Sample records for sludge bacterial communities

  1. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge.

    PubMed

    Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul

    2012-09-01

    The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  5. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  6. Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables.

    PubMed

    Isazadeh, Siavash; Jauffur, Shameem; Frigon, Dominic

    2016-12-01

    Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions.

    PubMed

    Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong

    2018-05-01

    In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  9. Bacterial community dynamics in long-term operation of a pilot plant using aerobic granular sludge to treat pig slurry.

    PubMed

    Fra-Vázquez, A; Morales, N; Figueroa, M; Val Del Río, A; Regueiro, L; Campos, J L; Mosquera-Corral, A

    2016-09-01

    Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016. © 2016 American Institute of Chemical Engineers.

  10. Detection of Androgenic-Mutagenic Compounds and Potential Autochthonous Bacterial Communities during In Situ Bioremediation of Post-methanated Distillery Sludge

    PubMed Central

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ. PMID:28567033

  11. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    PubMed

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  14. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge.

    PubMed

    Kamika, I; Tekere, M

    2017-12-01

    Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO 2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO 2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO 2 -NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO 2 /L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO 2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO 2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the

  15. Impact of non-ionic surfactant on the long-term development of lab-scale-activated sludge bacterial communities.

    PubMed

    Lozada, Mariana; Basile, Laura; Erijman, Leonardo

    2007-01-01

    The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.

  16. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    PubMed

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian; Zhang, Liangbo

    2015-12-01

    This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.

  18. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  19. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    PubMed

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  20. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent.

    PubMed

    Wang, Ke; Mao, Hailong; Li, Xiangkun

    2018-02-01

    The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system. Copyright © 2017. Published by Elsevier Ltd.

  1. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  2. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  3. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.

    PubMed

    Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao

    2018-03-01

    Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam.

    PubMed

    Lu, Hong; Wang, Jing; Lu, Shuilong; Wang, Ying; Liu, Guangfei; Zhou, Jiti; Quan, Zhexue

    2015-03-01

    Immobilized quinones exhibit good catalytic performance in the biodecolorization of azo dyes. However, in practical activated sludge systems, little is known about the effect of azo dye concentration on microbial communities in the presence of immobilized quinones. 454 Pyrosequencing was used to investigate structural changes and to determine the key microorganisms involved in Reactive Red X-3B decolorization in the presence of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF). Our results show that the AQS-PUF-supplemented system exhibited better stability and decolorization performance during a 30-day run than polyurethane-foam-only (PUF-supplemented) and control systems. Analysis of pyrosequencing data showed that the AQS-PUF-supplemented system had the highest bacterial diversity, followed by the control and PUF-supplemented systems during decolorization. Reactive Red X-3B and AQS-PUF significantly influenced bacterial communities at the class level: Erysipelotrichia and the most dominant Deltaproteobacteria showed significant positive correlations with Reactive Red X-3B, while unclassified Firmicutes were found to be significantly correlated with AQS-PUF. At the genus level, Desulfomicrobium, which represents 8-44 % of the total population, displayed a significant positive correlation with Reactive Red X-3B. Some bacteria, including Desulfovibrio, Shewanella, and Clostridium with relative abundances of less than 6 %, were positively correlated with AQS-PUF. These findings provide a novel insight into the changes that occur in the bacterial community during immobilized AQS-mediated decolorization. Less abundant quinone-reducing bacteria play important roles in accelerating the effect of AQS-PUF on biodecolorization.

  6. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    PubMed

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  8. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.

    PubMed

    Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción

    2018-06-01

    Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable

  9. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    PubMed

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  11. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    PubMed

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  13. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    PubMed

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  15. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.

    PubMed

    Takizawa, M; Straube, W L; Hill, R T; Colwell, R R

    1993-10-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.

  16. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  17. Functional Diversity of Microbial Communities in Sludge-Amended Soils

    NASA Astrophysics Data System (ADS)

    Sun, Y. H.; Yang, Z. H.; Zhao, J. J.; Li, Q.

    The BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge.

  18. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  19. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  20. Sodium thiosulphate induced immobilized bacterial disintegration of sludge: An energy efficient and cost effective platform for sludge management and biomethanation.

    PubMed

    Ushani, U; Kavitha, S; Yukesh Kannah, R; Gunasekaran, M; Kumar, Gopalakrishnan; Nguyen, Dinh Duc; Chang, Soon Woong; Rajesh Banu, J

    2018-07-01

    The present study aimed to gain better insights into profitable biomethanation through sodium thiosulphate induced immobilized protease secreting bacterial disintegration (STS-IPBD) of sludge. STS disperse the flocs at 0.08 g/g SS of dosage and assists the subsequent bacterial disintegration. Immobilization of bacteria increases the hydrolytic activity of cells towards effective liquefaction of sludge. A higher liquefaction of 22% was accomplished for STS-IPBD when compared to immobilized protease secreting bacterial disintegration (IPBD alone). The kinetic parameters of Line Weaver Burk plot analysis revealed a maximal specific growth rate (µmax) of 0.320 h -1 for immobilized cells when compared to suspended free cells showing the benefit of immobilization. Floc dispersion and immobilization of bacteria imparts a major role in biomethanation as the methane generation (0.32 gCOD/g COD) was higher in STS-IPBD sample. The cost analysis showed that STS - IPBD was a feasible process with net profit of 2.6 USD/Ton of sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization.

    PubMed

    Enwall, Karin; Philippot, Laurent; Hallin, Sara

    2005-12-01

    The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity

  2. Oil removal from petroleum sludge using bacterial culture with molasses substrate at temperature variation

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Puspitasari, Alvin Oktaviana; Pratiwi, Intan Ayu; Fatimah, Sumarsih, Sri; Surtiningsih, Tini; Salamun

    2016-03-01

    The study aims to reveal the potency of biosurfactant-producing bacterial culture with molasses as substrate growth in releasing oil from the petroleum sludge at temperature variations. Bacteria used consisted of (Acinetobacter sp. P2(1), Pseudomonas putida T1(8), Bacillus subtilis 3KP and Micrococcus sp. L II 61). The treatments were tested at 40°C, 50°C and 60 °C for 7 days of incubation. Synthetic surfactant (Tween 20) was used as a positive control and molasses as a negative control. Release of petroleum hydrocarbons from oil sludge was expressed in percentage of oil removal from oil sludge (%). Data were analyzed statistically using the Analysis of Variance (α = 0.05) and continued with Games-Howell test. The kinds of bacterial cultures, incubation temperature and combination of both affected the percentage of oil removal. The abilities of Bacillus subtilis 3KP and Micrococcus sp. LII 61cultures in oil removal from oil sludge at the temperature exposure of 60°C were higher than Tween 20. Both of bacterial cultures grown on molasses can be proposed as a replacement for synthetic surfactant to clean up the accumulation of oil sludge in a bottom of oil refinery tank.

  3. The Choice of PCR Primers Has Great Impact on Assessments of Bacterial Community Diversity and Dynamics in a Wastewater Treatment Plant

    PubMed Central

    Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

    2013-01-01

    Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample. PMID:24098498

  4. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis.

    PubMed

    Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng

    2018-03-01

    This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bacterial community shift during the startup of a full-scale oxidation ditch treating sewage.

    PubMed

    Chen, Yajun; Ye, Lin; Zhao, Fuzheng; Xiao, Lin; Cheng, Shupei; Zhang, Xu-Xiang

    2016-10-06

    Oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%~48.4%) was the most dominant bacterial phylum in the OD system but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with Flavobacterium genus of exhibited remarkable decreasing trends, while bacterial species belonging to OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of bacterial community structure and the microbial ecology during the startup of full-scale wastewater treatment bioreactor.

  6. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  7. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  8. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.

    PubMed

    Ariesyady, Herto Dwi; Ito, Tsukasa; Okabe, Satoshi

    2007-04-01

    Functional Bacteria and Archaea community structures of a full-scale anaerobic sludge digester were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescent in situ hybridization (FISH) technique and micromanipulation. FISH analysis with a comprehensive set of 16S and 23S rRNA-targeted oligonucleotide probes based on 16S rRNA clone libraries revealed that the Gram-positive bacteria represented by probe HGC69A-hybridized Actinobacteria (8.5+/-1.4% of total 4', 6-diamidino-2-phenylindole (DAPI)-stained cells) and probe LGC354-hybridized Firmicutes (3.8+/-0.8%) were the major phylogenetic bacterial phyla, followed by Bacteroidetes (4.0+/-1.2%) and Chloroflexi (3.7+/-0.8%). The probe MX825-hybridized Methanosaeta (7.6+/-0.8%) was the most abundant archaeal group, followed by Methanomicrobiales (2.8+/-0.6%) and Methanobacteriaceae (2.7+/-0.4%). The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH. The results revealed that glucose-degrading microbial community had higher abundance (ca. 10.6+/-4.9% of total DAPI-stained cells) and diversity (at least seven phylogenetic groups) as compared with fatty acid-utilizing microbial communities, which were more specialized to a few phylogenetic groups. Despite the dominance of Betaproteobacteria, members of Chloroflexi, Smithella, Syntrophomonas and Methanosaeta groups dominated the [(14)C]glucose-, [(14)C]propionate-, [(14)C]butyrate- and [(14)C]acetate-utilizing microorganism community, and accounted for 27.7+/-4.3%, 29.6+/-7.0%, 34.5+/-7.6% and 18.2+/-9.5%, respectively. In spite of low abundance (ca. 1%), the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization, respectively.

  9. Bacterial degradation of polychlorinted biphenyls in sludge from an industrial sewer lagoon

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Takacs, A. M.; Kuivinen, D. E.

    1983-01-01

    A laboratory experiment was conducted to determine if polychlorinated biphenyls (PCB's) found in an industrial sewer sludge can be effectively degraded by mutant bacteria. The aerated sludge was inoculated daily with mutant bacteria in order to augment the existing bacteria with bacteria that were considered to be capable of degrading PCB's. The pH, nitrogen, and phosphorus levels were monitored daily to maintain an optimum growing medium for the bacteria. A gas chromatographic method was used to determine the PCB concentrations of the sludge initially and also throughout the experiment. Results and discussion of the bacterial treatment of polychlorinated biphenyls are presented.

  10. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl2 induced deflocculation.

    PubMed

    Kavitha, S; Saranya, T; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-01-01

    The present study investigates the impacts of phase separated disintegration through CaCl2 (calcium chloride) mediated biosurfactant producing bacterial pretreatment. In the initial phase of the study, the flocs were disintegrated (deflocculation) with 0.06g/gSS of CaCl2. In the subsequent phase, the sludge biomass was disintegrated (cell disintegration) through potent biosurfactant producing new novel bacteria, Planococcus jake 01. The pretreatment showed that suspended solids reduction and chemical oxygen demand solubilization for deflocculated - bacterially pretreated sludge was found to be 17.14% and 14.14% which were comparatively higher than flocculated sludge (treated with bacteria alone). The biogas yield potential of deflocculated - bacterially pretreated, flocculated, and control sludges were observed to be 0.322(L/gVS), 0.225(L/gVS) and 0.145(L/gVS) respectively. To our knowledge, this is the first study to present the thorough knowledge of biogas production potential through a novel phase separated biosurfactant bacterial pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Shi, Xiaoshuang; He, Shuai; Wang, Lin; Dai, Meng; Qiu, Yanling; Dang, Xiaoxiao

    2016-07-01

    Bioaugmentation can facilitate hydrogen production from complex organic substrates, but it still is unknown how indigenous microbial communities respond to the added bacteria. Here, using a Hydrogenispora ethanolica LX-B (named as LX-B) bioaugmentation experiments, the distribution of metabolites and the responses of indigenous bacterial communities were investigated via batch cultivation (BC) and repeated batch cultivation (RBC). In BC the LX-B/sludge ratio of 0.12 achieved substantial high hydrogen yield, which was over twice that of control. In RBC one-time bioaugmentation and repeated batch bioaugmentation of LX-B resulted in the hydrogen yield that was average 1.2-fold and 0.8-fold higher than that in control, respectively. This improved hydrogen production performance mainly benefited from a shift in composition of the indigenous bacterial community caused by LX-B bioaugmentation. The findings represented an important step in understanding the relationship between bioaugmentation, a shift in bacterial communities, and altered bioreactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lead Toxicity to the Performance, Viability, And Community Composition of Activated Sludge Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, L; Zhi, W; Liu, YS

    Lead (Pb) is a prominent toxic metal in natural and engineered systems. Current knowledge on Pb toxicity to the activated sludge has been limited to short-term (<= 24 h) toxicity. The effect of extended Pb exposure on process performance, bacterial viability, and community compositions remains unknown. We quantified the 24-h and 7-day Pb toxicity to chemical oxygen demand (COD) and NH3-N removal, bacterial viability, and community compositions using lab-scale experiments. Our results showed that 7-day toxicity was significantly higher than the short-term 24-h toxicity. Ammonia-oxidizing bacteria were more susceptible than the heterotrophs to Pb toxicity. The specific oxygen uptake ratemore » responded quickly to Pb addition and could serve as a rapid indicator for detecting Pb pollutions. Microbial viability decreased linearly with the amount of added Pb at extended exposure. The bacterial community diversity was markedly reduced with elevated Pb concentrations. Surface analysis suggested that the adsorbed form of Pb could have contributed to its toxicity along with the dissolved form. Our study provides for the first time a systematic investigation of the effect of extended exposure of Pb on the performance and microbiology of aerobic treatment processes, and it indicates that long-term Pb toxicity has been underappreciated by previous studies.« less

  15. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    PubMed

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  16. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  17. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    PubMed

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  18. Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Jelić, Aleksandra; Pereira, M Alcina; Sousa, Diana Z; Petrović, Mira; Alves, M Madalena; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2012-11-06

    The use of sludge (biosolids) in land application may contribute to the spread of organic micropollutants as wastewater treatments do not completely remove these compounds. Therefore, the development of alternative strategies for sludge treatment is a matter of recent concern. The elimination of pharmaceuticals at pre-existent concentrations from sewage sludge was assessed, for the first time, in nonsterile biopiles by means of fungal bioaugmentation with Trametes versicolor (BTV-systems) and compared with the effect of autochthonous microbiota (NB-systems). The competition between the autochthonous fungal/bacterial communities and T. versicolor was studied using denaturing gradient gel electrophoresis (DGGE) and the cloning/sequencing approach. An inhibitory effect exerted by T. versicolor over bacterial populations was suggested. However, after 21 days, T. versicolor was no longer the main taxon in the fungal communities. The elimination profiles revealed an enhanced removal of atorvastatin-diclofenac-hydrochlorothiazide (during the whole treatment) and ranitidine-fenofibrate (at short periods) in the BTV biopiles in respect to NB biopiles, coincident with the presence of the fungus. For ibuprofen-clarithromycin-furosemide, the elimination profiles were similar irrespective of the system, and with carbamazepine no significant degradation was obtained. The results suggest that a fungal treatment with T. versicolor could be a promising process for the remediation of some pharmaceuticals in complex matrices such as biosolids.

  19. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation.

    PubMed

    Men, Yujie; Achermann, Stefan; Helbling, Damian E; Johnson, David R; Fenner, Kathrin

    2017-02-01

    Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU

  20. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    PubMed

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process.

    PubMed

    Kim, Young Mo; Cho, Hyun Uk; Lee, Dae Sung; Park, Donghee; Park, Jong Moon

    2011-11-01

    To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S; Ziglio, G

    2010-07-01

    A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Analysis of trichloroethylene removal and bacterial community function based on pH-adjusted in an upflow anaerobic sludge blanket reactor.

    PubMed

    Zhang, Ying; Hu, Miao; Li, Pengfei; Wang, Xin; Meng, Qingjuan

    2015-11-01

    The study reported the upflow anaerobic sludge blanket (UASB) reactor performance in treating wastewater containing trichloroethylene (TCE) and characterized variations of bacteria composition and structure by changing the pH from 6.0 to 8.0. A slightly acidic environment (pH < 7.0) had a greater impact on the TCE removal. Illumina pyrosequencing was applied to investigate the bacterial community changes in response to pH shifts. The results demonstrated that pH greatly influenced the dominance and presence of specific populations. The potential TCE degradation pathway in the UASB reactor was proposed. Importantly, the genus Dehalobacter which was capable of reductively dechlorinating TCE was detected, and it was not found at pH of 6.0, which presumably is the reason why the removal efficiency of TCE was the lowest (80.73 %). Through Pearson correlation analyses, the relative abundance of Dehalobacter positively correlated with TCE removal efficiency (R = 0.912). However, the relative abundance of Lactococcus negatively correlated with TCE removal efficiency according to the results from Pearson correlation analyses and redundancy analysis (RDA).

  4. Analysis on the Spatial Difference of Bacterial Community Structure in Micro-pressure Air-lift Loop Reactor

    NASA Astrophysics Data System (ADS)

    Wan, L. G.; Lin, Q.; Bian, D. J.; Ren, Q. K.; Xiao, Y. B.; Lu, W. X.

    2018-02-01

    In order to reveal the spatial difference of the bacterial community structure in the Micro-pressure Air-lift Loop Reactor, the activated sludge bacterial at five different representative sites in the reactor were studied by denaturing gradient gel electrophoresis (DGGE). The results of DGGE showed that the difference of environmental conditions (such as substrate concentration, dissolved oxygen and PH, etc.) resulted in different diversity and similarity of microbial flora in different spatial locations. The Shannon-Wiener diversity index of the total bacterial samples from five sludge samples varied from 0.92 to 1.28, the biodiversity index was the smallest at point 5, and the biodiversity index was the highest at point 2. The similarity of the flora between the point 2, 3 and 4 was 80% or more, respectively. The similarity of the flora between the point 5 and the other samples was below 70%, and the similarity of point 2 was only 59.2%. Due to the different contribution of different strains to the removal of pollutants, it can give full play to the synergistic effect of bacterial degradation of pollutants, and further improve the efficiency of sewage treatment.

  5. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  6. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    PubMed

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes.

  7. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  8. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation.

    PubMed Central

    Ward, R L; Yeager, J G; Ashley, C S

    1981-01-01

    Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765

  9. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    PubMed

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  10. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    PubMed

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation.

  11. Improving the amenability of municipal waste activated sludge for biological pretreatment by phase-separated sludge disintegration method.

    PubMed

    Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-10-01

    The significance of citric acid, a cation binding agent, was investigated for the exclusion of extracellular polymeric substance (EPS) from waste activated sludge (WAS) and anaerobic biodegradability following enzymatic bacterial pretreatment. EPS was removed with 0.05 g/g SS of citric acid. The results of pretreatment found that the suspended solids reduction and chemical oxygen demand solubilisation were 21.4% and 16.2% for deflocculated-bacterially pretreated sludge, 14.28% and 10.0% for flocculated sludge (without EPS removal and bacterially pretreated) and 8.5% and 6.5% for control sludge (raw sludge), respectively. Further assessing anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, and control sludges were found to be 0.455 L/(g VS), 0.343 L/(g VS), and 0.209 L/(g VS), respectively. Thus, phase-separated disintegration enhanced anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics.

    PubMed

    Ibarbalz, Federico M; Pérez, María Victoria; Figuerola, Eva L M; Erijman, Leonardo

    2014-01-01

    The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1-V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1-V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1-V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa-time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1-V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.

  13. The Bias Associated with Amplicon Sequencing Does Not Affect the Quantitative Assessment of Bacterial Community Dynamics

    PubMed Central

    Figuerola, Eva L. M.; Erijman, Leonardo

    2014-01-01

    The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1–V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1–V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1–V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa–time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1–V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point. PMID:24923665

  14. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo.

    PubMed

    Limpiyakorn, Tawan; Shinohara, Yuko; Kurisu, Futoshi; Yagi, Osami

    2005-10-01

    We investigated ammonia-oxidizing bacteria in activated sludge collected from 12 sewage treatment systems, whose ammonia removal and treatment processes differed, during three different seasons. We used real-time PCR quantification to reveal total bacterial numbers and total ammonia oxidizer numbers, and used specific PCR followed by denaturing gel gradient electrophoresis, cloning, and sequencing of 16S rRNA genes to analyze ammonia-oxidizing bacterial communities. Total bacterial numbers and total ammonia oxidizer numbers were in the range of 1.6 x 10(12) - 2.4 x 10(13) and 1.0 x 10(9) - 9.2 x 10(10)cellsl(-1), respectively. Seasonal variation was observed in the total ammonia oxidizer numbers, but not in the ammonia-oxidizing bacterial communities. Members of the Nitrosomonas oligotropha cluster were found in all samples, and most sequences within this cluster grouped within two of the four sequence types identified. Members of the clusters of Nitrosomonas europaea-Nitrosococcus mobilis, Nitrosomonas cryotolerans, and unknown Nitrosomonas, occurred solely in one anaerobic/anoxic/aerobic (A2O) system. Members of the Nitrosomonas communis cluster occurred almost exclusively in association with A2O and anaerobic/aerobic systems. Solid residence time mainly influenced the total numbers of ammonia-oxidizing bacteria, whereas dissolved oxygen concentration primarily affected the ammonia-oxidizing activity per ammonia oxidizer cell.

  15. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  17. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements.

