Science.gov

Sample records for small medical cyclotron

  1. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  2. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  3. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  4. Direct Production of 99mTc via 100Mo(p,2n) on Small Medical Cyclotrons

    NASA Astrophysics Data System (ADS)

    Schaffer, P.; Bénard, F.; Bernstein, A.; Buckley, K.; Celler, A.; Cockburn, N.; Corsaut, J.; Dodd, M.; Economou, C.; Eriksson, T.; Frontera, M.; Hanemaayer, V.; Hook, B.; Klug, J.; Kovacs, M.; Prato, F. S.; McDiarmid, S.; Ruth, T. J.; Shanks, C.; Valliant, J. F.; Zeisler, S.; Zetterberg, U.; Zavodszky, P. A.

    From the efforts of a number of Canadian institutions and private industry collaborations, direct production of 99mTc using medical cyclotrons has recently been advanced from a 1970's academic exercise to a commercial, economically viable solution for regional production. Using GE PETtrace 880 machines our team has established preliminary saturated yields of 2.7 GBq/μA, translating to approximately 174 GBq after a 6 hour irradiation. The team is in the process of assessing the accuracy and reliability of this production value with a goal of optimizing yields by up to 50%.

  5. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  6. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  7. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  8. a Small Low-Energy Cyclotron for Radioisotope Measurements.

    NASA Astrophysics Data System (ADS)

    Bertsche, Kirk Joseph

    Direct detection of ^{14} C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the "cyclotron") was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of ^{14 }C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat -field, electrostatically-focused cyclotron to comprise a system capable of measuring ^{14 }C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-gated output. In its present form the system is capable of improving the sensitivity of detecting ^{14} C in some biomedical experiments by a factor of 10^4. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as ^3H, and ^{10}Be, and ^{26}Al, are discussed.

  9. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  10. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  11. A new generation of medical cyclotrons for the 90`s

    SciTech Connect

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA.

  12. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  13. Cost benefit analysis of the radiological shielding of medical cyclotrons using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar

    2001-12-01

    Adequate radiation shielding is vital to the safe operation of modern commercial medical cyclotrons producing large yields of short-lived radioisotopes. The radiological shielding constitutes a significant capital investment for any new cyclotron-based radioisotope production facility; hence, the shielding design requires an accurate cost-benefit analysis often based on a complex multi-variant optimization technique. This paper demonstrates the application of a Genetic Algorithm (GA) for the optimum design of the high yield target cave of a Medical Cyclotron radioisotope production facility based in Sydney, Australia. The GA is a novel optimization technique that mimics the Darwinian Evolution paradigm and is ideally suited to search for global optima in a large multi-dimensional solution space.

  14. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    NASA Astrophysics Data System (ADS)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  15. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  16. Medical Care for Small Communities.

    ERIC Educational Resources Information Center

    Governor's Committee on Community Health Assistance, Raleigh, NC.

    Technological, social, economic, and political changes have increased the rapidity of changes in the pattern of living in small towns and rural areas. As a result, a large percentage of rural Americans who live at or below the poverty level are not provided adequate medical care. After realizing the shortage of physicians in North Carolina and…

  17. A real-time intercepting beam-profile monitor for a medical cyclotron

    SciTech Connect

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C.

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  18. Medical Waste Management Implications for Small Medical Facilities.

    ERIC Educational Resources Information Center

    Byrns, George; Burke, Thomas

    1992-01-01

    Discusses the implications of the Medical Waste Management Act of 1988 for small medical facilities, public health, and the environment. Reviews health and environmental risks associated with medical waste, current regulatory approaches, and classifications. Concludes that the health risk of medical wastes has been overestimated; makes…

  19. An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.

    PubMed

    Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia

    2016-01-01

    An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. PMID:26562450

  20. Radiologic assessment of a self-shield with boron-containing water for a compact medical cyclotron.

    PubMed

    Horitsugi, Genki; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Eto, Akihisa; Iwamoto, Yasuo; Hashimoto, Hiromi; Hamada, Seiki; Obara, Satoshi; Watanabe, Hiroshi; Hatazawa, Jun

    2012-07-01

    The cyclotron at our hospital has a self-shield of boron-containing water. The amount of induced radioactivity in the boron-containing water shield of a compact medical cyclotron has not yet been reported. In this study, we measured the photon and neutron dose rates outside the self-shield during cyclotron operation. We estimated the induced radioactivities of the boron-containing water used for the self-shield and then measured them. We estimated the activation of concrete outside the self-shield in the cyclotron laboratory. The thermal neutron flux during cyclotron operation was estimated to be 4.72 × 10(2) cm(-2) s(-1), and the activation of concrete in a cyclotron laboratory was about three orders of magnitude lower than the clearance level of RS-G-1.7 (IAEA). The activity concentration of the boron-containing water did not exceed the concentration limit for radioactive isotopes in drainage in Japan and the exemption level for Basic Safety Standards. Consequently, the boron-containing water is treatable as non-radioactive waste. Neutrons were effectively shielded by the self-shield during cyclotron operation. PMID:22370731

  1. A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS

    SciTech Connect

    Egle, Brian; Mirzadeh, Saed; Tatum, B Alan; Varma, Venugopal Koikal; Bradley, Eric Craig; Burgess, Thomas W; Aaron, W Scott; Binder, Jeffrey L; Beene, James R; Saltmarsh, Michael John

    2013-01-01

    In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

  2. A simple method to measure proton beam energy in a standard medical cyclotron.

    PubMed

    Burrage, J W; Asad, A H; Fox, R A; Price, R I; Campbell, A M; Siddiqui, S

    2009-06-01

    A simple and rapid technique to measure the proton beam energy in the external beam line of a medical cyclotron has been examined. A stack of 0.1 mm thick high purity copper (Cu) foils was bombarded and the relative activity of 65Zn produced in each foil was compared to a computational model that predicted activity, based on proton stopping power, reaction cross-sectional data, and beam energy. In the model, the beam energy was altered iteratively until the best match between computed and measured relative activities of the stack of disks was obtained. The main advantage of this method is that it does not require the comparison of the activities of different isotopes of zinc arising from (p, xn) reactions in the Cu, which would require the gamma photon detector being calibrated for different energy responses. Using this technique the proton beam energy of a nominally 18 MeV standard isochronous medical cyclotron was measured as 17.49 +/- 0.04 (SD) MeV, with a precision of 0.2% CV. PMID:19623860

  3. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    PubMed Central

    Pant, G. S.; Senthamizhchelvan, S.

    2007-01-01

    A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531

  4. Evaluating secondary neutron doses of a refined shielded design for a medical cyclotron using the TLD approach

    NASA Astrophysics Data System (ADS)

    Lin, Jye-Bin; Tseng, Hsien-Chun; Liu, Wen-Shan; Lin, Ding-Bang; Hsieh, Teng-San; Chen, Chien-Yi

    2013-11-01

    An increasing number of cyclotrons at medical centers in Taiwan have been installed to generate radiopharmaceutical products. An operating cyclotron generates immense amounts of secondary neutrons from reactions such the 18O(p, n)18F, used in the production of FDG. This intense radiation can be hazardous to public health, particularly to medical personnel. To increase the yield of 18F-FDG from 4200 GBq in 2005 to 48,600 GBq in 2011, Chung Shan Medical University Hospital (CSMUH) has prolonged irradiation time without changing the target or target current to meet requirements regarding the production 18F. The CSMUH has redesigned the CTI Radioisotope Delivery System shield. The lack of data for a possible secondary neutron doses has increased due to newly designed cyclotron rooms. This work aims to evaluate secondary neutron doses at a CTI cyclotron center using a thermoluminescent dosimeter (TLD-600). Two-dimensional neutron doses were mapped and indicated that neutron doses were high as neutrons leaked through self-shielded blocks and through the L-shaped concrete shield in vault rooms. These neutron doses varied markedly among locations close to the H218O target. The Monte Carlo simulation and minimum detectable dose are also discussed and demonstrated the reliability of using the TLD-600 approach. Findings can be adopted by medical centers to identify radioactive hot spots and develop radiation protection.

  5. Selected Reference Aids for Small Medical Libraries *

    PubMed Central

    Duncan, Howertine Farrell

    1970-01-01

    This annotated list of 178 items is compiled as a guide to the development of the reference collection in a small medical library. Arrangement, following the pattern of the previous revision, is by broad subject groups. Titles are chiefly in English. Textbooks in subject fields have been omitted since these are covered adequately in several comprehensive guides to the literature. PMID:5439904

  6. Reclassification in a small decentralized medical library.

    PubMed

    Tong, J G; Brennen, P W; Byrd, G D

    1977-07-01

    This study describes procedures and indentifies problems in the reclassification of a small medical school library collection that is decentralized into five locations in three different communities. A total of 9,915 monographic titles (14,911 volumes) were reclassified in a nine-month period. The reclassification staff consisted of one professional, two nonprofessionals, and one partime student assistant. PMID:884347

  7. Medical treatment of small abdominal aortic aneurysm.

    PubMed

    Assar, A N

    2012-08-01

    Conventional open repair or endovascular aneurysm repair is indicated for infrarenal abdominal aortic aneurysm (AAA) when the diameter of the latter is ≥ 5.5 cm. This therapeutic strategy is based on results of randomized trials of open repair versus ultrasound surveillance of small AAA (<5.5 cm). Studies of screening for AAA have shown that >90% of aneurysms detected are small aneurysms (<5.5 cm). Despite the low annual risk of rupture of these aneurysms, patients with small AAA are left with a potentially life-threatening disease for which no immediate treatment is available. Hence, medical treatment directed at limiting the expansion of small AAA has emerged as an alternative therapeutic strategy. Randomized trials of doxycycline, roxithromycin, and propranolol in patients with small AAA have been published. The results of the doxycycline and roxithromycin trials suggest that both medications can limit AAA expansion, especially during the first year of treatment. Propranolol did not limit AAA expansion, and the trials were stopped because of its serious side effects. In other studies, statins and indomethacin have also been shown to limit AAA expansion. However, these studies were observational with relatively small numbers of patients. Thus, large randomized controlled trials with long follow-up are needed to objectively assess the efficacy of medications that have shown potential in limiting AAA expansion. In addition, recent evidence of regression of AAA in experimental animal models is likely to change our concepts of the molecular pathogenesis of AAA, and could make medical treatment of small AAA a possibility. PMID:22854530

  8. Basic Reference Aids for Small Medical Libraries *

    PubMed Central

    Blair, Edith D.

    1967-01-01

    Selected primarily for the small medical library, this list is compiled to serve as a practical guide for the librarian in developing and utilizing an effective reference collection. Arrangement is by broad subject groups; titles chosen are chiefly in English with geographic coverage limited to the United States and Canada. Texts in subject fields have been omitted since these are adequately covered in several comprehensive guides to the literature. PMID:6041827

  9. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  10. Ion cyclotron range of frequencies heating of plasma with small impurity production

    DOEpatents

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  11. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  12. Low-background-rate detector for ions in the 5- to 50-keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. Small, inexpensive cyclotrons serving this purpose would make the technique accessible to more researchers and inexpensive enough to compare many small samples. To this end, VC Berkeley is developing a 20-cm-diameter, 30- to 40-keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30- to 40-keV /sup 14/C at 10/sup -1/ counts/sec in the high-background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. To meet this challenge, an inexpensive, generally useful ion detector was developed that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion, the detector's grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background.

  13. Analysis of induced radionuclides in replacement parts and liquid wastes in a medical cyclotron solely used for production of 18F for [18F]FDG.

    PubMed

    Mochizuki, S; Ishigure, N; Ogata, Y; Kobayashi, T

    2013-04-01

    Radioactivities produced in replacement parts and liquid wastes in a medical cyclotron used to produce (18)F for [(18)F]FDG with 10MeV protons were analyzed. Nineteen radionuclides were found in the replacement parts and liquid wastes. Among them, long-lived (56)Co in the Havar foils is critical in terms of radioactive waste management. The estimated dose level of exposure for the operating staff during the replacement of parts was around 310μSv/y, which is smaller than the recommended dose limit for workers. PMID:23419430

  14. Training birds and small mammals for medical behaviors.

    PubMed

    Mattison, Sara

    2012-09-01

    The use of operant conditioning in a zoologic setting allows zookeepers and other animal caretakers to train birds and small mammals to participate willingly in medical procedures. By using operant conditioning with an emphasis on positive reinforcement, small mammals and birds can be trained to cooperate in their own medical care in many ways. This conditioning can reduce stress for animals, caretakers, and veterinarians as well as reduce the potential for animal injuries. This article includes case studies of what the author has identified as foundation behaviors, intermediate behaviors, and advanced behaviors and the methods used to train them. PMID:22998964

  15. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  16. An interactional approach to conceptualising small talk in medical interactions

    PubMed Central

    Hudak, Pamela L.; Maynard, Douglas W.

    2013-01-01

    In medical interactions, it may seem straightforward to identify ‘small talk’ as casual or social talk superfluous to the institutional work of dealing with patients’ medical concerns. Such a broad characterisation is, however, extremely difficult to apply to actual talk, and more specificity is necessary to pursue analyses of how small talk is produced and what it achieves for participants in medical interactions. We offer an approach to delineating a subgenre of small talk called topicalised small talk (TST), derived on the basis of conversation analytically-informed analyses of routine consultations involving orthopaedic surgeons and older patients. TST is a line of talk that is referentially independent from their institutional identities as patients or surgeons, oriented instead to an aspect of the personal biography of one (or both), or to some neutral topic available to interactants in any setting (e.g. weather). Importantly, TST is an achievement of both patient and surgeon in that generation and pursuit of topic is mutually accomplished. In an exploratory but systematic analysis, when this approach was applied to a purposive sample of surgeon-patient interactions, TST was much more prevalent in visits with White than African American patients. Accounts for possible ethnic differences in TST are suggested. PMID:21545445

  17. Trends in small hospital medical services in Ontario.

    PubMed Central

    Rourke, J. T.

