Science.gov

Sample records for sm-nd isotopic study

  1. Sm-Nd Isotopic Studies of Ureilite Novo Urei

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Goodrich, C. A.

    2011-01-01

    Ureilites are ultramafic (harzburgitic) achondrites composed predominantly of olivine and pyroxenes, abundant carbon (graphites and shock-produced diamonds), some metal and sulfides. These rocks probably represent ultramafic mantles of differentiated parent asteroidal bodies. Age determinations of these rocks by Rb-Sr and Sm-Nd methods have been difficult because of their extremely low abundances of these parent-daughter elements. Nevertheless, Sm-Nd isochron ages were reported for Kenna, Goalpara, MET 78008 and PCA 82506 yielding ages of 3.74+/-0.02 Ga, approx.3.7 Ga, 4.09+/-0.08 Ga, 4.23+/-0.06 Ga, respectively [1-4]. These "young" Sm-Nd ages may represent secondary metasomatism events [1] related to impacts [5], as indicated by the similarly young Ar-39-Ar-40 degassing ages of 3.3-4.1 Ga for ureilites Kenna, Novo Urei and Havero [6]. Alternatively, it has been suggested that these rocks may have been contaminated with terrestrial crustal materials and the isochrons do not have any age significance [2,7]. Indications of old approx.4.56 Ga ages for ureilites were reported from the U-Pb and Sm-Nd model ages for MET 78008 [8]. More reliable evidences for old formation ages of ureilites were reported recently using the short-lived chronometers Hf-182-W-182, Al-26-Mg-26 and Mn-53-Cr-53. The deficits of 182W in ureilites suggest the metal-silicate segregation occurred very early, approx.1-2 Ma after CAI [9]. The Al-26-Mg-26 and Mn-53-Cr-53 studies for a feldspathic lithology [10] and the Mn-53-Cr-53 for olivine- and pyroxene-dominant lithologies [11] in ureilites revealed that they crystallized approx.5.4 Ma after CAI, i.e., at 4563.8+/-0.5 Ma relative to D.Orbigny. In this report, we present Sm-Nd isotopic data for a relatively fresh ureilite, Novo Urei, a rare ureilite fall (1886). We compare these data to Sm-Nd data for other ureilites, and discuss Novo Urei's petrogenesis

  2. Sm-Nd Isotopic Systematics of Troctolite 76335

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Nyquist, L. E.; Borg, L. E.

    2007-01-01

    A study of the Sm-Nd isotopic systematics of lunar Mg-suite troctolite 76335 was undertaken to further establish the early chronology of lunar magmatism. Because the Rb-Sr isotopic systematics of similar sample 76535 yielded an age of 4570 +/- 70 Ma [2, lambda = 1.402 x 10(exp -11)], 76335 was expected to yield an old age. In contrast, the Sm-Nd and K-Ar ages of 76535 indicate that the sample is approximately 4260 Ma old, one of the youngest ages obtained for a Mg-suite rock. This study establishes the age of 76335 and discusses the constraints placed on its petrogenesis by its Sm-Nd isotope systematics. The Sm-Nd isotopic system of lunar Mg-suite troctolite 76335 indicates an age of 4278 +/- 60 Ma with an initial epsilon (sup 143)(sub Nd) value of 0.06 +/- 0.39. These values are consistent with the Sm-Nd isotopic systematics of similar sample 76535. Thus, it appears that a robust Sm-Nd age can be determined from a highly brecciated lunar sample. The Sm-Nd isotopic systematics of troctolites 76335 and 76535 appear to be different from those dominating the Mg-suite norites and KREEP basalts. Further analysis of the Mg-suite must be completed to reveal the isotopic relationships of these early lunar rocks.

  3. Sm-Nd Isotopic Studies of Two Nakhlites, NWA 5790 and Nakhla

    NASA Technical Reports Server (NTRS)

    C.-Y. Shih; Nyquist, L. E.; Reese, Y.; Jambon, A.

    2010-01-01

    NWA 5790 is a Martian meteorite recently found in the Mauritania part of the Saharan desert and is classified as a nakhlite, containing a small amount of interstitial plagioclase. Unlike other Martian meteorites ( e.g., shergottites), nakhlites have been only moderately shocked and their original igneous textures are still well-preserved. In this report, we present Sm-Nd isotopic data for NWA 5790 and Nakhla, a rare "fall" nakhlite, correlate their ages with those of other nakhlites and discuss their petrogenesis.

  4. Sm-Nd isotope study of early Archean rocks, Qianan, Hebei Province, China

    NASA Technical Reports Server (NTRS)

    Huang, X.; Bi, Z.; Depaolo, D. J.

    1986-01-01

    The geochronology of amphibolitic and gneiss rocks in the Qianan region in China is examined. Sm-Nd isotopic measurements were performed to determine if the rocks existed in the early Archean age. The average age for the amphibolite samples is 3.50 + or - 0.08 billion years with an initial epsilon(Nd) value of 3.3 + or - 0.3, and for the gneiss samples the average age is also 3.5 billion years. The high initial epsilon(Nd) value indicates that the mantle magma source is depleted of magmaphile elements and the geochemistry of the early Archean mantle is similar to the modern upper mantle.

  5. Lu-Hf and Sm-Nd Isotopic Studies of Shergottites and Nakhlites: Implications for Martian Mantle Sources

    NASA Technical Reports Server (NTRS)

    Debaille, V.; Yin, Q.-Z.; Brandon, A. D.; Jacobsen, B.; Treiman, A. H.

    2007-01-01

    We present a new Lu-Hf and Sm-Nd isotope systematics study of four enriched shergottites (Zagami, Shergotty, NWA856 and Los Angeles), and three nakhlites (Nakhla, MIL03346 and Yamato 000593) in order to further understand processes occurring during the early differentiation of Mars and the crystallization of its magma ocean. Two fractions of the terrestrial petrological analogue of nakhlites, the Archaean Theo's flow (Ontario, Canada) were also measured. The coupling of Nd and Hf isotopes provide direct insights on the mineralogy of the melt sources. In contrast to Sm/Nd, Lu/Hf ratios can be very large in minerals such as garnet. Selective partial melting of garnet bearing mantle sources can therefore lead to characteristic Lu/Hf signatures that can be recognized with Hf-176/Hf-177Hf ratios.

  6. Sm-Nd isotopic systematics of lherzolitic shergottite Yamato-793605

    USGS Publications Warehouse

    Misawa, K.; Yamada, K.; Nakamura, N.; Morikawa, N.; Yamashita, K.; Premo, W.R.

    2006-01-01

    We have undertaken Sm-Nd isotopic studies on Yamato-793605 lherzolitic shergottite. The Sm-Nd internal isochron obtained for acid leachates and residues of whole-rock and separated mineral fractions yields an age of 185 ??16 Ma with an initial ??Nd value of +9.7??0.2. The obtained Sm-Nd age is, within analytical errors, identical to the Rb-Sr age of this meteorite as well as to the previous Rb-Sr and Sm-Nd ages of Allan Hills-77005 and Lewis Cliff 88516, although the ??Nd values are not identical to each other. Elemental abundances of lithophile trace elements remain nearly unaffected by aqueous alteration on the Martian surface. The isotopic systems of lherzolitic shergottites, thus, are considered to be indigenous, although disturbances by shock metamorphism are clearly observed. "Young ages of ??? 180 Ma" have been consistently obtained from this and previous Rb-Sr, Sm-Nd and U-Pb isotopic studies and appear to represent crystallization events. ?? 2006 National Institute of Polar Research.

  7. The Estherville mesosiderite: U-Pb, Rb-Sr, and Sm-Nd isotopic study of a polymict breccia

    SciTech Connect

    Brouxel, M.; Tatsumoto, M. )

    1991-04-01

    A systematic U-Pb, Sm-Nd, and Rb-Sr isotopic study shows that the Estherville mesosiderite was formed between 4.56 and 4.43 Ga. Observed isotopic heterogeneity is in agreement with multiple generations of meteoritic impacts described in other mesosiderites. At least part of the Estherville silicate fraction was formed early in solar system history as indicated by the Pb-Pb (4555 {plus minus} 35 Ma), U-Pb (4560 {plus minus} 31 Ma), Rb-Sr (4542 {plus minus} 203 Ma), and Sm-Nd (4533 {plus minus} 94 Ma) ages. Mesosiderites therefore present not only petrological but also geochronological similarities with eucrites. The Pb isotopic composition of the metal phase plots on the same isochron as the silicates, indicating formation and subsequent mixing with silicates early in the history of the solar system. This is consistent with previous observations indicating that iron was reduced during the silicate-magmatic stage, most likely a consequence of mixing with metal. In addition to these more-ancient portions of the Estherville breccia, other parts were formed later as suggested by the Pb-Pb (4422 {plus minus} 50 Ma) and U-Pb (4437 {plus minus} 11 Ma) ages observed in a second group of leaches and residues. This age is similar to some cumulate eucrite ages and may represent the formation of a second mesosiderite component. The Sm-Nd and the Rb-Sr ages obtained on Estherville show large errors that may be a consequence of the mixing between the 4.56 and 4.43 Ga endmembers. Estherville, like most mesosiderites, was affected by a major heating event around 3.5-3.7 Ga as shown by the Ar-Ar ages. This heating event partially disturbed the Rb-Sr isotopic system (Rb-Sr metamorphic ages range between 3.81 and 4.08 Ga).

  8. The Estherville mesosiderite: UPb, RbSr, and SmNd isotopic study of a polymict breccia

    USGS Publications Warehouse

    Brouxel, M.; Tatsumoto, M.

    1991-01-01

    A systematic UPb, SmNd, and RbSr isotopic study shows that the Estherville mesosiderite was formed between 4.56 and 4.43 Ga. Observed isotopic heterogeneity is in agreement with multiple generations of meteoritic impacts described in other mesosiderites. At least part of the Estherville silicate fraction was formed early in solar system history as indicated by the Pb-Pb (4555 ?? 35 Ma), UPb (4560 ?? 31 Ma), RbSr (4542 ?? 203 Ma), and SmNd (4533 ?? 94 Ma) ages. Mesosiderites therefore present not only petrological but also geochronological similarities with eucrites. The Pb isotopic composition of the metal phase plots on the same isochron as the silicates, indicating formation and subsequent mixing with silicates early in the history of the solar system. This is consistent with previous observations indicating that iron was reduced during the silicate-magmatic stage, most likely a consequence of mixing with metal. In addition to these more-ancient portions of the Estherville breccia, other parts were formed later as suggested by the Pb-Pb (4422 ?? 50 Ma) and UPb (4437 ?? 11 Ma) ages observed in a second group of leaches and residues. This age is similar to some cumulate eucrite ages and may represent the formation of a second mesosiderite component. The SmNd and the RbSr ages obtained on Estherville show large errors that may be a consequence of the mixing between the 4.56 and 4.43 Ga endmembers. Estherville, like most mesosiderites, was affected by a major heating event around 3.5-3.7 Ga as shown by the Ar-Ar ages (Bogard et al., 1990). This heating event partially disturbed the RbSr isotopic system (RbSr metamorphic ages range between 3.81 and 4.08 Ga). ?? 1991.

  9. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  10. Sm-Nd isotopic systematics and REE abundance studies of the ALH-765 eucrite

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Tatsumoto, M.; Coffrant, D.

    1983-01-01

    Analyses of Sm-Nd systematics and REE concentrations were carried out for the whole rock and mineral separates from the ALH-765 meteorite. A Sm-Nd age of 4.52 + or - 0.09 (2 sigma) b.y. and an initial Nd-143/Nd-144 ratio of 0.50675 + or 0.00011 (2 sigma) have been obtained. The previously reported Ce irregularities have been re-examined in this work. The large Ce anomalies and some minor Sm-Nd system disturbances observed for the meteorite may be interpreted as results of terrestrial weathering effects.

  11. Rb-Sr and Sm-Nd Isotopic Studies of Antarctic Nakhlite MIL 03346

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2006-01-01

    Nakhlites are olivine-bearing clinopyroxenites with cumulate textures, and probably came from Mars [e.g., 1]. A total of seven nakhlites have been identified so far. Unlike other martian meteorites (e.g., shergottites), nakhlites have been only moderately shocked and their original igneous textures are still well-preserved. Also, these meteorites have similarly older crystallization ages of approx.1.3 Ga compared to shergottites with ages of approx.0.18-0.57 Ga [e.g., 2]. MIL 03346 is characterized by abundant (approx.20 vol %) glassy mesostasis, indicating that it cooled rapidly and probably formed near the top [3] or at the bottom [4] of the chilled margin of a thick intrusive body. The mesostasis quenched from the trapped intercumulus liquid may provide information on the parent magma compositions of the nakhlites. In this report, we present Rb-Sr and Sm-Nd isotopic data for MIL 03346, discuss correlation of its age with those of other nakhlites and the nature of their source regions in the Martian mantle.

  12. The Estherville mesosiderite - U-Pb, Rb-Sr, and Sm-Nd isotopic study of a polymict breccia

    NASA Astrophysics Data System (ADS)

    Brouxel, M.; Tatsumoto, M.

    1991-04-01

    The U-Pb, Rb-Sr, and Sm-Nd isotopic systematics of the Estherville mesoderite were studied using analytical procedures and mass spectrometric techniques similar to those reported by Nakamura et al. (1976), Tatsumoto et al. (1987), and Premo et al. (1989) to analyze 21 separates of a 13-g Estherville clast, obtained either by handpicking or by using density and magnetic separation methods. The results on the Pb-Pb and U-Pb ages (about 4555 and about 4560 Ma, respectively) indicate that at least a part of the Estherville silicate fraction was formed early in the history of solar system. Younger Pb-Pb and U-Pb ages (about 4.43 Ga) were also obtained, confirming the heterogeneity of the Estherville mesoderite that is in agreement with the Wasson and Rubin (1985) suggestion of several generations of meteoritic impacts. The Sm-Nd and Rb-Sr ages were found to be close to 4.56 Ga.

  13. The Estherville mesosiderite - U-Pb, Rb-Sr, and Sm-Nd isotopic study of a polymict breccia

    NASA Technical Reports Server (NTRS)

    Brouxel, M.; Tatsumoto, M.

    1991-01-01

    The U-Pb, Rb-Sr, and Sm-Nd isotopic systematics of the Estherville mesoderite were studied using analytical procedures and mass spectrometric techniques similar to those reported by Nakamura et al. (1976), Tatsumoto et al. (1987), and Premo et al. (1989) to analyze 21 separates of a 13-g Estherville clast, obtained either by handpicking or by using density and magnetic separation methods. The results on the Pb-Pb and U-Pb ages (about 4555 and about 4560 Ma, respectively) indicate that at least a part of the Estherville silicate fraction was formed early in the history of solar system. Younger Pb-Pb and U-Pb ages (about 4.43 Ga) were also obtained, confirming the heterogeneity of the Estherville mesoderite that is in agreement with the Wasson and Rubin (1985) suggestion of several generations of meteoritic impacts. The Sm-Nd and Rb-Sr ages were found to be close to 4.56 Ga.

  14. A Sm-Nd and Pb isotope study of Archaean greenstone belts in the southern Kaapvaal Craton, South Africa

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.; Carlson, R. W.

    1989-01-01

    An Sm-Nd and Pb study on a wide variety of lithologies in Archaean greenstone belt fragments in the southern Kaapvaal Craton reveals a complex petrogenetic history. The fragments are important because they represent a 350 km transect through the craton south of Barberton to its southern margin. The Commondale greenstone belt yields a precise Sm-Nd age of 3334 + or - 18 Ma on an exceptionally well preserved peridotite suite of komatiitic affinity. The wide range of Sm/Nd from 0.6 to 1.0 is attributed to the unusual occurrence of orthopyroxene in the spinifex-bearing rocks. A considerably younger age of about 3.2 Ga is suggested for the Nondweni greenstone belt close to the southern margin of the craton on the basis of separate Sm-Nd isochrons on individual lithologies ranging from komatiite, through komatiitic basalt and basalt to felsic volcanic rocks. On the basis of the present study the greenstone belts appear to have been emplaced at progressively younger ages toward the southern margin of the craton.

  15. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems

    NASA Technical Reports Server (NTRS)

    Goldstein, S. L.; Onions, R. K.; Hamilton, P. J.

    1984-01-01

    Nd-143/Nd-144 ratios, together with Sm and Nd abundances, are given for particulates from major and minor rivers as well as continental sediments and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. In combination with data from the literature, the present results have implications for the age, history, and composition of the sedimentary mass and the continental crust. It is noted that the average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean, thereby precluding the likelihood of major mafic-to-felsic or felsic-to-mafic trends in the overall composition of the upper continental crust through earth history. The average 'crustal residence age' of the entire sedimentary mass is about 1.9 Ga.

  16. Rb-Sr and Sm-Nd isotopic variations in dissected crustal xenoliths

    NASA Technical Reports Server (NTRS)

    Lee, Der-Chuen; Halliday, Alex N.; Hunter, Robert H.; Holden, Peter; Upton, Brian G. J.

    1993-01-01

    The effect of magma-xenolith interaction on the Rb-Sr and Sm-Nd isotopic systematics was investigated by studying the Rb-Sr and Sm-Nd variations in dissected crustal xenoliths sampled from different localities across Scotland. The Nd isotopic compositions were found to be virtually uniform across each xenolith, but significant variations were found in Rb, Sr, and REE concentrations, as well as in Rb/Sr and Sm/Nd ratios and Sr isotopic composition. Most of these variations appear to be inherited from the protolith, but, in one case, they have been modified by melt infiltration from the host magma. The results lend confidence to the interpretation of the isotopic and chemical compositions of xenoliths transported in basaltic magmas as reflecting their source regions, but they also highlight the potential problems of interpreting Sm-Nd model ages from metamorphic rocks.

  17. Isotope Dilution and LA ICPMS Study of Trace Elements in Garnets: Implications for Sm-Nd and Lu-Hf Dating.

    NASA Astrophysics Data System (ADS)

    Anczkiewicz, R.; Platt, J. P.; Thirlwall, M. F.; Alard, O.

    2003-12-01

    One of the main advantages of garnet geochronology is a possibility of establishing a direct link between isotopic ages and PT conditions. However, both Lu-Hf and Sm-Nd garnet dating can strongly be affected by submicroscopic inclusions capable of dominating the Sm-Nd and Lu-Hf budget. We investigated possible effects of various inclusions on Sm-Nd and Lu-Hf systems by combined isotope dilution and LA ICPMS studies. Internal isochrons obtained for 6 high-grade blocks of metabasites from the Franciscan complex yielded highly precise Lu-Hf ages ranging from 114 to 170 Ma, but failed to provide Sm-Nd dates. The main reason for failure of the Sm-Nd dating was a rather large amount of matrix silicate inclusions, which contained > 100 times more Nd than analyzed "impure" garnet fractions. The same inclusions had very limited influence on the Lu-Hf budget. This is mainly due to strong enrichment of garnets in heavy REE and due to much lower Hf concentrations in rock forming silicates. The 176Lu/177Hf ratios obtained for the analyzed garnets are typically between 1.5 and 8, but for two samples with spessartine-rich garnets, values range between 21 and 28 and are the highest yet reported. Small amount of zircon and rutile inclusions did not notably suppress 176Lu/177Hf ratios. This is mainly due to their small size (<10 μ m) and low abundance, but also because of their limited dissolution during sample digestion on a hotplate. Our results demonstrate that even samples with significant amounts of inclusions can yield precise and accurate Lu-Hf dates. For upper amphibolite facies metapelites from Vietnam, we obtained well defined Sm-Nd ages of 52.1+/-2.5 and 31.4+/-1.0 Ma, which are grossly discordant with the corresponding Lu-Hf dates of 84.1+/-1.6 Ma and 77.9+/-1.6 Ma, respectively. We therefore conducted LA ICP MS measurements on 4 selected samples. Sm/Nd ratios show rather flat zonation profiles throughout most of the crystal, with an up to 30% increase in the rims. The

  18. Crisis of isotope geodynamics: Sm-Nd aspect

    NASA Astrophysics Data System (ADS)

    Pushkarev, Y. D.; Nikitina, L. P.

    2009-04-01

    Isotope geochemistry for many years contributes to improve our understanding of the Earth's interiors. There are a lot of models of the crust-mantle system evolution based on the isotope data. Indeed, identification of various types of the mantle material on the basis of isotope composition of its magmatic derivatives has opened perspective to fill geophysical models with the geochemical content. Study of the mantle material composition, changing in time and in space, with the same approach originated a new branch of geology, which was named chemical geodynamics or isotope geodynamics. Opportunities of the new approach have been unambiguously admitted more than 30 years ago after DePaolo & D.Wasserburg pioneer works, dedicated to development of Sm-Nd isotope systematics. This systematics became the most considerable component in the basement of isotope geodynamics as a whole. Since then nobody ever discussed the constrains of this siystematics. At the same time there are many contradictions in it. There are numerous mantle xenoliths depleted in main elements (Pearson et al., 2003), for which the whole variation curve normalized to chondrite is plotted below chondrite level. Paradox of the situation is that this mantle material has REE pattern which displays a continuous decrease of their concentration from La to Lu. Accordingly, Sm/Nd ratio in such material is lower than in chondrites. Through some time this material will be able to generate melts with ENd<0, which is considered to be the characteristic of the enriched mantle. At the same time, the material producing such melts in terms of the total REE concentration and the main elements concentration is high depleted. Another example, which demonstrates the independent variations of the main elements concentration, of the total REE contents, of Sm/Nd ratio and of Nd isotope composition in a source of the mantle magmatic derivatives, is connected with tholeiites of the middle ocean ridges and ocean islands

  19. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.

    2008-01-01

    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  20. Rb-Sr and Sm-Nd Isotopic Studies of Martian Depleted Shergottes SaU 094/005

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2007-01-01

    Sayh al Uhaymir (SaU) 094 and SaU 005 are olivine-phyric shergottites from the Oman desert and are considered as pairs. [e.g., 1]. They are very similar to the Libyan desert shergottite Dar al Gani (DaG) 476 in petrology, chemistry and ejection age [2-6]. This group of shergottites, also recognized as depleted shergottites [e.g. 7] has been strongly shocked and contains very low abundances of light rare earth elements (REE). In addition, terrestrial contaminants are commonly present in meteorites found in desert environments. Age-dating these samples is very challenging, but lower calcite contents in the SaU meteorites suggest that they have been subjected to less severe desert weathering than their DaG counterparts [3-4]. In this report, we present Rb-Sr and Sm-Nd isotopic results for SaU 094 and SaU 005, discuss the correlation of their ages with those of other similar shergottites, and discuss their petrogenesis.

  1. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Highland Meteorite Y86032 and Lunar Ferroan Anorthosites 60025 and 67075

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Yamaguchi, A.; Takeda, H.

    2005-01-01

    Lunar meteorite Yamato (Y) 86032 is a feldspathic breccia containing anorthositic fragments similar to ferroan anorthosite (FAN) clasts commonly found in Apollo 16 highland rocks. Previous Ar-39-Ar-40 analyses of a grey anorthositic clast (,116 GC) in Y86032 revealed an old degassing age of 4.39 plus or minus 0.06 Ga, which is as old as crystallization ages of some FANs e.g. 60025, 67016 and 67215, as determined by the more robust Sm-Nd radiometric method. The calculated initial Nd value for the clast is -1.8 plus or minus 0.3 for the age. The old age and its negative initial Nd value indicate that Y86032 contains components of the primitive lunar crust related to the lunar magma ocean (LMO). We undertook further Rb-Sr and Sm-Nd isotopic investigation of three major lithologies in the meteorite as described in the mineralogical and petrological studies. Ar-39-Ar-40 analyses of these component lithologies are presented in this volume. Also, we analyzed two Apollo 16 FANs, 60025 and 67075, to compare their ages and isotopic signatures to Y86032. Y86032 probably came from a feldspathic highland terrane (FHT) on the northern farside highlands, a locality not sampled by the Apollo and Luna missions.

  2. Source rocks and provenances of the Ladoga Group siliciclastic metasediments (Svecofennian Foldbelt, Baltic Shield): Results of geochemical and Sm-Nd isotopic study

    NASA Astrophysics Data System (ADS)

    Kotova, L. N.; Kotov, A. B.; Glebovitskii, V. A.; Podkovyrov, V. N.; Savatenkov, V. M.

    2009-02-01

    Siliciclastic metasediments of the Ladoga Group that is the Kalevian stratotype in Karelia correlative with the Kalevian siliciclastic succession in Finland are studied in terms of geochemistry and Sm-Nd isotopic systematics. The results obtained show that rocks in the Ladoga Group lower part are enriched, as compared to rocks of the upper part, in TiO2, Fe2O3, MgO, Cr, Co, Ni, and Sc, being comparatively depleted in Al2O3 and Th that is a result of compositional changes in provenances. The Sm-Nd isotopic data evidence that siliciclastic sediments of the Ladoga Group have accumulated during the erosion of rocks, which originated at the time of the Archean and Early Proterozoic crust-forming processes. Siliciclastic material with the Archean and Early Proterozoic TNd(DM) values, which are characteristic of metasediments in the group lower part, was derived respectively from granite gneisses of the Archean basement in the Karelian megablock of the Baltic Shield and from volcanic rocks of the Sortavala Group. Volcanic rocks of island-arc terranes of the Svecofennian foldbelt represented main source of siliciclastic material that accumulated in upper part of the succession.

  3. U/Pb, Sm/Nd and Rb/Sr geochronological and isotopic study of northern Sierra Nevada ophiolitic assemblages, California

    NASA Astrophysics Data System (ADS)

    Saleeby, J. B.; Shaw, H. F.; Niemeyer, Sidney; Moores, E. M.; Edelman, S. H.

    1989-06-01

    Distinct ophiolitic assemblages occur as oceanic basement within three of the four regional tectonic belts of the northern Sierra Nevada. New U/Pb zircon, Sm/Nd and Rb/Sr data are presented for each assemblage, providing critical geochronological and isotopic constraints on the petrogenesis and tectonic evolution of the ophiolitic and associated ensimatic assemblages. Ophiolitic assemblages include from west to east the Smartville complex, Central belt and Feather River belt. The Smartville complex represents an island arc volcanic-plutonic sequence with a major late-stage sheeted dike swarm. The Sm/Nd systems from a wide compositional spectrum of rocks record a 178±21 Ma petrogenetic age and an ɛ Nd(T)=+9.2±0.6. Zircon U/Pb systems on an uppermost dacite yield a 164±2 Ma age, and on a number of plagiogranite screens and dikes from the sheeted complex 162±1 Ma ages. The Central and Feather River belts are structurally complex polygenetic assemblages. The U/Pb zircon and Sm/Nd systems record major ˜205 Ma and ˜315 Ma petrogenetic events respectively both involving depleted mantle derived magmas. Such magmatism probably occurred in marginal basin/transform systems developed within an older oceanic depleted mantle basement regime. Both Sm/Nd and U/Pb zircon systems show local components of Proterozoic sialic material. The sialic contaminants were probably introduced into the system as craton derived detritus. It is doubtful that any of the ophiolitic assemblages studied represent genetically related crust-upper mantle sequences generated during the development of new oceanic lithosphere. Integration of the geochronological data with geological relations reveals a pattern of petrogenesis and tectonics whereby progressively younger ensimatic terranes were added to the continental margin through time by plate convergence, and were ultimately welded into North American sial by a crosscutting batholithic belt. This accretionary pattern is reflected in both the

  4. The Chronology and Petrogenesis of the Mare Basalt Clast from Lunar Meteorite Dhofar 287: Rb-Sr and Sm- Nd Isotopic Studies

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Wiesmann, H.; Nazarov, M. A.; Taylor, L. A.

    2002-01-01

    The Sm-Nd isochron for lunar mare basalt meteorite Dhofar 287A yields T = 3.46 +/- 0.03 Ga and Nd = 0.6 +/- 0.3. Its Rb-Sr isotopic system is severely altered. The basalt is unique, probably coming from an enriched mantle source. Additional information is contained in the original extended abstract.

  5. Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: Initiation of rifting within the southern Oklahoma aulacogen

    NASA Astrophysics Data System (ADS)

    Lambert, David D.; Unruh, D. M.; Gilbert, M. Charles

    1988-01-01

    Rb-Sr and Sm-Nd isotopic data for rocks and minerals of the Glen Mountains layered complex (GMLC), a midcontinent mafic layered intrusion in the Wichita Mountains of southwestern Oklahoma, constrain the time of initiation of rifting within the southern Oklahoma aulacogen and provide information on the chemistry of the early Paleozoic mantle. Four whole-rock samples define a Rb-Sr isochron corresponding to a maximum crystallization age of 577 ±165 Ma and an initial Sr isotopic composition of 0.70359 ±2. These whole-rock analyses do not define a Sm-Nd isochron; rather, they display a significant range in initial Nd isotopic composition (ɛNd = 3.63-5.35). A three-point Sm-Nd mineral-whole-rock (internal) isochron for an anorthositic gabbro provides a crystallization age of 528 ±29 Ma. These data suggest that the GMLC was emplaced into the southern Oklahoma aulacogen during the initial phase of rifting along the southern margin of the North American craton in the early Paleozoic. This Sm-Nd internal isochron age is within analytical uncertainty of U-Pb zircon ages for granites and rhyolites from the Wichita Mountains; therefore, mafic and felsic magmatism may have been contemporaneous within the rift during the early stages of development. Hybrid rocks and composite dikes in the Wichita Mountains provide field evidence for contemporaneous mafic and felsic magmas. Initial Sr and Nd isotopic data suggest that magmas parental to the GMLC were derived from a depleted mantle source. However, Nd isotopic data for the GMLC plot distinctly below data for the depleted mantle source cited by DePaolo and thus suggest that the parental magmas of the GMLC were either contaminated by Proterozoic crust of the southern midcontinent or were derived from a heterogeneous mantle source region that had variable initial Nd isotopic compositions.

  6. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.

    2009-01-01

    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  7. Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: initiation of rifting within the southern Oklahoma aulacogen

    SciTech Connect

    Lambert, D.D.; Unruh, D.M.; Gilbert, M.C.

    1988-01-01

    Rb-Sr and Sm-Nd isotopic data for rocks and minerals of the Glen Mountains layered complex (GMLC), a midcontinent mafic layered intrusion in the Wichita Mountains of southwestern Oklahoma, constrain the time of initiation of rifting within the southern Oklahoma aulacogen and provide information on the chemistry of the early Paleozoic mantle. Four whole-rock samples define a Rb-Sr isochron corresponding to a maximum crystallization age of 577 +/- 165 Ma and an initial Sr isotopic composition of 0.70359 +/- 2. A three-point Sm-Nd mineral-whole-rock (internal) isochron for an anorthositic gabbro provides a crystallization age of 528 +/- 29 Ma. These data suggest that the GMLC was emplaced into the southern Oklahoma aulacogen during the initial phase of rifting along the southern margin of the North American craton in the early Paleozoic. This Sm-Nd internal isochron age is within analytical uncertainty of U-Pb zircon ages for granites and rhyolites from the Wichita Mountains; therefore, mafic and felsic magmatism may have been contemporaneous within the rift during the early stages of development. Hybrid rocks and composite dikes in the Wichita Mountains provide field evidence for contemporaneous mafic and felsic magmas. Initial Sr and Nd isotopic data suggest that magmas parental to the GMLC were derived from a depleted mantle source. However, Nd isotopic data for the GMLC plot distinctly below data for the depleted mantle source cited by DePaolo and thus suggest that the parental magmas of the GMLC were either contaminated by Proterozoic crust of the southern midcontinent or were derived from a heterogenous mantle source region that had variable initial Nd isotopic compositions.

  8. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    SciTech Connect

    Edmunson, J; E.Borg, L; Nyquist, L E; Asmerom, Y

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.

  9. Sm-Nd and Rb-Sr isotopic systematics of ureilites

    NASA Technical Reports Server (NTRS)

    Goodrich, Cyrena Anne; Patchett, P. Jonathan; Drake, Michael J.; Lugmair, Guenter W.

    1991-01-01

    The present evaluation of Sm-Nd and Rb-Sr isotopic data for seven ureilites establishes their divisions into three groups on the bases of Sm-Nd isotopic systematics. The first group of ureilites is made up of whole-rock samples whose highly depleted assemblages indicate Sm-Nd model ages consistent with 4.55 Ga. The second group of whole-rock samples of Kenna, Novo Urei, and ALHA77257 are heterogeneous mixtures of an unidentified light REE-enriched component and a light REE-depleted olivine-pyroxene assemblage. In the third group, LEW85440 neither has a model Sm-Nd age of 4.55 Ga nor plots of the 3.74 Ga isochron of the Kenna group; it might have had an evolution similar to the Kenna group, but involving different times and/or isotopic compositions.

  10. A Rb-Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Norman, M. D.

    2007-01-01

    Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.

  11. Isotopic Equilibrium in Mature Oceanic Lithosphere: Insights From Sm-Nd Isotopes on the Corsica (France) Ophiolites

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Raczek, I.; Romairone, A.

    2003-12-01

    In mature oceanic lithosphere, formed at mid-ocean ridges, residual mantle peridotites and associated magmatic crust are, in principle, linked by a cogenetic relationship, because the times of asthenospheric mantle melting and magmatic crust production are assumed to be roughly coheval. This implies that oceanic peridotites and associated magmatic rocks should have similar isotopic compositions. Few isotope studies have been devoted to test this assumption. At mid-ocean ridges, similar Nd isotopic compositions in basalts and abyssal peridotites have been found by Snow et al. (1994), thus indicating that oceanic peridotites are indeed residues of MORB melting. By contrast, Salters and Dick (2002) have documented Nd isotope differences between abyssal peridotites and associated basalts, with peridotites showing higher 143Nd/144Nd values, and they concluded that an enriched pyroxenitic source component is required to explain the low end of the 143Nd/144Nd variation of the basalts. Here we present Sm/Nd isotope data on ophiolitic mantle peridotites and intruded gabbroic rocks from Mt.Maggiore (Corsica, France), interpreted as lithosphere remnants of the Jurassic Ligurian Tethys ocean. The peridotites are residual after low-degree (<10%) fractional melting. In places, spinel peridotites grade to plagioclase-rich impregnated peridotites. Clinopyroxene separates from both spinel- and plagioclase- peridotites display high 147Sm/144Nd (0.49-0.59) and 143Nd/144Nd (0.513367-0.513551) ratios, consistent with their depleted signature. The associated gabbros have Nd isotopic compositions typical of MORB (143Nd/144Nd = 0.51312-0.51314). Sm/Nd data on plag, whole rock and cpx from an olivine gabbro define an internal isochron with an age of 162 +/- 10 Ma, and an initial epsilon Nd value (9.0) indicating a MORB-type source. In the Sm-Nd isochron diagram, the peridotite data also conform to the above linear array, their initial (160 Ma) epsilon Nd values varying in the range 7

  12. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  13. Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis

    USGS Publications Warehouse

    Fisher, C.M.; Loewy, S.L.; Miller, C.F.; Berquist, P.; Van Schmus, W. R.; Hatcher, R.D., Jr.; Wooden, J.L.; Fullagar, P.D.