    PubMed

    Zhang, Junya; Sui, Qianwen; Tong, Juan; Buhe, Chulu; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2016-12-01

    Sewage sludge is considered as one of major contributors to the increased environmental burden of ARGs. Sludge bio-drying was increasingly adopted due to its faster sludge reduction compared with composting. The fate of ARGs during full-scale sludge bio-drying was investigated to determine whether it could effectively reduce ARGs, and the contributions of bacterial community, horizontal gene transfer (HGT) through mobile genetic elements (MGEs) and co-selection from heavy metals to ARGs profiles were discussed in detail. Two piles with different aeration strategies (Pile I, the improved and Pile II, the control) were operated to elucidate effects of aeration strategy on ARGs profiles. Results showed that sludge bio-drying could effectively reduce both most of targeted ARGs (0.4-3.1 logs) and MGEs (0.8-3.3 logs) by the improved aeration strategy, which also enhanced both the sludge bio-drying performance and ARGs reduction. The enrichment of ARGs including ermF, tetX and sulII could be well explained by the evolution of bioavailable heavy metals, not HGT through MGEs, and their potential host bacteria mainly existed in Bacteroidetes. Although changes of bacterial community contributed the most to ARGs profiles, HGT through MGEs should be paid more attention especially in the thermophilic stage of sludge bio-drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Analysis of key microbial community during the start-up of anaerobic ammonium oxidation process with paddy soil as inoculated sludge.

    PubMed

    Xu, Xianglong; Liu, Guohua; Wang, Yuanyuan; Zhang, Yuankai; Wang, Hao; Qi, Lu; Wang, Hongchen

    2018-02-01

    A sequencing batch reactor (SBR)-anaerobic ammonium oxidation (anammox) system was started up with the paddy soil as inoculated sludge. The key microbial community structure in the system along with the enrichment time was investigated by using molecular biology methods (e.g., high-throughput 16S rRNA gene sequencing and quantitative PCR). Meanwhile, the influent and effluent water quality was continuously monitored during the whole start-up stage. The results showed that the microbial diversity decreased as the operation time initially and increased afterwards, and the microbial niches in the system were redistributed. The anammox bacterial community structure in the SBR-anammox system shifted during the enrichment, the most dominant anammox bacteria were CandidatusJettenia. The maximum biomass of anammox bacteria achieved 1.68×10 9 copies/g dry sludge during the enrichment period, and the highest removal rate of TN achieved around 75%. Copyright © 2017. Published by Elsevier B.V.

  19. Biliary Endoprosthesis: A Prospective Analysis of Bacterial Colonization and Risk Factors for Sludge Formation

    PubMed Central

    Schneider, Jochen; Hapfelmeier, Alexander; Fremd, Julia; Schenk, Philipp; Obermeier, Andreas; Burgkart, Rainer; Forkl, Stefanie; Feihl, Susanne; Wantia, Nina; Neu, Bruno; Bajbouj, Monther; von Delius, Stefan; Schmid, Roland M.; Algül, Hana; Weber, Andreas

    2014-01-01

    Bacterial colonization of biliary stents is one of the driving forces behind sludge formation which may result in stent occlusion. Major focus of the study was to analyze the spectrum and number of microorganisms in relation to the indwelling time of stents and the risk factors for sludge formation. 343 stents were sonicated to optimize the bacterial release from the biofilm and identified by matrix-associated laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF). 2283 bacteria were analyzed in total. The most prevalent microorganisms were Enterococcus species (spp.) (504;22%), followed by Klebsiella spp. (218;10%) and Candida spp. (188;8%). Colonization of the stents mainly began with aerobic gram-positive bacteria (43/49;88%) and Candida spp. (25/49;51%), whereas stents with an indwelling time>60 days(d) showed an almost equal colonization rate by aerobic gram-negative (176/184;96%) and aerobic gram-positive bacteria (183/184;99%) and a high proportion of anaerobes (127/184;69%). Compared to stents without sludge, more Clostridium spp. [(P = 0.02; Odds Ratio (OR): 2.4; 95% confidence interval (95%CI): (1.1–4.9)]) and Staphylococcus spp. [(P = 0.03; OR (95%CI): 4.3 (1.1–16.5)] were cultured from stents with sludge. Multivariate analysis revealed a significant relationship between the number of microorganisms [P<0.01; OR (95%CI): 1.3(1.1–1.5)], the indwelling time [P<0.01; 1–15 d vs. 20–59 d: OR (95%CI): 5.6(1.4–22), 1–15 d vs. 60–3087 d: OR (95% CI): 9.5(2.5–35.7)], the presence of sideholes [P<0.01; OR (95%CI): 3.5(1.6–7.9)] and the occurrence of sludge. Stent occlusion was found in 70/343(20%) stents. In 35% of cases, stent occlusion resulted in a cholangitis or cholestasis. In conclusion, microbial colonization of the stents changed with the indwelling time. Sludge was associated with an altered spectrum and an increasing number of microorganisms, a long indwelling time and the presence of sideholes. Interestingly

  20. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.

    PubMed

    Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah

    2018-01-01

    This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of

  1. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  2. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  3. Back to Basics--The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities.

    PubMed

    Albertsen, Mads; Karst, Søren M; Ziegler, Anja S; Kirkegaard, Rasmus H; Nielsen, Per H

    2015-01-01

    DNA extraction and primer choice have a large effect on the observed community structure in all microbial amplicon sequencing analyses. Although the biases are well known, no comprehensive analysis has been conducted in activated sludge communities. In this study we systematically explored the impact of a number of parameters on the observed microbial community: bead beating intensity, primer choice, extracellular DNA removal, and various PCR settings. In total, 176 samples were subjected to 16S rRNA amplicon sequencing, and selected samples were investigated through metagenomics and metatranscriptomics. Quantitative fluorescence in situ hybridization was used as a DNA extraction-independent method for qualitative comparison. In general, an effect on the observed community was found on all parameters tested, although bead beating and primer choice had the largest effect. The effect of bead beating intensity correlated with cell-wall strength as seen by a large increase in DNA from Gram-positive bacteria (up to 400%). However, significant differences were present at lower phylogenetic levels within the same phylum, suggesting that additional factors are at play. The best primer set based on in silico analysis was found to underestimate a number of important bacterial groups. For 16S rRNA gene analysis in activated sludge we recommend using the FastDNA SPIN Kit for Soil with four times the normal bead beating and V1-3 primers.

  4. Bacterial communities in floral nectar.

    PubMed

    Fridman, Svetlana; Izhaki, Ido; Gerchman, Yoram; Halpern, Malka

    2012-02-01

    Floral nectar is regarded as the most important reward available to animal-pollinated plants to attract pollinators. Despite the vast amount of publications on nectar properties, the role of nectar as a natural bacterial habitat is yet unexplored. To gain a better understanding of bacterial communities inhabiting floral nectar, culture-dependent and -independent (454-pyrosequencing) methods were used. Our findings demonstrate that bacterial communities in nectar are abundant and diverse. Using culture-dependent method we showed that bacterial communities of nectar displayed significant variation among three plant species: Amygdalus communis, Citrus paradisi and Nicotiana glauca. The dominant class in the nectar bacterial communities was Gammaproteobacteria. About half of the isolates were novel species (< 97% similarities of the 16S rRNA gene with known species). Using 454-pyrosequencing we demonstrated that nectar microbial community are distinct for each of the plant species while there are no significant differences between nectar microbial communities within nectars taken from different plants of the same species. Primary selection of the nectar bacteria is unclear; it may be affected by variations in the chemical composition of the nectar in each plant. The role of the rich and diverse nectar microflora in the attraction-repulsion relationships between the plant and its nectar consumers has yet to be explored. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge.

    PubMed

    Liu, Can; Li, Huan; Zhang, Yuyao; Si, Dandan; Chen, Qingwu

    2016-09-01

    High-solids anaerobic digestion (HSAD), a promising method with smaller reactor and less heating energy consumption, showed relatively lower digestion efficiency sometimes and higher tolerance to some inhibitors. To investigate the phenomena, the archaeal and bacterial communities in four anaerobic digesters treating sewage sludge with total solids (TS) of 10-19% were investigated. Although acetoclastic methanogenesis conducted mainly by genus Methanosarcina was still the main pathway producing methane, the total ratio of acetoclastic methanogens decreased along with the increased TS. In contrary, the relative abundance of hydrogenotrophic methanogens increased from 6.8% at TS 10% to 22.3% at TS 19%, and methylotrophic methanogens from 10.4% to 20.9%. The bacterial community was dominated by five phyla. Acidogenic and acetogenic bacteria affiliated to Firmicutes decreased following the increase of TS; while the proteolysis phylum Bacteroidetes increased, with a tolerant family ST-12K33 notably existing in the digesters at TS 17% and 19%. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor.

    PubMed

    Lin, Shanshan; Jin, Y; Fu, L; Quan, C; Yang, Y S

    2009-06-15

    Excess biomass produced within the degradation processes of organic pollutants is creating environmental challenges. The gravel contact oxidation reactor (GCOR) filled with crushed stone globular aggregates as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot and small-scale engineering studies. In order to evaluate the variation and structure of the microbial community and their functions to excess sludge reduction in GCOR, a conventional activated sludge reactor (ASR) was studied as a comparison. The 16S rDNA library of the universal bacteria was constructed, Shannon's diversity index (H) and Species evenness (E) were calculated with distance-based operational taxonomic unit and richness (DOTUR) for microbial diversity. Real-time quantity PCR and optical microscope were used for absolute bacterial DNA concentration and eukarya identification, respectively. Meanwhile, the suspended solid index in GCOR and ASR was detected for assessing the excess sludge production. The results indicated that the most abundant bacteria in GCOR were those related to the beta-Proteobacteria group, then gamma-Proteobacteria and to Cytophaga-Flexibacter-Bacteriode (CFB). In the ASR samples major bacteria were in the closest match with gamma-Proteobacteria, then beta-Proteobacteria and CFB. Shannon's index (H) was higher (3.41) for diversity of bacteria extracted from the carrier samples in GCOR than that (2.71) from the sludge sample in ASR. Species evenness (E) for the isolates from GCOR and ASR samples was 0.97 and 0.96, respectively. Comparison of the universal bacteria population in GCOR and ASR shows that the total bacterial DNA concentration on the GCOR carriers were 8.98 x 10(5) microg/ microl, twice that in ASR of 4.67 x 10(5) microg/ microl under normal operation of two reactors. But the MLSS in GCOR was only 4.5mg/L, 25 times less than that in ASR of 115.4 mg/L. The most representative eukarya were protozoa both in GCOR (15 no

  7. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil.

    PubMed

    Chen, Qinglin; An, Xinli; Li, Hu; Su, Jianqiang; Ma, Yibing; Zhu, Yong-Guan

    2016-01-01

    Sewage sludge and manure are common soil amendments in crop production; however, their impact on the abundance and diversity of the antibiotic resistome in soil remains elusive. In this study, by using high-throughput sequencing and high-throughput quantitative PCR, the patterns of bacterial community and antibiotic resistance genes (ARGs) in a long-term field experiment were investigated to gain insights into these impacts. A total of 130 unique ARGs and 5 mobile genetic elements (MGEs) were detected and the long-term application of sewage sludge and chicken manure significantly increased the abundance and diversity of ARGs in the soil. Genes conferring resistance to beta-lactams, tetracyclines, and multiple drugs were dominant in the samples. Sewage sludge or chicken manure applications caused significant enrichment of 108 unique ARGs and MGEs with a maximum enrichment of up to 3845 folds for mexF. The enrichment of MGEs suggested that the application of sewage sludge or manure may accelerate the dissemination of ARGs in soil through horizontal gene transfer (HGT). Based on the co-occurrence pattern of ARGs subtypes revealed by network analysis, aacC, oprD and mphA-02, were proposed to be potential indicators for quantitative estimation of the co-occurring ARGs subtypes abundance by power functions. The application of sewage sludge and manure resulted in significant increase of bacterial diversity in soil, Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi were the dominant phyla (>10% in each sample). Five bacterial phyla (Chloroflexi, Planctomycetes, Firmicutes, Gemmatimonadetes and Bacteroidetes) were found to be significantly correlated with the ARGs in soil. Mantel test and variation partitioning analysis (VPA) suggested that bacterial community shifts, rather than MGEs, is the major driver shaping the antibiotic resistome. Additionally, the co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that four

  8. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  10. Community-acquired bacterial meningitis.

    PubMed

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G; Wijdicks, Eelco

    2016-11-03

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.

  11. Biomethanation of Sewage Sludge with Food Waste Leachate Via Co-Digestion.

    PubMed

    Shin, Jingyeong; Kim, Young Beom; Jeon, Jong Hun; Choi, Sangki; Park, In Kyu; Kim, Young Mo

    2017-08-28

    Anaerobic mono- and co-digestion of sewage sludge and food waste leachate (FWL) were performed by assessing methane production and characterizing microbial communities. Anaerobic digestion (AD) of waste activated sludge (WAS) alone produced the lowest methane (281 ml CH 4 ), but an approximately 80% increase in methane production was achieved via co-digestion of WAS and FWL (506 ml CH 4 ). There were less differences in the diversity of bacterial communities in anaerobic digesters, while archaeal (ARC) and bacterial (BAC) amounts reflected AD performance. Compared with the total ARC and BAC amounts in the mono-digestion of WAS, the ARC and BAC amounts increased two and three times, respectively, during co-digestion of FWL and WAS. In characterized archaeal communities, the dominant ratio of hydrogenotrophic methanogens in the mono-digestion of WAS approached nearly a 1:1 ratio of the two acetoclastic and hydrogenotrophic methanogens in the co-digestion of FWL and WAS. The ARC/BAC ratio in the digesters varied in the range of 5.9% to 9.1%, indicating a positive correlation with the methane production of AD.

  12. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  13. Estimating biodiversity of fungi in activated sludge communities using culture-independent methods.

    PubMed

    Evans, Tegan N; Seviour, Robert J

    2012-05-01

    Fungal diversity of communities in several activated sludge plants treating different influent wastes was determined by comparative sequence analyses of their 18S rRNA genes. Methods for DNA extraction and choice of primers for PCR amplification were both optimised using denaturing gradient gel electrophoresis profile patterns. Phylogenetic analysis revealed that the levels of fungal biodiversity in some communities, like those treating paper pulp wastes, were low, and most of the fungi detected in all communities examined were novel uncultured representatives of the major fungal subdivisions, in particular, the newly described clade Cryptomycota. The fungal populations in activated sludge revealed by these culture-independent methods were markedly different to those based on culture-dependent data. Members of the genera Penicillium, Cladosporium, Aspergillus and Mucor, which have been commonly identified in mixed liquor, were not identified in any of these plant communities. Non-fungal eukaryotic 18S rRNA genes were also amplified with the primer sets used. This is the first report where culture-independent methods have been applied to flocculated activated sludge biomass samples to estimate fungal community composition and, as expected, the data obtained gave a markedly different view of their population biodiversity compared to that based on culture-dependent methods.

  14. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  15. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance.

    PubMed

    Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J

    2014-10-01

    We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Land application of treated sewage sludge: community health and environmental justice.

    PubMed

    Lowman, Amy; McDonald, Mary Anne; Wing, Steve; Muhammad, Naeema

    2013-05-01

    In the United States, most of the treated sewage sludge (biosolids) is applied to farmland as a soil amendment. Critics suggest that rules regulating sewage sludge treatment and land application may be insufficient to protect public health and the environment. Neighbors of land application sites report illness following land application events. We used qualitative research methods to evaluate health and quality of life near land application sites. We conducted in-depth interviews with neighbors of land application sites and used qualitative analytic software and team-based methods to analyze interview transcripts and identify themes. Thirty-four people in North Carolina, South Carolina, and Virginia responded to interviews. Key themes were health impacts, environmental impacts, and environmental justice. Over half of the respondents attributed physical symptoms to application events. Most noted offensive sludge odors that interfere with daily activities and opportunities to socialize with family and friends. Several questioned the fairness of disposing of urban waste in rural neighborhoods. Although a few respondents were satisfied with the responsiveness of public officials regarding sludge, many reported a lack of public notification about land application in their neighborhoods, as well as difficulty reporting concerns to public officials and influencing decisions about how the practice is conducted where they live. Community members are key witnesses of land application events and their potential impacts on health, quality of life, and the environment. Meaningful involvement of community members in decision making about land application of sewage sludge will strengthen environmental health protections.

  17. Bacterial community analysis of anoxic/aeration (A/O) system in a combined process for gibberellin wastewater treatment

    PubMed Central

    Ouyang, Erming; Lu, Yao; Ouyang, Jiating; Wang, Lele; Wang, Xiaohui

    2017-01-01

    Gibberellin wastewater cannot be directly discharged without treatment due to its high concentrations of sulfate and organic compounds and strong acidity. Therefore, multi-stage anaerobic bioreactor + micro-aerobic+ anoxic/aeration (A/O) + biological contact oxidation combined processes are used to treat gibberellin wastewater. However, knowledge of the treatment effects of the A/O process and bacterial community structure in the aeration tank reactors of such systems is sparse. Therefore, this study was conducted to investigate the treatment effects and operation of the A/O process on gibberellin wastewater, as well as changes in the bacterial community structure of activated sludge in the aeration tank during treatment. Moreover, removal was examined based on evaluation of effluent after A/O treatment. Although influent chemical oxygen demand (COD), NH3-N and total phosphorus (TP) fluctuated, effluent COD, NH3-N and TP remained stable. Moreover, average COD, NH3-N and TP removal efficiency were 68.41%, 93.67% and 45.82%, respectively, during the A/O process. At the phylum level, Proteobacteria was the dominant phylum in all samples, followed by Chloroflexi, Bacteroidetes and Actinobacteria. Proteobacteria played an important role in the removal of organic matter. Chloroflexi was found to be responsible for the degradation of carbohydrates and Bacteroidetes also had been found to be responsible for the degradation of complex organic matters. Actinobacteria are able to degrade a variety of environmental chemicals. Additionally, Anaerolineaceae_uncultured was the major genus in samples collected on May 25, 2015, while Novosphingobium and Nitrospira were dominant in most samples. Nitrosomonas are regarded as the dominant ammonia-oxidizing bacteria, while Nitrospira are the main nitrite-oxidizing bacteria. Bacterial community structure varied considerably with time, and a partial Mantel test showed a highly significant positive correlation between bacterial community

  18. Immobilized and MgSO4 induced cost effective bacterial disintegration of waste activated sludge for effective anaerobic digestion.

    PubMed

    Ushani, U; Rajesh Banu, J; Kavitha, S; Kaliappan, S; Yeom, Ick Tae

    2017-05-01

    In this study, an attempt was made to disintegrate waste activated sludge (WAS) in a cost-effective way. During the first phase of this study, effective break down of extracellular polymeric substance (EPS) was performed by deflocculating WAS with 0.1 g/g SS of MgSO 4 . Deflocculation rate was 92% with discharge rate of extractable EPS at 185 mg/L. In the second phase, effective bacterial cell disintegration was obtained at 36 h post treatment. Maximum solubilization of deflocculated sludge was approximately 21%, which was higher than that of flocculated sludge (14.2%) or the control (4.5%). Biodegradability studies were assessed through kinetic analysis by non-linear regression modeling. Results revealed that the deflocculated sludge had higher methane generation (at about 235.8 mL/gVs) compared to flocculated sludge (at 146.1 mL/gVs) or the control (at 34.8 mL/gVs). Cost assessment of the present work revealed that the net yield for each ton of the deflocculated sludge was about 32.99 USD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Polymicrobial airway bacterial communities in adult bronchiectasis patients

    PubMed Central

    2014-01-01

    Background Chronic airway infection contributes to the underlying pathogenesis of non-cystic fibrosis bronchiectasis (NCFBr). In contrast to other chronic airway infections, associated with COPD and CF bronchiectasis, where polymicrobial communities have been implicated in lung damage due to the vicious circle of recurrent bacterial infections and inflammation, there is sparse information on the composition of bacterial communities in NCFBr. Seventy consecutive patients were recruited from an outpatient adult NCFBr clinic. Bacterial communities in sputum samples were analysed by culture and pyrosequencing approaches. Bacterial sequences were analysed using partial least square discrimination analyses to investigate trends in community composition and identify those taxa that contribute most to community variation. Results The lower airway in NCFBr is dominated by three bacterial taxa Pasteurellaceae, Streptococcaceae and Pseudomonadaceae. Moreover, the bacterial community is much more diverse than indicated by culture and contains significant numbers of other genera including anaerobic Prevotellaceae, Veillonellaceae and Actinomycetaceae. We found particular taxa are correlated with different clinical states, 27 taxa were associated with acute exacerbations, whereas 11 taxa correlated with stable clinical states. We were unable to demonstrate a significant effect of antibiotic therapy, gender, or lung function on the diversity of the bacterial community. However, presence of clinically significant culturable taxa; particularly Pseudomonas aeruginosa and Haemophilus influenzae correlated with a significant change in the diversity of the bacterial community in the lung. Conclusions We have demonstrated that acute exacerbations, the frequency of exacerbation and episodes of clinical stability are correlated, in some patients, with a significantly different bacterial community structure, that are associated with a presence of particular taxa in the NCFBr lung. Moreover

  20. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge.

    PubMed

    Dröge, M; Pühler, A; Selbitschka, W

    2000-04-01

    In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10(-5) to 10(-8) per recipient. A total of 12 distinct plasmids, designated pB1-pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10(-1) to 10(-2) per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPbeta subgroup, whereas two plasmids were identified as IncPalpha plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPbeta plasmids at the DNA sequence level. In order to characterize the gene "load" of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified.

  1. Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

    PubMed

    Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi

    2015-04-01

    Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.

  2. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol.

    PubMed

    Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston

    2010-12-01

    The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946

  4. Sorption and biodegradability of sludge bacterial extracellular polymers in soil and their influence on soil copper behavior.