    1998-01-01

    OBJECTIVE: To compare the medical services provided in small hospitals in Ontario in 1995 with those provided in 1988. DESIGN: Mailed survey questionnaire. SETTING: Small hospitals in Ontario. PARTICIPANTS: Chiefs of Staff of the hospitals. MAIN OUTCOME MEASURES: Hospital size and location; numbers of physicians; availability of obstetric, anesthesia, and general surgery services; and other medical services available. The 1995 questionnaire was identical to the 1988 one, except for addition of questions on midwives and deletion of the detailed emergency medicine section. RESULTS: Sixty hospitals responded in both years. In these hospitals, there were significantly fewer acute care beds and births in 1995 than in 1988. Availability of general anesthesia and general surgery was significantly reduced, although general anesthesia was administered and general surgeries were performed more often. There were significantly fewer GP anesthetists and significantly fewer family physicians who attended births, although there were slightly more family physicians overall. There were fewer specialists. CONCLUSION: These are negative trends, particularly for women giving birth and patients needing emergency surgery in rural Ontario. PMID:9805165

  18. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  19. Production of a large-diameter uniform plasma by electron cyclotron resonance heating with a small-diameter Lisitano coil

    NASA Astrophysics Data System (ADS)

    Komori, A.; Takada, Y.; Yonesu, A.; Kawai, Y.

    1991-02-01

    A large-diameter uniform plasma is produced by electron cyclotron resonance heating with a slotted Lisitano coil of 9 cm in diameter by locating the resonance apart from the Lisitano coil. Although the plasma production with a Lisitano coil has been performed extensively by placing the resonance near the Lisitano coil, the influence of the resonance location has not received as much attention. When the resonance is located further than 8 cm from the Lisitano coil, the uniform plasma of ˜40 cm in diameter at densities of ˜1.2×1011 cm-3 is produced over the vacuum chamber with an inner radius of 46 cm. The microwave is propagated in the whole space between the resonance and the Lisitano coil, and spatial electric-field distributions of the microwave play an important role on forming the radially uniform plasma.

  20. Breakdown of cyclotron resonance in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Duffield, T.; Bhat, R.; Koza, M.; Hwang, D. M.; DeRosa, F.; Grabbe, P.; Allen, S. J.

    1988-03-01

    We have observed breakdown of cyclotron resonance in large magnetic fields oriented perpendicular to the growth direction in semiconductor superlattices. At small magnetic fields conventional cyclotron resonance is observed with the mass related to the miniband mass. At large magnetic fields, when the cyclotron diameter approaches the superlattice period, the resonance frequency appears to saturate and is determined by orbits impaled on the barrier. A model calculation gives good account of the magnetic field dependence of the resonance position and line width.

  1. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  2. Microcomputer Systems in Solo and Small Group Medical Practices

    PubMed Central

    Bremer, Roger E.

    1978-01-01

    Technological developments of microprocessors and microcomputers will facilitate transferring the advantages of larger computer installations to solo and small group medical practices. A series of powerful forces will create the need for computer assistance, helping to overcome earlier restraints. Surveys show the physician is anxious for the help, and manufacturers have the needed advanced components under development. A typical advanced system for physical examination and clerical transactions (ASPECT) has been synthesized from the identified components at attractive economies of scale. More orderly and faster patient processing, lower costs for in-office laboratory tests, high quality, comparative diagnostic protocols, processing more patients at lower unit costs, automated administrative procedures and interface with emerging data banks are a few of the many potential benefits to the patient, the practitioner and society. Effective demonstration programs, triggering modified manufacturing and marketing patterns, are pragmatic priorities before the arsenal of these benefits can be effectively arrayed against today's greatest health care adversary - “the inflation crunch.”

  3. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  4. Cyclotron produced radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Kopička, K.; Fišer, M.; Hradilek, P.; Hanč, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides/compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed.

  5. JSW's baby cyclotron

    SciTech Connect

    Toda, Y.; Kaneda, Y.; Satoh, Y.; Suzukawa, I.; Yamada, T.

    1983-04-01

    Designed by The Japan Steel Works, Ltd., specially for installation in a hospital's medical department and nuclear research laboratory, '' JSW BABY CYCLOTRON '' has been developed to produce short-lived radioisotopes such as 11C, 13N, 15O and 18F. JSW's Baby Cyclotron has some design features. 1) Fixed energy and four sector azimuthally varying field. 2) Compact figure desired for hospital's nuclear medical department 3) A bitter type magnet yoke shielding activity 4) Simple control and operation 5) Easy maintenance without skilled personnel. Type BC105 (P:10MeV, d:5MeV), BC107 (P:10MeV, d:7MeV), BC168 (P:16MeV, d:8MeV) and BC1710 (P:17MeV, d:10MeV) are available according to required amount of radioisotopes. In our radioisotope production test, yield and purity of 11C, 13N, 15O and 18F are usable to clinical diagnosis.

  6. The cyclotron development activities at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Li, Zhenguo; An, Shizhong; Yin, Zhiguo; Yang, Jianjun; Yang, Fang

    2011-12-01

    The cyclotron has an obvious advantage in offering high average current and beam power. Cyclotron development for various applications, e.g. radioactive ion-beam (RIB) generation, clean nuclear energy systems, medical diagnostics and isotope production, were performed at China Institute of Atomic Energy (CIAE) for over 50 years. At the moment two cyclotrons are being built at CIAE, the 100 MeV, CYCIAE-100, and a 14 MeV, the CYCIAE-14. Meanwhile, we are designing and proposing to build a number of cyclotrons with different energies, among them are the CYCIAE-70, the CYCIAE-800, and the upgrading of CYCIAE-CRM, which is going to increase its beam current to mA level. The contribution will present an overall introduction to the cyclotron development activities conducted at CIAE, with different emphasis to each project in order to demonstrate the design and construction highlights.

  7. Cyclotron radiation in hot magnetoplasmas.

    NASA Technical Reports Server (NTRS)

    Trulsen, J.

    1971-01-01

    The effects of thermal motions on the cyclotron radiation from test particles gyrating in a homogeneous magnetoplasma are studied. These effects take care of all singularities that exist in the theory of cyclotron radiation in cold magnetoplasma - e.g., the divergence in energy loss for small particle energies. Around the hybrid frequencies thermal corrections become of dominant importance. At these frequencies cold-plasma theory breaks down. Thermal effects arise in two ways: by modifying the wave modes known from cold plasma theory, and by the introduction of a new longitudinal wave mode, known as the Bernstein mode. All wave modes are damped (in stable plasmas).

  8. Theory of relativistic cyclotron masers

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Latham, P. E.; Dumbrajs, O.

    1995-07-01

    In this paper we have made an attempt to review the present status of the theory of cyclotron masers with relativistic electron beams. After discussing the basic features of electron-cyclotron radiation under conditions of normal and anomalous Doppler frequency shifts, we consider particle deceleration by a constant amplitude electromagnetic wave in a constant magnetic field using the formalism developed earlier for cyclotron autoresonance acceleration of electrons. An optimal cyclotron resonance mismatch was found that corresponds to the possibility of complete deceleration of relativistic electrons. Then, interaction of relativistic electrons with resonator fields is considered and the efficiency increase due to electron prebunching is demonstrated in a simple model. Since an efficient interaction of relativistic electrons with the large amplitude electromagnetic field of a resonator occurs at a short distance, where electrons make a small number of electron orbits, the issue of the simultaneous interaction of electrons with the field at several cyclotron harmonics is discussed. Finally, we consider deceleration of a prebunched electron beam by a traveling electromagnetic wave in a tapered magnetic field. This simple modeling is illustrated with a number of simulations of relativistic gyroklystrons and gyrotwistrons (gyrodevices in which the bunching cavity of the gyroklystron is combined with the output waveguide of the gyro-traveling-wave-tube).

  9. Cyclotrons as mass spectrometers

    SciTech Connect

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  10. Development of a high current H(-) ion source for cyclotrons.

    PubMed

    Etoh, H; Aoki, Y; Mitsubori, H; Arakawa, Y; Mitsumoto, T; Yajima, S; Sakuraba, J; Kato, T; Okumura, Y

    2014-02-01

    A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW. PMID:24593547

  11. Synchrotrons in cyclotron territory

    SciTech Connect

    Clark, D.J.; Gough, R.A.

    1986-10-01

    Synchrotrons and cyclotrons have an overlap in their particle and energy ranges. In proton radiotherapy, synchrotrons are proposed at 250 MeV, an energy usually served by cyclotrons. Heavy ion therapy has been synchrotron territory, but cyclotrons may be competitive. In nuclear science, heavy ion synchrotrons can be used in the cyclotron energy range of 10-200 MeV/u. Storage rings are planned to increase the flexibility of several cyclotrons. For atomic physics research, several storage rings are under construction for the energy range of 10 MeV/u and below.

  12. Factors Influencing Electronic Clinical Information Exchange in Small Medical Group Practices

    ERIC Educational Resources Information Center

    Kralewski, John E.; Zink, Therese; Boyle, Raymond

    2012-01-01

    Purpose: The purpose of this study was to identify the organizational factors that influence electronic health information exchange (HIE) by medical group practices in rural areas. Methods: A purposive sample of 8 small medical group practices in 3 experimental HIE regions were interviewed to determine the extent of clinical information exchange…

  13. Survey of electronic veterinary medical record adoption and use by independent small animal veterinary medical practices in Massachusetts

    PubMed Central

    Krone, Lauren M.; Brown, Catherine M.; Lindenmayer, Joann M.

    2016-01-01

    Objective To estimate the proportion of independent small animal veterinary medical practices in Massachusetts that use electronic veterinary medical records (EVMRs), determine the purposes for which EVMRs are used, and identify perceived barriers to their use. Design Survey. Sample 100 veterinarians. Procedures 213 of 517 independent small animal veterinary practices operating in Massachusetts were randomly chosen for study recruitment. One veterinarian at each practice was invited by telephone to answer a hardcopy survey regarding practice demographics, medical records type (electronic, paper, or both), purposes of EVMR use, and perceived barriers to adoption. Surveys were mailed to the first 100 veterinarians who agreed to participate. Practices were categorized by record type and size (large [≥ 5 veterinarians], medium [3 to 4 veterinarians], or small [1 to 2 veterinarians]). Results 84 surveys were returned; overall response was 84 of 213 (39.4%). The EVMRs were used alone or together with paper records in 66 of 82 (80.5%) practices. Large and medium-sized practices were significantly more likely to use EVMRs combined with paper records than were small practices. The EVMRs were most commonly used for ensuring billing, automating reminders, providing cost estimates, scheduling, recording medical and surgical information, and tracking patient health. Least common uses were identifying emerging infectious diseases, research, and insurance. Eleven veterinarians in paper record–only practices indicated reluctance to change, anticipated technological problems, time constraints, and cost were barriers to EVMR use. Conclusions and Clinical Relevance Results indicated EVMRs were underutilized as a tool for tracking and improving population health and identifying emerging infectious diseases. Efforts to facilitate adoption of EVMRs for these purposes should be strengthened by the veterinary medical, human health, and public health professions. PMID:25029312

  14. Evaluation of Small-Group Teaching in Human Gross Anatomy in a Caribbean Medical School

    ERIC Educational Resources Information Center

    Chan, Lap Ki; Ganguly, Pallab K.

    2008-01-01

    Although there are a number of medical schools in the Caribbean islands, very few reports have come out so far in the literature regarding the efficacy of small-group teaching in them. The introduction of small-group teaching in the gross anatomy laboratory one and a half years ago at St. Matthew's University (SMU) on Grand Cayman appears to have…

  15. The Use of Small Group Tutorials as an Educational Strategy in Medical Education

    ERIC Educational Resources Information Center

    Ferris, Helena

    2015-01-01

    Small group tutorials are an educational strategy that is growing in popularity in medical education. This is indicative of the movement from a traditional teacher centred approach to more student-centred learning, which is characterised by active participation and autonomous learning (Hedge et al, 2011). However, small group teaching is one of…

  16. PET - radiopharmaceutical facilities at Washington University Medical School - an overview

    SciTech Connect

    Dence, C.S.; Welch, M.J.

    1994-12-31

    The PET program at Washington University has evolved over more than three decades of research and development in the use of positron-emitting isotopes in medicine and biology. In 1962 the installation of the first hospital cyclotron in the USA was accomplished. This first machine was an Allis Chalmers (AC) cyclotron and it was operated until July, 1990. Simultaneously with this cyclotron the authors also ran a Cyclotron Corporation (TCC) CS-15 cyclotron that was purchased in 1977. Both of these cyclotrons were maintained in-house and operated with a relatively small downtime (approximately 3.5%). After the dismantling of the AC machine in 1990, a Japanese Steel Works 16/8 (JSW-16/8) cyclotron was installed in the vault. Whereas the AC cyclotron could only accelerate deuterons (6.2 MeV), the JSW - 16/8 machine can accelerate both protons and deuterons, so all of the radiopharmaceuticals can be produced on either of the two presently owned accelerators. At the end of May 1993, the medical school installed the first clinical Tandem Cascade Accelerator (TCA) a collaboration with Science Research Laboratories (SRL) of Somerville, MA. Preliminary target testing, design and development are presently under way. In 1973, the University installed the first operational PETT device in the country, and at present there is a large basic science and clinical research program involving more than a hundred staff in nuclear medicine, radiation sciences, neurology, neurosurgery, psychiatry, cardiology, pulmonary medicine, oncology, and surgery.

  17. Workflow and Electronic Health Records in Small Medical Practices

    PubMed Central

    Ramaiah, Mala; Subrahmanian, Eswaran; Sriram, Ram D; Lide, Bettijoyce B

    2012-01-01

    This paper analyzes the workflow and implementation of electronic health record (EHR) systems across different functions in small physician offices. We characterize the differences in the offices based on the levels of computerization in terms of workflow, sources of time delay, and barriers to using EHR systems to support the entire workflow. The study was based on a combination of questionnaires, interviews, in situ observations, and data collection efforts. This study was not intended to be a full-scale time-and-motion study with precise measurements but was intended to provide an overview of the potential sources of delays while performing office tasks. The study follows an interpretive model of case studies rather than a large-sample statistical survey of practices. To identify time-consuming tasks, workflow maps were created based on the aggregated data from the offices. The results from the study show that specialty physicians are more favorable toward adopting EHR systems than primary care physicians are. The barriers to adoption of EHR systems by primary care physicians can be attributed to the complex workflows that exist in primary care physician offices, leading to nonstandardized workflow structures and practices. Also, primary care physicians would benefit more from EHR systems if the systems could interact with external entities. PMID:22737096

  18. Medical Students Perceive Better Group Learning Processes when Large Classes Are Made to Seem Small

    PubMed Central

    Hommes, Juliette; Arah, Onyebuchi A.; de Grave, Willem; Schuwirth, Lambert W. T.; Scherpbier, Albert J. J. A.; Bos, Gerard M. J.

