining pressures (60 and 90 MPa), we observed the transition from slow to fast rupture events (up to supershear rupture velocities), associated to clusters of acoustic activity and dynamic stress drop occurring in few tens of microseconds. In all experiments, mirror-like surfaces and nanoparticles were observed under the scanning electron microscope as a result of slow and fast ruptures. Clearly, mirror-like surfaces and nano powders are not representative of seismic slip events in cohesive dolostones. Instead, the transition from slow to fast ruptures (and generation of acoustic emissions) was related to a flash weakening processes, enhanced at 100° C, which allowed the experimental fault to weaken with slip faster than the rate at which the elastic strain was released from the surrounding medium.

  12. Phase Control in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  13. Quick-Connect, Slow-Disconnect Bolt

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1995-01-01

    Proposed bolt functions similarly to device described in article "Quick-Connect, Slow-Disconnect Nut" (MFS-28833). Bolt installed in standard threaded hole simply by pushing it into hole. Once inserted, bolt withdrawn only by turning it in conventional way.

  14. Underwater hydraulic shock shovel control system

    NASA Astrophysics Data System (ADS)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  15. Slowing down of 100 keV antiprotons in Al foils

    NASA Astrophysics Data System (ADS)

    Nordlund, K.

    2018-03-01

    Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.

  16. Seasat-A attitude control system

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Rodden, J. J.; Hendricks, R. J.

    1977-01-01

    The Seasat-A attitude control system controls the attitude of the satellite system during injection into final circular orbit after Atlas boost, during orbit adjust and trim phases, and throughout the 3-year mission. Ascent and injection guidance and attitude control are provided by the Agena spacecraft with a gyrocompassed mass expulsion system. On-orbit attitude control functions are performed by a system that has its functional roots in the gravity-gradient momentum bias technology. The paper discusses hardware, control laws, and simulation results.

  17. Biology-Inspired Autonomous Control

    DTIC Science & Technology

    2011-08-31

    from load sensing in a turbulent flow field with high levels of plant uncertainty and optical feedback latency. The results of this paper suggest... Mimicry of biological systems, in the form of precise mathematical or physical dynamical modeling, is yielding impressive insight into the underlying...processing and plants , the aerospace industry has been slow to accept adaptive control. In the past decade however, newer methods for design of adaptive

  18. Controllable Grid Interface Test System | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Controllable Grid Interface Test System Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs grid interface is the first test facility in the United States that has fault simulation capabilities

  19. Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, N.; Fiore, A.; Nedel, P.

    2009-07-15

    We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.

  20. Adaptive control of periodic systems

    NASA Astrophysics Data System (ADS)

    Tian, Zhiling

    2009-12-01

    Adaptive control is needed to cope with parametric uncertainty in dynamical systems. The adaptive control of LTI systems in both discrete and continuous time has been studied for four decades and the results are currently used widely in many different fields. In recent years, interest has shifted to the adaptive control of time-varying systems. It is known that the adaptive control of arbitrarily rapidly time-varying systems is in general intractable, but systems with periodically time-varying parameters (LTP systems) which have much more structure, are amenable to mathematical analysis. Further, there is also a need for such control in practical problems which have arisen in industry during the past twenty years. This thesis is the first attempt to deal with the adaptive control of LTP systems. Adaptive Control involves estimation of unknown parameters, adjusting the control parameters based on the estimates, and demonstrating that the overall system is stable. System theoretic properties such as stability, controllability, and observability play an important role both in formulating of the problems, as well as in generating solutions for them. For LTI systems, these properties have been studied since 1960s, and algebraic conditions that have to be satisfied to assure these properties are now well established. In the case of LTP systems, these properties can be expressed only in terms of transition matrices that are much more involved than those for LTI systems. Since adaptive control problems can be formulated only when these properties are well understood, it is not surprising that systematic efforts have not been made thus far for formulating and solving adaptive control problems that arise in LTP systems. Even in the case of LTI systems, it is well recognized that problems related to adaptive discrete-time system are not as difficult as those that arise in the continuous-time systems. This is amply evident in the solutions that were derived in the 1980s and