    PubMed

    Zhou, L X; Zhou, S G; Zhan, X H

    2004-01-01

    Bacterial extracellular polymers (BEP) affect the translocation and fate of organic and inorganic pollutants in terrestrial and aquatic ecosystems. In this study, BEP from activated sludge was compared with sludge dissolved organic matter (DOM) in terms of behavior and effects on the mobilization and bioavailability of Cu in a well-aged Cu-contaminated orchard sandy loam. Addition of sludge BEP (10-200 mg dissolved organic carbon [DOC] L(-1)) to the soil resulted in 1.6- to 12.8-fold-higher soil soluble Cu concentration over the control and 1.3- to 2.2-fold over sludge DOM of the same concentration. Consequently, the Cu uptake by the ryegrass (Lolium perenne L., cv. Target) grown in the soil was increased by 31% due to interval watering of 100 mg DOC L(-1) of sludge BEP solution in a 35-d period. The influence of sludge BEP on mobilizing soil Cu could be maintained as long as 60 d or more, depending on BEP biodegradation status. The findings that sludge BEP promoted Cu mobilization and bioavailability could be attributed to less adsorption of BEP by soil, slow degradation, and higher affinity with Cu. For example, after 3 wk of aerobic incubation, the soluble Cu present in the sludge DOM-treated soil was reduced to about the level of the control, while the concentration of soluble Cu in BEP-treated soil was 6.2 times higher than that in the control. Therefore, sludge BEP could act as a facilitated-transport carrier of Cu. The environmental risk of Cu should receive much attention if BEP is incorporated into soils.

  5. [Effects of 2-chlorophenol-acclimation on microbial community structure in anaerobic granular sludge].

    PubMed

    Huang, Ai-Qun; Dai, Ya-Lei; Chen, Ling; Chen, Hao; Zhang, Wen

    2008-03-01

    The microbial community structure in 2-chlorophenol-acclimated anaerobic granular sludge and inoculating sludge were analyzed by 16S rDNA-based approach. Total DNA was extracted directly from the inoculating sludge and 2-CP-acclimated anaerobic sludge, and then amplified by polymerase chain reaction (PCR) technique with the specific primer pair ARC21F/ARC958R for Archaea and 31F/907R for Acidobacteria respectively. The positive PCR products were cloned and sequenced. The sequences analysis shows that there exist common Archaea in both sludge, including Methanothrix soehngenii, Methanosaeta concilii and uncultured euryarchaeote etc. Some special Archaea appear in the 2-CP-acclimated sludge, such as Methanobacterium aarhusense, Methanobacterium curvum and Methanobacterium beijingense etc. Others originally existed in the inoculating sludge disappear after acclimation. Common Acidobacteria are found in both sludge, including uncultured bacterium, uncultured Acidobacterium and unknown Actinomycete (MC 9). Some special microbes originally existed in the inoculating sludge, such as Desulfotomaculum sp. 176, uncultured Deltaproteobacterium n8d and uncultured hydrocarbon seep bacterium etc. disappear after acclimation, and uncultured Holophaga/Acidobacterium, uncultured Acidobacteria bacterium and unidentified Acidobacterium are found after 2-CP-acclimation.

  6. Land Application of Treated Sewage Sludge: Community Health and Environmental Justice

    PubMed Central

    McDonald, Mary Anne; Wing, Steve; Muhammad, Naeema

    2013-01-01

    Background: In the United States, most of the treated sewage sludge (biosolids) is applied to farmland as a soil amendment. Critics suggest that rules regulating sewage sludge treatment and land application may be insufficient to protect public health and the environment. Neighbors of land application sites report illness following land application events. Objectives: We used qualitative research methods to evaluate health and quality of life near land application sites. Methods: We conducted in-depth interviews with neighbors of land application sites and used qualitative analytic software and team-based methods to analyze interview transcripts and identify themes. Results: Thirty-four people in North Carolina, South Carolina, and Virginia responded to interviews. Key themes were health impacts, environmental impacts, and environmental justice. Over half of the respondents attributed physical symptoms to application events. Most noted offensive sludge odors that interfere with daily activities and opportunities to socialize with family and friends. Several questioned the fairness of disposing of urban waste in rural neighborhoods. Although a few respondents were satisfied with the responsiveness of public officials regarding sludge, many reported a lack of public notification about land application in their neighborhoods, as well as difficulty reporting concerns to public officials and influencing decisions about how the practice is conducted where they live. Conclusions: Community members are key witnesses of land application events and their potential impacts on health, quality of life, and the environment. Meaningful involvement of community members in decision making about land application of sewage sludge will strengthen environmental health protections. PMID:23562940

  7. Microbial Ecology of Activated Sludge

    PubMed Central

    Dias, F. F.; Bhat, J. V.

    1964-01-01

    Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970

  8. Dietary and developmental shifts in butterfly-associated bacterial communities

    PubMed Central

    2018-01-01

    Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts. PMID:29892359

  9. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  10. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly

    PubMed Central

    Griffin, James S; Wells, George F

    2017-01-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980

  11. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  12. Impact of single walled carbon nanotubes (SWNTs) on wastewater microbial communities

    NASA Astrophysics Data System (ADS)

    Goyal, Deepankar

    Aim: Carbon nanotubes (CNTs) hold great promise in advancing our future, with potential applications such as adsorbents, conductive composites, energy storage devices, and more. Despite of numerous potential applications of CNTs, almost nothing so far is known about how such carbon-based nanomaterials would in future impact environmental processes such as wastewater treatment. The objective of the current study was to evaluate the impact of single-walled carbon nanotubes (SWNTs) on microbial communities and wastewater treatment processes in activated sludge bioreactors. Method: Closed system batch-scale reactors were used to simulate the activated sludge process. Two sets of triplicate reactors were analyzed to determine the effects of SWNTs and associated impurities compared to control reactors that contained no CNTs. Sub-samples for microbial community analyses were aseptically removed periodically from the bioreactors every ˜1 hour 15 minutes and held at -80°C until analyzed. Genomic DNA was extracted from bioreactor samples, and molecular profiles of the bacterial communities were determined using automated ribosomal intergenic spacer analysis (ARISA). The clones for the ARISA profiles having distinct ARISA peaks were picked and sequenced. Result: ARISA profiles revealed adverse changes in CNT-exposed bacterial communities compared to control reactors associated with CNTs. The phylogenetic analysis of cloned insert containing Internal Transcribed Spacer (ITS) region plus the 16S rRNA genes identified them belonging to taxonomic groups of the families Sphingomonadaceae and Cytophagacaceae , and the genus Zoogloea. Changes in community structure were observed in both SWNT-exposed and control reactors over the experimental time period. Also the date on which activated sludge was obtained from a wastewater treatment plant facility seemed to play a critical role in changing the community structure altogether, indicating the importance of analyzing microbial

  13. Minerals in soil select distinct bacterial communities in their microhabitats.

    PubMed

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (P<0.046). permanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  14. Determinants of bacterial communities in Canadian agroforestry systems.

    PubMed

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Metamorphosis of a butterfly-associated bacterial community.

    PubMed

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  16. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  17. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    PubMed

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P < 0.05). The high abundance of ANAMMOX and DAMO bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  18. Bacterial community changes in an industrial algae production system.

    PubMed

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  19. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    NASA Astrophysics Data System (ADS)

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-12-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered.

  20. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    PubMed

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, p<0.05) to approximate how the degree of sludge disintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment.

    PubMed

    Kavitha, S; Jayashree, C; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-09-01

    In this study, the role of sodium dodecyl sulfate (SDS) was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS) followed by enzymatic bacterial pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.02 g/g SS of SDS. In the results of pretreatment, the suspended solids reduction and chemical oxygen demand solubilization were found to be 25.7% and 19.79% for deflocculated and bacterially pretreated sludge, whereas they were found to be 15.7% and 11% for flocculated sludge (without EPS removal and bacterially pretreated) and 7.85% and 6% for control sludge (raw sludge), respectively. Upon examining the anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, deflocculated alone, and control sludges were found to be 0.467 L/(g VS), 0.355 L/(g VS), 0.315 L/(g VS), and 0.212 L/(g VS), respectively. Thus, the deflocculation and bacterial pretreatment improved the anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  3. Temporal variability of bacterial communities in cryoconite on an alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-04-01

    Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge.

    PubMed

    Shahzad, Asim; Saddiqui, Samina; Bano, Asghari

    2016-01-01

    The objective of this study was to evaluate the role of PGPR consortium and fertilizer alone and in combination on the physiology of maize grown under oily sludge stress environment as well on the soil nutrient status. Consortium was prepared from Bacillus cereus (Acc KR232400), Bacillus altitudinis (Acc KF859970), Comamonas (Delftia) belonging to family Comamonadacea (Acc KF859971) and Stenotrophomonasmaltophilia (Acc KF859973). The experiment was conducted in pots with complete randomized design with four replicates and kept in field. Oily sludge was mixed in ml and Ammonium nitrate and Diammonium phosphate (DAP) were added at 70 ug/g and 7 ug/g at sowing. The plant was harvested at 21 d for estimation of protein, proline and antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). To study the degradation, total petroleum hydrocarbon was extracted by soxhelt extraction and extract was analyzed by GC-FID at different period after incubation. Combined application of consortium and fertilizer enhanced the germination %, protein and, proline content by 90,130 and 99% higher than untreated maize plants. Bioavailability of macro and micro nutrient was also enhanced with consortium and fertilizer in oily sludge. The consortium and fertilizer in combined treatment decreased the superoxide dismutase (SOD), peroxidase dismutase (POD) of the maize leaves grown in oily sludge. Degradation of total petroleum hydrocarbon (TPHs) was 59% higher in combined application of consortium and fertilizer than untreated maize at 3 d. The bacterial consortium can enhanced the maize tolerance to oily sludge and enhanced degradation of total petroleum hydrocarbon (TPHs). The maize can be considered as tolerant plant species to remediate oily sludge contaminated soils.

  5. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying.

    PubMed

    Zhang, Junya; Cai, Xing; Qi, Lu; Shao, Chunyan; Lin, Yang; Zhang, Jin; Zhang, Yuanli; Shen, Peihong; Wei, Yuansong

    2015-09-01

    Sludge bio-drying in which sludge is dried by means of the heat generated by the aerobic degradation of its own organic substances has been widely used for sludge treatment. A better understanding of the evolution of dissolved organic matter (DOM) and its degradation drivers during sludge bio-drying could facilitate its control. Aeration is one of the key factors that affect sludge bio-drying performance. In this study, two aeration strategies (pile I-the optimized and pile II-the current) were established to investigate their impacts on the evolution of DOM and the microbial community in a full-scale sludge bio-drying plant. A higher pile temperature in pile I caused pile I to enter the DOM and microbiology stable stage approximately2 days earlier than pile II. The degradation of easily degradable components in the DOM primarily occurred in the thermophilic phase; after that degradation, the DOM components changed a little. Along with the evolution of the DOM, its main degradation driver, the microbial community, changed considerably. Phyla Firmicutes and Proteobacteria were dominant in the thermophilic stage, and genus Ureibacillus, which was the primary thermophilic bacteria, was closely associated with the degradation of the DOM. In the mesophilic stage, the microbial community changed significantly at first and subsequently stabilized, and the genus Parapedobacter, which belongs to Bacteriodetes, became dominant. This study elucidates the interplay between the DOM and microbial community during sludge bio-drying.

  7. Characterization of microbial communities in heavy crude oil from Saudi Arabia.

    PubMed

    Albokari, Majed; Mashhour, Ibrahim; Alshehri, Mohammed; Boothman, Chris; Al-Enezi, Mousa

    The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus , Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria , Clostridia , Spingobacteria and Flavobacteria . The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria , respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.

  8. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  9. Simultaneous Gram and viability staining on activated sludge exposed to erythromycin: 3D CLSM time-lapse imaging of bacterial disintegration.

    PubMed

    Louvet, Jean-Noël; Attik, Ghania; Dumas, Dominique; Potier, Olivier; Pons, Marie-Noëlle

    2011-11-01

    The effect of erythromycin on activated sludge bacteria according to their Gram type was investigated with 3-dimensional Confocal Laser Scanning Microscopy (CLSM) time-lapse imaging. The fluorescent stains SYTOX Green and Texas Red-X conjugate of wheat germ agglutinin stained dying bacteria and Gram(+) bacteria respectively. Time-lapse imaging allowed an understanding of the staining mechanism and the measurement of the death rate. In presence of erythromycin (10mg/L), Gram(+) bacteria had a higher mortality rate than the Gram(-) bacteria. This result suggests that antibiotic in wastewater could change the activated sludge bacteria composition, according to their Gram type by selecting the bacteria which are the least sensitive to the antibiotics. However bacterial death was followed by bacterial disintegration leading to a decrease in the fluorescence. Results suggested that the viability indicators based on membrane integrity should be used with a correct sampling method, which can give the initial quantity of living bacteria. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    PubMed

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights

  11. Carbon nanotubes/carbon fiber hybrid material: a super support material for sludge biofilms.

    PubMed

    Liu, Qijie; Dai, Guangze; Bao, Yanling

    2017-07-16

    Carbon fiber (CF) is widely used as a sludge biofilm support material for wastewater treatment. Carbon nanotubes/carbon fiber (CNTs/CF) hybrid material was prepared by ultrasonically assisted electrophoretic deposition (EPD). CF supports (CF without handling, CF oxidized by nitric acid, CNTs/CF hybrid material) were evaluated by sludge immobilization tests, bacterial cell adsorption tests and Derjaguin -Landau -Verwey -Overbeek (DLVO) theory. We found that the CNTs/CF hybrid material has a high capacity for adsorbing activated sludge, nitrifying bacterial sludge and pure strains (Escherichia coli and Staphylococcus aureus). CNTs deposited on CF surface easily wound around the curved surface of bacterial cell which resulted in capturing more bacterial cells. DLVO theory indicated the lowest total interaction energy of CNTs/CF hybrid material, which resulted in the highest bacteria cell adsorption velocity. Experiments and DLVO theory results proved that CNTs/CF hybrid material is a super support material for sludge biofilms.

  12. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomicmore » units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.« less

  13. Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    PubMed Central

    Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.

    2010-01-01

    Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654

  14. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  15. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  16. Bacterial communities and enzymatic activities in the vegetation-activated sludge process (V-ASP) and related advantages by comparison with conventional constructed wetland.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian

    2016-11-01

    A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate.

    PubMed

    Jin, Ningben; Shou, Zongqi; Yuan, Haiping; Lou, Ziyang; Zhu, Nanwen

    2016-03-01

    The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus.

    PubMed

    Kellogg, Christina A; Ross, Steve W; Brooke, Sandra D

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus . Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas , which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  20. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    USGS Publications Warehouse

    Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  1. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  2. Community-acquired bacterial meningitis.

    PubMed

    Costerus, Joost M; Brouwer, Matthijs C; Bijlsma, Merijn W; van de Beek, Diederik

    2017-02-01

    Bacterial meningitis is a medical emergency and is associated with a high disease burden. We reviewed recent progress in the management of patients with community-acquired bacterial meningitis. The worldwide burden of disease of bacterial meningitis remains high, despite the decreasing incidence following introduction of routine vaccination campaigns. Delay in diagnosis and treatment remain major concerns in the management of acute bacterial meningitis. European Society of Clinical Microbiology and Infectious Diseases guidelines strive for a door-to-antibiotic-time less than 1 h. Polymerase chain reaction (PCR) has emerged as an important diagnostic tool to identify the causative organism. Point-of-care tests using fast multiplex PCR have been developed, but additional value has not been proven. Although anecdotal observations advocate pressure-based management, a randomized controlled trial will need to be performed first to determine efficacy and safety of such an aggressive treatment approach. Adjunctive dexamethasone remains the only adjunctive therapy with proven efficacy. The incidence of bacterial meningitis has been decreasing after the implementation of effective vaccines. Treatment should be administered as soon as possible and time to treatment should not exceed 1 h.

  3. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGES

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; ...

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  4. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  5. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  6. Metagenomic insights into zooplankton‐associated bacterial communities

    PubMed Central

    Srivastava, Abhishek; Koski, Marja; Garcia, Juan Antonio L.; Takaki, Yoshihiro; Yokokawa, Taichi; Nunoura, Takuro; Elisabeth, Nathalie H.; Sintes, Eva; Herndl, Gerhard J.

    2017-01-01

    Summary Zooplankton and microbes play a key role in the ocean's biological cycles by releasing and consuming copious amounts of particulate and dissolved organic matter. Additionally, zooplankton provide a complex microhabitat rich in organic and inorganic nutrients in which bacteria thrive. In this study, we assessed the phylogenetic composition and metabolic potential of microbial communities associated with crustacean zooplankton species collected in the North Atlantic. Using Illumina sequencing of the 16S rRNA gene, we found significant differences between the microbial communities associated with zooplankton and those inhabiting the surrounding seawater. Metagenomic analysis of the zooplankton‐associated microbial community revealed a highly specialized bacterial community able to exploit zooplankton as microhabitat and thus, mediating biogeochemical processes generally underrepresented in the open ocean. The zooplankton‐associated bacterial community is able to colonize the zooplankton's internal and external surfaces using a large set of adhesion mechanisms and to metabolize complex organic compounds released or exuded by the zooplankton such as chitin, taurine and other complex molecules. Moreover, the high number of genes involved in iron and phosphorus metabolisms in the zooplankton‐associated microbiome suggests that this zooplankton‐associated bacterial community mediates specific biogeochemical processes (through the proliferation of specific taxa) that are generally underrepresented in the ambient waters. PMID:28967193

  7. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  8. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  10. Evaluation of an up-flow anaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater.

    PubMed

    Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong

    2017-11-01

    Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m 3 ·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design of synthetic bacterial communities for predictable plant phenotypes

    PubMed Central

    Herrera Paredes, Sur; Gao, Tianxiang; Law, Theresa F.; Finkel, Omri M.; Mucyn, Tatiana; Teixeira, Paulo José Pereira Lima; Salas González, Isaí; Feltcher, Meghan E.; Powers, Matthew J.; Shank, Elizabeth A.; Jones, Corbin D.; Jojic, Vladimir; Dangl, Jeffery L.; Castrillo, Gabriel

    2018-01-01

    Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant–bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation–responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities. PMID:29462153

  12. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  13. Do honeybees shape the bacterial community composition in floral nectar?

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  14. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  15. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  16. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    PubMed

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  17. Microbial Population Dynamics and Ecosystem Functions of Anoxic/Aerobic Granular Sludge in Sequencing Batch Reactors Operated at Different Organic Loading Rates

    PubMed Central

    Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie

    2017-01-01

    The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable

  18. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  19. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  20. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    PubMed Central

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution. PMID:27698451

  1. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  2. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland

    PubMed Central

    Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-01-01

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon–nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable. PMID:29751652

  3. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland.

    PubMed

    Luo, Caigui; Deng, Yangwu; Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-05-11

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.

  4. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    PubMed

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  5. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    NASA Astrophysics Data System (ADS)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  6. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest

    PubMed Central

    Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan

    2014-01-01

    Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061

  7. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  8. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    PubMed

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  9. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  10. Composition and development of oral bacterial communities.

    PubMed

    Palmer, Robert J

    2014-02-01

    The oral bacterial microbiome encompasses approximately 700 commonly occurring phylotypes, approximately half of which can be present at any time in any individual. These bacteria are largely indigenous to the oral cavity; this limited habitat range suggests that interactions between the various phylotypes, and between the phylotypes and their environment, are crucial for their existence. Molecular cataloging has confirmed many basic observations on the composition of the oral microbiome that were formulated well before ribosomal RNA-based systematics, but the power and the scope of molecular taxonomy have resulted in the discovery of new phylotypes and, more importantly, have made possible a level of bacterial community analysis that was unachievable with classical methods. Bacterial community structure varies with location within the mouth, and changes in community structure are related to disease initiation and disease progression. Factors that influence the formation and the evolution of communities include selective adherence to epithelial or tooth surfaces, specific cell-to-cell binding as a driver of early community composition, and interorganismal interaction leading to alteration of the local environment, which represents the first step on the road to oral disease. A comprehensive understanding of how these factors interact to drive changes in the composition of the oral microbial community can lead to new strategies for the inhibition of periodontal diseases and dental caries. Published 2013. This article is a US Government work and is in the public domain in the USA.

  11. Natural bacterial communities serve as quantitative geochemical biosensors.

    PubMed

    Smith, Mark B; Rocha, Andrea M; Smillie, Chris S; Olesen, Scott W; Paradis, Charles; Wu, Liyou; Campbell, James H; Fortney, Julian L; Mehlhorn, Tonia L; Lowe, Kenneth A; Earles, Jennifer E; Phillips, Jana; Techtmann, Steve M; Joyner, Dominique C; Elias, Dwayne A; Bailey, Kathryn L; Hurt, Richard A; Preheim, Sarah P; Sanders, Matthew C; Yang, Joy; Mueller, Marcella A; Brooks, Scott; Watson, David B; Zhang, Ping; He, Zhili; Dubinsky, Eric A; Adams, Paul D; Arkin, Adam P; Fields, Matthew W; Zhou, Jizhong; Alm, Eric J; Hazen, Terry C

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts. Copyright © 2015 Smith et al.

  12. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGES

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; ...

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  13. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  14. Architectural Design Drives the Biogeography of Indoor Bacterial Communities

    PubMed Central

    O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L.

