Science.gov

Sample records for small magnetic fields

  1. The Use of Small Coolers in a Magnetic Field

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  2. High-field small animal magnetic resonance oncology studies

    NASA Astrophysics Data System (ADS)

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, chemical exchange saturation transfer imaging and hyperpolarized 13C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

  3. Small-scale turbulence detected in Mercury's magnetic field

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-11-01

    With its closest approach a mere 46 million kilometers from the Sun, the blast of the solar wind was supposed to wash away any chance that Mercury could hold on to a magnetic field—an idea rejected by the observations of the Mariner 10 spacecraft in 1974. Though Mercury was shown to harbor a weak magnetic field (one-hundredth the strength of Earth's), its structure, behavior, and interactions with the solar wind remained heavily debated, yet untested, until the 14 January 2008 approach of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbiter. Using a continuous scalogram analysis—a novel statistical technique in space research—Uritsky et al. analyzed the high-resolution magnetic field strength observations taken by MESSENGER as it flew within a few hundred kilometers of the planet's surface. The authors found turbulence in Mercury's magnetosphere, which they attributed to small-scale interactions between the solar wind plasma and the magnetic field. At large spatial and temporal scales the solar wind can be thought of as a fluid with some magnetic properties—a domain well explained by the theories of magnetohydrodynamics.

  4. Magnetic Field Structure of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Magalhaes, A. M.; Margoniner, V. E.; Pereyra, A.; Rodrigues, C. V.; Coyne, G. V.

    1996-05-01

    We describe an on-going observational program to determine the magnetic field structure of the Small Magellanic Cloud (SMC). The project employs CCD images which allow the determination of the linear polarization of a large number of stars in each field. The data are being collected at the CTIO 1.5m telescope using a visitor polarimetry unit on the direct CCD camera. The data are been gathered mainly in the Northeast and Wing sections of the SMC. These regions have been presumably affected by past interactions with the Large Magellanic Cloud. Support by FAPESP, CNPq, CAPES and USP is gratefully acknowledged.

  5. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    PubMed

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams. PMID:25414143

  6. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  7. Magnetic field diffusion modeling of a small enclosed firing system

    SciTech Connect

    Warne, L.K.; Merewether, K.O.

    1996-01-01

    Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.

  8. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  9. High field magnetic resonance imaging-based gel dosimetry for small radiation fields

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng

    Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

  10. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  11. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  12. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  13. Small-size controlled vacuum spark-gap in an external magnetic field

    SciTech Connect

    Asyunin, V. I. Davydov, S. G.; Dolgov, A. N. Pshenichnyi, A. A.; Yakubov, R. Kh.

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  14. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  15. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect

    Jedamzik, Karsten; Abel, Tom E-mail: tabel@slac.stanford.edu

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  16. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  17. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  18. Cable testing for Fermilab's high field magnets using small racetrack coils

    SciTech Connect

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2004-10-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.

  19. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  20. Intermittent Emission of High-Frequency Waves by Magnetic Reconnection Between Canopy Field and Small-Scale Horizontal Field

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2007-12-01

    The energy source of coronal heating and solar wind acceleration is the interaction of magnetic field and thermal convection in the photosphere. Magnetoconvection has complicated bifurcation structure, and the mode, spectra and power of the waves generated in the photosphere depend on the nature of magnetoconvection in the photosphere. In order to study the relation between magnetoconvection and coronal heating/solar wind acceleration, we performed three-dimensional magnetohydrodynamic simulation of a domain that includes from upper convection zone to the corona. We first ran the simulation without magnetic field until convection developed to quasi-steady state, and then imposed a vertical and uniform magnetic field. We found that, in addition to the well-known fact that vertical magnetic field is swept into the downflow region, small scale horizontal fields as strong as 800G intermittently emerge in the photosphere. Even though the initial magnetic field is vertical and uniform, magnetic field in the convection zone become turbulent, and occasionally a bundle of strong magnetic flux is driven by the upward convection flow and emerges in the photosphere. Such horizontal fields undergo magnetic reconnection with pre-existing magnetic field in the chromosphere (so called "canopy" field), and then emit high-frequency (>0.05mHz) waves into the corona. We discuss the possible role of these processes in heating, acceleration and turbulence of the corona and the solar wind.

  1. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    SciTech Connect

    Mao, S. A.; Gaensler, B. M.; Stanimirovic, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  2. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mao, S. A.; Gaensler, B. M.; Stanimirović, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 +/- 0.06 μG. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 +/- 0.4 μG oriented at a position angle 4°+/- 12°, measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a "pan-Magellanic" magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  3. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  4. Experimental Setup for Magnetic-Field Tests of Small-Size Light Sensors at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Nickle, Cameron

    2013-10-01

    In preparation for the Electron Ion Collider, small-size sensors, such as Silicon photo-multipliers (SiPM) and Multi-Channel Plate (MCP) photo-multipliers are being considered for use in a Detection of Internally Reflected Cherenkov Light (DIRC) detector. Since DIRC will be operated in the strong field of a magnetic spectrometer, the gain of the sensors must be evaluated in high magnetic fields. A dedicated test facility, which makes use of a solenoid magnet with magnetic fields of up to 4.7 T, is being developed at Jefferson Labs. This paper describes the configuration and operation of an entirely non-magnetic dark box that will house the sensors during the tests and allows the sensors to be rotated about two axes relative to the field. This paper also describes the development of a ROOT-based analysis method to extract the gain of SiPMs from raw Analog-to-Digital-Converter (ADC) spectra as a function of the intensity of the magnetic field and the sensor's relative to angle to the field. The dark box and analysis method was tested with Hamamatsu mulitpixel SiPMs and our results are consistent with previous measurements of the same sensors. The methodology developed in this work will be routinely used for the upcoming high-B field tests.

  5. Stable oscillation in spin torque oscillator excited by a small in-plane magnetic field

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Ito, Takahiro; Utsumi, Yasuhiro

    2015-08-07

    Theoretical conditions to excite self-oscillation in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are investigated by analytically solving the Landau-Lifshitz-Gilbert equation. The analytical relation between the current and oscillation frequency is derived. It is found that a large amplitude oscillation can be excited by applying a small field pointing to the direction anti-parallel to the magnetization of the pinned layer. The validity of the analytical results is confirmed by comparing with numerical simulation, showing good agreement especially in a low current region.

  6. Stable oscillation in spin torque oscillator excited by a small in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Ito, Takahiro; Utsumi, Yasuhiro; Tsunegi, Sumito; Kubota, Hitoshi

    2015-08-01

    Theoretical conditions to excite self-oscillation in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are investigated by analytically solving the Landau-Lifshitz-Gilbert equation. The analytical relation between the current and oscillation frequency is derived. It is found that a large amplitude oscillation can be excited by applying a small field pointing to the direction anti-parallel to the magnetization of the pinned layer. The validity of the analytical results is confirmed by comparing with numerical simulation, showing good agreement especially in a low current region.

  7. Interaction of Convection and Small-scale Magnetic Fields: Influence on the Solar Luminosity

    NASA Technical Reports Server (NTRS)

    Nordlund, A.

    1984-01-01

    Changes in the local solar luminosity due to the presence of a small scale structured (facular) magnetic field in the photosphere are discussed. The discussion is based on three dimensional numerical simulations of the magnetohydrodynamics of the top of the convection zone, and the adjacent stable photosphere. The simulations demonstrate that practically all of the magnetic flux present is concentrated into intense magnetic flux structures, such that the magnetic field pressure is balanced by the gas pressure of the surrounding plasma. The flux concentration is caused by the convectively unstable stratification. The average luminosity of the area is influenced by three effects: (1) the brightness of the flux concentrations, (2) their filling factor, and (3) the average luminosity of the surrounding plasma.

  8. The effect of small variations in the magnetization curves of shielding material upon shielded fields

    NASA Astrophysics Data System (ADS)

    Kost, A.; Jacobs, R. T.; Hahn, A.

    2007-08-01

    The shielding of strong electromagnetic fields at power frequency, performed by ferromagnetic plates, is often successfully modelled by the effective reluctivity. This method delivers good results for the RMSvalue of the shielded field. The following paper shows that a small variation of the magnetization curve (e.g.by taking another material charge) can strongly influence the shielded field. The field calculation is performed by the Finite Element Method (FEM), where for the interior plate region a)finite elements and b)non-linear Impedance Boundary Conditions (IBC) are used which circumvents the need to discretize the shielding plate.

  9. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    SciTech Connect

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment of small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.

  10. A small survey of the magnetic fields of planet-host stars

    NASA Astrophysics Data System (ADS)

    Fares, R.; Moutou, C.; Donati, J.-F.; Catala, C.; Shkolnik, E. L.; Jardine, M. M.; Cameron, A. C.; Deleuil, M.

    2013-10-01

    Using spectropolarimetry, we investigate the large-scale magnetic topologies of stars hosting close-in exoplanets. A small survey of 10 stars has been done with the twin instruments Télescope Bernard Lyot /NARVAL and Canada-France-Hawaii Telescope/ESPaDOnS between 2006 and 2011. Each target consists of circular polarization observations covering 7-22 d. For each of the seven targets in which a magnetic field was detected, we reconstructed the magnetic field topology using Zeeman-Doppler imaging. Otherwise, a detection limit has been estimated. Three new epochs of observations of τ Boo are presented, which confirm magnetic polarity reversal. We estimate that the cycle period is 2 yr, but recall that a shorter period of 240 d cannot still be ruled out. The result of our survey is compared to the global picture of stellar magnetic field properties in the mass-rotation diagram. The comparison shows that these giant planet-host stars tend to have similar magnetic field topologies to stars without detected hot Jupiters. This needs to be confirmed with a larger sample of stars.

  11. Magnetic Field and Pressure Dependence of Small Angle Neutron Scattering in MnSi

    SciTech Connect

    Pfleiderer, C.; Reznik, D.; Pintschovius, L.; Haug, J.

    2007-10-12

    We report small angle neutron scattering of spontaneous and magnetic field aligned components of the helical spin polarization in MnSi for temperatures T down to 0.35 K, at pressures p up to 21 kbar, and magnetic field B up to 0.7 T. The parameter range of our study spans the first order transition between helical order and partial magnetic order at p{sub c}=14.6 kbar, which coincides with the onset of an extended regime of non-Fermi liquid resistivity. Our study suggests that MnSi above p{sub c} is not dominated by the remnants of the first order transition at p{sub c}, but that an unidentified mechanism favors stabilization of a new ground state other than helical order.

  12. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  13. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  14. Measurements on magnetized GdBCO pellets subjected to small transverse ac magnetic fields at very low frequency: Evidence for a slowdown of the magnetization decay

    NASA Astrophysics Data System (ADS)

    Fagnard, Jean-Francois; Kirsch, Sébastien; Morita, Mitsuru; Teshima, Hidekazu; Vanderheyden, Benoit; Vanderbemden, Philippe

    2015-05-01

    Due to their ability to trap large magnetic inductions, superconducting bulk materials can be used as powerful permanent magnets. The permanent magnetization of such materials, however, can be significantly affected by the application of several cycles of a transverse variable magnetic field. In this work, we study, at T = 77 K, the long term influence of transverse ac magnetic fields of small amplitudes (i.e. much smaller than the full penetration field) on the axial magnetization of a bulk single grain superconducting GdBCO pellet over a wide range of low frequencies (1 mHz-20 Hz). Thermocouples are placed against the pellet surface to probe possible self-heating of the material during the experiments. A high sensitivity cryogenic Hall probe is placed close to the surface to record the local magnetic induction normal to the surface. The results show first that, for a given number of applied triangular transverse cycles, higher values of dBapp/dt induce smaller magnetization decays. An important feature of practical interest is that, after a very large number of cycles which cause the loss of a substantial amount of magnetization (depending on the amplitude and the frequency of the field), the rate of the magnetization decay goes back to its initial value, corresponding to the relaxation of the superconducting currents due to flux creep only. In the amplitude and frequency range investigated, the thermocouples measurements and a 2D magneto-thermal modelling show no evidence of sufficient self-heating to affect the magnetization so that the effect of the transverse magnetic field cycles on the trapped magnetic moment is only attributed to a redistribution of superconducting currents in the volume of the sample and not to a thermal effect.

  15. Electromagnetic design analysis and performance improvement of axial field permanent magnet generator for small wind turbine

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk

    2012-04-01

    Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.

  16. MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES

    SciTech Connect

    Gosling, J. T.; Phan, T. D.

    2013-02-01

    Using Wind 3 s plasma and magnetic field data, we have identified nine reconnection exhausts within a solar wind disturbance on 1998 October 18-20 driven by a moderately fast interplanetary coronal mass ejection (ICME). Three of the exhausts within the ICME were associated with current sheets having local field shear angles, {theta}, ranging from 4 Degree-Sign to 9 Degree-Sign , the smallest reported values of {theta} yet associated with reconnection exhausts in a space plasma. They were observed in plasma characterized by extremely low (0.02-0.04) plasma {beta}, and very high (281-383 km s{sup -1}) Alfven speed, V{sub A}. Low {beta} allows reconnection to occur at small {theta} and high V{sub A} leads to exhaust jets that are fast enough relative to the surrounding solar wind to be readily identified. Very small-{theta} current sheets are common in the solar wind at 1 AU, but typically are not associated with particularly low plasma {beta} or high V{sub A}. On the other hand, small-{theta} current sheets should be common in the lower solar corona, a plasma regime of extremely low {beta} and extremely high V{sub A}. Our observations lend credence to models that predict that reconnection at small-{theta} current sheets is primarily responsible for coronal heating.

  17. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  18. Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications

    NASA Astrophysics Data System (ADS)

    Jones, N. J.; McNerny, K. L.; Sokalski, V.; Diaz-Michelena, M.; Laughlin, D. E.; McHenry, M. E.

    2011-04-01

    Thin film alternating gradient field magnetometers (AGFM) have potential for measuring magnetic moments of minerals in extraterrestrial soil samples. AGFM sensors offer increased spatial resolution required to detect magnetic nanoparticles for biosensing applications. We have fabricated a patterned thin film with the properties necessary for use in a small AGFM system. Hexagonal-close-packed CoCrPt thin films of 20 and 500 nm were sputtered (nominal composition of Co66Cr15Pt19), showing a high magnetic moment and large out-of-plane anisotropy. The films showed a Δθ50 of better than 3° for the (002) CoCrPt peak for all films, which improves with thickness. The texture is partly due to the NiW and Ru underlayers. The films showed an out-of-plane easy axis, indicating a strong uniaxial anisotropy that exceeds the shape demagnetization energy. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelastic coupling and film stresses may also aid in achieving a perpendicular anisotropy. The first-order uniaxial anisotropy constants were calculated as a function of temperature, ranging from 3.7 × 106 ergs/cm3 at room temperature to 6.8 × 105 ergs/cm3 at 500 °C, and the T dependence agrees with Akulov's theory for uniaxial materials. The thickest film was etched with a checkerboard pattern to decrease the demagnetization effects, which are seen more influentially in the thicker films. This opened up the hysteresis loop, and decreased the amount of field necessary to overcome the thin film geometry.

  19. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  20. Macroscopic quantum tunneling in small Josephson junctions in a magnetic field.

    SciTech Connect

    Ovchinnikov, Yu. N.; Barone, A.; Varlamov, A. A.; Materials Science Division; Max-Planck Inst. for Physics of Complex Systems; Landau Inst. Theoretical Physics; Univ. di Napoli Federico II; Coherentia-INFM, CNR

    2007-01-01

    We study the phenomenon of macroscopic quantum tunneling (MQT) in small Josephson junctions (JJ) with an externally applied magnetic field. The latter results in the appearance of the Fraunhofer type modulation of the current density along the barrier. The problem of MQT for a pointlike JJ is reduced to the motion of the quantum particle in the washboard potential. In the case of a finite size JJ under consideration, this problem corresponds to a MQT in a potential which itself, besides the phase, depends on space variables. The general expression for the crossover temperature To between thermally activated and macroscopic quantum tunneling regimes and the escaping time {tau}{sub esc} have been calculated.

  1. Dogs are sensitive to small variations of the Earth’s magnetic field

    PubMed Central

    2013-01-01

    Introduction Several mammalian species spontaneously align their body axis with respect to the Earth’s magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. Results Dogs preferred to excrete with the body being aligned along the North–South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. Conclusions It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are

  2. Influence of small-scale magnetic field on the reverse positron current in the inner gaps of radio pulsars

    NASA Astrophysics Data System (ADS)

    Barsukov, D. P.; Goglichidze, O. A.; Tsygan, A. I.

    2016-06-01

    The reverse positron current flowing through the inner gap of an old radio pulsar in the presence of a small-scale magnetic field is found. Computations for the case of both strong and weak screening of the longitudinal electric field by the electron-positron plasma are presented.

  3. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  4. Relationships between Fluid Vorticity, Kinetic Helicity, and Magnetic Field on Small-scales (Quiet-Network) on the Sun

    NASA Astrophysics Data System (ADS)

    Sangeetha, C. R.; Rajaguru, S. P.

    2016-06-01

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  5. Small-scale electrodynamics of the cusp with northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Basinska, Ewa M.; Burke, William J.; Maynard, Nelson C.; Hughes, W. J.; Winningham, J. D.; Hanson, W. B.

    1992-01-01

    Possible low-altitude field signatures of merging occurring at high latitudes during a period of strong northward directed interplanetary magnetic field are reported. Large electric and magnetic field spikes detected at the poleward edge of the magnetosheathlike particle precipitation are interpreted as field signatures of the low-altitude footprint of such merging line locations. A train of phase-shifted, almost linearly polarized electric and magnetic field fluctuations was detected just equatorward of the large electromagnetic spike. It is argued that these may be due to either ion cyclotron waves excited by penetrating magnetosheath ions or transient oscillations in the frame of convecting plasma, brought about by the sudden change in the flow at the magnetospheric end of the field line.