    2010-01-01

    The conventional view that the basement of the southern and central Appalachians represents juvenile Mesoproterozoic crust, the final stage of growth of Laurentia prior to Grenville collision, has recently been challenged. New whole-rock Pb and Sm-Nd isotopic data are presented from Meso protero zoic basement in the southern and central Appalachians and the Granite-Rhyolite province, as well as one new U-Pb zircon age from the Granite-Rhyolite province. These data, combined with existing data from Mesoproterozoic terranes throughout southeastern Laurentia, further substantiate recent suggestions that the southern and central Appalachian basement is exotic with respect to Laurentia. Sm-Nd isotopic compositions of most rocks from the southern and central Appalachian basement are consistent with progressive growth through reworking of the adjacent Granite-Rhyolite province. However, Pb isotopic data, including new analyses from important regions not sampled in previous studies, do not correspond with Pb isotopic compositions of any adjacent crust. The most distinct ages and isotopic compositions in the southern and central Appalachian basement come from the Roan Mountain area, eastern Tennessee-western North Carolina. The data set indicates U-Pb zircon ages up to 1.8 Ga for igneous rocks, inherited and detrital zircon ages >2.0 Ga, Sm-Nd depleted mantle model (TDM) ages >2.0 Ga, and the most elevated 207Pb/204Pb observed in southeastern Laurentia. The combined U-Pb geochronologic and Sm-Nd and Pb isotopic data preclude derivation of southern and central Appalachian basement from any nearby crustal material and demonstrate that Grenville age crust in southeastern Laurentia is exotic and probably was transferred during collision and assembly of Rodinia. These new data better define the boundary between the exotic southern and central Appalachian basement and adjacent Laurentian Granite-Rhyolite province. ?? 2010 Geological Society of America.

  14. Rb-Sr and Sm-Nd Study of the D'Orbigny Angrite

    NASA Technical Reports Server (NTRS)

    Tonui, E. K.; Ngo, H.H.; Papanastassiou, D. A.

    2003-01-01

    D'Orbigny, is a relatively a new angrite find. Angrites are achondrites that show unique mineralogy and typically ancient crystallization ages. D Orbigny has been described extensively by. We have initiated a study of D Orbigny. A Pb-Pb model age of 4559 Ga has been reported. The presence of Pu-244 fission Xe in D Orbigny has also been reported. We present Sm-Nd and Rb-Sr results and a Mn-53-Cr-53 study is in progress. We had expected to find a relatively well-behaved Sm-Nd system, and distinct evidence for the Sm-146-Nd-142 system. Emphasis in this study was placed on the precise measurement of initial Sr-87/Sr-86, since primitive initial Sr-87/Sr-86 may be characteristic of the angrite parent body. Sr isotope measurements were obtained in the recently completed laboratories at JPL, using the ThermoFinnigan Triton mass spectrometer. Due to lower amounts of Nd and Sm, Sm-Nd data were obtained on the Lunatic I spectrometer at Caltech, due to established high ionization techniques, on this instrument using light rare earth oxide ions.

  15. Sm-Nd isotopic study of Precambrian/Cambrian sedimentary provenance in the Great Basin and implications for the tectonic evolution of the western US

    SciTech Connect

    Farmer, G.L.

    1985-01-01

    The Nd isotopic compositions and Sm-Nd model ages were determined for 14 Precambrian to Cambrian clastic miogeoclinal and 2 Lower Paleozoic eugeoclinal metasedimentary rocks in the Great Basin to determine the sediment source regions and constrain the tectonic evolution of the western margin of the continental US Upper Precambrian (McCoy Creek Group-MCG) and Lower Cambrian miogeoclinal sandstones and shales have homogeneous 147SM/144Nd values (.110 to .119) but show a regional variation in measured element of/sub Nd/, from values of -18 and -26 (T/sub DM/=1.9 and 2.5Ga) in the Pilot and Ruby Ranges in N. Nevada, to values clustering at -11 and -18 (T/sub DM/=1.3 and 1.9Ga) in the Deep Creek and Schell Creek Ranges in the east-central Great Basin. The isotopic variations in the MCG correspond spatially to changes in the element of/sub ND/(0) and T/sub DM/ Precambrian basement adjacent to the miogeocline, suggesting that the MCG were derived from these crustal terranes and were deposited close to the paleocontinental margin of the western US. An element of/sub Nd/(0)=22.14 (T/sub DM/=2.1 Ga) for deeper water miogeoclinal sediment in the southern Great Basin (Wyman Fm-White Mountains, California) requires a source either in nearby T/sub DM/=2.2Ga crust in the S. Sierra Nevada (Bennett and DePaolo, 1984), or in T/sub DM/>2.0Ga crustal terranes to the north, with the sediment having been transported southward via Precambrian longshore currents. Feldspathic sandstone of the Cambrian Harmony Formation in north-central Nevada has element of/sub Nd/(0)=-25.22 (T/sub DM/=2.4Ga), consistent with a northerly source in Archean crust of present-day Idaho, while Ordovician shale of the Vinini Fm. in central Nevada has element of/sub Nd/(0)=-17.6, identical to values for the MCG exposed directly to the east.

  16. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence

    NASA Astrophysics Data System (ADS)

    Brendan Murphy, J.; Damian Nance, R.

    2003-10-01

    In recent years, two end-member models for the formation of supercontinents have emerged. In the classical Wilson cycle, oceanic crust generated during supercontinent breakup (the interior ocean) is consumed during subsequent amalgamation so that the supercontinent turns “inside in” (introversion). Alternatively, following supercontinent breakup, the exterior margins of the dispersing continental fragments collide during reassembly so that the supercontinent turns “outside in” (extroversion). These end-member models can be distinguished by comparing the Sm-Nd crust-formation ages of accreted mafic complexes (e.g., ophiolites) in the collisional orogens formed during supercontinent assembly with the breakup age of the previous supercontinent. For supercontinents generated by introversion, these crust-formation ages postdate rifting of the previous supercontinent. For supercontinents generated by extroversion, the oceanic lithosphere consumed during reassembly predates breakup of the previous supercontinent, so that crust-formation ages of accreted mafic complexes are older than the age of rifting. In the Paleozoic Appalachian-Caledonide-Variscan orogen, a key collisional orogen in the assembly of Pangea, crust-formation ages of accretionary mafic complexes postdate the formation of the Iapetus Ocean (i.e., are younger than ca. 0.6 Ga), suggesting supercontinent reassembly by introversion. By contrast, the Neoproterozoic East African and Brasiliano orogens, which formed during the amalgamation of Gondwana, are characterized by mafic complexes with crust-formation ages (ca. 0.75 1.2 Ga) that predate the ca. 750 Ma breakup of Rodinia. Hence, these complexes must have formed from lithosphere in the exterior ocean that surrounded Rodinia, implying that this ocean was consumed during the amalgamation of Gondwana. These data indicate that Pangea and Gondwana were formed by introversion and extroversion, respectively, implying that supercontinents can be assembled

  17. Sm-Nd age and isotopic systematics of the bimodal suite, ancient gneiss complex, Swaziland

    USGS Publications Warehouse

    Carlson, R.W.; Hunter, D.R.; Barker, F.

    1983-01-01

    Studies of the development and stabilization of the Archaean crust often focus on the relative temporal relationships between the metamorphosed basaltic to ultramafic volcanic units (greenstone belts) and the sialic gneiss terrains that make up the oldest sections of the terrestrial crust. At the heart of this interest are the questions of the processes responsible for crust formation in the Archaean and whether or not the various units of an Archaean crustal section represent new additions to the crust from the mantle or are products of the reprocessing of even older crustal materials. One area where this controversy has been particularly pronounced is the Archaean crustal section of south-west Africa1-6. The oldest rocks in the Kaapvaal craton consist of the Onverwacht Group of mafic to ultramafic metavolcanics of the Barberton greenstone belt and a grey-gneiss complex termed the ancient gneiss complex (AGC) of Swaziland. We report here the results of a whole-rock Sm-Nd isotopic study of the AGC and the implications these data may have for crustal evolution in the Kaapvaal craton. ?? 1983 Nature Publishing Group.

  18. Isotope Sm-Nd age of the paleoproterozoic PGE-bearing Monchetundra massif trachytoid gabbronorites (Fennoscandian shield)

    NASA Astrophysics Data System (ADS)

    Kunakkuzin, Evgeniy; Bayanova, Tamara; Serov, Pavel; Borisenko, Elena

    2015-04-01

    Monchetundra massif is located in the central part of the Kola Peninsula (Russia) and it is the south-eastern part of the Main Ridge Intrusion. Monchetundra massif together with well-known layered mafic-ultramafic PGE-bearing intrusions in the Fennoscandian shield such as the Fedorovo-Pansky complex, the mt. Generalskaya, the Monchepluton is of interest as a target for the PGE prospecting (Mitrofanov et al. 2006; Nerovich et al., 2009; Grokhovskaya et al., 2003). According to some previously researchers (Nazimova, Rayan, 2008, Nerovich et al., 2009, Layered intrusions…p.1, 2004) rocks of the Monchetundra massif is subdivided into two to five syngenetic zones. Hence the last isotope-geochronological and isotope-geochemical data revealed that the massif includes at least four groups of mafic rocks distinguished by formation ages (Bayanova et al., 2010). The aim of this work is to present Sm-Nd dating results of trachytoid gabbronorites, which are the second mafic rocks group in the Monchetundra massif. The Sm-Nd investigations for these rocks were carried out for the first time. The second group of mafic rocks comprises of medium-grained and coarse-grained mesocratic gabbronorites of trachytoid texture, with they characterized by well-preserved primary magmatic minerals and gabbro-ophitic texture. The U-Pb ages on single zircon-baddeleyite for these rocks recently obtained (2505 ± 6 Ma, 2501 ± 8 Ma, 2504.4±2.7 Ma and 2507.5±7.7 Ma (Layered intrusions…p.1., 2004, Borisenko et al., 2013)). Two samples of trachytoid gabbronorites were selected to study these rocks by Sm-Nd isotopic method. Mineral isochrons plotted from plagioclase, ortho- and clinopyroxene and whole-rock minerals gave ages of 2496±27 (MSWD = 0.9; ɛNd = -1.6±0.5) and 2492±55 Ma (MSWD = 0.5; ɛNd = -1.7±0.5). The new Sm-Nd ages obtained are close to the U-Pb data on zircons and baddeleyites for this rocks group and consider as oridin of second mafic rocks group. All investigations are

  19. A Subchondritic Bulk Sm/Nd For The Earth Constrained By Nd Isotope Systematics Of Lunar Basalts: Implications For Evolving Terrestrial Mantle Reservoirs

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.

    2009-12-01

    The prevailing model for the origin of the Moon is that it formed from melt and vapor ejected from a giant cataclysmic collision between Proto-Earth and a Mars-sized impactor. The indistinguishable O, K, Cr, and W isotope compositions of the Earth and Moon are consistent with near- to complete-homogenization of the silicate portions of Earth and the impactor. If so, then the material that accreted to form the bulk Moon is likely to have a very similar Sm/Nd ratio as that for bulk silicate Earth. One recent study of lunar basalts shows that their coupled 142Nd-143Nd isotope systematics are consistent with a bulk Sm/Nd ratio for the Moon that was indistinguishable from the average for chondrites [1]. In contrast, a second recent study of the same and similar lunar basalts suggest that their coupled 142Nd-143Nd isotope systematics are consistent with a superchondritic bulk Sm/Nd ratio for the Moon similar to the present-day convecting mantle (MORB) reservoir in Earth [2]. To resolve this issue, the same lunar basalts as in [1] were re-measured for high precision Nd isotopes employing a multidynamic routine shown to be more accurate [3] than the static measurements previously obtained in [1] and in part [2]. The new multidynamic Nd isotope results, in combination with the 3 from [2], when corrected for neutron fluence, plot on a well correlated line that passes through a 147Sm/144Nd value of 0.213-0.214 at a 142Nd/144Nd of the modern terrestrial mantle. This is consistent with a model where the materials that formed the Moon are best explained by having a bulk Sm/Nd that is superchondritic and similar to the average for the present-day MORB reservoir that likely represents a significant portion of the Earth’s convecting mantle. If the terrestrial convecting mantle as sampled by MORB has remained relatively unchanged in its Sm/Nd over Earth history, as implied by these results, then an additional reservoir with superchondritic Sm/Nd is necessary to balance the

  20. Sm-Nd isotopic systematics of the ancient Gneiss complex, southern Africa

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Hunter, D. R.; Barker, F.

    1983-01-01

    In order to shed some new light on the question of the absolute and relative ages of the Ancient Gneiss Complex and Onverwacht Group, a Sm-Nd whole-rock and mineral isochron study of the AGC was begun. At this point, the whole-rock study of samples from the Bimodal Suite selected from those studied for their geochemical characteristics by Hunter et al., is completed. These results and their implications for the chronologic evolution of the Kaapvaal craton and the sources of these ancient rocks are discussed.

  1. Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Nyquist, Laurence E.; Shih, Chi-Yu; McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Peng, Zhan X.; Burger, Paul V.; Agee, Carl B.

    2016-03-01

    The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm-143Nd and 146Sm-142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45 Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56 Ga and U-Pb ages of phosphates at about 1.35-1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.

  2. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  3. Sm-Nd study of the Sudbury Complex, Ontario

    SciTech Connect

    Faggart, B.E. Jr.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Sm-Nd systematics of sixteen whole-rock samples from traverses across the North and South Ranges of the Sudbury Complex, Ontario, Canada were determined. Ten mineral separates from five of these rocks were also analyzed. An internal mineral isochron age of 1840 +/- 21 m.y. with an initial /sup 143/Nd//sup 144/Nd of 0.50986 +/- 4 was obtained for the crystallization of the norite of the Lower Irruptive. This age is in agreement with two high-precision U-Pb dates obtained from zircons in the same unit by other investigators. Within the Complex, Sm concentration values ranged from 14 to 62 times chondritic value in samples of norite and quartz diorite, respectively. Nd concentrations extended from 32 to 161 times that of chondrite with the values for the micropegmatite consistently averaging higher than those for the norite. Initial epsilon Nd values at 1840 m.y. range from -6.98 for a norite sample to -8.83 for a quartz diorite sample from the sublayer, thus falling on the crustal evolution trend of Nd as represented by Australian shales. The overall REE patterns for Sudbury samples also show a strong similarity to the REE abundances of upper crustal rocks. These data suggest that the Sudbury Complex originated entirely from the melting of crustal rocks by way of asteroid impact.

  4. Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Nebel, Oliver; McCulloch, Malcolm T.

    2011-08-01

    Mount Narryer and Jack Hills metasedimentary rocks in the Narryer Gneiss Complex of the Yilgarn Craton, Western Australia, contain zircons with ages up to 4.4 Ga, the oldest known crustal materials on Earth, and monazites up to 3.6 Ga. In this study, we have investigated 147Sm- 143Nd systematics of detrital and metamorphic monazites from these metasedimentary rocks using laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). All detrital monazites have negative initial ɛNd(t) values, indicating that their parental magmas formed by remelting of older crustal materials. A comparison between the initial ɛNd(t) values of the detrital monazites and granitoids in the Narryer Gneiss Complex indicates that the Mt. Narryer and Jack Hills sediments were partly derived from the most isotopically enriched surrounding granitoids with ages of ca. 3.6 and 3.3 Ga. The metamorphic monazites generally have lower initial ɛNd(t) values when compared to the detrital monazites. However, the detrital and metamorphic monazites show similar distributions of ɛNd(t) at the ages of sediment deposition (3.28 Ga for Mt. Narryer and 3.05 Ga for Jack Hills). In addition, multiple analyses on single monazite grains having core-rim structures reveal that the cores and the recrystallized rims had identical Nd isotopic compositions at the time of recrystallization. These findings indicate that older monazites are source of light rare earth elements for younger metamorphic monazite formation and, therefore, that monazite can inherit its primary Sm-Nd isotopic signature during the recrystallization processes. We calculated the Nd model ages for all analyzed monazites to estimate crustal residence time of their source materials. We find that no igneous monazites older than 4.0 Ga were recrystallized to form the monazites. This implies that the lack of Hadean monazites is not due to recrystallization of ancient monazites during later metamorphism, but due to high

  5. Accretionary wedge harzburgite serpentinization and rodingitization constrained by perovskite U/Pb SIMS age, trace elements and Sm/Nd isotopes: Case study from the Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Li, Xian-Hua; Putiš, Marián; Yang, Yue-Heng; Koppa, Matúš; Dyda, Marian

    2014-09-01

    . Overgrowths of spinel by andradite are occasionally observed in contact zones between the serpentinites and rodingites. LA-ICP-MS study revealed strong depletion in LREE from Prv (1) to Prv (2), and a more typically positive Eu anomaly for Prv (2). Our spider diagram depicts relative enrichment in U, Nb, La, Ce, Pr, Nd, and decreased Rb, Ba, Th, Ta, Pb, Sr, Zr in both Prv generations. The U/Pb SIMS concordia ages of Prv (1) from 3 samples range from 137 ± 1 Ma to 135 ± 1 Ma, with a mean of 135.6 ± 0.58 Ma, while Prv (2) was dated at 133.7 ± 5.4 Ma. Such negligible age differences imply a relatively short-lived rodingitization event responsible for crystallization of both Prv generations. The 143Nd/144Nd mean value of Prv (1) is 0.512153 ± 0.000017 by LA-MC-ICP-MS, thus corresponding to the initial ɛNd(t = 135) = - 8.2 ± 0.4 (math's mean). This suggests that the subducted and dehydrated continental crust was the main source of the interactive fluids which initiated serpentinization and rodingitization in the Neotethyan Meliatic accretionary wedge following closure of the Meliata-Hallstatt Triassic to Jurassic oceanic back-arc basin and the high-pressure metamorphism dated at ca. 160-150 Ma by 40Ar/39Ar.

  6. Sm-Nd and Rb-Sr isotope systematics of an Archean anorthosite and related rocks from the Superior Province of the Canadian Shield

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Wooden, J. L.; Phinney, W. C.; Morrison, D. A.

    1985-01-01

    Sm-Nd and Rb-Sr isotopic data for the Bad Vermilion Lake anorthosite in the Rainy Lake area of the Superior Province of northwesten Ontario show that direct ages of Archean anorthosites can be obtained with these isotopic systems despite the effects of low-grade metamorphism. There is sufficient spread in Sm/Nd between plagioclase megacrysts and coexisting mafic groundmass to allow the determination of reasonably precise internal Sm-Nd isochrons. Initial isotopic ratios of Nd and Sr add to the growing body of data indicating the Superior Province is underlain by depleted mantle.

  7. Sm-Nd and Ar-Ar Studies of DHO 908 and 489: Implications for Lunar Crustal History

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.; Park, J.; Bogard, D. D.; Garrison, D. H.; Yamaguchi, A.

    2011-01-01

    It is widely assumed that ferroan anorthosites (FANs) formed as flotation cumulates on a global lunar magma ocean (LMO). A corollary is that all FANs are approximately contemporaneous and formed with the same initial Nd-143/Nd-144 ratio. Indeed, a whole rock isochron for selected FANs (and An93 anorthosite) yields an isochron age of 4.42 +/- 0.13 Ga and initial Nd-143/Nd-144, expressed in epsilon-units, of epsilon(sub Nd,CHUR) = 0.3+/-0.3 relative to the CHondritic Uniform Reservoir , or epsilon(sub Nd,HEDPB)=-0.6+/-0.3 relative to the HED Parent Body. These values are in good agreement with the age (T) = 4.47+/-0.07 Ga, and epsilon(sub Nd,HEDPB) =-0.6 +/- 0.5 for FAN 67075. We also have studied anorthositic clasts in the Dhofar 908 and 489 lunar highland meteorites containing clasts of magnesian anorthosites (MAN) with Mg# approximately 75. Because of their relatively high Mg#, magnesian anorthosites should have preceded most FANs in crystallization from the LMO if both are LMO products. Thus, it is important to determine whether the Nd-isotopic data of MAN and FAN are consistent with a co-magmatic origin. We previously reported Sm-Nd data for white clast Dho 908 WC. Mafic minerals in this clast were too small to be physically separated for an isochron. However, we estimated initial Nd-143/Nd-144 for the clast by combining its bulk ("whole rock") Sm-Nd data with an Ar-39-Ar-40 age of 4.42+/-.04 Ga. Here we report additional Sm-Nd data for bulk samples of Dho 908 and its pair Dho 489.

  8. The Role of Accessory Phases in the Sm-Nd Isotope Systematics of the Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Fisher, C. M.; Vervoort, J. D.; Bowring, S. A.

    2015-12-01

    The Acasta Gneiss Complex (AGC) of the Slave Craton in the Northwest Territories, Canada, contains some of Earth's oldest continental crust. It is characterized by a range of compositionally diverse gneisses with crystallization ages of 3.3 to > 4.0 Ga1-5. The AGC has undergone a multistage history of metamorphism and deformation. Given these post-crystallization processes, the extent of Nd isotope heterogeneity suggested by published4-7 whole rock Sm-Nd analyses of these rocks has been called into question. Criticisms include the likelihood of mixed lithologies at the hand-sample scale and the potential for open-system behavior of the Sm-Nd isotopic system in these rocks. We obtained whole rock compositional, Sm-Nd and Lu-Hf isotope data paired with Hf in zircon and Nd in titanite and apatite data to further evaluate the isotope record, and use U-Pb and Lu-Hf of zircon as a basis for identifying mixed or complex samples. Preferential preservation of Lu-Hf over Sm-Nd isotope systematics in multiply deformed, complex rocks may be controlled by the minerals that dominate the Hf and Nd budgets, with the majority of the Hf effectively sheltered in zircon and the Nd largely hosted in accessory phases such as apatite and titanite. This composite dataset enables us to evaluate the possibility that Hf and Nd isotopic systematics have been decoupled in these samples that have such critical bearing on our understanding of early crust-forming processes. [1]Bowring and Williams (1999). CoMP, 134(1), 3-16. [2]Iizuka, T. et al. (2006) Geology, 34(4), 245-248. [3]Iizuka et al (2007). Precambrian Res, 153(3), 179-208. [4]Bowring et al. 1989. Nature, 340: 222-225. [5]Mojzsis et al. (2014). GCA, 133, 68-96. [6]Bowring and Housh (1995) Science 269, 1535-1540. [7]Moorbath et al (1997) Chem. Geol. 135, 213-231.

  9. Timing of Early Proterozoic collisional and extensional events in the granulite-gneiss-charnockite-granite complex, Lake Baikal, USSR: A U-Pb, Rb-Sr, and Sm-Nd isotopic study

    SciTech Connect

    Aftalion, M. ); Bibikova, E.V. ); Bowes, D.R. ); Hopwood, A.M. ); Perchuk, L.L. )

    1991-11-01

    In the Sharyzhalgay Complex of the Lake Baikal region in eastern Siberia Early Proterozoic collisional and extensional events were separated by ca. 100 m.yr. The earlier collisional event, associated with the development of granulites and gneisses as the result of high-grade dynamothermal metamorphism, took place close to 1965 {plus minus} 4 Ma. A {sup 207}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb isochron for zircon from five size fractions and a six point Rb-Sr whole-rock errorchron give generally corresponding ages of 1956 {plus minus} 8 and 1963 {plus minus} 163 Ma, respectively. The later extensional event, associated with charnockitization due to the uprise of fluids and heat in a regime corresponding to the middle to upper crustal levels of a Basin and Range-type province, was initiated in the 1880-1860 Ma period. The event was continued with magmatic emplacement of granitic masses into the deep levels of caldera-like structures, possibly during the upper time range of lower concordia intercept ages of 1817 +30/{minus}32 and 1797 +40/{minus}44 Ma for two distinctly different zircon populations in a pyroxene-bearing granodiorite interpreted as an evolved (and contaminated) product of the mantle-derived magma that was the source of CO{sub 2} involved in the charnockitization. Upper intercept ages of 2784 +48/{minus}45 and 2775 +61/{minus}55 Ma indicate late Archean crust at depth as the source region of the incorporated zircon. T{sub DM} ages from Sm-Nd isotopic data show that the protolith of the lithologically layered supracrustal assemblage, subsequently polyphase deformed and polymetamorphosed in Early Proterozoic times, was also formed in Early Proterozoic (not Archean) times.

  10. MKED1: A new titanite standard for in situ microanalysis of trace elements, Sm-Nd isotopes, and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Spandler, C.; Hammerli, J.; Hilbert-Wolf, H.; Sha, P.; Hu, Y.; Roberts, E.; Schmitz, M. D.

    2015-12-01

    Titanite has great potential as a petrogenetic indicator and mineral geochronometer as it can host high trace element concentrations and it occurs in a wide range of rock types. Here, we describe a potential new titanite standard for calibration of the chemical and isotopic composition of titanite of varying age and origin. Through comprehensive bulk analysis of mm-size crystal fragments and in-situ microanalysis, we show that the titanite, labeled MKED1, is largely free of inclusions and is homogenous at the level of analytical precision for major element, U-Pb isotope and Sm-Nd isotope composition. Some minor zoning in trace element composition is recognized using backscatter electron imaging, although the trace element concentrations of each of these zones are also very homogenous. MKED1 has high contents of REE, Th, U, and radiogenic Pb, but very low levels of common Pb. U-Pb isotope data (ID-TIMS and LA-ICP-MS) show MKED1 to be concordant with an age of ca. 1518 Ma. Cross calibration with other titanite standards demonstrates that MKED1 can be used as a primary standard for determining U-Pb ages of titanite ranging in age from Precambrian to Neogene. We also show that MKED1 is suitable as a Sm-Nd isotope standard due to its high REE concentrations and homogenous 147Sm/144Nd and 143Nd/144Nd content. We suggest MKED1 can be employed as a trace element, U-Pb isotope and Sm-Nd isotope standard for in situ or bulk analytical methods, including techniques that allow simultaneous collection of multiple elemental and/or isotopic data sets in situ. We present two case studies to demonstrate the potential of titanite analysis for resolving geological problems: The first examines the genesis of Cu-REE skarn mineralization from the Mt Isa Inlier, Australia, and the second study investigates the timing and origin of volcanism and sedimentation in the Western Branch of the East African Rift.

  11. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    SciTech Connect

    Marikos, M.A.; Barton, M.D. . Dept. of Geosciences)

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Nd and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.

  12. Provenance and sedimentary environments of the Proterozoic São Roque Group, SE-Brazil: Contributions from petrography, geochemistry and Sm-Nd isotopic systematics of metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Henrique-Pinto, R.; Janasi, V. A.; Tassinari, C. C. G.; Carvalho, B. B.; Cioffi, C. R.; Stríkis, N. M.

    2015-11-01

    The Proterozoic metasedimentary sequences exposed in the São Roque Domain (Apiaí Terrane, Ribeira Belt, southeast Brazil) consist of metasandstones and meta-felspathic wackes with some volcanic layers of within-plate geochemical signature (Boturuna Formation), a passive margin turbidite sequence of metawackes and metamudstones (Piragibu Formation), and volcano-sedimentary sequences with MORB-like basalts (Serra do Itaberaba Group; Pirapora do Bom Jesus Formation). A combination of zircon provenance studies in metasandstones, whole-rock geochemistry and Sm-Nd isotopic systematics in metamudstones was used to understand the provenance and tectonic significance of these sequences, and their implications to the evolution of the Precambrian crust in the region. Whole-rock geochemistry of metamudstones, dominantly from the Piragibu Formation, points to largely granitic sources (as indicated for instance by LREE-rich moderately fractionated REE patterns and subtle negative Eu anomalies) with some mafic contribution (responding for higher contents of Fe2O3, MgO, V, and Cr) and were subject to moderate weathering (CIA - 51 to 85). Sm-Nd isotope data show three main peaks of Nd TDM ages at ca. 1.9, 2.1 and 2.4 Ga; the younger ages define an upper limit for the deposition of the unit, and reflect greater contributions from sources younger than the >2.1 Ga basement. The coincident age peaks of Nd TDM and U-Pb detrital zircons at 2.1-2.2 Ga and 2.4-2.5 Ga, combined with the possible presence of a small amount of zircons derived from mafic (gabbroid) sources with the same ages, as indicated by a parallel LA-ICPMS U-Pb dating study in metapsammites, are suggestive that these were major periods of crustal growth in the sources involving not only crust recycling but also some juvenile addition. A derivation from similar older Proterozoic sources deposited in a passive margin basin is consistent with the main sedimentary sequences in the São Roque Domain being broadly coeval and

  13. Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systematics in an oceanic crustal section: Evidence from the Samial ophiolite

    SciTech Connect

    McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor, H.P. Jr.

    1981-04-10

    The Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systems have been used to distinguish between the effects of seafloor hydrothermal alteration and primary magmatic isotopic variations. The Sm-Nd isotopic system is essentially unaffected by seawater alteration, while the Rb-Sr and /sup 18/O//sup 16/O systems are sensitive to hydrothermal interactions with seawater. Sm-Nd mineral isochrons from the cumulate gabbros of the Samail ophiolite have an initial /sup 143/Nd//sup 144/Nd ratio of e/sub Nd/ = 7.8 +- 0.3, which clearly substantiates the oceanic affinity of this complex. The initial /sup 143/Nd//sup 144/Nd ratios for the harzburgite, plagiogranite, sheeted diabase dikes, and basalt units have a limited range in e/sub Nd/ of from 7.5 to 8.6, indicating that all the lithologies have distinctive oceanic affinities, although there is also some evidence for small isotopic heterogeneities in the magma reservoirs. The Sm-Nd mineral isochrons give crystallization ages of 128 +- 20 m.y. and 150 +- 40 m.y. from Ibra and 100 +- 20 m.y. from Wadi Fizh, which is approximately 300 km NW of Ibra. These crystallization ages are interpreted as the time of formation of the oceanic crust. The /sup 87/Sr//sup 86/Sr initial ratios on the same rocks have an extremely large range of from 0.7030 to 0.7065 and the d/sup 18/O values vary from 2.6 to 12.7. These large variations clearly demonstrate hydrothermal interaction of oceanic crust with seawater.

  14. New U-Pb and Sm-Nd isotope data of the age of formation and metamorphic alteration of the Kandalaksha-Kolvitsa gabbro-anorthosite complex (Baltic Shield)

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel; Chashchin, Viktor

    2016-04-01

    The aim of this research was to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) in Kandalaksha-Kolvitsa gabbro-anorthosite complex. Kandalaksha-Kolvitsa gabbro-anorthosite complex is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate metamorphism. New U-Pb and Sm-Nd isotopic and geochronological data for the rocks of the Kandalaksha-Kolvitsa Paleoproterozoic gabbro-anorthosite complex is presented. For the first time single zircon grains from metagabbros of Kolvitsa massif were dated 2448±5 Ma, using U-Pb method with an artificial 205Pb tracer. Sm-Nd isotopic age of the metamorphic minerals apatite, garnet and sulphide WR Kolvitsa array is 1985 ± 17 Ma, which is interpreted granulite metamorphism. Two fractions of single zircons from anorthosite of the Kandalaksha massif gave U-Pb age 2450± 3 Ma. Leucocratic gabbro-norite (Kandalaksha massif) were dated by U-Pb on single zircon, with age up to 2230±10 Ma. This age reflects the time of granulite metamorphism according to data of [1]. Two fractions of rutile from anorthosite of the Kandalaksha massif have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile 400-450 ° C [2], thus cooling of the massif to these temperatures was about 1.7 Ga. These data suggested two stages of metamorphic transformations of the massif. Sm-Nd research Kandalaksha massif reflected the age of the high-temperature metasomatic transformations -1887 ± 37 Ma. Time of regional fluid processing - 1692 ± 71 Ma. A model Sm-Nd age metagabbros Kolvitsa massif is 3.3 Ga with a negative value ɛNd = -4.6, which corresponds to the most likely primary enriched mantle reservoir of

  15. Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008

    NASA Astrophysics Data System (ADS)

    Qin, Liping; Carlson, Richard W.; Alexander, Conel M. O.'D.

    2011-12-01

    chondrites and all modern Earth rocks, leaving decay of 146Sm and a superchondritic Sm/Nd ratio as the likely explanation for Earth's high 142Nd/ 144Nd.

  16. Significance of the Sm-Nd isotopic systematics of the Akilia Association

    NASA Technical Reports Server (NTRS)

    Gruau, G.; Nutman, A.; Jahn, B. M.

    1986-01-01

    Samarium-Neodymium analyses were carried out on fourteen samples of basic to ultrabasic metavolcanics from several enclaves of the Amitsoq gneisses (T = to or approximately 3,700 Ma). Field observations suggest that all the analyzed rocks belong to the pre-Amitsoq Akilia Association. Consequently, a minimum age of 3,700 Ma is postulated for the emplacement of their protoliths. When all the data points are put together in a conventional isochron diagram, no clear isochron relationship can be discerned. However, the points seem to fall within a band broadly corresponding to an age of 3,600 Ma. The isotopic results are difficult to interpret satisfactorily. Two contrasting interpretations are offered and summarized: (1) data scatter as a result of open system behavior; and (2) data scatter due to a melange of data sets defining two distinct isochrons.

  17. An extremely low U Pb source in the Moon: UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic systematics and age of lunar meteorite Asuka 881757

    USGS Publications Warehouse

    Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.

    1993-01-01

    We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post

  18. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    NASA Astrophysics Data System (ADS)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting <50 ppm 2 sigma analytical precision on a 400pg in-house standard and continued improvement in blanks (<15pg full procedural blanks). Additionally, employing a nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between

  19. Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201

    NASA Technical Reports Server (NTRS)

    Borg, Lars E.; Nyquist, Larry E.; Taylor, Larry A.; Wiesmann, Henry; Shih, Chi-Y.