    2014-01-01

    Background Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Results Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Conclusions Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our

  15. The development of permafrost bacterial communities under submarine conditions

    NASA Astrophysics Data System (ADS)

    Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N.; Wagner, Dirk; Overduin, Pier P.; Liebner, Susanne

    2017-07-01

    Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. Microbial communities in thawing permafrost are expected to be stimulated by warming, but how they develop under submarine conditions is completely unknown. We used the unique records of two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf, inundated about 540 and 2500 years ago, to trace how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Combined with geochemical analysis, we quantified total cell numbers and bacterial gene copies and determined the community structure of bacteria using deep sequencing of the bacterial 16S rRNA gene. We show that submarine permafrost is an extreme habitat for microbial life deep below the seafloor with changing thermal and chemical conditions. Pore water chemistry revealed different pore water units reflecting the degree of marine influence and stages of permafrost thaw. Millennia after inundation by seawater, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity, and abundance in submarine permafrost appears site specific, showing that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest microbial abundance was observed in the ice-bonded seawater unaffected but warmed permafrost of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions start to proliferate millennia after warming.

  16. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  17. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields

  18. Characterization of Bioaerosol Bacterial Communities During Hazy and Foggy Weather in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Qi, Jianhua; Li, Mengzhe; Zhen, Yu; Wu, Lijing

    2018-06-01

    This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis (PCRDGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity (RH; r 2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria ( Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.

  19. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  20. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  1. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  2. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate.

    PubMed

    Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang

    2013-09-01

    Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Biodegradation of di-n-butyl phthalate by bacterial consortium LV-1 enriched from river sludge

    PubMed Central

    Li, Fangfang; Ruan, Xinling; Song, Jian; Lv, Lv; Chai, Liyuan; Yang, Zhihui; Luo, Lin

    2017-01-01

    A stable bacterial consortium (LV-1) capable of degrading di-n-butyl phthalate (DBP) was enriched from river sludge. Community analysis revealed that the main families of LV-1 are Brucellaceae (62.78%) and Sinobacteraceae (14.83%), and the main genera of LV-1 are Brucella spp. (62.78%) and Sinobacter spp. (14.83%). The optimal pH and temperature for LV-1 to degrade DBP were pH 6.0 and 30°C, respectively. Inoculum size influenced the degradation ratio when the incubation time was < 24 h. The initial concentration of DBP also influenced the degradation rates of DBP by LV-1, and the degradation rates ranged from 69.0–775.0 mg/l/d in the first 24 h. Degradation of DBP was best fitted by first-order kinetics when the initial concentration was < 300 mg/l. In addition, Cd2+, Cr6+, and Zn2+ inhibited DBP degradation by LV-1 at all considered concentrations, but low concentrations of Pb2+, Cu2+, and Mn2+ enhanced DBP degradation. The main intermediates (mono-ethyl phthalate [MEP], mono-butyl phthalate [MBP], and phthalic acid [PA]) were identified in the DBP degradation process, thus a new biochemical pathway of DBP degradation is proposed. Furthermore, LV-1 also degraded other phthalates with shorter ester chains (DMP, DEP, and PA). PMID:28542471

  4. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    PubMed Central

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  5. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    PubMed Central

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  6. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  7. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  8. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  9. Autoclaved sludge as the ideal seed to culture anammox bacteria: Reactor performance and microbial community diversity.

    PubMed

    Wang, Yu; Bu, Cui-Na; Kang, Qi; Ahmad, Hafiz Adeel; Zhang, Jian; Gao, Baoyu; Ni, Shou-Qing

    2017-11-01

    Reducing activity of commensal bacteria in inocula may enhance anammox bacteria proliferation and realization of anammox process. Fast start-up of anammox process in an UASB reactor was successfully achieved by using autoclaved sludge (anaerobic granular sludge pretreated by autoclaving) and 0.3% active anammox sludge as inoculum. Continuous experiments indicated that R2 (autoclaved sludge addition) could shorten the start-up period from 72days to 63days. The first 50days anammox population specific growth rates (μ) of R1 (the control) and R2 were determined to be 0.014d -1 and 0.045d -1 using q-PCR assays. Analysis of coefficient of variations of nitrogen removal performance during days 96-225 indicated that R2 was more stable than R1. The Illumina MiSeq sequencing showed that autoclaving could decrease microbial diversity of sludge and enhance the abundance of anammox bacteria. Furthermore, PICRUSt community functions forecast and c-di-GMP measure illuminated the result of higher stability in R2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bacterial communities in Arctic first-year drift ice during the winter/spring transition.

    PubMed

    Eronen-Rasimus, Eeva; Piiparinen, Jonna; Karkman, Antti; Lyra, Christina; Gerland, Sebastian; Kaartokallio, Hermanni

    2016-08-01

    Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    NASA Astrophysics Data System (ADS)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  12. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    PubMed

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  13. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  15. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  16. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    PubMed

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.

  17. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  18. Major factors influencing bacterial leaching of heavy metals (Cu and Zn) from anaerobic sludge.

    PubMed

    Couillard, D; Chartier, M; Mercier, G

    1994-01-01

    Anaerobically digested sewage sludges were treated for heavy metal removal through a biological solubilization process called bacterial leaching (bioleaching). The solubilization of copper and zinc from these sludges is described in this study: using continuously stirred tank reactors with and without sludge recycling at different mean hydraulic residence times (1, 2, 3 and 4 days). Significant linear equations were established for the solubilization of zinc and copper according to relevant parameters: oxygen reduction potential (ORP), pH and residence time (t). Zinc solubilization was related to the residence time with a r2 (explained variance) of 0.82. Considering only t=2 and 3 days explained variance of 0.31 and 0.24 were found between zinc solubilization as a function of ORP and pH indicating a minor importance of those two factors for this metal in the range of pH and ORP experimented. Cu solubilization was weakly correlated to mean hydraulic residence time (r2=0.48), while it was highly correlated to ORP (r2=0.80) and pH (r2=0.62) considering only t of 2 and 3 days in the case of pH and ORP. The ORP dependence of Cu solubilization has been clearly demonstrated in this study. In addition to this, the importance of the substrate concentration for Cu solubilization has been confirmed. The hypothesis of a biological solubilization of Cu by the indirect mechanism has been supported. The results permit, under optimum conditions, the drawing of linear equations which will allow prediction of metal solubilization efficiencies from the parameters pH (Cu), ORP (Cu) and residence time (Cu and Zn), during the treatment. The linear regressions will be a useful tool for routine operation of the process.

  19. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  20. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  2. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  3. Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.

    PubMed

    Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh

    2017-01-01

    In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.

  4. Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)

    PubMed Central

    Besemer, Katharina; Moeseneder, Markus M.; Arrieta, Jesus M.; Herndl, Gerhard J.; Peduzzi, Peter

    2005-01-01

    Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition. PMID:15691909

  5. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  6. Bacterial Community Composition Associated with Chironomid Egg Masses

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2012-01-01

    Chironomids (Diptera: Chironomidae) are the most widely distributed and often the most abundant insect in freshwater. They undergo a complete metamorphosis of four life stages, of which the egg, larva, and pupae are aquatic and the adult is terrestrial. Chironomid egg masses were found to be natural reservoirs of Vibrio cholerae and Aeromonas species. To expand the knowledge of the endogenous bacterial community associated with chironomid egg masses, denaturing gradient gel electrophoresis and clone analysis of 16S rRNA gene libraries were used in this study. Bacterial community composition associated with chironomid egg masses was found to be stable among different sampling periods. Cloned libraries of egg masses revealed that about 40% of the clones were related to bacteria known to degrade various toxicants. These findings were further supported when bacterial species that showed resistance to different toxic metals were isolated from egg masses and larval samples. Chironomids are found under a wide range of water conditions and are able to survive pollutants. However, little is known about their protective mechanisms under these conditions. Chironomid egg masses are inhabited by a stable endogenous bacterial community, which may potentially play a role in protecting chironomids from toxicants in polluted environments. Further study is needed to support this hypothesis. PMID:23461272

  7. Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration.

    PubMed

    An, Ying; Zhou, Zhen; Yao, Jie; Niu, Tianhao; Qiu, Zhan; Ruan, Danian; Wei, Haijuan

    2017-12-01

    An anaerobic/anoxic/oxic (AAO) wastewater treatment system combining with a potassium ferrate (K 2 FeO 4 ) oxidation side-stream reactor (SSR) was proposed for sludge reduction. Batch experiments showed that optimal K 2 FeO 4 dosage and reaction time for sludge disintegration was 100mg/g suspended solids (SS) and 24h, respectively. Subsequently, an AAO-SSR and a conventional AAO were operated in parallel to investigate effects of K 2 FeO 4 oxidation on process performance, sludge characteristics and microbial community structures. The AAO-SSR process operated under the optimized condition achieved efficient COD and NH 4 + -N removal, and reduced sludge by 47.5% with observed yield coefficient of 0.21gSS/g COD. K 2 FeO 4 addition broke sludge particles, increased dissolved organic matters in the mixed liquor, and improved sludge dewaterability. Illumina-MiSeq sequencing results showed that K 2 FeO 4 oxidation in the AAO-SSR decreased microbial richness and diversity, enriched slow growers (Dechloromonas), anaerobic fermentative bacteria (Azospira) and Fe(III)-reducing bacteria (Ferribacterium), but limited the growth of phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    PubMed

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  9. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production

    PubMed Central

    Shouche, Yogesh S.; Larsson, D. G. Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  10. Diversity of bacterial communities and dissolved organic matter in a temperate estuary.

    PubMed

    Osterholz, Helena; Kirchman, David L; Niggemann, Jutta; Dittmar, Thorsten

    2018-06-14

    Relationships between bacterial community and dissolved organic matter (DOM) include microbial uptake, transformation and secretion, all of which influence DOM composition. In this study, we explore diversity and similarity metrics of dissolved organic molecules (Fourier-transform ion cyclotron resonance mass spectrometry) and bacterial communities (tag-sequencing of 16S rRNA genes) along the salinity gradient of the Delaware Estuary (USA). We found that even though mixing, discharge and seasonal changes explained most of the variation in DOM and bacterial communities, there was still a relationship, albeit weak, between the composition of DOM and bacterial communities in the estuary. Overall, many DOM molecular formulas (MFs) and bacterial operational taxonomic units (OTUs) reoccurred over years and seasons while the frequency of MF-OTU correlations varied. Diversity based on MFs and OTUs was significantly correlated, decreasing towards the open ocean. However, while the diversity of bacterial OTUs dropped markedly with low salinity, MF diversity decreased strongly only at high salinities. We hypothesize that the different turnover times of DOM and bacteria lead to different abundance distributions of OTUs and MFs. A significant portion of the detected DOM is of a more refractory nature with lifetimes largely exceeding the mixing time of the estuary, while bacterial community turnover times in the Delaware Estuary are estimated at several days.

  11. Detecting macroecological patterns in bacterial communities across independent studies of global soils.

    PubMed

    Ramirez, Kelly S; Knight, Christopher G; de Hollander, Mattias; Brearley, Francis Q; Constantinides, Bede; Cotton, Anne; Creer, Si; Crowther, Thomas W; Davison, John; Delgado-Baquerizo, Manuel; Dorrepaal, Ellen; Elliott, David R; Fox, Graeme; Griffiths, Robert I; Hale, Chris; Hartman, Kyle; Houlden, Ashley; Jones, David L; Krab, Eveline J; Maestre, Fernando T; McGuire, Krista L; Monteux, Sylvain; Orr, Caroline H; van der Putten, Wim H; Roberts, Ian S; Robinson, David A; Rocca, Jennifer D; Rowntree, Jennifer; Schlaeppi, Klaus; Shepherd, Matthew; Singh, Brajesh K; Straathof, Angela L; Bhatnagar, Jennifer M; Thion, Cécile; van der Heijden, Marcel G A; de Vries, Franciska T

    2018-02-01

    The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.

  12. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor.

    PubMed

    Silva, Ana F; Antunes, Sílvia; Saunders, Aaron; Freitas, Filomena; Vieira, Anabela; Galinha, Claudia F; Nielsen, Per H; Barreto Crespo, Maria Teresa; Carvalho, Gilda

    2016-10-01

    Membrane bioreactors (MBRs) are an advanced technology for wastewater treatment whose wide application has been hindered by rapid fouling of the membranes. MBRs can be operated with long sludge retention time (SRT), a crucial parameter impacting microbial selection in the reactor. This also affects filtration performance, since a major fouling agent are the extracellular polymeric substances (EPS). In this study, the impact of the SRT on the ecophysiology of the MBRs and, consequently, on membrane fouling was evaluated. A MBR was operated under a SRT of 60 days followed by a SRT of 20 days. A comprehensive analysis of the microbial community structure and EPS proteins and polysaccharide profiles of the mixed liquor and cake layer was carried out throughout both operation periods. The results of this study showed that the imposition of a shorter SRT led to a shift in the dominant bacterial populations. The mixed liquor and cake layer communities were very different, with Actinomycetales order standing out in the cake layer at SRT of 20 days. Overall, higher EPS concentrations (particularly proteins) were found at this SRT. Furthermore, EPS profiles were clearly affected by the SRT: it was possible to correlate a group of soluble EPS proteins with the SRT of 60 days, and a lower sludge age led to a lower diversity of polysaccharide sugar monomers, with an increase of glucose and galactose in the cake layer. This study improves our knowledge regarding the molecular reasons for fouling, which may contribute to improve MBR design and operation.

  13. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment.

    PubMed

    Li, Ning; Liu, Huajie; Xue, Yonggang; Wang, Hongyang; Dai, Xiaohu

    2017-03-01

    Fluoroquinolones (FQs) are broad-spectrum synthetic antibiotics that play an important role in the treatment of serious bacterial infections. FQs can reach wastewater treatment plants from different routes, and eventually accumulate in activated sludge. In this study, a solid-phase extraction (SPE) with HPLC-FLD detection method was utilized to investigate the partition and fate of FQs in digested sludge when thermal hydrolysis was used as pretreatment. As a result, thermal hydrolysis showed minor effects on the fate of FQs in batch anaerobic digestion processes, while anaerobic digestion alone removed >60% FQs and finally assisted in the mitigation of the inhibitory effects to microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans.

    PubMed

    Erb Downward, John R; Falkowski, Nicole R; Mason, Katie L; Muraglia, Ryan; Huffnagle, Gary B

    2013-01-01

    The introduction of Candida albicans into cefoperazone-treated mice results in changes in bacterial community reassembly. Our objective was to use high-throughput sequencing to characterize at much greater depth the specific changes in the bacterial microbiome. The colonization of C. albicans significantly altered bacterial community reassembly that was evident at multiple taxonomic levels of resolution. There were marked changes in the levels of Bacteriodetes and Lactobacillaceae. Lachnospiraceae and Ruminococcaceae, the two most abundant bacterial families, did not change in relative proportions after antibiotics, but there were marked genera-level shifts within these two bacterial families. The microbiome shifts occurred in the absence of overt intestinal inflammation. Overall, these experiments demonstrate that the introduction of a single new microbe in numerically inferior numbers into the bacterial microbiome during a broad community disturbance has the potential to significantly alter the subsequent reassembly of the bacterial community as it recovers from that disturbance.

  15. Pyrosequencing analysis of the bacterial community in drinking water wells.

    PubMed

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  16. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  17. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    PubMed Central

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  18. Response of soil bacterial community to repeated applications of carbendazim.

    PubMed

    Wang, Xiuguo; Song, Min; Wang, Yiqi; Gao, Chunming; Zhang, Qun; Chu, Xiaoqiang; Fang, Hua; Yu, Yunlong

    2012-01-01

    The effect of repeated carbendazim applications on functional diversity of culturable microorganisms and bacterial community composition was studied under field conditions. The functional diversity of soil culturable microbial community (Shannon index, H') reduced significantly (P<0.05) after the first introduction of carbendazim at levels of 0.94, 1.88 and 4.70 kg active ingredient (a.i.)ha(-1) and then recovered to that in the control with subsequent applications. An evident (P<0.01) difference in the bacterial community composition was observed after the second carbendazim application by Temperature Gradient Gel Electrophoresis (TGGE) analysis of 16S rRNA genes amplified from treated and control soils, which remained after the third and fourth treatments. Our results indicated that repeated carbendazim applications have a transient harmful effect on functional diversity of soil culturable microbial community and result in an alteration in bacterial community composition largely due to one species within the γ-proteobacterium. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Nutrient-enhanced n-alkanes biodegradation and succession of bacterial communities

    NASA Astrophysics Data System (ADS)

    Sun, Yanyu; Wang, Hui; Li, Junde; Wang, Bin; Qi, Cancan; Hu, Xiaoke

    2017-11-01

    Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oil-contaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading

  20. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  1. The gut bacterial community of mammals from marine and terrestrial habitats.

    PubMed

    Nelson, Tiffanie M; Rogers, Tracey L; Brown, Mark V

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  2. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  3. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  4. Effects of glucose on microcystin-LR removal and the bacterial community composition through anoxic biodegradation in drinking water sludge.

    PubMed

    Ma, Guangxiang; Pei, Haiyan; Hu, Wenrong; Xu, Xiangchao; Ma, Chunxia; Pei, Ruoting

    2016-01-01

    To enhance the degradation efficiency of microcystin (MC) in drinking water sludge (DWS), the underlying mechanisms between organic carbon (glucose) and the biodegradation of MC-LR under anoxic conditions were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis technology. The addition of glucose reduced the rate of the MC-LR biodegradation indicating the occurrence of inhibition of degradation, and an increased inhibition was observed with increases in glucose concentration (0-10,000 mg/L). In addition, the community analysis indicated that the variety and the number of the microbes increased with the concentration of glucose amended (0 -1000 mg/L), but they decreased substantially with the addition of 10,000 mg/L of glucose. The phyla Firmicutes, Proteobacteria and Chloroflexi were found to be the dominant. Methylobacterium and Sphingomonas were MC-degrading bacteria and used glucose as a prior carbon source instead of MC, resulting in the decrease in the MC-LR biodegradation rate under anoxic conditions. Thus, reducing organic carbon could improve the anoxic biodegradation efficiency of MC in DWS.

  5. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  6. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  7. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    PubMed

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    PubMed

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  10. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  11. Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge.

    PubMed

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha(-1) and 26 Mg·ha(-1)) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments.

  12. Community Level Physiological Profiles (CLPP), Characterization and Microbial Activity of Soil Amended with Dairy Sewage Sludge

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006

  13. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    PubMed

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  14. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  15. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  16. 'FloraArray' for screening of specific DNA probes representing the characteristics of a certain microbial community.

    PubMed

    Yokoi, Takahide; Kaku, Yoshiko; Suzuki, Hiroyuki; Ohta, Masayuki; Ikuta, Hajime; Isaka, Kazuichi; Sumino, Tatsuo; Wagatsuma, Masako

    2007-08-01

    To investigate uncharacterized microbial communities, a custom DNA microarray named 'FloraArray' was developed for screening specific probes that would represent the characteristics of a microbial community. The array was prepared by spotting 2000 plasmid DNAs from a genomic shotgun library of a sludge sample on a DNA microarray. By comparative hybridization of the array with two different samples of genomic DNA, one from the activated sludge and the other from a nonactivated sludge sample of an anaerobic ammonium oxidation (anammox) bacterial community, specific spots were visualized as a definite fluctuating profile in an MA (differential intensity ratio vs. spot intensity) plot. About 300 spots of the array accounted for the candidate probes to represent anammox reaction of the activated sludge. After sequence analysis of the probes and examination of the results of blastn searches against the reported anammox reference sequence, complete matches were found for 161 probes (58.3%) and >90% matches were found for 242 probes (87.1%). These results demonstrate that 'FloraArray' could be a useful tool for screening specific DNA molecules of unknown microbial communities.

  17. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance.

    PubMed

    Slater, Frances R; Singer, Andrew C; Turner, Susan; Barr, Jeremy J; Bond, Philip L

    2011-02-01

    The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(®), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    PubMed

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  19. Distinctive bacterial communities in the rhizoplane of four tropical tree species.

    PubMed

    Oh, Yoon Myung; Kim, Mincheol; Lee-Cruz, Larisa; Lai-Hoe, Ang; Go, Rusea; Ainuddin, N; Rahim, Raha Abdul; Shukor, Noraini; Adams, Jonathan M

    2012-11-01

    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both

  20. Carbendazim induces a temporary change in soil bacterial community structure.

    PubMed

    Wang, Xiuguo; Song, Min; Gao, Chunming; Dong, Bin; Zhang, Qun; Fang, Hua; Yu, Yunlong

    2009-01-01

    The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H') decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P < or = 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily.

  1. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community

  2. Canopy soil bacterial communities altered by severing host tree limbs

    PubMed Central

    Dangerfield, Cody R.; Nadkarni, Nalini M.