  6. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance

    PubMed Central

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-01-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants and . From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties. PMID:26563520

  7. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field.

    PubMed

    Klokkenburg, M; Erné, B H; Wiedenmann, A; Petukhov, A V; Philipse, A P

    2007-05-01

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe3O4) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg, Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids. PMID:17677066

  8. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    SciTech Connect

    Klokkenburg, M.; Erne, B. H.; Petukhov, A. V.; Philipse, A. P.; Wiedenmann, A.

    2007-05-15

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe{sub 3}O{sub 4}) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg et al., Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.

  9. Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field

    NASA Astrophysics Data System (ADS)

    Landim, C.; Lemire, P.

    2016-07-01

    We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.

  10. Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field

    NASA Astrophysics Data System (ADS)

    Landim, C.; Lemire, P.

    2016-06-01

    We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.

  11. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment

    PubMed Central

    Günther, A.; Bick, J.-P.; Szary, P.; Honecker, D.; Dewhurst, C. D.; Keiderling, U.; Feoktystov, A. V.; Tschöpe, A.; Birringer, R.; Michels, A.

    2014-01-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  12. Detection of Dynabeads in small bias magnetic field by a micro fluxgate-based sensing system

    NASA Astrophysics Data System (ADS)

    Lei, Chong; Sun, Xue-Cheng; Liu, Cui; Lei, Jian; Wang, Tao; Yang, Zhen; Zhou, Yong

    2014-10-01

    The micro fluxgate sensors have shown high sensitivity for the magnetic beads detection. For portable magnetic biological detection, Co-based amorphous ribbons with high permeability and low saturation magnetic induction are chosen as core materials to lower the operation requirements of the fluxgate-based magnetic beads detection. The micro fluxgate sensors with single-layer core and bi-layer core are fabricated by Micro-Electro-Mechanical System technologies, which exhibit a power consumption of 10.88 mW and 24.48 mW, a sensitivity of 1644 V/T and 1456 V/T, and a noise of 1.66 nT/Hz1/2@1 Hz and 2.32 nT/Hz1/2@1 Hz, respectively. The Dynabeads with concentrations of 300 μg/ml in 10 μl are detected by the micro fluxgate-based sensing system based on static response, and the results show signal change ratio of 12.2% and 9.2% under the max signal difference at 215 μT and 480 μT of the bias magnetic field for two kinds of the sensors, respectively, which is near the saturation point of the sensors. The fluxgate-based bead detection system with Co-based ribbon core presents low demands for the bias magnetic field and power consumption.

  13. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties

    NASA Astrophysics Data System (ADS)

    Roura, P. G.; Melo, J. I.; Ruiz de Azúa, M. C.; Giribet, C. G.

    2006-08-01

    The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.

  14. Structure and dynamics of small scale magnetic fields in the solar atmosphere Results of high resolution polarimetry and image reconstruction

    NASA Astrophysics Data System (ADS)

    Janssen, K.

    2003-07-01

    Two-dimensional spectrograms were obtained at the Vacuum Tower Telescope, Tenerife, in order to study the structure of small scale magnetic fields on the Sun. The speckle reconstruction method that is used for data processing gives high resolution images and wavelength scans in left and right circular polarized light, from which magnetic field maps are calculated using the center of gravity method. The geometric similarity of magnetic structures is studied via the area- perimeter-relation, from which the Hausdorff-dimension of the rim of a structure is determined. The investigation shows that the actual value of the fractal dimension depends on the threshold that is used to determine the borders of the magnetic areas. Higher treshold values lead to smaller fractal dimensions. This can be explained by the concentration of strong magnetic fields while weak fields spread out in more complex structures. With a treshold of 80 Gauss a fractal dimension of D=1,40(5) is obtained. Furthermore, the dimension obtained by observed data is compared to the fractal dimension gained from MHD simulations. It is found that if the measurement scales are adjusted correctly the dimensions for both datasets match quite well. In a second part the dynamics of the mass motions were analysed and a coarse estimate of the energy conveyed by these movements to the magnetic field is given. The energy flux is strong enough to participate in the heating of the solar chromosphere and corona over active regions.

  15. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  16. Spin-orbit torque induced magnetization switching in Ta/Co20Fe60B20/MgO structures under small in-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Cao, Jiangwei; Zheng, Yuqiang; Su, Xianpeng; Hao, Liang; Wang, Ying; Bai, Jianmin; Wei, Fulin

    2016-04-01

    Spin-orbit torque (SOT)-induced magnetization switching under small in-plane magnetic fields in as-deposited and annealed Ta/CoFeB/MgO structures is studied. For the as-deposited samples, partial SOT-induced switching behavior is observed under an in-plane field of less than 100 Oe. Conversely, for the annealed samples, an in-plane field of 10 Oe is large enough to achieve full deterministic magnetization switching. The Dzyaloshinskii-Moriya interaction at the Ta/CoFeB interface is believed to be the main reason for the discrepancy of the requisite in-plane magnetic fields for switching in the as-deposited and annealed samples. In addition, asymmetric field dependence behavior of SOT-induced magnetization switching is observed in the annealed samples. Deterministic magnetization switching in the absence of an external magnetic field is obtained in the annealed samples, which is extremely important to develop SOT-based magnetoresistive random access memory.

  17. Scanning tunneling microscope design with a confocal small field permanent magnet.

    SciTech Connect

    Messina, P.; Pearson, J.; Vasserman, I.; Sasaki, S.; Moog, E.; Fradin, F.

    2008-09-01

    The field of ultra-sensitive measurements with scanning probes requires the design and construction of novel instruments. For example, the combination of radio frequency detection and scanning probe can be exploited to measure thermal properties and mechanical resonances at a very low scale. Very recent results by Komeda and Manassen (2008 Appl. Phys. Lett. 92 212506) on the detection of spin noise with the scanning tunneling microscopy (STM) have further expanded previous results reported by one of the authors of this manuscript (Messina et al 2007 J. Appl. Phys. 101 053916). In a previous publication, one of the authors used a new STM instrument (Messina et al J. Appl. Phys. 2007 101 053916 and Mannini et al 2007 Inorg. Chim. Acta 360 3837-42) to obtain the detection of electron spin noise (ESN) from individual paramagnetic adsorbates. The magnetic field homogeneity at the STM tip-sample region was limited. Furthermore, vacuum operation of the STM microscope was limited by the heat dissipation at the electromagnet and the radio frequency (RF) recovery electronics. We report here on a new STM head that incorporates a specially designed permanent magnet and in-built RF amplification system. The magnet provides both a better field homogeneity and freedom to operate the instrument in vacuum. The STM microscope is vacuum compatible, and vertical stability has been improved over the previous design (Messina et al 2007 J. Appl. Phys. 101 053916), despite the presence of a heat dissipative RF amplifier in the close vicinity of the STM tip.

  18. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  19. Solar dynamo theory : Solar dynamo theory: a new look at the origin of small-scale magnetic fields

    NASA Astrophysics Data System (ADS)

    Cattaneo, Fausto; Hughes, David W.

    2001-06-01

    Fausto Cattaneo and David W Hughes delve beneath the surface of the Sun with numerical models of turbulent convection. Although magnetic dynamo action is traditionally associated with rotation, fast dynamo theory shows that chaotic flows, even without rotation, can act as efficient small-scale dynamos. Indeed, numerical simulations suggest that granular and supergranular convection may generate locally a substantial part of the field in the quiet photosphere.

  20. Small-scale features in the Earth's magnetic field observed by Magsat.

    USGS Publications Warehouse

    Cain, J.C.; Schmitz, D.R.; Muth, L.

    1984-01-01

    A spherical harmonic expansion to degree and order 29 is derived using a selected magnetically quiet sample of Magsat data. Global maps representing the contribution due to terms of the expansion above n = 13 at 400 km altitude are compared with previously published residual anomaly maps and shown to be similar, even in polar regions. An expansion with such a high degree and order displays all but the sharpest features seen by the satellite and gives a more consistent picture of the high-order field structure at a constant altitude than do component maps derived independently. -Authors

  1. Signatures of Small-Scale Magnetic Field Emergence as Seen from the New Solar Telescope in Big Bear

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V.

    2011-12-01

    Increased resolution of solar telescopes allow us to study emerging small-scale magnetic fields in unprecedented detail. First light Hinode magnetograms showed evidence of both horizontal and line-of-sight field being constantly brought to the solar surface by solar convection motion. What are the signatures of these fields in the photosphere, if any? The largest aperture ground-based solar telescope, the New Solar Telescope (NST) of Big Bear Solar Observatory now allows us to address many important issues of coupling between the photosphere and chromosphere by means of simultaneous observations of photospheric granulation with well-resolved bright points (BPs) and associated dynamics in the low chromosphere, as seen in the H-alpha spectral line. Excellent seeing conditions, augmented with an adaptive optics system and speckle-reconstruction applications produce diffraction limited images. We examine NST granulation and Halpha images co-temporal with SDO, Hinode and BBSO/IRIM vector magnetograms. Our main finding is that emerging magnetic flux leaves clear footprint in solar granulation. Moreover, the granulation responds to the emerging flux much earlier that it appears in magnetograms. NST granulation images also reveal that various bright points as well as bright granular lanes may form and evolve within a granule. These newly detected features are believed to be associated with small-scale magnetic fields.

  2. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    SciTech Connect

    Keenan, Brett D. Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  3. Electric fields associated with small-scale magnetic holes in the plasma sheet: Evidence for electron currents

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Stawarz, Julia E.

    2016-06-01

    We report observations of magnetic holes (MHs) in the near-Earth (8 RE to 12 RE) plasma sheet that have physical sizes perpendicular to the magnetic field (B) on the order of the ion Larmor radius (ρi) and, more importantly, have current layers less than ρi in thickness. Small-scale MHs can have >90% depletion in |B| and are commonly associated with the braking of bursty bulk flow events. The generation of MHs is often attributed to magnetohydrodynamic (MHD) instabilities, which requires a size greater than ρi; the depletion in |B| is from an ion current consistent with a pressure gradient. Electric field (E) observations indicate a negative potential inside of small-scale MHs that creates an outward E at the boundary, which drives an E × B electron current in a thin layer. These observations indicate that a Hall electron current is primarily responsible for the depletion of |B| in small-scale magnetic holes, rather than the ion pressure gradient.

  4. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  5. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    DOEpatents

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  6. The magnetic shear-current effect: Generation of large-scale magnetic fields by the small-scale dynamo

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2016-03-14

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean fieldmore » $${\\it\\alpha}$$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.« less

  7. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  8. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Small Solenoidal Magnetic Field

    SciTech Connect

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2007-08-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self-electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytical model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytical studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ωce ≥ ωpeβb, where ωce = eΒ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytical theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  9. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2016-04-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Their observations in galaxies suggest strong magnetic fields already at high redshift as well as at present time. However, neither primordial magnetic fields nor battery processes can account for such high field strengths, which implies the presence of a dynamo process with rapid growth rates in high-redshift galaxies and subsequent maintenance against decay. We investigate the particular role played by feedback mechanisms in creating strong fluid turbulence, allowing for a magnetic dynamo to emerge. Performing magnetohydrodynamic simulations of isolated cooling gas haloes, we compare the magnetic field evolution for various initial field topologies and various stellar feedback mechanisms. We find that feedback can indeed drive strong gas turbulence and dynamo action. We see typical properties of Kolmogorov turbulence with a k-5/3 kinetic energy spectrum, as well as a small-scale dynamo, with a k3/2 magnetic energy spectrum predicted by Kazantsev dynamo theory. We also investigate simulations with a final quiescent phase. As turbulence decreases, the galactic fountain settles into a thin, rotationally supported disc. The magnetic field develops a large-scale well-ordered structure with even symmetry, which is in good agreement with magnetic field observations of nearby spirals. Our findings suggest that weak initial seed fields were first amplified by a small-scale dynamo during a violent feedback-dominated early phase in the galaxy formation history, followed by a more quiescent evolution, where the fields have slowly decayed or were maintained via large-scale dynamo action.

  11. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  12. Quasi-single helicity state by a small positive pulse of toroidal magnetic field in TPE-RX reversed field pinch experiment

    SciTech Connect

    Hirano, Y.; Koguchi, H.; Yambe, K.; Sakakita, H.; Kiyama, S.

    2006-12-15

    By applying a small positive pulse ({delta}B{sub ta}) in toroidal magnetic field, the quasi-single helicity (QSH) state can be obtained with a controllable and reproducible manner in a reversed-field pinch (RFP) experiment on the large RFP machine, TPE-RX [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. The QSH state in RFP is one of the states where the improved confinement can be observed, and is important for development toward the pure single helicity (SH) state. In the SH state, the dynamo-action for sustaining the RFP configuration will be driven by a single helical mode and its harmonics, and the anomalous plasma loss can be avoided which is caused by the multi-helicity dynamo action in ordinary RFPs. In the operating condition presented here, the reversal of toroidal magnetic field (B{sub ta}) is maintained at a shallow value ({approx}-1 mT) for a certain period ({approx}20 ms) after the setting up of the RFP configuration and then the positive {delta}B{sub ta} ((less-or-similar sign)5 mT magnitude and {approx}2 ms width) is applied to the B{sub ta}, which is usually negative during the sustaining phase of RFP. Just after applying the pulse, the m/n=1/6 mode (m and n being the poloidal and toroidal Fourier mode numbers, respectively) grows dominantly and the configuration goes into QSH state. This QSH state can be sustained for a long period (up to {approx}45 ms) almost until the end of discharge by applying a delayed reversal of B{sub ta} with appropriate timing and magnitude. The setting up of the QSH states shows a reproducibility of almost 100% with the same timing corresponding to the applied positive pulse. This observation can confirm the interpretation in the former report [Y. Hirano et al., Phys. Plasmas 12, 112501 (2005)], in which it is claimed that the QSH state is obtained when a small positive pulse in toroidal magnetic field spontaneously appears.

  13. Small-scale variations in the galactic magnetic field - The rotation measure structure function and birefringence in interstellar scintillations

    NASA Technical Reports Server (NTRS)

    Simonetti, J. H.; Cordes, J. M.; Spangler, S. R.

    1984-01-01

    The structure function of rotation measures of extragalactic sources and birefringence in interstellar scintillations are used to investigate variations in the interstellar magnetic field on length scales of about 0.01-100 pc and 10 to the 11th cm, respectively. Model structure functions are derived for the case of a power-law power spectrum of irregularities in the quantity (n(e)B), and an estimate for the structure function is computed for several regions of the sky using data on extragalactic sources. The results indicate an outer angular scale for rotation measure (RM) variations of not less than about 5 deg (a linear scale of about 9-90 pc at a distance of 0.1-1 kpc). There is also evidence for RM variations on angular scales as small as 1 arcmin, but it cannot be determined whether these are intrinsic to the source or caused by the interstellar medium. The effect of a random, Faraday-active medium on the diffraction of radio waves is derived, and an upper limit to the variations in n(e)B on a length scale of 10 to the 11th cm is obtained from available observations.

  14. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  15. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  16. Hysteresis in the behavior of a long periodically modulated Josephson junction in a magnetic field for not small values of the pinning parameter

    NASA Astrophysics Data System (ADS)

    Zelikman, M. A.

    2016-03-01

    The magnetization curve for a long periodically modulated Josephson junction is calculated using the approach based on analysis of the continuous change in the configuration in the direction of the decrease in the Gibbs potential upon cyclic variation of the external magnetic field for not small values of pinning parameter I. It is shown that unlike in the case of small I, when the hysteresis loop is a part of a certain universal curve, the segments of the loops corresponding to a decrease in h in the first and second quadrants (and symmetric to them) pass below the universal loop, the degree of deviation increasing with pinning parameter I. The properties of the hysteresis loops are considered for various amplitudes of the magnetic field variation on the basis of analysis of vortex configurations.

  17. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  18. Complete hyperfine Paschen-Back regime at relatively small magnetic fields realized in potassium nano-cell

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Tonoyan, A.; Hakhumyan, G.; Leroy, C.; Pashayan-Leroy, Y.; Sarkisyan, D.

    2015-04-01

    A one-dimensional nano-metric-thin cell (NC) filled with potassium metal has been built and used to study optical atomic transitions in external magnetic fields. These studies benefit from the remarkable features of the NC allowing one to use λ/2 and λ methods for effective investigations of individual transitions of the K D 1 line. The methods are based on strong narrowing of the absorption spectrum of the atomic column of thickness L equal to λ/2 and to λ (with λ = 770 \\text{nm} being the resonant laser radiation wavelength). In particular, for a π-polarized radiation excitation the λ-method allows us to resolve eight atomic transitions (in two groups of four atomic transitions) and to reveal two remarkable transitions that we call guiding transitions (GT). The probabilities of all other transitions inside the group (as well as the frequency slope vs. magnetic field) tend to the probability and to the slope of GT. Note that for circular polarization there is one group of four transitions and GT do not exist. Among eight transitions there are also two transitions (forbidden for B = 0 ) with the probabilities undergoing strong modification under the influence of magnetic fields. Practically the complete hyperfine Paschen-Back regime is observed at relatively low (∼ 1 \\text{kG}) magnetic fields. Note that for the K D 2 line GT are absent. Theoretical models describe the experiment very well.