    2014-01-01

    Objective Medical schools struggle with large classes, which might interfere with the effectiveness of learning within small groups due to students being unfamiliar to fellow students. The aim of this study was to assess the effects of making a large class seem small on the students' collaborative learning processes. Design A randomised controlled intervention study was undertaken to make a large class seem small, without the need to reduce the number of students enrolling in the medical programme. The class was divided into subsets: two small subsets (n = 50) as the intervention groups; a control group (n = 102) was mixed with the remaining students (the non-randomised group n∼100) to create one large subset. Setting The undergraduate curriculum of the Maastricht Medical School, applying the Problem-Based Learning principles. In this learning context, students learn mainly in tutorial groups, composed randomly from a large class every 6–10 weeks. Intervention The formal group learning activities were organised within the subsets. Students from the intervention groups met frequently within the formal groups, in contrast to the students from the large subset who hardly enrolled with the same students in formal activities. Main Outcome Measures Three outcome measures assessed students' group learning processes over time: learning within formally organised small groups, learning with other students in the informal context and perceptions of the intervention. Results Formal group learning processes were perceived more positive in the intervention groups from the second study year on, with a mean increase of β = 0.48. Informal group learning activities occurred almost exclusively within the subsets as defined by the intervention from the first week involved in the medical curriculum (E-I indexes>−0.69). Interviews tapped mainly positive effects and negligible negative side effects of the intervention. Conclusion Better group learning processes can be

  19. Student Perceptions of Independent versus Facilitated Small Group Learning Approaches to Compressed Medical Anatomy Education

    ERIC Educational Resources Information Center

    Whelan, Alexander; Leddy, John J.; Mindra, Sean; Matthew Hughes, J. D.; El-Bialy, Safaa; Ramnanan, Christopher J.

    2016-01-01

    The purpose of this study was to compare student perceptions regarding two, small group learning approaches to compressed (46.5 prosection-based laboratory hours), integrated anatomy education at the University of Ottawa medical program. In the facilitated active learning (FAL) approach, tutors engage students and are expected to enable and…

  20. Selected List of Books and Journals for the Small Medical Library *

    PubMed Central

    Brandon, Alfred N.

    1967-01-01

    This updated list of 388 books and 140 journals is intended as a selection aid for the small library of a hospital, medical society, clinic, or similar organization. Books and journals are arranged by subject, with the books followed by an author index, and the journals by an alphabetical title listing. PMID:6041826

  1. Selected List of Books and Journals for the Small Medical Library

    PubMed Central

    Brandon, Alfred N.

    1965-01-01

    This list of 358 books and 123 journals is intended as a selection aid for the small library of a hospital, medical society, clinic, or similar organization. Books and journals are arranged by subject, with the books followed by an author index, and the journals by an alphabetical title listing. PMID:14308899

  2. Comparing Two Cooperative Small Group Formats Used with Physical Therapy and Medical Students

    ERIC Educational Resources Information Center

    D'Eon, Marcel; Proctor, Peggy; Reeder, Bruce

    2007-01-01

    This study compared "Structured Controversy" (a semi-formal debate like small group activity) with a traditional open discussion format for medical and physical therapy students. We found that those students who had participated in Structured Controversy changed their personal opinion on the topic more than those who were in the Open Discussion…

  3. Improvements and applications at NIRS cyclotron facility

    NASA Astrophysics Data System (ADS)

    Honma, T.; Hojo, S.; Miyahara, N.; Nemoto, K.; Sato, Y.; Suzuki, K.; Takada, M.; Yamada, S.; Kuramochi, Y.; Okada, T.; Hanagasaki, M.; Komatsu, K.; Ogawa, H.

    2001-12-01

    The NIRS-Chiba isochronous cyclotron has been working in routinely, and providing the stable beams for bio-medical studies and various kind of related experiments since 1975. The clinical trail of eye melanoma has been under continued. Recently two new beam lines were constructed in order to carry out the bio-physical study, and to produce the long-lived R.I.s for SPECT. Some progressive improvements, such as updating the magnetic-channel and development of a floating septum system, were performed for stable operation of the cyclotron. A brief review of the current status of the cyclotron and typical application of latest experiments in the various fields are described.

  4. Are Risks From Medical Imaging Still too Small to Be Observed or Nonexistent?

    PubMed Central

    2015-01-01

    Several radiation-related professional societies have concluded that carcinogenic risks associated with doses below 50-100 mSv are either too small to be detected, or are nonexistent. This is especially important in the context of doses from medical imaging. Radiation exposure to the public from medical imaging procedures is rising around the world, primarily due to increased utilization of computed tomography. Professional societies and advisory bodies consistently recommend against multiplying small doses by large populations to predict excess radiation-induced cancers, in large part because of the potential for sensational claims of health impacts which do not adequately take the associated uncertainties into account. Nonetheless, numerous articles have predicted thousands of future cancers as a result of CT scanning, and this has generated considerable concern among patients and parents. In addition, some authors claim that we now have direct epidemiological evidence of carcinogenic risks from medical imaging. This paper critically examines such claims, and concludes that the evidence cited does not provide direct evidence of low-dose carcinogenicity. These claims themselves have adverse public health impacts by frightening the public away from medically justified exams. It is time for the medical and scientific communities to be more assertive in responding to sensational claims of health risks. PMID:26673121

  5. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  6. Prescription Writing in Small Groups as a Clinical Pharmacology Educational Intervention: Perceptions of Preclerkship Medical Students.

    PubMed

    James, Henry; Tayem, Yasin I Y; Al Khaja, K A J; Veeramuthu, Sindhan; Sequeira, Reginald P

    2016-08-01

    Medical students do not perform well in writing prescriptions, and the 3 variables-learner, teacher, and instructional method-are held responsible to various degrees. The objective of this clinical pharmacology educational intervention was to improve medical students' perceptions, motivation, and participation in prescription-writing sessions. The study participants were second-year medical students of the College of Medicine and Medical Sciences of the Arabian Gulf University, Bahrain. Two prescription-writing sessions were conducted using clinical case scenarios based on problems the students had studied as part of the problem-based learning curriculum. At the end of the respiratory system subunit, the training was conducted in small groups, each facilitated by a tutor. At the end of the cardiovascular system subunit, the training was conducted in a traditional large-group classroom setting. Data were collected with the help of a questionnaire at the end of each session and a focus group discussion. A majority of the students (95.3% ± 2.4%) perceived the small-group method better for teaching and learning of all aspects of prescription writing: analyzing the clinical case scenario, applying clinical pharmacology knowledge for therapeutic reasoning, using a formulary for searching relevant prescribing information, and in writing a complete prescription. Students also endorsed the small-group method for better interaction among themselves and with the tutor and for the ease of asking questions and clarifying doubts. In view of the principles of adult learning, where motivation and interaction are important, teaching and learning prescription writing in small groups deserve a serious consideration in medical curricula. PMID:26677798

  7. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  8. Selected List of Books and Journals for the Small Medical Library *

    PubMed Central

    Brandon, Alfred N.

    1969-01-01

    This updated list of 398 books and 141 journals is intended as a selection aid for the small library of a hospital, medical society, clinic, or similar organization. Books and journals are arranged by subject, with the books followed by an author index, and the journals by an alphabetical title listing. Items suggested for first purchase by smaller libraries are noted by an asterisk. PMID:4888285

  9. Selected List of Books and Journals for the Small Medical Library *

    PubMed Central

    Brandon, Alfred N.

    1971-01-01

    This updated list of 389 books and 135 journals is intended as a selection aid for the small library of a hospital, medical society, clinic, or similar organization. Books and journals are arranged by subject, with the books followed by an author index, and the journals by an alphabetical title listing. Items suggested for first purchase by smaller libraries are noted by an asterisk. PMID:5582092

  10. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    NASA Astrophysics Data System (ADS)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  11. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  12. Development of accelerator mass spectrometer based on a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.-W.; Kim, D.-G.

    2011-07-01

    A small cyclotron has been designed for accelerator mass spectrometry, and the injection beam line is constructed as part of prototyping. Mass resolution of the cyclotron is estimated to be around 4000. The design of the cyclotron was performed with orbit-tracking computations using 3D magnetic and electric fields, and beam optics of the injection line was calculated using the codes such as IGUN and TRANSPORT. The radial injection scheme is chosen to place a beam on equilibrium orbit of the cyclotron. The injection line includes an ion source, Einzel lens, rf buncher, 90° dipole magnet, and quadrupole triplet magnet. A carbon beam was extracted from the front part of the injection line. An rf cavity system for the cyclotron was built and tested. A multi channel plates (MCP) detector to measure low-current ion beams was also tested. Design considerations are given to analyzing a few different radioisotopes in form of positive ions as well as negative ions.

  13. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1979-01-01

    This revised list of 492 books and 138 journals is intended as a selection guide for small or medium-sized hospital libraries or for the small medical library serving a specified clientele. It can also be used as a core list by small hospital library consortia. Books and journals are categorized by subject, with the books being followed by an author index and the journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries are indicated by an asterisk. To purchase the entire collection of books and to pay for annual subscriptions to all the journals would require an expenditure of about $22,500. The cost of only the asterisked items, recommended for first purchase, totals approximately $6,100. PMID:380695

  14. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1981-01-01

    This revised list of 539 books and 136 journals is intended as a selection guide for small or medium-sized hospital libraries or for small medical libraries in comparable health care facilities. It can also be used as a core list by consortia of small hospital libraries. Books and journals are categorized by subject; the book list is followed by an author index and the list of journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries, 137 books and 54 journals, are indicated by asterisks. To purchase the entire collection of books and to pay for annual subscriptions to all the journals would require an expenditure of about $30,000. The cost of only the asterisked items, which are recommended for first purchase, totals approximately $8,900. PMID:7225656

  15. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N

    1977-01-01

    This revised list of 472 books and 138 journals is intended as a selection guide for small or medium-sized hospital libraries or for the small medical library serving a specified clientele. It can also be used as a core list by small hospital library consortia. Books and journals are categorized by subject, with the books being followed by an author index and the journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries are indicated by an asterisk. To purchase the entire collection of books and to pay for annual subscriptions to all the journals would require an expenditure of about $18,200. The cost of only the asterisked items recommended for first purchase totals approximately $4,500. PMID:321057

  16. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  17. Selected List of Books and Journals for the Small Medical Library *

    PubMed Central

    Brandon, Alfred N.

    1973-01-01

    This updated list of 410 books and 136 journals is intended as a selection aid for the small library of a hospital, medical society, clinic, or similar organization. Books and journals are arranged by subject, with the books followed by an author index, and the journals by an alphabetical title listing. Items suggested for first purchase by smaller libraries are noted by an asterisk. To purchase the entire collection of books and to pay for the annual subscription costs of all the journals would require an expenditure of about $12,000. To acquire only those items suggested for first purchase, approximately $3,250 would be needed. PMID:4702804

  18. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1989-01-01

    In the introduction to this revised list of 607 books and 141 journals, quality assurance programs of health care institutions and patient education are suggested as vehicles for more directly involving the hospital library and its collection in patient care. This list is intended as a selection guide for the small or medium-sized library in a hospital or comparable medical facility, or as a core collection for a consortium of small hospital libraries. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. To purchase the entire collection of books and to pay for 1989 subscriptions would require about $63,500. The cost of only the asterisked items totals $24,000. PMID:2655782

  19. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1991-01-01

    The current financial status of the health care industry is viewed both from its effect on the hospital library collection and the response of the hospital library to the financial crisis. Predecessors of this list have been intended as selection guides for a small or medium-size library in a hospital or comparable medical facility. As the prices of books and journals continue to soar, the secondary purpose as a core collection for a consortium of small hospital libraries or a network sharing library resources may eventually become its primary use. Books (607) and journals (140) are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. To purchase the entire collection of books and to pay for 1991 subscriptions would require about $77,700. The cost of only the asterisked items totals $29,300. PMID:2039906

  20. Selected list of Books and Journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1983-01-01

    The relationship of the "Selected List" to collection development is explored in the introduction to this revised list of 559 books and 135 journals. The list is intended as a selection guide for the small or medium-sized library in a hospital or comparable medical facility or as a core collection for a consortium of small hospital libraries. Books and journals are categorized by subject; the book list is followed by an author/editor index and the subject list of journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries (155 books and 54 journals) are indicated by asterisks. To purchase the entire collection of books and to pay for annual subscriptions would require an expenditure of about $38,900. The cost of only the asterisked items totals approximately $13,200. PMID:6190523

  1. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N

    1975-01-01

    This revised list of 446 books and 137 journals is intended as a selection guide for small or medium-sized hospital libraries or for the small medical library serving a specified clientele. Books and journals are categorized by subject, with the books being followed by an author index and the journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries are indicated by an asterisk. To purchase the entire collection of books and to pay for annual subscriptions to all the journals would require an expenditure for about $14,500. The cost of only the asterisked items recommended for first purchase totals approximately $4,100. PMID:1095095

  2. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1985-01-01

    The interrelationship of print and electronic media in the hospital library and the relevance of the "Selected List" in 1985 are discussed in the introduction to this revised list of 583 books and 138 journals. The list is meant to be a selection guide for the small or medium-size library in a hospital or comparable medical facility, or a core collection for a consortium of small hospital libraries. Books and journals are categorized by subject; the book list is followed by an author/editor index and the subject list of journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries are indicated by asterisks. To purchase the entire collection of books and to pay for 1985 subscriptions to all the journals would require about $45,200. The cost of only the asterisked items totals approximately $16,100. PMID:3888331