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities. PMID:28894646

  3. Canopy soil bacterial communities altered by severing host tree limbs.

    PubMed

    Dangerfield, Cody R; Nadkarni, Nalini M; Brazelton, William J

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  4. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    PubMed

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  5. Characterizing the Bacterial Communities in Retail Stores in the United States

    DTIC Science & Technology

    2015-01-01

    community or the factors that affect it. To our knowledge, only one study to date has investigated the indoor bacterial microbiome of retail stores...type of store affects the microbial community present, the impact of store type on the bacterial community was investigated by comparing the bacteria...genes analysis (Figure 2). Additionally, Leff and Fierer (2013) observed a high relative abundance of Enterobacteriaceae on fruits and vegetables but

  6. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    PubMed

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  7. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study

  8. Microbial degradation of 4-monobrominated diphenyl ether in an aerobic sludge and the DGGE analysis of diversity.

    PubMed

    Chen, Chun-Yao; Wang, Chun-Kang; Shih, Yang-Hsin

    2010-07-01

    Polybrominated diphenyl ethers (PBDEs) were applied as flame retardant additives in polymers for many plastic and electronic products. Due to their ubiquitous distribution in the environment, potential toxicity to human and tendency for bioaccumulation, PBDEs have raised public safety concern. In this study we examined the degradation of 4-monobrominated diphenyl ether (4-BDE) in aerobic sludge, as a model for PBDE biodegradation. Degradation of 4-BDE was observed in aerobic sludge. Co-metabolism with toluene or diphenyl ether facilitated 4-BDE biodegradation in terms of kinetics and efficiency. Diphenyl ether seems to perform slightly better as an auxiliary carbon source than toluene in facilitating 4-BDE degradation. During the experiment we identified diphenyl ether by gas chromatography/mass spectrometry(GC/MS), which indicates that an anaerobic debromination has occurred. Bacterial community composition was monitored with denaturing gradient gel electrophoresis. The fragments enriched in 4-BDE-degrading aerobic sludge samples belong to presumably a novel anaerobic Clostridiales species distantly related to all known debrominating microbes. This suggests that 4-BDE biodegradation can occur in anaerobic micro-niche in an apparently aerobic environment, by a previously unknown bacterial species. These findings can provide better understandings of biodegradation of brominated diphenyl ethers and can facilitate the prediction of the fate of PBDEs in the environment.

  9. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  10. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity

    PubMed Central

    Messier, Christian; Kembel, Steven W.

    2017-01-01

    ABSTRACT Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria. Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban

  11. Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity.

    PubMed

    Laforest-Lapointe, Isabelle; Messier, Christian; Kembel, Steven W

    2017-01-01

    Tree leaf-associated microbiota have been studied in natural ecosystems but less so in urban settings, where anthropogenic pressures on trees could impact microbial communities and modify their interaction with their hosts. Additionally, trees act as vectors spreading bacterial cells in the air in urban environments due to the density of microbial cells on aerial plant surfaces. Characterizing tree leaf bacterial communities along an urban gradient is thus key to understand the impact of anthropogenic pressures on urban tree-bacterium interactions and on the overall urban microbiome. In this study, we aimed (i) to characterize phyllosphere bacterial communities of seven tree species in urban environments and (ii) to describe the changes in tree phyllosphere bacterial community structure and diversity along a gradient of increasing urban intensity and at two degrees of tree isolation. Our results indicate that, as anthropogenic pressures increase, urban leaf bacterial communities show a reduction in the abundance of the dominant class in the natural plant microbiome, the Alphaproteobacteria . Our work in the urban environment here reveals that the structures of leaf bacterial communities differ along the gradient of urban intensity. The diversity of phyllosphere microbial communities increases at higher urban intensity, also displaying a greater number and variety of associated indicator taxa than the low and medium urban gradient sites. In conclusion, we find that urban environments influence tree bacterial community composition, and our results suggest that feedback between human activity and plant microbiomes could shape urban microbiomes. IMPORTANCE In natural forests, tree leaf surfaces host diverse bacterial communities whose structure and composition are primarily driven by host species identity. Tree leaf bacterial diversity has also been shown to influence tree community productivity, a key function of terrestrial ecosystems. However, most urban microbiome

  12. Effects of graphite nanoparticles on nitrification in an activated sludge system.

    PubMed

    Dong, Qian; Liu, Yanchen; Shi, Hanchang; Huang, Xia

    2017-09-01

    Graphite nanoparticles (GNPs) might result in unexpected effects during their transportation and transformation in wastewater treatment systems, including strong thermo-catalytic and catalytic effects and microbial cytotoxicity. In particular, the effects of GNPs on the nitrification process in activated sludge systems should be addressed. This study aimed to estimate the influence of GNPs on the nitrification process in a short-term nitrification reactor with exposure to different light sources. The results indicated that GNPs could only improve the efficiency of photothermal transformation slightly in the activated sludge system because of its photothermal effects under the standard illuminant (imitating 1 × sun). However, even with better photothermal effects, the nitrification efficiency still decreased significantly with GNP dosing under the standard illuminant, which might result from stronger cytotoxic effects of GNPs on the nitrifying bacteria. The disappearance of extracellular polymeric substances (EPS) around bacterial cells was observed, and the total quantity of viable bacteria decreased significantly after GNP exposuring. Variation in bacterial groups primarily occurred in nitrifying microbial communities, including Nitrosomonas sp., Nitrosospira sp., Comamonas sp. and Bradyrhizobiace sp. Nitrifiers significantly decreased, while the phyla Gammaproteobacteria, Deinocccus, and Bacteroidetes exhibited greater stability during GNP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  14. Variations in Bacterial Community in a Temperate Lake Associated with an Agricultural Watershed.

    PubMed

    Song, Liyan; Li, Lei

    2016-08-01

    Terrestrially derived carbon and nutrients are washed into lakes, providing nutritional drivers for both microbial heterotrophy and phototrophy. Changes in the quantity and diversity of carbon and nutrients exported from watersheds in response to alterations in long-term land use have led to a need for evaluation of the linkage between watershed-exported carbon and nutrients and bacterial community structure in watershed associated lakes. To learn more about these interactions, we investigated Muskrat Lake in Michigan, which has a well-defined moderately sized watershed dominated by agriculture. We measured the water chemistry, characterized the dissolved organic carbon, and determined the structure of the bacterial communities at the inlet and center of this lake (five depths per site) over the summer and fall of 2008. The lake had temporal and rain event-based fluctuations in water chemistry, as well as temporal and rain event-dependent shifts in bacterial communities as measured by terminal restriction fragment length polymorphism. Agricultural watershed inputs were observed in the lake during and after rain events. Terminal restriction fragment length polymorphism and 454 pyrosequencing of the bacterial communities indicated that there were differences over time and that the dominant phylotypes shifted between summer and late fall. Some populations (e.g., Polynucleobacter and Mycobacterium) increased during fall, while others (e.g., Gemmatimonas) diminished. Redundancy and partitioning analyses showed that water chemistry is highly correlated with variations in the bacterial community of the lake, which explained 34 % of the variations in the bacterial community. Dissolved organic carbon had the greatest effects on variations in the Muskrat Lake bacterial community (2 %). The results of this study provide information that will enable a better understanding of the interaction between the bacterial community of lakes and changes in chemical properties as a

  15. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  16. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes

    DOE PAGES

    Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley; ...

    2017-06-28

    Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community

  17. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley

    Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community

  18. Bacterial communities in soil samples from the Mingyong Glacier of southwestern China.

    PubMed

    Li, Haoyu; Taj, Muhammad Kamran; Ji, Xiuling; Zhang, Qi; Lin, Liangbing; Zhou, Zhimei; Wei, Yunlin

    2017-05-01

    The present study was an effort to determine the bacterial diversity of soils in Mingyong Glacier located at the Meili Snow Mountains of southwestern China. Mingyong Glacier has different climatic zones within a very narrow area, and bacterial community diversity in this low temperature area remains largely unknown. In this study, soil samples were collected from four different climatic zones: M11A (dry warm valley), M14 (forest), M15 (grass land), and M16 (glacier zones). Phylogenetic analysis based on 16S rRNA gene V6 hypervariable region showed high bacterial abundance in the glacier. The number of Operational Taxonomic Units ranged from 2.24×10 3 to 5.56×10 3 in soil samples. Statistical analysis of 16S rRNA gene clone libraries results showed that bacterial diversity in zones M11A,M14 and M16 are higher than in zone M15. The bacterial community structures are clearly distinguishable, and phylogenetic analysis showed that the predominant phyla were Proteobacteria, Deinococcus-Thermus, Firmicutes, Actinobacteria, and Nitrospirae in Mingyong Glacier. Seventy-nine different orders from four zones have been isolated. Bacterial diversity and distribution of bacterial communities related to the anthropogenic perturbations in zone (M15) were confirmed by diversity index analysis, and the diversity index of other three zones was satisfactory through this analysis software. The results suggest that bacterial diversity and distribution analyses using bacterial 16S rRNA gene V6 hypervariable region were successful, and bacterial communities in this area not only had the same bacterial phyla compared to other glaciers but also had their own rare species.

  19. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)

    PubMed Central

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-01-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  20. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.

    PubMed

    Timonen, Sari; Sinkko, Hanna; Sun, Hui; Sietiö, Outi-Maaria; Rinta-Kanto, Johanna M; Kiheri, Heikki; Heinonsalo, Jussi

    2017-05-01

    In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than to those of pine roots. In all sample types, the relative abundances of bacterial sequences belonging to Alphaproteobacteria and Acidobacteria were higher than the sequences belonging to other classes. Soil samples contained more Actinobacteria, Deltaproteobacteria, Opitutae, and Planctomycetia, whereas Armatimonadia, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia were more common to roots. All mycosphere soils and roots harbored bacteria unique to that particular habitat. Our study suggests that the habitation by ericoid plants increases the overall bacterial diversity of boreal forest soils.

  1. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Meteorological factors had more impact on airborne bacterial communities than air pollutants.

    PubMed

    Zhen, Quan; Deng, Ye; Wang, Yaqing; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Ouyang, Zhiyun

    2017-12-01

    Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×10 3 to 2.14×10 7 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterizing the bacterial communities in retail stores in the United States.

    PubMed

    Hoisington, A; Maestre, J P; Kinney, K A; Siegel, J A

    2016-12-01

    The microorganisms present in retail environments have not been studied in detail despite the fact that these environments represent a potentially important location for exposure. In this study, HVAC filter dust samples in 13 US retail stores were collected and analyzed via pyrosequencing to characterize the indoor bacterial communities and to explore potential relationships between these communities and building and environmental parameters. Although retail stores contained a diverse bacterial community of 788 unique genera, over half of the nearly 118K sequences were attributed to the Proteobacteria phylum. Streptophyta, Bacillus, Corynebacterium, Pseudomonas, and Acinetobacter were the most prevalent genera detected. The recovered indoor airborne microbial community was statistically associated with both human oral and skin microbiota, indicating occupants are important contributors, despite a relatively low occupant density per unit volume in retail stores. Bacteria generally associated with outdoor environments were present in the indoor communities with no obvious association with air exchange rate, even when considering relative abundance. No significant association was observed between the indoor bacterial community recovered and store location, store type, or season. However, predictive functional gene profiling showed significant associations between the indoor community and season. The microbiome recovered from multiple samples collected months apart from the same building varied significantly indicating that caution is warranted when trying to characterize the bacterial community with a single sampling event. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments

    PubMed Central

    Bowers, Robert M; McLetchie, Shawna; Knight, Rob; Fierer, Noah

    2011-01-01

    Although bacteria are ubiquitous in the near-surface atmosphere and they can have important effects on human health, airborne bacteria have received relatively little attention and their spatial dynamics remain poorly understood. Owing to differences in meteorological conditions and the potential sources of airborne bacteria, we would expect the atmosphere over different land-use types to harbor distinct bacterial communities. To test this hypothesis, we sampled the near-surface atmosphere above three distinct land-use types (agricultural fields, suburban areas and forests) across northern Colorado, USA, sampling five sites per land-use type. Microbial abundances were stable across land-use types, with ∼105–106 bacterial cells per m3 of air, but the concentrations of biological ice nuclei, determined using a droplet freezing assay, were on average two and eight times higher in samples from agricultural areas than in the other two land-use types. Likewise, the composition of the airborne bacterial communities, assessed via bar-coded pyrosequencing, was significantly related to land-use type and these differences were likely driven by shifts in the sources of bacteria to the atmosphere across the land-uses, not local meteorological conditions. A meta-analysis of previously published data shows that atmospheric bacterial communities differ from those in potential source environments (leaf surfaces and soils), and we demonstrate that we may be able to use this information to determine the relative inputs of bacteria from these source environments to the atmosphere. This work furthers our understanding of bacterial diversity in the atmosphere, the terrestrial controls on this diversity and potential approaches for source tracking of airborne bacteria. PMID:21048802

  5. Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities.

    PubMed

    Ramos, I; Pérez, R; Reinoso, M; Torio, R; Fdz-Polanco, M

    2014-07-01

    Biogas produced in an industrial-pilot scale sewage sludge reactor (5m(3)) was desulphurised by imposing microaerobic conditions. The H2S concentration removal efficiency was evaluated under various configurations: different mixing methods and O2 injection points. Biogas was entirely desulphurised under all the configurations set, while the O2 demand of the digester decreased over time. Although the H2S removal seemed to occur in the headspace, S(0) (which was found to be the main oxidation product) was scarcely deposited there in the headspace. O2 did not have a significant impact on the digestion performance; the VS removal remained around 47%. Conversely, DGGE revealed that the higher O2 transfer rate to the sludge maintained by biogas recirculation increased the microbial richness and evenness, and caused an important shift in the structure of the bacterial and the archaeal communities in the long term. All the archaeal genera identified (Methanosaeta, Methanospirillum and Methanoculleus) were present under both anaerobic and microaerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  7. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives.

    PubMed

    Xin, Xiaodong; He, Junguo; Li, Lin; Qiu, Wei

    2018-02-01

    This study investigated acidogenic and microbiological perspectives in the anaerobic fermentation (AF) of waste activated sludge (WAS) pre-hydrolyzed by enzymes catalysis. The enzymes catalysis boosted WAS biodegradability dramatically with nearly 8500 mg/L soluble chemical oxygen demand (SCOD) increase just within 4 h. The volatile fatty acids (VFAs) in the acidogenesis were accumulated effectively with over 3200 mg COD/L in 12 d, which reached 0.687 kWh/kg VSS electricity conversion efficiency (2.5 times higher than the control test). The fermentation process favored the compression of fermentative sludge with the distribution spread index (DSI) rising. The core populations of bacteria and archaea shifting enlarged the dissimilarity of communities at different fermentation stages. Increase of community diversity contributed to VFAs accumulation stability. Moreover, the intermediate bacterial community evenness favored VFAs accumulation potentially. The enzymes catalysis might be a promising solution for strengthening VFAs accumulation in the WAS fermentation with boosting the electricity conversion potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge

    PubMed Central

    Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben

    2013-01-01

    We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925

  9. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea).

    PubMed

    Hao, Wenjin; Gerdts, Gunnar; Peplies, Jörg; Wichels, Antje

    2015-01-01

    Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  12. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  13. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    PubMed

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Effects of remediation on the bacterial community of an acid mine drainage impacted stream.

    PubMed

    Ghosh, Suchismita; Moitra, Moumita; Woolverton, Christopher J; Leff, Laura G

    2012-11-01

    Acid mine drainage (AMD) represents a global threat to water resources, and as such, remediation of AMD-impacted streams is a common practice. During this study, we examined bacterial community structure and environmental conditions in a low-order AMD-impacted stream before, during, and after remediation. Bacterial community structure was examined via polymerase chain reaction amplification of 16S rRNA genes followed by denaturing gradient gel electrophoresis. Also, bacterial abundance and physicochemical data (including metal concentrations) were collected and relationships to bacterial community structure were determined using BIO-ENV analysis. Remediation of the study stream altered environmental conditions, including pH and concentrations of some metals, and consequently, the bacterial community changed. However, remediation did not necessarily restore the stream to conditions found in the unimpacted reference stream; for example, bacterial abundances and concentrations of some elements, such as sulfur, magnesium, and manganese, were different in the remediated stream than in the reference stream. BIO-ENV analysis revealed that changes in pH and iron concentration, associated with remediation, primarily explained temporal alterations in bacterial community structure. Although the sites sampled in the remediated stream were in relatively close proximity to each other, spatial variation in community composition suggests that differences in local environmental conditions may have large impacts on the microbial assemblage.

  15. Bacterial communities in the fruit bodies of ground basidiomycetes

    NASA Astrophysics Data System (ADS)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  16. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    PubMed Central

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory

  17. Comparison of benthic bacterial community composition in nine streams

    Treesearch

    Xueqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental...

  18. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  19. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  20. Storm-scale dynamics of bacterial community composition in throughfall and stemflow

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.

    2017-12-01

    Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.

  1. Diverse bacterial communities exist on canine skin and are impacted by cohabitation and time.

    PubMed

    Torres, Sheila; Clayton, Jonathan B; Danzeisen, Jessica L; Ward, Tonya; Huang, Hu; Knights, Dan; Johnson, Timothy J

    2017-01-01

    It has previously been shown that domestic dogs and their household owners share bacterial populations, and that sharing of bacteria between humans is facilitated through the presence of dogs in the household. However, less is known regarding the bacterial communities of dogs, how these communities vary by location and over time, and how cohabitation of dogs themselves influences their bacterial community. Furthermore, the effects of factors such as breed, hair coat length, sex, shedding, and age on the canine skin microbiome is unknown. This study sampled the skin bacterial communities of 40 dogs belonging to 20 households longitudinally across three seasons (spring, summer, and winter). Significant differences in bacterial community structure between samples were identified when stratified by season, but not by dog sex, age, breed, hair type, or skin site. Cohabitating dogs were more likely to share bacteria of the skin than non-cohabitating dogs. Similar to human bacterial microbiomes, dogs' microbiomes were more similar to their own microbiomes over time than to microbiomes of other individuals. Dogs sampled during the same season were also more similar to each other than to dogs from different seasons, irrespective of household. However, there were very few core operational taxonomic units (OTUs) identified across all dogs sampled. Taxonomic classification revealed Propionibacterium acnes and Haemophilus sp. as key members of the dog skin bacterial community, along with Corynebacterium sp. and Staphylococcus epidermidis . This study shows that the skin bacterial community structure of dogs is highly individualized, but can be shared among dogs through cohabitation.

  2. Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish

    PubMed Central

    Yan, Qingyun; van der Gast, Christopher J.; Yu, Yuhe

    2012-01-01

    Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic

  3. Structure of the Bacterial Community in Different Stages of Early Childhood Caries.

    PubMed

    Ximenes, Marcos; Armas, Rafael Dutra de; Triches, Thaisa Cezária; Cardoso, Mariane; Vieira, Ricardo de Souza

    2018-01-15

    To characterise in vivo the structure of bacterial communities in decayed and sound primary teeth. Samples of biofilms were collected from three groups of patients with complete and exclusively primary dentition (n = 45): G1: sound teeth (n = 15); G2: enamel lesion (n = 15); G3: dentin lesion (n = 15). DNA was extracted (CTAB 2%) from the biofilm, the partial 16S rRNA gene was amplified with Bacteria Universal Primers (BA338fGC - UN518r) and subjected to DGGE (denaturing gradient gel electrophoresis). Multidimensional scaling and ANOSIM (analysis of similarity) were employed to determine the structure of the bacterial communities. The amplicon richness was determined by averaging amplicons, with the differences between treatments determined with ANOVA, while means were compared using Tukey's test (p < 0.05). Compared to sound teeth, a greater variety of bacterial communities was found in decayed teeth. Despite the differences between the bacterial communities of sound teeth and decayed teeth, the Venn diagram showed that the samples had 38 amplicons in common. Greater amplicon richness was observed in samples of decayed teeth (enamel: 20.5 ± 2.7; dentin: 20.1 ± 2.8) compared with the sound samples (12.0 ± 4.3) (p <0.05), indicating enhanced growth for specific groups of bacteria on decayed teeth. Although there is less bacterial diversity on sound than ECC-decayed teeth, the bacterial communities are very similar.

  4. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  5. Bacteria permeabilization and disruption caused by sludge reduction technologies evaluated by flow cytometry.

    PubMed

    Foladori, P; Tamburini, S; Bruni, L

    2010-09-01

    Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright

  6. Characteristics of aquatic bacterial community and the influencing factors in an urban river.

    PubMed

    Wang, Peng; Chen, Bo; Yuan, Ruiqiang; Li, Chuangqiong; Li, Yan

    2016-11-01

    Bacteria play a critical role in environmental and ecological processes in river ecosystems. We studied the bacterial community in the Ganjiang River, a major tributary of the Yangtze River, as it flowed through Nanchang, the largest city in the Ganjiang River basin. Water was sampled at five sites monthly during the wet season, and the bacterial community was characterized using Illumina high-throughput sequencing. A total of 811 operational taxonomic units (OTUs) were observed for all samples, ranging from 321 to 519 for each sample. The bacterial communities were maintained by a core of OTUs that persisted longitudinally and monthly. Actinobacteria (41.17% of total sequences) and Proteobacteria (31.80%) were the dominant phyla, while Firmicutes (mostly genus Lactococcus) became most abundant during flooding. Temperature and flow rate, rather than water chemistry, were the main factors influencing the bacterial community in river water. Temperature was the best individual parameter explaining the variations in OTU abundance, while flow rate was the best individual parameter explaining the variations in phylum abundance. Except for Proteobacteria, the relative abundance of bacterial phyla did not differ significantly between sites, and the degrees of influence of urban landscape on the bacterial community were estimated to be 17%-34%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    PubMed Central

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  8. Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge.