  19. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  20. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  1. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  2. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  3. A high-resolution global Vlasov simulation of a small dielectric body with a weak intrinsic magnetic field on the K computer

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Fukazawa, Keiichiro

    2015-04-01

    The interaction between the solar wind and solar system bodies, such as planets, satellites, and asteroids, is one of the fundamental global-scale phenomena in space plasma physics. In the present study, the electromagnetic environment around a small dielectric body with a weak intrinsic magnetic field is studied by means of a first-principle kinetic plasma simulation, which is a challenging task in space plasma physics as well as high-performance computing. Due to several computational limitations, five-dimensional full electromagnetic Vlasov simulations with two configuration space and three velocity space coordinates are performed with two different spatial resolutions. The Debye-scale charge separation is not solved correctly in the simulation run with a low spatial resolution, while all the physical processes in collisionless plasma are included in the simulation run with a high spatial resolution. The direction comparison of electromagnetic fields between the two runs shows that there is small difference in the structure of magnetic field lines. On the other hand, small-scale fine structures of electrostatic fields are enhanced by the electric charge separation and the charge accumulation on the surface of the body in the high-resolution run, while these structures are absent in the low-resolution runs. These results are consistent with the conventional understanding of plasma physics that the structure and dynamics of global magnetic fields, which are generally described by the magneto-hydro-dynamics (MHD) equations, are not affected by electron-scale microphysics.

  4. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  5. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  8. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  9. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  10. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  11. Effects of small external magnetic fields on the hyperfine field of iron in iron metal above the curie temperature: A new method for studying critical phenomena

    NASA Astrophysics Data System (ADS)

    Kolk, B.; Bleloch, A. L.

    1988-02-01

    By applying magnetic fields up to 2 kG, the equation of state and the critical dynamics of a spin system near its critical point can be studied with the Mössbauer effect. As an example, the equation of state near the Curie temperature of iron is investigated yielding the critical exponent δ=4.84±0.15.

  12. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  13. Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Klus, H.; Ho, W. C. G.; Coe, M. J.; Corbet, R. H. D.; Townsend, L. J.

    2014-02-01

    We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4 × 1013 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 106-1010 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.

  14. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  15. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  16. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  17. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  18. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  19. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  20. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.

  1. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  2. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  3. Elementary modes of excitation caused by the quadratic Zeeman term and the sensitivity of spin structures of small spin-2 condensates against the magnetic field

    SciTech Connect

    He, Y. Z.; Bao, C. G.

    2011-12-15

    The response of spin-2 small condensates to an external magnetic field B is studied. The parameters of the interaction are considered as variable. The emphasis is placed on clarifying the modes of excitation caused by the quadratic Zeeman term. The theoretical method used is beyond the mean-field theory. A set of eigenstates with the U(5) superset of SO(5) superset of SO(3) symmetry is introduced to facilitate the analysis. To obtain a quantitative evaluation on the response, the fidelity susceptibility and the B-dependent average populations of spin components have been calculated. Mostly the particle number N=30 is assumed. The effect with a larger or smaller N is also considered. It was found that the sensitivity of the response depends strongly both on the interaction and on the inherent symmetry.

  4. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    PubMed

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H

  5. Elementary modes of excitation caused by the quadratic Zeeman term and the sensitivity of spin structures of small spin-2 condensates against the magnetic field

    NASA Astrophysics Data System (ADS)

    He, Y. Z.; Bao, C. G.

    2011-12-01

    The response of spin-2 small condensates to an external magnetic field B is studied. The parameters of the interaction are considered as variable. The emphasis is placed on clarifying the modes of excitation caused by the quadratic Zeeman term. The theoretical method used is beyond the mean-field theory. A set of eigenstates with the U(5)⊃SO(5)⊃SO(3) symmetry is introduced to facilitate the analysis. To obtain a quantitative evaluation on the response, the fidelity susceptibility and the B-dependent average populations of spin components have been calculated. Mostly the particle number N=30 is assumed. The effect with a larger or smaller N is also considered. It was found that the sensitivity of the response depends strongly both on the interaction and on the inherent symmetry.

  6. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  7. On the magnetic fields in voids

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Hanasz, M.; Lesch, H.; Remus, R.-S.; Stasyszyn, F. A.

    2013-02-01

    We study the possible magnetization of cosmic voids by void galaxies. Recently, observations revealed isolated star-forming galaxies within the voids. Furthermore, a major fraction of a voids volume is expected to be filled with magnetic fields of a minimum strength of about 10-15 G on Mpc scales. We estimate the transport of magnetic energy by cosmic rays (CR) from the void galaxies into the voids. We assume that CRs and winds are able to leave small isolated void galaxies shortly after they assembled, and then propagate within the voids. For a typical void, we estimate the magnetic field strength and volume-filling factor depending on its void galaxy population and possible contributions of strong active galactic nuclei (AGNs) which border the voids. We argue that the lower limit on the void magnetic field can be recovered, if a small fraction of the magnetic energy contained in the void galaxies or void bordering AGNs is distributed within the voids.

  8. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  9. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  10. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  11. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  12. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  13. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  14. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  15. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  16. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  17. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  18. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  19. Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

    The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

  20. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  1. 3-D Magnetic Field Analysis of Permanent Magnet Motor Considering Magnetizing, Demagnetizing and Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Miyata, Koji; Aoyama, Yasuaki; Yokoyama, Tomonori; Ohashi, Ken; Kondo, Minoru; Matsuoka, Koichi

    Rare-earth magnets, which have high energy product, have been widely used in several industrial applications such as voice coil motors for hard disk drives, MRI for medical devices and motors for electric vehicle. In order to realize a small and high performance device, the magnetic field analysis techniques are required. In this paper, we applied the magnetic field analysis to design the permanent magnet synchronous motors into the rail traction system. In the inverter fed motor drive, the eddy current loss in the permanent magnet increased. We simulated the effect that eddy current was decreased by using a divided permanent magnet. Furthermore, the permanent magnet tends to be demagnetized due to the effect of a demagnetizing field formed at high temperatures. However, according to our analysis, demagnetization does not occur within the range of our design specifications. Also, we performed magnetic field analysis assuming a pulse-type magnetization process and designed an optimal magnetizing coil.

  2. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  3. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  4. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  5. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  6. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  7. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  8. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  9. Scanning Magnetoresistance Microscopy Studies of Small Magnetic and Electrical Structures

    NASA Astrophysics Data System (ADS)

    Xiao, Gang

    2004-03-01

    Many physical objects generate microscopic magnetic-field images near their surfaces. Such images reveal important signatures of inherent electrical and magnetic processes within the objects. For example, the image of a magnetic thin film discloses its internal magnetic domain structure. Electrical currents inside an semiconductor chip generate surface magnetic field images, which not only contain information about the electrical current distribution, but also the frequencies with which various components on a chip operates. A type II superconductor also creates an image of threading magnetic flux lines, whose structure and dynamics are fundamental properties. We have developed a sensitive and high-resolution magnetic microscope that is capable of non-invasively imaging, characterizing, and investigating spatial magnetic field patterns. At the heart of the microscope is a miniaturized magnetic-tunnel-junction (MTJ) or giant magnetoresistance (GMR) sensor, capable to work at high speed, under ambient conditions, and over a wide bandwidth. This type of MR microscopy (MRM) offers many advantages over the magnetic force microscopy (MFM) and others. It measures the absolute local magnetic field, and its sensor does not generate invasive field as a magnetic tip would. The MRM can also measure dynamic magnetic images in a time varying external field. We will present results obtained from a wide range of structures using MRM, including small magnetic structures and state-of-the-art integrated circuits. This work supported by NSF is a collaboration with B. Schrag, X.Y. Liu, and G. Singh.

  10. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  11. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  12. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  13. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  14. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  15. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  16. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  17. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  18. Enhancing the strain sensitivity of CoFe2O4 at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe.

    PubMed

    Anantharamaiah, P N; Joy, P A

    2016-04-21

    Attaining high magnetostrictive strain sensitivity (dλ/dH) with high magnetostriction strain (λ) is desirable for sintered polycrystalline cobalt ferrite for various applications. It is shown that substitution of a small amount of Fe(3+) by Mg(2+) in CoMgxFe2-xO4 (x < 0.1) gives a comparable maximum magnetostriction coefficient to that of the unsubstituted counterpart, with large improvement in the strain sensitivity at relatively low magnetic fields. A large increase in the magnetostriction coefficient is obtained at low magnetic fields for the substituted compositions. The magnetostriction parameters are further enhanced by magnetic field annealing of the sintered products. The results are analyzed based on powder XRD, Raman spectroscopy, XPS and magnetic measurements and based on the results from these studies, the changes in the magnetostriction parameters are correlated with the changes in the cation distribution, magnetic anisotropy and microstructure. PMID:27031671

  19. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  20. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  1. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  2. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  3. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  4. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  5. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  6. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  7. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  8. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  9. Quench tests of Nb3Al small racetrack magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  10. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  11. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  12. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  13. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  14. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  15. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  16. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  17. Magnetic transitions in ultra-small nanoscopic magnetic rings: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Singh, Deepak K.; Krotkov, Robert; Tuominen, Mark T.

    2009-05-01

    In this paper, we report on experimental and theoretical investigations of magnetic transitions in cobalt rings of size (diameter, width and thickness) comparable to the exchange length of cobalt. Magnetization measurements and calculations were performed for two sets of magnetic ring arrays: ultra-small magnetic rings (outer diameter 13 nm, inner diameter 5 nm and thickness 5 nm) and small magnetic rings (outer diameter 150 nm, width 5 nm, and thickness 5 nm). Our calculations suggest that if the linear dimensions of a magnetic ring are comparable to, or smaller than, the exchange length of the magnetic material, then only one magnetic state is important—the pure single-domain state. Vortex and onion-shape magnetic states do not arise. For a ring of larger diameter, magnetization reversal at zero field occurs via a vortex state. Theoretical calculations are based on an energetic analysis of pure and slightly distorted single-domain and vortex magnetic states. The calculations have been verified by micromagnetic simulations for ultra-small and small ring geometries. The hysteresis curves measured for small rings are consistent with the calculations, but there is a discrepancy for ultra-small rings. Micromagnetic simulations suggest that the discrepancies may be due to the variations in the shape and size of the ultra-small rings in the measured sample.

  18. Small scale irregularities in Comet Halley's plasma mantle - An attempt at self-consistent analysis of plasma and magnetic field data

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.

    1989-01-01

    VEGA-1 measurements of the plasma density and magnetic field in the coma of Comet Halley show characteristic signatures over a significant portion of the outbound pass. It is found that the assumption that there is a balance between the thermal and magnetic pressures in these features can be used to obtain estimates of the plasma temperature as a function of distance from the nucleus. These estimates indicate that the ions cool from about 1.5 x 10 to the 6th K at 10 to the 5th km to 2 x 10 to the 5th K at 5 x 10 to the 4th km. The technique used here represents a novel approach whereby temperature measurements can be made in situations where only plasma density and magnetic field data are available.

  19. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  20. Modified small angle magnetization rotation method in multilayer magnetic microwires

    NASA Astrophysics Data System (ADS)

    Torrejón, J.; Badini, G.; Pirota, K.; Vázquez, M.

    2007-09-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications.

  1. Small Magnetic Sensors for Space Applications

    PubMed Central

    Díaz-Michelena, Marina

    2009-01-01

    Small magnetic sensors are widely used integrated in vehicles, mobile phones, medical devices, etc for navigation, speed, position and angular sensing. These magnetic sensors are potential candidates for space sector applications in which mass, volume and power savings are important issues. This work covers the magnetic technologies available in the marketplace and the steps towards their implementation in space applications, the actual trend of miniaturization the front-end technologies, and the convergence of the mature and miniaturized magnetic sensor to the space sector through the small satellite concept. PMID:22574012

  2. Untwisting magnetic fields in the solar corona

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  3. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  4. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  5. Magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  6. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  7. Analyses of magnetic field in spiral steel pipe

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Huang, Xinjing; Chen, Shili; Guo, Shixu; Jin, Shijiu

    2015-02-01

    In order to confirm the feasibility of identifying the girth welds using the magnetic field in spiral pipelines, the distributions of the magnetic field in spiral steel pipes with different sizes and different magnetizations were analyzed using the equivalent magnetic charge method, and were verified experimentally. The magnetic field inside spiral steel pipes is generally uniform with very small magnetic sudden changes at the spiral welds, whereas the magnetic field near the pipe ends has very big local changes. The size of spiral pipes, including its wall thickness, length, diameter, and the lift-off, has various influences on the local magnetic sudden changes at the spiral welds (LMASW) and the magnetic incremental near the pipe ends (MINPE), whereas the difference between LMASW and MINPE is always quite considerable. The bigger the radial magnetization component is, the bigger the difference between LMASW and MINPE is. When the radial magnetization component is small, changes of the circumferential and axial magnetization components can reduce this difference. Since the magnetizations of each pipe are seldom identical, the magnetic field inside each pipe is usually quite different. Thus there will be a big local magnetic sudden change at the girth weld inside the spiral pipeline, and this sudden change is much stronger than LMASW. Therefore, we can still consider identifying the girth welds using the magnetic field in spiral pipelines to improve the positioning accuracy of the in-pipe detector.

  8. Effects of static magnetic fields on plants.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that

  9. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  10. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  11. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  12. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  13. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned. PMID:17183319

  14. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  15. SIGNATURES OF MAGNETIC RECONNECTION AT BOUNDARIES OF INTERPLANETARY SMALL-SCALE MAGNETIC FLUX ROPES

    SciTech Connect

    Tian Hui; Yao Shuo; Zong Qiugang; Qi Yu; He Jiansen

    2010-09-01

    The interaction between interplanetary small-scale magnetic flux ropes and the magnetic field in the ambient solar wind is an important topic in the understanding of the evolution of magnetic structures in the heliosphere. Through a survey of 125 previously reported small flux ropes from 1995 to 2005, we find that 44 of them reveal clear signatures of Alfvenic fluctuations and thus classify them as Alfven wave trains rather than flux ropes. Signatures of magnetic reconnection, generally including a plasma jet of {approx}30 km s{sup -1} within a magnetic field rotational region, are clearly present at boundaries of about 42% of the flux ropes and 14% of the wave trains. The reconnection exhausts are often observed to show a local increase in the proton temperature, density, and plasma beta. About 66% of the reconnection events at flux rope boundaries are associated with a magnetic field shear angle larger than 90{sup 0} and 73% of them reveal a decrease of 20% or more in the magnetic field magnitude, suggesting a dominance of anti-parallel reconnection at flux rope boundaries. The occurrence rate of magnetic reconnection at flux rope boundaries through the years 1995-2005 is also investigated and we find that it is relatively low around the solar maximum and much higher when approaching solar minima. The average magnetic field depression and shear angle for reconnection events at flux rope boundaries also reveal a similar trend from 1995 to 2005. Our results demonstrate for the first time that boundaries of a substantial fraction of small-scale flux ropes have properties similar to those of magnetic clouds, in the sense that both of them exhibit signatures of magnetic reconnection. The observed reconnection signatures could be related either to the formation of small flux ropes or to the interaction between flux ropes and the interplanetary magnetic fields.

  16. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  17. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  18. Suppression of edge-localized modes by magnetic field perturbations

    SciTech Connect

    Kleva, Robert G.; Guzdar, Parvez N.

    2010-11-15

    Transport bursts in simulations of edge-localized modes (ELMs) in tokamaks are suppressed by the application of magnetic field perturbations. The amplitude of the applied magnetic field perturbations is characterized by a stochasticity parameter S. When S>1, magnetic flux surfaces are destroyed and the magnetic field lines diffuse in minor radius. As S increases in the simulations, the magnitude of the ELM bursts decreases. The size of bursts is reduced to a very small value while S is still less than unity and most of the magnetic flux surfaces are still preserved. Magnetic field line stochasticity is not a requirement for the stabilization of ELMs by the magnetic field perturbations. The magnetic field perturbations act by suppressing the growth of the resistive ballooning instability that underlies the ELM bursts.

  19. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  20. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  1. Magnetic fields in Local Group dwarf irregulars

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization

  2. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  3. Effects of non-linearities on magnetic field generation

    SciTech Connect

    Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com

    2014-09-01

    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.

  4. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    PubMed

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. PMID:20891027

  5. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  6. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  7. Magnetic properties of samples containing small indium particles

    NASA Astrophysics Data System (ADS)

    Perenboom, J. A. A. J.; Wyder, P.; Meier, F.

    1981-01-01

    Earlier measurements of the magnetization of small indium particles embedded in paraffin were extended in order to observe the transition from a regime of quantum size effects to a regime with normal bulk behavior. Static-magnetization data have been collected in applied magnetic fields up to 8 T in the temperature range from 3 to 300 K for samples with a mean particle diameter in the range from 2 to 10 nm. The measured temperature dependence at different values of the applied magnetic field reveals a paramagnetic contribution to the magnetization which can be accurately described with the magnetization of a spin triplet level, S=1. The Curie constant is orders of magnitude in excess of one spin per particle and seems to be strongly correlated with the sample handling procedure. In some of our samples we have found also a contribution to the magnetization highly nonlinear with the magnetic field, essentially temperature independent up to room temperature, and saturating at fields around 0.6 T. This contribution resembles strongly the magnetization behavior of ferromagnets. No quantum size effects have been observed in the present data.

  8. Solar Polarimetry - from Turbulent Magnetic Fields to Sunspots

    NASA Astrophysics Data System (ADS)

    Kleint, Lucia

    2016-07-01

    Polarimetric measurements are essential to investigate the solar magnetic field. Scattering polarization and the Hanle effect allow us to probe the turbulent magnetic field and the still open questions of its strength and variability. Directed magnetic fields can be detected via the Zeeman effect. To derive their orientation and strength, so-called inversion codes are used, which iteratively modify a model atmosphere and calculate the resulting polarization profiles that are then compared to the observations. While photospheric polarimetry is well-established, chromospheric polarimetry is still in its infancy, especially because it requires a treatment in non-LTE, making it a complex non-linear problem. But some of the most important open questions concern the strength and geometry of the chromospheric magnetic field. In this talk, I will review different polarimetric analysis techniques and recent advances in magnetic field measurements going from the small scales of turbulent magnetic fields to changes of magnetic fields in an active region during flares.