    1997-01-01

    Isotopic analyses of mineral, leachate, and whole rock fractions from the Martian shergottite meteorite QUE 94201 yield Rb-Sr and Sm-Nd crystallization ages of 327 +/- 12 and 327 +/- 19 Ma, respectively. These ages are concordant, although the isochrons are defined by different fractions within the meteorite. Comparison of isotope dilution Sm and Nd data for the various QUE 94201 fractions with in situ ion microprobe data for QUE 94201 minerals from the literature demonstrate the presence of a leachable crustal component in the meteorite. This component is likely to have been added to QUE 94201 by secondary alteration processes on Mars, and can affect the isochrons by selectively altering the isotopic systematics of the leachates and some of the mineral fractions. The absence of crustal recycling processes on Mars may preserve the geochemical evidence for early differentiation and the decoupling of the Rb-Sr and Sm-Nd isotopic systems, underscoring one of the fundamental differences between geologic processes on Mars and the Earth.

  20. Rb-Sr and Sm-Nd Study of Asuka 881394: Evidence of "Late" Metamorphism

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 [1,2,3] and has a Pb-207/Pb-206 age of 4566.5 plus or minus 0.2 Ma [3], the oldest for an achondrite. Preliminary results showed initial Sm-146/Sm-144 = (7.4 plus or minus 1.2) x 10(exp -3), indicative of an ancient age, but Rb-87 - Sr-87 and Sm-147 - Nd-143 ages of 4370 plus or minus 60 and 4490 plus or minus 20 Ma, resp. [1], were younger than expected from the presence of short-lived nuclides. We revisit the Rb-Sr and Sm-Nd chronology of A881394 in an attempt to establish whether late metamorphism led to inconsistency in its apparent ages.

  1. Sm-Nd and Rb-Sr Isotopic Systematics of a Heavily Shocked Martian Meteorite Tissint and Petrogenesis of Depleted Shergottites

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Park, J.; Agee, Carl B.

    2014-01-01

    Tissint is a very fresh Martian meteorite that fell near the town of Tissint in Morocco on July 18, 2011. It contains abundant olivine megacrysts (23%) in a fine-grained matrix of pyroxene (55%), maskelynitized plagioclase (15%), opaques (4%) and melt pockets (3%) and is petrographically similar to lithologies A and C of picritic shergottite EETA 79001 [1,2]. The presence of 2 types of shock-induced glasses and all 7 high-pressure mineral phases that were ever found in melt pockets of Martian meteorites suggests it underwent an intensive shock metamorphism of 25 GPa and 2000 C localized in melt pockets [2]. Mineral textures suggest that olivines, pyroxenes and plagioclases probably did not experience such hightemperature. Earlier determinations of its age yielded 596+/-23 Ma [3] and 616+/-67 Ma [4], respectively, for the Sm-Nd system and 583+/-86 Ma for the Lu-Hf system [4], in agreement with the 575+/-18 Ma age of the oldest olivine-phyric depleted shergottite Dho 019 [5]. However, the exposure ages of Tissint (1 Ma [1, 6, 7]) and Dho 019 (20 Ma [8]) are very different requiring two separate ejection events. These previously determined Sm-Nd and Lu-Hf ages are older than the Ar-Ar maskelynite plateau age of 524+/-15 Ma [9], reversing the pattern usually observed for Martian meteorites. In order to clarify these age issues and place models for Tissint's petrogenesis on a firm basis, we present new Rb-Sr and Sm- Nd isotopic results for Tissint, and discuss (a) the shock effects on them and the Ar-Ar chronometer, (b) correlation of the determined ages with those of other depleted shergottites, and (c) the petrogenesis of depleted shergottites. Since the meteorite is a recent fall, terrestrial contamination is expected to be minimal, but, the strong shock metamorphism might be expected to compromise the equilibrium of the isotopic systems.

  2. pre-Mesozoic evolution of the basement of the Catalan Coastal Ranges: implications from geochemical and Sm-Nd isotope data of the Palaeozoic succession of the Collserola Range

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pin, Christian

    2016-04-01

    In the whole of the Western Europe and neighbouring areas numerous studies have addressed the provenance of pre-Mesozoic sedimentary rocks and the Palaeozoic geodynamic evolution using the Sm-Nd systematics. However, at present, there are still large areas of the Variscan mountain chain without systematic determinations of their whole - rock Sm-Nd isotope signatures. This is the case of the Palaeozoic blocks of the Catalan Coastal Ranges (NE Iberia). In the context of the Variscan belt many authors interpret the Palaeozoic basement of the Catalan Coastal Ranges as part of the southern foreland basin of the mountain belt. The pre-Mesozoic rocks in the Catalan Coastal Ranges exhibit important stratigraphical affinities with those outcropping in the Eastern Pyrenees, Montagne Noire, Sardinia and Iberian Range. Paleogeographic reconstructions predict that the Catalan Coastal Ranges were located in a transitional area between the northern branch of the Ibero-Armorican arc and the core of the arc. The Collserola Range, located in the metropolitan area of Barcelona, includes a representative Palaeozoic stratigraphic section, from Cambro-Ordovician to Carboniferous, of the central part of the Catalan Coastal Ranges. In this presentation we present an up-to-date review of the stratigraphy and structure of the Palaeozoic of the Collserola Range, and provide geochemical and Sm-Nd isotope data to constrain the Pre-Mesozoic crustal evolution of this sector of the Variscan belt. Geochemical compositions indicate that the Palaeozoic siliciclastic rocks of the Collserola Range were fed by a relative mature heterogeneous source of sediment, comprising from quartz-rich sediments to intermediate igneous rocks. The siliciclastic rocks of the Collserola Range show great geochemical affinity with the turbidites of passive margins. The Sm-Nd signature of the siliciclastic rocks is compatible with those of the Palaeozoic and Late Proterozoic fine grained siliciclastic rocks of the

  3. Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria)

    NASA Astrophysics Data System (ADS)

    Thöni, Martin; Jagoutz, Emil

    1992-01-01

    New Sm-Nd, Rb-Sr, and Pb-Pb isotope data on eclogites and metagabbros from the Austroalpine Koralpe and Saualpe basement nappes of the eastern Alps are presented. These rocks are encased in polymetamorphic gneisses and micaschists that yield tNdCHUR ages of between 1.04 and 1.81 Ga. ɛ0Nd values from seven eclogite whole rocks range between +7.0 and +10.8; 147Sm /144Nd is close to modern DM In a 208pb /206Pb diagram all samples plot very close to the MORB field. Most analyses of the major mineral components, garnet, clinopyroxene, zoisite/epidote, phengite, amphibole and rutile, show disequilibrium in all three isotopic systems. Internal Sm-Nd and Rb-Sr mineral isochron ages range between 53 and 151 Ma. A minimum age of around 100 Ma is estimated for the crystallization of the high-P paragenesis garnet + omphacite + zoisite + kyanite + amphibole + quartz + rutile ± phengite + accessories, on the basis of these results. Later thermal overprint, fluid activity, and retrogression during exhumation of the eclogites involved (re-)crystallization of amphibole and garnet, thus leading in part to geochronologically poorly interpretable isochrons, without strict time significance. The last (eo-Alpine) thermal climax, involving static (re-)crystallization of garnet, staurolite and kyanite within the eclogite host rocks, is defined by concordant Sm-Nd and Rb-Sr isochrons on garnet, white mica, and staurolite at around 90 ± 3 Ma. Biotite Rb-Sr ages from these rocks range between 57 and 92 Ma. Plagioclase, pyroxene, and whole rock, analyzed from a relic gabbro core that shows continuous transition into eclogite from the southern Koralpe, yielded a Sm-Nd isochron of 275 ± 18 Ma, and an initial 143Nd /144Nd ratio of 0.51271 ± 2 ( ɛtNd = + 8.4 ± 0.5). This age is interpreted to date primary magmatic crystallization, thus setting also an uppermost time limit for eclogite metamorphism in the study area. The same outcrop yields a Sm-Nd isochron age for garnet and whole rock

  4. Peering Through a Martian Veil: ALHA84001 Sm-Nd Age Revisited

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, Chi-Yu

    2013-01-01

    The ancient Martian orthopyroxenite ALH84001experienced a complex history of impact and aqueous alteration events. Here we summarize Sm-147-Nd-143 and Sm-146-Nd-142 analyses performed at JSC. Further, using REE data, we model the REE abundance pattern of the basaltic magma parental to ALH84001 cumulus orthopyroxene. We find the Sm-146-Nd-142 isotopic data to be consistent with isotopic evolution in material having the modeled Sm/Nd ratio from a time very close to the planet's formation to igneous crystallization of ALH84001 as inferred from the Sm-Nd studies.

  5. The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: A review with new zircon ages, geochemistry, Sm-Nd isotopes, stratigraphy and palaeogeography

    NASA Astrophysics Data System (ADS)

    Linnemann, Ulf; Herbosch, Alain; Liégeois, Jean-Paul; Pin, Christian; Gärtner, Andreas; Hofmann, Mandy

    2012-05-01

    This study provides an up-to-date and comprehensive review of the Early Palaeozoic evolution of the Brabant Massif belonging to the Anglo-Brabant Deformation Belt. Situated at the southeastern side of Avalonia microplate, it is the only well-known part of the northern passive margin of the Rheic Ocean. The Cambrian-Silurian sedimentary pile is > 13 km thick, with > 9 km for the Cambrian only. The unraveling of this continuous registration reflects the successive rifting and drifting of Avalonia from the Gondwana mainland, followed by soft-collisional processes with Baltica and finally the formation of Laurussia. Based on recently established detailed stratigraphy, sedimentology and basin development, on U-Pb LA-ICP-MS analyses of igneous and detrital zircon grains along with geochemical data including Sm-Nd isotopes, a new geodynamic and palaeogeographic evolution is proposed. Brabant Megasequence 1 (lower Cambrian to lowermost Ordovician, > 9 km thick) represents an embayment of the peri-Gondwanan rift from which the Rheic Ocean has evolved. Detrital zircon ages demonstrate that the Brabant is a typical peri-Gondwanan terrane with a major Pan-African (Neoproterozoic age) and a mixed West African and Amazonian source (Palaeoproterozoic, Archaean and some Mesoproterozoic age). The transition towards the Avalonia drifting is marked by an unconformity and a short volcanic episode. The northward drift of Avalonia towards Baltica is recorded by the Megasequence 2 (Middle to Upper Ordovician, 1.3 km thick). The source for Mesoproterozoic zircons vanished, as the result of the Rheic Ocean opening and the isolation from Amazonian sources. The transition to Megasequence 3 is marked by a drastic change in palaeobathymetry and an important (sub)volcanic episode during a tectonic instability period (460-430 Ma), reflecting the Avalonia-Baltica soft docking as also shown by the reappearance of Mesoproterozoic detrital zircons, typical of Baltica. Unradiogenic Nd isotope

  6. High-spatial-resolution isotope geochemistry of monazite (U-Pb & Sm-Nd) and zircon (U-Pb & Lu-Hf) in the Old Woman and North Piute Mountains, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Phillips, Stacy E.; Hanchar, John M.; Miller, Calvin F.; Fisher, Christopher M.; Lancaster, Penny J.; Darling, James R.

    2014-05-01

    Recent improvements in analytical capabilities allow us to reveal details of magmatic processes at an increasingly finer spatial and temporal scale. In situ analyses of the isotopic and trace element composition of accessory minerals at the sub-grain scale have proven to be effective tools for solving a wide range of geological problems. This study presents new data on accessory minerals including monazite & zircon, examined by in situ LA-ICP-MS and Laser Ablation Split Stream (LASS) techniques, analyzing multiple isotopic systems (U-Pb + Sm-Nd, and U-Pb + Lu-Hf in monazite and zircon, respectively) in order to track geochemical changes over time through a magmatic system. The late Cretaceous granitoids of the Old Woman Mountains in the Mojave Desert, California, provide an excellent opportunity to apply these analytical techniques. The peraluminous granites of the Sweetwater Wash, Painted Rock, and North Piute plutons represent different depths of the magmatic system, and are well understood in terms of field relations and whole-rock geochemistry. A preliminary study on the Sweetwater Wash monazites (Fisher et al., in preparation) has revealed significant inter-grain isotopic heterogeneity in the ɛNd composition of the source region (~1700 Ma); however, the U-Pb ages show an isotopic resetting during emplacement at ~75 Ma. This decoupling of U-Pb and Sm-Nd isotopic systems is suggested by Fisher et al. to be due to recrystallisation and/or dissolution-reprecipitation of monazite. If grain boundary diffusion of Pb overrides the more kinetically limited volume diffusion, then the U-Pb systematics will be reset while Sm and Nd remain immobile in the monazite structure as essential structural components of the lattice. This new data will allow the further investigation of these preliminary results, providing new insights into the observed isotopic disequilibrium, with the LASS technique accurately linking the multiple isotopic systems. This will provide important

  7. Zircon age range and sources of alkaline rocks from the Kurgusul intrusion, Kuznetsk Alatau: The first U-Pb (SHRIMP II) and Sm-Nd isotope data

    NASA Astrophysics Data System (ADS)

    Vrublevskii, V. V.; Gertner, I. F.; Tishin, P. A.; Bayanova, T. B.

    2014-12-01

    U-Pb isotope analysis of basic feldspathoid rocks (juvites) of the Kurgusul intrusion, NE Kuznetsk Alatau, revealed three generations of zircons of various ages (˜1.3-1.5 Ga; 484.3 ± 5.5 and 393.6 ± 9.2Ma). This suggests several stages of regional alkaline basic magmatism in the Middle Cambrian-Early Ordovician and Early-Middle Devonian and melting of the Mesoproterozoic continental crust, which form part of the basement of the Kuznetsk Alatau terrane. The trace element geochemical data indicate a continental margin setting characterized by the complex interaction of a plume-related, supra-subduction zone and crustal materials. A possible model of the magmatic evolution assumes that the ascent of a plume at the Cambrian-Ordovician boundary induced generation of the initial alkaline basaltic magmas and metasomatism and erosion of the lower lithosphere. Repeated partial melting of the lower crust after a 100 Myr period produced new magma batches of alkaline composition, which inherited zircons from the preceding episode of magma generation. The inherited juvenile magmatic source (PREMA + E-type MORB + EM) is confirmed by similarities in the Sm-Nd isotopic signatures (ɛNd( T) ≈ +4.5 to +5.7, T(Nd)DM ≈ 0.8-0.9 Ga) of derivatives of regional alkaline basic complexes of different ages.

  8. Hf-W, Sm-Nd, and Rb-Sr isotopic evidence of late impact fractionation and mixing of silicates on iron meteorite parent bodies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory A.; Lee, Der-Chuen; Ruzicka, Alex M.; Prinz, Martin; Taylor, Lawrence A.; Halliday, Alex N.

    2001-03-01

    We report the first Sm-Nd and Rb-Sr isotopic analyses of silicate inclusions in four IIE iron meteorites: Miles, Weekeroo Station A and B, and Watson. We also report the Hf-W isotopic composition of a silicate inclusion from Watson and 182W/ 184W of the host FeNi metal in all four IIEs. The host metal in Watson has a negative ɛW value (-2.21±0.24), similar to or higher than other iron meteorites [1,35] and consistent with segregation of metal from silicate early in solar system history. However, the large silicate inclusion in the Watson IIE iron yielded a chondritic ɛW value (-0.50±0.55), thus indicating a lack of equilibration with the FeNi host within the practical lifetime of activity of the parent 182Hf (˜50 Ma). One of the silicate inclusions in Miles is roughly chondritic in major-element composition, has a present-day ɛNd of +10.3, relatively non-radiogenic 87Sr/ 86Sr (0.714177±13), and a TCHUR age of 4270 Ma. Two silicate inclusions from Weekeroo Station and one from Watson exhibit fractionated Sm/Nd and Rb/Sr ratios, and more radiogenic 87Sr/ 86Sr (0.731639±12 to 0.791852±11) and non-radiogenic ɛNd values (-5.9 to -13.4). The silicate inclusion in Watson has a TCHUR age of 3040 Ma, in agreement with previously determined 4He and 40Ar gas retention ages, indicative of a late thermal event. A later event is implied for the two silicate inclusions in Weekeroo Station, which yield indistinguishable TCHUR ages of 698 and 705 Ma. Silicate inclusions in IIE iron meteorites formed over a period of 3 billion yr by impacts, involving an H-chondrite parent body and an FeNi metal parent body. The LILE-enriched nature of some of these silicates suggests several stages of melting, mixing, and processing. However, there is little evidence to suggest that the silicates in the IIE irons were ever in equilibrium with the host FeNi metal.

  9. Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami

    NASA Technical Reports Server (NTRS)

    Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.

  10. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    USGS Publications Warehouse

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  11. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1985-01-01

    The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.

  12. The early crust of the Volgo-Uralian segment of the East European Craton: Isotope-geochronological zirconology of metasedimentary rocks of the Bolshecheremshanskaya Formation and their Sm-Nd model ages

    NASA Astrophysics Data System (ADS)

    Bibikova, E. V.; Bogdanova, S. V.; Postnikov, A. V.; Fedotova, A. A.; Claesson, S.; Kirnozova, T. I.; Fugzan, M. M.; Popova, L. P.

    2015-01-01

    We present the results of isotope-geochronological study of metasedimentary rocks of the Bolshecheremshanskaya Formation of the Volgo-Uralian segment of the East European Craton carried out to identify their protoliths. 16 samples of high-alumina gneisses from well cores were studied using the Sm-Nd isotope method and TNd(DM) model ages. Accessory zircons were selected from rocks with the most ancient model ages (more 3.2 Ga) in three wells: Minnibaevskaya 20000, Novo-Elkhovskaya 20009, and Zai-Karatayskaya 12930 in South Tatarstan. The isotope U-Pb dating of 200 zircon grains was performed on a Cameca 1280 NORDSIM secondary ion mass spectrometer at the Natural History Museum (Stockholm, Sweden). The most applicable sites for analysis of zircon crystals were pre-selected based on cathodoluminescence images. The analytical results demonstrate the diversity of zircon groups in age from 3.8 to 2.6 Ga and together with geochemical features of metasedimentary rocks of the Bolshecheremshanskaya Formation suggest the heterogeneous composition and age of provenance areas under denudation. Occurrence of Eoarchean and Paleoarchean zircons in the clastic material of the protolith of the Bolshecheremshanskaya gneisses indicates the existence of Early Archean crustal terrains in Volgo-Uralia.

  13. Decoupling of the Lu-Hf, Sm-Nd, and Rb-Sr isotope systems in eclogites and a garnetite from the Sulu ultra-high pressure metamorphic terrane: Causes and implications

    NASA Astrophysics Data System (ADS)

    Liu, Yung-Hsin; Yang, Huai-Jen; Takazawa, Eiichi; Satish-Kumar, Madhusoodhan; You, Chen-Feng

    2015-10-01

    The whole-rock Hf, Sr and Nd isotope data of five high-Fe-Ti eclogites, nine high-Al eclogites, and a garnetite from the Sulu ultrahigh pressure (UHP) metamorphic terrane at eastern China were analyzed to resolve the causes for the decoupling of the Lu-Hf, Sm-Nd, and Rb-Sr isotope systems in these UHP rocks and to infer their protolith characteristics. Seven of the nine high-Al eclogites define an 87Rb/86Sr-87Sr/86Sr errorchron age of 192 ± 43 Ma (MSWD = 2.8), which is within the time span of retrograde metamorphism despite the large uncertainty. The high-Fe-Ti eclogites and garnetite, however, have low 87Rb/86Sr ratios of < 0.031 with scattered 87Sr/86Sr ratios of 0.7042-0.7058. Accordingly, it is inferred that the Rb-Sr isotope system in the samples reflects the effects of processes postdating the UHP metamorphism. Despite having different constituent mineral assemblages and whole rock geochemistry, the samples, however, define a 147Sm/144Nd-143Nd/144Nd errorchron age of 232 ± 36 Ma (MSWD = 4.6). Although the uncertainty of ± 36 Ma implies incomplete Nd isotope equilibrium among the samples, the large overlap between this errorchron age span and the mineral isochron ages of 245-210 Ma for the UHP metamorphism indicates the control of peak metamorphism on the Sm-Nd isotope system. The incomplete Nd isotope re-equilibration was accompanied by metamorphic modification on the Sm/Nd ratios as indicated by the U-shaped LREE patterns. The initial εNd(780) values of the protolith rocks calculated from the Sm/Nd ratios of the samples deviate from the igneous initial εNd(t)-εHf(t) trend to significantly lower values, consistent with the metamorphic increase in the Sm/Nd ratios. In contrast, the Lu/Hf ratios are generally within the range for basalts and do not vary systematically with the 176Hf/177Hf ratios. The protolith εHf(780) values calculated from the Lu/Hf ratios of the samples are nearly identical to the initial εHf(t) values of the ~ 780 Ma magmatic zircon

  14. Sm-Nd, K-Ar and petrologic study of some kimberlites from eastern United States and their implication for mantle evolution

    USGS Publications Warehouse

    Basu, A.R.; Rubury, E.; Mehnert, H.; Tatsumoto, M.

    1984-01-01

    We provide new data on Sm-Nd systematics, K-Ar dating and the major element chemistry of kimberlites from the eastern United States (mostly from central New York State) and their constituent mineral phases of olivine, clinopyroxene, garnet, phlogopite and perovskite. In addition, we report Nd-isotopes in a few kimberlites from South Africa, Lesotho and from the eastern part of China. The major element compositions of the New York dike rocks and of their constituent minerals including a xenolith of eclogite are comparable with those from the Kimberley area in South Africa. The K-Ar age of emplacement of the New York dikes is further established to be 143 Ma. We have analyzed the Nd-isotopic composition of the following kimberlites and related rocks: Nine kimberlite pipes from South Africa and Lesotho, two from southern India; one from the U.S.S.R., fifteen kimberlite pipes and related dike rocks from eastern and central U.S. and two pipes from the Shandong Province of eastern China. The age of emplacement of these kimberlites ranges from 1300 million years to 90 million years. The initial Nd-isotopic compositions of these kimberlitic rocks expressed as e{open}NdIwith respect to a chondritic bulk-earth growth-curve show a range between 0 and +4, with the majority of the kimberlites being in the range 0 to +2. This range is not matched by any other suite of mantle-derived igneous rocks. This result strengthens our earlier conclusion that kimberlitic liquids are derived from a relatively primeval and unique mantle reservoir with a nearly chondritic Sm/Nd ratio. ?? 1984 Springer-Verlag.

  15. Sm-Nd systematics of a tonalitic augen gneiss and its constituent minerals from northern Michigan

    USGS Publications Warehouse

    Futa, K.

    1981-01-01

    The Sm-Nd isotopic system of a tonalitic augen gneiss and its constituent minerals from northern Michigan was disturbed during metamorphism. Sm-Nd zircon ages are lower than the wholerock Sm-Nd model age. However, closely associated pairs of minerals (for example, sphene and biotite or apatite and plagioclase) retain their apparent metamorphic ages. The Sm-Nd model age for the tonalitic augen gneiss of 3919 ?? 30myr, appears to reflect open system behavior during metamorphism. A mineralogically different gneiss from the same location has a Sm-Nd model age of 3520 ?? 70 myr. The two whole rocks differ in their Sm-Nd and Rb-Sr systematics and in their chondrite-normalized rare earth element (REE) patterns. The whole-rock-normalized mineral REE patterns show the contribution of the major and trace minerals to the REE content of the whole rock. The trace minerals contain a significant amount of the total REE. ?? 1981.

  16. Sm Nd isotope systematics and REE data for leucotroctolites and their amphibolitized equivalents of the Niquelândia Complex upper layered series, central Brazil: further constraints for the timing of magmatism and high-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Ferreira Filho, C. F.; Pimentel, M. M.

    2000-12-01

    The Barro Alto, Niquelândia, and Cana Brava Complexes are major Proterozoic layered intrusions in central Brazil that were affected by high-grade metamorphism with associated ductile deformation during the Neoproterozoic (770-795 Ma). Recent studies recognized that the Niquelândia Complex comprises two petrologically distinct and tectonically juxtaposed magmatic systems: a younger Upper Layered Series to the west and an older Lower Layered Series to the east. Previous geochronological studies on Lower Series rocks suggested a Paleoproterozoic (ca 2.0 Ga) age for the Lower Series magmatic event. New trace element data matched with Sm-Nd isotope data for Upper Series samples yielded well-constrained and original geochronological information. The 1.35 Ga age of the Upper Series magmatism reported in this paper indicates a much younger age of the Upper Series compared with the Lower Series. The tectonic contact between these two distinct magmatic systems is now raised to the category of a major Paleo-Mesoproterozoic crustal discontinuity.

  17. Rb-Sr And Sm-Nd Ages, and Petrogenesis of Depleted Shergottite Northwest Africa 5990

    NASA Technical Reports Server (NTRS)

    Shih, C. Y.; Nyquist, L. E.; Reese, Y.; Irving, A. J.

    2011-01-01

    Northwest Africa (NWA) 5990 is a very fresh Martian meteorite recently found on Hamada du Draa, Morocco and was classified as an olivine-bearing diabasic igneous rock related to depleted shergottites [1]. The study of [1] also showed that NWA 5990 resembles QUE 94201 in chemical, textural and isotopic aspects, except QUE 94201 contains no olivine. The depleted shergottites are characterized by REE patterns that are highly depleted in LREE, older Sm-Nd ages of 327-575 Ma and highly LREE-depleted sources with Nd= +35+48 [2-7]. Age-dating these samples by Sm-Nd and Rb-Sr methods is very challenging because they have been strongly shocked and contain very low abundances of light rare earth elements (Sm and Nd), Rb and Sr. In addition, terrestrial contaminants which are commonly present in desert meteorites will compromise the equilibrium of isotopic systems. Since NWA 5990 is a very fresh meteorite, it probably has not been subject to significant desert weathering and thus is a good sample for isotopic studies. In this report, we present Rb-Sr and Sm-Nd isotopic results for NWA 5990, discuss the correlation of the determined ages with those of other depleted shergottites, especially QUE 94201, and discuss the petrogenesis of depleted shergottites.

  18. Diagenetic resetting of Sm-Nd isotope systematics in Wilcox Group sandstones and shales, San Marcos Arch, south-central Texas

    SciTech Connect

    Awwiller, D.N.; Mack, L.E. )

    1989-09-01

    Preliminary Sm-Nd analyses of sandstones and shales from the Wilcox Group (upper Paleocene-lower Eocene) suggest that the whole-rock Sm-Nd signature is changed by diagenesis. Samples are obtained from the San Marcos arch, south-central Texas, at depths ranging from outcrop to 15,000 ft. Samples from above the depth of intense illitization and feldspar reactions (about 10,000 ft) have whole-rock Nd model ages of about 1,500-1,400 Ma, whereas samples buried deeper than 13,000 ft have Nd model ages of about 1,700-1,500 Ma. The similar depositional age of all samples makes change in provenance an unlikely cause of the variation. Diagenetic modification is the only reasonable explanation for the observed differences. Sm and Nd reservoirs within the shale change considerably with progressive diagenesis. Outcrop samples contain subequal concentrations of Sm and Nd in the acid-soluble and silicate fractions. The acid-soluble reservoir in deeper samples contains progressively less Sm and Nd and higher Sm/Nd ratios. In all samples, the acid-soluble Nd is more radiogenic than the Nd in the corresponding silicate fraction; the difference between the two reservoirs increases with depth. Preferential loss of Nd relative to Sm in the silicate reservoir during diagenetic crystallization of illite and albite is the most likely explanation for the observed trend in Nd model age. These data imply that the earlier assumption that no fractionation takes place in the Sm-Nd system during diagenesis is incorrect.

  19. Rb-Sr and Sm-Nd study of granite-charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block

    NASA Astrophysics Data System (ADS)

    Sekaran, M. Chandra; Bhutani, Rajneesh; Balakrishnan, S.

    2016-04-01

    Pudukkottai region in the northeastern part of the Madurai Block exposes the garnetiferous pink granite that intruded the biotite gneiss. Charnockite patches are associated with both the rock types. Rb-Sr biotite and Sm-Nd whole-rock isochron ages indicate a regional uplift and cooling at ˜550 Ma. The initial Nd isotope ratios ( ɛ_{Nd}t=-20 to -22) and Nd depleted-mantle model ages (TDM = 2.25 to 2.79 Ga) indicate a common crustal source for the pink-granite and associated charnockite, while the biotite gneiss and the charnockite within it represent an older crustal source ( ɛ_{Nd}t= -29 and TDM = > 3.2 Ga). The Rb-Sr whole-rock data and initial Sr-Nd isotope ratios also help demonstrate the partial but systematic equilibration of Sr isotope and Rb/Sr ratios during metamorphic mineral-reactions resulting in an `apparent whole-rock isochron'. The available geochronological results from the Madurai Block indicate four major periods of magmatism and metamorphism: Neoarchaean-Paleoproterozoic, Mesoproterozoic, mid-Neoproterozoic and late-Neoproterozoic. We suggest that the high-grade and ultrahigh-temperature metamorphism was preceded by magmatism which `prepared' the residual crust to sustain the high P-T conditions. There also appears to be cyclicity in the tectono-magmatic events and an evolutionary model for the Madurai Block should account for the cyclicity in the preserved records.

  20. Rb-Sr and Sm-Nd study of granite-charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block

    NASA Astrophysics Data System (ADS)

    Sekaran, M. Chandra; Bhutani, Rajneesh; Balakrishnan, S.

    2016-04-01

    Pudukkottai region in the northeastern part of the Madurai Block exposes the garnetiferous pink granite that intruded the biotite gneiss. Charnockite patches are associated with both the rock types. Rb-Sr biotite and Sm-Nd whole-rock isochron ages indicate a regional uplift and cooling at ˜550 Ma. The initial Nd isotope ratios (\\varepsilon _{ {Nd}}t=-20 to -22) and Nd depleted-mantle model ages (TDM = 2.25 to 2.79 Ga) indicate a common crustal source for the pink-granite and associated charnockite, while the biotite gneiss and the charnockite within it represent an older crustal source (\\varepsilon _{ {Nd}}t= -29 and TDM = > 3.2 Ga). The Rb-Sr whole-rock data and initial Sr-Nd isotope ratios also help demonstrate the partial but systematic equilibration of Sr isotope and Rb/Sr ratios during metamorphic mineral-reactions resulting in an `apparent whole-rock isochron'. The available geochronological results from the Madurai Block indicate four major periods of magmatism and metamorphism: Neoarchaean-Paleoproterozoic, Mesoproterozoic, mid-Neoproterozoic and late-Neoproterozoic. We suggest that the high-grade and ultrahigh-temperature metamorphism was preceded by magmatism which `prepared' the residual crust to sustain the high P- T conditions. There also appears to be cyclicity in the tectono-magmatic events and an evolutionary model for the Madurai Block should account for the cyclicity in the preserved records.

  1. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.

    PubMed

    Carlson, Richard W; Borg, Lars E; Gaffney, Amy M; Boyet, Maud

    2014-09-13

    New Rb-Sr, (146,147)Sm-(142,143)Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, (147)Sm-(143)Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial (146)Sm/(144)Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for (146)Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd-(142)Nd/(144)Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. PMID:25114305

  2. The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river sediments

    USGS Publications Warehouse

    Goldstein, S.L.; Arndt, N.T.; Stallard, R.F.

    1997-01-01

    We report SHRIMP U-Pb ages of 49 zircons from a sand sample from the lower Orinoco River, Venezuela, and Nd model ages of the fine sediment load from the main river and tributaries. The U-Pb ages reflect individual magmatic or metamorphic events, the Sm-Nd model ages reflect average crustal-residence ages of the sediment sources. Together they allow delineation of the crust-formation history of the basement precursors of the sediments. The U-Pb ages range from 2.83 to 0.15 Ga, and most are concordant or nearly so. Discrete age groupings occur at ??? 2.8, ??? 2.1, and ??? 1.1 Ga. The oldest group contains only three samples but is isolated from its closest neighbors by a ??? 600 Ma age gap. Larger age groupings at ??? 2.1 and ??? 1.1 Ga make up about a third and a quarter of the total number of analyses, respectively. The remaining analyses scatter along concordia, and most are younger than 1.6 Ga. The ??? 2.8 and ??? 2.1 Ga ages correspond to periods of crust formation of the Imataca and Trans-Amazonian provinces of the Guyana Shield, respectively, and record intervals of short but intensive continental growth. These ages coincide with ??? 2.9 and ??? 2.1 Ga Nd model ages of sediments from tributaries draining the Archean and Proterozoic provinces of the Guyana Shield, respectively, indicating that the U-Pb ages record the geological history of the crystalline basement of the Orinoco basin. Zircons with ages corresponding to the major orogenies of the North Atlantic continents (the Superior at ??? 2.7 Ga and Hudsonian at 1.7-1.9 Ga) were not found in the Orinoco sample. The age distribution may indicate that South and North America were separated throughout their history. Nd model ages of sediments from the lower Orinoco River and Andean tributaries are ??? 1.9 Ga, broadly within the range displayed by major rivers and dusts. This age does not coincide with known thermal events in the region and reflects mixing of sources with different crust-formation ages. The

  3. Provenance and tectonic setting of Proterozoic metasedimentary sequences of the São Roque Domain, Ribeira Fold Belt, Brazil: a combination of whole-rock geochemistry, Sm-Nd isotopic systematics and detrital zircon U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Henrique Pinto, Renato; Janasi, Valdecir de A.; Barnes, Sarah-Jane; Borges Carvalho, Bruna; Tassinari, Colombo C. G.; Basei, Miguel A. S.

    2014-05-01

    The Proterozoic São Roque Group (Ribeira Fold Belt, southeast Brazil) is a metasedimentary sequence deposited in a marine environment consisting of proximal metasandstones and meta-felspathic wackes with some volcanic layers (Boturuna Formation) and more distal metawackes and metamudstones (Piragibu Formation). A combination of zircon provenance studies in metasandstones (textural and trace-element analysis and U-Pb geochronology) and whole-rock major and trace-element geochemistry and Sm-Nd isotopic systematics in metamudstones was used to understand the provenance and tectonic significance of this sequence, and their implications to the evolution of the Precambrian crust in the region. Whole-rock geochemistry indicates that the sources are largely granitic (as indicated for instance by the LREE-rich moderately fractionated REE patterns and subtle negative Eu anomalies) with some mafic contribution (responsible for higher contents of Fe2O3, MgO, V, and Cr) and were subject to moderate weathering (CIA - 60 to 82). The trace element signatures in detrital zircons indicate that most of them are derived from plagioclase-rich felsic rocks, as indicated by strong positive Ce anomalies, high (Lu/Sm)N ratios, low U/Yb, and a concave-down shape of the intermediate REE in chondrite-normalized plots. A significant proportion of the zircon crystals show rounded cores with growth zoning truncated and overgrown by a thin rim that has dark color in cathodoluminescence images. These overgrowths are chemically distinct, being enriched in trace elements, especially the LREE, and were dated at 584±47 Ma, reflecting the regional Neoproterozoic metamorphism. Sm-Nd isotope data for Piragibu Formation metamudstones show four main groups of Nd TDM ages at ca. 1.9 Ga, 2.1 Ga, 2.4 Ga and 3.0 Ga. The younger ages define an upper limit for the deposition of the unit, and reflect greater contributions from sources younger than the >2.1 Ga basement. The oldest Nd TDM age (3.0 Ga) is similar

  4. {U}/{Pb} and {Sm}/{Nd} geochronologic studies of the eastern Borborema Province, Northeastern Brazil: initial conclusions

    NASA Astrophysics Data System (ADS)

    Van Schmus, W. R.; de Brito Neves, B. B.; Hackspacher, P.; Babinski, M.