    PubMed

    Sáez, Monica; de Voogt, Pim; Parsons, John R

    2008-09-01

    Perfluoroalkylated substances (PFAS) are chemicals with completely fluorinated alkyl chains. The specific properties of the F-C bond give PFAS a high stability and make them very useful in a wide range of applications. PFAS also pose a potential risk to the environment and humans because they have been recently characterized as persistent, bioaccumulative, and toxic. The objective of this work is to study the bacterial degradation of PFAS under aerobic and anaerobic conditions in municipal sewage sludge as a contribution toward understanding their environmental fate and behavior. Bacterial communities from sewage sludge were exposed to a mixture of PFAS under aerobic or anaerobic conditions. Individual PFAS concentrations were determined in the experiment media at different exposure times using liquid chromatography-mass spectrometry analysis after extraction with solid-phase extraction. The PFAS analyses of samples of sludge showed repeatable replicate results, allowing a reliable quantification of the different groups of PFAS analyzed. No conclusive evidence for PFAS degradation was observed under the experimental conditions tested in this work. Reduction in concentrations, however, was observed for some PFAS in sludge under aerobic conditions. The largest concentration decrease occurred for the fluorotelomer alcohols (FTOHs), especially for the 8:2 FTOH, which have been described as biodegradable in the literature. However, this concentration decrease could be due to different causes: sorption to glass, septa, or matrix components, as well as bacterial activity. Therefore, it is not certain that biodegradation occurred. PFAS are very recalcitrant chemicals, especially when fully fluorinated. Although some decreases in concentration have been observed for some PFAS, such as the FTOHs, there is no conclusive evidence for biodegradation. It can be concluded that the PFAS tested in these experiments are non-biodegradable under these experimental conditions. Since

  9. Bacterial community analysis of drinking water biofilms in southern Sweden.

    PubMed

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.

  10. Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado.

    PubMed

    de Araujo, Ademir Sergio Ferreira; Bezerra, Walderly Melgaço; Dos Santos, Vilma Maria; Rocha, Sandra Mara Barbosa; Carvalho, Nilza da Silva; de Lyra, Maria do Carmo Catanho Pereira; Figueiredo, Marcia do Vale Barreto; de Almeida Lopes, Ângela Celis; Melo, Vania Maria Maciel

    2017-04-01

    The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.

  11. Sub-Ice Microalgal and Bacterial Communities in Freshwater Lake Baikal, Russia.

    PubMed

    Bashenkhaeva, Maria V; Zakharova, Yulia R; Petrova, Darya P; Khanaev, Igor V; Galachyants, Yuri P; Likhoshway, Yelena V

    2015-10-01

    The sub-ice environment of Lake Baikal represents a special ecotope where strongly increasing microbial biomass causes an "ice-bloom" contributing therefore to the ecosystem functioning and global element turnover under low temperature in the world's largest freshwater lake. In this work, we analyzed bacterial and microalgal communities and their succession in the sub-ice environment in March-April 2010-2012. It was found out that two dinoflagellate species (Gymnodinium baicalense var. minor and Peridinium baicalense Kisselew et Zwetkow) and four diatom species (Aulacoseira islandica, A. baicalensis, Synedra acus subsp. radians, and Synedra ulna) predominated in the microalgal communities. Interestingly, among all microalgae, the diatom A. islandica showed the highest number of physically attached bacterial cells (up to 67 ± 16 bacteria per alga). Bacterial communities analyzed with pyrosequencing of 16S rRNA gene fragments were diverse and represented by 161 genera. Phyla Proteobacteria, Verrucomicrobia, Actinobacteria, Acidobacteria, Bacteroidetes, and Cyanobacteria represented a core community independently on microalgal composition, although the relative abundance of these bacterial phyla strongly varied across sampling sites and time points; unique OTUs from other groups were rare.

  12. Camparison of benthic bacterial community composition in nine streams

    Treesearch

    Xuqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental conditions. Taxa examined...

  13. Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations.

    PubMed

    Zielińska, Magdalena; Bernat, Katarzyna; Cydzik-Kwiatkowska, Agnieszka; Sobolewska, Joanna; Wojnowska-Baryła, Irena

    2012-01-01

    The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.

  14. Molecular bacterial community analysis of clean rooms where spacecraft are assembled.

    PubMed

    Moissl, Christine; Osman, Shariff; La Duc, Myron T; Dekas, Anne; Brodie, Eoin; DeSantis, Todd; Desantis, Tadd; Venkateswaran, Kasthuri

    2007-09-01

    Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .

  15. Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type

    PubMed Central

    Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.

    2016-01-01

    ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater

  16. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    PubMed

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  17. Volcanic ash supports a diverse bacterial community in a marine mesocosm

    USGS Publications Warehouse

    Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,

    2017-01-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  18. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  19. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.

  20. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    PubMed

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  1. Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge.

    PubMed

    Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D

    2013-09-01

    Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland

    PubMed Central

    Weedon, James T.; Kowalchuk, George A.; Aerts, Rien; Freriks, Stef; Röling, Wilfred F. M.; van Bodegom, Peter M.

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts. PMID:28326062

  3. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    PubMed

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  4. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    PubMed Central

    Hu, Yinhong; Dou, Xiaolin; Li, Juanyong; Li, Feng

    2018-01-01

    The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete), permeable pavement (bricks with round holes), shrub coverage (Buxus megistophylla Levl.), lawns (Festuca elata Keng ex E. Alexeev), and roadside trees (Sophora japonica Linn.) in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC), and soil moisture content (SMC). The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and diversity across

  5. Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria

    PubMed Central

    Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan

    2002-01-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319

  6. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  7. Bacterial community profile of contaminated soils in a typical antimony mining site.

    PubMed

    Wang, Ningning; Zhang, Suhuan; He, Mengchang

    2018-01-01

    The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, Sb DGT , As DGT , potential ecological risk index (RI), TC, TN), among which pH, Sb DGT , and As DGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.

  8. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor

    PubMed Central

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D

    2015-01-01

    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  9. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  10. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  11. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  12. Consider a source: Microplastic in rivers is abundant, mobile, and selects for unique bacterial assemblages

    NASA Astrophysics Data System (ADS)

    Hoellein, T. J.; Kelly, J. J.; McCormick, A.; London, M.

    2016-02-01

    Microplastic particles (< 5mm) in oceans are an emerging ecological concern. While rivers are considered a major source of microplastic to oceans, little is known about microplastic abundance, transport, and biological interactions in rivers. Our initial research an urban river showed microplastic collected downstream of a wastewater treatment plant (WWTP) was more abundant than upstream, more abundant than many marine sites, and had higher occurrences of bacterial taxa associated with plastic decomposition and gastrointestinal pathogens than natural habitats (e.g., seston and water column). Based on these data, we conducted follow-up projects to measure 1) the role of WWTPs on microplastic abundance in 10 rivers, 2) microplastic concentrations in WWTP influent, sludge, and effluent, and 3) deposition rates of microplastic downstream of a WWTP point source. In each project, we characterized bacterial community composition on microplastic and natural habitats using next-generation Illumina sequencing. Although maximum concentrations varied among 10 sites, microplastic concentration was significantly higher downstream of WWTPs than upstream. WWTPs retained a significant component of microplastic in two activated sludge plants (>90%). Microplastic deposition length in an urban river was >2 km, and concentrations were orders of magnitude higher in the sediment than water column. Finally, bacterial communities were distinct on microplastic in water column and sediment habitats, yet communities became more similar with increasing distance from WWTP effluent sites. These data support the role of rivers as sources of microplastic to downstream ecosystems, but also illustrate that rivers are active sites of microplastic retention and bacterial colonization. Results will inform policies and engineering advances for mitigating microplastic inputs and redistribution. We advocate for research on plastic in the environment which synthesizes data from freshwater and marine

  13. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    PubMed Central

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853

  14. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level

    PubMed Central

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-01-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial–microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner. PMID:28742069

  15. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    PubMed

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  16. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic.

    PubMed

    Kim, Mincheol; Jung, Ji Young; Laffly, Dominique; Kwon, Hye Young; Lee, Yoo Kyung

    2017-01-01

    Primary succession after glacier retreat has been widely studied in plant communities, but bacterial succession is still poorly understood. In particular, few studies of microbial succession have been performed in the Arctic. We investigated the shifts in bacterial community structure and soil physicochemical properties along a successional gradient in a 100-year glacier foreland of the High Arctic. Multivariate analyses revealed that time after glacier retreat played a key role in associated bacterial community structure during succession. However, environmental filtering (i.e. pH and soil temperature) also accounted for a different, but substantial, proportion of the bacterial community structure. Using the functional trait-based approach, we found that average rRNA operon (rrn) copy number of bacterial communities is high in earlier successional stages and decreased over time. This suggests that soil bacterial taxa with higher rrn copy number have a selective advantage in early successional stages due to their ability of rapidly responding to nutrient inputs in newly exposed soils after glacier retreat. Taken together, our results demonstrate that both deglaciation time and environmental filters play key roles in structuring bacterial communities and soil bacterial groups with different ecological strategies occur in different stages of succession in this glacier foreland. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Bacterial community initial development in proglacial soils of Larsemann hill, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ma, H.; Yan, W.; Shi, G.; Sun, B.; Zhang, Y.; Xiao, X.

    2016-12-01

    Glacial forefields are considered ideal places to explore how microbial communities will response to climate-driven environmental changes. Our knowledge of how the bacterial community activities and structure was influenced by changing environment due to glacier retreat is still very limited, especially at the initial stage of glacier retreat. The short gradient soil samples including the ice free and ice covered sites were sampled in the forehead of East Antarctica ice sheet, in Larsemann Hills. By employing the Miseq sequencing methods, 1.8 x104 high-quality sequences were gotten for each sample and the bacterial diversity including abundant bacteria and rare bacteria were studied and compared between the gradient samples. Even though in such an extreme stress condition, the bacterial diversity was high. The coefficient of variance between the five sites of abundant group was 0.886 which was higher than that of the top 20 rare group (0.159) significantly (unpaired t test, p-value<0.0001) suggesting that the abundant bacterial communities were more sensitive to the ice sheet change in the initial stage than rare bacteria did. And the abundant bacteria contributed the community structure more than the rare bacteria did. The rare group acted more like seed bank to keep the community functionality in the forehead of sheet. And the ice thickness was the major factor to affect the abundant bacterial community. Given the fact that Antarctica environment was more sensitive to the global warming, the study about abundant and rare bacteria response to condition change will be helpful to precisely predict community response to climate change in polar region. This finding will improve the understanding about the relationship between community structure and environment condition in extreme stress condition.

  18. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  19. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  20. Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors

    PubMed Central

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.

    2015-01-01

    ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. PMID:25968645

  1. Changes in bacterial community after application of three different herbicides.

    PubMed

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands.

    PubMed

    Böer, Simone I; Hedtkamp, Stefanie I C; van Beusekom, Justus E E; Fuhrman, Jed A; Boetius, Antje; Ramette, Alban

    2009-07-01

    Bacterial community structure and microbial activity were determined together with a large number of contextual environmental parameters over 2 years in subtidal sands of the German Wadden Sea in order to identify the main factors shaping microbial community structure and activity in this habitat. Seasonal changes in temperature were directly reflected in bacterial activities and total community respiration, but could not explain variations in the community structure. Strong sediment depth-related patterns were observed for bacterial abundances, carbon production rates and extracellular enzymatic activities. Bacterial community structure also showed a clear vertical variation with higher operational taxonomic unit (OTU) numbers at 10-15 cm depth than in the top 10 cm, probably because of the decreasing disturbance by hydrodynamic forces with sediment depth. The depth-related variations in bacterial community structure could be attributed to vertical changes in bacterial abundances, chlorophyll a and NO(3)(-), indicating that spatial patterns of microbes are partially environmentally controlled. Time was the most important single factor affecting microbial community structure with an OTU replacement of up to 47% over 2 years and a contribution of 34% to the total variation. A large part of this variation was not related to any environmental parameters, suggesting that temporal variations in bacterial community structure are caused by yet unknown environmental drivers and/or by stochastic events in coastal sand habitats. Principal ecosystem functions such as benthic oxygen consumption and extracellular hydrolysis of organic matter were, however, at a high level at all times, indicating functional redundancy in the microbial communities.

  3. Characterization of Bacterial Communities and Asaia Infection with Field-Collected and Laboratory-Reared Aedes albopictus

    DTIC Science & Technology

    2016-08-18

    Characterization of bacterial communities and Asaia infection within field-collected and 1 laboratory-reared Aedes albopictus 2 3 4 Elizabeth S...Running Head: Bacterial communities within Ae. albopictus 10 11 #Address correspondence to Elizabeth S. Andrews, elizabeth.s.andrews11.ctr@mail.mil 12...189 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED Abstract 19 The bacterial communities within

  4. Volcanic ash supports a diverse bacterial community in a marine mesocosm.

    PubMed

    Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G

    2017-05-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement. © 2017 The Authors. Geobiology Published by John Wiley

  5. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand

    PubMed Central

    Griffith, Jocelyn C.; Lee, William G.; Orlovich, David A.

    2017-01-01

    The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities

  6. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events

    PubMed Central

    Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  7. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    PubMed

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  8. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: Performance, microbial community and sludge characteristics.

    PubMed

    Zhang, Zheng-Zhe; Cheng, Ya-Fei; Bai, Yu-Hui; Xu, Lian-Zeng-Ji; Xu, Jia-Jia; Shi, Zhi-Jian; Zhang, Qian-Qian; Jin, Ren-Cun

    2018-02-01

    Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L -1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L -1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    NASA Astrophysics Data System (ADS)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  10. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  11. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria.

  12. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  13. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE PAGES

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.; ...

    2015-10-16

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  14. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    PubMed

    Zhang, Junya; Lv, Chen; Tong, Juan; Liu, Jianwei; Liu, Jibao; Yu, Dawei; Wang, Yawei; Chen, Meixue; Wei, Yuansong

    2016-01-01

    The effects of microwave pretreatment (MW) on co-digestion of food waste (FW) and sewage sludge (SS) have never been investigated. In this study, a series of mesophilic biochemical methane potential (BMP) tests were conducted to determine the optimized ratio of FW and SS based on MW, and the evolution of bacterial and archaeal community was investigated through high-throughput sequencing method. Results showed that the optimized ratio was 3:2 for co-digestion of FW and SS based on MW, and the methane production was 316.24 and 338.44mLCH4/gVSadded for MW-FW and MW-SS, respectively. The MW-SS was superior for methane production compared to MW-FW, in which accumulation of propionic acid led to the inhibition of methanogenesis. Proteiniborus and Parabacteroides were responsible for proteins and polysaccharides degradation for all, respectively, while Bacteroides only dominated in co-digestion. Methanosphaera dominated in MW-FW at the active methane production phase, while it was Methanosarcina in MW-SS and mono-SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bacterial Communities in Boreal Forest Mushrooms Are Shaped Both by Soil Parameters and Host Identity

    PubMed Central

    Pent, Mari; Põldmaa, Kadri; Bahram, Mohammad

    2017-01-01

    Despite recent advances in understanding the microbiome of eukaryotes, little is known about microbial communities in fungi. Here we investigate the structure of bacterial communities in mushrooms, including common edible ones, with respect to biotic and abiotic factors in the boreal forest. Using a combination of culture-based and Illumina high-throughput sequencing, we characterized the bacterial communities in fruitbodies of fungi from eight genera spanning four orders of the class Agaricomycetes (Basidiomycota). Our results revealed that soil pH followed by fungal identity are the main determinants of the structure of bacterial communities in mushrooms. While almost half of fruitbody bacteria were also detected from soil, the abundance of several bacterial taxa differed considerably between the two environments. The effect of host identity was significant at the fungal genus and order level and could to some extent be ascribed to the distinct bacterial community of the chanterelle, representing Cantharellales—the earliest diverged group of mushroom-forming basidiomycetes. These data suggest that besides the substantial contribution of soil as a major taxa source of bacterial communities in mushrooms, the structure of these communities is also affected by the identity of the host. Thus, bacteria inhabiting fungal fruitbodies may be non-randomly selected from environment based on their symbiotic functions and/or habitat requirements. PMID:28539921

  16. Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China

    NASA Astrophysics Data System (ADS)

    Cao, Chengyou; Zhang, Ying; Qian, Wei; Liang, Caiping; Wang, Congmin; Tao, Shuang

    2017-10-01

    The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.

  17. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    PubMed

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.

  18. Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland.

    PubMed

    Cao, Chengyou; Zhang, Ying; Cui, Zhenbo; Feng, Shuwei; Wang, Tingting; Ren, Qing

    2017-08-01

    Grasslands in semi-arid Northern China are widely desertified, thus inducing the formation of a large area of moving sand lands. Revegetation of the sandy land is commonly adopted to restore degraded grasslands. The structure of the soil microbial community might dramatically change during degradation and recovery because microorganisms are one of the major drivers of ecological process through their interactions with plants and soil. Assuming that soil properties are the key determinants of the structure of soil bacterial community within the same soil type, whether the vegetation type causes the significant difference in the structure of soil bacterial community during revegetation and restoration of the degraded grasslands remains poorly understood. Our study aimed to (1) investigate the response of soil bacterial communities to the changes during vegetation degradation and recovery and (2) evaluate whether the soil bacterial communities under plantations return to their native state. We detected the shifts in diversities and compositions of the soil bacterial communities and the relative abundance of dominant bacterial taxa by using the high-throughput Illumina MiSeq sequencing technique in an area covered by 32-year-old Caragana microphylla, Artemisia halodendron, Hedysarum fruticosum, Pinus sylvestris var. mongolica, Populus simonii, and Salix gordejevii sand-fixing plantations and in the native community (NC) dominated by elm, and moving sandy dune (MS). We found that the obtained operational taxonomic units by 16S rRNA gene sequencing and diversity index in MS were all significantly lower than those in NC, and the number and composition of dominant genera were significantly different between NC and MS. Interestingly, the compositions of bacterial communities and the dominant genera in different sand-fixation plantations (C. microphylla, A. halodendron, H. fruticosum, P. sylvestris var. mongolica, P. simonii, and S. gordejevii) were all similar to those of

  19. From source to filter: changes in bacterial community composition during potable water treatment.

    PubMed

    Zanacic, Enisa; McMartin, Dena W; Stavrinides, John

    2017-06-01

    Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.

  20. Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding.

    PubMed

    Lee, Sun Hee; Kim, Jae Hee; Chung, Chung-Wook; Kim, Do Young; Rhee, Young Ha

    2018-04-01

    Analysis of mixed microbial populations responsible for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) under periodic substrate feeding in a sequencing batch reactor (SBR) was conducted. Regardless of activated sludge samples and the different MCL alkanoic acids used as the sole external carbon substrate, denaturing gradient gel electrophoresis analysis indicated that Pseudomonas aeruginosa was the dominant bacterium enriched during the SBR process. Several P. aeruginosa strains were isolated from the enriched activated sludge samples. The isolates were subdivided into two groups, one that produced only MCL-PHAs and another that produced both MCL- and short-chain-length PHAs. The SBR periodic feeding experiments with five representative MCL-PHA-producing Pseudomonas species revealed that P. aeruginosa has an advantage over other species that enables it to become dominant in the bacterial community.

  1. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    PubMed

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diversity and composition of the bacterial community in Amphioxus feces.

    PubMed

    Pan, Minming; Yuan, Dongjuan; Chen, Shangwu; Xu, Anlong

    2015-11-01

    Amphioxus is a typical filter feeder animal and is confronted with a complex bacterial community in the seawater of its habitat. It has evolved a strong innate immune system to cope with the external bacterial stimulation, however, the ecological system of the bacterial community in Amphioxus remains unknown. Through massive parallel 16S rRNA gene tag pyrosequencing, the investigation indicated that the composition of wild and lab-cultured Amphioxus fecal bacteria was complex with more than 85,000 sequence tags being assigned to 12/13 phyla. The bacterial diversity between the two fecal samples was similar according to OTU richness of V4 tag, Chao1 index, Shannon index and Rarefaction curves, however, the most prominent bacteria in wild feces were genera Pseudoalteromonas (gamma Proteobacteria) and Arcobacter (epsilon Proteobacteria); the highly abundant bacteria in lab-cultured feces were other groups, including Leisingera, Phaeobacter (alpha Proteobacteria), and Vibrio (gamma Proteobacteria). Such difference indicates the complex fecal bacteria with the potential for multi-stability. The bacteria of habitat with 28 assigned phyla had the higher bacterial diversity and species richness than both fecal bacteria. Shared bacteria between wild feces and its habitat reached to approximately 90% (153/169 genera) and 28% (153/548 genera), respectively. As speculative, the less diversity of both fecal bacteria compared to its habitat partly because Amphioxus lives buried and the feces will ultimately end up in the sediment. Therefore, our study comprehensively investigates the complex bacterial community of Amphioxus and provides evidence for understanding the relationship of this basal chordate with the environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  4. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  5. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.

    PubMed

    Kerfahi, Dorsaf; Tateno, Ryunosuke; Takahashi, Koichi; Cho, HyunJun; Kim, Hyoki; Adams, Jonathan M

    2017-05-01

    There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

  7. Application of acclimated sewage sludge as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in soil with/without cadmium.