  9. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  10. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  11. Neutrino conversions in solar random magnetic fields

    NASA Astrophysics Data System (ADS)

    Semikoz, V. B.; Torrente-Lujan, E.

    1999-09-01

    We consider the effect of a random magnetic field in the convective zone of the Sun superimposed to a regular magnetic field on resonant neutrino spin-flavor oscillations. We argue for the existence of a field of strongly chaotic nature at the bottom of the convective zone. In contrast to previous attempts we employ a model motivated regular magnetic field profile: it is a static field solution to the solar equilibrium hydro-magnetic equations. These solutions have been known for a long time in the literature. We show for the first time that in addition they are twisting solutions. In this scenario electron antineutrinos are produced through cascades like νeL-->νμL-- >ν~eR, The detection of ν~eR at Earth would be a long-awaited signature of the Majorana nature of the neutrino. The expected signals in the different experiments (SK, GALLEX-SAGE, Homestake) are obtained as a function of the level of noise, regular magnetic field and neutrino mixing parameters. Previous results obtained for small mixing and ad-hoc regular magnetic profiles are reobtained. We confirm the strong suppression for a large part of the parameter space of the ν~eR-flux for high energy boron neutrinos in agreement with present data of the SK experiment. We find that MSW (Mikheyev-Smirnov-Wolfenstein) regions (Δm2~=10-5 eV2, both small and large mixing solutions) are stable up to very large levels of noise (P=0.7-0.8) but they are acceptable from the point of view of antineutrino production only for moderate levels of noise (P~=0.95). For strong noise and a reasonable regular magnetic field, any parameter region (Δm2, sin 2 2θ) is excluded. As a consequence, we are allowed to reverse the problem and to put limits on the r.m.s. field strength and transition magnetic moments by demanding a particle physics solution to the SNP in this scenario.

  12. Cosmological magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Motta, Leonardo

    In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.

  13. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  14. Torsional oscillations of neutron stars with highly tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-11-01

    To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with a lower harmonic index, ℓ. Unlike the stellar models with a pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking the global magnetic field structure.

  15. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  16. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  17. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  18. Skyrmion motion driven by oscillating magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z.Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-01-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods. PMID:26847334

  19. Skyrmion motion driven by oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-02-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.

  20. Multi-coil magnetic field modeling

    NASA Astrophysics Data System (ADS)

    Juchem, Christoph; Green, Dan; de Graaf, Robin A.

    2013-11-01

    The performance of multi-coil (MC) magnetic field modeling is compared to dedicated wire patterns for the generation of spherical harmonic (SH) shapes as these are the workhorse for spatial encoding and magnetic field homogenization in MR imaging and spectroscopy. To this end, an example 48 channel MC setup is analyzed and shown to be capable of generating all first through fourth order SH shapes over small and large regions-of-interest relevant for MR investigations. The MC efficiency for the generation of linear gradient fields shares the same order of magnitude with classic and state-of-the-art SH gradient coils. MC field modeling becomes progressively more efficient with the synthesis of more complex field shapes that require the combination of multiple SH terms. The possibility of a region-specific optimization of both magnetic field shapes and generation performance with the MC approach are discussed with emphasis on the possible trade-off between the field accuracy and generation efficiency.

  1. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  2. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  3. Active tuning of a microstrip hairpin-line microwave bandpass filter on a polycrystalline yttrium iron garnet substrate using small magnetic fields

    NASA Astrophysics Data System (ADS)

    Gillette, S. M.; Geiler, A. L.; Chen, Z.; Chen, Y.; Arruda, T.; Xie, C.; Wang, L.; Zhu, X.; Liu, M.; Mukerjee, S.; Vittoria, C.; Harris, V. G.

    2011-04-01

    Active magnetic tuning of a microstrip hairpin-line coupled resonator bandpass filter fabricated on a polycrystalline yttrium iron garnet substrate has been demonstrated. The filter exhibits a five-pole Chebyshev response with passband center frequency tunability from 8.3 to 9 GHz under low applied H fields of 50-200 Oe. The instantaneous bandwidth was measured to be approximately 1 GHz. During tuning, passband center frequency insertion loss varies between 1 and 1.4 dB. Good agreement between simulated and measured device performance was demonstrated. Advantages of the proposed filter design include planar geometry, compact size, low insertion loss, and low field tunability. The proposed design approach lends itself to the implementation of a wide range of filter responses, including low pass, high pass, bandpass, and band stop, as well as passband characteristics, including center frequency, fractional bandwidth, passband ripple, out-of-band rejection, etc.

  4. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  5. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  6. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  7. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  8. Magnetic field sensor based on fiber taper coupler coated with magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Hao; Song, Binbin; Liu, Bo; Lin, Yandong; Liu, Haifeng; Miao, Yinping; Liu, Yange

    2015-09-01

    In this paper, we have demonstrated a magnetic field sensor based on the fiber taper coupler coated with Magnetic fluid. The proposed sensor is fabricated by immersing a fiber taper coupler into the Magnetic fluid and then sealing it with the paraffin. The sensor exhibits high response as a function of the magnetic field with sensitivities of 0.154 nm/Oe with measurement range from 50 Oe to 200 Oe and -0.06301 dB/ Oe from 75 Oe to 200 Oe. Owing to the advantages of high sensitivity, small footprint, and ease of fabrication, the proposed sensor would find potential applications in magnetic field sensing field.

  9. Pulsed-field magnetometry for rock magnetism

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  10. Simulations of the bootstrap current in small rotating magnetic islands

    SciTech Connect

    Bergmann, A.; Poli, E.; Peeters, A. G.

    2008-11-01

    The bootstrap current in small magnetic islands of neoclassical tearing modes is studied in numerical simulations whith the guiding center particle code HAGIS. The contributions of both, electrons and ions, are included, as well as the island rotation and its electric field. The case of islands that are smaller than the ion banana orbit width is studied. We find that the size of the bootstrap current in small islands depends strongly on the rotation frequency of the island.

  11. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    SciTech Connect

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  12. Tracing the Magnetic Field in Orion A

    NASA Astrophysics Data System (ADS)

    Houde, Martin; Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Ruisheng; Bastien, Pierre

    2004-04-01

    . The small difference in the inclination of the field between OMC-3 and OMC-2 seems to strengthen the idea that the orientation of the magnetic field is relatively unaffected by the agglomeration of matter located in these regions. We also present polarimetry data for the OMC-4 region located some 13' south of OMC-1.

  13. Tracing the Magnetic Field in Orion A

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

    2003-01-01

    We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference

  14. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  15. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  16. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  17. Localized magnetic fields enhance the field sensitivity of the gyrotropic resonance frequency of a magnetic vortex

    NASA Astrophysics Data System (ADS)

    Fried, Jasper P.; Metaxas, Peter J.

    2016-02-01

    We have carried out micromagnetic simulations of the gyrotropic resonance mode of a magnetic vortex in the presence of spatially localized and spatially uniform out-of-plane magnetic fields. We show that the field-induced change in the gyrotropic mode frequency is significantly larger when the field is centrally localized over lengths which are comparable to or a few times larger than the vortex core radius. When aligned with the core magnetization, such fields generate an additional confinement of the core. This confinement increases the vortex stiffness in the small-displacement limit, leading to a resonance shift which is greater than that expected for a uniform out-of-plane field of the same amplitude. Fields generated by uniformly magnetized spherical particles having a fixed separation from the disk are found to generate analogous effects except that there is a maximum in the shift at intermediate particle sizes where field localization and stray field magnitude combine optimally to generate a maximum confinement.

  18. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  19. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  20. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  1. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  2. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.

  3. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  4. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  5. Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James

    2004-01-01

    An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.

  6. A polyvalent harmonic coil testing method for small-aperture magnets

    SciTech Connect

    Arpaia, Pasquale; Golluccio, Giancarlo; Buzio, Marco; Walckiers, Louis

    2012-08-15

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  7. A polyvalent harmonic coil testing method for small-aperture magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis

    2012-08-01

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  8. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

    2010-12-01

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

  9. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  10. Crystal growth under microgravity conditions with using of magnetic fields

    NASA Astrophysics Data System (ADS)

    Feonychev, A.; Bondareva, N.

    The peculiarities of melt flows and crystal growth by the Bridgman and floating zone methods aboard spacecrafts under the action of steady axial or rotating magnetic field are considered. Steady magnetic field can minimize adverse effect of residual accelerations and vibrations on dopant segregation in crystals growing by the Bridgman method but it requires using strong magnetic fields, which induces specific oscillations. Under strong convection in terrestrial conditions steady magnetic field gives positive effect. Under growth of small-sized crystals by the floating zone method in microgravity conditions an use of steady magnetic field brings into dramatic increase of radial segregation due to convective vortex to free fluid surface. The flows being created by rotating magnetic field and resultant under combination of Marangoni convection with rotating magnetic field were studied for wide range of parameters including the regimes of oscillatory (turbulent) convection. Mathematical model and computer program was tested by published results of two experiments. The dependence of transition from laminar to oscillatory flow was obtained for different boundary conditions, geometric parameters of fluid and intensity of magnetic field. Specific oscillations with very low frequency and oscillations of the beating type had been discovered under the action rotating magnetic field on Marangoni convection. The mutual influence of rotating magnetic field and thermocapillary convection on flow stability was noted. Use of rotating magnetic field under crystal growth by floating zone method leads to reduction of azimuth velocity which is responsible for origin of oscillatory convection and striation of crystals. It was shown on concrete examples that there is a possibility to reduce radial segregation under optimization of rotating velocity and intensity of magnetic field. For the Bridgman method (in general for ampoule methods of crystal growth), the use of rotating magnetic

  11. Magnetically tunable broadband transmission through a single small aperture

    PubMed Central

    Bi, Ke; Liu, Wenjun; Guo, Yunsheng; Dong, Guoyan; Lei, Ming

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled to the two ferrite rods. Both the simulated and experimental results indicate that such structure not only realizes a nearly total transmission through a small aperture, but also obtains a magnetically tunable property. This work offers new opportunities for the miniaturization of the microwave system. PMID:26198543

  12. Magnetically tunable broadband transmission through a single small aperture.

    PubMed

    Bi, Ke; Liu, Wenjun; Guo, Yunsheng; Dong, Guoyan; Lei, Ming

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled to the two ferrite rods. Both the simulated and experimental results indicate that such structure not only realizes a nearly total transmission through a small aperture, but also obtains a magnetically tunable property. This work offers new opportunities for the miniaturization of the microwave system. PMID:26198543

  13. Magnetically tunable broadband transmission through a single small aperture

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Liu, Wenjun; Guo, Yunsheng; Dong, Guoyan; Lei, Ming

    2015-07-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled to the two ferrite rods. Both the simulated and experimental results indicate that such structure not only realizes a nearly total transmission through a small aperture, but also obtains a magnetically tunable property. This work offers new opportunities for the miniaturization of the microwave system.

  14. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  15. Primordial magnetic field limits from cosmological data

    SciTech Connect

    Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  16. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  17. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS.

    SciTech Connect

    WEI,J.; PAPAPHILIPPOU,Y.; TALMAN,R.

    2000-06-30

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry.

  18. Core shifts, magnetic fields and magnetization of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander

    2015-07-01

    We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ≃0.1-0.2 divided by the bulk Lorentz factor, Γj. Larger values, e.g. 1/Γj, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ≪1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.

  19. Pressure, Chaotic Magnetic Fields and MHD Equilibria

    SciTech Connect

    S.R. Hudson & N. Nakajima

    2010-05-12

    Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

  20. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  1. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  2. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  3. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  4. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 µm in all dimensions is now routinely attained in living animals, and 10 µm3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  5. MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES

    SciTech Connect

    Pakmor, Rüdiger; Marinacci, Federico; Springel, Volker

    2014-03-01

    Observationally, magnetic fields reach equipartition with thermal energy and cosmic rays in the interstellar medium of disk galaxies such as the Milky Way. However, thus far cosmological simulations of the formation and evolution of galaxies have usually neglected magnetic fields. We employ the moving-mesh code AREPO to follow for the first time the formation and evolution of a Milky Way-like disk galaxy in its full cosmological context while taking into account magnetic fields. We find that a prescribed tiny magnetic seed field grows exponentially by a small-scale dynamo until it saturates around z = 4 with a magnetic energy of about 10% of the kinetic energy in the center of the galaxy's main progenitor halo. By z = 2, a well-defined gaseous disk forms in which the magnetic field is further amplified by differential rotation, until it saturates at an average field strength of ∼6 μG in the disk plane. In this phase, the magnetic field is transformed from a chaotic small-scale field to an ordered large-scale field coherent on scales comparable to the disk radius. The final magnetic field strength, its radial profile, and the stellar structure of the disk compare well with observational data. A minor merger temporarily increases the magnetic field strength by about a factor of two, before it quickly decays back to its saturation value. Our results are highly insensitive to the initial seed field strength and suggest that the large-scale magnetic field in spiral galaxies can be explained as a result of the cosmic structure formation process.

  6. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  7. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  8. Solar and Magnetic Attitude Determination for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Woodham, Kurt; Blackman, Kathie; Sanneman, Paul

    1997-01-01

    During the Phase B development of the NASA New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, detailed analyses were performed for on-board attitude determination using the Sun and the Earth's magnetic field. This work utilized the TRMM 'Contingency Mode' as a starting point but concentrated on implementation for a small spacecraft without a high performance mechanical gyro package. The analyses and simulations performed demonstrate a geographic dependence due to diurnal variations in the Earth magnetic field with respect to the Sun synchronous, nearly polar orbit. Sensitivity to uncompensated residual magnetic fields of the spacecraft and field modeling errors is shown to be the most significant obstacle for maximizing performance. Performance has been evaluated with a number of inertial reference units and various mounting orientations for the two-axis Fine Sun Sensors. Attitude determination accuracy using the six state Kalman Filter executing at 2 Hz is approximately 0.2 deg, 3-sigma, per axis. Although EO-1 was subsequently driven to a stellar-based attitude determination system as a result of tighter pointing requirements, solar/magnetic attitude determination is demonstrated to be applicable to a range of small spacecraft with medium precision pointing requirements.

  9. Solar sources of the interplanetary magnetic field and solar wind

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Altschuler, M. D.; Harvey, J. W.

    1977-01-01

    Open magnetic field lines, those which extend from the solar photosphere to interplanetary space, are traced in the current-free (potential field) approximation using measured photospheric fields as a boundary condition. It is found that (1) only a relatively small fraction of the photospheric area connects via open field lines to the interplanetary magnetic field; (2) those photospheric areas which do contribute open field lines lie beneath coronal holes and within the boundaries of the holes as projected onto the photosphere or else between loop systems of an active region; (3) the interplanetary magnetic field in the plane of the sun's equator, essentially the field in the ecliptic plane, may connect to photospheric regions of high latitude; and (4) the fastest solar wind streams are correlated with those magnetic flux tubes which expand least in cross-sectional area over the distance between the photosphere and the coronal height where the solar wind begins.

  10. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  11. Recycling of the Solar Corona's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Close, R. M.; Parnell, C. E.; Longcope, D. W.; Priest, E. R.

    2004-09-01

    Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ~1016 Mx up to ~3×1020 Mx. The tireless motion of these magnetic flux concentrations, along with the continual appearance and disappearance of opposite-polarity pairs of fluxes, releases a substantial amount of energy that may be associated with a whole host of physical processes in the solar corona, not least the enigma of coronal heating. We find here that the timescale for magnetic flux to be remapped in the quiet-Sun corona is, surprisingly, only 1.4 hr (around 1/10 of the photospheric flux recycling time), implying that the quiet-Sun corona is far more dynamic than previously thought. Besides leading to a fuller understanding of the origins of magnetically driven phenomena in our Sun's corona, such a process may also be crucial for the understanding of stellar atmospheres in general.

  12. Low-field magnetic resonance imaging of gases

    SciTech Connect

    Schmidt, D.M.; Espy, M.A.

    1998-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main goal of this project was to develop the capability to conduct low-field magnetic resonance imaging of hyper-polarized noble gas nuclei and of thermally polarized protons in water. The authors constructed a versatile low-field NMR system using a SQUID gradiometer detector inside a magnetically shielded room. This device has sufficient low-field sensitivity to detect the small signals associated with NMR at low magnetic fields.

  13. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  14. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  15. Local excitations of a spin glass in a magnetic field

    NASA Astrophysics Data System (ADS)

    Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.

    2003-07-01

    We study the minimum energy clusters (MEC) above the ground state for the 3-d Edwards-Anderson Ising spin glass in a magnetic field. For fields B below 0.4, we find that the field has almost no effect on the excitations that we can probe, of volume V⩽64. As found previously for B=0, their energies decrease with V, and their magnetization remains very small (even slightly negative). For larger fields, both the MEC energy and magnetization grow with V, as expected in a paramagnetic phase. However, all results appear to scale as BV (instead of B(V) as expected from droplet arguments), suggesting that the spin glass phase is destroyed by any small field. Finally, the geometry of the MEC is completely insensitive to the field, giving further credence that they are lattice animals, in the presence or the absence of a field.

  16. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  17. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  18. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  19. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  20. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  1. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  2. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  3. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  4. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  5. Detecting Solar Axions Using Earth's Magnetic Field

    SciTech Connect

    Davoudiasl, Hooman; Huber, Patrick

    2006-10-06

    We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy <{omega}>{approx_equal}4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m{sub a}(less-or-similar sign)10{sup -4} eV, a low-Earth-orbit x-ray detector with an effective area of 10{sup 4} cm{sup 2}, pointed at the solar core, can probe the photon-axion coupling down to 10{sup -11} GeV{sup -1}, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits.