    1995-10-01

    The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New {Sm}/{Nd} and {U}/{Pb} results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (T DM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean {U}/{Pb} zircon and Nd (T DM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic

  5. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age

    NASA Astrophysics Data System (ADS)

    Zhou, Jiaxi; Huang, Zhilong; Yan, Zaifei

    2013-09-01

    The Maozu Pb-Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635-541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C-O-Sm-Nd isotopic compositions of hydrothermal calcites and S-Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from -3.7‰ to -2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129-18.375, 207Pb/204Pb = 15.640-15.686 and 208Pb/204Pb = 38.220-38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm-Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb

  6. The dating of ore genesis with using of sulfides: new opportunities of Sm-Nd method

    NASA Astrophysics Data System (ADS)

    Ekimova, N.; Serov, P.; Bayanova, T.

    2012-04-01

    Within the Fennoscandian Shield only on the surface there are hundreds of mafic-ultramafic intrusions, and on geophysical data - more than a thousand. Existing estimates of the ore potential related to the very costly and time-consuming drilling and analytical work (Mitrofanov, 2006). One of the express-and relatively inexpensive methods is a Sm-Nd dating of rocks and minerals. Feature of the Sm-Nd method is that it allows to use rock-forming minerals for the dating process. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. Age determination on sulphides is a direct method, since in this case the time of mineralization is determined directly, which can consist with the time of crystallization of the parent magma (syngenetic ores), and do not match - epigenetic, redeposited ore. Within Fennoscandia the both types of syngenetic and epigenetic manifestation of ore are known and setting of milestones mineralization is essential for understanding the evolution of ore-bearing magmatic sources and assess the prospects for PGE of many mafic massifs. Studies have shown that Sm-Nd dating method is applicable to both types of ore and dates obtained agree well with the known U-Pb ages of zircon or with key scenes of Svekofennian metamorphic events (eg, Sm-Nd age of the redeposited ores Ahmavaary - about 1900 Ma). One of the problems of Sm-Nd systematics of sulfides is the question of internal inclusions with high contents of REE. In this case, obtained isotope-geochronological features may not correspond to real geological events. To address this issue, the study of internal structure of sulfide minerals was carried out by CL high-local equipment - a scanning electron microscope LEO 1450 with cathodoluminescent attachment PanaCL. Studies have shown that these inclusions are

  7. Sm-Nd age of the Fiskenaesset Anorthosite Complex, West Greenland

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Goldstein, Steven J.; Jacobsen, Stein B.; Myers, John S.; Kalsbeek, Feiko

    1989-01-01

    A Sm-Nd isotopic study on samples from the Fiskenaesset Anorthosite Complex in West Greenland was conducted to estimate the age of crystallization of the complex. A five-point isochron, including data for whole-rock samples of anorthosite, metagabbro, metaperidotite, and separates of calcic plagioclase and mafic matrix from a coarse megacrystic leucogabbro, corresponds to an age of 2.86 + or - 0.05 Ga, with initial sigma(Nd) of +2.9 + or - 0.4. This implies a relatively short time interval, on the order of 70 Ma, during which anorthosite formation, tonalite emplacement, and high-grade metamorphism took place.

  8. Rb-Sr and Sm-Nd Isotope Systematics of Shergottite NWA 856: Crystallization Age and Implications for Alteration of Hot Desert SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.

    2004-01-01

    Nakhlite NWA 998 was discovered in Algeria in 2001, and is unique among the six known members of this group of Martian meteorites in containing significant modal orthopyroxene. Initial petrologic and isotopic data were reported by Irving et al. This 456 gram stone consists mainly of sub-calcic augite with subordinate olivine and minor orthopyroxene, titanomagnetite, pyrrhotite, chlorapatite, and intercumulus An(sub 35) plagioclase. We report here preliminary results of radiogenic isotopic analyses conducted on fragmental material from the main mass.

  9. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  10. SM-ND Age and REE Systematics of Larkman Nunatek 06319: Closed System Fractional Crystallization of a Shergottite Magma

    NASA Technical Reports Server (NTRS)

    Shafer, J. T.; Brandon, A. D.; Lapen T. J.; Righter, M.; Peslier, A. H.

    2010-01-01

    Sm-Nd isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 180+/-13 Ma (2(sigma)). This age is concordant with the Lu-Hf age (197+/-29 Ma, [1]) determined in conjunction with these data and the Sm-Nd age (190+/-26 Ma) of Shih et al., 2009 [2]. The Sm-Nd data form at statistically significant isochron (Fig. 1) that is controlled largely by leachate-residue pairs (samples with the R suffix are residues after leaching in cold 2N HCl for 10 minutes).

  11. 147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio

    PubMed Central

    Huang, Shichun; Jacobsen, Stein B.; Mukhopadhyay, Sujoy

    2013-01-01

    The relationship between the compositions of the Earth and chondritic meteorites is at the center of many important debates. A basic assumption in most models for the Earth’s composition is that the refractory elements are present in chondritic proportions relative to each other. This assumption is now challenged by recent 142Nd/144Nd ratio studies suggesting that the bulk silicate Earth (BSE) might have an Sm/Nd ratio 6% higher than chondrites (i.e., the BSE is superchondritic). This has led to the proposal that the present-day 143Nd/144Nd ratio of BSE is similar to that of some deep mantle plumes rather than chondrites. Our reexamination of the long-lived 147Sm-143Nd isotope systematics of the depleted mantle and the continental crust shows that the BSE, reconstructed using the depleted mantle and continental crust, has 143Nd/144Nd and Sm/Nd ratios close to chondritic values. The small difference in the ratio of 142Nd/144Nd between ordinary chondrites and the Earth must be due to a process different from mantle-crust differentiation, such as incomplete mixing of distinct nucleosynthetic components in the solar nebula. PMID:23479630

  12. A Sm-Nd eclogite and U-Pb detrital zircon study of a probable Baltic HP-UHP metamorphic terrane in the Greenland Caledonides

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Brueckner, H. K.; Belousova, E. A.; Medaris, L. G., Jr.; Griffin, W. L.; Hartz, E. H.; Hemming, S. R.; Bubbico, R.

    2015-12-01

    Liverpool Land, at the southern tip of the Greenland Caledonides, exposes the small eclogite-facies, peridotite-bearing Tvaerdal complex tectonically juxtaposed against the mid-crustal, high-pressure granulite facies Jaettedal complex. Recent literature supports a Laurentian origin for the Jættedal complex, but the structurally lower Tværdal complex has been tentatively correlated with Baltica. Their juxtaposition raises the possibility of lower plate to upper plate terrane transfer during continental subduction. Pressure-temperature estimates from Tvaerdal eclogites indicate ultrahigh pressure (UHP) metamorphic conditions during recrystallization. Sm-Nd mineral isochrons from the eclogites indicate UHP recrystallization occured ≈400 millions years ago, the same time HP/UHP metamorphism occurred in the Western Gneiss Complex of the Scandinavian Caledonides. Almost half of detrital zircons collected from a modern stream channel within the Tvaerdal complex give LA-ICPMS U-Pb ages of 1.68 and 1.3-0.95 Ma ages, which are dates characteristic of both Baltic and Laurentia. However, none of the detrital zircons give the Archean or ≈1.8 Ga Proterozoic ages that are also characteristic of Laurentia. Most of the remaining detrital zircons from the Tvaerdal Complex give younger U-Pb ages that range between 411-375 Ma which contrast with the older 450-410 Ma ages obtained from the Jaettedal as well as from other gneiss terranes in the southern Greenland Caledonides. The different age patterns provide compelling evidence that the Tvaerdal Complex is indeed an orphaned Baltic Terrane. The Jaettedal complex took part in the lengthy evolution of a compressional continental arc complex along the eastern Laurentian margin during the closure of Iapetus while the Tvaerdal complex was a fragment of the approaching Baltic passive margin. Eclogite-facies metamorphism of the Tvaerdal Complex occurred when Iapetus closed and the edge of Baltica subducted to UHP mantle conditions

  13. New data for paleoprotherozoic PGE-bearing anorthosite of Kandalaksha massif (Baltic shield): U-Pb and Sm-Nd ages

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel

    2015-04-01

    The aims of this researches were to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) on Kandalaksha anorthosite massif due to study of polimetamorphic history. In marginal zone firstly have been obtained the presence of sulphide mineralization with PGE (Chashchin, Petrov , 2013). Kandalaksha massif is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate polymetamorphism. Two fractions of single grains from anorthosite of the massif gave precise U-Pb age, which is equal to 2450± 3 Ma. Leucocratic gabbro-norite were dated by U-Pb method, with age up to 2230 ± 10 Ma. This age reflects the time of granulite metamorphism according to data of (Mitrofanov, Nirovich, 2003). Two fractions of rutile have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile is 400-450 ° C (Mezger et.al., 1989), thus cooling processes of massif rocks to these temperatures was about 1.7 Ga. These data reflect one of the stages of metamorphic alteration of the massif. Three stages of metamorphism are distinguished by Sm-Nd method. Isotope Sm-Nd dating on Cpx-WR line gives the age of 2311 Ma which suggested of high pressure granulite metamorphism. Moreover Cpx-Pl line reflect the age 1908 Ma of low pressure granulite metamorphism. Also two-points (Grt-Rt) Sm-Nd isochrone yield the age 1687 Ma of the last metamorphic alterations in Kandalaksha anorthosite massif. Model Sm-Nd age of the leucocratic gabbro-norite is 2796 Ma with positive ɛNd (+0.32). It means that the source of gabbro-norite was mantle reservoir. All investigations are devoted to memory of academician PAS F. MItrofanov which was a leader of scientific school for

  14. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.

    2000-08-01

    We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.

  15. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.

    2000-01-01

    We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.

  16. The success and complementarity of Sm-Nd and Lu-Hf garnet geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Scherer, E. E.

    2013-12-01

    Garnet's potential as a direct chronometer of tectonometamorphic processes and conditions was first realized over 30 years ago. Since then, the Sm-Nd and Lu-Hf systems have emerged as the most effective, with both permitting age precision < ×1 Myr. Both have proven successful not merely in dating garnet growth itself, but rather in constraining the ages, durations, and rates of particular earth processes or conditions that can be directly linked to garnet growth via chemical, thermodynamic, or petrographic, means. Appreciating important differences between Sm-Nd and Lu-Hf in terms of contaminant phases, partitioning, daughter element diffusivity, and isotopic analysis makes these two systems powerfully complementary when used and interpreted in concert. Well established, robust analytical methods mitigate the effects of ubiquitous mineral inclusions (monazite is most significant for Sm-Nd; zircon is most significant for Lu-Hf), improving the precision and accuracy of garnet dates from both systems. Parent-daughter ratios tend to be higher for Lu-Hf leading to the potential for better age precision in general. The Lu-176 decay rate is faster than Sm-147, meaning that Lu-Hf provides better age precision potential for young (Cenozoic) samples. However, Sm-Nd provides better precision potential for older (Precambrian) samples primarily because of the higher precisions on the parent-daughter ratios (i.e., 147Sm/144Nd) that can be achieved by ID-TIMS analysis. For dating microsampled zones or growth rings in single garnet crystals, Sm-Nd has proven most successful owing to more uniform distribution of Sm, and established methods to measure <10 ng quantities of Nd at high precision via TIMS. However, new MC-ICP-MS sample introduction technologies are closing this gap for small samples. For analyses of bulk garnet that grew over a protracted interval, Lu-Hf dates are expected to be older than Sm-Nd dates owing to differences in Lu and Sm zonation (i.e. Lu tends to be

  17. A comparative Rb-Sr, Sm-Nd, and K-Ar study of shocked norite 78236 - Evidence of slow cooling in the lunar crust

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bogard, D. D.; Wooden, J. L.; Bansal, B. M.; Wiesmann, H.; Shih, C.-Y.; Reimold, W. U.

    1982-01-01

    The sample 78236 was chipped from the top of a norite boulder at Station 8 by the Apollo 17 landing team. Jackson et al. (1975) concluded that this rock formed at a depth of 8-30 km in the lunar crust and suggested that it was excavated by a large basin-forming impact event. A petrographic description of the boulder is provided, and isotopic analyses are discussed. Attention is given to a chronology for 78236 which seems to be most consistent with radiometric and other evidence. It is proposed that cumulate norite 78236 formed deep in the lunar crust approximately 4.4 AE ago. The rock cooled slowly in the crust until it was excavated by a major basin-forming event. Excavation may have occurred about 4.2 AE ago, but the time of this event is not well constrained.

  18. Sm-Nd and U-Pb isotopic constraints for crustal evolution during Late Neoproterozic from rocks of the Schirmacher Oasis, East Antarctica: geodynamic development coeval with the East African Orogeny

    USGS Publications Warehouse

    Ravikant, V.; Laux, J.H.; Pimentel, M.M.

    2007-01-01

    Recent post-750 Ma continental reconstructions constrain models for East African Orogeny formation and also the scattered remnants of ~640 Ma granulites, whose genesis is controversial. One such Neoproterozoic granulite belt is the Schirmacher Oasis in East Antarctica, isolated from the distinctly younger Pan-African orogen to the south in the central Droning Maud Land. To ascertain the duration of granulite-facies events in these remnants, garnet Sm-Nd and monazite and titanite U-Pb IDTIMS geochronology was carried out on a range of metamorphic rocks. Garnet formation ages from a websterite enclave and gabbro were 660±48 Ma and 587±9 Ma respectively, and those from Stype granites were 598±4 Ma and 577±4 Ma. Monazites from metapelite and metaquartzite yielded lower intercept UPb ages of 629±3 Ma and 639±5 Ma, respectively. U-Pb titanite age from calcsilicate gneiss was 580±5 Ma. These indicate peak metamorphism to have occurred between 640 and 630 Ma, followed by near isobaric cooling to ~580 Ma. Though an origin as an exotic terrane from the East African Orogen cannot be discounted, from the present data there is a greater likelihood that Mesoproterozoic microplate collision between Maud orogen and a northerly Lurio-Nampula block resulted in formation of these granulite belt(s).

  19. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    USGS Publications Warehouse

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  20. Sm-Nd Age and Initial Sr-87/Sr-86 for Yamato 980318: An Old Cumulate Eucrite

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Takeda, H.; Shih, C.-Y.; Wiesmann, H.

    2004-01-01

    The complex pyroxene exsolution texture of the Moore County cumulate eucrite was interpreted by Miyamoto and Takeda as indicating initial cooling at 160 C/Ma followed by a sudden temperature rise and final cooling at 0.35 C/yr. They suggested initial cooling at a depth of approx. 8 km near the base of Vesta s crust, followed by impact excavation to its surface. Young Sm-Nd ages of approx. 4456, 4460, and 4410 Ma, respectively, for the Moore County, Moama, and Serra de Mag cumulate eucrites are puzzling because closure to Nd isotopic exchange would occur in only a few Ma at the above initial cooling rate. The exception to young ages among the cumulate eucrites is EET87520, with a 147Sm-147 - Nd-143 age of 4547-4598 Ma. We report here initial results of a combined mineralogical/chronological study of the Yamato 980318 feldspar-cumulate eucrite.

  1. The Sm-Nd history of KREEP. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Carlson, R. W.

    1978-01-01

    Sm-Nd whole rock measurements on a variety of KREEP-rich samples from different landing sites are reported. Despite a variation of Nd and Sm concentrations of almost a factor of 3, the Sm-Nd ratios, as well as the Nd-143/Nd-144 values, show an extremely close grouping. No systematic differences between samples from different landing sites are resolved. These results are taken to be indicative of a moon-wide process having been responsible for the generation of the KREEP source reservoir, 4.36 plus or minus 0.06 AE ago, as estimated from model age calculation.

  2. La-Ce and Sm-Nd systematics of siliceous sedimentary rocks: A clue to marine environment in their deposition

    SciTech Connect

    Hiroshi Shimizu; Masayo Amano; Akimasa Masuda )

    1991-04-01

    La-Ce isotopic data, together with Sm-Nd isotopic data, were determined on siliceous sedimentary rocks (cherts) in order to elucidate the rare earth element (REE) character of their sources and the nature of their depositional environments. The cherts studied are a late Archean chert from the Gorge Creek Group in the Pilbara block of Western Australia, Triassic cherts from central Japan, and Cretaceous and Paleogene deep-sea cherts from the central Pacific and the Caribbean Sea. The Archean chert from the Gorge Creek Group shows chondritic Ce and Nd isotope ratios at its sedimentation age which indicate that its sources had a time-integrated chondritic REE pattern. Triassic cherts from Japan have initial Ce and Nd isotope ratios that show a direct derivation from their continental source. On the other hand, for Cretaceous and Paleogene deep-sea cherts having negative Ce anomalies in their REE patterns, two different sources for Ce and Nd are revealed from their initial Ce and Nd isotope data: Ce from long-term light-REE-depleted oceanic volcanic rocks and Nd from light-REE-enriched continental rocks. The reverse nature observed for deep-sea cherts is considered to be a reflection of their depositional environment far from a continent. These results confirm that the La-Ce isotope system is highly useful in determining the nature and cause of Ce anomalies observed in marine sedimentary rocks such as chert.

  3. Sm-Nd for Norite 78236 and Eucrite Y980318/433: Implications for Planetary and Solar System Processes

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2008-01-01

    Here, we compare Sm-147-Nd-143 and Sm-146-Nd-142 data for lunar norite 78236 to those for approximately 4.54-4.56 Ga old cumulate eucrite Yamato 980318/433 and show that the norite data are compatible with its derivation from an isotopic reservoir similar to that from whence the eucrite pair came. Thus, lunar-like Sm-Nd isotopic systematics are not unique to the Earth-Moon system.

  4. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit

    NASA Astrophysics Data System (ADS)

    Zhang, Changqing; Wu, Yue; Hou, Lin; Mao, Jingwen

    2015-05-01

    The Sichuan-Yunnan-Guizhou (S-Y-G) Zn-Pb triangle is a world-class metallogenic belt in southwestern China that contains hundreds of carbonate-hosted giant-to-small epigenetic Zn-Pb deposits. Here, we provide an overview of the ore geology, geochemistry and ore-forming fluids of the major Zn-Pb deposits in this area. These deposits are most likely Mississippi Valley-type (MVT) deposits that formed as a result of the regional migration of basinal brines along large fault systems and more minor secondary structures. The Sm-Nd age (201 ± 6.2 Ma) of ore-stage fluorite from the Jinshachang Zn-Pb deposit, within northeast Yunnan province, China, reveals this deposit formed during the Late Triassic, consistent with the majority of the published isotopic ages for other Zn-Pb deposits in the S-Y-G MVT triangle. These fluorite samples have initial 87Sr/86Sr ratios of 0.711385-0.711463 and εNd values of -8.4 to -8.7, confirming the basin-related nature of the mineralizing fluids. Published geochronological data combined with basic features of MVT deposits (e.g., geology, geochemistry, and ore-forming fluids) and the geological evolution of the study area has enabled us to develop a model for the Zn-Pb mineralization, where this word-class MVT belt has formed as a result of the regional-scale migration of basinal fluids coincident with tectonic activity along ore-controlling structures (e.g., thrust-fold systems). Both the fluid migration and the tectonic activity were probably triggered by the late Indosinian Orogeny, which in turn was a response to the closure of the Paleo-Tethys Ocean.

  5. Sulfide minerals as new Sm-Nd geochronometers for ore genesis dating of mafic-ultramafic layered intrusions

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Ekimova, Nadezhda; Bayanova, Tamara

    2014-05-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. The Sm-Nd investigations steadily employ new minerals-geochronometers. Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than chondrites (Rimskaya-Korsakova et. al., 2003). For the first time in Russia with sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects: Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievei deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. In (Kong et. al., 2000) sulfides from two metamorphosed chondrites studied by instrumental

  6. Origin and history of the adcumulate eucrite, Moama as inferred from REE abundances, Sm-Nd and U-Pb systematics

    NASA Technical Reports Server (NTRS)

    Hamet, J.; Nakamura, N.; Unruh, D. M.; Tatsumoto, M.

    1978-01-01

    The abundances of Sm-Nd and U-Pb isotopes and of rare earth elements (REE) in Moama cumulate eucrite were investigated. The Sm-Nd data plotted on a Nd-143/Nd-144 vs Sm-147/Nd-144 evolution diagram define a line with a slope corresponding to an age of 4.58 plus or minus 0.05 billion years and an initial Nd-143/Nd-144 ratio of about 0.50684. Moama was found to contain the lowest overall trivalent REE abundances, the most light REE-depleted abundance pattern, and largest positive Eu anomaly of any eucrite yet studied. The REE data indicate that Moama could have been derived by about 1 to 5% fractional crystallization from a liquid with REE contents similar to Juvinas, or about 20 to 30% fractional crystallization from a Sioux County-like liquid. The data are consistent with the hypothesis that the Moama, Serra de Mage, and Moore county cumulate meteorites could have been derived from the same parent liquid. Results of the U-Th-Pb study indicate that the majority of the Pb in Moama is of terrestrial origin, and suggest that the meteorite has undergone a minor thermal event causing re-equilibration of the U-Pb system.

  7. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation

    PubMed Central

    Carlson, Richard W.; Borg, Lars E.; Gaffney, Amy M.; Boyet, Maud

    2014-01-01

    New Rb-Sr, 146,147Sm-142,143Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147Sm-143Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146Sm/144Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. PMID:25114305

  8. Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2007-01-01

    The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

  9. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation

    NASA Astrophysics Data System (ADS)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2015-01-01

    We have measured Sm-Nd systematics, including the short-lived 146Sm-142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range -45 to -21 ppm. The range is -45 to -15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm-142Nd or 147Sm-143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60-125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/144Nd

  10. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  11. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.

    PubMed

    Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R

    1994-03-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence. PMID:11540244

  12. Ore genesis dating: implication of Sm-Nd method using sulfide minerals for mafic-ultramafic layered intrusions of Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Steshenko, Ekaterina; Ekimova, Nadezhda

    2015-04-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. In to Sm-Nd measurements steadily introduce new minerals-geochronometers (i.e. titanite, burbancite, eudialite etc.). Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than those in chondrites (Rimskaya-Korsakova et. al., 2003). In (Kong et. al., 2000) sulfides from two metamorphosed chondrites were studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). For the first time in Russian geochemistry laboratories using sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated

  13. Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.

    2011-01-01

    Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.

  14. Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.

    2013-02-01

    The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.

  15. Sm-Nd and Rb-Sr Ages for Northwest Africa 2977, A Young Lunar Gabbro from the PKT

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.; Irving, A. J.

    2009-01-01

    Northwest Africa (NWA) 2977 is an olivine gabbro cumulate equivalent to one of the lithologies in lunar mare breccia NWA 773 [1,2,3]. The Ar-39-Ar-40 age is 2.77+/-0.04 Ga based on the last approx.57% of the gas release [4], similar to results for NWA 773 [5]. A Sm-Nd age (T) of 2.865+/-0.031 Ga and Epsilon(sub Nd) = -7.84+/-0.22 for the NWA 773 gabbro reported by [6] has been revised to T = 2.993+/-=0.032 Ga, Epsilon(sub Nd) -4.5+/-0.3 [7]. Sm-147-Nd-143 isochron for NWA 2977: Whole rock, pyroxene, olivine, plagioclase, whole rock leachate (approx.phosphate) and the combined leachates from the mineral separates yield a well defined Sm-Nd isochron for an age T = 3.10+/-0.05 Ga and Epsilon(sub Nd-CHUR) = -3.74+/-0.26 [8], or Epsilon(sub Nd-HEDR) = -4.61+/-0.26 [9]. Rb-87-Sr-87 isochron: NWA 2977 contains only a modest amount of Rb and/or Sr contamination. The Sr-isotopic composition of the contaminant closely resembles that of seawater. The whole rock residue after leaching combined with leach residues for plagioclase and pyroxene define an isochron age of 3.29+/-0.11 Ga for initial Sr-87/Sr-86 = 0.70287+/-18. The olivine residue, with lower Sr abundance of approx 1.5 ppm, is only slightly displaced from the isochron. The relatively small uncertainties of the Rb-Sr isochron parameters and near-concordancy with the Sm-Nd age indicate that both the Rb-Sr and the Sm-Nd ages are reliable.

  16. Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France

    USGS Publications Warehouse

    Munoz, M.; Premo, W.R.; Courjault-Rade, P.

    2005-01-01

    A three-point Sm-Nd isotope isochron on fluorite from the very large Montroc fluorite vein deposit (southern Massif Central, France) defines an age of 111??13 Ma. Initial ??Nd of -8.6 and initial 87Sr/86Sr of ???0.71245 suggest an upper crustal source of the hydrothermal system, in agreement with earlier work on fluid inclusions which indicated a basinal brine origin. The mid-Cretaceous age of ???111 Ma suggests the Albian/Aptian transition as the most likely period for large-scale fluid circulation during a regional extensional tectonic event, related to the opening of the North Atlantic ocean. ?? Springer-Verlag 2004.

  17. Lu-Hf AND Sm-Nd EVOLUTION IN LUNAR MARE BASALTS.

    USGS Publications Warehouse

    Unruh, D.M.; Stille, P.; Patchett, P.J.; Tatsumoto, M.

    1984-01-01

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small ( less than equivalent to 10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and hf-enriched. Calculated source compositions range from lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite ( less than equivalent to 3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts reveals that the epsilon Hf/ epsilon Nd ratios in low-Ti mare basalts are much higher than in terrestrial ocean basalts.

  18. Sm/Nd ratio as a diagenetic tracer, Paleogene, Texas Gulf Coast

    SciTech Connect

    Mack, L.E.; Awwiller, D.N. )

    1990-05-01

    Illitization of smectite during burial diagenesis apparently fractionates Sm from Nd. In the Paleocene-Eocene Wilcox Group of the central Texas Gulf Coast and the Oligocene Vicksburg and Frio formations of south Texas, whole-rock shale has normal crustal Sm/Nd ratios of 0.174-0.210. In the < 5-{mu}m shale fraction, Sm/Nd is depleted relative to the corresponding whole rock by 0.011 to 0.051. Because fine clay from modern Mississippi River mud has a normal Sm/Nd ration of 0.191, and is similar to the whole sample (Sm/Nd = 0.188), the authors infer that depleted Sm/Nd in fine-fraction illite is a diagenetic effect. Sm/Nd in modern pore fluids from Wilcox and Vicksburg sandstones can be extremely elevated (as high as 0.73), apparently due to smectite illitization. Because of the relative rare earth element concentrations in shale vs. water (approximately 30 ppm Nd in rock, approximately 10{sup {minus}4} ppm Nd in pore fluids), a small depletion in Sm relative to Nd in diagenetic illites causes a very large enrichment of Sm/Nd in the pore fluids. Thus, Sm/Nd is a geochemical tracer specific both as to source (shale) and timing (syn- or post-illitization), and is potentially valuable as a tracer of pore fluid movement in sedimentary basins. Sm/Nd ratios also constrain paragenetic sequences by relating times of formation of authigenic phases to the time of illitization. In the Wilcox sandstone, calcite cement has Sm/Nd ratios of 0.187-0.204 (pre-dating illitization), whereas ankerite cement has Sm/Nd ratios of 0.39-0.71, and post-dates illitization.

  19. Paleoproterozoic layered PGE-bearing Monchetundra pluton, Kola Peninsula: Sm-Nd age of metamorphic alteration of mafic rocks

    NASA Astrophysics Data System (ADS)

    Kunakkuzin, E. L.; Serov, P. A.; Bayanova, T. B.; Nerovich, L. I.; Borisenko, E. S.

    2015-09-01

    The aim of this work is Sm-Nd study of metamorphic alteration of massive gabbronorites from the Monchetundra pluton. The mafic rocks of the pluton are unevenly metamorphosed up to amphibolite facies with the formation of garnet, hornblende, and other minerals. The presence of garnet is a distinctive feature of this pluton in comparison with other Paleoproterozoic PGE-bearing plutons of the eastern part of the Baltic shield: Mt. General'skaya, Fedorovo-Pana, Imandra lopolith, and Monchepluton [9]. The degree of metamorphic alteration of rocks increases near the faults, the largest of which is Monchetundra fault separating the studied pluton from the Monchepluton. This fault was formed about 1.9-2.0 Ga ago according to Sm-Nd and Rb-Sr mineral isochrons for minerals from metagabbro-anorthosites of the M1 well.

  20. Evidence for an Early Cretaceous mineralizing event above the basement/sediment unconformity in the intracratonic Paris Basin: paragenetic sequence and Sm-Nd dating of the world-class Pierre-Perthuis stratabound fluorite deposit

    NASA Astrophysics Data System (ADS)

    Gigoux, Morgane; Delpech, Guillaume; Guerrot, Catherine; Pagel, Maurice; Augé, Thierry; Négrel, Philippe; Brigaud, Benjamin

    2015-04-01

    World-class stratabound fluorite deposits are spatially associated with the basement/sediment unconformity of the intracratonic Paris Basin and the Morvan Massif in Burgundy (France). The reserves are estimated to be about 5.5 Mt of fluorite within six fluorite deposits. In this study, we aim to determine the age of the major fluorite mineralization event of the Pierre-Perthuis deposit (1.4 Mt fluorite) by a combined study of the paragenetic mineral sequence and Sm-Nd dating on fluorite crystals. Fluorite occurs as isolated cubes or filling geodes in a Triassic, silicified, dolomitic formation. Three fluorite stages associated with sphalerite, pyrite, galena, barite, and quartz have been distinguished using optical, cathodoluminescence, and scanning electron microscopes. Seven crystals of the geodic fluorite stage were analyzed for their rare earth element (REE) contents and their 147Sm/144Nd and 143Nd/144Nd isotopic compositions. The normalized REE distribution displays homogeneous bell-shaped patterns for all the geodic fluorite samples with a Mid-REE enrichment over the Light-REE and Heavy-REE. The 147Sm/144Nd varies from 0.3108 to 0.5504 and the 143Nd/144Nd from 0.512313 to 0.512518. A six-point Sm-Nd isochron defines an age of 130 ± 15 Ma (initial 143Nd/144Nd = 0.512054, MSWD = 0.21). This Sm-Nd isochron provides the first age for the stratabound fluorite sediment-hosted deposit, related to an unconformity in the Paris Basin, and highlights a major Early Cretaceous fluid circulation event mainly above the basement/sediment unconformity during a flexural deformation of the Paris Basin, which relates to the rifting of the Bay of Biscay and the formation of the Ligurian Sea in the Western Europe domain.

  1. NWA 7034 Martian Breccia: Disturbed Rb-Sr Systematics, Preliminary Is Approximately 4.4 Ga Sm-Nd Age

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Peng, Zhan Xiong; Agee, C

    2013-01-01

    Agee et al. [1] reported a Rb-Sr age of 2.089 [plus or minus] 0.081 Ga for the unique Martian meteoritic breccia NWA 7034 making it the oldest Martian basalt, dating to the early Am-azonian epoch [2] of Martian geologic history. We have attempt-ed to confirm this exciting result. Our new Rb-Sr analyses show the Rb-Sr isotopic system to be disturbed, but preliminary Sm-Nd data suggest an even older age of approximately 4.4 Ga for at least some brec-cia components.

  2. The age and emplacement of obducted oceanic crust in the Urals from Sm-Nd and Rb-Sr systematics

    NASA Technical Reports Server (NTRS)

    Edwards, R. L.; Wassburg, G. J.

    1985-01-01

    The Sm-Nd and Rb-Sr isotopic characteristics of two mafic-ultramafic bodies, the Kemperai Massif in the South Ural Mountains and the Voykar-syninsky Massif in the Polar Ural mountains are examined. The data are found to be consistent with the hypothesis that these bodies represent fragments of old oceanic crust. Whole rock samples of pillow basalt, troctolite, gabbros, diabase, and a metasediment give Sm-Nd values which lie on this isochron indicating that the rock units are genetically related and formed 397 My ago. Basic and ultrabasic rocks from Kempersai and Voykar-Syninsky have an initial isotopic composition at time T, epsilon Nd(397 My), of +8.4, indicating derivation for an ancient depleted mantle source. The Sr isotopic data and the correlation with epsilon Nd indicate extensive alteration by seawater which is particularly strong on ultrabasic rocks. The results show that the segments of oceanic crust formed at least 80 My before the collision that produced the Urals.

  3. Superchondritic Sm/Nd ratio of the Earth: Impact of Earth's core formation

    NASA Astrophysics Data System (ADS)

    Bouhifd, M. A.; Boyet, M.; Cartier, C.; Hammouda, T.; Bolfan-Casanova, N.; Devidal, J. L.; Andrault, D.

    2015-03-01

    This study investigates the impact of Earth's core formation on the metal-silicate partitioning of Sm and Nd, two rare-earth elements assumed to be strictly lithophile although they are widely carried by the sulphide phases in reducing material (e.g. enstatite chondrites). The partition coefficients of Sm and Nd (DSm and DNd) between molten CI and EH chondrites model compositions and various Fe-rich alloys (in the Fe-Ni-C-Si-S system) have been determined in a multi-anvil between 3 and 26 GPa at various temperatures between 2073 and 2440 K, and at an oxygen fugacity ranging from 1 to 5 log units below the iron-wüstite (IW) buffer. The chemical compositions of the run products and trace concentrations in Sm and Nd elements were determined using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. Our results demonstrate the non-fractionation of Sm and Nd during the segregation of the metallic phases: the initial Sm/Nd ratio of about 1 in the starting materials yields precisely the same ratio in the recovered silicate phases after the equilibration with the metal phases at all conditions investigated in this study. In addition, DSm and DNd values range between 10-3 and 10-5 representing a low solubility in the metal. An increase of the partition coefficients is observed with decreasing the oxygen fugacity, or with an increase of S content of the metallic phase at constant oxygen fugacity. Thus, based on the actual Sm and Nd concentrations in the bulk Earth, the core should contain less than 0.4 ppb for Sm and less than 1 ppb for Nd. These estimates are three orders of magnitude lower than what would be required to explain the reported 142Nd excess in terrestrial samples relative to the mean chondritic value, using the core as a Sm-Nd complementary reservoir. In other words, the core formation processes cannot be responsible for the increase of the Sm/Nd ratio in the mantle early in Earth history.