  3. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1987-01-01

    The impact that the hospital librarian's use of management techniques and comprehension of the highly competitive health care environment can have on collection development and resulting information services in his or her library is reviewed in the introduction to this revised list of 600 books and 139 journals. The list is intended as a selection guide for the small or medium-size library in a hospital or comparable medical facility, or a core collection for a consortium of small hospital libraries. Books and journals are categorized by subject; the book list is followed by an author/editor index and the subject list of journals by an alphabetical title listing. Items suggested for initial purchase by smaller libraries are indicated by asterisks. To purchase the entire collection of books and to pay for 1987 subscriptions to all journals would require about $52,600. The cost of only the asterisked items totals approximately $21,000. PMID:3594025

  4. Basic steps in establishing effective small group teaching sessions in medical schools

    PubMed Central

    Meo, Sultan Ayoub

    2013-01-01

    Small-group teaching and learning has achieved an admirable position in medical education and has become more popular as a means of encouraging the students in their studies and enhance the process of deep learning. The main characteristics of small group teaching are active involvement of the learners in entire learning cycle and well defined task orientation with achievable specific aims and objectives in a given time period. The essential components in the development of an ideal small group teaching and learning sessions are preliminary considerations at departmental and institutional level including educational strategies, group composition, physical environment, existing resources, diagnosis of the needs, formulation of the objectives and suitable teaching outline. Small group teaching increases the student interest, teamwork ability, retention of knowledge and skills, enhance transfer of concepts to innovative issues, and improve the self-directed learning. It develops self-motivation, investigating the issues, allows the student to test their thinking and higher-order activities. It also facilitates an adult style of learning, acceptance of personal responsibility for own progress. Moreover, it enhances student-faculty and peer-peer interaction, improves communication skills and provides opportunity to share the responsibility and clarify the points of bafflement. PMID:24353692

  5. Basic steps in establishing effective small group teaching sessions in medical schools.

    PubMed

    Meo, Sultan Ayoub

    2013-07-01

    Small-group teaching and learning has achieved an admirable position in medical education and has become more popular as a means of encouraging the students in their studies and enhance the process of deep learning. The main characteristics of small group teaching are active involvement of the learners in entire learning cycle and well defined task orientation with achievable specific aims and objectives in a given time period. The essential components in the development of an ideal small group teaching and learning sessions are preliminary considerations at departmental and institutional level including educational strategies, group composition, physical environment, existing resources, diagnosis of the needs, formulation of the objectives and suitable teaching outline. Small group teaching increases the student interest, teamwork ability, retention of knowledge and skills, enhance transfer of concepts to innovative issues, and improve the self-directed learning. It develops self-motivation, investigating the issues, allows the student to test their thinking and higher-order activities. It also facilitates an adult style of learning, acceptance of personal responsibility for own progress. Moreover, it enhances student-faculty and peer-peer interaction, improves communication skills and provides opportunity to share the responsibility and clarify the points of bafflement. PMID:24353692

  6. Medical Record Clerk Training Program, Course of Study; Student Manual: For Medical Record Personnel in Small Rural Hospitals in Colorado.

    ERIC Educational Resources Information Center

    Community Health Service (DHEW/PHS), Arlington, VA. Div. of Health Resources.

    The manual provides major topics, objectives, activities and, procedures, references and materials, and assignments for the training program. The topics covered are hospital organization and community role, organization and management of a medical records department, international classification of diseases and operations, medical terminology,…

  7. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  8. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1997-01-01

    The introduction to this revised list (seventeenth version) of 610 books and 141 journals addresses the origin, three decades ago, of the "Selected List of Books and Journals for the Small Medical Library," and the accomplishments of the late Alfred N. Brandon in helping health sciences librarians, and especially hospital librarians, to envision what collection development and a library collection are all about. This list is intended as a selection guide for the small or medium-size library in a hospital or similar facility. More realistically, it can function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. Due to continuing requests from librarians, a "minimal core" book collection consisting of 78 titles has been pulled out from the 200 asterisked (*) initial-purchase books and marked with daggers ([symbol: see text]). To purchase the entire collection of books and to pay for 1997 journal subscriptions would require $101,700. The cost of only the asterisked items, books and journals, totals $43,100. The "minimal core" book collection costs $12,600. PMID:9160148

  9. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1995-01-01

    The complementary informational access roles of the traditional hospital library book and journal collection and the high-tech Internet are viewed from a 1995 perspective. Predecessors of this list have been intended as selection guides for a small or medium-size library in a hospital or comparable medical facility. As the prices of books and journals continue on an upward spiral, the secondary purpose as a core collection for a consortium of small hospital libraries or a network sharing library resources is fast becoming its primary use. Books (610) and journals (141) are categorized by subject; the book list is followed by an author/editor index and the subject list of journals by an alphabetical title listing. Due to requests from librarians, a "minimal core" book collection consisting of 82 titles has been pulled out from the 200 asterisked initial-purchase books. To purchase the entire collection of books and to pay for 1995 subscriptions would require $93,300. The cost of only the asterisked items totals $39,000. The "minimal core" book collection costs $12,700. PMID:7599581

  10. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  11. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-06-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hillpoles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction. 6 figures.

  12. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  13. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  14. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  15. Student perceptions of independent versus facilitated small group learning approaches to compressed medical anatomy education.

    PubMed

    Whelan, Alexander; Leddy, John J; Mindra, Sean; Matthew Hughes, J D; El-Bialy, Safaa; Ramnanan, Christopher J

    2016-01-01

    The purpose of this study was to compare student perceptions regarding two, small group learning approaches to compressed (46.5 prosection-based laboratory hours), integrated anatomy education at the University of Ottawa medical program. In the facilitated active learning (FAL) approach, tutors engage students and are expected to enable and balance both active learning and progression through laboratory objectives. In contrast, the emphasized independent learning (EIL) approach stresses elements from the "flipped classroom" educational model: prelaboratory preparation, independent laboratory learning, and limited tutor involvement. Quantitative (Likert-style questions) and qualitative data (independent thematic analysis of open-ended commentary) from a survey of students who had completed the preclerkship curriculum identified strengths from the EIL (promoting student collaboration and communication) and FAL (successful progression through objectives) approaches. However, EIL led to student frustration related to a lack of direction and impaired completion of objectives, whereas active learning opportunities in FAL were highly variable and dependent on tutor teaching style. A "hidden curriculum" was also identified, where students (particularly EIL and clerkship students) commonly compared their compressed anatomy education or their anatomy learning environment with other approaches. Finally, while both groups highly regarded the efficiency of prosection-based learning and expressed value for cadaveric-based learning, student commentary noted that the lack of grade value dedicated to anatomy assessment limited student accountability. This study revealed critical insights into small group learning in compressed anatomy education, including the need to balance student active learning opportunities with appropriate direction and feedback (including assessment). PMID:26040541

  16. Brandon/Hill selected list of print books and journals for the small medical library*

    PubMed Central

    Hill, Dorothy R.; Stickell, Henry N.

    2001-01-01

    After thirty-six years of biennial updates, the authors take great pride in being able to publish the nineteenth version (2001) of the “Brandon/Hill Selected List of Print Books and Journals for the Small Medical Library.” This list of 630 books and 143 journals is intended as a selection guide for health sciences libraries or similar facilities. It can also function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals, by an alphabetical title listing. Due to continuing requests from librarians, a “minimal core list” consisting of 81 titles has been pulled out from the 217 asterisked (*) initial-purchase books and marked with daggers (†*) before the asterisks. To purchase the entire collection of 630 books and to pay for 143 2001 journal subscriptions would require $124,000. The cost of only the asterisked items, books and journals, totals $55,000. The “minimal core list” book collection costs approximately $14,300. PMID:11337945

  17. Hypofractionated radiotherapy for medically inoperable stage I non‐small cell lung cancer

    PubMed Central

    Jiang, Wei; Wang, Jian‐Yang; Wang, Jing‐Bo; Liang, Jun; Hui, Zhou‐Guang; Wang, Xiao‐Zhen; Zhou, Zong‐Mei

    2015-01-01

    Abstract Background To investigate the clinical outcomes and toxicity of hypofractionated radiotherapy for medically inoperable stage I non‐small cell lung cancer (NSCLC). Methods Patients treated with radiotherapy at a dose of 4–6 Gy per fraction using fixed‐field intensity modulated radiotherapy (IMRT) or volumetric‐modulated arc therapy (VMAT) at our hospital from June 2005 to December 2013 were analyzed. The total prescription doses ranged from 50–78 Gy with 4–6 Gy per fraction. The median follow‐up period was 24 months. Results A total of 65 patients with stage I NSCLC were analyzed, including 43 primary NSCLC patients and 22 patients with recurrent or second primary NSCLC. An objective response (complete or partial response) was achieved at six months in 84.6% of patients. The three‐year local control rate was 90.8%. Kaplan–Meier estimates of local failure‐free, progression‐free, overall, and cancer‐specific survival rates at three years were 90.3%, 64.3%, 68.9%, and 88.8%, respectively. The rate of symptomatic radiation pneumonitis was 16.9%, and no grade 4–5 toxicity was observed. Conclusion Favorable local control and outcome was achieved with hypofractionated radiotherapy in patients with inoperable stage I NSCLC with acceptable toxicity. The most common schedule of 6 Gy × 12 fractions may be a promising regimen, and a prospective study is in process. PMID:27148414

  18. Selected list of books and journals for the small medical library.

    PubMed Central

    Brandon, A N; Hill, D R

    1993-01-01

    The potential for the hospital library as an accepted patient-focused module is viewed in terms of both the present and the future--or no future--in the introduction to this revised recommended list of 606 books and 143 journals. Predecessors of this list have been intended as selection guides for a small or medium-size library in a hospital or comparable medical facility. Due to rapidly rising prices, the secondary purpose--a basic collection for a consortium of hospital libraries or a network sharing library resources--may eventually become its primary use. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. For the first time, a "minimal core collection" consisting of 85 books has been broken out from the 200 asterisked initial purchase books. To purchase the entire collection of books and to pay for the 1993 subscriptions would require about $87,000; the cost of only the asterisked books and journals totals $34,800. The "minimal core list" of books costs $11,600. PMID:8472001

  19. Software engineering risk factors in the implementation of a small electronic medical record system: the problem of scalability.

    PubMed

    Chiang, Michael F; Starren, Justin B

    2002-01-01

    The successful implementation of clinical information systems is difficult. In examining the reasons and potential solutions for this problem, the medical informatics community may benefit from the lessons of a rich body of software engineering and management literature about the failure of software projects. Based on previous studies, we present a conceptual framework for understanding the risk factors associated with large-scale projects. However, the vast majority of existing literature is based on large, enterprise-wide systems, and it unclear whether those results may be scaled down and applied to smaller projects such as departmental medical information systems. To examine this issue, we discuss the case study of a delayed electronic medical record implementation project in a small specialty practice at Columbia-Presbyterian Medical Center. While the factors contributing to the delay of this small project share some attributes with those found in larger organizations, there are important differences. The significance of these differences for groups implementing small medical information systems is discussed. PMID:12463804

  20. RF cavity design for KIRAMS-430 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, In Su; Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk; Kwon, Key Ho

    2015-03-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only 12C6+ ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  1. Medical Engineering Education for Engineers Working in Small & Medium Sized Enterprise

    NASA Astrophysics Data System (ADS)

    Nagai, Chiaki; Moriwaki, Toshimichi

    Medical device industry is expected to be one of the growing fields in coming years, because a large amount of medical bill expenditure becomes pressing matters to overcome in Japan‧s rapidly aging society. Authors have developed medical engineering programs for SMe‧s to meet these demand by the government grant under academia-industry collaboration in this region and were successful to put these programs into practice. We have two medical engineering education programs in Kobe-Kansai region, one is by graduate school of Kobe University, and the other is non degree program by Kobe City Industrial Promotion Foundation. Present situation of these education are described.

  2. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  3. [Possibility of New Circulating Atherosclerosis-Related Lipid Markers Measurement in Medical and Complete Medical Checkups: Small Dense Low-Density Lipoprotein Cholesterol and Lipoprotein Lipase].

    PubMed

    Sumino, Hiroyuki; Nakajima, Katsuyuki; Murakami, Masami

    2016-03-01

    Small dense low-density lipoprotein cholesterol (sdLDL-C) concentrations correlate more strongly with cardiovascular disease (CVD) than other LDL-C and large LDL particle concentrations. Lipoprotein lipase (LPL) plays a central role in triglyceride-rich lipoprotein metabolism by catalyzing the hydrolysis of triglycerides in chylomicrons and very low-density lipoprotein particles and is a useful biomarker in diagnosing Type I, Type IV, and Type V hyperlipidemia. Therefore, the measurement of circulating sdLDL-C and LPL concentrations contributes to the assessment of circulating atherosclerosis-related lipid markers. However, the measurement of these lipids has not been fully adopted in medical and complete medical checkups. Recently, novel automated homogenous assay for measuring sdLDL-C and latex particle-enhanced turbidimetric immunoassay (LTIA) for measuring LPL have been developed, respectively. Using these new assays, sdLDL-C values showed excellent agreement with those obtained by isolation of the d = 1.044 - 1.063 g/mL plasma fraction by sequential ultracentrifugation, and LPL values measured with and without heparin injection were highly correlated with the values measured by the LPL-enzyme-linked immunosorbent assay (ELISA). These assays may be superior to the previous assays for the measurement of sdLDL-C and LPL concentrations due their simplicity and reproducibility. The measurements of sdLDL-C and LPL concentrations may be useful as lipid markers in the assessment of the development and progression of atherosclerosis and the detection of pathological conditions and diseases if these markers are measured in medical and complete medical checkups. We have introduced the possibility of the novel measurement of circulating atherosclerosis-related lipid markers such as sdLDL-C and LPL in medical and complete medical checkups. Further studies are needed to clarify whether sdLDL-C and LPL concentrations are related to the development and progression of

  4. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  5. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  6. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  7. Decay of References to Web sites in Articles Published in General Medical Journals: Mainstream vs Small Journals

    PubMed Central

    Habibzadeh, P.