  6. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  7. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  8. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  9. Magnetic field calculation and measurement of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa

    2006-11-01

    Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

  10. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  11. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  12. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  13. Turbulence-induced magnetic fields in shock precursors

    NASA Astrophysics Data System (ADS)

    del Valle, M. V.; Lazarian, A.; Santos-Lima, R.

    2016-05-01

    Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies, i.e. 1015 eV. A stronger magnetic field in the pre-shock region could provide the efficiency required. Bell's cosmic ray non-resonant streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. However, an alternative mechanism has been proposed in which the cosmic ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. Key ingredients for the mechanism to operate are the inhomogeneities present in the interstellar medium. These inhomogeneities are the consequence of turbulence. In this work we explore the magnetic field amplification in different interstellar medium conditions through 3D magnetohydrodynamic numerical simulations.

  14. The bootstrap current in small rotating magnetic islands

    SciTech Connect

    Bergmann, A.; Poli, E.; Peeters, A. G.

    2009-09-15

    The bootstrap current in small magnetic islands of neoclassical tearing modes is studied with guiding center particle simulations including pitch angle scattering. A model for a rotating island and its electric field is used and a new approximation to the electric potential in small islands is derived. Islands with sizes of the order of the ion banana orbit width are studied by means of a two-step model, which allows to treat both ions and electrons kinetically. The bootstrap current in such small islands is found to depend strongly on the direction of rotation of the island. The bootstrap current in small islands rotating in the ion diamagnetic direction is strongly diminished, similarly to what happens in big islands. In small islands rotating in the electron diamagnetic direction, on the contrary, the bootstrap current is almost completely preserved, implying a reduced neoclassical drive of the island growth.

  15. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  16. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  17. Magnetic fields and intrathecal pump malfunction.

    PubMed

    Huh, Billy; Roldan, Carlos J

    2016-01-01

    Medical technology has impacted the overall life expectancy. Many conditions traditionally considered fatal are now curable. Surviving chronic diseases and aging of the population have increased the number of people with chronic pain. Many devices are also available to manage severe refractory pain. As such, implantable drug-delivery system (IDDS) is a small battery-powered, programmable pump implanted under the subcutaneous tissue of the abdomen and connected to a small catheter tunneled into the spine. Implantable drug-delivery system is used for the administration of morphine, ziconotide, baclofen, or their mixtures into the cerebrospinal fluid. Like many medical devices, IDDS has technical glitch which limits its performance under certain conditions. Implantable drug-delivery system is susceptible to magnetic field such as a magnetic resonance imaging (MRI) which can temporarily stall the rotor of the pump motor and suspend drug delivery. We encountered a patient from out of town seen at emergency department with increased pain and symptoms of opiates withdrawal after intermittent IDDS malfunction. He denied any exposure to magnetic fields or MRI. However, the pump interrogation showed multiple motor stall events in the event log. After a detailed inquiry, the most likely cause of pump malfunction appears to be frequent placement of a laptop computer on his abdomen close to the pump. The magnets in the laptop speakers may have caused the rotor of the pump motor to stall during the computer use, and frequent stall has caused symptoms of withdrawal. No other mechanical failures were found. The patient was discharged home after the symptoms resolved, and the pump was reprogrammed. PMID:26008580

  18. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936

  19. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  20. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  1. Abnormal magnetic field effects on electrogenerated chemiluminescence.

    PubMed

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

  2. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  3. Small field tritanopia in the peripheral retina.

    PubMed

    Volbrecht, Vicki J

    2016-07-01

    If stimuli are made sufficiently small, color-normal individuals report a loss in hue perception, in particular a decrease in the perception of green, in both the fovea and peripheral retina. This effect is referred to as small field tritanopia. It is not clear, however, how rod input may alter the dynamics of small field tritanopia in the peripheral retina. This paper looks at peripheral hue-naming data obtained for small stimuli at mesopic and photopic retinal illuminances under conditions that minimize (bleach) and maximize (no bleach) rod contribution. The data show that attenuation in the perception of green occurs with larger stimuli in the no-bleach condition than in the bleach condition. As retinal illuminance increases, the stimulus size that elicits small field tritanopia decreases, but the stimulus size is still larger under the no-bleach condition. Small field tritanopia in both the bleach and no-bleach conditions may be related to short-wavelength-sensitive (S) cone activity and its potential role in the mediation of the perception of green. The differences in stimulus size for small field tritanopia may be explained by rod input into the magnocellular and koniocellular pathways, which compromises the strength of the chromatic signals and creates a differential loss in the perception of green as compared to the other elemental hues. PMID:27409678

  4. The Electric Fields of Radio Pulsars with Asymmetric Nondipolar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kantor, E. M.; Tsygan, A. I.

    2003-07-01

    The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.

  5. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  6. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  7. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  8. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  9. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  10. Intense transient magnetic-field generation by laser plasma

    SciTech Connect

    Benjamin, R.F.

    1981-08-18

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to the magnetic field thereof. In alternate embodiments the target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet.

  11. DYNAMICS OF CHROMOSPHERIC UPFLOWS AND UNDERLYING MAGNETIC FIELDS

    SciTech Connect

    Yurchyshyn, V.; Abramenko, V.; Goode, P.

    2013-04-10

    We used H{alpha}-0.1 nm and magnetic field (at 1.56{mu}) data obtained with the New Solar Telescope to study the origin of the disk counterparts to type II spicules, so-called rapid blueshifted excursions (RBEs). The high time cadence of our chromospheric (10 s) and magnetic field (45 s) data allowed us to generate x-t plots using slits parallel to the spines of the RBEs. These plots, along with potential field extrapolation, led us to suggest that the occurrence of RBEs is generally correlated with the appearance of new, mixed, or unipolar fields in close proximity to network fields. RBEs show a tendency to occur at the interface between large-scale fields and small-scale dynamic magnetic loops and thus are likely to be associated with the existence of a magnetic canopy. Detection of kinked and/or inverse {sup Y-}shaped RBEs further confirm this conclusion.

  12. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents. PMID:10029137

  13. ALIGNMENT OF THE SCALAR GRADIENT IN EVOLVING MAGNETIC FIELDS

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Pan, Liubin E-mail: evan.scannapieco@asu.edu

    2014-07-20

    We conduct simulations of turbulent mixing in the presence of a magnetic field, grown by the small-scale dynamo. We show that the scalar gradient field, ∇C, which must be large for diffusion to operate, is strongly biased perpendicular to the magnetic field, B. This is true both early on, when the magnetic field is negligible, and at late times, when the field is strong enough to back react on the flow. This occurs because ∇C increases within the plane of a compressive motion, but B increases perpendicular to it. At late times, the magnetic field resists compression, making it harder for scalar gradients to grow and likely slowing mixing.

  14. Magnetic field in the plane of a physical dipole

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Grace, Alyssa L.; Hui, Kaleonui J.; Loving, Rebekah K.

    2016-07-01

    We study the magnetic field in the plane of a circular current-carrying loop. We both solve Biot–Savart’s equation numerically and perform measurements with high spatial resolution. The results extend our quantitative understanding of a physical magnetic dipole by providing an accurate and complete picture of the field in this plane, which complements existing analytical expressions valid at very small and large radius, near the loop axis, and for point dipoles.

  15. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  16. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  17. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  18. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  19. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  20. Effects of magnetic field on anisotropic temperature relaxation

    SciTech Connect

    Dong Chao; Ren Haijun; Cai Huishan; Li Ding

    2013-03-15

    In a strongly magnetized plasma, where the particles' thermal gyro-radii are smaller than the Debye length, the magnetic field greatly affects the plasma's relaxation processes. The expressions for the time rates of change of the electron and ion parallel and perpendicular temperatures are obtained and calculated analytically for small anisotropies through considering binary collisions between charged particles in the presence of a uniform magnetic field by using perturbation theory. Based on these expressions, the effects of the magnetic field on the relaxation of anisotropic electron and ion temperatures due to electron-electron collisions, ion-ion collisions, and electron-ion collisions are investigated. Consequently, the relaxation times of anisotropic electron and ion temperatures to isotropy are calculated. It is shown that electron-ion collisions can affect the relaxation of an anisotropic ion distribution in the strong magnetic field.

  1. Rotating sample magnetometer for cryogenic temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Eisterer, M.; Hengstberger, F.; Voutsinas, C. S.; Hörhager, N.; Sorta, S.; Hecher, J.; Weber, H. W.

    2011-06-01

    We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.

  2. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  3. Generation of Whistler Wave by a Rotating Magnetic Field Source

    NASA Astrophysics Data System (ADS)

    Karavaev, A.; Papadopoulos, K.; Shao, X.; Sharma, A. S.; Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.

    2008-12-01

    The interaction of Rotating Magnetic Fields (RMF) with plasmas is a fundamental plasma physics problem with implications to fusion related Field-Reversed Configurations (FRC), space propulsion, astronaut protection from cosmic rays in long interstellar travel, control of the energetic population in the radiation belts and near zone processes in pulsar magnetospheres. In this paper we report recent experiments on the generation of whistler waves with a new type RMF-based antenna. The experiments were conducted on UCLA's Large Plasma Device (LAPD). The Rotating Magnetic Field (RMF) is created using poly-phased loop antennas. A number of parameter combinations, e.g. plasma density, background magnetic field, and driving current, were used. It was found that RMF created by a two phase-delayed loop antenna drives significant currents along the ambient magnetic field. The measured amplitude of induced wave field was proportional to the square-root of the plasma density. The spatial decay rate for the wave perturbation across the background magnetic field was found to scale with the plasma skin depth. A small amplitude second harmonic was also measured. The paper will also present analytic and simulation results that account for the experimental results; in particular, the scaling of the induced magnetic field as a function of the RMF and plasma parameters and the spatial decay rate of magnetic field. Applications of RMF as an efficient radiation source of plasma waves in space plasmas will be discussed. This work was sponsored by ONR MURI Grant 5-28828

  4. Imaging small-amplitude magnetization dynamics in a longitudinally magnetized microwire

    NASA Astrophysics Data System (ADS)

    Kruglyak, V. V.; Keatley, P. S.; Neudert, A.; Delchini, M.; Hicken, R. J.; Childress, J. R.; Katine, J. A.

    2008-05-01

    We have used time-resolved scanning Kerr microscopy to study spin waves in a magnetic microwire subjected to a bias magnetic field applied parallel to its long axis. The spin-wave spectra obtained from different points near one end of the wire reveal several normal modes. We found that modes of a higher frequency occupied regions located further from the end of the wire. This was interpreted in terms of the confinement of the spin-wave modes by a nonuniform demagnetizing field. Furthermore, at a particular distance from the end of the wire, two or more modes occupying different regions along the width of the wire were observed. This was interpreted in terms of the confinement of the spin-wave modes due to an asymmetric variation in the local angle between the static magnetization and the effective direction of the wave vector of the confined modes. Images of the dynamic magnetization that are acquired at fixed pump-probe time delays revealed stripes lying perpendicular to the long axis of the wire and, hence, to the applied magnetic field. We interpret the stripe pattern in terms of a collective mode of the quasiperiodic system of ripple domains existing within the polycrystalline sample. Our results give an additional insight into the connection between the nonuniform static magnetic state in small magnetic elements and their precessional dynamics, which is fundamentally important for the design of future high-speed switching and spin-wave logic devices of magnonics.

  5. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  6. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  7. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  8. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  9. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  10. Magnetic fields of the spinning bodies

    NASA Astrophysics Data System (ADS)

    Trenčevski, Kostadin

    2015-03-01

    In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.

  11. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  12. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  13. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  14. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  15. Cosmic Magnetic Fields (IAU S259)

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

    2009-06-01

    Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

  16. Magnetic field and angular momentum evolution models

    NASA Astrophysics Data System (ADS)

    Gallet, F.

    2013-11-01

    The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  17. Decoding 3D search coil signals in a non-homogeneous magnetic field.

    PubMed

    Thomassen, Jakob S; Benedetto, Giacomo Di; Hess, Bernhard J M

    2010-06-18

    We present a method for recording eye-head movements with the magnetic search coil technique in a small external magnetic field. Since magnetic fields are typically non-linear, except in a relative small region in the center small field frames have not been used for head-unrestrained experiments in oculomotor studies. Here we present a method for recording 3D eye movements by accounting for the magnetic non-linearities using the Biot-Savart law. We show that the recording errors can be significantly reduced by monitoring current head position and thereby taking the location of the eye in the external magnetic field into account. PMID:20359490

  18. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  19. Magnetization processes in nanostructured metals and small-angle neutron scattering

    SciTech Connect

    Loeffler, J.F.; Braun, H.B.; Wagner, W.; Kostorz, G.; Wiedenmann, A.

    2005-04-01

    The magnetization process in nanostructured (n-) Fe and Co was investigated via small-angle neutron scattering (SANS). In a zero field, the magnetization exhibits correlations extending over several grains. In intermediate applied magnetic fields around 1 kOe, n-Fe and n-Co samples with small grain sizes exhibit an anisotropic scattering profile with an unusual intensity enhancement for scattering vectors parallel to the field direction. Comparing the experimental data with a modeled granular microstructure containing magnetic domains of arbitrary size and orientation, we conclude that magnetic domains extending over several grains are tilted considerably out of the external field direction in intermediate fields. Since the domain size does not change significantly with the magnitude of the external field, we conclude that the magnetization process does not proceed via domain-wall motion. Together with theoretical arguments showing the existence of marginally stable domains within the random-anisotropy model, our SANS data suggests that the magnetization process proceeds by simultaneous reversal of a few adjacent domains, presumably in the form of small avalanches. This resembles the magnetization process predicted for random-field Ising magnets. Our theoretical analysis of SANS data is general and applies to other systems consisting of magnetic nanoclusters embedded in a nonmagnetic matrix.

  20. CSEM-steel hybrid wiggler/undulator magnetic field studies

    SciTech Connect

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields.

  1. CSEM-Steel hybrid wiggler/undulator magnetic field studies

    SciTech Connect

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-06-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.

  2. PROBING PRIMORDIAL MAGNETIC FIELDS USING Ly{alpha} CLOUDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2013-01-01

    From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 h {sup -1} Mpc) as compared to the usual {Lambda}CDM theory. Matter power spectra over these scales are effectively probed by cosmological observables such as shear correlation and Ly{alpha} clouds. In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly{alpha} clouds. We simulate the line-of-sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly{alpha} opacity for this case and compare our theoretical estimates of Ly{alpha} opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bound of roughly 0.3-0.6 nG on the magnetic field strength for a range of nearly scale-invariant models, corresponding to a magnetic field power spectrum index n {approx_equal} -3.

  3. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  4. Coronal magnetic fields and the solar wind

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1972-01-01

    Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

  5. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  6. Symmetry and Symmetry Breaking in Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cao, H.; Russell, C. T.; Aurnou, J. M.; Soderlund, K. M.; Dougherty, M. K.

    2014-12-01

    Six out of eight solar system planets currently possess global-scale intrinsic magnetic fields. Different symmetry and symmetry breaking with respect to the spin-axis and the equatorial plane of the host planet can be found for different planetary magnetic fields. With respect to the spin-axis, the magnetic fields of Mercury, Earth, Jupiter, and Saturn are dominated by the axisymmetric part while the magnetic fields of Uranus and Neptune show no such alignment. Moreover, non-axisymmetric components have not been determined unambiguously for the magnetic fields of Mercury and Saturn. With respect to the equatorial plane, the magnetic fields of Earth, Jupiter, and Saturn show small but non-negligible asymmetry while the magnetic field of Mercury shows a significant asymmetry. The magnetic fields of Uranus and Neptune likely possess similar strength in the two hemispheres divided by the equatorial plane, but this needs to be confirmed with future measurements. Here we present our interpretation of the magnetic fields of Mercury and Saturn, both of which are often referred to as anomalous dipolar dynamos. For Mercury, we will show that volumetrically distributed buoyancy sources in its liquid iron core can naturally lead to equatorial symmetry breaking in the dynamo generated magnetic field as observed by MESSENGER. We will also show that the size of the solid inner core inside Mercury is likely smaller than 1000 km and could be detected indirectly with high-spatial-resolution magnetic field measurements near Mercury's north pole. In addition, we will show that degree-2 longitudinal variations observed in the magnetic equator positions of Mercury could have an internal origin. For Saturn's magnetic field, although its extreme axisymmetry could in principle be explained by a stably-stratified electrically-conducting layer on top of the dynamo region, more features such as equator-to-pole field contrasts cannot be explained by this same mechanism simultaneously. Towards

  7. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

  8. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  9. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  10. Quadrupole magnet field mapping for FRIB

    NASA Astrophysics Data System (ADS)

    Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.

    2013-12-01

    Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.

  11. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  12. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  13. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  14. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  15. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  16. Thermal field fluctuations in a magnetic tip / implications for magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Hannay, J. D.; Chantrell, R. W.; Rugar, D.

    2000-05-01

    Thermally excited magnetic fluctuations are fundamental to the behavior of small ferromagnetic particles and have practical consequences for the proposed detection of individual spins by magnetic resonance force microscopy (MRFM). In particular, fluctuating fields from a nearby magnetic tip can increase the relaxation rate of spins in a sample if there is significant spectral density of field fluctuation at the Larmor frequency of the target spin. As an initial step toward understanding this issue, magnetic field fluctuations have been simulated which emanate from a magnetic tip with dimensions 60 nm×60 nm×2 μm. It was found that the fluctuations in a cobalt magnetic tip were too strong for MRFM experiments aimed at detecting individual electron spins. However, the results obtained for a PrFeB tip fell within the tolerance required.

  17. Magnetic fields and nonuniform structures of the Moon

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.