  4. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    DOE PAGESBeta

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm–142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm. Themore » range is –45 to –15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm–142Nd or 147Sm–143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd

  5. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    SciTech Connect

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm–142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm. The range is –45 to –15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm–142Nd or 147Sm–143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but

  6. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Manton, W. I.; Grew, E. S.; Halpern, Martin

    1982-08-01

    New Sm-Nd isotopic measurements made on granulite-facies metamorphic rocks from East Antarctica provide firm evidence that crust of ~3,500-Myr age exists in the Fyfe Hills. Zircon U-Pb data provide further documentation for a granulite-facies event 2,500 Myr ago, during which Rb, U, Sm and Nd were highly mobile. The U-Pb and Rb-Sr isotopic systems were seriously disrupted and in most samples give meaningless model ages. In contrast, Sm-Nd model ages were offset only slightly. A large time interval of 1,000 Myr between the times of crust formation and granulite-facies metamorphism has not previously been reported for Archaean rocks, and suggests that 2,500 Myr ago the Fyfe Hills may have been located in an Andean- or Himalayan-type continental margin where crust already 1,000-Myr old was involved in an orogenic event.

  7. Lead isotope studies of mare basalt 70017

    NASA Technical Reports Server (NTRS)

    Mattinson, J. M.; Tilton, G. R.; Todt, W.; Chen, J. H.

    1977-01-01

    Uranium, thorium, and isotopic lead data for components of basalt 70017 are reported, and it is found that the whole rock, pyroxene, and ilmenite points in a concordia diagram plot along a chord intersecting the curve at 3.7 and 4.33 eons. The plagioclase data do not seem to lie on this line. The data for 70017 appear to plot along a distinctly different chord in a concordia diagram than do the data for 75055 and 75035, two other Apollo 17 mare basalts. The lead data are in accord with Sm-Nd results. A 3.7 eon crystallization age for 70017 would be consistent with the same kind of parentless lead that is indicated by previous studies of soils and soil breccias from stations at Taurus-Littrow. The Th/U ratio in ilmenite is 2.2, and the concentrations of these two elements are approximately twice those in pyroxene.

  8. Age and origin of the Cortlandt Complex, New York: Implications from Sm-Nd data

    USGS Publications Warehouse

    Domenick, M.A.; Basu, A.R.

    1982-01-01

    Sm-Nd systematics for nine whole-rock samples of hornblende norites, pyroxenites and a lamprophyre from various parts of the Cortlandt Complex were analyzed. Six of these samples from the central and eastern parts of the complex give an isochron age of 430??34 (2 ??) Ma with an e{open}Nd value of -2.9??0.5, and the other three samples from the western part, including the lamprophyre, define a similar age of 394??33 (2 ??) Ma but with a distinctly different e{open}Nd value of -1.4??0.4. The two different initial 143Nd/144Nd ratios corresponding to these e{open}-values are interpreted to reflect continental crustal contamination of the lamprophyric parental liquid prior to final emplacement and crystal fractionation to produce the different rock types of the complex. The intrusion age of 430 Ma for the complex clearly post-dates the major metamorphic event of the Taconic orogeny. The Nd-isotopic data also suggest a relationship between the Cortlandt Complex and a belt of lamprophyric dike rocks to the west, known as the Beemerville trend, which cuts across the metamorphic trends of the Taconic (Ratcliffe 1981). ?? 1982 Springer-Verlag.

  9. Sm-Nd, Rb-Sr, and Mn-Cr Ages of Yamato 74013

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.- Y.; Reese, Y.D.

    2009-01-01

    Yamato 74013 is one of 29 paired diogenites having granoblastic textures. The Ar-39 - Ar-40 age of Y-74097 is approximately 1100 Ma. Rb-Sr and Sm-Nd analyses of Y-74013, -74037, -74097, and -74136 suggested that multiple young metamorphic events disturbed their isotopic systems. Masuda et al. reported that REE abundances were heterogeneous even within the same sample (Y-74010) for sample sizes less than approximately 2 g. Both they and Nyquist et al. reported data for some samples showing significant LREE enrichment. In addition to its granoblastic texture, Y-74013 is characterized by large, isolated clots of chromite up to 5 mm in diameter. Takeda et al. suggested that these diogenites originally represented a single or very small number of coarse orthopyroxene crystals that were recrystallized by shock processes. They further suggested that initial crystallization may have occurred very early within the deep crust of the HED parent body. Here we report the chronology of Y-74013 as recorded in chronometers based on long-lived Rb-87 and Sm-147, intermediate- lived Sm-146, and short-lived Mn-53.

  10. Diagenetic modification of Sm-Nd model ages in Tertiary sandstones and shales, Texas Gulf Coast

    SciTech Connect

    Awwiller, D.N.; Mack, L.E. )

    1991-04-01

    Sm-Nd model ages of sandstones and shales from the Oligocene Frio Formation of south Texas and the Paleocene-Eocene Wilcox Group of south-central Texas increase with increasing depth of burial. The sampling scheme employed minimizes, but does not eliminate, the possibility that these trends in depleted-mantle model ages (T{sub dm}) are due to detrital variability. Close correlation of these trends with diagenetic changes in the rock and evidence of rare earth element mobility preserved in the diagenetic products suggests that diagenesis has modified T{sub dm}. Diagenetic modification of T{sub dm} in Frio sandstone and Wilcox shale is due primarily to loss of radiogenic Nd, whereas increased {sup 147}Sm/{sup 144}Nd (Sm/Nd) produces elevated T{sub dm} in deeper Wilcox sandstones. The T{sub dm} of Frio shales does not change appreciably with depth, owing to the opposite effects on T{sub dm} of decreased Sm/Nd and decreased {epsilon}{sub Nd}(0). Loss of radiogenic Nd is due primarily to reactions involving unstable volcanic detritus, which is more abundant in Frio than in the Wilcox. Decreased Sm/Nd in authigenic illite, and consequent increased Sm/Nd in pore fluids, results in elevated T{sub dm} in Wilcox and Frio sandstones containing late-diagenetic cement, and in decreased Sm/Nd in deeper Frio shale. The similar T{sub dm} trends observed in both units, which have different detrital characteristics, suggest that modification of Sm-Nd model ages in siliciclastic rocks may be commonplace during burial diagensis.

  11. Redetermination of the Sm-Nd Age and Initial (Epsilon)Nd of Lunar Troctolite 76535: Implications for Lunar Crustal Development

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, Y. D.

    2012-01-01

    Lunar troctolite 76535 is an old lunar rock predating the era of the lunar cataclysmic bombardment, but its radiometrially determined ages have been discordant [1-3]. The most recent multi-chronometer study [4] gave preferred ages of 4226+/-35 Ma and 4236+/-15 Ma from a Pb-207/Pb-206 isochron and an U-Pb upper concordia intercept, resp. We derive an age of 4323+/-64 Ma from Sm-Nd data reported by [4] for the bulk rock and three mineral separates. They derived an age of approx.4.38 Ga from combined Rb-Sr data [3,4] by omitting data for olivine separates. Ar-39-Ar-40 ages of approx.4.2 Ga are summarized by [5]. New Sm-147-Nd-143 data presented here give an age of 4335+/-71 Ma in agreement with the Sm-Nd age from [4], whereas Sm-146-Nd-142 data give a model age T(sub LEW) = 4439+/-22 Ma. Further, initial (Epsilon)Nd-143 for 76535 conforms to the Nd-143 evolution expected in an urKREEP [6] reservoir, consistent with inheritance of urKREEP Sm-Nd systematics via assimilation. We show that urKREEP Sm-Nd systematics require the lunar initial (Epsilon)Nd-143 to exceed the Chondritic Uniform Reservoir (CHUR) value [7], but are consistent with evolution from initial (Epsilon)Nd-143 like that of the HED meteorite parent body as defined by a 4557+/-20 Ma internal isochron for the cumulate eucrites Y-980433 and Y- 980318 [8].

  12. Contrasts between Sm-Nd whole-rock and U-Pb zircon systematics in the Tobacco Root batholith, Montana: Implications for the determination of crustal age provinces

    USGS Publications Warehouse

    Mueller, P.A.; Heatherington, A.L.; D'Arcy, K. A.; Wooden, J.L.; Nutman, A.P.

    1996-01-01

    Proper documentation of the extent and age of crust in the western US is critical for constraining a variety of geologic problems ranging from the growth rate of continents to Precambrian continental reconstructions. The secondary isotopic systematics of granitoids have been one of the principal means used to characterize continental crust in areas where the basement is covered. In southwestern Montana and eastern Idaho a group of Late Mesozoic to Cenozoic, dioritic to quartz monzonitic batholiths (e.g., Tobacco Root, Idaho, Pioneer, Boulder, etc.) share a limited range of Paleoproterozoic Sm-Nd depleted mantle model ages. The Tobacco Root batholith (TRB) has a Nd isotopic composition (??Nd = -17.9 to -19.1) and Sm-Nd model age (TDM = 1.63 to 1.90 Ga) typical of this group. The TRB, however, intruded Archean crust (???3.3 Ga, ??Nd = ??? -35), rather than the presumed Proterozoic crust intruded by the other plutons. The Archean heritage of the TRB is confirmed by the presence of premagmatic zircons which range from 2.2 to 3.0 Ga. The combination of U-Pb zircon and Nd model ages suggest that the batholith was derived from both Archean and Proterozoic crustal sources, as well as an ???80 Ma mantle component. This contrasts with a sample from the northern Idaho batholith which exhibits concordancy between its Sm-Nd and premagmatic zircon systems at ???1.74 Ga. These data point to the difficulties that can occur if crustal age provinces are defined solely on the basis of Nd model ages of younger plutons, particularly in areas such as the northwestern US where Archean and Proterozoic crust is poorly exposed and dispersed over a large area.

  13. Sm-Nd dating and REE Composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China

    NASA Astrophysics Data System (ADS)

    Guo, Zhijun; Li, Jinwen; Xu, Xinying; Song, Zeyou; Dong, Xuzhou; Tian, Jing; Yang, Yuncheng; She, Hongquan; Xiang, Anping; Kang, Yongjian

    2016-09-01

    Sm-Nd analyses of seven scheelite samples from scheelite-quartz veins in the Honghuaerji scheelite deposit produce a well-defined linear array on an isochron diagram with a mean square weighted deviation (MSWD) of 0.87 corresponding to an age of 178.4 ± 2.9 Ma with εNd(t) = + 1.50. This age is interpreted to represent the age of scheelite mineralization. The scheelite Sm-Nd age is in good agreement with U-Pb ages obtained from a mineralization-related granite (179.4 ~ 178.6 Ma), indicating that there is no apparent age gap between granite crystallization and ore formation. Rare earth element (REE) abundances in the scheelite were determined by in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the scheelite samples contain elevated REE concentrations with total ΣREE + Y contents in the range of 3339 to 6321 ppm. The chondrite-normalized REE distribution patterns of all scheelites are middle REE (MREE)-enriched, with strong negative Eu-anomalies (Eu/Eu* = 0.09 ~ 0.23). The REE characteristics of the Honghuaerji scheelite suggest that REE3 + substituted into the Ca site along with Na and Nb (dominated by Na), whereas Eu is predominantly present as Eu2 + in the scheelite and may have crystallized from relatively reduced fluids. All sulfur isotope data (δ34S) for sulfide separates range from + 2.0 to + 3.8‰, with an average of 3.2‰. Measured 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios vary from 18.243 to 18.451, 15.494 to 15.574, and 37.933 to 38.340, respectively. On the basis of common Sr-Nd-Pb-Hf isotopic characteristics between the scheelite and the host granite and the positive initial Nd isotope ratios (+ 1.46 - + 1.52), low 87Sr/86Sr ratios (0.704983-0.705297) in the scheelites, it is inferred that the hydrothermal fluids responsible for tungsten mineralization at Honghuaerji were of magmatic origin with a mantle-derived signature. Based on the regional geology, tectonic evolution, and geochemical evidence, the

  14. New Sm Nd ages for the Ivrea Verbano Zone, Sesia and Sessera valleys (Northern-Italy)

    NASA Astrophysics Data System (ADS)

    Mayer, Adriano; Mezger, Klaus; Sinigoi, Silvano

    2000-02-01

    The Ivrea-Verbano Zone (IVZ) is a slice of South-Alpine lower crust intruded by mantle magma. The main episode of magmatic underplating occurred during the Permian time and was related to continental rifting. We have carried out mineral Sm-Nd isochron dating of samples from the IVZ, including a gabbro dyke on which apparent Oligocene zircon ages have been reported, and a metapelite. The gabbro dyke sampled yielded three isochrons (cpx, opx, plag, amph and whole rocks) with the same initial 143Nd / 144Nd and an age of 274 ± 11 Ma (95% c.l., MSWD = 1.31) for the last major thermal event. Since this dyke is an embayment of the surrounding layered gabbro in the Balmuccia Peridotite, this age also represents the minimum age for the cooling of mafic-ultramafic sequence and for the emplacement of the Balmuccia peridotite in the IVZ. These conclusions are in contrast with those of Gebauer et al. (1992), who reported Oligocene U-Pb ages for magmatic zircons extracted from the same rocks. In order to evaluate the effect of Alpine intrusions on the IVZ, a sample of amphibole gabbro from the upper Sessera Valley was collected near Oligocene magmatic rocks. An internal Sm-Nd isochron (amph + cpx + plag + wr) from this sample yielded an age of 267 ± 21 Ma (95% c.l., MSWD = 0.716). Thus, despite the vicinity of the Oligocene magmatic activity, no thermal overprint (at T>650°C) occurred in this part of the IVZ more recently than 267 ± 21 Ma. Furthermore, a paragneiss septum within a shallower part of the intrusion in the lower Sessera Valley yielded a middle Triassic Sm-Nd garnet, biotite, plagioclase and whole rock age of 244 ± 4 Ma (95% c.l).

  15. U-Pb SHRIMP and Sm-Nd geochronology of granite-gneiss complexes and implications for the evolution of the Central Brazil Archean Terrain

    NASA Astrophysics Data System (ADS)

    Queiroz, Cláudia Lima; Jost, Hardy; da Silva, Luiz Carlos; McNaughton, Neal J.

    2008-07-01

    The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U-Pb SHRIMP zircon and Sm-Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2 σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2 σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data

  16. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.; Stille, P.; Patchett, P. J.

    1984-01-01

    Existing cumulate remelting models for mare basalt genesis are evaluated in light of Lu-Hf, Rb-Sr, Sm-Nd data and overall REE characteristics in order to determine the simplest model that can account for these data. A data base for comparing Lu-Hf evolution in the lunar mantle as inferred from Lu-Hf analyses of oceanic basalts is presented along with a preliminary comparison of Lu-Hf and Sm-Nd evolution betwee mare basalts and terrestrial oceanic basalts. It is found that Lu/Hf characteristics of mare basalts cannot be explained in terms of modal melting of cumulate sources formed from a magma ocean with chondritic Lu/Hf. The data are consistent with a model in which the cumulate sources formed from a light REE + HF-enriched magma ocean. Nonmodal melting of ilmenite in the sources is also required. The Lu-Hf data suggest that even the high-Ti basalt sources contained no more than about 3 percent ilmenite.

  17. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology

    NASA Astrophysics Data System (ADS)

    Arthaud, M. H.; Fuck, R. A.; Dantas, E. L.; Santos, T. J. S.; Caby, R.; Armstrong, R.

    2015-03-01

    From the Archean to the end of the Neoproterozoic the Borborema Province, northeast Brazil went through a complex polycyclic geologic evolution, ending, between 660 and 570 Ma, with the Brasiliano/Pan-African orogeny that led to West Gondwana amalgamation. Evolution of the metasedimentary covers of the Province, from the beginning of their deposition up to their involvement in the Brasiliano/Pan-African collision, is a key element in understanding formation of Gondwana and in attempts in pre-drift correlation between South America and West Africa. One of these covers, the Ceará Group, is exposed in the Ceará Central domain. Aiming to unravel the history of the Ceará Group, we carried out a geochronologic study of representative samples, combining Sm-Nd isotopic data, conventional U-Pb TIMS dating of zircon and U-Pb SHRIMP age determination of detrital zircon grains. Our results show that sedimentation of the Ceará Group started around 750 Ma, following rifting of the Archean/Paleoproterozoic basement, associated with bimodal volcanism. The interlayered basic volcanic rocks, re-crystallized into garnet amphibolites, show a concordant age of 749 ± 5 Ma interpreted as the age of crystallization. About 90% of calculated Sm-Nd TDM model ages of metasedimentary rocks are Paleoproterozoic and more than 50% of the analyzed samples have TDM between 1.95 and 2.4 Ma, with strongly negative ɛNd, consistent with provenance mainly from the Paleoproterozoic basement. Strong contrast between Paleoproterozoic TDM with negative ɛNd and young TDM (Mesoproterozoic) with slightly positive ɛNd is interpreted as a consequence of changes in detritus provenance induced by geomorphologic alterations resulting from tectonic activity during rifting. Ages of detrital zircon grains obtained by SHRIMP U-Pb analyses show three main groups: about 1800 Ma, 1000-1100 Ma and ca. 800 Ma which corresponds to the bimodal magmatism associated, respectively to the Orós-Jaguaribe domain, Cariris

  18. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances

    USGS Publications Warehouse

    Nakamura, N.; Unruh, D.M.; Tatsumoto, M.; Hutchison, R.

    1982-01-01

    Analyses of Sm-Nd and U-Th-Pb systematics, REE, Ba, Sr, Rb and K concentrations were carried out for whole rock and mineral separates from the Nakhla meteorite. The 1.26 ??.07 b.y. Sm-Nd age obtained in this work is in good agreement with those previously obtained by the Rb-Sr and Ar-Ar methods. The high initial ??{lunate}Nd value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. U-Th-Pb data, after correction for pre-analytical terrestrial Pb contamination assuming an age of 1.26 b.y., suggest that the age of the Nakhla source is ???4.33 b.y. The agreement in the age determined by three independent radiometric methods and the high initial ??{lunate}Nd value strongly suggest that the 1.3 b.y. age dates one thorough igneous event in the parent body which not only reset these isotopic systems but also established the chemical and petrologic characteristics observed for the Nakhla meteorite. Using a three-stage Sm-Nd evolution model in combination with LIL element data and estimated partition coefficients, we have tested partial melting and fractional crystallization models to estimate LIL element abundances in a possible Nakhla source. Our model calculations suggest that partial melting of the light REE-depleted source followed by extensive fractional crystallization (???50%) of the partial melt could account for the REE abundances in the Nakhla constituent minerals. The estimated source is depleted in the light REE, Ba, Rb and K and therefore may resemble the MORB source in the earth's upper mantle or the upper 60-300 km of the moon. The significantly younger age of Nakhla than the youngest lunar rock; the young differentiation age inferred from the U-Th-Pb data, and the estimated LIL element abundances (including those of K, U and Th) in the source suggest that the Nakhla meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars. ?? 1982.

  19. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  20. Sm-Nd Age and Nd- and Sr- Isotopic Evidence for the Petrogenesis of Dhofar 378

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Ikeda, Y.; Shih, C.-Y.; Reese, Y. D.; Nakamura, N.; Takeda, H.

    2006-01-01

    Dhofar 378 (hereafter Dho 378) is one of the most ferroan lithologies among martian meteorites, resembling the Los Angeles basaltic shergottite in lithology and mineral chemistry, although it is more highly shocked than Los Angeles. All plagioclase (Pl) grains in the original lithology were melted by an intense shock in the range 55-75 GPa. Clinopyroxenes (Cpx) sometimes show mosaic extinction under a microscope showing that they, too, experienced intense shock. Nevertheless, they zone from magnesian cores to ferroan rims, reflecting the original lithology. Cpx grains also often contain exsolution lamellae, showing that the original lithology cooled slowly enough for the lamellae to form. Because all plagioclase grains were melted by the intense shock and subsequently quenched, the main plagioclase component is glass (Pl-glass) rather than maskelynite. Like Los Angeles, but unlike most basaltic shergottites, Dho 378 contains approximately equal modal abundances of Cpx and Pl-glass. The grain sizes of the original minerals were comparatively large (approximately 1 mm). The original plagioclase zoning has been severely modified. Following shock melting, the plagioclase melts crystallized from the outside inward, first forming outer rims of Cpx-Pl intergrowths (approximately 10 micrometers) followed by inner rims (10's to 100 micrometers) of An(sub 40-50) feldspar, and finally Pl-gl cores of compositions An(sub 33-50) with orthoclase compositions up to Or(sub 12).

  1. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Hofmann, Albrecht W.; Raczek, Ingrid

    2009-11-01

    A widely used assumption of mantle geochemistry and the theory of partial melting at oceanic settings is the existence of isotopic equilibrium between mantle source and melt. Yet, recent diffusion studies and isotopic investigations of ophiolites, abyssal peridotites and associated MORBs have cast doubts on this assumption, by providing evidence for isotopic disequilibrium between residual peridotites and MORBs. Here we present Sr and Sm-Nd isotope data on mantle peridotites and gabbroic intrusions from the Mt. Maggiore (Alpine Corsica, France) Tethyan ophiolite, which document Nd isotopic homogeneity, implying isotopic equilibrium, on a 1-kilometer scale. The peridotites record multi-stage melt-rock interaction and melt intrusion occurring at different lithospheric depths. Samples studied are residual cpx-poor spinel lherzolites, reactive spinel harzburgites, impregnated plagioclase peridotites and related gabbronoritic veinlets, later gabbroic dykes. Strontium isotopes in peridotites and gabbros are highly variable, due to interaction with sea-water derived fluids, and cannot be used to test melt-residue isotopic equilibrium. In contrast, Nd isotopes are unaffected by sea-water alteration. Peridotites display present-day high 147Sm/ 144Nd (0.49-0.59) and 143Nd/ 144Nd (0.513367-0.513551) ratios, with no appreciable differences between residual and reactive spinel peridotites, and between spinel and plagioclase peridotites. Gabbroic dykes have present-day Nd isotopic compositions typical of MORB ( 143Nd/ 144Nd = 0.513122-0.513138). Internal (plag-whole rock-cpx) Sm-Nd isochrons for olivine gabbro dykes and a gabbronoritic veinlet yield Jurassic ages (162 ± 10 and 159 ± 15 Ma in ol-gabbros, 155 ± 6 Ma in gabbronorite), and initial ɛNd = 8.9-9.7 indicative of a MORB-type source. Sm-Nd isotopic compositions of peridotites conform to the linear array defined by the gabbroic rocks, and yield initial (160 Ma) ɛNd values of 7.6-8.9, again consistent with a MORB

  2. Geochronological and geochemical constraints on the formation and evolution of the mantle underneath the Kaapvaal craton: Lu-Hf and Sm-Nd systematics of subcalcic garnets from highly depleted peridotites

    NASA Astrophysics Data System (ADS)

    Shu, Qiao; Brey, Gerhard P.; Gerdes, Axel; Hoefer, Heidi E.

    2013-07-01

    Subcalcic garnets carry the major inventory of most trace elements of their host harzburgites and are thus proxies of the bulk composition. We used single garnet grains from heavy mineral concentrates from the Kaapvaal craton (Roberts Victor and Lace mine) to determine the major and trace elements and the Sm-Nd and Lu-Hf isotope systematics of these highly depleted members of the peridotitic suite. The combination of the results with previous work from the Finsch mine (Lazarov et al., 2009a) allowed us to reconstruct the formation and evolution of the mantle underneath the Kaapvaal craton. Several lines of evidence from major and trace elements suggest that mantle melting was mainly at shallow pressures followed by subduction into the garnet stability field. A 3.22 Ga metasomatic event underneath the East block occurred in a previously depleted mantle (ɛHf = +16) which was sufficiently stabilized by that time to hold a crust with tonalite-trondhjemite-granodiorite (TTG's) and greenstone belts. Such high ɛHf values can be produced within a few hundred million years by 25% non-modal fractional melting in the spinel stability field. This is the first prove of a mantle underneath the East block with an age similar to a 3.65 Ga crustal age. Before the amalgamation around 2.88 Ga, oceanic lithosphere was created between the W- and E-block around 2.95 Ga (group RV1 samples from the Roberts Victor) and subducted underneath the W-block. Another mantle portion (group RV2 garnets) from Roberts Victor yielded a seeming age of 3.27 ± 0.15 Ga with ɛHf = +17.6. It actually results from an enrichment process in a highly depleted mantle about 2.8-2.9 Ga ago. This may have been the depleted mantle wedge above the subduction and final collision between the West and the East block. The creation of a cratonic nucleus for the West-block is unknown until 3.2 Ga when the oldest mantle TRD and oldest crustal zircon ages are reported. Such ages were not directly obtained from the study

  3. Sm-nd and rb-sr chronology of continental crust formation.

    PubMed

    McCulloch, M T; Wasserburg, G J

    1978-06-01

    Samarium-neodymium and rubidium-strontium isotopic systematics together with plausible assumptions regarding the geochemical evlution of continental crust material, have been used to ascertain the times at which segments of continental crust were formed. Analyses of composites from the Canadian Shield representing portions of the Superior, Slave, and Churchill structural provinces indicate that these provinces were all formed within the period 2.5 to 2.7 aeons. It has been possible to determine the mean age of sediment provenances, as studies of sedimentary rocks suggest that the samarium-neodymium isotopic system is not substantially disturbed during sedimentation or diagenesis. PMID:17740673

  4. Binary mixing model for Palaeoproterozoic PGE-bearing layered intrusions and dating of ore genesis using Sm-Nd method on sulfides and U-Pb on zircon and baddeleyite

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Ekimova, Nadezhda

    2013-04-01

    Numerous publications about of primary sources for layered intrusions as conclusions are two main hypotheses, according to which the studied intrusions could be formed either directly from the anomalous mantle source (EM-1) or there are negative parameter ɛNd (T) are related to process of crustal contamination (Bayanova et. al., 2009). To estimate the contribution of crustal component the binary mixing model was used (Jahn, Wu, Chen, 2000), which allows to determine the proportion of the mantle component in the crust-mantle mixture. New obtained data indicate a low level of contamination (3-15% crustal component) for most PGE-bearing layered intrusions of the Fennoscandian Shield - Main Ridge, Fedorovo-Pansky, Burakovskya and Finnish group intrusions (Penikat, Ahmavaara, Kemi et. al.). However, calculations in the binary mixing model for Main Ridge rocks showed that the proportion of crustal component amphibolized gabbros flank is significantly higher (75%) than in the rocks of the central part (about 10%). It is very likely can indicate the interaction of the melt with crustal material of the country rocks. New minerals-geochronometers such as sulfides - pyrrhotine, pyrite, chalchopyrite, pentlandite et. set.- are improved in Sm-Nd systematics. Sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of Middle Ocean Ridge hydrothermal sources has shown possible presence Sm and Nd in the sulfide minerals (Rimskaya-Korsakova et. al., 2003). For the first time sulfide minerals with rock-forming minerals and WR have been dated using Sm-Nd method of impregnated and brecciform ores of Pechenga Cu-Ni deposits (1965±87 Ma). Precise U-Pb dating on baddeleyite reflected the same age 1980±10 Ma. Rock-forming and sulfide minerals of Ahmavaara intrusion (Finland) gave Sm-Nd age - 2433±83 Ma - for impregnated and redeposited (1903±24 Ma) ores. New Sm-Nd age for ore

  5. Lunar Crustal History from Isotopic Studies of Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Bogard, D. D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of approx.3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. [1]. We will present recent chronological studies of anorthosites [2] that are relevant both to the LMO hypothesis and also to the lunar cataclysm hypothesis. Old (approx.4.4 Ga) Sm-Nd ages have been determined for some Apollo 16 anorthosites, and primitive initial Sr-87/Sr-86 ratios have been measured for several, but well-defined Rb-Sr ages concordant with the Sm-Nd ages have not been determined until now. Lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater, has concordant Sm-Nd and Rb-Sr ages of 4.47+/-0.07 Ga and 4.49+/-0.07 Ga, respectively. Initial Nd-143/Nd-144 determined from the Sm-Nd isochron corresponds to E(sub Nd,CHUR) = 0.3+/-0.5 compared to a Chondritic Uniform Reservoir, or E(sub Nd,HEDPB) = -0.6+/-0.5 compared to the initial Nd-143/Nd-144 of the HED Parent Body [3]. Lunar anorthosites tend to have E(sub Nd) > 0 when compared to CHUR, apparently inconsistent with derivation from a single lunar magma ocean. Although E(sub Nd) < 0 for some anorthosites, if lunar initial Nd-143/Nd-144 is taken equal to HEDR for the HED parent body [3], enough variability remains among the anorthosite data alone to suggest that lunar anorthosites do not derive from a single source, i.e., they are not all products of the LMO. An anorthositic clast from desert meteorite Dhofar 908 has an Ar-39-Ar-40 age of 4.42+/-0.04 Ga, the same as the 4.36-4.41+/-0.035 Ga Ar-39-Ar-40 age of anorthositic clast Y-86032,116 in Antarctic meteorite Yamato- 86032 [3,4]. Conclusions: (i) Lunar anorthosites come from diverse sources. Orbital geochemical studies confirm variability in lunar crustal composition [1, 5]. We suggest that the variability extends to anorthosites alone as shown by the Sm-Nd data (Fig. 2) and the existence of magnesian anorthosites (MAN, [6]) and "An93 anorthosites

  6. Combined Sm-Nd and Lu-Hf dating of garnets from the Putomayo foreland basin in south-central Colombia and implications

    NASA Astrophysics Data System (ADS)

    Bloch, E. M.; Ibanez-mejia, M.; Ganguly, J.

    2013-12-01

    Garnet-whole rock (Grt-WR) ages of metapelites determined by the Lu-Hf decay system are almost always older than those determined by the Sm-Nd system. Unambiguous interpretation of the observed age differences has been hindered by a lack of adequate information about grain size, diffusion data for Hf in garnet, and in many cases about peak metamorphic conditions and cooling rates, all of which affect the closure temperatures of these decay systems. As part of a broader study on basement rocks from the Andean Putomayo foreland basin in south-central Colombia, we have determined the Lu-Hf and Sm-Nd Grt-WR ages of these rocks using painstakingly handpicked garnets of ~50 μm radius, and obtained ages of 1070 × 5.6 and 1007 × 2.9 Ma, respectively. By modeling the retrograde Fe-Mg zoning in garnet adjacent to biotite according to an asymptotic cooling model (1/T = 1/To + ηt) with the diffusion data from [1], an initial cooling rate of ~2-5 °C/Ma is obtained independently of the geochronological data; peak P-T conditions of ~8 kb, 675 °C are imposed by garnet-orthopyroxene thermobarometry. Using the above data in conjunction with the Nd diffusion data from [2] and Hf diffusion data from our recent study, we obtain closure temperatures for the Lu-Hf and Sm-Nd decay systems in garnet of ~545-565 °C and 415-430 °C, respectively. Results from analytical solutions [3, 4] and a more flexible numerical method are found to be in good agreement with one another. The calculated difference of closure temperatures predicts a difference of ~105-40 Ma between the ages determined by the two decay systems, as compared to the observed age difference of 63 × 6 Ma. The predicted peak metamorphic age derived from the measured and calculated resetting ages of the two decay systems is between ~1030 and 1185 Ma, as compared to the Lu-Hf age of 1070 ×1.9 Ma; we are currently working to obtain U-Pb zircon ages to better constrain this peak metamorphic age. In calculating these results

  7. A Nd and Sr isotopic study of the Ivrea zone, Southern Alps, N-Italy

    NASA Astrophysics Data System (ADS)

    Voshage, H.; Hunziker, J. C.; Hofmann, A. W.; Zingg, A.

    1987-09-01

    The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with ɛ {607/Nd}=+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by “phlogopite metasomatism”. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial ɛ {293/Nd}value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic “crustal residence ages” of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.

  8. Rb-Sr and Sm-Nd whole rock analyses of basalts of the Grao Para Group, Serra dos Carajas, Brazil

    SciTech Connect

    Olszewski, W.J. Jr.; Gibbs, A.K.; Wirth, K.R.

    1985-01-01

    The Grao Para Group at Serra dos Carajas in the Guapore Shield of Brazil is a 6 km thick sequence of bimodal metavolcanic rock with interbedded iron formations. Rhyolites are a minor part of the low grade meta-volcanic section, with the bulk consisting of subalkaline basalt, basaltic andesite, and shoshonite. Rb-Sr whole rock analyses of 7 basalts yield an age of 2687 +/- 54 Ma. This agrees well with an age of 2758 +/- 39 Ma from zircon U-Pb analyses of the interbedded rhyolites. Except for the allocthonous Imataca Complex of Venezuela, these dates for the Grao Para Group are the first well-constrained Archean ages from the Amazonian Craton. An even older age for the basement to the Grao Para Group is also implied. Sm-Nd whole-rock analyses of four of these basalts did not yield an isochron because of the limited range of /sup 147/Sm//sup 144/Nd values, but element of/sub Nd/ values relative to CHUR were calculated using the Rb-Sr age. The typical LREE-enrichment, lack of Ce depletion or spilitic alteration of alkalies, and the high Sr initial ratios, may indicate that these isotopic patterns were derived by incorporation of some older continental crust in the mafic melts. These data together with an element of/sub Sr/ of +63.6 might indicate significant seawater exchange with volcanic rocks derived from mantle with chondritic REE patterns. This demonstrates the presence of significant continental crust in the Archean and seawater-volcanic rock interaction in a rifting environment similar to modern analogs.