    2013-01-01

    Summary Background Over the last decade, Web sites (URLs) have been increasingly cited in scientific articles. However, the contents of the page of interest may change over the time. Objective To investigate the trend of citation to URLs in five general medical journals since January 2006 to June 2013 and to compare the trends in mainstream journals with small journals. Methods References of all original articles and review articles published between January 2006 and June 2013 in three regional journals – Archives of Iranian Medicine (AIM), Eastern Mediterranean Health Journal (EMHJ), and Journal of Postgraduate Medical Institute (JPMI) – and two mainstream journals – The Lancet and British Medical Journal (BMJ) – were reviewed. The references were checked to determine the frequency of citation to URLs as well as the rate of accessibility of the URLs cited. Results A total of 2822 articles was studied. Since January 2006 onward, the number of citations to URLs increased in the journals (doubling time ranged from 4.2 years in EMHJ to 13.9 years in AIM). Overall, the percentage of articles citing at least one URL has increased from 24% in 2006 to 48.5% in 2013. Accessibility to URLs decayed as the references got old (half life ranged from 2.2 years in EMHJ to 5.3 years in BMJ). The ratio of citation to URLs in the studied mainstream journals, as well as the ratio of URLs accessible were significantly (p<0.001) higher than the small medical journals. Conclusion URLs are increasingly cited, but their contents decay with time. The trend of citing and decaying URLs are different in mainstream journals compared to small medical journals. Decay of URL contents would jeopardize the accuracy of the references and thus, the body of evidence. One way to tackle this important obstacle is to archive URLs permanently. PMID:24454575

  8. Multimegawatt cyclotron autoresonance accelerator

    SciTech Connect

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.; Yoder, R.B.; Wang, C.

    1996-05-01

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}

  9. In Comparative Analysis for Fuel Burnup of Fuel Assembly Designs for the 300 kW Small Medical Reactor

    NASA Astrophysics Data System (ADS)

    Sambuu, Odmaa; Nanzad, Norov

    2009-03-01

    A 300 kW small medical reactor was designed to be used for boron neutron capture therapy (BNCT) at KAIST in 1996 [1]. In this paper, analysis for the core life cycle of the original design of the BNCT facility and modifications of the fuel assembly configuration and enrichment to get a proper life cycle were performed and a criticality, neutron flux distribution and fuel burnup calculations were carried out.

  10. In Comparative Analysis for Fuel Burnup of Fuel Assembly Designs for the 300 kW Small Medical Reactor

    SciTech Connect

    Sambuu, Odmaa; Nanzad, Norov

    2009-03-31

    A 300 kW small medical reactor was designed to be used for boron neutron capture therapy (BNCT) at KAIST in 1996. In this paper, analysis for the core life cycle of the original design of the BNCT facility and modifications of the fuel assembly configuration and enrichment to get a proper life cycle were performed and a criticality, neutron flux distribution and fuel burnup calculations were carried out.

  11. Relativistic Cyclotron Resonance Shape in Magnetic Bottle Geonium

    NASA Astrophysics Data System (ADS)

    Dehmelt, Hans; Mittleman, Richard; Liu, Yuan

    1988-10-01

    The thermally excited axial oscillation of the electron through the weak magnetic bottle needed for the continuous Stern-Gerlach effect modulates the cyclotron frequency and produces a characteristic ≈ 12-kHz-wide vertical rise-exponential decline line shape of the cyclotron resonance. At the same time the relativistic mass shift decreases the frequency by ≈ 200 Hz per cyclotron motion quantum level n. Nevertheless, our analysis of the complex line shape shows that it should be possible to produce an abrupt rise in the cyclotron quantum number n from 0 to ≈ 20 over a small fraction of 200 Hz, when the 160-GHz microwave drive approaches the n = 0 → 1 transition, and a jump of 14 levels over a frequency increment of 200 Hz has already been observed in preliminary work. This realizes an earlier proposal to generate a very sharp cyclotron resonance feature by quasithermal excitation with a square noise band and should provide a way to detect spin flips when a weak bottle is used to reduce the broadening of the g - 2 resonance by a factor of 20.

  12. Small pharmacies are more likely to dispense antibiotics without a medical prescription than large pharmacies in Catalonia, Spain.

    PubMed

    Llor, C; Monnet, Dl; Cots, Jm

    2010-01-01

    The aim of this study was to explore the relationship between pharmacy size and the likelihood of obtaining antibiotics without medical prescription at a pharmacy. In 2008 in Catalonia, two actors presented three different cases in a randomised sample of pharmacies and asked pharmacists for an antibiotic. Pharmacies were considered as small when having limited space with only one counter and a maximum of two professionals selling medicines, as medium sized with three or four attending professionals, and as large with a large selling space and more than four attending professionals. Of the 197 pharmacies visited, 88 (44.7%) were considered as small while only 25 (12.7%) were large. Antibiotics were obtained without a medical prescription in 89 (45.2%) pharmacies, mainly in small pharmacies (63.6%), followed by medium-sized pharmacies (35.7%) and large pharmacies (12%) (p<0.001). Large pharmacies, that probably have a greater income, more closely followed the prevailing legislation of not selling antibiotics to patients without a medical prescription. This observation should now be confirmed in other countries where over-the-counter sales of antibiotics are prevalent and should be taken into account by programmes aiming at achieving a more prudent use of antibiotics. PMID:20738994

  13. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  14. Cyclotron resonance in graphene

    NASA Astrophysics Data System (ADS)

    Henriksen, Erik Alfred

    We present a study of cyclotron resonance in graphene. Graphene is a novel two-dimensional system consisting of a single sheet of atoms arranged in a honeycomb lattice, and exhibits a unique, linear low-energy dispersion. Bilayer graphene, two sheets stacked together, is an equally interesting system displaying a second unique, but hyperbolic, dispersion. In this work, we study the quantized Landau levels of these systems in strong magnetic fields, via Fourier-transform infrared spectroscopy. We have fabricated large area single layer and bilayer graphene devices on infrared-transparent Si/SiO2 substrates, using standard electron beam lithography and thin-film liftoff techniques. At cryogenic temperatures and high magnetic fields, we measure the infrared transmission through these devices as a function of the back gate voltage, which changes the Fermi level and hence the carrier density. We analyze the normalized transmission traces, assigning the observed minima to the cyclotron resonance wherein carriers are excited between Landau levels. In single layer graphene, we study Landau level transitions near the charge neutral Dirac point, and find a set of particle-hole symmetric transitions, both within the conduction and valence band, and between the bands. These experiments confirm the unusual B- and n -dependencies of the LL energies, where B is the magnetic field and n the LL index. The CR selection rule is determined to be Delta n = |nfinal| -- |n initial| = +/-1. The ratio of the observed interband and intraband transitions exceeds the expected value by 5%, and this excess is interpreted as an additional contribution to the transition energy from many-particle effects. We explore several higher LL transitions for both electron and hole doping of single layer graphene. The data are consistent with a renormalization of the carrier band velocity near the Dirac point, and suggest that impurity scattering strengthens at low energies. We also study the CR at the

  15. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney. PMID:19135381

  16. Emission of ion and electron cyclotron harmonic radiation from mode conversion layers

    SciTech Connect

    Swanson, D.G.; Cho, S. )

    1989-07-01

    The asymmetry of cyclotron radiation from a mode conversion layer is presented for harmonics of the ion cyclotron frequency and the second harmonic of the electron cyclotron frequency for weakly relativistic electrons. The same form of Kirchhoff's law is found for all cases, relating the emission along each branch to the absorption of an incident wave along the corresponding branch. Results show that the fast wave radiation is more strongly asymmetric at the third harmonic than at the second harmonic of the ion cyclotron frequency, while the slow wave radiation ratio is about same. At the second cyclotron harmonic of weakly relativistic electrons, the asymmetry of radiation is found to be small at high temperature. The effect of equilibrium Bernstein wave radiation is also discussed.

  17. Emission of ion and electron cyclotron harmonic radiation from mode conversion layers

    SciTech Connect

    Cho, S.; Swanson, D.G. )

    1990-02-01

    The asymmetry of cyclotron radiation from a mode conversion layer is presented for harmonics of the ion cyclotron frequency and the second harmonic of the electron cyclotron frequency for weakly relativistic electrons. The same form of Kirchhoff's law is found for all cases, relating the emission along each branch to the absorption of an incident wave along the corresponding branch. Results show that the fast wave radiation is more strongly asymmetric at the third harmonic than at the second harmonic of the ion cyclotron frequency, while the slow wave radiation ratio is about same. At the second cyclotron harmonic of weakly relativistic electrons, the asymmetry of radiation is found to be small at high temperature. The effect of equilibrium Bernstein wave radiation is also discussed.

  18. The Role of International Medical Graduates in America?s Small Rural Critical Access Hospitals

    ERIC Educational Resources Information Center

    Hagopian, Amy; Thompson, Matthew J.; Kaltenbach, Emily; Hart, L. Gary

    2004-01-01

    Critical access hospitals (CAHs) are a federal Medicare category for isolated rural facilities with 15 or fewer acute care beds that receive cost-based reimbursement from Medicare. Purpose: This study examines the role of foreign-born international medical graduates (IMGs) in the staffing of CAHs. Methods: Chief executive officers (CEOs) of CAH…

  19. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  20. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  1. Petit bourgeois health care? The big small-business of private complementary medical practice.

    PubMed

    Andrews, Gavin J; Phillips, David R

    2005-05-01

    Although small business private complementary medicine (CAM) has grown to be a significant provider of health care in many Western societies, there has been relatively little research on the sector in business terms and on its wider socio-economic position and role. Using a combined questionnaire and interview survey, and the concept of small business petit bourgeoisie as a framework, this paper considers the character of therapists and their businesses in England and Wales. The findings suggest that typical of the core characteristics of both the petit bourgeoisie and therapists are the selling of goods with a considerable market viability, at the same time financial insecurity; the modest size of businesses; small amounts of direct employment generation and business owners undertaking everyday 'hands-on' work themselves. Certain of the therapists' and business characteristics depart from the stereotypical image of a small businesses class, such as the high incidence of part-time self-employment and incomes being supplemented often by unrelated waged employment. However, given the acknowledged diversity of the petit bourgeoisie between societies and over time, the framework is arguably appropriate in this context, and private CAM a latest guise. Indeed, just as the petit bourgeoisie have traditionally found market niches either neglected or rejected by bigger business, small business CAM has provided the forms of health care neglected and sometimes rejected by orthodox medicine. PMID:15955291

  2. Development and implementation of a secure, integrated management system for medical images and electronic clinical records for small hospitals.

    PubMed

    Pereira, Javier; Castro, Antonio F; Perez, Juan L; Novoa, Francisco J; Vázquez, Jose M; Teijeiro, Jorge; Pazos, Alejandro; Ezquerra, Norberto

    2007-06-01

    The field of Medical Informatics is currently experiencing increasing demands for new models of the Picture Archiving and Communication Systems (PACS) and Digital Imaging and Communications in Medicine (DICOM) protocols. Despite of the considerable advantages of current systems, implementation in hospitals is remarkably slow, due primarily to difficulties in integration and relatively high costs. Even though the success of DICOM standards has greatly contributed to the development of PACS, many hospitals remain unable to support it or to make full use of its potential because various imaging modalities in use at these sites generate images that cannot be stored in the PACS and cannot be managed in a centralized manner without DICOM standardization modules. Furthermore, the imaging modalities being used in such smaller centers are expensive and unlikely to be replaced, making DICOM compliance untenable. With this in mind, this paper describes the design, development, and implementation of a management system for medical diagnostic imaging, based on the DICOM standard and adapted to the needs of a small hospital. The system is currently being implemented in the San Rafael Hospital at A Coruna in Spain, and integrated with the existing hospital information system (HIS). We have studied the networking infrastructure of the hospital and its available image generation devices, and have subsequently carried out a series of measurements including transmission times, image file size, compression ratios, and many others that allow us to analyze the behavior of the system. Results obtained from these investigations demonstrate both the flexibility of using such a "small-hospital" DICOM-based framework as well as the relative cost-effectiveness of the system. In this regard, the approach, described herein, might serve as a model for other small, and possibly mid-sized, medical centers. PMID:17603833

  3. Cyclotron Production of Technetium-99m

    NASA Astrophysics Data System (ADS)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  4. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases

    PubMed Central

    Yang, Xia; Ye, Xin; Zheng, Aimin; Huang, Guanghui; Ni, Xiang; Wang, Jiao; Han, Xiaoying; Li, Wenhong; Wei, Zhigang

    2014-01-01

    Purpose To retrospectively evaluate safety and effectiveness of CT-guided percutaneous microwave ablation (MWA) in 47 patients with medically inoperable stage I peripheral non-small cell lung cancer (NSCLC). Methods From February 2008 to October 2012, 47 patients with stage I medically inoperable NSCLC were treated in 47 MWA sessions. The clinical outcomes were evaluated. Complications after MWA were also summarized. Results At a median follow-up period of 30 months, the median time to the first recurrence was 45.5 months. The local control rates at 1, 3, 5 years after MWA were 96%, 64% and 48%, respectively. The median cancer-specific and median overall survivals were 47.4 months and 33.8 months. The overall survival rates at 1, 2, 3 and 5 years after MWA were 89%, 63%, 43%, and 16 %, respectively. Tumors ≤3.5 cm were associated with better survival than were tumors >3.5 cm. The complications after MWA included pneumothorax (63.8%), hemoptysis (31.9%), pleural effusion (34%), pulmonary infection (14.9%), and bronchopleural fistula (2.1%). Conclusions MWA is safe and effective for the treatment of medically inoperable stage I peripheral NSCLC. PMID:24965604

  5. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  6. Making a business case for small medical practices to maintain quality while addressing racial healthcare disparities.

    PubMed

    Dunston, Frances J; Eisenberg, Andrew C; Lewis, Evelyn L; Montgomery, John M; Ramos, Diana; Elster, Arthur

    2008-11-01

    Various reports have documented variations in quality of care that occur among racial and ethnic populations, even after accounting for socioeconomic factors and health insurance status. Although quality improvement initiatives are often touted as the answer to healthcare disparities, researchers have questioned whether a business case exists that supports this notion. We assess various barriers and incentives for using quality improvement to address racial and ethnic healthcare disparities in small-to-medium-sized practices. We believe that although both indirect and direct cost incentives may exist, a favorable business case for small private practices cannot be made unless there are additional financial incentives. The business community can work with health plans to provide these incentives. PMID:19024229

  7. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  8. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  9. Biomedical applications of cyclotrons and review of commercially available models.