    1993-01-01

    Direct magnetic measurements performed by space probes demonstrated the existence of small-scale, stationary surface magnetic fields on the Moon. The magnetic field averaged over a region of approximately 600 km was found to be no larger than approximately 10(exp -5) G, that of the regions approximately 100-200 km is approximately 10(exp -5) to 10(exp -4) G, and that of approximately 10-100 km reaches approximately 10(exp -3) G. Investigations of certain lunar rocks reveal stable residual magnetization, which could have been acquired during the crystallization of the rocks in the presence of the outer magnetic field, provided such a field existed at the initial stage of lunar evolution. Estimates show that 4 x 10(exp 9) yr ago the field was small, then it rose to approximately 1.3 G at the beginning of 3.9 x 10(exp 9) yr with a subsequent exponential decrease during the period of 3.9 x 10(exp 9) yr to 3.2 x 10(exp 9) yr ago. Small-scale fields have been explained by some authors as due to mechanical impacts produced by meteors. The theory of this effect is not elaborated in detail. This can in no way explain the paleomagnetic data. These data are commonly explained as a result of the dynamo action in the liquid lunar core.

  18. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  19. Paramagnetic ellipsoidal microswimmer in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Fan, Louis; Pak, On Shun

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.

  20. Solar Magnetic Field: Zeeman and Hanle Effects

    NASA Astrophysics Data System (ADS)

    Stenflo, J.; Murdin, P.

    2001-10-01

    An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...

  1. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  2. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  3. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

    PubMed Central

    Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

  4. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  5. Intrinsic Magnetic Fields of the Planets: Mercury to Neptune

    NASA Astrophysics Data System (ADS)

    Ness, Norman F.

    1994-11-01

    In the past three decades, studies of the magnetic fields of Earth's Moon and all the planets, except for Pluto, have been conducted by spacecraft of the U.S.A. and of Venus and Mars by the former U.S.S.R. Among the terrestrial planets, only Mercury (Mariner 10: 1974 and 1975) is globally magnetized while the Moon and Venus are unmagnetized. The situation at Mars is still unclear, but if any global field exists, it is quite small. In 1979, Pioneer 11 discovered a magnetic field and radiation belt at Saturn, further elaborated on by Voyagers 1 (1980) and 2 (1981). Pioneers 10 (1974) and 11 (1975) and Voyagers 1 (1979) and 2 (1979) examined in detail the magnetic field of Jupiter, which had been inferred initially and studied remotely due to its non-thermal radio emissions in the late 1950s. Jupiter's magnetic field is much stronger than Earth's and distinctly non-dipolar close to the planet. Saturn has a much weaker field than Jupiter, and it is surprisingly axisymmetric (to degree n = 3) with respect to its rotation axis. The Voyager fly-bys of Uranus and Neptune in 1986 and 1989 discovered global magnetic fields and trapped energetic particle radiation belts. Both Uranus and Neptune display remarkably similar magnetic fields (quite different from Jupiter, Saturn and Earth). In an astrophysical sense, Uranus and Neptune are described as oblique rotators because of the large angular offset of their magnetic axes from their rotation axes (59 degrees and 47 degrees). Additionally, their magnetic `centres' are displaced by substantial fractions of a planetary radius (0.31 RU and 0.55 RN). This paper summarizes our present knowledge of the quantitative characteristics of the magnetic fields of these planets.

  6. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  7. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  8. Emergence of undulatory magnetic flux tubes by small scale reconnections

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Aulanier, G.; Schmieder, B.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.

    2006-01-01

    With Flare Genesis Experiment (FGE), a balloon borne observatory launched in Antarctica on January 2000, series of high spatial resolution vector magnetograms, Dopplergrams, and Hα filtergrams have been obtained in an emerging active region (AR 8844). Previous analyses of this data revealed the occurence of many short-lived and small-scale H α brightenings called 'Ellerman bombs' (EBs) within the AR. We performed an extrapolation of the field above the photosphere using the linear force-free field approximation. The analysis of the magnetic topology reveals a close connexion between the loci of EBs and the existence of "Bald patches" (BP) regions (BPs are regions where the vector magnetic field is tangential to the photosphere). Some of these EBs/BPs are magnetically connected by low-lying field lines, presenting a serpentine shape. This results leads us to conjecture that arch filament systems and active regions coronal loops do not result from the smooth emergence of large scale Ω-loops, but rather from the rise of flat undulatory flux tubes which get released from their photospheric anchorage by reconnection at BPs, which observational signature is Ellerman bombs.

  9. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  10. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  11. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  12. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  13. Magnetic field exposure and behavioral monitoring system.

    PubMed

    Thomas, A W; Drost, D J; Prato, F S

    2001-09-01

    To maximize the availability and usefulness of a small magnetic field exposure laboratory, we designed a magnetic field exposure system that has been used to test human subjects, caged or confined animals, and cell cultures. The magnetic field exposure system consists of three orthogonal pairs of coils 2 m square x 1 m separation, 1.751 m x 0.875 m separation, and 1.5 m x 0.75 m separation. Each coil consisted of ten turns of insulated 8 gauge stranded copper conductor. Each of the pairs were driven by a constant-current amplifier via digital to analog (D/A) converter. A 9 pole zero-gain active Bessel low-pass filter (1 kHz corner frequency) before the amplifier input attenuated the expected high frequencies generated by the D/A conversion. The magnetic field was monitored with a 3D fluxgate magnetometer (0-3 kHz, +/- 1 mT) through an analog to digital converter. Behavioral monitoring utilized two monochrome video cameras (viewing the coil center vertically and horizontally), both of which could be video recorded and real-time digitally Moving Picture Experts Group (MPEG) encoded to CD-ROM. Human postural sway (standing balance) was monitored with a 3D forceplate mounted on the floor, connected to an analog to digital converter. Lighting was provided by 12 offset overhead dimmable fluorescent track lights and monitored using a digitally connected spectroradiometer. The dc resistance, inductance of each coil pair connected in series were 1.5 m coil (0.27 Omega, 1.2 mH), 1.75 m coil (0.32 Omega, 1.4 mH), and 2 m coil (0.38 Omega, 1.6 mH). The frequency response of the 1.5 m coil set was 500 Hz at +/- 463 microT, 1 kHz at +/- 232 microT, 150 micros rise time from -200 microT(pk) to + 200 microT(pk) (square wave) and is limited by the maximum voltage ( +/- 146 V) of the amplifier (Bessel filter bypassed). PMID:11536281

  14. Apparatus for unilateral generation of a homogeneous magnetic field

    DOEpatents

    Fukushima, Eiichi; Rath, Alan R.; Roeder, Stephen B. W.

    1988-01-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coil in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  15. Apparatus for unilateral generation of a homogeneous magnetic field

    DOEpatents

    Fukushima, E.; Rath, A.R.; Roeder, S.B.W.

    1984-05-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coils in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  16. History of Solar Magnetic Fields Since George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Stenflo, J. O.

    2015-09-01

    As my own work on the Sun's magnetic field started exactly 50 years ago at Crimea in the USSR, I have been a participant in the field during nearly half the time span since Hale's discovery in 1908 of magnetic fields in sunspots. The present historical account is accompanied by photos from my personal slide collection, which show a number of the leading personalities who advanced the field in different areas: measurement techniques, from photographic to photoelectric and imaging methods in spectro-polarimetry; theoretical foundations of MHD and the origin of cosmic magnetic fields (birth of dynamo theory); the quest for increased angular resolution from national projects to international consortia (for instruments both on ground and in space); introduction of the Hanle effect in astrophysics and the Second Solar Spectrum as its playground; small-scale nature of the field, the fundamental resolution limit, and transcending it by resolution-independent diagnostics.

  17. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of $\\mu$G amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution

  18. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  19. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  20. Cyclotron resonance in an inhomogeneous magnetic field

    SciTech Connect

    Albert, J.M. )

    1993-08-01

    Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.

  1. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  2. Bending of magnetic filaments under a magnetic field

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  3. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  4. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  5. Local flux intrusion in HTS annuli during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Korotkov, V. S.; Krasnoperov, E. P.; Kartamyshev, A. A.

    2016-03-01

    During pulsed field magnetization of melt-grown HTS flux jumps can occur and the shielding current falls by 10-20 times. As the duration of pulse is shorter than the temperature relaxation time (<< 1 s), the circular current remains small during the field falling. The residual trapped field in the hole of the annulus has a direction opposite to that of the pulsed field. Small circular current and high critical current density are explained by the fact that flux moves through narrow regions of the annulus body. The angle of the sector with “soft flux” (i.e. a low Jc region) is estimated to be ∼ 7 deg.

  6. Deformable homeotropic nematic droplets in a magnetic field

    NASA Astrophysics Data System (ADS)

    Otten, Ronald H. J.; van der Schoot, Paul

    2012-10-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find that small drops have a lens shape with a homogeneous director field for any magnetic-field strength, whereas larger drops are spherical and have a radial director field, at least if the magnetic field is weak. For strong magnetic fields the hedgehog configuration transforms into a split-core line defect that, depending on the anchoring strength, can be accompanied by an elongation of the tactoid itself. We present a three-dimensional phase diagram that shows the tactoid shape and director field for a given anchoring strength, tactoid size, and magnetic-field strength. Our findings rationalize the different shapes and structures that recently have been observed experimentally for nematic droplets found in dispersions of gibbsite platelets in two types of solvent.

  7. Magnetic reconnection in Saturn's magnetotail: A comprehensive magnetic field survey

    NASA Astrophysics Data System (ADS)

    Smith, A. W.; Jackman, C. M.; Thomsen, M. F.

    2016-04-01

    Reconnection within planetary magnetotails is responsible for locally energizing particles and changing the magnetic topology. Its role in terms of global magnetospheric dynamics can involve changing the mass and flux content of the magnetosphere. We have identified reconnection related events in spacecraft magnetometer data recorded during Cassini's exploration of Saturn's magnetotail. The events are identified from deflections in the north-south component of the magnetic field, significant above a background level. Data were selected to provide full tail coverage, encompassing the dawn and dusk flanks as well as the deepest midnight orbits. Overall 2094 reconnection related events were identified, with an average rate of 5.0 events per day. The majority of events occur in clusters (within 3 h of other events). We examine changes in this rate in terms of local time and latitude coverage, taking seasonal effects into account. The observed reconnection rate peaks postmidnight with more infrequent but steady loss seen on the dusk flank. We estimate the mass loss from the event catalog and find it to be insufficient to balance the input from the moon Enceladus. Several reasons for this discrepancy are discussed. The reconnection X line location appears to be highly variable, though a statistical separation between events tailward and planetward of the X line is observed at a radial distance of between 20 and 30RS downtail. The small sample size at dawn prevents comprehensive statistical comparison with the dusk flank observations in terms of flux closure.

  8. Interaction of gravitational waves with magnetic and electric fields

    SciTech Connect

    Barrabes, C.; Hogan, P. A.

    2010-03-15

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  9. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  10. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  11. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  12. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  13. Development of a boundary magnetic charge method for computing magnetic fields in a system containing saturated magnetic materials

    NASA Astrophysics Data System (ADS)

    Murata, H.; Ishigami, M.; Shimoyama, H.

    2016-01-01

    In previous research, we developed a three-dimensional (3D) boundary magnetic charge method (BMCM) for high-accuracy field calculations in a static magnetic field, even when there exist great differences between the magnitudes of permeability between neighboring magnetic materials. This method, however, cannot be applied to a system that contains saturated magnetic materials. In the present study, therefore, we have developed a novel method that addresses this issue. According to this new method, we divide the region containing the magnetic material into small-volume elements and divide the boundaries between neighboring small-volume elements into small-surface elements, assigning each element an appropriate initial value of permeability. The magnetic field inside and outside of the magnetic material is calculated using this permeability. The value of the permeability of each element is iteratively updated using μ-H data. The updated value of the permeability after the i-th iteration, μi, is compared with that of the previous value, μi-1. If the difference between the two values is within a preset range, the iteration process is judged to have converged and the value of μi is regarded as the final converged value of the permeability. The magnetic field at an arbitrary point in space and/or inside the body of the magnetic material is calculated from the converged permeability of each element. As a result, we have succeeded in developing a novel BMCM for the calculation of a static magnetic field with high accuracy in a system containing saturated magnetic materials.

  14. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  15. Quantitative modeling of planetary magnetospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  16. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  17. An Extraordinary Magnetic Field Map of Mars

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2004-01-01

    The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

  18. Magnetocaloric effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tishin, A. M.

    Calculations of magnetic entropy change, Δ SM, and magnetocaloric effect, Δ T, in 3d and 4f magnetics have been carried out, based on the molecular field theory. Δ SM and Δ T have been studied as a function of Debye temperature, θ D, Lande factor, gj, quantum number of total mechanical momentum, J, and also of magnetic phase transition temperatures. Limiting values of Δ SM and Δ T have been determined in extremely strong magnetic fields. The results obtained are compared with experimental data. It is shown that the use of ferromagnetic alloys Tb x Gd 1-x as operating devices of magnetic refrigerating machines in the room temperature range is more efficient than the use of pure Gd. These alloys have been found to have high specific refrigerant capacity over a wide range of fields from 0.1 to 6 T, which enables one to develop highly economic refrigeration devices in which weak fields are applied.

  19. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  20. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  1. Efficient magnetic fields for supporting toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Landreman, Matt; Boozer, Allen H.

    2016-03-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  2. Magnetic drug targeting: biodistribution and dependency on magnetic field strength

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmidt, A.; Klein, R.; Hulin, P.; Bergemann, Ch.; Arnold, W.

    2002-11-01

    "Magnetic drug targeting," a model of locoregional chemotherapy showed encouraging results in treatment of VX2-squamous cell carcinoma in rabbits. In the present study we investigated the biokinetic behavior of Iod [123]-labelled ferrofluids in vivo and showed in vitro that the ferrofluid concentration is dependent on the magnetic field strength.

  3. Magnetic flux annihilation and the development of magnetic field depletions in the sectored heliosheath

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Opher, M.

    2015-12-01

    The dynamics of magnetic reconnection in the sectored heliosheath isexplored with the goal of identifying signatures that can be comparedwith Voyager observations. Simulations now include much more realisticinitial conditions, including unequal magnetic fluxes in adjacentsectors and very high β. Large numbers of small magnetic islandsform early but rapidly coalesce to sector-size structures. Thelate-time magnetic structure of the sector zone differs greatly fromthat obtained in earlier simulations. Bands of unreconnected azimuthalmagnetic flux thread through the simulation domain separating regionsof depleted magnetic field strength. The depletion regions have radialscale sizes somewhat greater than the initial sector width. Theboundaries of the magnetic depletions are sharp and reveal littlechange in the direction of B. The characteristic minima of thedepletions are one third of the initial magnetic field strength. Atlate time surviving magnetic islands are widely spaced and occur inpairs. Cuts across the domain in the radial direction reveal mostlyunipolar flux except when a cut crosses one of the remnant magneticislands. This unusual late time magnetic structure is generic resultof reconnection in a high β system. The magnetic depletionsexhibit many of the properties of ``proton boundary layers'' seen inthe Voyager 1 magnetic field data. The simulations suggest that significant flux loss should take place in the heliosheath, which is consistent with Voyager measurements. The long periods of unipolar fluxseen by Voyager 1 prior to crossing the heliopause likely results fromthe annihilation of the sectors rather than an exit from the sectorzone.

  4. Field Quality Optimization in a Common Coil Magnet Design

    SciTech Connect

    Gupta, Ramesh; Ramberger, Suitbert

    1999-09-01

    This paper presents the results of initial field quality optimization of body and end harmonics in a 'common coil magnet design'. It is shown that a good field quality, as required in accelerator magnets, can be obtained by distributing conductor blocks in such a way that they simulate an elliptical coil geometry. This strategy assures that the amount of conductor used in this block design is similar to that is used in a conventional cosine theta design. An optimized yoke that keeps all harmonics small over the entire range of operation using a single power supply is also presented. The field harmonics are primarily optimized with the computer program ROXIE.

  5. Quark matter under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Peres Menezes, Débora; Laércio Lopes, Luiz

    2016-02-01

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

  6. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  7. Magnetized plasma flow through a small orifice

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.

    2001-03-01

    Deuterium plasma flow through a circular hole in a flat conducting plate is simulated by the two-dimensional object-oriented particle-in-cell code (XOOPIC) [J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87, 199 (1995)]. A constant magnetic field is oriented perpendicular to the plate surface, and parallel to the cylindrical axis of the hole. Charge neutralization on the interior surface of the hole leads to attenuation of the ion current throughput. The attenuation is stronger than would be expected from a finite Larmor radius model, due to acceleration of ions by the self-consistent radial electric field. The current attenuation has been measured by comparing two Langmuir probes that were operated simultaneously under a wide range of plasma conditions in Tore Supra [Equipe Tore Supra, IAEA-CN-64/02-2, International Atomic Energy Agency, Vienna, p. I-41 (1996)]. One probe was exposed directly to the plasma and the other was hidden behind a graphite shield pierced with either 3 or 4 mm diameter holes. Both the ion current attenuation and the floating potential drop are in reasonable agreement with the simulation results.

  8. ON THE ROTATION OF THE MAGNETIC FIELD ACROSS THE HELIOPAUSE

    SciTech Connect

    Opher, M.; Drake, J. F.

    2013-12-01

    Based on the difference between the orientation of the interstellar and the solar magnetic fields, there was an expectation by the community that the magnetic field direction will rotate dramatically across the heliopause (HP). Recently, the Voyager team concluded that Voyager 1 (V1) crossed into interstellar space last year. The question is then why there was no significant rotation in the direction of the magnetic field across the HP. Here we present simulations that reveal that strong rotations in the direction of the magnetic field at the HP at the location of V1 (and Voyager 2) are not expected. The solar magnetic field strongly affects the drapping of the interstellar magnetic field (B {sub ISM}) around the HP. B {sub ISM} twists as it approaches the HP and acquires a strong T component (East-West). The strong increase in the T component occurs where the interstellar flow stagnates in front of the HP. At this same location the N component B{sub N} is significantly reduced. Above and below, the neighboring B {sub ISM} lines also twist into the T direction. This behavior occurs for a wide range of orientations of B {sub ISM}. The angle δ = asin (B{sub N} /B) is small (around 10°-20°), as seen in the observations. Only after some significant distance outside the HP is the direction of the interstellar field distinguishably different from that of the Parker spiral.