  9. The Santa Terezinha-Campos Verdes emerald district, central Brazil: structural and Sm-Nd data to constrain the tectonic evolution of the Neoproterozoic Brası´lia belt

    NASA Astrophysics Data System (ADS)

    D'el-Rey Silva, Luiz José Homem; Barros Neto, Leonel de Souza

    2002-12-01

    Structural analysis coupled with Sm-Nd isotope data and a detailed description of the geology of the Santa Terezinha-Campos Verdes emerald district (Goiás State, Central Brazil) constrain the evolution of the Neoproterozoic Brası´lia belt. The area is composed of tectonic slices of Archean-Paleoproterozoic gneiss, a Meso-Neoproterozoic metavolcanic sedimentary sequence called the Santa Terezinha sequence, and crustal-derived intrusive rocks such as mylonitic (ortho)gneiss and a syntectonic porphyry granite. It underwent a Neoproterozoic greenschist facies polyphase ductile deformation (D 1-D 3). Structures indicate an event of rotational deformation along a typical frontal ramp dipping gently to the west (i.e. an event of simple shear with top to ESE relative regional movement due to a subhorizontal WNW-ESE compression). A Sm-Nd whole-rock isochron age of 577±77 Ma for the intrusive rocks constrains the timing of at least part of the deformation/metamorphism in the area. Primary and metamorphic planar structures (mainly D 1-D 2) strike SW-NE and dip at low to moderate angles to the NW in the northern part of the area. However, they gradually rotate to SSE in the central SE part, where the Peixe River synclinorium is developed. This synclinorium is also the nest of the D 2 sheath folds that control emerald ore shoots. The Santa Cruz dome is a basement-cored, major elliptic structure in the SW of the area. The Santa Terezinha sequence represents a back-arc basin that received input from the Neoproterozoic Goiás magmatic arc to the west and the São Francisco ancient continental margin to the east. The basal and upper sections of this sequence correlate, respectively, with other passive margin and back-arc sequences of the Brası´lia belt.

  10. Neodymium and strontium isotopic study of Australasian tektites - New constraints on the provenance and age of target materials

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Papanastassiou, D. A.; Wasserburg, G. J.; Koeberl, C.

    1992-01-01

    The Nd and Sr isotopic compositions of Australasian tectites (including two flanged Australian tectites, two low-SiO2 Muong Nong-type tectites, and three high-SiO2 Muong Nong-type tectites) and the Nd, Sm, Sr, and Rb concentrations were investigated by isotope-dilution thermal ionization mass spectrometry, and the Sm-Nd and Rb-Sr isotope systematics were used to study the characteristics of the parental material. It is shown that the Nd and Sr isotopic data provide evidence that all Australasian tektites were derived from a single sedimentary formation with a narrow range of stratigraphic ages close to 170 Ma. It is suggested that all of the Australasian tektites were derived from a single impact event and that the australites represent the upper part of a melt sheet ejected at high velocity, whereas the indochinites represent melts formed at a lower level in the target material distributed closer to the area of the impact.

  11. Thermal history of Colorado plateau lithoshere from Sm-Nd mineral geochronology of xenoliths

    SciTech Connect

    Wendlandt, E.; DePaolo, D.J.; Baldridge, W.S.

    1996-07-01

    The thermal history of the lower crust and upper mantle of the Colorado Plateau region is reconstructed on the basis of Nd and Sr isotopes in minerals and whole rock xenoliths hosted by Tertiary minette and kimberlite. Whole rock data indicate that the crustal rocks were extracted from the mantle at ca. 1900 Ma. The mineral ages, which are 30-100 m.y. younger than crystallization ages of Proterozoic `anorogenic` granitoids from regions bordering the Colorado Plateau, are interpreted as cooling ages set following the crustal thermal maximum at 1380-1440 Ma. The eclogite mineral ages are probably the ages of the host Garnet Ridge and Moses Rock diatremes, and require that Nd isotopes were maintained in equilibrium right up to the time of entrainment. The isotopic data and the mineral textures suggest that the eclogites were undergoing active recrystallization at 21 Ma. The contrast in mineral ages between granulite and eclogite xenoliths indicates that the equilibration temperatures of the two rock types reflect different times of equilibration, and therefore cannot be considered as evidence for a negative thermal gradient at depth. The Rb-Sr mineral data from the xenoliths give variable early Paleozoic and Proterozoic ages that cannot easily be assigned to geologic events. 55 refs., 9 figs., 2 tabs.

  12. REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group, Western Australia

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Danielson, A.; Holland, H. D.; Jacobsen, S. B.

    1994-01-01

    Two weathering profiles, each consisting of an upper, sericite-rich zone and a lower, chlorite-rich zone, are preserved between flows of the Mt. Roe Basalt in the Fortescue Group, Hamersley Basin, Western Australia. REE concentrations in samples from these two profiles, which originally developed ca 2,760 Ma, show large variations depending on stratigraphic position. LREE abundances and (La/Yb)N are greatest at depths of 3-6 m below the paleosurface of the Mt. Roe #1 profile and are somewhat lower in samples above this level. The LREEs reach concentrations 6-9 times greater than in the underlying basalt, and thus appear to have been mobilized downward in the paleosol and concentrated in its middle part. LREE concentrations in the #2 profile show a similar distribution but with a sharp increase in all REE concentrations within 50 cm of the paleosurface. The distinction between the REE profiles in the two paleosols may be related to the difference in the overlying material. The #1 paleosol is overlain by a few meters of sediments and then by basalt, whereas the #2 paleosol is directly overlain by basalt. The LREEs appear to have been mobilized both during chemical weathering of the parental basalt and during later lower-greenschist-facies metamorphism and metasomatism of the paleosols. Remobilization of the REEs during the regional metamorphism of the Fortescue Group is confirmed by a whole-rock Sm-Nd reference isochron of Mt. Roe #1 samples with an age of 2,151 +/- 360 Ma. Variable initial 143Nd/144Nd values of unweathered basalt samples which may represent the paleosol protolith prevents a confident determination of the magnitude of LREE mobility. Both the initial mobilization of the REEs during weathering and the metasomatic remobilization appear to have taken place under redox conditions where Ce was present dominantly as Ce3+, because Ce anomalies are not developed within the sericite zone samples regardless of concentration. Europium anomalies in the

  13. REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group, Western Australia.

    PubMed

    MacFarlane, A W; Danielson, A; Holland, H D; Jacobsen, S B

    1994-04-01

    Two weathering profiles, each consisting of an upper, sericite-rich zone and a lower, chlorite-rich zone, are preserved between flows of the Mt. Roe Basalt in the Fortescue Group, Hamersley Basin, Western Australia. REE concentrations in samples from these two profiles, which originally developed ca 2,760 Ma, show large variations depending on stratigraphic position. LREE abundances and (La/Yb)N are greatest at depths of 3-6 m below the paleosurface of the Mt. Roe #1 profile and are somewhat lower in samples above this level. The LREEs reach concentrations 6-9 times greater than in the underlying basalt, and thus appear to have been mobilized downward in the paleosol and concentrated in its middle part. LREE concentrations in the #2 profile show a similar distribution but with a sharp increase in all REE concentrations within 50 cm of the paleosurface. The distinction between the REE profiles in the two paleosols may be related to the difference in the overlying material. The #1 paleosol is overlain by a few meters of sediments and then by basalt, whereas the #2 paleosol is directly overlain by basalt. The LREEs appear to have been mobilized both during chemical weathering of the parental basalt and during later lower-greenschist-facies metamorphism and metasomatism of the paleosols. Remobilization of the REEs during the regional metamorphism of the Fortescue Group is confirmed by a whole-rock Sm-Nd reference isochron of Mt. Roe #1 samples with an age of 2,151 +/- 360 Ma. Variable initial 143Nd/144Nd values of unweathered basalt samples which may represent the paleosol protolith prevents a confident determination of the magnitude of LREE mobility. Both the initial mobilization of the REEs during weathering and the metasomatic remobilization appear to have taken place under redox conditions where Ce was present dominantly as Ce3+, because Ce anomalies are not developed within the sericite zone samples regardless of concentration. Europium anomalies in the

  14. Low-Sulfide PGE ores in paleoproterozoic Monchegorsk pluton and massifs of its southern framing, Kola Peninsula, Russia: Geological characteristic and isotopic geochronological evidence of polychronous ore-magmatic systems

    NASA Astrophysics Data System (ADS)

    Chashchin, V. V.; Bayanova, T. B.; Mitrofanov, F. P.; Serov, P. A.

    2016-01-01

    New U-Pb and Sm-Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U-Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U-Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm-Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U-Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial ɛNd =-6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm-Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at ɛNd =-2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm-Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial ɛNd =-7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore-magmatic system, which resulted in the rearrangement of the Sm-Nd system and its incomplete closure. Thus, the new

  15. Chemical separation of Nd from geological samples for chronological studies using (146)Sm-(142)Nd and (147)Sm-(143)Nd systematics.

    PubMed

    Kagami, Saya; Yokoyama, Tetsuya

    2016-09-21

    Sm-Nd dating, which involves long-lived (147)Sm-(143)Nd and short-lived (146)Sm-(142)Nd systematics, has been widely used in the field of geosciences. To obtain precise and accurate ages of geological samples, the determination of highly precise Nd isotope ratios with nearly complete removal of Ce and Sm is indispensable to avoid mass spectral interference. In this study, we developed a three-step column chemistry procedure for separating Nd from geological samples that includes cation exchange chromatography for separating major elements from rare earth elements (REEs), oxidative extraction chromatography using Ln Resin coupled with HNO3 + KBrO3 for separating tetravalent Ce from the remaining REEs, and final purification of Nd using Ln Resin. This method enables high recovery of Nd (>91%) with effective separation of Nd from Ce and Sm (Ce/Nd < 1.2 × 10(-5) and Sm/Nd < 5.2 × 10(-6)). In addition, we devised a new method for determining Sm/Nd ratios with the isotope dilution inductively coupled plasma mass spectrometry method using (145)Nd- and (149)Sm-enriched spikes coupled with a group separation of REEs using TRU Resin. Applying the techniques developed in this study, we determined the Sm-Nd whole-rock isochron age of basaltic eucrites, yielding 4577 - 88(+ 55) Ma and 4558 ± 300 Ma for (146)Sm-(142)Nd and (147)Sm-(143)Nd systematics, respectively. PMID:27590557

  16. Paleoproterozoic gabbro-diorite-granite magmatism of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.

    2016-02-01

    The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified magmatic source. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.

  17. Isotopic Constraints on the Origin of Lunar Ferroan Anorthosites

    NASA Technical Reports Server (NTRS)

    Borg, L. E.; Shearer, C. K.; Nyquist, L. E.; Norman, M. D.

    2002-01-01

    Ferroan anorthosites have whole rock Nd isotopic compositions that are too radiogenic to have crystallized from a chondritic magma ocean. Mechanisms to disturb the whole rock Sm-Nd isotopic compositions are explored. Additional information is contained in the original extended abstract.

  18. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  19. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    1030-1075 Myr, coherent with an age on 2 syngenetic galenas around 1055 Myr for the top of BI Group (Cahen, 1954; Holmes & Cahen, 1955). Sm-Nd datings on basaltic pillow lavas overlying the Mbuji-Mayi Supergroup (previously dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984) are in progress (Laboratoire G-Time, ULB, Bruxelles) to precisely limit in time the end of deposition of this Supergroup.

  20. The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjie; Zuo, Renguang; Cheng, Qiuming

    2015-04-01

    The Makeng Fe deposit is located in the southwestern Fujian district, South China. The Sm-Nd isochron ages of seven samples of pure garnet and five of pure magnetite separates from the Makeng ores yielded an isochron age of 157 ± 15 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating of the nearby exposed the Dayang-Juzhou (DJ) porphyritic biotite granite and fine-grained syenogranite yielded 206Pb/238U ages of 140.2 ± 1.1 and 140.1 ± 1.0 Ma, respectively. These results suggest that the intrusion of the DJ granite and the Makeng skarn alterations and Fe mineralization are contemporaneous. The DJ granite exhibits geochemical characteristics of A-type granites, including high values of Na2O + K2O (8.13-8.92 wt%), FeOt/MgO (3.4-21.5), and Ga/Al (2.64-3.45 × 10-4), and low Al2O3 (10.71-13.29 wt%) value. Chondrite-normalized rare earth element patterns are characterized by obviously negative Eu anomalies (δEu = 0.02-0.28) and primitive-mantle normalized spidergrams show the enrichment in high field strength element and depleting in Sr, Ti, Ba, and Eu. The geochemical characteristics of DJ granite suggest that the granite was derived from partial melting of the Paleoproterozoic metasedimentary rocks of the Cathaysia basement. And some underplating of mafic magma in the lower tholeiitic crust and/or depleted mantle might be involved and provide the heat source for the partial melting. The DJ granite also fits the spatiotemporal distribution of the Jurassic-Cretaceous coastward migration of both extensional and arc-related magmatism and fills the A-type granites gap in the early stage of the early Cretaceous (145-125 Ma). Therefore, it is suggested that the late Jurassic and early Cretaceous magmatism in southwestern Fujian district were generated in an extensional environment responding to the slab rollback and concomitant retreating arc system of the paleo-Pacific plate within the South China Block. And the Fe metallogeny

  1. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    USGS Publications Warehouse

    Patchett, P.J.

    1983-01-01

    The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf 177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf 177Hf exceed those of 143Nd l44Nd by factors of 1.5-3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf 177Hf- 87Sr 86Sr and 143Nd l44Nd- 87Sr 86Sr diagrams, 176Hf 177Hf and 143Nd 144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr 86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. In order to evaluate the Hf-Nd isotopic correlation in terms of mantle fractionation history, there is a need for measurements of Hf distribution coefficients between silicate minerals and liquids, and specifically for a knowledge of Hf behavior in relation to rareearth elements. For studying ancient terrestrial Hf isotopic variations, the best quality Hf isotope data are obtained from granitoid rocks or zircons. New data show that very U-Pb discordant zircons may have upwardly-biased 176Hf 177Hf, but that at least concordant to slightly discordant zircons appear to be reliable carriers of initial 176Hf 177Hf. Until the controls on addition of radiogenic Hf to zircon are understood, combined zircon-whole rock studies are recommended. Lu-Hf has been demonstrated as a viable tool for dating of ancient terrestrial and extraterrestrial samples, but because it offers little advantage over existing methods, is unlikely to find

  2. Pb-Sr-Nd isotope study of the 100- to 2700-Ma old alkalic rock-carbonatite complexes in the Canadian shield: inferences on the geochemical and structural evolution of the mantle

    SciTech Connect

    Kwon, S.T.

    1986-01-01

    The isotopic signatures of young continental alkalic complexes (CAC) display a remarkable similarity to those of oceanic island basalts (OIB). A study of Sr isotopic evolution showed that the mantle, presumably similar to the source of OIB, beneath the shield appears to have been depleted in large ion lithophile elements (LILE) and to have remained as a closed system since ca. 3000 Ma ago. The present investigations apply Pb and Nd as well as Sr isotopic systems for those complexes to study the secular geochemical evolution of the mantle over the past 2700 million years, and address the question of the processes responsible for the geochemical heterogeneity of the mantle. The data suggest: (1) Like Sr, Pb and Nd isotopic data indicate LILE depleted sources for the southern Canadian shield CAC over at least the past 1900 Ma. (2) Sr, Nd and Pb are compatible with an age of ca. 3000 Ma for the depleted source. (3) In contrast to Sr, and probably Nd, the Pb isotopic data cannot be explained by a closed system model for the depleted mantle source. (4) Coherent fractionation patterns are observed in the mantle sources of CAC since at least 1900 Ma ago: higher U/Pb and Sm/Nd, and lower Th/U and Rb/Sr ratios versus lower U/Pb and Sm/Nd, and higher Th/U and Rb/Sr ratios, indicating OlB-like sources for CAC. (5) The inverse correlation between /sup 206/Pb//sup 204/Pb and /sup 87/Sr//sup 86/Sr initial ratios permit calculation of apparent mean earth Pb isotope ratios with time, which yield 8.35 for the present day /sup 238/U//sup 204/Pb ratio, and 17.82 for /sup 206/Pb//sup 204/Pb. (6) A model for the geochemical and structural evolution of the mantle is based on the diverging isotopic evolution of the midocean ridge basalts (MORB) and OlB sources.

  3. U-Pb and Sm-Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains, Montana: identification of a parent magma?

    USGS Publications Warehouse

    Premo, W.R.; Helz, R.T.; Zientek, M.L.; Langston, R.B.

    1990-01-01

    Seven analyses from two samples of the Lower Banded series of the Stillwater Complex, Montana, yielded a U-Pb zircon-baddeleyite age of 2705??4 Ma. A more precise age of 2704??1 Ma is obtained if we regress only five of seven analyses. In either case, the age is in very good agreement with the previously reported Sm-Nd mineral isochron age of 2701??8 Ma for a gabbro from the Lower Banded series. Noncumulate mafic sills and dikes that immediately underlie the Stillwater Complex are separated into five compositional groups. U-Pb zircon ages for a group 1 gabbronorite (2711??1 Ma) and a group 3 mafic norite (2703??10Ma) are comparable to previously reported U-Pb zircon ages for a group 1 diabase (2713??3 Ma) and a group 4 high-Ti norite (2712??3 Ma). Mineral separates from group 2 yielded a four-point Pb-Pb internal isochron age of 2704??25 Ma, and separates from group 6 yielded a Sm-Nd internal isochron age of 2706??64 Ma. These results indicate that groups 1 and 4 of the associated sills and dikes are perhaps slightly older than the complex and that groups 2,3, and 6 may be coeval with it, supporting the idea that these three groups are the best candidates for a Stillwater parent magma. -from Authors

  4. Rhenium-osmium isotope systematics of Group 2A and Group 4A iron meteorites

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1993-01-01

    We are investigating the Re-Os isotope systematics of two groups of magmatic iron meteorites (2A, 4A) in an attempt to establish precise 'total rock' isochrons by the Re-Os system. The Re-187/Os-187 isotope system is recognized as a method by which the ages of iron meteorites can be directly determined and that can provide information on the timing of FeNi segregation and core formation in planetesimals. The Re-Os isotope system permits the direct absolute dating of the metal phase in iron meteorites. Indirect dating of iron meteorites has been achieved in the past through the Rb-Sr, K-Ar, and most recently, Sm-Nd for silicate inclusions, where present. Relative dating has been obtained directly by extensive studies of the short-lived system Pd-107/Ag-107 for the metal and sulfide phases and indirectly using I-129/Xe-129 in silicate and sulfide inclusions.

  5. Nd, O and Sr isotopic constraints on the origin of Precambrian rocks, southern Black Hills, South Dakota

    SciTech Connect

    Walker, R.J.; Hanson, G.N.; Papike, J.J.; O'Neil, J.R.

    1986-12-01

    The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have T/sub DM/ ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have T/sub DM/ ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga, and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 +/- 0.08 and 2.20 +/- 0.20 Ga, respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 +/- 100 Ma.

  6. Early differentiation of the silicate Earth : new constraints from isotopic investigation of rocks from the lunar highlands

    NASA Astrophysics Data System (ADS)

    Boyet, M.; Carlson, R.; Borg, L.; Connelly, J.; Horan, M.

    2012-04-01

    The isotopic similarity in O, Mo, W, Si, and Fe between lunar and terrestrial samples suggests that the two planetary bodies were equilibrated in the energetic aftermath of the giant impact that gave birth to the Moon [1]. Coupled 142Nd-143Nd isotope systematics of lunar samples including both low-Ti and high-Ti mare basalts along with KREEP basalts have been used to constrain the age of crystallization of the lunar interior [2-5]. These studies show that the Sm-Nd system in the lunar mantle closed in the interval of 180-250 Ma after the beginning of solar system formation, depending on the model considered for lunar mantle differentiation (1 or 2 stage-model and initial lunar Sm/Nd ratio). Does this age represent the age of Moon formation? A prolonged lunar magma ocean (LMO) might be expected given the insulating effect of the thick plagioclase crust, so closure of the Sm-Nd system in the lunar mantle, particularly in a late stage LMO component like KREEP, might substantially post-date lunar formation. We have recently determined a new age of 4360±3 Ma for the ferroan anorthosite (FAN) 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotope systems [6]. This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques, strongly suggesting that this age indicates the time at which the sample crystallized. In order to pursue the question of whether Moon formation occurred over 100 Ma after solar system formation, we have investigated a number of lunar rocks sampling the highland crust from both the FAN and the Mg-suite groups. Internal Sm-Nd isochron on the norite 77215 yields an age of 4296±20 Ma, in agreement with the young age determined on 60025. We will show that our new data obtained on the 146Sm-142Nd systematics of the lunar crust support the scenario of a relative young age for the Moon. Thus, these results offer a unique opportunity to better constrain the composition of the terrestrial

  7. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic

  8. Garnet geochronology: improvements and application in studying India-Asia collision

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs; Scherer, Erik; Mezger, Klaus; Lee, Jeffrey; Ratschbacher, Lothar; Kooijman, Ellen; Stearns, Michael

    2016-04-01

    Garnet enables constraints on all parameters relevant to lithosphere studies: pressure, temperature, strain, and time. This aspect, in combination with its widespread occurrence in metamorphic rocks, make the mineral a prime target in research into the dynamics of mountain belts. Our ability to obtain and interpret precise age constraints from garnet Lu-Hf and Sm-Nd data has greatly improved over the years. This contribution highlights recent enhancements in garnet geochronology and demonstrates the versatility of this method in two case studies set in the India-Asia collision zone. To enable a more effective use of garnet geochronology, we investigated the retentiveness of Lu-Hf and Sm-Nd isotope signatures in naturally metamorphosed garnet. A grain-size dependent Lu-Hf and Sm-Nd analysis of garnet was done on a sample of a slowly cooled Archean granulite from the Pikwitonei Granulite Domain, Canada. Comparison of the apparent ages to the known thermal history of this rock allowed constraints on chronometer systematics at high temperature. Diffusive re-equilibration is shown to occur to a small (Sm-Nd) to minor, if not insignificant (Lu-Hf), extent during high temperature metamorphism, thus firmly establishing the Lu-Hf and Sm-Nd chronometers as reliable, well-characterized dating tools. Garnet Lu-Hf chronology was done to show that mid-crustal flow and 'Barrovian-type' metamorphism of rocks now exposed in the North Himalayan Gneiss Domes in Central Tibet commenced in the early Eocene. This result is the first to confirm that crustal thickening and contraction in the Tibetan Himalaya was broadly synchronous with the collision between Greater India and Eurasia. Garnet dating and thermometry, and rutile U-Pb thermochronology on granulites from the Pamir (an exposed segment of deep Asia) revealed a history of heating to 750-830 °C, commencing at 37 Ma in the South Pamir and occurring progressively later northward. The data advocate a causal link between Indian slab

  9. Low-temperature anomaly of the magnetization in alloys (Pr,Dy, M)2(Fe,Co)14B ( M = Gd, Sm, Nd)

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Ospennikova, O. G.; Rezchikova, I. I.; Valeev, R. A.; Cherednichenko, I. V.; Kunitsyna, E. I.; Morgunov, R. B.; Piskorskii, V. P.

    2016-03-01

    It has been found that temperature dependences of the saturation magnetization of sintered hard magnetic (Pr,Dy, M)2(Fe,Co)14B ( M = Gd, Sm, Nd) alloys demonstrate an increase at a temperature lower than a critical temperature (150 K for Sm and Nd and 70 K for Gd). An additive of copper does not influence the critical temperature. It has been assumed that there is a low-temperature phase in which cobalt is replaced with boron that diffuses from the (Pr,Dy,Gd)(Fe,Co)4B phase to the near-surface region of grains of the main magnetic (Pr,Dy,Gd)2(Fe,Co)14B phase.

  10. Radiogenic age and isotopic studies, Report 3. Paper No. 89-02. Annual publication

    SciTech Connect

    Not Available

    1990-01-01

    Annual collection of reports presenting data from the Geochronology Section of the Continental Geoscience Division. Reports make full presentation of the data, relate these to field settings, and make comparatively short interpretations. The reports cover Rb-Sr and Sm-Nd procedures currently in use at the laboratory using high performance liquid chromatography methods; 40Ar/39Ar analyses, including that on the age of the New Quebec Crater; a summary of studies in N.B.; and studies in the northwest Canadian Shield, Baffin Island, Ontario, and Yukon Territory.

  11. U-Pb and Sm-Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains, Montana: Identification of a parent magma

    SciTech Connect

    Premo, W.R. ); Helz, R.T. ); Zientek, M.L. ); Langston, R.B. )

    1990-11-01

    Seven analyses from two samples of the Lower Banded series of the Stillwater Complex, Montana, yielded a U-Pb zircon-baddeleyite age of 2,705 {plus minus}4 Ma. A more precise age of 2,704 {plus minus}1 Ma is obtained if the authors regress only five of seven analyses. In either case, the age is in very good agreement with the previously reported Sm-Nd mineral isochron age of 2,701 {plus minus}8 Ma for a gabbro from the Lower Banded series. Noncumulate mafic sills and dikes that immediately underlie the Stillwater Complex are separated into five compositional groups. U-Pb zircon ages for a group 1 gabbronorite (2,711 {plus minus}1 Ma) and a group 3 mafic norite (2,703 {plus minus}10 Ma) are comparable to previously reported U-Pb zircon ages for a group 1 diabase (2,713 {plus minus}3 Ma) and a group 4 high-Ti norite (2,712 {plus minus}3 Ma). Although group 2 high-Mg gabbronorite and group 6 olivine gabbro have not yet yielded significant amounts of zircon, baddeleyite, or sphene, mineral separates from group 2 yielded a four-point Pb-Pb internal isochron age of 2,704 {plus minus}25 Ma, and separates from group 6 yielded a Sm-Nd internal isochron age of 2,706 {plus minus}64 Ma, indicating that these groups are at least contemporaneous with intrusion of the Stillwater Complex. These results indicate that groups 1 and 4 of the associated sills and dikes are perhaps slightly older than the complex and that groups 2, 3, and 6 may be coeval with it, supporting the idea that these three groups are the best candidates for a Stillwater parent magma, a conclusion previously presented on the basis of detailed mineralogic and geochemical evidence.

  12. Changing styles of crustal growth in Southern Africa: Constraints from geochemical and Sr-Nd isotope studies in Archaean to Pan African terrains

    NASA Technical Reports Server (NTRS)

    Mcdermott, F.; Hawkesworth, C. J.; Harris, N. B. W.

    1988-01-01

    Nd isotopic data was presented for southern Africa in support of episodic crustal growth. Over 50 percent of the continental crust there had formed before 2.5 Ga, and less than 10 percent was produced after about 1.0 Ga. The data imply a mean crustal age of about 2.4 Ga for southern Africa, and a higher rate of crustal growth than that derived from Australian shale data, particularly during the Proterozoic. Isotopic data from Damara metasediments imply that there is no need to invoke decoupling of the Rb-Sr and Sm-Nd systems in the continental crust.

  13. Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts - Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Shirey, Steven B.; Hanson, Gilbert N.

    1986-01-01

    Crustal evolution in the Rainy Lake area, Ontario is studied in terms of geochemical characteristics. The Nd isotope data are examined for heterogeneity of the Archean mantle, and the Sm/Nd depletion of the mantle is analyzed. The Nd isotope systematics of individual rock suites is investigated in order to understand the difference between crust and mantle sources; the precursors and petrogenetic processes are discussed. The correlation between SiO2 content and Nd values is considered. Rapid recycling of crustal components, which were previously derived from depleted mantle sources, is suggested based on the similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks.

  14. The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland

    NASA Astrophysics Data System (ADS)

    Hoffmann, J. Elis; Münker, Carsten; Polat, Ali; Rosing, Minik T.; Schulz, Toni

    2011-11-01

    Radiogenic isotope compositions of Hf and Nd are typically coupled in Phanerozoic and Proterozoic mafic rocks due to a similar behaviour of Lu-Hf and Sm-Nd during mantle melting. Eoarchean rocks, for instance those from southern West Greenland, exhibit an apparent decoupling of Hf and Nd isotope compositions. This apparent decoupling may either indicate metamorphic disturbance or, alternatively, mirror early differentiation processes in the silicate Earth. To evaluate the issue, we performed combined measurements of Hf-Nd isotope compositions together with major and trace element concentrations for well preserved >3720 to >3800 Ma old tholeiitic metabasalts and gabbros from the ˜3700 Ma and ˜3800 Ma old terranes of the Isua Supracrustal Belt, southern West Greenland. In contrast to younger mafic rocks, calculated initial ɛHf-ɛNd values of the Isua tholeiites show similar spreads and are both near chondritic to strongly depleted (-0.7 to +6.3 and -0.8 to +4.4, respectively), also in contrast to previously reported more depleted signatures in nearby boninite-like metabasalts of the Garbenschiefer unit. An evaluation of alteration effects based on preserved major and trace element arrays reveals pristine magmatic trends and therefore the measured isotope compositions indeed in most cases characterize contrasting Eoarchean mantle sources. In accord with this view, compositions of the Isua metabasalts yield Eoarchean regression ages in Sm-Nd and Lu-Hf isochron spaces, overlapping with emplacement ages inferred from crosscutting relationships with tonalites. Lutetium-Hf systematics of the Isua metabasalts studied here, yield clear isochron relationships. For both terranes, there is some scatter in Sm-Nd space, indicating early disturbance of the Sm-Nd system close in time to the extrusion ages, possibly by seafloor alteration. Trace element compositions of the metabasalts indicate an arc setting and a strong source overprint by melt-like subduction components. It is

  15. Detrital zircon geochronology and Nd isotope geochemistry of an early Paleozoic succession in Korea:

    NASA Astrophysics Data System (ADS)

    Lee, Yong Il; Choi, Taejin; Lim, Hyoun Soo; Orihashi, Yuji

    2015-04-01

    This study reports the results of an analysis of U-Pb ages of detrital zircons and Nd isotope compositions from the well-established lower Paleozoic platform succession developed on the Precambrian gneiss and metasedimentary rocks in South Korea. The three stratigraphic units in the basal part of the succession are the Jangsan, Myeonsan, and Myobong Formations. The unfossiliferous Jangsan (white­to­pink quartz sandstone) and Myeonsan (dark-gray ilmenite-rich sandstone/shale) Formations are in fault contact and are generally considered to be coeval (Early Cambrian). Both formations are also generally considered to be conformably overlain by the dark­ gray, fossiliferous, fine-grained Myobong Formation (late Early-early Middle Cambrian). We here report U-Pb ages of detrital zircons and Nd isotopic data from the Jangsan, Myeonsan, and Myobong Formations. The Jangsan and Myeonsan Formations provide Archean-Paleoproterozoic U-Pb ages, but the former is characterized by Archean Sm-Nd model ages and the latter by late Paleoproterozoic Sm-Nd model ages, which is indicative of a significant change in provenance. This suggests that the Jangsan Formation predates the Myeonsan Formation. The Myobong Formation provides dominantly Meso- to Neoproterozoic U-Pb ages and Sm-Nd model ages that are slightly younger than those of the Myeonsan Formation. Contrary to the conventional wisdom, the combined evidence of unconformable contact and marked changes in zircon U-Pb ages and Nd isotopic compositions suggests that the Myobong Formation overlies the Jangsan and Myeonsan Formations unconformably. Considering the metamorphic age of the immediately underlying Precambrian basement metasediments (0.8 to 0.9 Ga), this stratigraphic relationship strongly suggests that the Jangsan Formation may be Neoproterozoic in age and that the Myeonsan Formation may be latest Neoproterozoic to Early Cambrian and calls for reevaluation of Precambrian-Paleozoic history of the Korean Peninsula. The

  16. Oxygen isotope studies and compilation of isotopic dates from Antarctica

    SciTech Connect

    Grootes, P.M.; Stuiver, M.

    1986-01-01

    The Quaternary Isotope Laboratory, alone or in collaboration with other investigators, is currently involved in a number of oxygen-isotope studies mainly in Antarctica. Studies of a drill core from the South Pole, seasonal oxygen-18 signals preserved in the Dominion Range, isotope dating of the Ross Ice Shelf, oxygen-18 profiles of the Siple Coast, McMurdo Ice Shelf sampling, and a data compilation of radiometric dates from Antarctica are discussed.

  17. First-principles calculation of structural and energetic properties for A2Ti2O7 (A =Lu, Er, Y, Gd, Sm, Nd, La)

    SciTech Connect

    Zhang, ZL; Xiao, H. Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2009-04-01

    A first-principles method has been employed to investigate the structural and energetic properties for A2Ti2O7 (A=Lu, Er, Y, Gd, Sm, Nd, La), including the formation energies of the cation antisite-pair, the anion Frenkel pair that defines anion-disorder, and the coupled cation antisite-pair/anion-Frenkel. It is proposed that the interaction may have more significant influence on the radiation resistance behavior of titanate pyrochlores, although the interactions are relatively much stronger than the interactions. It is found that the defect formation energies are not simple functions of the A-site cation radii. The formation energy of the cation antisite-pair increases continuously as the A-site cation varies from Lu to Gd, and then decreases continuously with the variation of the A-site cation from Gd to La, in excellent agreement with the radiation-resistance trend of the titanate pyrochlores. The band gaps in these pyrochlores were also measured, and the band gap widths changed continuously with cation radius.

  18. Nd and Sr isotope systematics of clastic metasediments from Isua, West Greenland - Identification of pre-3.8 Ga differentiated crustal components

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Dymek, Robert F.

    1988-01-01

    A detailed Sm-Nd and Rb-Sr isotopic study of the Isua clastic metasediments has been performed in the context of recently established stratigraphy for the Isua section. Samples from the sequence B are investigated for the first time. A clear correlation between lithology and isotopic characteristics is pointed out. The results indicate the existence of at least three distinct components for each of the distinct sequences A and B. It is suggested that some of these components may be derived from continental crustal sources that predate the time of depositon of these sediments by as much as about 0.4 b.y. A large pre-3.8 Ga continental crust is also inferred by the data.

  19. A structural, petrographic, and isotopic study of the Rapid River area and selected mafic complexes in the northwestern United States: Implications for the evolution of an abrupt island arc-continent boundary

    SciTech Connect

    Aliberti, E.A.

    1988-01-01

    The east side of the Columbia embayment is characterized by an unusually sharp island arc-continent boundary. Detailed mapping, strain analysis, and petrography of three structural levels along portion of this boundary, the Rapid River area, are discussed. From lowest to highest these are the Wallowa terrane, the Rapid River plate (RRP), and the Pollock Mountain plate (PMP). Mineral lineation data indicate that the RRP and the PMP were transported west-northwestward along steeply rooted thrust systems. Sm-Nd and Rb-Sr isotopic studies of three mafic and ultramafic complexes around the periphery of the Columbia embayment indicate that each formed from a separate source area, all within an oceanic environment. Structural, petrographic, and isotopic data support an evolution of the island arc-continent boundary in west-central Idaho characterized by three stages: (1) Initial collision of the amalgamated island arc terrane with the continental margin and the removal of a wedge of material northward along both left- and right-lateral strike-slip faults; (2) Strike-slip faults at the tail end of the wedge merge along a zone of occlusion (ZOO). The strain accommodated by northward removal of the wedge is transferred to compression along this zone resulting in intracontinental subduction and uplift; (3) Thermal weakening of the crust by increased magmatic activity resulted in several tens of kilometers of rapid uplift of material out of the ZOO along steeply rooted thrust faults.