    PubMed

    Birattari, C; Bonardi, M; Ferrari, A; Milanesi, L; Silari, M

    1987-01-01

    The growing use of cyclotrons in biomedicine, both for clinical and research purposes and in particular for the production of short-lived radionuclides which are extremely useful in nuclear medicine diagnosis, has reached a stage in which commercial companies are able to offer several models with different performances, in order to satisfy the demand of different users. Many of these commercially produced accelerators are installed all over the world and some of them have been operating for several years, demonstrating that this category of machine has reached a high degree of reliability. A brief description of the operating principle of the cyclotron is presented, together with an illustration of its possible applications in the medical field. A list of the models presently available on the market is given and the installation problems and the criteria to be followed in the choice of a model are discussed. Finally, likely future developments in the field are briefly discussed. PMID:2824778

  10. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  11. The Effect of Student- and Teacher-Centered Small-Group Learning in Medical School on Knowledge Acquisition, Retention and Application.

    ERIC Educational Resources Information Center

    Kolars, Joseph C.; And Others

    1997-01-01

    Compares the effects of two types of small-group instruction on retention and application of gastroenterology knowledge during a gastroenterology pathophysiology course taught to 198 second-year medical students. Concludes that the specific format of small-group instruction appears to have little impact on retention or application of…

  12. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  13. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  14. Brandon/Hill selected list of books and journals for the small medical library.

    PubMed Central

    Hill, D R

    1999-01-01

    The interrelationship of print and electronic media in the hospital library and its relevance to the "Brandon/Hill Selected List" in 1999 are addressed in the updated list (eighteenth version) of 627 books and 145 journals. This list is intended as a selection guide for the small or medium-size library in a hospital or similar facility. More realistically, it can function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. Due to continuing requests from librarians, a "minimal core" book collection consisting of 82 titles has been pulled out from the 214 asterisked (*) initial-purchase books and marked with daggers ([symbol: see text]). To purchase the entire collection of books and to pay for 1999 journal subscriptions would require $114,900. The cost of only the asterisked items, books and journals, totals $49,100. The "minimal core" book collection costs $13,200. PMID:10219475

  15. Percutaneous radiofrequency ablation for medically inoperable patients with clinical stage I non-small cell lung cancer

    PubMed Central

    Liu, Baodong; Liu, Lei; Hu, Mu; Qian, Kun; Li, Yuanbo

    2015-01-01

    Background A retrospective evaluation of percutaneous radiofrequency ablation (RFA) in medically inoperable patients with clinical stage I non-small cell lung cancer (NSCLC). Methods Between 2008 and 2014, 29 medically inoperable patients with clinical stage I NSCLC underwent percutaneous RFA. We evaluated the feasibility, safety, and effectiveness. Results There were 18 men and 11 women with a median age of 78.0 years (range 56–85), mean 76.0 years. No procedure-related deaths occurred in any of the 33 ablation procedures. The mean follow-up was 25 months. The incidence of local tumor progression was 21.0% at 25 months of median time to progression after the initial RFA. The mean overall survival (OS) was 57 months (95% confidence interval (CI) 44–70 months). The mean cancer-specific survival CSS was 63 months (95% CI 50–75 months). OS was 90.5% ± 6.4% at one year, 76.4% ± 10.7% at two, and 65.5% ± 13.6% at three years. CSS was 95.2% ± 4.6% at one, 86.6% ± 9.3% at two, and 74.2% ± 13.9% at three years in all patients. The survival for stage IA and IB cancers were 87.5% and 92.3% at one, 87.5% and 73.4% at two, and 87.5% and 58.7% at three years, respectively. Survival rates were not significantly different between the two groups (P = 0.596), with mean survival times of 65 (95% CI: 51–79 months) and 55 months (95% CI: 38–71 months), respectively. Conclusion Percutaneous RFA is a safe, feasible, and effective procedure in medically inoperable clinical stage I NSCLC patients. PMID:26273379

  16. Duodenal Aspirates for Small Intestine Bacterial Overgrowth: Yield, PPIs, and Outcomes after Treatment at a Tertiary Academic Medical Center.

    PubMed

    Franco, Diana L; Disbrow, Molly B; Kahn, Allon; Koepke, Laura M; Harris, Lucinda A; Harrison, M Edwyn; Crowell, Michael D; Ramirez, Francisco C

    2015-01-01

    Duodenal aspirates are not commonly collected, but they can be easily used in detection of small intestinal bacterial overgrowth (SIBO). Proton pump inhibitor (PPI) use has been proposed to contribute to the development of SIBO. We aimed to determine the yield of SIBO-positive cultures detected in duodenal aspirates, the relationship between SIBO and PPI use, and the clinical outcomes of patients identified by this method. In a retrospective study, we analyzed electronic medical records from 1263 consecutive patients undergoing upper endoscopy at a tertiary medical center. Aspirates were collected thought out the third and fourth portions of the duodenum, and cultures were considered to be positive for SIBO if they produced more than 100,000 cfu/mL. Culture analysis of duodenal aspirates identified SIBO in one-third of patients. A significantly higher percentage of patients with SIBO use PPIs than patients without SIBO, indicating a possible association. Similar proportions of patients with SIBO improved whether or not they received antibiotic treatment, calling into question the use of this expensive therapy for this disorder. PMID:25694782

  17. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  18. Ion cyclotron waves at Titan

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  19. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  20. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  1. Cyclotrons for the production of radioactive beams

    SciTech Connect

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs.

  2. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  3. The irradiation facility at the AGOR cyclotron

    NASA Astrophysics Data System (ADS)

    Brandenburg, Sytze; Ostendorf, Reint; Hofstee, Mariet; Kiewiet, Harry; Beijers, Hans

    2007-08-01

    The KVI is conducting radiobiology research using protons up to 190 MeV from the superconducting AGOR cyclotron in collaboration with the University Medical Center Groningen (UMCG) since 1998. Using the same set-up, we have started irradiations for radiation hardness studies of detectors and components for the European Space Agency (ESA) and industrial parties. For these irradiations, we use either mono-energetic protons or a simulated solar flare energy spectrum with fluxes up to 5 × 108 protons cm-2 s-1. Furthermore, tests of radiation effects such as single event upsets, are being performed with intensities down to a few particles/s. Different energies are achieved by degrading the primary beam energy. We are currently developing the capability for heavy ion irradiations in air with beams up to Xe at beam energies between 15 and 45 MeV per nucleon. Performing the irradiations in air simplifies handling and monitoring of the device under test. The high energy allows penetration to the active layer of electronic devices, without modifications to the chip housing. The different ions provide a wide range in LET.

  4. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  5. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.

    PubMed

    Karimaghaloo, Zahra; Arnold, Douglas L; Arbel, Tal

    2016-01-01

    Detection and segmentation of large structures in an image or within a region of interest have received great attention in the medical image processing domains. However, the problem of small pathology detection and segmentation still remains an unresolved challenge due to the small size of these pathologies, their low contrast and variable position, shape and texture. In many contexts, early detection of these pathologies is critical in diagnosis and assessing the outcome of treatment. In this paper, we propose a probabilistic Adaptive Multi-level Conditional Random Fields (AMCRF) with the incorporation of higher order cliques for detecting and segmenting such pathologies. In the first level of our graphical model, a voxel-based CRF is used to identify candidate lesions. In the second level, in order to further remove falsely detected regions, a new CRF is developed that incorporates higher order textural features, which are invariant to rotation and local intensity distortions. At this level, higher order textures are considered together with the voxel-wise cliques to refine boundaries and is therefore adaptive. The proposed algorithm is tested in the context of detecting enhancing Multiple Sclerosis (MS) lesions in brain MRI, where the problem is further complicated as many of the enhancing voxels are associated with normal structures (i.e. blood vessels) or noise in the MRI. The algorithm is trained and tested on large multi-center clinical trials from Relapsing-Remitting MS patients. The effect of several different parameter learning and inference techniques is further investigated. When tested on 120 cases, the proposed method reaches a lesion detection rate of 90%, with very few false positive lesion counts on average, ranging from 0.17 for very small (3-5 voxels) to 0 for very large (50+ voxels) regions. The proposed model is further tested on a very large clinical trial containing 2770 scans where a high sensitivity of 91% with an average false positive

  6. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  7. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  8. Use of Modified SOAP Notes and Peer-Led Small-Group Discussion in a Medical Physiology Course: Addressing the Hidden Curriculum

    ERIC Educational Resources Information Center

    Kibble, Jonathan; Hansen, Penelope A.; Nelson, Loren

    2006-01-01

    Peer leading of small-group discussion of cases; use of modified subjective, objective, assessment of physiology (SOAP) notes; and opportunities for self-assessment were introduced into a Medical Physiology course to increase students' awareness and practice of professional behaviors. These changes arose from faculty members' understanding of the…

  9. Engaging with economic evaluation methods: insights from small and medium enterprises in the UK medical devices industry after training workshops

    PubMed Central

    2012-01-01

    Background With increased governmental interest in value assessment of technologies and where medical device manufacturers are finding it increasingly necessary to become more familiar with economic evaluation methods, the study sought to explore the levels of health economics knowledge within small and medium-sized enterprises (SMEs) and to scope strategies they employ to demonstrate the value of their products to purchasers. Methods A short questionnaire was completed by participants attending one of five workshops on product development in the medical device sector that took place in England between 2007 and 2011. From all responses obtained, a large proportion of participants were based in SMEs (N = 43), and these responses were used for the analysis. Statistical analysis using non-parametric tests was performed on questions with approximately interval scales. Qualitative data from participant responses were analysed to reveal emerging themes. Results The questionnaire results revealed that 60% of SME participants (mostly company directors or managers, including product or project managers) rated themselves as having low or no knowledge of health economics prior to the workshops but the rest professed at least medium knowledge. Clinical trials and cost analyses or cost-effectiveness studies were the most highly cited means by which SMEs aim to demonstrate value of products to purchasers. Purchasers were perceived to place most importance on factors of safety, expert opinion, cost-effectiveness and price. However many companies did not utilise formal decision-making tools to prioritise these factors. There was no significant dependence of the use of decision-making tools in general with respect to professed knowledge of health economics methods. SMEs did not state a preference for any particular aspect of potential value when deciding whether to develop a product. A majority of SMEs stated they would use a health economics tool. Research and development

  10. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  11. Design study of an ultra-compact superconducting cyclotron for isotope production

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  12. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  13. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  14. Electron cyclotron wave generation by relativistic electrons

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1994-01-01

    We show that an energetic electron distribution which has a temperature anisotropy (T perpendicular to b is greater than T parallel to b), or which is gyrating about a DC magnetic field, can generate electron cyclotron waves with frequencies below the electron cyclotron frequency. Relativistic effects are included in solving the dispersion equation and are shown to be quantitatively important. The basic idea of the mechanism is the coupling of the beam mode to slow waves. The unstable electron cyclotron waves are predominantly electromagnetic and right-hand polarized. For a low-density plasma in which the electron plasma frequency is less than the electron cyclotron frequency, the excited waves can have frequencies above or below the electron plasma frequency, depending upon the parameters of the energetic electron distribution. This instability may account for observed Z mode waves in the polar magnetosphere of the Earth and other planets.

  15. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A.; Scott, Jill R.; McJunkin, Timothy R.

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  16. RCNP cyclotron facility and application program

    NASA Astrophysics Data System (ADS)

    Hatanaka, Kichiji

    2013-05-01

    The RCNP cyclotron cascade system consists of K140 AVF cyclotron and K400 ring cyclotron and is providing high quality beams for various experiments. Three kinds of neutron sources are developed for applications as well as fundamental physics. They provide monoenergetic neutrons at 10-400 MeV, white neutrons with the same energy spectra as terrestrial neutrons on the earth, and ultra cold neutrons with energies below 210 neV. There are increasing demands for high intensity beams and even to improve the quality. In order to increase the physics research opportunities, a new injector cyclotron is proposed, which has four separated sector magnets and two accelerating cavities. Sector magnets are designed to use High Temperature Superconducting (HTS) wire. At RCNP, we have been developing magnets with HTS wires for a decade.

  17. Application of compact electron cyclotron resonance ion source

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Ogawa, H.; Hojo, S.; Kubo, T.; Kato, Y.; Biri, S.; Fekete, E.; Yoshida, Y.; Drentje, A. G.

    2008-02-15

    The compact electron cyclotron resonance (ECR) ion source with a permanent magnet configuration (Kei2 source) has been developed at National Institute of Radiological Sciences for a new carbon therapy facility. The Kei2 source was designed for production of C{sup 4+} ions; its performance such as beam intensity and stability has already reached the medical requirements. Therefore, the prototype development of the source for medical use is essentially finished. Recently, we have started a few studies on other applications of the source. One is the production of fullerenes in the ECR plasma and modified fullerenes with various atoms for new materials. A second application is the production of multiply charged ions (not only carbon) for ion implantation. In this paper, some basic experiments for these applications are reported.

  18. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  19. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  20. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  1. On the electrically detected cyclotron resonance of holes in silicon nanostructures

    SciTech Connect

    Bagraev, N. T. Gets, D. S.; Danilovsky, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M.

    2013-04-15

    The cyclotron resonance in semiconductor nanostructures is electrically detected for the first time without an external cavity, a source, and a detector of microwave radiation. An ultranarrow p-Si quantum well on an n-Si (100) surface confined by superconducting heavily boron-doped {delta}-shaped barriers is used as the object of investigation and provides microwave generation within the framework of the nonstationary Josephson effect. The cyclotron resonance is detected upon the presence of a microcavity, which is incorporated into the quantum-well plane, by measuring the longitudinal magnetoresistance under conditions of stabilization of the source-drain current. The cyclotron-resonance spectra and their angular dependences measured in a low magnetic field identify small values of the effective mass of light and heavy holes in various 2D subbands due to the presence of edge channels with a high mobility of carriers.