    PubMed

    Wang, Can; Zhou, Zhiren; Liu, Hongdan; Li, Junjie; Wang, Ying; Xu, Heng

    2017-02-01

    This experiment was performed to investigate the effects of acclimated sewage sludge (ASS) and sterilized ASS on the fates of chlorpyrifos (CP) in soil with or without cadmium (Cd), as well as the improvement of soil biochemical properties. Results showed that both ASS and sterilized ASS could significantly promote CP dissipation, and the groups with ASS had the highest efficiency on CP removal, whose degradation rates reached 71.3%-85.9% at the 30th day (40.4%-50.2% higher than non-sludge groups). Besides, the degradation rate of CP was not severely influenced by the existence of Cd, and the population of soil microorganism dramatically increased after adding sludge. The soil enzyme activities (dehydrogenase, acid phosphatase and FDA hydrolase activities) ranked from high to low were as follows: groups with sterilized ASS>groups with ASS>groups without sludge. Simultaneously, 16S rRNA gene sequencing revealed that ASS changed bacterial community structure and diversity in soil. In addition, alkali-hydrolyzable nitrogen and Olsen- phosphorus increased after application of sludge, indicating that the addition of ASS (or sterilized ASS) could effectively improve soil fertility. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    PubMed

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  9. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal

  10. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery

  11. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis

    PubMed Central

    Yao, Zhichao; Wang, Ailin; Li, Yushan; Cai, Zhaohui; Lemaitre, Bruno; Zhang, Hongyu

    2016-01-01

    The guts of metazoans are in permanent contact with the microbial realm that includes beneficial symbionts, nonsymbionts, food-borne microbes and life-threatening pathogens. However, little is known concerning how host immunity affects gut bacterial community. Here, we analyze the role of a dual oxidase gene (BdDuox) in regulating the intestinal bacterial community homeostasis of the oriental fruit fly Bactrocera dorsalis. The results showed that knockdown of BdDuox led to an increased bacterial load, and to a decrease in the relative abundance of Enterobacteriaceae and Leuconostocaceae bacterial symbionts in the gut. The resulting dysbiosis, in turn, stimulates an immune response by activating BdDuox and promoting reactive oxygen species (ROS) production that regulates the composition and structure of the gut bacterial community to normal status by repressing the overgrowth of minor pathobionts. Our results suggest that BdDuox plays a pivotal role in regulating the homeostasis of the gut bacterial community in B. dorsalis. PMID:26565723

  12. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    PubMed

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a

  13. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    PubMed

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.

  14. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    PubMed Central

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  15. The protective role of endogenous bacterial communities in chironomid egg masses and larvae

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2013-01-01

    Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids. PMID:23804150

  16. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs.

    PubMed

    Huerta, Belinda; Marti, Elisabet; Gros, Meritxell; López, Pilar; Pompêo, Marcelo; Armengol, Joan; Barceló, Damià; Balcázar, Jose Luis; Rodríguez-Mozaz, Sara; Marcé, Rafael

    2013-07-01

    Antibiotic resistance represents a growing global health concern due to the overuse and misuse of antibiotics. There is, however, little information about how the selective pressure of clinical antibiotic usage can affect environmental communities in aquatic ecosystems and which bacterial groups might be responsible for dissemination of antibiotic resistance genes (ARGs) into the environment. In this study, chemical and biological characterization of water and sediments from three water supply reservoirs subjected to a wide pollution gradient allowed to draw an accurate picture of the concentration of antibiotics and prevalence of ARGs, in order to evaluate the potential role of ARGs in shaping bacterial communities, and to identify the bacterial groups most probably carrying and disseminating ARGs. Results showed significant correlation between the presence of ARG conferring resistance to macrolides and the composition of bacterial communities, suggesting that antibiotic pollution and the spreading of ARG might play a role in the conformation of bacterial communities in reservoirs. Results also pointed out the bacterial groups Actinobacteria and Firmicutes as the ones probably carrying and disseminating ARGs. The potential effect of antibiotic pollution and the presence of ARGs on the composition of bacterial communities in lacustrine ecosystems prompt the fundamental question about potential effects on bacterial-related ecosystem services supplied by lakes and reservoirs. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  18. Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing

    PubMed Central

    Xie, Wan-Ying

    2014-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. PMID:25362067

  19. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier.

    PubMed

    Ambrosini, Roberto; Musitelli, Federica; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Mayer, Christoph; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Franzetti, Andrea

    2017-05-01

    Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km 2 of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene. We found that Betaproteobacteria dominated bacterial communities, with large abundance of genera Polaromonas, probably thanks to its highly versatile metabolism, and Limnohabitans, which may have been favoured by the presence of supraglacial lakes in the area where cryoconite holes were sampled. Variation in bacterial communities among different sampling areas of the glacier could be explained by divergent selective processes driven by variation in environmental conditions, particularly pH, which was the only environmental variable that significantly affected the structure of bacterial communities. This variability may be due to both temporal and spatial patterns of variation in environmental conditions.

  1. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  2. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  3. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints.

    PubMed

    Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David

    2012-03-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.

  4. Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps

    PubMed Central

    Pinto-Figueroa, Eric; Buri, Aline; Spangenberg, Jorge E.; Adatte, Thierry; Guisan, Antoine; van der Meer, Jan Roelof

    2016-01-01

    ABSTRACT Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km2 area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa. Acidobacteria responded both positively and negatively to pH extremes. Various families within the Bacteroidetes responded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change. IMPORTANCE This article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit

  5. Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps.

    PubMed

    Yashiro, Erika; Pinto-Figueroa, Eric; Buri, Aline; Spangenberg, Jorge E; Adatte, Thierry; Niculita-Hirzel, Hélène; Guisan, Antoine; van der Meer, Jan Roelof

    2016-11-01

    Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km 2 area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa. Acidobacteria responded both positively and negatively to pH extremes. Various families within the Bacteroidetes responded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change. This article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit from a unique 700

  6. Simplified and representative bacterial community of maize roots

    PubMed Central

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-01-01

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains (Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum, and Chryseobacterium indologenes) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides, indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future. PMID:28275097

  7. Simplified and representative bacterial community of maize roots.

    PubMed

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-03-21

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains ( Enterobacter cloacae , Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum , and Chryseobacterium indologenes ) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides , indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.

  8. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

    NASA Astrophysics Data System (ADS)

    Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

    2012-09-01

    The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  9. Soils associated to different tree communities do not elicit predictable responses in lake bacterial community structure and function.

    PubMed

    Ruiz-González, Clara; Archambault, Esther; Laforest-Lapointe, Isabelle; Del Giorgio, Paul A; Kembel, Steven W; Messier, Christian; Nock, Charles A; Beisner, Beatrix E

    2018-06-14

    Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.

  10. Effect of Redox Conditions on Bacterial Community Structure in Baltic Sea Sediments with Contrasting Phosphorus Fluxes

    PubMed Central

    Steenbergh, Anne K.; Bodelier, Paul L. E.; Slomp, Caroline P.; Laanbroek, Hendrikus J.

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea. PMID:24667801

  11. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting phosphorus fluxes.

    PubMed

    Steenbergh, Anne K; Bodelier, Paul L E; Slomp, Caroline P; Laanbroek, Hendrikus J

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea.

  12. Bacterial community changes in response to oil contamination and perennial crop cultivation.

    PubMed

    Yan, Lijuan; Penttinen, Petri; Mikkonen, Anu; Lindström, Kristina

    2018-05-01

    We investigated bacterial community dynamics in response to used motor oil contamination and perennial crop cultivation by 16S rRNA gene amplicon sequencing in a 4-year field study. Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes were the major bacterial phyla, and Rhodococcus was the most abundant genus. Initially, oil contamination decreased the overall bacterial diversity. Actinobacteria, Betaproteobacteria, and Gammaproteobacteria were sensitive to oil contamination, exhibiting clear succession with time. However, bacterial communities changed over time, regardless of oil contamination and crop cultivation. The abundance difference of most OTUs between oil-contaminated and non-contaminated plots remained the same in later sampling years after the initial abundance difference induced by oil spike. The abundances of three oil-favored actinobacteria (Lysinimonas, Microbacteriaceae, and Marmoricola) and one betaproteobacterium (Aquabacterium) changed in different manner over time in oil-contaminated and non-contaminated soil. We propose that these taxa are potential bio-indicators for monitoring recovery from motor oil contamination in boreal soil. The effect of crop cultivation on bacterial communities became significant only after the crops achieved stable growth, likely associated with plant material decomposition by Bacteroidetes, Armatimonadetes and Fibrobacteres.

  13. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition†

    PubMed Central

    Yannarell, Anthony C.; Triplett, Eric W.

    2005-01-01

    This study used a genetic fingerprinting technique (automated ribosomal intergenic spacer analysis [ARISA]) to characterize microbial communities from a culture-independent perspective and to identify those environmental factors that influence the diversity of bacterial assemblages in Wisconsin lakes. The relationships between bacterial community composition and 11 environmental variables for a suite of 30 lakes from northern and southern Wisconsin were explored by canonical correspondence analysis (CCA). In addition, the study assessed the influences of ARISA fragment detection threshold (sensitivity) and the quantitative, semiquantitative, and binary (presence-absence) use of ARISA data. It was determined that the sensitivity of ARISA was influential only when presence-absence-transformed data were used. The outcomes of analyses depended somewhat on the data transformation applied to ARISA data, but there were some features common to all of the CCA models. These commonalities indicated that differences in bacterial communities were best explained by regional (i.e., northern versus southern Wisconsin lakes) and landscape level (i.e., seepage lakes versus drainage lakes) factors. ARISA profiles from May samples were consistently different from those collected in other months. In addition, communities varied along gradients of pH and water clarity (Secchi depth) both within and among regions. The results demonstrate that environmental, temporal, regional, and landscape level features interact to determine the makeup of bacterial assemblages in northern temperate lakes. PMID:15640192

  14. Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana.

    PubMed

    Dealtry, Simone; Ghizelini, Angela Michelato; Mendonça-Hagler, Leda C S; Chaloub, Ricardo Moreira; Reinert, Fernanda; Campos, Tácio M P de; Gomes, Newton C M; Smalla, Kornelia

    2018-06-01

    Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Assessing Methanogenic Archaeal Community in Full Scale Anaerobic Sludge Digester Systems in Dubai, United Arab Emirates

    PubMed Central

    Khan, Munawwar A.; Patel, Poojabahen G.; Ganesh, Arpitha G.; Rais, Naushad; Faheem, Sultan M.; Khan, Shams T.

    2018-01-01

    Introduction: Anaerobic digestion for methane production comprises of an exceptionally diverse microbial consortium, a profound understanding about which is still constrained. In this study, the methanogenic archaeal communities in three full-scale anaerobic digesters of a Municipal Wastewater Treatment Plant were analyzed by Fluorescence in situ hybridization and quantitative real-time Polymerase Chain Reaction (qPCR) technique. Methods & Materials: Fluorescence in situ hybridization (FISH) was performed to detect and quantify the methanogenic Archaea in the sludge samples whereas qPCR was carried out to support the FISH analysis. Multiple probes targeting domain archaea, different orders and families of Archaea were used for the studies. Results and Discussion: In general, the aceticlastic organisms (Methanosarcinaceae & Methanosaetaceae) were more abundant than the hydrogenotrophic organisms (Methanobacteriales, Methanomicrobiales, Methanobacteriaceae & Methanococcales). Both FISH and qPCR indicated that family Methanosaetaceae was the most abundant suggesting that aceticlastic methanogenesis is probably the dominant methane production pathway in these digesters. Conclusion: Future work involving high-throughput sequencing methods and correlating archaeal communities with the main operational parameters of anaerobic digesters will help to obtain a better understanding of the dynamics of the methanogenic archaeal community in wastewater treatment plants in United Arab Emirates (UAE) which in turn would lead to improved performance of anaerobic sludge digesters. PMID:29785219

  16. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China.

    PubMed

    Zhou, Jing; Jiang, Xin; Wei, Dan; Zhao, Baisuo; Ma, Mingchao; Chen, Sanfeng; Cao, Fengming; Shen, Delong; Guan, Dawei; Li, Jun

    2017-06-12

    Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.

  17. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  18. Effects of sucrose amendment on ammonia assimilation during sewage sludge composting.

    PubMed

    Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Wang, Ke

    2016-06-01

    The aim of this study was to evaluate the laboratory-scale composting of sewage sludge and pumice mixtures that were amended with sucrose. The variation in temperature, pH, NH4(+)-N, ammonia emission, bacterial community, ammonia assimilating bacteria (AAB) populations and enzymatic activity related to ammonia assimilation were detected. The addition of sucrose increased the AAB population by 2.5-3.5 times, reduced ammonia emission by 24.7-31.1% compared with the control treatment, and promoted the growth of Bacillus and Wautersiella. The activities of glutamate dehydrogenase (GDH), glutamate synthase (GS) and glutamine synthetase (GOGAT), were enhanced by the addition of sucrose. GDH made a substantial contribution to ammonia assimilation when the ammonia concentration was high (⩾1.5g/kg) in the thermophilic phase. The GS/GOGAT cycle played an important role at low ammonia concentrations (⩽1.1g/kg) in the cooling phase. These results suggested that adding sucrose to sludge compost could promote ammonia assimilation and reduce ammonia emission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China

    PubMed Central

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-01-01

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp

  20. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi'an, China.

    PubMed

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-03-07

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi'an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (COD Mn ) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively ( p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., COD Mn and total nitrogen, TN). Several microbes ( Legionella sp. and Streptococcus sp

  1. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  2. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    PubMed Central

    Zerbe, Stefan

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities. PMID:24995302

  3. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.

    PubMed

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D

    2015-04-01

    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  4. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater.

    PubMed

    Roest, Kees; Heilig, Hans G H J; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M; Akkermans, Antoon D L

    2005-03-01

    To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.

  5. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.

    PubMed

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China.

    PubMed

    Cheng, Zhibo; Chen, Yun; Zhang, Fenghua

    2018-07-15

    Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies. Copyright © 2018. Published by

  7. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams.

    PubMed

    Adams, Heather E; Crump, Byron C; Kling, George W

    2010-05-01

    The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by (14)C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2 degrees C and 15.9 degrees C, respectively, and subsamples incubated at temperatures ranging from 6 degrees C to 20 degrees C. After 5 days, productivity rates varied from 0.5 to approximately 13.7 microg C l(-1) day(-1) and two distinct activity optima appeared at 12 degrees C and 20 degrees C. At these optima, activity was 2- to 11-fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g. four and seven unique operational taxonomic units (OTUs) were found only at 2 degrees C and 25 degrees C, respectively, and not found at other incubation temperatures after 5 days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial

  8. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    PubMed

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.

  9. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    PubMed

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  10. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.

    PubMed

    Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun

    2018-04-01

    This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture.

    PubMed

    Saikia, Rashmi Rekha; Deka, Suresh

    2013-12-01

    Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.

  12. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  13. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing.

    PubMed

    De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu

    2015-06-01

    V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave - Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach.

  14. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing

    PubMed Central

    De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu

    2015-01-01

    V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave — Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach. PMID:26484190

  15. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture.

    PubMed

    Noel, Samantha J; Attwood, Graeme T; Rakonjac, Jasna; Moon, Christina D; Waghorn, Garry C; Janssen, Peter H

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a 'snapshot' in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle.

  16. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture

    PubMed Central

    Attwood, Graeme T.; Rakonjac, Jasna; Moon, Christina D.; Waghorn, Garry C.; Janssen, Peter H.

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a ‘snapshot’ in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle. PMID:28296930

  17. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    PubMed

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Contrasting Ecological Processes and Functional Compositions Between Intestinal Bacterial Community in Healthy and Diseased Shrimp.

    PubMed

    Zhu, Jinyong; Dai, Wenfang; Qiu, Qiongfen; Dong, Chunming; Zhang, Jinjie; Xiong, Jinbo

    2016-11-01

    Intestinal bacterial communities play a pivotal role in promoting host health; therefore, the disruption of intestinal bacterial homeostasis could result in disease. However, the effect of the occurrences of disease on intestinal bacterial community assembly remains unclear. To address this gap, we compared the multifaceted ecological differences in maintaining intestinal bacterial community assembly between healthy and diseased shrimps. The neutral model analysis shows that the relative importance of neutral processes decreases when disease occurs. This pattern is further corroborated by the ecosphere null model, revealing that the bacterial community assembly of diseased samples is dominated by stochastic processes. In addition, the occurrence of shrimp disease reduces the complexity and cooperative activities of species-to-species interactions. The keystone taxa affiliated with Alphaproteobacteria and Actinobacteria in healthy shrimp gut shift to Gammaproteobacteria species in diseased shrimp. Changes in intestinal bacterial communities significantly alter biological functions in shrimp. Within a given metabolic pathway, the pattern of enrichment or decrease between healthy and deceased shrimp is correlated with its functional effects. We propose that stressed shrimp are more prone to invasion by alien strains (evidenced by more stochastic assembly and higher migration rate in diseased shrimp), which, in turn, disrupts the cooperative activity among resident species. These findings greatly aid our understanding of the underlying mechanisms that govern shrimp intestinal community assembly between health statuses.

  19. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout.

    PubMed

    Yang, Tingting; Speare, Kelly; McKay, Luke; MacGregor, Barbara J; Joye, Samantha B; Teske, Andreas

    2016-01-01

    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show

  20. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout

    PubMed Central

    Yang, Tingting; Speare, Kelly; McKay, Luke; MacGregor, Barbara J.; Joye, Samantha B.; Teske, Andreas

    2016-01-01

    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show

  1. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    PubMed

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  2. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  3. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  4. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    PubMed

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    PubMed

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  6. Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum.

    PubMed

    Woo, Seonock; Yang, Shan-Hua; Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin

    2017-01-01

    Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts.

  7. Lesion bacterial communities in American lobsters with diet-induced shell disease.

    PubMed

    Quinn, Robert A; Metzler, Anita; Tlusty, Michael; Smolowitz, Roxanna M; Leberg, Paul; Chistoserdov, Andrei Y

    2012-04-26

    In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets. The Bacteroidetes and Proteobacteria predominated in both spots and lesions and included members of the orders Flavobacteriales (Bacteriodetes), Rhodobacterales, Rhodospirillales and Rhizobiales (Alphaproteobacteria), Xanthomonadales (Gammaproteobacteria) and unclassified Gammaproteobacteria. Bacterial communities in spot lesions displayed more diversity than communities with larger (older) lesions, indicating that the lesion communities stabilize over time. At least 8 bacterial types persisted as lesions developed from spots. Aquimarina 'homaria', a species commonly cultured from lesions present on wild lobsters with epizootic shell disease, was found ubiquitously in spots and lesions, as was the 'Candidatus Kopriimonas aquarianus', implicating putative roles of these species in diet-induced shell disease of captive lobsters.

  8. Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum

    PubMed Central

    Chen, Hsing-Ju; Tseng, Yu-Fang; Hwang, Sung-Jin; De Palmas, Stephane; Denis, Vianney; Imahara, Yukimitsu; Iwase, Fumihito; Yum, Seungshic; Tang, Sen-Lin

    2017-01-01

    Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts. PMID:28859111

  9. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  10. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  11. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity].

    PubMed

    Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang

    2017-11-01

    This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.

  13. Bacterial community characterization in the soils of native and restored rainforest fragments.

    PubMed

    Vasconcellos, Rafael L F; Zucchi, Tiago D; Taketani, Rodrigo G; Andreote, Fernando D; Cardoso, Elke J B N

    2014-11-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10 % of its original area is still untouched. Some projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different times of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant species were related to bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, increasing from the more recently planted (10 years) to the native site, with the 20 year old restoration site in the middle, which may suggest their use as bioindicators of soil quality and recovery of forest fragments being restored.

  14. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Singh, Dharmesh; Lee-Cruz, Larisa; Lai-Hoe, Ang; Ainuddin, A N; Go, Rusea; Rahim, Raha Abdul; Husni, M H A; Chun, Jongsik; Adams, Jonathan M

    2012-08-01

    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

  15. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    PubMed Central

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  16. Exploring the plant-associated bacterial communities in Medicago sativa L

    PubMed Central

    2012-01-01

    Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important

  17. Determination of optimal conditions for 5-methyl-benzotriazole biodegradation with activated sludge communities by dilution of the inoculum.

    PubMed

    Yuan, Heyang; Herzog, Bastian; Helmreich, Brigitte; Lemmer, Hilde; Müller, Elisabeth

    2014-07-15

    The aerobic biodegradation of 5-methyl-benzotriazole (5-TTri) was optimized using lab-scale setups and activated sludge communities (ASC) collected from three wastewater treatment plants (WWTP) MBR-MH, CAS-E and CAS-M being different in their treatment technologies. ASC inocula were diluted to rule out non-biodegrading species and incubated under two nutrient conditions: A) mineral salt media (MSM) and B) carbon and nitrogen supplied MSM giving MSM-CN. 5-TTri removal with the ASC ranged from 60% to 100% in only 10 days. 100 μL suspended biomass from the biodegrading setups was subsequently plated on solid media to eliminate possible activated sludge remnants. After growth occurred, mixed colonies were harvested and inoculated in fresh liquid MSM containing 20 mg L(-1) 5-TTri. These bacterial consortia showed good 5-TTri removal in MSM-CN rather than in MSM, indicating nutrient supply being required for efficient biodegradation. In addition, experiments with high 5-TTri concentrations ranging from 20 to 1,000 mg L(-1) were conducted in both, MSM and MSM-CN and the maximal 5-TTri removal capacity of the ASC evaluated. 50 mg L(-1) 5-TTri was still removed in both media whereas 100 mg L(-1) was solely removed in MSM-CN. 5-TTri biodegradation patterns also indicated that 5-TTri might be co-metabolized by microbial consortia. Furthermore, experiments with gradient-solid-media-plates showed 5-TTri to be inhibitory for the ASC in concentrations above 50 mg L(-1) and revealed the optimal conditions regarding carbon and nitrogen concentration and pH value for effective 5-TTri biodegradation by ASC. Nitrogen proved a crucial factor for enhancing organisms' biodegradation capacity with an optimal pH around 7 while carbon showed no such effect. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  19. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  20. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water

  1. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.

    PubMed

    Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C

    2010-03-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.

  2. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities.