  9. Evolution of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple 'open' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CME's) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CME's contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be one of the following: plasmoids that are completely disconnected from the Sun; magnetic 'bottles,' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CME's indicate that CME's generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occur above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  10. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  11. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  12. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  13. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  14. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  15. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  16. Small-Scale Magnetic Reconnection at Equatorial Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Lamb, Derek; DeForest, C. E.

    2011-05-01

    Coronal holes have long been known to be the source of the fast solar wind at both high and low latitudes. The equatorial extensions of polar coronal holes have long been assumed to have substantial magnetic reconnection at their boundaries, because they rotate more rigidly than the underlying photosphere. However, evidence for this reconnection has been sparse until very recently. We present some evidence that reconnection due to the evolution of small-scale magnetic fields may be sufficient to drive coronal hole boundary evolution. We hypothesize that a bias in the direction of that reconnection is sufficient to give equatorial coronal holes their rigid rotation. We discuss the prospects for investigating this using FLUX, a reconnection-controlled coronal MHD simulation framework. This work was funded by the NASA SHP-GI program.

  17. Intrinsic nonlinear effects of dipole magnets in small rings

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.

    2016-06-01

    We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.

  18. The conductance of auroral magnetic field lines

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop.

  19. Dissipative charged fluid in a magnetic field

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali

    2016-05-01

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  20. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  1. Magnetic field quality analysis using ANSYS

    SciTech Connect

    Dell'Orco, D.; Chen, Y.

    1991-03-01

    The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs.

  2. Magnetic fields of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1993-01-01

    The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

  3. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  4. Aligning Paramecium caudatum with static magnetic fields.

    PubMed

    Guevorkian, Karine; Valles, James M

    2006-04-15

    As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms. PMID:16461406

  5. The field of a screened magnetic dipole

    NASA Technical Reports Server (NTRS)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  6. Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Roychoudhury, Rajkumar; Chakrabarti, Nikhil

    2013-01-15

    Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.

  7. Performance changes of an Anger camera in magnetic fields up to 10 G

    SciTech Connect

    Bieszk, J.A.

    1986-12-01

    Magnetic fields much larger than the earth's magnetic field can exist many feet away from NMR units. Gamma camera manufacturers already shield photomultiplier tubes from the earth's magnetic field (approximately 0.5 G). The effects of larger magnetic fields on an Anger camera, were made in fields up to 10 G. Sensitivity and positional stability were studied as a function of gantry angle in a magnetic field. Scans of uniform and hot rod sections of and ECT phantom were also performed. No visible artifacts were found in reconstructions of the phantom measured in a 5-G magnetic field, although some small sensitivity and linearity effects did exist. In 10-G fields, planar and reconstructed images were grossly distorted. Magnetic shielding placed across the collimator reduced the influence of the magnetic field but at a cost in sensitivity that varies with photon energy.

  8. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Castillo-Negrete, D. del; Chacon, L.

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  9. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  10. Linear Stability Analysis Of A Magnetic/Non-Magnetic Fluid Coflow In The Presence Of A Magnetic Field

    NASA Astrophysics Data System (ADS)

    de, Anindya; Puri, Ishwar

    2007-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles in carrier liquids. Being both magnetic and a liquid, they are readily maneuvered from a distance using magnetic fields. When functionalized with different antibodies or medicinal compounds, the ferrofluid can be used for various purposes, e.g., to detect bacteria or for targeted drug delivery. We have considered a coflow where two fluids are separated by a vertical surface parallel to the direction of gravity. For simplicity the flow is assumed to be inviscid and incompressible. We have investigated two configurations depending on the position of the magnet relative to the channel. When the magnet is placed adjacent to the vertical wall along which the magnetic fluid is flowing, the magnetic fluid stays close to the wall unless perturbed by the shear due to a velocity difference. It results in a very stable system. In the second case, the magnet is placed close to the wall along which the non-magnetic fluid flows. The magnetic fluid gets attracted towards the magnet and tries to flow toward it when it gets resisted by the non-magnetic fluid. This configuration is inherently unstable and responds to small perturbations. The surface tension force resists the perturbation of smaller wavelengths. The relative effects of different forces are characterized by magnetic pressure number, Weber number and magnetic Weber number.

  11. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  12. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  13. Magnetic field dependence of magnetic domains in Co doped Mn2Sb using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Saha, Pampi; Kushwaha, Pallavi; Thamizhavel, A.; Rawat, Rajeev

    2016-05-01

    Magnetic domains in the ferrimagnetic state of Co doped Mn2Sb single crystal has been visualized using Magnetic Force Microscopy. It shows fractal like domain structure. With the application of magnetic field, single domain state is achieved around 2000 Oe. The MFM images collected during field increasing and decreasing cycles show different morphology for same field value.

  14. Minimization of nanosatellite low frequency magnetic fields.

    PubMed

    Belyayev, S M; Dudkin, F L

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones. PMID:27036801

  15. Minimization of nanosatellite low frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyayev, S. M.; Dudkin, F. L.

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  16. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design. PMID:26307725

  17. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  18. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  19. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  20. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  1. The Gravity and Extreme Magnetism Small Explorer (GEMS)

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.

    2011-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) was selected by NASA for flight in 2014 to make a sensitive search for X-ray polarization from a wide set of source classes, including stellar black holes, Seyfert galaxies and quasars, blazars, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. Among the primary scientific objectives are determining the effects of the spin of black holes and the geometry of supermassive black hole accretion, determining the configurations of the magnetic fields and the X-ray emission of magnetars, and determining the magnetic structure of the supernova shocks in which cosmic rays are accelerated. GEMS will observe 23 targets during a 16 month prime mission, in observations that will be able to reach predicted levels of polarization. The mission can be extended to provide a guest observer phase. The GEMS instrument has time projection chamber polarimeters with high 2-10 keV efficiency at the focus of thin foil mirrors. The 4.5 m focal length mirrors will be deployed on an extended boom. The spacecraft with the instrument is rotated with a period of about 10 minutes to enable measurement and correction of systematic errors. A small Bragg reflection soft X-ray experiment takes advantage of this rotation to obtain a measurement at 0.5 keV. The design of the GEMS instrument and the mission, the expected performance and the planned science program will be discussed.

  2. Constraints on primordial magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Kobayashi, Takeshi

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  3. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  4. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  5. MMS observations of small magnetic flux ropes in the near-tail (X > -11 Re)

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Poh, G.; Le, G.; Strangeway, R. J.; Russell, C. T.; Anderson, B. J.; Fischer, D.; Plaschke, F.; Bromund, K. R.; Leinweber, H. K.; Kepko, L.; Chutter, M.; Le Contel, O.; Torbert, R. B.; Nakamura, R.; Magnes, W.; Baumjohann, W.

    2015-12-01

    Magnetic reconnection is the most important energy conversion process in the Earth's magnetotail. Flux ropes are helical magnetic structures created by multiple X-line reconnection in the tail current sheet in the presence of a guide field in the east - west direction. Many numerical simulations predict that the formation of small flux ropes, referred to as secondary islands, takes place as reconnection transitions from the slow Sweet-Parker mode to fast reconnection with inertial scale neutral points. High time resolution MMS magnetic and electric fields measurements are near ideal for the investigation of secondary island - type flux ropes carried Earthward from downstream reconnnection sites, as well as their interaction with the strong dipolar magnetic fields of the inner magnetosphere. We present and analyze initial MMS magnetic field measurements of small flux ropes in the near-tail during the commissioning phase while the spacecraft were in a "string-­of-­pearls" configuration.

  6. Emergence of undulatory magnetic flux tubes by small scale reconnections

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Aulanier, G.; Schmieder, B.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.

    With Flare Genesis Experiment (FGE), a balloon borne observatory launched in Antarctica on January 2000, series of high spatial resolution vector magnetograms, Dopplergrams, and Hα filtergrams have been obtained in an emerging active region (AR 8844). Previous analyses of this data revealed the occurence of many short-lived and small-scale Hα brightenings called 'Ellerman bombs' (EBs) within the AR. We performed an extrapolation of the field above the photosphere using the linear force-free field approximation. The analysis of the magnetic topology reveals a close connexion between the loci of EBs and the existence of ``Bald patches'' regions (BPs are regions where the vector magnetic field is tangential to the photosphere). Among 47 identified EBs, we found that 23 are co-spatial with a BP, while 19 are located at the footpoint of very flat separatrix field lines passing throught a distant BP. We reveal for the first time that some of these EBs/BPs are magneticaly connected by low-lying lines, presenting a 'sea-serpent' shape. This results leads us to conjecture that arch filament systems and active regions coronal loops do not result from the smooth emergence of large scale Ω loops, but rather from the rise of flat undulatory flux tubes which get released from their photospheric anchorage by reconnection at BPs, whose observational signature is Ellerman bombs.

  7. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  8. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  9. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  10. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  11. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  12. Magnetic tunnel junctions for low magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong

    In this thesis, we did a comprehensive investigation on the relationship between spin-dependent tunneling and structural variation in junction devices. Magnetic, microstructural, and transport studies have shown a significant improvement in exchange-bias, a reduced barrier roughness, and an enhanced magnetoresistance for samples after magnetic annealing. We have examined different magnetic configurations required for sensing applications and presented some results of using MTJ sensors to detect AC magnetic fields created by electrical current flow and DC stray field distributions of patterned magnetic materials. We have studied the low frequency noise in MTJ sensors. We have found that the 1/f noise in MTJs has magnetic as well as electrical origins, and is strongly affected by the junction's internal structure. The magnetic noise comes from magnetization fluctuations in the free FM layer and can be understood using the fluctuation-dissipation theorem. While the field-independent electrical noise due to charge trapping in the barrier, is observed in the less optimized MTJs sensors, and has an amplitude at least one order of magnitude higher than the noise component due to magnetization fluctuations. In addition, we have studied the magnetization switching of Cobalt rings with varying anisotropy utilizing scanning magnetoresistive microscopy. We have for the first time observed a complicated multi-domain intermediate phase during the transition between onion states for samples with strong anisotropy. This is in contrast to as deposited samples, which reverse by simple domain wall motion and feature an intermediate vortex state. The result is further analyzed by micro magnetic simulations.

  13. Magnetic Pressure as a Scalar Representation of Field Effects in Magnetic Suspensions.

    PubMed

    Zborowski, Maciej; Moore, Lee R; Williams, P Stephen; Chalmers, Jeffrey J

    2010-01-01

    Magnetic microsphere suspensions undergo complex motion when exposed to finite sources of the magnetic field, such as small permanent magnets. The computational complexity is compounded by a difficulty in choosing a suitable choice of visualization tools because this often requires using the magnetic force vector field in three dimensions. Here we present a potentially simpler approach by using the magnetic pressure. It is a scalar quantity, pm = B (2)/2μ 0, and its usefulness has been already demonstrated in applications to magnetohydrodynamics and ferrohydrodynamics (where B is the applied field and μ 0 = 4π×10(-7) T.m/A). The equilibrium distribution of the magnetic bead plug in aqueous suspension is calculated as an isosurface of the magnitude of the magnetic pressure pm = const, in the field of two permanent magnet blocks calculated from closed formulas. The geometry was adapted from a publication on the magnetic bead suspensions in microsystems and the predicted bead plug distribution is shown to agree remarkably well with the experiment. PMID:25382882

  14. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  15. Magnetic susceptibilities of V3+ in corundum: Magnetic anisotropy at high fields

    NASA Astrophysics Data System (ADS)

    Brumage, William H.; Quade, C. Richard; Dorman, C. Franklin

    1995-08-01

    We theoretically investigate the behavior of the V3+ ion as an impurity in Al2O3 under high magnetic fields, up to 20 T. In particular, we investigate the introduction of magnetic anisotropy that is lower than the trigonal symmetry of the host crystal. Two approaches are used for the calculations. First, fourth-order perturbation theory is used to develop quartic terms plus one sextic term in the susceptibility tensor that are good for fields up to 4 T. Then, the three-level energy matrix is reduced exactly to obtain the anisotropy at higher fields. It is found that the dominant contributions to the magnetic-induced anisotropy arise from the χxxxx term, while the χxxzz=χzxxz, χzzzz, and the χxxxxxx terms give a much lower contribution. Temperature-dependent effects are reported. There is a very small dependence of the magnetization upon the zero-field splitting.

  16. Radio observations of the Jovian magnetic field

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Carr, T. D.

    1992-01-01

    Radio observations of Jupiter are reviewed and discussed in relation to the planet's magnetic field. Early ground-based decameter- and decimeter-wave observations lead to a first estimate of the magnetic field strength which was subsequently confirmed by space-borne measurements. Decametric, hectometric and decimetric measurements of the Jovian rotation period offer the possibility of detecting a real change in the magnetic field structure within the next few decades. Solar wind control of the radio emission allows inferences to be made concerning the magnetic field and the emission regions at decametric, hectometric and kilometric frequencies. The decametric and the hectometric radiation may originate in hollow-cone emission sources at high (auroral) latitudes on Jupiter. The broad-band kilometric emission appears to originate at the outer edge of the Io torus.

  17. End fields of CBA superconducting magnets

    SciTech Connect

    Kirk, H.G.; Herrera, J.; Willen, E.

    1983-01-01

    Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

  18. Local Magnetic Field Role in Star Formation

    NASA Astrophysics Data System (ADS)

    Koch, P. M.; Tang, Y. W.; Ho, P. T. P.; Zhang, Q.; Girart, J. M.; Chen, H. R. V.; Lai, S. P.; Li, H. B.; Li, Z. Y.; Liu, H. B.; Padovani, M.; Qiu, K.; Rao, R.; Yen, H. W.; Frau, P.; Chen, H. H.; Ching, T. C.

    2016-05-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.

  19. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  1. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  2. Constraining brane inflationary magnetic field from cosmoparticle physics after Planck

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan

    2015-10-01

    In this article, I have studied the cosmological and particle physics constraints on a generic class of large field (|Δ ϕ| > M p ) and small field (|Δ ϕ| < M p ) models of brane inflationary magnetic field from: (1) tensor-to-scalar ratio ( r), (2) reheating, (3) leptogenesis and (4) baryogenesis in case of Randall-Sundrum single braneworld gravity (RSII) framework. I also establish a direct connection between the magnetic field at the present epoch ( B 0) and primordial gravity waves ( r), which give a precise estimate of non-vanishing CP asymmetry ( ɛ CP) in leptogenesis and baryon asymmetry ( η B ) in baryogenesis scenario respectively. Further assuming the conformal invariance to be restored after inflation in the framework of RSII, I have explicitly shown that the requirement of the sub-dominant feature of large scale coherent magnetic field after inflation gives two fold non-trivial characteristic constraints- on equation of state parameter ( w) and the corresponding energy scale during reheating ( ρ rh 1/4 ) epoch. Hence giving the proposal for avoiding the contribution of back-reaction from the magnetic field I have established a bound on the generic reheating characteristic parameter ( R rh ) and its rescaled version ( R sc ), to achieve large scale magnetic field within the prescribed setup and further apply the CMB constraints as obtained from recently observed Planck 2015 data and Planck+BICEP2+Keck Array joint constraints. Using all these derived results I have shown that it is possible to put further stringent constraints on various classes of large and small field inflationary models to break the degeneracy between various cosmological parameters within the framework of RSII. Finally, I have studied the consequences from two specific models of brane inflation-monomial and hilltop, after applying the constraints obtained from inflation and primordial magnetic field.

  3. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  4. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  5. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  6. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  7. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  8. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  9. Early pregnancy loss and exposure to 50-Hz magnetic fields

    SciTech Connect

    Juutilainen, J.; Matilainen, P.; Saarikoski, S.; Laeaerae Esuo; Suonio, S. )

    1993-01-01

    The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 microT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0-25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data.

  10. Resistive dissipation and magnetic field topology in the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.

  11. Driving magnetic skyrmions with microwave fields

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Beg, Marijan; Zhang, Bin; Kuch, Wolfgang; Fangohr, Hans

    2015-07-01

    We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example, through application of a static in-plane external field. The net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as well as the strength of the in-plane field. The maximum velocity is found where the frequency of the microwave coincides with the resonance frequency of the breathing mode of the skyrmions.

  12. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  13. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  14. The formation of sunspot penumbra. Magnetic field properties

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Bello González, N.; Schlichenmaier, R.