  20. A parameterized model for the evolution of isotopic heterogeneities in a convecting system. [for earth mantle

    NASA Technical Reports Server (NTRS)

    Richter, F. M.; Daly, S. F.; Nataf, H.-C.

    1982-01-01

    It is experimentally shown that, although steady convective flows are efficient means to heterogeneity within a single cell, they do not produce a dispersal of heterogeneous material over scales that are large by comparison to their depth, which requires that the flow be time-dependent on a time scale comparable to the overturn time. Convection in an internally heated layer does possess this property, and numerical solutions are presently used to study the way in which it disperses a set of neutrally bouyant particles initially confined to a small space. The derived concept of effective diffusivity is applied to the isotopic evolution of the Sm-Nd and Rb-Sr systems, with spatial variations generated by horizontal variations in degree of melting 1.8 billion years ago.

  1. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle?

    NASA Astrophysics Data System (ADS)

    Handler, M. R.; Bennett, V. C.; Carlson, R. W.

    2005-12-01

    Northeastern Queensland, a part of the Phanerozoic composite Tasman Fold Belt of eastern Australia, has a Paleozoic to Mesozoic history dominated by subduction zone processes. A suite of 13 peridotite xenoliths from the <3 Ma Atherton Tablelands Volcanic Province, predominantly from Mount Quincan, comprise fertile (1.8-3.4 wt.% Al 2O 3 and 38.7-41.9 wt.% MgO) spinel lherzolites free from secondary volatile-bearing phases and with only weak metasomatic enrichment of incompatible trace elements (Sm N/Yb N = 0.23-1.1; La N/Yb N = 0.11-4.9). The suite is isotopically heterogeneous, with measured Sr ( 87Sr/ 86Sr = 0.7027-07047), Nd ( 143Nd/ 144Nd = 0.51249-0.51362), and to a lesser extent, Os ( 187Os/ 188Os = 0.1228-0.1292) compositions broadly overlapping MORB source mantle (DMM) and extending to more depleted compositions, reflecting evolution in a time-integrated depleted reservoir. Major and rare earth element systematics are consistent with mantle that is residual after low to moderate degrees of melt extraction predominantly in the spinel facies, but with a few samples requiring partial melting at greater pressures in the garnet field or near the garnet-spinel transition. In contrast to most previously studied suites of continental lithospheric mantle samples, the incompatible trace element contents and Sr and Nd isotopic systematics of these samples suggest only minimal modification of the sampled lithosphere by metasomatic processes. Five of six Mount Quincan xenoliths preserving depleted middle to heavy REE patterns form a whole rock Sm-Nd isochron with an age of ˜275 Ma (ɛ Ndi = +9), coincident with widespread granitoid emplacement in the overlying region. This isochron is interpreted to indicate the timing of partial melting of a DMM-like source. Xenoliths from other Atherton localities scatter about the isochron, suggesting that the sampled mantle represents addition of DMM mantle to the lithosphere in the Permian, when the region may have broadly been

  2. Isotope analysis of crystalline impact melt rocks from Apollo 16 stations 11 and 13, North Ray Crater

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.; Nyquist, L. E.; Bansal, B. M.; Shih, C.-Y.; Weismann, H.; Wooden, J. L.; Mackinnon, I. D. R.

    1985-01-01

    The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.

  3. Nd isotopic anatomy of a pebble conglomerate from the Murihiku terrane of New Zealand: Record of a varied provenance along the Mesozoic Gondwanaland margin

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Mortimer, Nick; Goles, Gordon G.

    2005-12-01

    The Murihiku terrane is a volcano-sedimentary terrane of Late Permian to Early Cretaceous age that forms part of a collage of accreted terranes in the Eastern Province of New Zealand. These terranes record a history of deposition along the Gondwanaland margin, and include terranes of oceanic character (e.g. Brook Street terrane) and terranes dominated by continental detritus (e.g. Torlesse terrane). The Murihiku terrane is of particular interest because it is relatively large, one of the least structurally deformed terranes, and preserves a long (˜120 m.y) record of sedimentation. Previous studies have suggested that the Murihiku terrane preserves a record of change in provenance from predominantly mafic, juvenile sources to dominantly felsic volcanic sources in Middle to Late Triassic time interpreted as containing contributions from Precambrian continental crust, and modest amounts of detritus supplied directly from this old crust [Frost, C.D., Coombs, D.S., 1989. Nd isotope character of New Zealand sediments: Implications for terrane concepts and crustal evolution. American Journal of Science 289, 744-770.; Roser, B.P., Coombs, D.S., Korsch, R.J., Campbell, J.D., 2002. Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine 139, 665-685.]. We present Nd isotopic data from a Late Triassic (Rhetian; Otapirian local stage; 200-206 Ma) roundstone cobble conglomerate from near Gore, South Island, New Zealand. The sandstone matrix of this conglomerate has an initial ɛNd of + 3.0 and Sm/Nd of 0.219, values that are intermediate between the more radiogenic Nd isotopic and higher Sm / Nd ratios of older Murihiku siltstones and less radiogenic, lower Sm / Nd, younger siltstones. Clasts within this matrix are mainly volcanic: we analyzed basaltic-andesite, andesite and dacite pebbles along with a volcanogenic sandstone pebble and hypabyssal quartz diorite clast. These pebbles have initial ɛNd between + 3

  4. Granitic rocks and metasediments in Archean crust, Rainy Lake area, Ontario: ND isotope evidence for mantle-like SM/ND sources

    NASA Technical Reports Server (NTRS)

    Shirey, S. B.; Hanson, G. N.

    1983-01-01

    Granitoids, felsic volcanic rocks and clastic metasediments are typical rocks in Archean granite-greenstone belts that could have formed from preexisting continentasl crust. The petrogenesis of such rocks is assessed to determine the relative roles of new crust formation or old crust formation or old crust recycling in the formation of granite-greenstone belts.

  5. Low-Temperature Sintering and Microwave Dielectric Properties of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Zixing; Yuan, Changlai; Yang, Tao; Feng, Qin; Liu, Fei; Chen, Jinman; Zhou, Changrong; Chen, Guohua

    2016-05-01

    Microwave dielectric ceramics of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) with a low firing temperature were prepared via conventional solid-state reaction. The phases and microstructures of the ceramics were characterized by x-ray diffraction and scanning electron microscopy. The temperature coefficients of resonant frequency in the three compositions increased as sintering temperature increased. It is worth noting that a phase transition of the Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) ceramics from a monoclinic to a tetragonal scheelite structure was found with an increase in sintering temperature. The densification temperatures of all compositions were below 700°C. Excellent microwave dielectric properties were obtained for the Bi0.9Nd0.05Li0.05V0.9Mo0.1O4 ceramic sintered at 650°C, with a dielectric constant of ~72.2, a quality factor of ~6467 GHz and a temperature coefficient of resonant frequency of ~2.6 ppm/°C. The Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) ceramics are chemically compatible with both Ag and Cu powders at their sintering temperatures, and are thus a promising candidate for use in LTCC technology applications.

  6. Low-Temperature Sintering and Microwave Dielectric Properties of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Zixing; Yuan, Changlai; Yang, Tao; Feng, Qin; Liu, Fei; Chen, Jinman; Zhou, Changrong; Chen, Guohua

    2016-08-01

    Microwave dielectric ceramics of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) with a low firing temperature were prepared via conventional solid-state reaction. The phases and microstructures of the ceramics were characterized by x-ray diffraction and scanning electron microscopy. The temperature coefficients of resonant frequency in the three compositions increased as sintering temperature increased. It is worth noting that a phase transition of the Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) ceramics from a monoclinic to a tetragonal scheelite structure was found with an increase in sintering temperature. The densification temperatures of all compositions were below 700°C. Excellent microwave dielectric properties were obtained for the Bi0.9Nd0.05Li0.05V0.9Mo0.1O4 ceramic sintered at 650°C, with a dielectric constant of ~72.2, a quality factor of ~6467 GHz and a temperature coefficient of resonant frequency of ~2.6 ppm/°C. The Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (Ln = Sm, Nd and La) ceramics are chemically compatible with both Ag and Cu powders at their sintering temperatures, and are thus a promising candidate for use in LTCC technology applications.

  7. A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts - Resolution of ages, evolution of magmas, and origins of source heterogeneities

    NASA Technical Reports Server (NTRS)

    Paces, James B.; Neal, Clive R.; Taylor, Lawrence A.; Nakai, Shun'ichi; Halliday, Alex N.

    1991-01-01

    The geochronological and compositional differences between previously identified magma types (A, B1, B2, and C) were investigated using high-precision Rb-Sr and Sm-Nd isotopic data for a set of Apollo 17 high-Ti mare basalt samples chosen to span the range of each of the magma types. These data, combined with previously reported geochemical ages, suggest that Apollo 17 volcanism was initially dominated by an eruption of Type B basalts. Data obtained from new whole-rock Sr and Nd isotopic analyses exhibited distinct differences in initial Sr and Nd isotopic compositions between Types A, B1, B2, and C basalts and were found to be consistent with existing petrogenetic models.

  8. Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of basement and tectonic setting

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Sun, Min; Long, Xiaoping; Li, Pengfei; Zhao, Guochun; Kröner, Alfred; Broussolle, Arnaud; Yang, Jinhui

    2016-04-01

    enriched over Hf due to metasomatism in the mantle wedge and consequently resulted in decoupling between the Sm-Nd and Lu-Hf isotopic systems. Our data, combined with the available data show that prolonged subduction and curst-mantle interaction caused the Nd-Hf isotopic decoupling in the lithospheric mantle beneath the Chinese Altai.

  9. Rb-Sr Isotopic Studies Of Antarctic Lherzolitic Shergottite Yamato 984028

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Misawa, K.

    2009-01-01

    Yamato 984028 is a Martian meteorite found in the Yamato Mountains of Antarctica. It is classified as a lherzolitic shergottite and petrographically resembles several other lherzolitic shergottites, i.e. ALHA 77005, LEW 88516, Y-793605 and Y-000027/47/97 [e.g. 2-5]. These meteorites have similarly young crystallization ages (152-185 Ma) as enriched basaltic shergottites (157-203 Ma), but have very different ejection ages (approximately 4 Ma vs. approximately 2.5 Ma), thus they came from different martian target crater areas. Lherzolitic shergottites have mg-values approximately 0.70 and represent the most mafic olivine-pyroxene cumulates. Their parental magmas were melts derived probably from the primitive Martian mantle. Here we present Rb-Sr isotopic data for Y-984028 and compare these data with those obtained from other lherzolitic and olivine-phyric basaltic shergottites to better understand the isotopic characteristics of their primitive mantle source regions. Corresponding Sm-Nd analyses for Y-984028 are in progress.

  10. Oceanization of the lithospheric mantle: the study case of the spinel peridotites from Monte Maggiore (Corsica, France).

    NASA Astrophysics Data System (ADS)

    Piccardo, G. B.

    2009-04-01

    (Rampone, 2004; Rampone et al., 2008; 2009) provide reliable geochronological informations (i.e. Sm-Nd cpx-plg-wr isochron ages and Sm-Nd model ages) and evidence that the whole mafic and ultramafic rocks show an overall Sm/Nd isotopic homogeneity. Cpx-plg-wr data from gabbroic dykes define internal isochrones yielding Jurassic ages (162+/-10 Ma and 159+/-15 Ma, respectively). The plg-cpx(-wr) isochrons for impregnated plagioclase peridotites yields age of 155+/-6 Ma. The initial ɛNd values (8.9-9.7) are indicative of a MORB affinity. Calculated DM model ages for both spinel and plagioclase peridotites point to a Late Jurassic age (150 Ma). Isotope ratios of cpx from spinel and plagioclase peridotites conform to the linear array defined by overall gabbroic rocks. The isotopic evidence from the melt-percolated, reactive and impregnated peridotites indicates that the pristine lithospheric mantle protoliths were isotopically homogenized by the melt-rock interaction during percolation/impregnation processes which erased any pre-existing isotopic signature. Moreover, the overall Sm/Nd isotopic homogeneity indicates that the asthenospheric mantle sources of the infiltrating melts were isotopically homogeneous. Accordingly, it is plausible that percolation and intrusion were operated by similar and coeval Late Jurassic MORB-type melts. In conclusion, petrologic and isotopic data allow to recognize that the extending sub-continental lithospheric mantle was infiltrated by Late Jurassic MORB melts, formed by asthenospheric decompression-induced partial melting during continental extension and rifting. Melt-peridotite interaction modified the compositional features of the lithospheric mantle and caused its isotopic resetting. Accordingly, the sub-continental lithospheric mantle underwent an "oceanization" process (i.e. isotope resetting to "oceanic" MORB signatures) during Late Jurassic times operated by asthenospheric MORB melts. Depending on the melt composition, the lithospheric

  11. Geochemical and isotopic characteristics of lithospheric mantle beneath West Kettle River, British Columbia: Evidence from ultramafic xenoliths

    SciTech Connect

    Xue, Xianyu; Baadsgaard, H.; Scarfe, C.M. ); Irving, A.J. )

    1990-09-10

    A group of spinel peridotite xenoliths from West Kettle River, British Columbia, represents essentially undepleted to moderately depleted lithospheric mantle rocks in terms of major and compatible trace elements. Whole rock Sr isotopic composition for most of these xenoliths, and whole rock Sm-Nd isotopic composition and LREE contents for some of them, seem to have been perturbed by near-surface processes. Sr and Nd isotopic results for acid-cleaned clinopyroxenes separated from these spinel peridotites reveal an isotopically mid-ocean ridge basalt (MORB)-like mantle. Seven spinel lherzolites gave Nd model ages of 1.5-3.6 Ga, similar to MORB, and on a Sm-Nd isotope diagram plot close to a reference Nd isochron with an age of 0.7 Ga and an initial {var epsilon}{sub Nd} of +7. These features likely resulted from multiple mantle depletion. The isotopic similarities of these xenoliths with MORB suggest that this area is underlain by oceanic lithospheric mantle, possibly accreted to North America during the mid-Jurassic. The Nd isochron age could record the time when the oceanic lithosphere was isolated from the asthenosphere. Recent enrichment event may have acted on such a depleted mantle, as indicated by the low Sm/Nd ratios of two spinel harzburgites.

  12. The Lu-Hf isotopic composition of CHUR and BSE: Tighter constraints from unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Vervoort, J. D.; Patchett, J.

    2007-12-01

    The Lu-Hf isotopic system has been used increasingly in geochemistry as a chronometer and tracer of mantle and crust processes since the development of MC-ICPMS techniques [1]. Although a consensus has emerged on the value of the 176Lu decay constant, in contrast, the Lu and Hf isotopic compositions of the Chondrite Uniform Reservoir (CHUR) and Bulk Silicate Earth (BSE) have not been as well constrained. Lu-Hf isotopic compositions vary dramatically between the chondrite classes and petrologic types of the specimens that have been analyzed [1-3], which hampers a choice of Lu-Hf CHUR parameters. Chondrites are classified in three main petrologic groups: carbonaceous (CC), ordinary (OC) and enstatite chondrites (EC). They represent distinct chemical and isotopic compositions, which can be associated with reservoirs in the protoplanetary disk where the respective parent bodies have formed. They also have been subjected to various degrees of aqueous alteration (types 1 and 2) or thermal metamorphism (types 3-6) that has potentially affected their initial chemical and mineralogical characteristics. Despite the fact that numerous OCs (~50) have been analyzed for their Lu-Hf isotopic composition, nearly all of these have been equilibrated types 4-6; only 5 finds of types 3.6-3.8 unequilibrated OC have been analyzed. We have analyzed 20 new chondrites for Lu-Hf and Sm-Nd isotope systematics including (i) 13 H, L, and LL OC of types 3.0- 3.8, where their low degree of metamorphism limits the growth of phosphate (main carrier of REE) compared to the equilibrated OC; and (ii) 7 CC of types 1-3 (CI, CV, CO and CK groups). We obtained mean values (2σSE) of 176Lu/177Hf = 0.0337 ± 3, 176Hf/177Hf = 0.282802 ± 23, 147Sm/144Nd = 0.1961 ± 6, and 143Nd/144Nd = 0.512629 ± 16 from the types 1-3 OC and CC from this study and [2]. Our Lu-Hf values are higher than the previous estimates of [3] and are our best estimates for CHUR. The CC alone give higher mean values of 176Lu/177Hf

  13. Strontium and neodymium isotopic study of Libyan Desert Glass: Inherited Pan-African age signatures and new evidence for target material

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Müller-Sohnius, D. M.

    2002-04-01

    Libyan Desert Glass (LDG) is an impact-related, natural glass of still unknown target material. We have determined Rb-Sr and Sm-Nd isotopic ratios from seven LDG samples and five associated sandstones from the LDG strewn field in the Great Sand Sea, western Egypt. Planar deformation features were recently detected in quartz from these sandstones. 87Sr/86Sr ratios and e-Nd values for LDG range between 0.71219 and 0.71344, and between -16.6 and -17.8, respectively, and hence are distinct from the less radiogenic 87Sr/86Sr ratios of 0.70910-0.71053 and e-Nd values from -6.9 to -9.6 for the local sandstones from the LDG strewn field. Previously published isotopic ratios from the Libyan BP and Oasis crater sandstones are generally incompatible with our LDG values. LDG formation undoubtedly occurred at 29 Ma, but neither the Rb-Sr nor the Sm-Nd isotopic system were rehomogenised during the impact event, as we can deduce from Pan-African ages of ~540 Ma determined from the regression lines from a total of 14 LDG samples from this work and the literature. Together with similar Sr and Nd isotopic values for LDG and granitoid rocks from northeast Africa west of the Nile, these findings point to a sandy matrix target material for the LDG derived from a Precambrian crystalline basement, ruling out the Cretaceous sandstones of the former "Nubian Group" as possible precursors for LDG.

  14. Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1982-01-01

    Chemical, trace element, and isotopic compositions of tektites are consistent with production by melting of sediments derived from the old terrestrial continental crust. Each tektite group is characterized by a uniform Nd model age, interpreted as the time of formation of the crustal segment which weathered to form the parent sediment for the tektites. Sr model ages are variable within each group, reflecting Rb-Sr fractionation, and, in the favorable limit of very high Rb/Sr ratios, approach the time of sedimentation of the parent material which melted to form the tektites. Unlike tektites, which are dense homogeneous objects, sanidine spherules are porous, fine grained inhomogeneous objects. The leaching experiment employed by the present study shows that the sanidine spherules could have been formed by an oceanic impact involving basaltic crust and overlying sediments or seawater.

  15. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  16. Isotopic studies in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.

    1971-01-01

    Analysis of lunar soil samples returned by Apollo 11 and 12 flights are discussed. Isotopic studies of the rare gases from Apollo 11 flight lunar samples are presented. The lunar soil analyses indicated the following: (1) high concentrations of solar wind rare gases, (2) isotopic match between solar wind gases and gas components in gas-rich meteorites, and (3) rare gases attributable to spallation reactions induced in heavier nuclides by cosmic ray particles.

  17. Implications of Sm-Nd model ages and single grain U-Pb zircon geochronology for the age and heritage of the Swakane gneiss, Yellow Aster Complex, and Skagit gneiss, North Cascades, Wash

    SciTech Connect

    Rasbury, E.T.; Walker, N.W. . Dept. of Geological Sciences)

    1992-01-01

    Uncertainties regarding the protolith, age, and tectonic affinity of the Swakane gneiss (Swg), Skagit gneiss (Skg), and Yellow Aster complex (YAc) have long been obstacles to deciphering the tectonic history of the North Cascades. Single-grain zircon U-Pb data and Sm-Nd model ages now demonstrate these units are genetically unrelated metasediments derived from Early Proterozoic and younger sources. Zircon populations from Swg samples include rounded, subrounded, and euhedral grains. Three of four analyzed grains define a well-correlated discordia array that intercepts concordia at 1.4 Ga whereas the fourth grain has a 1.6 Ga 207Pb/206Pb age. the Sm-Nd depleted mantle model ages of two samples of Swg are 1.18 Ga and 1.27 Ga. The authors suggest that the Swg gneiss is a metaclastic rock derived chiefly from rocks of Middle Proterozoic age. A single analyzed zircon crystal extracted from garnet-biotite yields a nearly concordant age of 0.14 Ga. The YAc consists of fragments of metaplutonic rocks and quartz-pyroxene gneisses of uncertain protolith that are imbricated with Paleozoic and Mesozoic rocks of the Cretaceous Northwest Cascades thrust system. U-Pb data from 6 single zircons extracted from mylonitic quartz-pyroxene gneiss are interpreted to indicate the presence of Grenville orogen-derived grains of ca 0.9--1.3 Ga age whereas one analyzed zircon has an ca 0.6 Ga age. Analyses of abraded zircons from a post-mylonitic pegmatite dike indicate pegmatite crystallization at ca0.22 Ga and imply the presence of ca1.85 Ga xenocrystic zircons.

  18. A major and trace element and strontium, neodymium, and osmium isotopic study of a thick pyroxenite layer from the Beni Bousera Ultramafic Complex of northern Morocco

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Reisberg, Laurie; Zindler, Alan

    1996-04-01

    Major and trace element concentrations and strontium, neodymium, and osmium isotopic compositions were determined for a series of samples from a thick, symmetrically zoned pyroxenite layer from the Beni Bousera massif. The two main rock types included in the layer, garnet pyroxenites and websterites, have distinct, well-defined elemental and isotopic compositions. The websterites are, in most respects, more refractory than the garnet pyroxenites, but, surprisingly, are more enriched in the highly incompatible elements. The observed characteristics can be explained by formation of the layer by crystal deposition along a magma conduit at medium to high pressures, given that the source and composition of the magma varies with time. Re-Os model ages for three samples of different lithology converge to about 1.3 b.y., which is interpreted as the age of formation of the layer. In contrast, Sm-Nd model ages from the layer are mutually conflicting or indeterminate, largely due to the similarity between the measured neodymium isotopic ratios and that of the depleted mantle. On the other hand, the Sm-Nd model age obtained from an extremely depleted peridotite ( 143Nd/ 144Nd = 0.51391) located about 30 m from the layer falls within error of the Re-Os ages, providing support for an extensive magmatic event at about that time. This same age was obtained by several techniques from the closely related Ronda Ultramafic Complex of southern Spain. This may suggest that the mantle lithosphere currently exposed along the southern margin of Spain and the northern margin of Morocco has been linked for over a billion years.

  19. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    SciTech Connect

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zircon analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.

  20. Advanced diffusion studies with isotopically controlled materials

    SciTech Connect

    Bracht, Hartmut A.; Silvestri, Hughes H.; Haller, Eugene E.

    2004-11-14

    The use of enriched stable isotopes combined with modern epitaxial deposition and depth profiling techniques enables the preparation of material heterostructures, highly appropriate for self- and foreign-atom diffusion experiments. Over the past decade we have performed diffusion studies with isotopically enriched elemental and compound semiconductors. In the present paper we highlight our recent results and demonstrate that the use of isotopically enriched materials ushered in a new era in the study of diffusion in solids which yields greater insight into the properties of native defects and their roles in diffusion. Our approach of studying atomic diffusion is not limited to semiconductors and can be applied also to other material systems. Current areas of our research concern the diffusion in the silicon-germanium alloys and glassy materials such as silicon dioxide and ion conducting silicate glasses.

  1. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  2. Formation and Evolution of the Continental Lithospheric Mantle: Perspectives From Radiogenic Isotopes of Silicate and Sulfide Inclusions in Macrodiamonds

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Richardson, S. H.

    2007-12-01

    Silicate and sulfide inclusions that occur in diamonds comprise the oldest (>3 Ga), deepest (>140 km) samples of mantle-derived minerals available for study. Their relevance to the evolution of the continental lithosphere is clear because terrestrial macrodiamonds are confined to regions of the Earth with continental lithospheric mantle keels. The goals of analytical work on inclusions in diamond are to obtain paragenesis constraints, radiogenic ages, and initial isotopic compositions. The purpose is to place diamond formation episodes into the broader framework of the geological processes that create and modify the continental lithosphere and to relate the source of the C and N in diamond-forming fluids to understanding the Earth's C and N cycles in the Archean. Although sulfide and silicate inclusions rarely occur in the same diamond, they both can be grouped according to their geochemical similarity with the chief rock types that comprise the mantle keel: peridotite and eclogite. Silicate inclusions are classified as harzburgitic (depleted; olivine > Fo91, garnet Cr2O3 > 3 wt% and CaO from 0 to 5 wt%), lherzolitic (fertile), or eclogitic (basaltic; garnet Cr2O3 < 2 wt% and CaO from 3 to 15 wt%, clinopyroxene with higher Na2O, Al2O3, and FeO); they are amenable for trace element study by SIMS and for Sm-Nd and Rb-Sr analysis by conventional P-TIMS after grouping by mineralogical similarity. Sulfide inclusions (chiefly FeS with lesser Ni, Cu, and Co) are classified as peridotitic (Ni > 14 wt%; Os > 2 ppm) versus eclogitic (Ni < 10 wt%; Os < 200 ppb); single sulfides are amenable for S isotopic study by SIMS or TIMS, and Re-Os analysis by N-TIMS. Work on inclusions in diamonds depends on the distribution of mined, diamond-bearing kimberlites, and the generosity of mining companies because of the extreme rarity of inclusions in suites of mostly gem-quality diamonds. Most isotopic work has been on the Kaapvaal-Zimbabwe craton with lesser work on the Slave, Siberian

  3. Isotopic Study of Silicon Carbide in Semarkona

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Huss, G. R.

    2002-03-01

    We have measured Si and C isotopes for individual SiC grains from Semarkona. Our results are compared with those of previous studies on SiC from Murchison and Orgueil. Metamorphism and grain-size distribution can affect these comparisons.

  4. U-Pb isotopic systematics of ferroan anorthosite 60025

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Tatsumoto, M.

    1993-01-01

    Preliminary U-Pb isotopic data from separates of ferroan anorthosite 60025 confirm its antiquity at approximately 4.42 Ga. Three Pb-Pb isochron ages involving different sets of mineral separates vary by only 20 million years, but indicate derivation of the sets from isotopically distinct magma sources. If this anorthosite was a monomict cumulate product formed during the Moon's early primary differentiation stage, then residual liquids of crystallizing magmas were evolving isotopically, even at the cm-scale, over the duration of the crystallization period. Another explanation is that this sample is simply a polymict breccia and that the Pb isotopic results are a result of subsequent mechanical mixing of mineral assemblages from various cumulate piles formed coevally at approximately 4.42 Ga from isotopically distinct magma sources. In our ongoing search for early lunar Pb isotopic compositions, we have analyzed Apollo 16 anorthosites 67075 and 62337 and Apollo 17 high-Mg suite cumulates (troctolite 76535, norite 78235, and dunite 72415). The U-Pb isotopic systematics have been better behaved in the high-Mg suite rocks than in the anorthosites that have shown evidence of mineral assemblages of mixed parentage. Our aim in analyzing anorthosite 60025 was to avoid or minimize this problem as it had been considered essentially monomict, although recent work has shown that not only is 60025 polymict, but shows textual evidence of at least two episodes of deformation. Of five splits studied by James, Lindstrom and McGee, the four mineral splits appeared monomict, whereas the whole-rock split was considered polymict. Previous isotopic work indicate that this anorthosite was quite primitive, a claim that was apparently confirmed by the U-Pb isotopic age of 4.51 +/- .01 Ga on three plagioclase separates. However, a Sm-Nd internal isochron age of 4.44 +/- 0.02 Ga was determined using plagioclase, olivine, and mafic mineral separates, creating some doubt about the anorthosite

  5. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...

  6. Microturbulence study of the isotope effect

    SciTech Connect

    Bustos, A.; Bañón Navarro, A.; Görler, T.; Jenko, F.

    2015-01-15

    The influence of the ion mass on the dynamics of magnetized plasmas is an important challenge in fusion research. The discrepancies between the improvement of the magnetic confinement with the ion mass in tokamak experiments and diffusive turbulent transport predictions have remained unexplained for several decades. We refer to this phenomenon as the isotope effect. In this paper, we study this effect with gyrokinetic theory using the GENE code. We find several sets of plasma parameters that correspond to low wavenumber turbulence for which the isotope effect is present, although the intensity is smaller than the experimental observations. We also relate these results to the zonal flow intensity of the system, which is characterized by the average shear flow rate.

  7. The reliability of ∼2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics

    NASA Astrophysics Data System (ADS)

    Viehmann, Sebastian; Bau, Michael; Smith, Albertus J. B.; Beukes, Nicolas J.; Dantas, Elton L.; Bühn, Bernhard

    2015-11-01

    Pure marine chemical sediments, such as (Banded) Iron Formations, (B)IFs, are archives of geochemical proxies for the composition of Precambrian seawater and may provide information about the ancient hydrosphere-atmosphere system. We here present rare earths and yttrium (REY) and high precision Sm-Nd isotope data of ∼2.90 Ga old Superior-type BIFs from the Witwatersrand Supergroup, South Africa, and compare those with data for near-contemporaneous BIFs from the correlative Pongola Supergroup (Superior-type BIF) and from the Pietersburg Greenstone Belt (Algoma-type IF), respectively. All Witwatersrand samples studied display the typical general REY distribution of Archean seawater, but their REY anomalies are less pronounced and their immobile element concentrations are higher than those of other pure (B)IFs. These observations indicate the presence of significant amounts of detrital aluminosilicates in the Witwatersrand BIFs and question the reliability of the Contorted Bed and Water Tower BIFs (Parktown Formation, West Rand Group) as archives of Mesoarchean seawater. Significant post-depositional alteration of the REY budget and the Sm-Nd isotope system is not observed. The Nd isotopic compositions of the purest BIF samples, i.e. the most reliable archives for Witwatersrand seawater, show initial εNd values between -3.95 and -2.25. This range is more negative than what is observed in ambient shales, indicating a decoupling of suspended and dissolved loads in the "near-shore" Witwatersrand Basin seawater. However, εNd range overlaps with that of the correlative Pongola BIF (Alexander et al., 2008). The deeper-water Algoma-type Pietersburg BIF shows more positive (i.e. more mantle-like) εNd2.9Ga values, supporting the hypothesis that a significant amount of its REY inventory was derived from black smoker-style, high-temperature hydrothermal fluids that had altered seafloor basalts. In marked contrast, the dissolved REY budgets (including the Nd isotopic

  8. Geochemistry and isotopic evolution of the central African Domes, Bangweulu and Irumide regions: Evidence for cryptic Archean sources and a Paleoproterozoic continental arc

    NASA Astrophysics Data System (ADS)

    Debruyne, David; Van Wilderode, Jorik; Balcaen, Lieve; Vanhaecke, Frank; Muchez, Philippe

    2014-12-01

    The interregional cratonic relations between the Paleo- and Mesoproterozoic basement units surrounding the Neoproterozoic Central African Copperbelt are still largely unresolved, although they are regarded as major potential metal sources. This study focuses on the Domes region basement at depth below the Copperbelt and its relationship to the neighboring Bangweulu Block and its destabilized margin, the Irumide Belt. We applied an integrated whole rock petrochemical and Sm-Nd isotopic approach to major lithological units to assess the proposed mid-Proterozoic arc setting for the Domes basement inliers along with their relationship to the neighboring areas. The available petrochemical and isotopic data for the Paleoproterozoic eastern Domes granitoids and magmatic units in the SW Bangweulu Block is consistent with a continental arc setting. Moreover, the mid-Paleoproterozoic Nd isotope ratios preclude an island arc because they are significantly less radiogenic than the depleted mantle. Predominantly Archean and Early Paleoproterozoic depleted mantle model ages in all terranes indicate limited juvenile input during Paleo- and Mesoproterozoic magmatic phases. Finally, broadly similar model ages in the Domes inliers and the Bangweulu-Irumide region suggest a relationship between these terranes.

  9. The isotopic composition of Nd in different ocean masses

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.; Dasch, E. J.

    1979-01-01

    The paper examines the isotopic composition of Nd in marine environments. The Sm-Nd data for authigenic ferromanganese sediments indicate that the Atlantic, Pacific, and Indian Oceans have a distinct range in Nd isotopic composition characteristics of each ocean basin and reflect the dissolved load of Nd in the water mass. Measurements of the Nd isotopic seawater composition of seawater indicate that the rare earth elements (REE) in ferromanganese sediments are derived by direct precipitation of these elements out of seawater. It is believed that the Nd isotopic variations in these sediments represent true variations in the dissolved Nd isotopic composition which reflect the age and (Sm-147)/(Nd-144) ratios of the continental masses sampled believed to be the major source of REE in seawater.

  10. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  11. Isotope Labeling Study of Retinal Chromophore Fragmentation.

    PubMed

    Musbat, Lihi; Nihamkin, Maria; Ytzhak, Shany; Hirshfeld, Amiram; Friedman, Noga; Dilger, Jonathan M; Sheves, Mordechai; Toker, Yoni

    2016-04-28

    Previous studies have shown that the gas-phase fragmentation of the retinal chromophore after S0-S1 photoexcitation results in a prominent fragment of mass 248 which cannot be explained by the cleavage of any single bond along the polyene chain. It was therefore theorized that the fragmentation mechanism involves a series of isomerizations and cyclization processes, and two mechanisms for these processes were suggested. Here we used isotope labeling MS-MS to provide conclusive support for the fragmentation mechanism suggested by Coughlan et al. (J. Phys. Chem. Lett. 2014, 5, 3195). PMID:27046667

  12. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  13. Early crust of the Podolia Domain of the Ukrainian Shield: Isotopic age of terrigenous zircons from quartzites of the Bug Group

    NASA Astrophysics Data System (ADS)

    Bibikova, E. V.; Fedotova, A. A.; Claesson, S.; Stepanyuk, L. M.

    2015-11-01

    Detrital zircons of the ancient metasedimentary rocks bear important information about the early crust of the Earth. In this work, the early crust in the west of the Ukrainian Shield was studied using U-Pb dating of terrigenous zircons from metasedimentary rocks (quartzites) of the lower parts of the Bug Group (Kosharo-Aleksandrovka Formation) of the Podolia Domain and through Sm-Nd isotopic investigation of these rocks. The Nd model age of rocks is 3.4-3.1 Ga. Detrital zircons were studied in two samples of quartzites. The cathodoluminescent images of most zircons support their clastic origin. More than 150 zircon grains were studied on an ion microprobe. The isotope age of zircons is 3775-2000 Ma. These results were compared with previous results of study of terrigenous zircons from garnet schists of the Zaval'e quarry located closely to the studied area. It is concluded that both Paleoarchean and Meso- to Neoarchean rocks were destroyed during formation of terrigenous rocks of the Bug Group. The different amount of ancient zircons in quartzites and garnet schists indicates the different remoteness of the most ancient rocks from sedimentary basins.