  2. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    SciTech Connect

    Cao, Yun Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  3. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  4. Oak Ridge Isotope Production Cyclotron Facility and Target Handling

    SciTech Connect

    Bradley, Eric Craig; Varma, Venugopal Koikal; Egle, Brian; Binder, Jeffrey L; Mirzadeh, Saed; Tatum, B Alan; Burgess, Thomas W; Devore, Joe; Rennich, Mark; Saltmarsh, Michael John; Caldwell, Benjamin Cale

    2011-01-01

    Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

  5. Small Group Learning in Medical Education: A Second Look at the Springer, Stanne, and Donovan Meta-Analysis.

    ERIC Educational Resources Information Center

    Colliver, Jerry A.; Feltovich, Paul J.; Verhulst, Steven J.

    2003-01-01

    Reviews the studies on which a meta-analysis by Springer, Stanne, and Donovan (1999) were based; the meta-analysis had concluded that small group learning in science, mathematics, engineering, and technology education is effective. Concludes that the meta-analysis' call for more widespread implementation of small group learning is not supported.…

  6. Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    Burnier, R. C.; Freiser, B. S.

    1979-01-01

    Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)

  7. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  8. Computer modeling of a compact isochronous cyclotron

    NASA Astrophysics Data System (ADS)

    Smirnov, V. L.

    2015-11-01

    The computer modeling methods of a compact isochronous cyclotron are described. The main stages of analysis of accelerator facilities systems are considered. The described methods are based on theoretical fundamentals of cyclotron physics and mention highlights of creation of the physical project of a compact cyclotron. The main attention is paid to the analysis of the beam dynamics, formation of a magnetic field, stability of the movement, and a realistic assessment of intensity of the generated bunch of particles. In the article, the stages of development of the accelerator computer model, analytical ways of assessment of the accelerator parameters, and the basic technique of the numerical analysis of dynamics of the particles are described.

  9. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  10. Cyclotron maser emission: Stars, planets, and laboratory

    SciTech Connect

    Vorgul, I.; Cairns, R. A.; Kellett, B. J.; Bingham, R.; Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.

    2011-05-15

    This paper is a review of results by the group over the past decade on auroral kilometric radiation and similar cyclotron emissions from stars and planets. These emissions are often attributed to a horseshoe or crescent shaped momentum distribution of energetic electrons moving into the convergent magnetic field which exists around polar regions of dipole-type stars and planets. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution does indeed produce cyclotron emission at a frequency just below the local cyclotron frequency, with polarization close to X-mode and propagating nearly perpendicularly to the beam motion. We discuss recent developments in the theory and simulation of the instability including addressing a radiation escape problem and the effect of competing instabilities, relating these to the laboratory, space, and astrophysical observations.

  11. Collegiate-Based Emergency Medical Service: Impact on Alcohol-Related Emergency Department Transports at a Small Liberal Arts College

    ERIC Educational Resources Information Center

    Rosen, Joshua B.; Olson, Mark H.; Kelly, Marianne

    2012-01-01

    Objective: The authors examined the impact of a collegiate-based emergency medical service (CBEMS) on the frequency of emergency department (ED) transports. Participants: Students transported to the ED for acute alcohol intoxication during the Fall 2008 and the Fall 2009 semesters (N = 50). Methods: The frequency of students receiving…

  12. General Electric PETtrace cyclotron as a neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Bosko, Andrey

    This research investigates the use of a PETtrace cyclotron produced by General Electric (GE) as a neutron source for boron neutron capture therapy (BNCT). The GE PETtrace was chosen for this investigation because this type of cyclotron is popular among nuclear pharmacies and clinics in many countries; it is compact and reliable; it produces protons with energies high enough to produce neutrons with appropriate energy and fluence rate for BNCT and it does not require significant changes in design to provide neutrons. In particular, the standard PETtrace 18O target is considered. The cyclotron efficiency may be significantly increased if unused neutrons produced during radioisotopes production could be utilized for other medical modalities such as BNCT at the same time. The resulting dose from the radiation emitted from the target is evaluated using the Monte Carlo radiation transport code MCNP at several depths in a brain phantom for different scattering geometries. Four different moderating materials of various thicknesses were considered: light water, carbon, heavy water, arid Fluental(TM). The fluence rate tally was used to calculate photon and neutron dose, by applying fluence rate-to-dose conversion factors. Fifteen different geometries were considered and a 30-cm thick heavy water moderator was chosen as the most suitable for BNCT with the GE PETtrace cyclotron. According to the Brookhaven Medical Research Reactor (BMRR) protocol, the maximum dose to the normal brain is set to 12.5 RBEGy, which for the conditions of using a heavy water moderator, assuming a 60 muA beam current, would be reached with a treatment time of 258 min. Results showed that using a PETtrace cyclotron in this configuration provides a therapeutic ratio of about 2.4 for depths up to 4 cm inside a brain phantom. Further increase of beam current proposed by GE should significantly improve the beam quality or the treatment time and allow treating tumors at greater depths.

  13. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  14. Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: Simulations against experimental measurements

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Oehlke, Elisabeth; Mostacci, Domiziano; Schaffer, Paul; Trinczek, Michael; Hoehr, Cornelia

    2016-01-01

    The Monte Carlo code FLUKA is used to simulate the production of a number of positron emitting radionuclides, 18F, 13N, 94Tc, 44Sc, 68Ga, 86Y, 89Zr, 52Mn, 61Cu and 55Co, on a small medical cyclotron with a proton beam energy of 13 MeV. Experimental data collected at the TR13 cyclotron at TRIUMF agree within a factor of 0.6 ± 0.4 with the directly simulated data, except for the production of 55Co, where the simulation underestimates the experiment by a factor of 3.4 ± 0.4. The experimental data also agree within a factor of 0.8 ± 0.6 with the convolution of simulated proton fluence and cross sections from literature. Overall, this confirms the applicability of FLUKA to simulate radionuclide production at 13 MeV proton beam energy.

  15. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    NASA Astrophysics Data System (ADS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H. U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J. P. M.

    2001-12-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design in [1], we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI [2]. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components.

  16. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  17. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  18. Tokamak startup with electron cyclotron heating

    SciTech Connect

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  19. Imaging Cyclotron Orbits of Electrons in Graphene.

    PubMed

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-01

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip. PMID:26845290

  20. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  1. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  2. Numerical investigation of auroral cyclotron maser processes

    SciTech Connect

    Speirs, D. C.; Ronald, K.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2010-05-15

    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of auroral kilometric radiation--an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. Particle-in-cell code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared with waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68 GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.

  3. CT-guided permanent brachytherapy for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC).

    PubMed

    Martínez-Monge, Rafael; Pagola, María; Vivas, Isabel; López-Picazo, José María

    2008-08-01

    Seven patients with early stage T1N0M0 NSCLC who had medical contraindications for surgical resection were treated with CT-guided percutaneous implantation of (103)Pd or (125)I seeds. After the procedure, two patients developed pneumothorax and hemo/pneumothorax that was managed with aspirative drainage. One patient developed a focal pneumonitis 3 months after the procedure. After a median follow-up of 13 months (4.6-41.0+ months), no patient has developed local or regional failure. PMID:18243409

  4. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  5. Development of an Accelerator Mass Spectrometer based on a Cyclotron

    SciTech Connect

    Kim, Dogyun; Bhang, Hyeongchan; Kim, Jongwon

    2011-12-13

    An accelerator mass spectrometer based on a cyclotron has been developed, and a prototype of the injection beam line has been constructed. Mass resolution of the cyclotron is designed to be over 4000. A sawtooth RF buncher in the beam line and a flat-topping RF system for the cyclotron were utilized to enhance beam transmission efficiency, which is a primary factor for improvement compared to previous cyclotron mass spectrometers. The injection beam line comprises an ion source, Einzel lens, RF buncher, 90 deg. dipole magnet and a slit box containing beam diagnostic devices. A carbon beam was measured at the location of the slit box, and beam phase spaces will be measured. The design of a cyclotron magnet was done, and orbit tracking was carried out using cyclotron optics codes. A scheme of radial injection was chosen to place a beam on the equilibrium orbit of the cyclotron. The injection scheme will be optimized after the beam measurements are completed.

  6. Proton Beam Therapy for Patients With Medically Inoperable Stage I Non-Small-Cell Lung Cancer at the University of Tsukuba

    SciTech Connect

    Nakayama, Hidetsugu; Sugahara, Shinji; Tokita, Mari; Satoh, Hiroaki; Tsuboi, Koji; Ishikawa, Shigemi; Tokuuye, Koichi

    2010-10-01

    Purpose: To evaluate in a retrospective review the role of proton beam therapy for patients with medically inoperable Stage I non-small-cell lung cancer (NSCLC). Patients and Methods: From November 2001 to July 2008, 55 medically inoperable patients with Stage I NSCLC were treated with proton beam therapy. A total of 58 (T1/T2, 30/28) tumors were treated. The median age of study participants was 77 years (range, 52-86 years). A total dose of 66 GyE in 10 fractions was given to peripherally located tumors and 72.6 GyE in 22 fractions to centrally located tumors. Results: The rates (95% confidence interval) of overall and progression-free survival of all patients and of local control of all tumors at 2 years were 97.8% (93.6-102.0%), 88.7% (77.9-99.5%), and 97.0% (91.1-102.8%), respectively. There was no statistically significant difference in progression-free rate between T1 and T2 tumors (p = 0.87). Two patients (3.6%) had deterioration in pulmonary function, and 2 patients (3.6%) had Grade 3 pneumonitis. Conclusion: Proton beam therapy was effective and well tolerated in medically inoperable patients with Stage I NSCLC.

  7. Results from an exploratory study to identify the factors that contribute to success for UK medical device small- and medium-sized enterprises.

    PubMed

    Hourd, P C; Williams, D J

    2008-07-01

    This paper reports the results from an exploratory study that sets out to identify and compare the strategic approaches and patterns of business practice employed by 14 UK small- and medium-sized enterprises to achieve success in the medical device sector of the health-care industry. An interview-based survey was used to construct individual case studies of the medical device technology (MDT) companies. A cross-case analysis was performed to search for patterns and themes that cut across these individual cases. Exploratory results revealed the heterogeneity of MDT companies and the distinctive features of the MDT innovation process that emphasize the importance of a strategic approach for achieving milestones in the product development and exploitation process and for creating value for the company and its stakeholders. Recognizing the heterogeneity of MDT companies, these exploratory findings call for further investigation to understand better the influence of components of the MDT innovation process on the commercialization life cycle and value trajectory. This is required to assist start-up or spin-out MDT companies in the UK and worldwide to navigate the critical transitions that determine access to financial and consumer markets and enhance the potential to build a successful business. This will be important not only for bioscience-based companies but also for engineering-based companies aiming to convert their activities into medical devices and the health- and social-care market. PMID:18756690

  8. Cost-Effectiveness Analysis of Stereotactic Body Radiotherapy and Radiofrequency Ablation for Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Sher, David J.

    2011-12-01

    Purpose: The standard management of medically inoperable Stage I non-small-cell lung cancer (NSCLC) conventionally has been fractionated three-dimensional conformal radiation therapy (3D-CRT). The relatively poor local control rate and inconvenience associated with this therapy have prompted the development of stereotactic body radiotherapy (SBRT), a technique that delivers very high doses of irradiation typically over 3 to 5 sessions. Radiofrequency ablation (RFA) has also been investigated as a less costly, single-day therapy that thermally ablates small, peripheral tumors. The cost-effectiveness of these three techniques has never been compared. Methods and Materials: We developed a Markov model to describe health states of 65-year-old men with medically inoperable NSCLC after treatment with 3D-CRT, SBRT, and RFA. Given their frail state, patients were assumed to receive supportive care after recurrence. Utility values, recurrence risks, and costs were adapted from the literature. Sensitivity analyses were performed to model uncertainty in these parameters. Results: The incremental cost-effectiveness ratio for SBRT over 3D-CRT was $6,000/quality-adjusted life-year, and the incremental cost-effectiveness ratio for SBRT over RFA was $14,100/quality-adjusted life-year. One-way sensitivity analysis showed that the results were robust across a range of tumor sizes, patient utility values, and costs. This result was confirmed with probabilistic sensitivity analyses that varied local control rates and utilities. Conclusion: In comparison to 3D-CRT and RFA, SBRT was the most cost-effective treatment for medically inoperable NSCLC over a wide range of treatment and disease assumptions. On the basis of efficacy and cost, SBRT should be the primary treatment approach for this disease.

  9. Optimization of A Commercial PET Cyclotron For Increased 18F- Production

    SciTech Connect

    Bergstrom, Jan Olof; Eriksson, Tomas

    2003-08-26

    Commercial cyclotron systems used for 18F- production through 18O (p, n) 18F reaction face several conflicting requirements that include: reliability/uptime, quantity of consumables, safety, cost and yield. With commercialization of PET tracer distribution, higher yield has become one of the most important requirements. Maximizing yield for commercial cyclotrons require engineering trade-off amongst several requirements, and often, to be conservative, significant design margin is kept while field feedback is collected. With maturing of technology, substantial experience has been obtained for a commercial cyclotron (PETtrace, GE Medical Systems), which is in use for several years. In this paper, we describe key elements of PETtrace commercial cyclotron technology undergoing enhancements, and share our works-in-progress experiments in performing critical engineering trade-offs to improve 18F- yield. Three key parameters were tuned in this study within the design margin of the current equipment. First, we designed a second-generation target assembly with optimized 18O water volume for accepting increased beam currents while maintaining cooling performance. Second, we increased the beam current of the ion source. And finally, a new RF driver amplifier was designed to enhance the RF power ratings to enable higher beam currents. Initial tests performed in the factory indicate substantially higher yield performance (> 50%) reaching a peak yield of over 4 Ci per hour of bombardment in the new target. On dual targets, this extrapolates to 13.5 Ci/2hr of bombardment for a total target current of 120 {mu}A. A target current of 100 {mu}A is available in the existing design thus providing an 18F- production capacity exceeding 11 Ci/2hr. The preliminary experimental results are promising and illustrate successful exploitation of design margin to achieve increased yield for a commercial cyclotron. Long-term studies to assess impact on life of ion source are underway along with a

  10. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  11. Production of flickering aurora and field-aligned electron flux by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Temerin, M.; Mcfadden, J.; Boehm, M.; Carlson, C. W.; Lotko, W.