    PubMed

    Herzog, Bastian; Yuan, Heyang; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-07-01

    The corrosion inhibitor 5-tolyltriazole (5-TTri) can have a detrimental impact on aquatic systems thus implying an acute need to reduce the effluent concentrations of 5-TTri. In this study, 5-TTri biodegradation was enhanced through acclimation and nutrient supply. Activated sludge communities (ASC) were setup in nine subsequent ASC generations. While generation two showed a lag phase of five days without biodegradation, generations four to nine utilized 5-TTri right after inoculation, with biodegradation rates from 3.3 to 5.2 mg L(-1)d(-1). Additionally, centrifuged AS supernatant was used to simulate the nutrient conditions in wastewater. This sludge supernatant (SS) significantly enhanced biodegradation, resulting in removal rates ranging from 3.2 to 5.0 mg L(-1)d(-1) without acclimation while the control groups without SS observed lower rates of ⩽ 2.2 mg L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  4. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  5. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. © 2013 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  6. Solithromycin for the treatment of community-acquired bacterial pneumonia.

    PubMed

    Viasus, Diego; Ramos, Oscar; Ramos, Leidy; Simonetti, Antonella F; Carratalà, Jordi

    2017-01-01

    Community-acquired pneumonia is a major public health problem worldwide. In recent years, there has been an increase in the frequency of resistance to the antimicrobials such as β-lactams or macrolides which have habitually been used against the causative pathogens. Solithromycin, a next-generation macrolide, is the first fluoroketolide with activity against most of the frequently isolated bacteria in community-acquired pneumonia, including typical and atypical bacteria as well as macrolide-resistant Streptococcus pneumoniae. Areas covered: A detailed assessment of the literature relating to the antimicrobial activity, pharmacokinetic/pharmacodynamic properties, efficacy, tolerability and safety of solithromycin for the treatment of community-acquired bacterial pneumonia Expert commentary: Recent randomized controlled phase II/III trials have demonstrated the equivalent efficacy of oral and intravenous solithromycin compared with fluoroquinolones in patients with lower mild-to-moderate respiratory infections, and have shown that systemic adverse events are comparable between solithromycin and alternative treatments. However, studies of larger populations which are able to identify infrequent adverse events are now needed to confirm these findings. On balance, current data supports solithromycin as a promising therapy for empirical treatment in adults with community-acquired bacterial pneumonia.

  7. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    PubMed

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  8. [Dynamics of bacterial community during the bloom caused by Skeletonema costatum and Akashiwo sanguinea in Xiamen sea area].

    PubMed

    Li, Yi; Yang, Caiyun; Li, Dong; Tian, Yun; Zheng, Tianling

    2012-10-04

    To investigate the dynamics of bacterial community in Xiamen sea during the bloom mainly caused by Skeletonema costatum and Akashiwo sanguine in August 2011. Bacterial community structures of samples from two bloom sites and one non-bloom site were evaluated by PCR-DGGE (Denaturing gradient gel electrophoresis, DGGE). The genetic diversity of bacterial community was analyzed based on the DGGE fingerprint. The correlation between bacterial community and environmental parameters was studied by Canoco. The bacterial community was largely related to pH and N/P during the start-up stage of the bloom; while in the demise stage, it was mostly correlated to salinity and temperature. According to the results of sequence analysis of DGGE dominant bands, Gammaproteobacteria accounted for 47.7% during the bloom and Pseudoalteromonas, Pseudomonas, Alteromonas, Hydrogenophaga, Actibacter and Oleibacter were dominant genus in bacterial community. The Shannon-Weaver diversity index showed that the diversity of bacterial community in bloom site increased firstly and then decreased during this bloom. Hydrogenophaga was dominant in the start-up stage of bloom, while Pseudomonas and Pseudoalteromonas were dominant in the demise stage of bloom. The diversity of attached bacteria and free-living bacteria in bloom sites reached maximum in the same day (the concentration of algae was high) , both of them changed greatly during the bloom while the environment factors which correlated with the two communities were different. It is the first report about dynamics of bacterial community during the bloom caused by several algae together. This work is helpful to understand the dynamics of bacterial community during the bloom, and provides a theoretical basis for bloom's control in the future.

  9. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  10. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.

    PubMed

    Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N

    2012-02-07

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.

  11. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  12. Spatial Distribution of Bacterial Communities and Phenanthrene Degradation in the Rhizosphere of Lolium perenne L.

    PubMed Central

    Corgié, S. C.; Beguiristain, T.; Leyval, C.

    2004-01-01

    Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria. PMID:15184156

  13. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  14. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  15. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  16. Spatial distribution of bacterial communities and related biochemical properties in Luzhou-flavor liquor-fermented grains.

    PubMed

    Zheng, Jia; Wu, Chongde; Huang, Jun; Zhou, Rongqing; Liao, Xuepin

    2014-12-01

    Grain fermenting with separate layers in a fermentation pit is the typical and experiential brewing technology for Chinese Luzhou-flavor liquor. However, it is still unclear to what extent the bacterial communities in the different layers of fermented grains (FG) effects the liquor's quality. In this study, the spatial distributions of bacterial communities in Luzhou-flavor liquor FG (top, middle, and bottom layers) from 2 distinctive factories (Jiannanchun and Fenggu) were investigated using culture-independent approaches (phospholipid fatty acid [PLFA] and polymerase chain reaction-denaturing gel electrophoresis [DGGE]). The relationship between bacterial community and biochemical properties was also assessed by Canonical correspondence analysis (CCA). No significant variation in moisture was observed in spatial samples, and the highest content of acidity and total ester was detected in the bottom layer (P < 0.05). A high level of ethanol was observed in the top and middle layers of Fenggu and Jiannanchun, respectively. Significant spatial distribution of the total PLFA was only shown in the 50-y-old pits (P < 0.05), and Gram negative bacteria was the prominent community. Bacterial 16S rDNA DGGE analysis revealed that the most abundant bacterial community was in the top layers of the FG both from Fenggu and Jiannanchun, with Lactobacillaceae accounting for 30% of the total DGGE bands and Lactobacillus acetotolerans was the dominant species. FG samples from the same pit had a highly similar bacterial community structure according to the hierarchal cluster tree. CCA suggested that the moisture, acidity, ethanol, and reducing sugar were the main factors affecting the distribution of L. acetotolerans. Our results will facilitate the knowledge about the spatial distribution of bacterial communities and the relationship with their living environment. © 2014 Institute of Food Technologists®

  17. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.

  18. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  19. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta

    PubMed Central

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-01-01

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160

  20. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta.

    PubMed

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-11-08

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.

  1. Dynamics of Different Bacterial Communities Are Capable of Generating Sustainable Electricity from Microbial Fuel Cells with Organic Waste

    PubMed Central

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988

  2. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste.

    PubMed

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.

  3. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    PubMed Central

    Mawioo, Peter M.; Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M.; Brdjanovic, Damir

    2016-01-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. PMID:26799809

  4. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  5. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    PubMed

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Bacterial community structure in aquifers corresponds to stratigraphy

    NASA Astrophysics Data System (ADS)

    Beyer, Andrea; Möller, Silke; Neumann, Stefan; Burow, Katja; Gutmann, Falko; Lindner, Julia; Müsse, Steffen; Kothe, Erika; Büchel, Georg

    2014-05-01

    So far, groundwater microbiology with respect to different host rocks has not been well described in the literature. However, factors influencing the communities would be of interest to provide a tool for mapping groundwater paths. The Thuringian Basin (Germany) studied here, contains formations of the Permian (Zechstein) and also Triassic period of Buntsandstein, Muschelkalk and Keuper, all of which can be found to crop out at the surface in different regions. We analyzed the bacterial community of nine natural springs and sixteen groundwater wells of the respective rock formations as well as core material from the Zechstein salts. For that we sampled in a mine 3 differnet salt rock samples (carnallitite, halite and sylvinitite). To validate the different approaches, similar rock formations were compared and a consistent microbial community for Buntsandstein could be verified. Similary, for Zechstein, the presence of halophiles was seen with cultivation, isolation directly from the rock material and also in groundwater with DNA-dependent approaches. A higher overlap between sandstone- and limestone-derived communities was visible as if compared to the salt formations. Principal component analysis confirmed formation specific patterns for Muschelkalk, Buntsandstein and Zechstein for the bacterial taxa present, with some overlaps. Bacilli and Gammaproteobacteria were the major groups, with the genera Pseudomonas, Marinomonas, Bacillus, Marinobacter and Pseudoalteromonas representing the communities. The bacteria are well adapted to their respective environment with survival strategies including a wide range of salinity which makes them suitable as tracers for fluid movement below the ground. The results indicate the usefulness and robustness of the approach taken here to investigate aquifer community structures in dependence of the stratigraphy of the groundwater reservoir.

  7. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef.

    PubMed

    Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni

    2017-04-01

    Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The dynamic bacterial communities of a melting High Arctic glacier snowpack

    PubMed Central

    Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit

    2013-01-01

    Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation. PMID:23552623

  9. The dynamic bacterial communities of a melting High Arctic glacier snowpack.

    PubMed

    Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit

    2013-09-01

    Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation.

  10. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks

    PubMed Central

    Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith

    2013-01-01

    Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493

  11. Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend as the carbon source and biofilm carrier.

    PubMed

    Qiu, Tianlei; Xu, Ying; Gao, Min; Han, Meilin; Wang, Xuming

    2017-05-01

    While heterotrophic denitrification has been widely used for treating such nitrogen-rich wastewater, it requires the use of additional carbon sources. With fluctuations in the nitrate concentration in the influent, controlling the C/N ratio to avoid carbon breakthrough becomes difficult. To overcome this obstacle, solid-phase denitrification (SPD) using biodegradable polymers has been used, where denitrification and carbon source biodegradation depend on microorganisms growing within the reactor. However, the microbial community dynamics in continuous-flow SPD reactors have not been fully elucidated yet. Here, we aimed to study bacterial community dynamics in a biodenitrification reactor packed with a polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend as the carbon source and biofilm carrier. A lab-scale denitrifying reactor filled with a PLA/PHBV blend was used. With 85 mg/L of influent NO 3 -N concentration and a hydraulic retention time (HRT) of 2.5 h, more than 92% of the nitrate was removed. The bacterial community of inoculated activated sludge had the highest species richness in all samples. Bacterial species diversity in the reactor first decreased and then increased to a stable level. Diaphorobacter species were predominant in the reactor after day 24. In total, 178 clones were retrieved from the 16S rRNA gene clone library constructed from the biofilm samples in the reactor at 62 days of operation, and 80.9% of the clones were affiliated with Betaproteobacteria. Of these, 97.2% were classified into phylotypes corresponding to Diaphorobacter nitroreducens strain NA10B with 99% sequence similarity. Diaphorobacter, Rhizobium, Acidovorax, Rubrivivax, Azospira, Thermomonas, and Acidaminobacter constituted the biofilm microflora in the stably running reactor. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing.

    PubMed

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-09

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing's built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  13. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  14. Bacterial reduction of Cr(VI) at technical scale--the Malaysian experience.

    PubMed

    Zakaria, Zainul Akmar; Ahmad, Wan Azlina; Zakaria, Zainoha; Razali, Firdausi; Karim, Norsuhada Abdul; Sum, Mohamad Md; Sidek, Mohd Saufi Mohd

    2012-07-01

    The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.

  15. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    PubMed

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  16. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages.

    PubMed

    Razaviarani, Vahid; Buchanan, Ian D

    2014-11-01

    Linkage between reactor performance and microbial community dynamics was investigated during mesophilic anaerobic co-digestion of restaurant grease waste (GTW) with municipal wastewater sludge (MWS) using 10L completely mixed reactors and a 20day SRT. Test reactors received a mixture of GTW and MWS while control reactors received only MWS. Addition of GTW to the test reactors enhanced the biogas production and methane yield by up to 65% and 120%, respectively. Pyrosequencing revealed that Methanosaeta and Methanomicrobium were the dominant acetoclastic and hydrogenotrophic methanogen genera, respectively, during stable reactor operation. The number of Methanosarcina and Methanomicrobium sequences increased and that of Methanosaeta declined when the proportion of GTW in the feed was increased to cause an overload condition. Under this overload condition, the pH, alkalinity and methane production decreased and VFA concentrations increased dramatically. Candidatus cloacamonas, affiliated within phylum Spirochaetes, were the dominant bacterial genus at all reactor loadings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil.

    PubMed

    Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli

    2015-08-01

    Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.

  19. Inflammatory response in mixed viral-bacterial community-acquired pneumonia.

    PubMed

    Bello, Salvador; Mincholé, Elisa; Fandos, Sergio; Lasierra, Ana B; Ruiz, María A; Simon, Ana L; Panadero, Carolina; Lapresta, Carlos; Menendez, Rosario; Torres, Antoni

    2014-07-29

    The role of mixed pneumonia (virus+bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP.

  20. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  1. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  2. Changes in Soil Bacterial Communities and Diversity in ...

    EPA Pesticide Factsheets

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  3. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments.

    PubMed

    Martín-Díaz, Julia; Casas-Mangas, Raquel; García-Aljaro, Cristina; Blanch, Anicet R; Lucena, Francisco

    2016-01-01

    Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied.

  4. Social status shapes the bacterial and fungal gut communities of the honey bee.

    PubMed

    Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Pil Soo; Bae, Jin-Woo

    2018-01-31

    Despite the fungal abundance in honey and bee bread, little is known about the fungal gut community of the honey bee and its effect on host fitness. Using pyrosequencing of the 16S rRNA gene and ITS2 region amplicons, we analysed the bacterial and fungal gut communities of the honey bee as affected by the host social status. Both communities were significantly affected by the host social status. The bacterial gut community was similar to those characterised in previous studies. The fungal gut communities of most worker bees were highly dominated by Saccharomyces but foraging bees and queens were colonised by diverse fungal species and Zygosaccharomyces, respectively. The high fungal density and positive correlation between Saccharomyces species and Lactobacillus species, known yeast antagonists, were only observed in the nurse bee; this suggested that the conflict between Saccharomyces and Lactobacillus was compromised by the metabolism of the host and/or other gut microbes. PICRUSt analysis revealed significant differences in enriched gene clusters of the bacterial gut communities of the nurse and foraging bees, suggesting that different host social status might induce changes in the gut microbiota, and, that consequently, gut microbial community shifts to adapt to the gut environment.

  5. Bacterial community composition in the water column of a lake formed by a former uranium open pit mine.

    PubMed

    Edberg, Frida; Andersson, Anders F; Holmström, Sara J M

    2012-11-01

    Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.

  6. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater.

    PubMed

    Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2013-12-01

    We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.

  7. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.

    PubMed

    Ranneklev, S B; Bååth, E

    2001-03-01

    The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25 degrees C to 35, 45, or 55 degrees C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55 degrees C (thermophilic activity) and 25 degrees C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25 degrees C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log(10) ratio of TdR incorporation at 55 and 25 degrees C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the

  8. Temperature-Driven Adaptation of the Bacterial Community in Peat Measured by Using Thymidine and Leucine Incorporation

    PubMed Central

    Ranneklev, Sissel Brit; Bååth, Erland

    2001-01-01

    The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25°C to 35, 45, or 55°C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55°C (thermophilic activity) and 25°C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25°C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log10 ratio of TdR incorporation at 55 and 25°C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for

  9. Effects of triclosan on bacterial community composition and ...

    EPA Pesticide Factsheets

    Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68–1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to u

  10. Distribution of Root-Associated Bacterial Communities Along a Salt-Marsh Primary Succession.

    PubMed

    Wang, Miao; Yang, Pu; Falcão Salles, Joana

    2015-01-01

    Proper quantification of the relative influence of soil and plant host on the root-associated microbiome can only be achieved by studying its distribution along an environmental gradient. Here, we used an undisturbed salt marsh chronosequence to study the bacterial communities associated with the soil, rhizosphere and the root endopshere of Limonium vulgare using 454-pyrosequencing. We hypothesize that the selective force exerted by plants rather than soil would regulate the dynamics of the root-associated bacterial assembly along the chronosequence. Our results showed that the soil and rhizosphere bacterial communities were phylogenetically more diverse than those in the endosphere. Moreover, the diversity of the rhizosphere microbiome followed the increased complexity of the abiotic and biotic factors during succession while remaining constant in the other microbiomes. Multivariate analyses showed that the rhizosphere and soil-associated communities clustered by successional stages, whereas the endosphere communities were dispersed. Interestingly, the endosphere microbiome showed higher turnover, while the bulk and rhizosphere soil microbiomes became more similar at the end of the succession. Overall, we showed that soil characteristics exerted an overriding influence on the rhizosphere microbiome, although plant effect led to a clear diversity pattern along the succession. Conversely, the endosphere microbiome was barely affected by any of the environmental measurements and very distinct from other communities.

  11. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    PubMed Central

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  12. Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities

    PubMed Central

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.

    2014-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  13. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  14. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  15. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  16. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  17. Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach

    PubMed Central

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; M. Vogel, Timothy; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  18. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  19. Preparation and characteristics of bacterial polymer using pre-treated sludge from swine wastewater treatment plant.

    PubMed

    Guo, Junyuan; Yang, Chunping; Peng, Lanyan

    2014-01-01

    Sterilization, alkaline-thermal, and acid-thermal treatments were applied to different suspended sludge solids (SSS) concentrations and the pre-treated sludge was used as raw material for bioflocculant-producing bacteria R3 to produce bioflocculant. After 60 h of fermentation, three forms of bioflocculant (broth, capsular, and slime) were extracted, and maximum broth bioflocculant of 2.9 and 4.1 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.8 g L(-1) in acid-thermal treated sludge. Higher bioflocculant quantity was produced in SS of 15, 25, and 35 g L(-1) compared to that produced in SS of 45, 55, and 65 g L(-1). Bioflocculant combined with 0.5 g Ca(2+) in 1.0 L kaolin suspension acted as conditioning agent, and maximum flocculating activity of 94.5% and 92.8% was achieved using broth and slime bioflocculant, respectively. The results demonstrated that wastewater sludge could be used as sources to prepare bioflocculants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Soil bacterial community response to vegetation succession after fencing in the grassland of China.

    PubMed

    Zeng, Quanchao; An, Shaoshan; Liu, Yang

    2017-12-31

    Natural succession is an important process in terrestrial system, playing an important role in enhancing soil quality and plant diversity. Soil bacteria is the linkage between soil and plant, has an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems, driving the decomposition of soil organic matter and plant litter. However, the role of soil bacteria in the secondary succession has not been well understood, particularly in the degraded soil of Loess Plateau. In this study, we investigated soil nutrients and soil bacterial community during the secondary succession after a long-term fencing in the grassland, in the Yuwu Mountain, northwest China. The chronosequence included 1year, 12years, 20years and 30years. The soil bacterial community composition was determined by the Illumina HiSeq sequencing method. The data showed that soil bacterial diversity had no significant changes along the chronosequence, but soil bacterial community compositions significantly changed. Proteobacteria, Acidobacteria and Actinobacteria were the main phyla in all the samples across succession. With the accumulation of soil organic matter and nutrients, the relative abundance of Actinobacteria decreased, whereas Proteobacteria increased. These shifts may be caused by the increase of the available nutrients across the secondary succession. In the younger sites, soils were dominated by oligotrophic groups, whereas soil in the late-succession site were dominated by copiotrophic groups, indicating the dependence of soil bacterial community composition on the contents of soil available nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards.

    PubMed

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-11-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

  2. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    PubMed Central

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle. PMID:25367788

  3. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor

    PubMed Central

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas

    2017-01-01

    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869

  4. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    PubMed Central

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C. B.; Jacobsen, Carsten S.

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha-1. We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha-1 to alkaline at 167 t ha-1. Bacterial numbers significantly increased up to a wood ash dose of 22 t ha-1 followed by significant decrease at 167 t ha-1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha-1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha-1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha-1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly

  5. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    PubMed

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be

  6. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill

    PubMed Central

    Liu, Chang; Paterson, Audrey T.; Anderson, Laurie C.; Turner, R. Eugene; Overton, Edward B.

    2017-01-01

    ABSTRACT Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes. Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial

  7. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  8. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE PAGES

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; ...

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without

  9. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without

  10. Terrestrial origin of bacterial communities in complex boreal freshwater networks.

    PubMed

    Ruiz-González, Clara; Niño-García, Juan Pablo; Del Giorgio, Paul A

    2015-08-25

    Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network. © 2015 John Wiley & Sons Ltd/CNRS.

  11. Phospholipid-derived fatty acids and quinones as markers for bacterial biomass and community structure in marine sediments.

    PubMed

    Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T S; van Oevelen, Dick

    2014-01-01

    Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.

  12. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  13. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    PubMed

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  14. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  15. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children

    PubMed Central

    Dannemiller, Karen C.; Gent, Janneane F.; Leaderer, Brian P.; Peccia, Jordan

    2015-01-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structure were non-random and demonstrated species segregation (C-score, p<0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (p<0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building’s physical and occupant characteristics. PMID:25833176

  16. A pilot-scale microwave technology for sludge sanitization and drying.

    PubMed

    Mawioo, Peter M; Garcia, Hector A; Hooijmans, Christine M; Velkushanova, Konstantina; Simonič, Marjana; Mijatović, Ivan; Brdjanovic, Damir

    2017-12-01

    Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Bacterial community development in experimental gingivitis.

    PubMed

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  18. Bacterial Community Development in Experimental Gingivitis

    PubMed Central

    Kistler, James O.; Booth, Veronica; Bradshaw, David J.; Wade, William G.

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1–V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344 267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  19. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    PubMed

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure

    PubMed Central

    Pérez, María Teresa; Sommaruga, Ruben

    2007-01-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24–48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition. PMID:17686018