  14. Isotopic and chemical systematics of river waters

    SciTech Connect

    Goldstein, S.J.

    1987-01-01

    The isotopic composition of Nd and Sr and the concentration of the rare earth elements (REE), Rb, and Sr are reported for the dissolved and suspended load of rivers from North America, Australia, Japan, the Philippines, South America, and Pakistan. Nd and light REE are mobilized in solution in rivers of low pH, whereas Sr concentrations are generally determined by the degree of chemical weathering of source rocks. The REE pattern of the dissolved load of rivers is sensitive to pH, with heavy REE enrichments and negative Ce anomalies for alkaline rivers. The isotopic composition of Nd and Sr in the dissolved load of rivers is mainly controlled by the age of materials in a drainage basin and preferential weathering of marine precipitates. Rivers appear to be the dominant source of these elements in the oceans. Estuarine removal processes lower the actual river flux of dissolved REE to the oceans by 70% for the light REE and 40% for the heavy REE. A Sr isotopic mass balance for modern seawater yields a hydrothermal water of 2.9 x 10/sup 16/ g/yr. Suspended load data directly reflect the Sm-Nd isotopic systematics and REE systematics of upper continental crust exposed to weathering. Average Sm-Nd parameters estimated for the upper crust are: Sm = 5.7 ppm. Nd = 30.0 ppm, epsilon/sub Nd/ = -15.4, and T/sub DM//sup Nd/ = 2.0 Ga. An overall relationship between epsilon/sub Nd/ and /sup 87/Sr//sup 86/Sr in river suspended loads directly reflects the relationship of these parameters in upper crust and suggests that crustal additions have become progressively depleted in incompatible elements through time. The implications of these data for interpretation of the record of Nd and Sr isotopes and REE abundances in ancient erosion products are briefly discussed.

  15. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two {sup 15}N-rich N-hotspots have correlated {sup 13}C anomalies. CN{sup -}/C{sup -} ratios suggest that most of the {sup 15}N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct very D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in the IDPs. The O isotopic compositions of the grains are similar to those found in presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the {sup 17}O and {sup 18}O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being ''isotopically primitive'' and consists of those IDPs that have anomalous bulk N isotopic compositions. These

  16. In-situ Hf isotope analysis of early Archean zircons in the Acasta Gneisses from the Slave province, Northwestern Canada

    NASA Astrophysics Data System (ADS)

    Iizuka, T.; Komiya, T.; Maruyama, S.; Hirata, T.

    2003-12-01

    Lu-Hf and Sm-Nd isotopic systems of early Archean rocks provide insights into the early crustal evolution and early mantle differentiation of the Earth. The Acasta Gneisses have been established as the oldest known intact terrestrial rocks (Bowring et al., 1999). The Acasta Gneiss Complex comprises mainly of Gray Gneiss (granodioritic gneiss), White Gneiss (tonalitic to granitic gneiss), and Foliated Granite, with many aplite and basaltic intrusions, and the relation between these rocks is very complex. Bowring et al. (1989) carried out the whole-rock Sm-Nd isotopic system measurement of the Acasta gneisses, and demonstrated that the gneisses exhibit a wide range of initial ɛ (Nd) (+3.5 to -4 at 4.0 Ga and +4 to -7 at 3.6 Ga). However, because most of the Acasta gneisses have experienced amphibolite facies metamorphism, it is difficult that the whole-rock isotopic system remains closed. Zircon, which is extremely resistant against erosion and/or metamorphic events, and it can be also dated precisely by U-Pb chronometer. Because of high Hf content (ca. 1 wt%) and low Lu/Hf ratio, zircon has been widely used for the isotopic study using Lu-Hf system, too. Recent Lu-Hf isotopic studies were carried out using a multiplecollector inductively coupled plasma mass spectrometer (MC-ICPMS). Amelin et al. (2000) carried out the Hf isotope analyses of some zircon grains from the Acasta Gneisses using MC-ICPMS. The zircon grains exhibit enriched initial ɛ (Hf) (+0.16 to -4.1 at ca. 3.6 Ga), while other early Archean zircon grains from the Amitsoq gneisses and the Barberton gneisses indicate depleted signature (Amelin et al., 2000). One possible reason is that the zircon grains from the Acasta Gneisses are grown at partial melting of the gneisses and/or underwent isotopic disturbance caused by intrusion of younger granites. Therefore, it is very important to reveal the growth features of zircon, such as oscillatory zoning, in order to derive inherent information of the early

  17. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-01-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  18. Experimental study of polybaric REE partitioning between olivine, pyroxene and melt of the Yamato 980459 composition: Insights into the petrogenesis of depleted shergottites

    NASA Astrophysics Data System (ADS)

    Blinova, Alexandra; Herd, Christopher D. K.

    2009-06-01

    A synthetic composition representing the Yamato 980459 martian basalt (shergottite) has been used to carry out phase relation, and rare earth element (REE) olivine and pyroxene partitioning experiments. Yamato 980459 is a sample of primitive basalt derived from a reduced end-member among martian mantle sources. Experiments carried out between 1-2 GPa and 1350-1650 °C simulate the estimated pressure-temperature conditions of basaltic melt generation in the martian mantle. Olivine-melt and orthopyroxene-melt partition coefficients for La, Nd, Sm, Eu, Gd and Yb ( DREE values) were determined by LA-ICPMS, and are similar to the published values for terrestrial basaltic systems. We have not detected significant variation in D-values with pressure over the range investigated, and by comparison with previous studies carried out at lower pressure. We apply the experimentally obtained olivine-melt and orthopyroxene-melt DREE values to fractional crystallization and partial melting models to develop a three-stage geochemical model for the evolution of martian meteorites. In our model we propose two ancient (˜4.535 Ga) sources: the Nakhlite Source, located in the shallow mantle, and the Deep Mantle Source, located close to the martian core-mantle boundary. These two sources evolved distinctly on the ɛ 143Nd evolution curve due to their different Sm/Nd ratios. By partially melting the Nakhlite Source at ˜1.3 Ga, we are able to produce a slightly depleted residue (Nakhlite Residue). The Nakhlite Residue is left undisturbed until ˜500 Ma, at which point the depleted Deep Mantle Source is brought up by a plume mechanism carrying with it high heat flow, melts and isotopic signatures of the deep mantle (e.g., ɛ 182W, ɛ 142Nd, etc.). The plume-derived Deep Mantle Source combines with the Nakhlite Residue producing a mixture that becomes a mantle source (herein referred to as "the Y98 source") for Yamato 980459 and the other depleted shergottites with the characteristic range

  19. Studies of enzyme mechanism using isotopic probes

    SciTech Connect

    Chen, C.

    1987-01-01

    The isotope partitioning studies of the Ascaris suum NAD-malic enzyme reaction were examined with five transitory complexes including E:NAD, E:NAD:Mg, E:malate, E:Mg:malate, and E:NAD:malate. Three productive complexes, E:NAD, E:NAD:Mg, and E:Mg:malate, were obtained, suggesting a steady-state random mechanism. Data for trapping with E:/sup 14/C-NAD indicate a rapid equilibrium addition of Mg/sup 2 +/ prior to the addition of malate. Trapping with /sup 14/C-malate could only be obtained from the E:Mg/sup 2 +/:/sup 14/C-malate complex, while no trapping from E:/sup 14/C-malate was obtained under feasible experimental conditions. The equations for the isotope partitioning studies varying two substrates in the chase solution in an ordered terreactant reaction were derived, allowing a determination of the relative rates of substrate dissociation to the catalytic reaction for each of the productive transitory complexes. NAD and malate are released from the central complex at an identical rate, equal to the catalytic rate. The release of NAD from E:NAD and E:NAD:Mg complexes is 2- to 4-fold and 5- to 9-fold V/sub max//E/sub t/, respectively. The release of malate from the E:Mg:malate complex is 0.1- to 0.3-fold of V/sub max//E/sub t/. The individual rate constants for association and dissociation of the substrates, NAD and malate have been estimated.

  20. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  1. Age and origin of anorthosites, charnockites, and granulites in the Central Virginia Blue Ridge: Nd and Sr isotopic evidence

    USGS Publications Warehouse

    Pettingill, H.S.; Sinha, A.K.; Tatsumoto, M.

    1984-01-01

    Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000-1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5). Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma (e{open}Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma (e{open}Nd=+1.0 +/-0.3) and 1027 +/-101 Ma (e{open}Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution. The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd "source" age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement. ?? 1984 Springer-Verlag.

  2. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  3. 2.69-2.68 Ga granulite facies metamorphism in the Wyoming Craton revealed by Sm-Nd garnet geochronology and trace element zoning, eastern Beartooth Mountains, Montana and Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Guevara, V.; Dragovic, B.; Caddick, M. J.; Baxter, E. F.

    2014-12-01

    The Beartooth Mountains in Montana and Wyoming, USA, form an extensive exposure of Archean rocks of the Wyoming Craton and are dominantly comprised of a ~2.8 Ga granitoid batholith known as the Long Lake Magmatic Complex (LLMC). Contained within the LLMC are numerous m- to km-scale enclaves of metasedimentary granulites. P-T pseudosection modeling indicates that these granulites reached peak pressure-temperature (P-T) conditions of 800 °C, 7-8 kbar. This has previously been interpreted to result from contact heating with the LLMC. However, substantial field evidence from multiple localities suggests that the texturally dominant phase of HT metamorphism in the metasediments postdates LLMC emplacement. Further, Sm-Nd garnet (grt) dates from the metasediments are in the range ~2.69-2.68 Ga ('bulk' dates incorporating crystal cores and rims), ~100 Myrs younger than LLMC emplacement (based on U-Pb zircon ages, 1). Trace element zoning in grt suggests that these dates record the age of granulite facies metamorphism. Euhedral high-Ca overgrowths in Grt from a residual pelite are coincident with a high Eu spike, interpreted to result from plagioclase breakdown during partial melting. These overgrowths are also coincident with high Sm and Nd annuli, and we thus interpret the bulk grt date (2689±4 Ma) to record timing of the late stages of grt growth during migmatisation near peak T. Coupled with major element zoning, retention of Sm and Nd zoning in euhedral grt from the leucosome of another sample suggest that its bulk date (2681±1 Ma) also represents peritectic grt growth rather than subsequent diffusion. Grt from a lithology that did not experience melting records a date of 2686±1 Ma. Together, these ages indicate that granulite facies metamorphism persisted in the area for at least ~3 Myrs (inner bounds of the 2σ dates), ~100 Myrs after batholith emplacement. Limited evidence for this later event in the plutonic rocks is consistent with their experiencing little

  4. Sr-Nd isotope and geochemical characterisation of the Paleoproterozoic Västervik formation (Baltic Shield, SE-Sweden): a southerly exposure of Svecofennian metasiliciclastic sediments

    NASA Astrophysics Data System (ADS)

    Kleinhanns, I. C.; Fischer-Gödde, M.; Hansen, B. T.

    2012-01-01

    The Paleoproterozoic Västervik formation represents the southernmost exposure of Svecofennian metasediments and comprises a large psammitic succession of up to 5,000 m thickness dominated by quartzite with minor pelite and arkose. The Västervik formation was deposited in a time interval of ~30 m.y. from 1.88 until 1.85 Ga. Whole-rock geochemical data and Rb-Sr-Sm-Nd analyses in combination with bulk zircon U-Pb ID-TIMS studies help to gain insight into the depositional and geodynamic history of the metasiliciclastic units of the Västervik formation. Discrimination function diagrams show good agreement of major element composition with petrographic characterisation pointing towards a quartzose sedimentary provenance area with a tendency towards felsic igneous provenance. Trace element characteristics show typical upper crustal composition and remarkably similar patterns despite the respective petrographic differences. Sm-Nd isotope systematics reveal a restricted range of TDM with 2.3 ± 0.1 Ga and initial Nd (1.80 Ga) values from -4 to -2. These values are in agreement with known values from other Svecofennian sedimentary basins and support the interpretation of the Västervik formation as a typical Svecofennian metasedimentary sequence. Three samples were analysed with the zircon U-Pb ID-TIMS technique, and resulting mixing ages of ~2.1 Ga are typical for Svecofennian metasediments. The final stage of the geodynamic history of the Västervik area was a HT/LP overprint that caused intense migmatisation and anatectic production of in situ granite melts. This was accompanied by large-scale metasomatism, which led to a regional disturbance of the Rb-Sr isotope system indicating an age of ~1,750 Ma for this event. This age overlaps with timing of the tectonic activity of the Loftahammar-Linköping deformation zone (LLDZ), a large-scale deformation zone, lying directly to the north of the study area, presumably linking these two events.

  5. Lead Abundance In The Martian Mantle Deduced From The Isotopic Data In Snc Meteorites

    NASA Astrophysics Data System (ADS)

    Dreibus, G.; Jagoutz, E.

    Isotopic data are a powerful tool for the study of planetary evolution. Assuming that the SNC meteorites are rocks from Mars their Sm-Nd-, Rb-Sr- and Pb-Pb-isotope systematics reveal the time scale for the chemical evolution of the Martian mantle. From the Rb -Sr isotopic systematic the existence of 3 isotopically distinct reservoirs on Mars was postulated, which remained isolated for a period of 4.3 +/- 0.2 Ga. The basaltic shergottites Shergotty, Zagami and Los Angeles have relatively high radiogenic Sr, which might come from a planetary crust. A second group, characterized by non radiogenic Sr, consists of the two mafic cumulates Nakhla and Chassigny, the olivine rich basaltic shergottites DaG 476, SaU 005, Dhofar 019and the basaltic shergottite QUE 94201, which may represent the depleted mantle. The depletion of this reservoir must have taken place during a very early process. as derived from the primitive Sr isotopes and the existence of Nd-142, the daughter product of the extinct Sm-146, found in Chassigny, the Nakhlites, SaU 005, and DaG476. A third group, with intermediate Sr isotopic composition, represented by the lherzolitic shergottites, could be derived from a primitive, unfractionated mantle. Our observed correlation of Sr-isotopes with Pb-isotopes in SNC's permits to estimate the Pb abundance for the Martian mantle. The Pb isotopes of all measured SNCs show a similar pattern as Sr isotopes. The initial Pb data of Los Angeles, Shergotty, and Zagami from the enriched crustal reservoir and of Nakhla and SaU 005 from the depleted mantle reservoir plot close to the 4.5 Ga Pb -Pb isochron.. We used this correlation to estimate the µ value (238U/204Pb) of 3.1 for the Martian mantle. This corresponds to 366 ppb Pb. Compared to the Earth with a µ = 8.8, Pb is enriched on Mars by at least a fact or of 2.5. The same enrichment was found for all other moderately volatile and volatile elements on Mars. From the high abundance of Pb in the sulfide phases of iron

  6. Isotope-geochemical Nd-Sr evidence of Palaeoproterozoic plume magmatism in Fennoscandia and mantle-crust interaction on stages of layered intrusions formation

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Kunakkuzin, Evgeniy; Steshenko, Ekaterina

    2016-04-01

    Palaeoproterozoic Fennoscandian layered intrusions belong to the pyroxenite-gabbronorite-anorthosite formation and spread on a vast area within the Baltic Shield. Based on isotope U-Pb, Sm-Nd, Rb-Sr and Re-Os data the duration of this formation can be to 100-130 Ma (2.53-2.40 Ga) [Serov et. al., 2008; Bayanova et. al., 2009]. We have studied rocks of layered PGE-bearing Fedorovo-Pansky, Monchetundra, Burakovsky, Olanga group intrusions and Penikat intrusion. According to recent and new complex Nd-Sr-REE data magma source of the vast majority of these intrusions was a mantle reservoir with unusual characteristics: negative values of ɛNd (from 0 to -4) and ISr = 0.702-0.706, flat spectra of REE (value of (La/Yb)N ~ 1.0-5.8) with positive Eu-anomalies [Bayanova et. al., 2009; Bayanova et. al., 2014]. However, the distribution of REE for ore-bearing gabbronorite intrusions Penikat (Sm-Nd age is 2426 ± 38 Ma [Ekimova et. al., 2011]) has a negative Eu-anomalies. This may be due to the formation of plagioclase and its removal from the magma chamber. One of the aims of isotope geochemical investigations is to establish the contribution of mantle components in the formation of layered intrusions rocks and the degrees of contamination of the magma source by crustal material. To calculate the proportion of mantle component model binary mixture was used [Jahn et. al., 2000]. As the mantle components we used data for CHUR: ɛNd = 0, [Nd] = 1.324 [Palm, O'Neil, 2003] and for crustal components were used host-rocks Nd-data. The proportion of mantle component for the studied intrusions was 77-99%. Also, data were obtained for the Monchetundra dike complex and amphibolized gabbro, for which the proportion of mantle material was 20-40%. For these rocks a significant crustal contamination is most likely. This process resulted in low values of ɛNd, a direct relationship between ɛNd and Nd concentration, and significant differences between the U-Pb and Sm-Nd model ages. A

  7. Oxygen isotope studies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.; Olsen, Edward J.; Goswami, J. N.

    1991-01-01

    Several stages in the evolution of ordinary chondritic meteorites are recorded in the oxygen isotopic composition of the meteorites and their separable components (chondrules, fragments, clasts, and matrix). The whole-rock isotopic compositions reflect the iron-group of the meteorite (H, L, or LL). Isotopic uniformity of H3 to H6 and L3 to L6 are consistent with closed-system metamorphism within each parent body. LL3 chondrites differ slightly from LL4 to LL6, implying a small degree of open-system aqueous alteration and carbon reduction. On the scale of individual chondrules, the meteorites are isotopically heterogeneous, allowing recognition of the solar-nebular processes of chondrule formation. Chondrules for all classes of ordinary chondrites are derived from a common population, which was separate from the population of chondrules in carbonaceous or enstatite chondrites. Chondrules define an isotopic mixing line dominated by exchange between (O - 16)-rich and (O - 16)-poor reservoirs. The oxygen isotopic compositions of chondrites serve as 'fingerprints' for identification of genetic association with other meteorite types (achondrites and iron) and for recognition of source materials in meteoritic breccias.

  8. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  9. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.; Hauri, Erik H.; van Keken, Peter E.; Ballentine, Chris J.

    2008-11-01

    Here, multiple isotope systems are tracked simultaneously in models of mantle convection and it is show that this can provide powerful constraints on the role of oceanic crust recycling in the development of isotopic end-member compositions. The dynamical models are based on high-resolution cylindrical calculations with force-balanced plates and variable chemical density. The dynamic results span a parameter space of variable realistic excess crustal density compared to experimental estimates and convective vigor measured by plate velocities and surface heat flow. Isotope geochemistry is then modeled for the U-Th-Pb, Sm-Nd, Rb-Sr, and Re-Os isotope systems. The role of a dense crustal layer in development of a HIMU-isotope signature is confirmed. The extraction of continental crust is found to be essential for the formation of all isotope compositional end-members, including HIMU. This extraction is implemented as an ad-hoc process secondary to partial melting at mid-ocean ridges and constrained by estimated isotopic abundances in the present-day crust. Whereas previous studies generated mantle isotopic arrays that spanned DMM-HIMU, the additional isotope systems in this analysis indicate that enrichment purely from ancient oceanic crust may also generate an EM-I component without invoking the subduction of sediment. In this case, the EM-I signature may be indicative of mantle enriched by oceanic crust produced before 2.25 Byr, while the HIMU signature indicates enrichment by oceanic crust extracted more recently. However, it is found to be difficult to maintain a true DMM isotopic end member in Sr-Nd isotope space when significantly enriched end-members are present. This may highlight the sensitivity of the Rb-Sr system to mass exchange between the upper and lower mantle.

  10. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  11. Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Walker, R. J.; Byerly, G. R.; Nisbet, E. G.; Anhaeusser, C. R.

    2013-05-01

    Major, minor, and lithophile trace element abundances and Nd and Hf isotope systematics are reported for two sets of remarkably fresh, by Archean standards, samples of komatiitic lavas from the 3.48 Ga Komati and the 3.27 Ga Weltevreden Formations of the Barberton Greenstone Belt (BGB) in South Africa. These data are used to place new constraints on the thermal history of the early Archean mantle, on the timing of its differentiation, and on the origin and chemical nature of early mantle reservoirs and their evolution through time. Projected moderate to strong depletions of highly incompatible lithophile trace elements and water in the mantle sources of both komatiite systems, combined with the partitioning behavior of V during lava differentiation, are consistent with anhydrous conditions during generation of the komatiite magmas. Komati and Weltevreden lavas are inferred to have erupted with temperatures of ∼1600 °C, and, thus, represent the hottest known lavas on Earth. The calculated mantle potential temperatures of ∼1800 °C for both komatiite systems are 150-200 °C higher than those of contemporary ambient mantle. Combined, these observations are consistent with the origin of these BGB komatiite magmas in mantle plumes in the lower mantle. New Sm-Nd and Lu-Hf isotopic data allow precise determination of initial ε143Nd = +0.46 ± 0.10 and +0.50 ± 0.11 and initial ε176Hf = +1.9 ± 0.3 and +4.7 ± 0.8 for the Komati and the Weltevreden system komatiites, respectively. These positive initial values reflect prior fractionation of Sm/Nd and Lu/Hf in the mantle early in Earth history. Conversely, μ142Nd values are 0.0 ± 2.4 and +2.2 ± 4.1 for the Komati and the Weltevreden systems, respectively. These values overlap, within uncertainties, those of modern terrestrial rocks, thus, limiting the magnitudes of possible Sm/Nd fractionations generated by early Earth processes in the sources of these rocks. Combined 142,143Nd and Hf isotope and lithophile trace

  12. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  13. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  14. Embryotoxicity of stable isotopes and use of stable isotopes in studies of teratogenetic mechanisms

    SciTech Connect

    Spielmann, H.; Nau, H.

    1986-07-01

    Experiments on teratogenic effects of stable isotopes from our own and other laboratories are evaluated. In the first series of investigations, the enrichment of the stable isotope /sup 13/C derived from U-/sup 13/C-glucose was studied in mouse embryos at various stages of development, including limb buds in organ culture. Preimplantation mouse embryos incubated in vitro in /sup 13/C-enriched medium for 48 hours showed normal development during subsequent differentiation in vitro and also in vivo after embryo transfer to faster mothers. These embryos were 15% to 20% enriched in /sup 13/C. Administration of U-13-C-glucose to pregnant mice during organogenesis led to an increase of the absolute /sup 13/C content of the embryo for several days after the end of isotope administration, whereas the enrichment in maternal tissue decreased. No alterations of embryonic development were detected due to stable isotope enrichment. Development of cultured mouse limb buds was unaffected by incubation with 82 mol% U-/sup 13/C-glucose as judged from morphologic and biochemical criteria. The second part of the article describes the value of deuterium-labeled drugs as probes into the mechanism of activation of teratogenic metabolites. A comparison of the pharmacokinetics as well as the teratogenicity between cyclophosphamide and some specific deuterium-labeled analogues showed that the isotope effect observed can be related to a particular metabolic pathway crucial for teratogenic activation by this drug.

  15. Isotopic analysis of basaltic fragments from lunar breccia 14321 - Chronology and petrogenesis of pre-Imbrium mare volcanism

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.

    1987-01-01

    Internal (mineral) Rb-Sr isochrons were determined for six Apollo 14 mare basalts of lunar breccia 14321. The ages of these fragments, which represent the time of crystallization of the respective mafic lavas, range from about 4.05 to 4.24, and, possibly, to 4.33 Ga and are among the oldest dates reported for mare basalts. For three of the fragments, internal Sm-Nd isochron data were collected and initial Nd isotopic composition was determined. The results are discussed with reference to the original source of these different basaltic fragments.

  16. Metasomatized lithospheric mantle beneath Turkana depression in southern Ethiopia (the East Africa Rift): geochemical and Sr-Nd-Pb isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Meshesha, Daniel; Shinjo, Ryuichi; Matsumura, Risa; Chekol, Takele

    2011-11-01

    Mantle xenoliths entrained in Quaternary alkaline basalts from the Turkana Depression in southern Ethiopia (the East Africa Rift) were studied for their geochemical and Sr-Nd-Pb isotopic compositions to constrain the evolution of the lithosphere. The investigated mantle xenoliths are spinel lherzolites in composition with a protogranular texture. They can be classified into two types: anhydrous and hydrous spinel lherzolites; the latter group characterized by the occurrences of pargasite and phlogopite. The compositions of whole-rock basaltic component (CaO = 3.8-5.6 wt%, Al2O3 = 2.5-4.1 wt%, and MgO = 34.7-38.1 wt%), spinel (Cr# = 0.062-0.117, Al2O3 = 59.0-64.4 wt%) and clinopyroxene (Mg# = 88.4-91.7, Al2O3 = 5.2-6.7 wt%) indicate that the lherzolites are fertile and have not experienced significant partial melting. Both types are characterized by depleted 87Sr/86Sr (0.70180-0.70295) and high 143Nd/144Nd (0.51299-0.51348) with wide ranges of 206Pb/204Pb (17.86-19.68) isotopic compositions. The variations of geochemical and isotopic compositions can be explained by silicate metasomatism induced by different degree of magma infiltrations from ascending mantle plume. The thermobarometric estimations suggest that the spinel lherzolites were derived from depths of 50-70 km (15.6-22.2 kb) and entrained in the alkaline magma at 847-1,052°C. Most of the spinel lherzolites from this study record an elevated geotherm (60-90 mW/m2) that is related to the presence of rising mantle plume in an active tectonic setting. Sm-Nd isotopic systematic gives a mean TDM model age of 0.95 Ga, interpreted as the minimum depletion age of the subcontinental lithosphere beneath the region.

  17. An isotope identification injection study with GammaTracker

    NASA Astrophysics Data System (ADS)

    Batdorf, Michael T.; Erikson, Luke E.; Seifert, Carolyn E.; Myjak, Mitchell J.; Kirihara, Leslie J.

    2011-10-01

    GammaTracker is a portable handheld radioisotope identifier using position sensitive CdZnTe detectors. High confidence isotope identification is possible on GammaTracker owing to the system's relatively high energy resolution and count rate sensitivity. A study was undertaken to evaluate the isotope identification performance of a prototype unit. Background and source spectra for various nuclides were measured and then randomly sampled to simulate various integration times and source intensities. The resulting spectral data sets were then run through the isotope identification algorithm to determine the probability of detection and the false alarm rate for each nuclide. The process was repeated for various isotope identification input parameters until an optimized set was achieved. This paper presents results from the injection study.

  18. Preliminary study: isotopic safeguards techniques (IST) LMFBR fuel cycles

    SciTech Connect

    Persiani, P. J.; Kroc, T. K.

    1980-06-01

    This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed.

  19. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Burton, K. W.; Soulet, G.; Vigier, N.; Dennielou, B.; Etoubleau, J.; Ponzevera, E.; German, C. R.; Nesbitt, R. W.

    2009-01-01

    The combined use of Lu-Hf and Sm-Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf-Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (ɛ Nd ~ - 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by ɛ Hf values (from - 1.1 to + 1.3) far more radiogenic than associated sediments (from - 7.1 to - 12.0) and turbidite sands (from - 27.2 to - 31.6). ɛ Hf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between ɛ Hf of secondary clay minerals and chemical weathering intensity. These results combined with data from the literature have global implications for understanding the Hf-Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the 'seawater array' (i.e. the correlation defined by deep-sea Fe-Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous

  20. Rapid sample throughput for biomedical stable isotope tracer studies.

    PubMed

    Preston, T; McMillan, D C

    1988-10-01

    Typical 13C or 15N tracer studies generate large numbers of samples. Instrumentation capable of rapid automated analysis is therefore of importance as a practical alternative to conventional isotope methodology. Although biomedical sample nature is diverse, experimenters often require analysis of substrates and products of particular biochemical pathways. Clearly, reaction products can contain considerably less isotope tracer than precursors. Analytical techniques thus need to accommodate samples of widely varying nature, size and isotope enrichment. In the clinical field, where stable isotopes are increasingly used to study protein, carbohydrate and fat metabolism, analysis of the isotope ratio of a substrate infused into the plasma and a product of its metabolism is often required. Conventional analytical approaches demand access to two mass spectrometers: isotope ratio mass spectrometry (IRMS) for isotope analysis of the relatively large concentrations of low-enrichment metabolic product, and gas chromatography/mass spectrometry (GC/MS) for analysis of the infused substrate often present at high enrichment but low concentration offers a practical alternative to the conventional approaches that is rapid and automatic. In addition to providing a considerably less complex and costly alternative to conventional instrumentation, a single CF-IRMS instrument can also analyse small quantities of low-enrichment metabolites with superior performance than either of the alternative approaches. CF-IRMS is illustrated using results from constant-infusion studies in human protein and fat metabolism which require measurement of the isotope enrichment in submicromolar quantities of plasma substrates together with analysis of larger quantities of their oxidation products, urinary nitrogen and breath CO2. PMID:3149535

  1. Granulite fades Nd-isotopic homogenization in the Lewisian complex of northwest Scotland

    USGS Publications Warehouse

    Whitehouse, M.J.

    1988-01-01

    A published Sm-Nd whole-rock isochron of 2,920 ?? 50 Myr, obtained from a wide range of lithologies in the Lewisian complex of north-west Scotland, was interpreted1 as the time of protolith formation. This date is ???260 Myr older than estimates for the timing of high-grade metamorphism in the complex at ??? 2,660 Myr2'3, and this period is considered to represent the duration of the Lewisian crustal accretion-differentiation superevent (CADS)4. Here we give new Sm-Nd data, obtained specifically from granulite facies tonalitic gneisses, that yield a date of 2,600 ??155 Myr. Although depleted-mantle model ages (tDM suggest >200 Myr of premetamorphic crustal residence, the regression date and its associated initial Nd-isotopic parameters demonstrate Nd-isotopic homogenization during the high-grade event, as well as the probability of general rare-earth-element (REE) mobility. Models for selective element depletion in the complex have previously assumed REE immobility since 2,920 Myr, but the data presented here suggest that a reappraisal of the depletion mechanism is required. ?? 1988 Nature Publishing Group.

  2. Stable Isotope Applications in Hydrologic Studies

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Doctor, D. H.

    2003-12-01

    The topic of stream flow generation has received considerable attention over the last two decades, first in response to concern about "acid rain" and more recently in response to the increasingly serious contamination of surface and shallow groundwaters by anthropogenic contaminants. Many sensitive, low-alkalinity streams in North America and Europe are already acidified (see Chapter 9.10). Still more streams that are not yet chronically acidic may undergo acidic episodes in response to large rainstorms and/or spring snowmelt. These acidic events can seriously damage local ecosystems. Future climate changes may exacerbate the situation by affecting biogeochemical controls on the transport of water, nutrients, and other materials from land to freshwater ecosystems.New awareness of the potential danger to water supplies posed by the use of agricultural chemicals and urban industrial development has also focused attention on the nature of rainfall-runoff and recharge processes and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. Dumping and spills of other potentially toxic materials are also of concern because these chemicals may eventually reach streams and other public water supplies. A better understanding of hydrologic flow paths and solute sources is required to determine the potential impact of contaminants on water supplies, develop management practices to preserve water quality, and devise remediation plans for sites that are already polluted.Isotope tracers have been extremely useful in providing new insights into hydrologic processes, because they integrate small-scale variability to give an effective indication of catchment-scale processes. The main purpose of this chapter is to provide an overview of recent research into the use of naturally occurring stable isotopes to track the movement of water and solutes in hydrological systems where the waters are relatively fresh: soils, surface waters, and shallow

  3. Evolution of the South African mantle — A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Brey, Gerhard P.; Weyer, Stefan

    2012-12-01

    A thorough assessment of inter-mineral equilibrium is essential for the understanding of trace element partitioning and also for the interpretation of isotopic data. Here we investigated high temperature (~ 1200 °C and 6 GPa) garnet peridotite xenoliths from the Kaapvaal craton (Finsch mine, South Africa), with exceptionally well equilibrated mineral major element compositions, for their trace element and isotopic inter-mineral equilibrium. Trace element compositions for all major mineral phases, i.e. olivine, orthopyroxene (opx), clinopyroxene (cpx) and garnet, were analysed by laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Garnet, cpx and opx of selected samples were analysed for their Sm-Nd and Lu-Hf isotope compositions by multi collector ICP-MS. Most important mineral characteristics include: a) olivines from most samples are enriched in high-field-strength elements relative to other incompatible trace elements. Their lithium content correlates negatively with Mg#, indicating a depletion signature; b) all other minerals are depleted in heavy and middle rare earth elements (H- and M-REE) and enriched in light REE and large ion lithophile elements. This implies a complex history of depletion and metasomatic overprint for the Finsch cratonic mantle; c) orthopyroxene has similarly shaped trace element patterns as cpx, with one to two orders of magnitude lower abundances; and d) both, garnet and cpx, display variable, mostly positive ɛHf coupled with moderate variations in ɛNd. Trace element partitioning between garnet/cpx, cpx/opx and garnet/opx, displays only a weak pressure and temperature dependency. However, equilibrium partitioning of most trace elements between garnet and cpx shows a strong compositional dependency, i.e. on the Cr- (and Ca-) content of the garnets. Garnet-cpx partition coefficients follow a second grade polynomial correlation with Cr2O3 of garnet, whereby high chromium garnets (Cr2O3 > 6 wt.%) have generally higher

  4. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  5. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status. PMID:26747521

  6. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  7. Groundwater surface water interaction study using natural isotopes tracer

    NASA Astrophysics Data System (ADS)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  8. Pb isotope constaints on the extent of crustal recycling into a steady state mantle

    NASA Technical Reports Server (NTRS)

    Galer, S. J. G.; Goldstein, S. L.; Onions, R. K.

    1988-01-01

    Isotopic and geochemical evidence was discussed against recycling of continental crust into the mantle. Element ratios such as Sm/Nd, Th/Sc, and U/Pb in sedimentary masses have remained relatively constant throughout Earth history, and this can only be reconciled with steady state recycling models if new crustal materials added from the mantle have had similar ratios. Such recycling models would also require shorter processing times for U, Th, and Pb through the mantle than are geodynamically reasonable. Models favoring subduction of pelagic sediments as the only recycling mechanism fail to account for the Pb isotopic signature of the mantle. Recycling of bulk crust with Pb isotopic compositions similar to those expected for primitive mantle would be permissable with available data, but there appear to be no plausible tectonic mechanisms to carry this out.

  9. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    USGS Publications Warehouse

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host

  10. Oxygen isotope fractionation between analcime and water - An experimental study

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.