    2012-01-01

    Aims: We study the magnetic flux emergence and formation of a sunspot penumbra in the active region NOAA 11024. Methods: We simultaneously observed the Stokes parameters of the photospheric iron lines at 1089.6 nm with the TIP and 617.3 nm with the GFPI spectropolarimeters along with broad-band images using G-band and Ca ii K filters at the German VTT. The photospheric magnetic field vector was reconstructed from an inversion of the measured Stokes profiles. Using the AZAM code, we converted the inclination from line-of-sight (LOS) to the local reference frame (LRF). Results: Individual filaments are resolved in maps of magnetic parameters. The formation of the penumbra is intimately related to the inclined magnetic field. No penumbra forms in areas with strong magnetic field strength and small inclination. Within 4.5 h observing time, the LRF magnetic flux of the penumbra increases from 9.7 × 1020 to 18.2 × 1020 Mx, while the magnetic flux of the umbra remains constant at ~3.8 × 1020 Mx. Magnetic flux in the immediate surroundings is incorporated into the spot, and new flux is supplied via small flux patches (SFPs), which on average have a flux of 2-3 × 1018 Mx. The spot's flux increase rate of 4.2 × 1016 Mx s-1 corresponds to the merging of one SFP per minute. We also find that, during the formation of the spot penumbra, a) the maximum magnetic field strength of the umbra does not change; b) the magnetic neutral line keeps the same position relative to the umbra; c) the new flux arrives on the emergence side of the spot while the penumbra forms on the opposite side; d) the average LRF inclination of the light bridges decreases from 50° to 37°; and e) as the penumbra develops, the mean magnetic field strength at the spot border decreases from 1.0 to 0.8 kG. Conclusions: The SFPs associated with elongated granules are the building blocks of structure formation in active regions. During the sunspot formation, their contribution is comparable to the

  15. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2015-12-01

    Based on the rational version of Muc(AXWELL)'s equations according to Tuc(RUESDELL) and Tuc(OUPIN) or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider Muc(AXWELL)'s equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  16. Dynamic signatures of quiet sun magnetic fields

    NASA Technical Reports Server (NTRS)

    Martin, S. F.

    1983-01-01

    The collision and disappearance of opposite polarity fields is observed most frequently at the borders of network cells. Due to observational limitations, the frequency, magnitude, and spatial distribution of magnetic flux loss have not yet been quantitatively determined at the borders or within the interiors of the cells. However, in agreement with published hypotheses of other authors, the disapperance of magnetic flux is speculated to be a consequence of either gradual or rapid magnetic reconnection which could be the means of converting magnetic energy into the kinetic, thermal, and nonthermal sources of energy for microflares, spicules, the solar wind, and the heating of the solar corona.

  17. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  18. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  19. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  20. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  1. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  2. QCD quark condensate in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Bali, G. S.; Bruckmann, F.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Schäfer, A.

    2012-10-01

    We present a comprehensive analysis of the light condensates in QCD with 1+1+1 sea quark flavors (with mass-degenerate light quarks of different electric charges) at zero and nonzero temperatures of up to 190 MeV and external magnetic fields B<1GeV2/e. We employ stout smeared staggered fermions with physical quark masses and extrapolate the results to the continuum limit. At low temperatures we confirm the magnetic catalysis scenario predicted by many model calculations while around the crossover the condensate develops a complex dependence on the external magnetic field, resulting in a decrease of the transition temperature.

  3. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (≈O(1/ln|eB|)) at large magnetic field. PMID:23679595

  4. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  5. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    A loss of magnetic flux through the free surface of a star into the surrounding space has important implications for the generation of the field within the star. The present investigation is concerned with the physics of the escape of net azimuthal flux from a star. The obtained results are used as a basis for the interpretation of some recent observations of the detailed behavior of magnetic fields emerging through the surface of the sun. The buoyancy of an isolated horizontal magnetic flux tube beneath the surface of a star causes the tube to rise at a rate comparable to the Alfven speed. The necessary conditions for escape of the flux are considered along with aspects of magnetic buoyancy, and the conditions on the sun. It appears that the observed retraction of bipolar magnetic fields at the end of their life at the surface is the one phenomenon which requires dynamical intervention. Attention is given to known dynamical effects which suppress the buoyant rise of an azimuthal magnetic field.

  6. Thomson scattering in a magnetic field. II - Arbitrary field orientation

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.

  7. Static Magnetic Fields in Semiconductor Floating-Zone Growth

    NASA Technical Reports Server (NTRS)

    Croll, Arne; Benz, K. W.

    1999-01-01

    Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.

  8. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  9. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  10. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  11. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  12. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    NASA Astrophysics Data System (ADS)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  13. The Decay of a Weak Large-scale Magnetic Field in Two-dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M.

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  14. Can a marginally open universe amplify magnetic fields?

    SciTech Connect

    Shtanov, Yuri; Sahni, Varun E-mail: varun@iucaa.ernet.in

    2013-01-01

    In a series of recent papers, including arXiv:1210.1183, it was claimed that large-scale magnetic fields generated during inflation in a spatially open universe could remain astrophysically significant at the present time since they experienced superadiabatic amplification specific to an open universe. We reexamine this assertion and show that, on the contrary, large-scale magnetic fields in a realistic open universe decay in much the same manner as they would in a spatially flat universe. Consequently, their amplitude today is extremely small (B{sub 0}∼<10{sup −59} G) and is unlikely to be of astrophysical significance.

  15. Magnetic field effects on the NiO magnon spectra.

    SciTech Connect

    Milano, J.; Grimsditch, M.; Materials Science Division; Centro Atomico Bariloche; CIC Nanogune

    2010-03-15

    The effect of an external magnetic field on the eight antiferromagnetic resonance (AFMR) modes of NiO has been studied experimentally using Brillouin light scattering. The results are reproduced by a model that includes the effects of exchange, dipolar coupling, a small cubic anisotropy, and Zeeman terms. Magnetic fields up to 7 T were applied along several NiO crystalline directions. The agreement between theory and experiment provides additional proof that the model, recently introduced to explain the existence of the AFMR multiplet, is indeed valid. Deviations between simulations and experiments, together with a review of previously published results, indicate that large magnetostrictive effects are present in NiO.

  16. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  17. Slowly rotating pulsars and magnetic field decay

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    1997-02-01

    Two dozen long period pulsars are separated from the swarm of ordinary pulsars by an obvious gap in the P versus Sd diagram (where Sd=log˙(P)+21.0), with a plausible upper boundary for ordinary pulsars. Possible pulsar evolutionary tracks are discussed to explain the diagram in terms of previously suggested scenarios of magnetic field decay. The (P-Sd) diagram is difficult to understand if there is no magnetic field decay during the active life of pulsars. However, if the magnetic fields of neutron stars decay exponentially, almost all slowly rotating pulsars must have been injected with a very long initial spin period of about 2 seconds, which seems impossible. Based on qualitative analyses, it is concluded that magnetic fields of neutron stars decay as a power-law, with a time scale related to the initial field strengths. The plausible boundary and the gap are suggested to naturally divide pulsars with distinct magnetic "genes", ie. pulsars which were born from strongly magnetized progenitors -- such as Bp stars, and pulsars born from normal massive stars. The possibility remains open that a fraction of slowly rotating pulsars were injected with long initial spin periods, while others would have a classical pulsar evolution history. It is suggested that PSR B1849+00 was born in the supernova remnant Kes-79 with an initial period of about 2 seconds.

  18. The magnetic fields of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Ness, N. F.

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  19. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  20. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  1. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  2. Review of magnetic field observations.

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1972-01-01

    Recent observations in previously unexplored regions of the magnetosphere, particularly in the polar-cusp region, compliment and reinforce emphasis on particle access to the plasma sheet via the polar neutral points. Significant distortions of the geomagnetic field in the polar-cusp region suggest field-aligned currents at large geocentric distances which can be related to low-altitude polar-cap phenomena. Studies of the microstructure of the field reversal region of the plasma sheet embedded in the geomagnetic tail suggest a periodic structure of more complexity than earlier assumed simplified single neutral-line models.

  3. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  4. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  5. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Kulsrud, Russell M.; Anderson, Stephen W.

    1992-01-01

    The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.

  6. Recent Advances in the Exploration of the Small-Scale Structure of the Quiet Solar Atmosphere: Vortex Flows, the Horizontal Magnetic Field, and the Stokes- V Line-Ratio Method

    NASA Astrophysics Data System (ADS)

    Steiner, O.; Rezaei, R.

    2012-05-01

    We review (i) observations and numerical simulations of vortical flows in the solar atmosphere and (ii) measurements of the horizontal magnetic field in quiet Sun regions. First, we discuss various manifestations of vortical flows and emphasize the role of magnetic fields in mediating swirling motion created near the solar surface to the higher layers of the photosphere and to the chromosphere. We reexamine existing simulation runs of solar surface magnetoconvection with regard to vortical flows and compare to previously obtained results. Second, we reviews contradictory results and problems associated with measuring the angular distribution of the magnetic field in quiet Sun regions. Furthermore, we review the Stokes-V-amplitude ratio method for the lines Fe i λλ 630.15 and 630.25 nm. We come to the conclusion that the recently discovered two distinct populations in scatter plots of this ratio must not bee interpreted in terms of “uncollapsed'' and “collapsed'' fields but stem from weak granular magnetic fields and weak canopy fields located at the boundaries between granules and the intergranular space. Based on new simulation runs, we reaffirm earlier findings of a predominance of the horizontal field components over the vertical one, particularly in the upper photosphere and at the base of the chromosphere.

  7. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  8. Constraining primordial magnetic fields with future cosmic shear surveys

    SciTech Connect

    Fedeli, C.; Moscardini, L. E-mail: lauro.moscardini@unibo.it

    2012-11-01

    The origin of astrophysical magnetic fields observed in galaxies and clusters of galaxies is still unclear. One possibility is that primordial magnetic fields generated in the early Universe provide seeds that grow through compression and turbulence during structure formation. A cosmological magnetic field present prior to recombination would produce substantial matter clustering at intermediate/small scales, on top of the standard inflationary power spectrum. In this work we study the effect of this alteration on one particular cosmological observable, cosmic shear. We adopt the semi-analytic halo model in order to describe the non-linear clustering of matter, and feed it with the altered mass variance induced by primordial magnetic fields. We find that the convergence power spectrum is, as expected, substantially enhanced at intermediate/small angular scales, with the exact amplitude of the enhancement depending on the magnitude and power-law index of the magnetic field power spectrum. Specifically, for a fixed amplitude, the effect of magnetic fields is larger for larger spectral indices. We use the predicted statistical errors for a future wide-field cosmic shear survey, on the model of the ESA Cosmic Vision mission Euclid, in order to forecast constraints on the amplitude of primordial magnetic fields as a function of the spectral index. We find that the amplitude will be constrained at the level of ∼ 0.1 nG for n{sub B} ∼ −3, and at the level of ∼ 10{sup −7} nG for n{sub B} ∼ 3. The latter is at the same level of lower bounds coming from the secondary emission of gamma-ray sources, implying that for high spectral indices Euclid will certainly be able to detect primordial magnetic fields, if they exist. The present study shows how large-scale structure surveys can be used for both understanding the origins of astrophysical magnetic fields and shedding new light on the physics of the pre-recombination Universe.

  9. Formation of giant molecular clouds and helical magnetic fields by the Parker instability

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Matsumoto, Ryoji

    1991-10-01

    It is suggested that the Orion molecular cloud complex formed through the Parker instability (the buoyancy of a magnetic field entrained in matter) and that the helical filament found by Uchida et al. (1991) in the L1641 in the Orion cloud complex is the result of spinning gas falling along the magnetic field and twisting it. The twisted magnetic field, unlike a purely planar field, suppresses the Parker instability on small scales, allowing the generation of finite clouds rather than general turbulence.

  10. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  11. Primordial magnetic fields from the string network

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  12. A Study of Magnetic Fields on Bright-Rimmed Clouds

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji

    2015-08-01

    Bright-rimmed clouds (BRCs), which are located at periphery of HII regions, are considered to be potential sites for induced star formation by UV radiation from nearby massive stars. Many theorists have developed 2D/3D hydrodynamical models to understand dynamical evolution of such molecular clouds. Most simulations, however, did not always include the magnetic field effect, which is of importance in the astrophysics. This is because that there are few observation results examining the magnetic field configuration of BRCs in detail. In order to obtain information on magnetic field in and around BRCs, we have made near-infrared (JHKs) imaging polarimetry toward 24 BRCs showing strong interaction with HII region (Urquhart et al. 2009). We used the imaging polarimeter SIRPOL/SIRIUS (FOV ~7.7’ x 7.7’) mounted on IRSF 1.4 m telescope at the South African Astronomical Observatory.We found that polarization vectors, i.e., magnetic fields inside the clouds, follow the curved bright rim just behind the bright rim for almost all of the observed BRCs. Our investigation into the relation between the ambient magnetic field direction and the UV radiation direction suggests a following tendency. In the case that the ambient magnetic field is perpendicular to the direction of incident UV radiation, the clouds are likely to have bright rims with small curvatures. On the other hand, in the case that the ambient field is parallel to the UV radiation, they would have those with larger curvatures. In this presentation, we will present the physical quantities for these BRCs (i.e., magnetic field strength, the post shock pressure by the ionization front, etc.) as well as these morphological results.

  13. Magnetic fields in Herbig Ae stars

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Schöller, M.; Yudin, R. V.

    2004-12-01

    Herbig Ae stars are young A-type stars in the pre-main sequence evolutionary phase with masses of ˜1.5-3 M⊙. They show rather intense surface activity (Dunkin et al. \\cite{Du97}, MNRAS, 290, 165) and infrared excess related to the presence of circumstellar disks. Because of their youth, primordial magnetic fields inherited from the parent molecular cloud may be expected, but no direct evidence for the presence of magnetic fields on their surface, except in one case (Donati et al. \\cite{Do97}, MNRAS, 291, 658), has been found until now. Here we report observations of optical circular polarization with FORS 1 at the VLT in the three Herbig Ae stars HD 139614, HD 144432 and HD 144668. A definite longitudinal magnetic field at 4.8 σ level, =-450±93 G, has been detected in the Herbig Ae star HD 139614. This is the largest magnetic field ever diagnosed for a Herbig Ae star. A hint of a weak magnetic field is found in the other two Herbig Ae stars, HD 144432 and HD 144668, for which magnetic fields are measured at the ˜1.6 σ and ˜2.5 σ level respectively. Further, we report the presence of circular polarization signatures in the Ca II K line in the V Stokes spectra of HD 139614 and HD 144432, which appear unresolved at the low spectral resolution achievable with FORS 1. We suggest that models involving accretion of matter from the disk to the star along a global stellar magnetic field of a specific geometry can account for the observed Zeeman signatures. Based on observations obtained at the European Southern Observatory, Paranal, Chile (ESO programme No. 072.D-0377).

  14. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  15. Effects of sweep rates of external magnetic fields on the labyrinthine instabilities of miscible magnetic fluids

    NASA Astrophysics Data System (ADS)

    Wen, C.-Y.; Lin, J.-Z.; Chen, M.-Y.; Chen, L.-Q.; Liang, T.-K.

    2011-05-01

    The interfacial instability of miscible magnetic fluids in a Hele-Shaw Cell is studied experimentally, with different magnitudes and sweep rates of the external magnetic field. The initial circular oil-based magnetic fluid drop is surrounded by the miscible fluid, diesel. The external uniform magnetic fields induce small fingerings around the initial circular interface, so call labyrinthine fingering instability, and secondary waves. When the magnetic field is applied at a given sweep rate, the interfacial length grows significantly at the early stage. It then decreases when the magnetic field reaches the preset values, and finally approaches a certain asymptotic value. In addition, a dimensionless parameter, Pe, which includes the factors of diffusion and sweep rate of the external magnetic field, is found to correlate the experimental data. It is shown that the initial growth rate of the interfacial length is linearly proportional to Pe for the current experimental parameter range and is proportional to the square root of the sweep rate at the onset of labyrinthine instability.

  16. Differential Magnetic Field Shear in an Active Region

    NASA Technical Reports Server (NTRS)

    Schmeider, B.; DeMoulin, P.; Aulanier, G.; Golub, Leon

    1997-01-01

    The three-dimensional extrapolation of magnetic field lines from a magnetogram obtained at Kitt Peak allows us to understand the global structure of the NOAA active region 6718, as observed in X-rays with the Normal Incidence X-ray Telescope (NIXT) and in Ha with the Multichannel Subtractive Double Pass spectrograph (MSDP) in Meudon on 1991 July 11. This active region was in a quiet stage. Bright X-ray loops connect plages having field strengths of approx. 300 G, while H-alpha fibriles connect penumbrae having strong spot fields to the surrounding network. Small, intense X-ray features in the moat region around a large spot, which could be called X-ray-bright points, are due mainly to the emergence of magnetic flux and merging of these fields with surrounding ones. A set of large-scale, sheared X-ray loops is observed in the central part of the active region. Based on the fit between the observed coronal structure and the field configurations (and assuming a linear force-free field), we propose a differential magnetic field shear model for this active region. The decreasing shear in outer portions of the active region may indicate a continual relaxation of the magnetic field to a lower energy state in the progressively older portions of the AR.

  17. Can slow roll inflation induce relevant helical magnetic fields?

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Hollenstein, Lukas; Jain, Rajeev Kumar

    2011-03-01

    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)proptok, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.

  18. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Hotta, H.; Rempel, M.; Yokoyama, T.

    2016-03-01

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲1012square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities—that is, large Reynolds numbers.

  19. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. PMID:27013727

  20. Magnetic microchains and microswimmers in an oscillating magnetic field.

    PubMed

    Ido, Yasushi; Li, Yan-Hom; Tsutsumi, Hiroaki; Sumiyoshi, Hirotaka; Chen, Ching-Yao

    2016-01-01

    Superparamagnetic micro-bead chains and microswimmers under the influence of an oscillating magnetic field are studied experimentally and numerically. The numerical scheme composed of the lattice Boltzmann method, immersed boundary method, and discrete particle method based on the simplified Stokesian dynamics is applied to thoroughly understand the interaction between the micro-bead chain (or swimmer), the oscillating magnetic field, and the hydrodynamics drag. The systematic experiments and simulations demonstrated the behaviors of the microchains and microswimmers as well as the propulsive efficiencies of the swimmers. The effects of key parameters, such as field strengths, frequency, and the lengths of swimmer, are thoroughly analyzed. The numerical results are compared with the experiments and show good qualitative agreements. Our results proposed an efficient method to predict the motions of the reversible magnetic microdevices which may have extremely valuable applications in biotechnology. PMID:26858808