    1986-01-01

    Recent observations have suggested that flickering aurora is produced by a modulation of the field-aligned component of the electron flux within an auroral arc. It is proposed that a portion of the field-aligned electrons are of ionospheric origin and that these electrons are accelerated and their flux modulated by electromagnetic ion cyclotron waves that occur below the main acceleration region on auroral arc field lines. A model of the electromagnetic ion cyclotron wave shows that the parallel phase velocity of the wave increase as the wave propagates toward the ionosphere. A test particle calculation shows that ionospheric electrons trapped or reflected by the wave are accelerated to energies of several keV and that their flux is modulated at the wave frequency. The relative amplitudes of the model wave electric fields are consistent with the observations of small-scale low-frequency ionospheric and magnetospheric electric fields near auroral arcs of approximately 10 mV/m and 100 mV/m, respectively. The large-amplitude ion cyclotron waves also produce a ponderomotive force and a self-consistent ambipolar electric field. Energy considerations show that the downward energy flux in the electromagnetic ion cyclotron wave can be several percent of the total downward auroral electron energy flux.

  12. Phase-resolved cyclotron spectroscopy of polars

    NASA Astrophysics Data System (ADS)

    Campbell, Ryan

    In this thesis we use phase-resolved cyclotron spectroscopy to study polars. Polars are a subset of cataclysmic variables where the primary WD is highly magnetic. In this case, the accretion flow is constrained along the magnetic field lines and eventually deposited on the WD, where the accreting material interacts with the atmosphere, forming a standing hydrodynamic shock at a location termed the accretion region, and emitting cyclotron radiation. Due to its field strength, cyclotron radiation from polars falls at either UV, optical or NIR wavelengths. While a substantial amount of optical cyclotron spectra have been published on polars, the NIR remains relatively unstudied. In this thesis, we present NIR spectroscopy for fifteen polars. Additionally, while a single cyclotron spectrum is needed to constrain the shock parameters, phase- resolved spectroscopy allows for a more in-depth analysis of the shock structure and the geometry of the accretion region. Of the fifteen polars observed, eight yielded spectra of adequate quality to be modeled in this manner: EF Eri, EQ Cet, AN UMa, VV Pup, AM Her, ST LMi, MR Ser, and MQ Dra. Initially, we used the industry standard "Constant Lambda (CL)" code to model each object. The code is fast, but produces only globally averaged values of the salient shock parameters: B - the magnetic field strength, kT - the plasma temperature, logL - the "size parameter" of the accretion column, and TH- the viewing angle between the observer and the magnetic field. For each object we present CL models for our NIR phase-resolved cyclotron spectra. Subsequently, we use a more advanced "Structured-Shock" code built by Fischer & Beuermann (2001)("F&B") to remodel three objects: EQ Cet, MQ Dra, and EF Eri. The F&B code allows for input of more physical parameters and most importantly does ray tracing through a simulated one-dimensional accretion column. To determine the outgoing spectrum, temperature and velocity profiles are needed to

  13. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  14. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGESBeta

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  15. Molecular, cellular and medical aspects of the action of nutraceuticals and small molecules therapeutics: from chemoprevention to new drug development.

    PubMed

    Colic, M; Pavelic, K

    2002-01-01

    Dietary supplements, functional foods and their concentrated, sometimes purified, active forms, the so-called nutraceuticals, are becoming increasingly popular throughout the world. Small molecules that regulate signal transduction cascades and gene expression are being tested by many pharmaceutical companies. A rapidly and exponentially growing industry (close to $30 billion in 1999 worldwide) exists to commercialize and exploit this interest. However, the scientific basis of the action of such unproved products is in the very early stages of development. While supporters claim they produce miracle cures, opponents argue that such unproved agents do more harm than good. PMID:12635491

  16. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    SciTech Connect

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Chatziantonaki, Ioanna; Vlahos, Loukas; Strintzi, Dafni

    2009-11-15

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  17. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  18. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  19. Ion cyclotron waves observed near the plasmapause

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Mcpherron, R. L.; Russell, C. T.

    1986-01-01

    Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 - 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width about 1 earth radius and penetrated about 1 earth radius into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He(+) and the warm (0.1-16 keV/e) O(+) and He(+) heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered as an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.

  20. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  1. Cyclotron emission from nonuniformly magnetized plasmas

    SciTech Connect

    Swanson, D.G.; Shvets, V.F. )

    1992-05-18

    A new quantitative representation of the generalized Kirchhoff's law relating the emission from each propagating branch to the absorption along the corresponding branch is established, including for the first time the effects of inhomogeneous magnetic fields on cyclotron and synchrotron radiation from mode conversion theory. The concept of optical depth is revised to include effects of reflection and conversion in addition to transmission. Via the use of a variational principle, the source distribution function for the inhomogeneous emitting layer is calculated.

  2. Transparency of Magnetized Plasma at Cyclotron Frequency

    SciTech Connect

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  3. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  4. Laboratory study of auroral cyclotron emission processes

    NASA Astrophysics Data System (ADS)

    Ronald, Kevin

    2007-11-01

    Electrons encounter an increasing magnetic field and increase in pitch angle as they descend towards the auroral ionosphere, according to the conservation of the magnetic moment. This process results in a horseshoe shaped distribution function in electron velocity space which has been observed by satellites [1]. Research has shown this distribution to be unstable to a cyclotron maser instability [2] and the emitted Auroral Kilometric Radiation is observed to be polarised in the extraordinary mode. Experimental results are presented based on an electron beam of energy 75keV having a cyclotron frequency of 4.45GHz, compressed using magnet coils to mimic the naturally occurring phenomenon. The emitted radiation spectrum was observed to be close to the cyclotron frequency. Electron transport measurements confirmed that the horseshoe distribution function was obtained. Measurements of the antenna pattern radiated from the output window demonstrated the radiation to be polarised and propagating perpendicular to the static magnetic field. The radiation generation efficiency was estimated to be 2% in close agreement to the numerical predictions of the 2D PiC code KARAT. The efficiency was also comparable with estimates of the astrophysical phenomenon. [1] R. J. Strangeway et al, Geophys. Rev. Lett., 25, 1998, pp. 2065-2068 [2] I Vorgul et al, Physics of Plasmas, 12, 2005, pp. 1-8

  5. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  6. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  7. ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE

    SciTech Connect

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  8. Accelerator Science and Technology in Canada — From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  9. Accelerator Science and Technology in Canada -- From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  10. Current driven electrostatic and electromagnetic ion cyclotron instabilities

    NASA Technical Reports Server (NTRS)

    Forslund, D. W.; Kennel, C. F.; Kindel, J. M.

    1971-01-01

    Growth rates and parameter dependences are calculated for the current driven instabilities of electrostatic (with finite-beta corrections) and electromagnetic ion cyclotron waves. For 0.25 (T sub e)/(T sub i) 2.5, ion cyclotron waves have large growth rates, while ion acoustic waves are still stable. In fusion devices, where electrostatic waves may be stable, electromagnetic ion cyclotron waves are unstable for beta sub i 0.001.

  11. Toxicity and Patterns of Failure of Adaptive/Ablative Proton Therapy for Early-Stage, Medically Inoperable Non-Small Cell Lung Cancer

    SciTech Connect

    Chang, Joe Y.; Komaki, Ritsuko; Wen, Hong Y.; De Gracia, Beth; Bluett, Jaques B.; McAleer, Mary F.; Swisher, Stephen G.; Cox, James D.

    2011-08-01

    Purpose: To analyze the toxicity and patterns of failure of proton therapy given in ablative doses for medically inoperable early-stage non-small cell lung cancer (NSCLC). Methods and Materials: Eighteen patients with medically inoperable T1N0M0 (central location) or T2-3N0M0 (any location) NSCLC were treated with proton therapy at 87.5 Gy (relative biological effectiveness) at 2.5 Gy /fraction in this Phase I/II study. All patients underwent treatment simulation with four-dimensional CT; internal gross tumor volumes were delineated on maximal intensity projection images and modified by visual verification of the target volume in 10 breathing phases. The internal gross tumor volumes with maximal intensity projection density was used to design compensators and apertures to account for tumor motion. Therapy consisted of passively scattered protons. All patients underwent repeat four-dimensional CT simulations during treatment to assess the need for adaptive replanning. Results: At a median follow-up time of 16.3 months (range, 4.8-36.3 months), no patient had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (Grade 2, 67%; Grade 3, 17%), followed by Grade 2 fatigue (44%), Grade 2 pneumonitis (11%), Grade 2 esophagitis (6%), and Grade 2 chest wall pain (6%). Rates of local control were 88.9%, regional lymph node failure 11.1%, and distant metastasis 27.8%. Twelve patients (67%) were still alive at the last follow-up; five had died of metastatic disease and one of preexisting cardiac disease. Conclusions: Proton therapy to ablative doses is well tolerated and produces promising local control rates for medically inoperable early-stage NSCLC.

  12. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    SciTech Connect

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  13. Implementation of the chronic care model in small medical practices improves cardiovascular risk but not glycemic control.

    PubMed

    Frei, Anja; Senn, Oliver; Chmiel, Corinne; Reissner, Josiane; Held, Ulrike; Rosemann, Thomas

    2014-04-01

    OBJECTIVE To test whether the implementation of elements of the Chronic Care Model (CCM) via a specially trained practice nurse leads to an improved cardiovascular risk profile among type 2 diabetes patients. RESEARCH DESIGN AND METHODS This cluster randomized controlled trial with primary care physicians as the unit of randomization was conducted in the German part of Switzerland. Three hundred twenty-six type 2 diabetes patients (age >18 years; at least one glycosylated hemoglobin [HbA1c] level of ≥7.0% [53 mmol/mol] in the preceding year) from 30 primary care practices participated. The intervention included implementation of CCM elements and involvement of practice nurses in the care of type 2 diabetes patients. Primary outcome was HbA1c levels. The secondary outcomes were blood pressure (BP), LDL cholesterol, accordance with CCM (assessed by Patient Assessment of Chronic Illness Care [PACIC] questionnaire), and quality of life (assessed by the 36-item short-form health survey [SF-36]). RESULTS After 1 year, HbA1c levels decreased significantly in both groups with no significant difference between groups (-0.05% [-0.60 mmol/mol]; P = 0.708). Among intervention group patients, systolic BP (-3.63; P = 0.050), diastolic BP (-4.01; P < 0.001), LDL cholesterol (-0.21; P = 0.033), and PACIC subscores (P < 0.001 to 0.048) significantly improved compared with control group patients. No differences between groups were shown in the SF-36 subscales. CONCLUSIONS A chronic care approach according to the CCM and involving practice nurses in diabetes care improved the cardiovascular risk profile and is experienced by patients as a better structured care. Our study showed that care according to the CCM can be implemented even in small primary care practices, which still represent the usual structure in most European health care systems. PMID:24513589

  14. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  15. Cyclotron decay time of a two-dimensional electron gas from 0.4 to 100 K

    NASA Astrophysics Data System (ADS)

    Curtis, Jeremy A.; Tokumoto, Takahisa; Hatke, A. T.; Cherian, Judy G.; Reno, John L.; McGill, Stephen A.; Karaiskaj, Denis; Hilton, David J.

    2016-04-01

    We have studied the cyclotron decay time of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4-100 K) at a fixed magnetic field (±1.25 T ) using terahertz time-domain spectroscopy in a gallium arsenide quantum well with a mobility of μd c=3.6 ×106cm2V-1s-1 and a carrier concentration of ns=2 ×1011cm-2 . We find a cyclotron decay time that is limited by superradiant decay of the cyclotron ensemble and a temperature dependence that may result from both dissipative processes as well as a decrease in ns below 1.5 K . Shubnikov-de Haas characterization determines a quantum lifetime, τq=1.1 ps , which is significantly faster than the corresponding dephasing time, τs=66.4 ps , in our cyclotron data. This is consistent with small-angle scattering as the dominant contribution in this sample, where scattering angles below θ ≤13∘ do not efficiently contribute to dephasing. Above 50 K , the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that result from polar optical phonon scattering.

  16. Control of the Radial Energy Deposition Profile in an Open Magnetic Trap During Electron Cyclotron Plasma Heating

    NASA Astrophysics Data System (ADS)

    Gospodchikov, E. D.; Smolyakova, O. B.

    2016-05-01

    We propose a method for controlling the radial profile of electron cyclotron plasma heating in an axisymmetric magnetic mirror by using minor perturbations of the magnetic field of the mirror. The method is based on the analysis of the ray trajectories behavior near the surface of the electron cyclotron resonance. A way to produce such perturbations by supplementing the system with an additional "quadrupole" pair of magnetic coils is also proposed. The possibility to improve the coupling of radiation with the plasma in an open trap is demonstrated, as well as the possibility to control the energy deposition profile by means of small variations of the current in the additional coils for two basic scenarios of electron cyclotron plasma heating, specifically, longitudinal launching of microwave radiation to the magnetic mirror region and trapping of obliquely launched radiation by the inhomogeneous magnetized-plasma column.

  17. Control of the Radial Energy Deposition Profile in an Open Magnetic Trap During Electron Cyclotron Plasma Heating

    NASA Astrophysics Data System (ADS)

    Gospodchikov, E. D.; Smolyakova, O. B.

    2016-04-01

    We propose a method for controlling the radial profile of electron cyclotron plasma heating in an axisymmetric magnetic mirror by using minor perturbations of the magnetic field of the mirror. The method is based on the analysis of the ray trajectories behavior near the surface of the electron cyclotron resonance. A way to produce such perturbations by supplementing the system with an additional "quadrupole" pair of magnetic coils is also proposed. The possibility to improve the coupling of radiation with the plasma in an open trap is demonstrated, as well as the possibility to control the energy deposition profile by means of small variations of the current in the additional coils for two basic scenarios of electron cyclotron plasma heating, specifically, longitudinal launching of microwave radiation to the magnetic mirror region and trapping of obliquely launched radiation by the inhomogeneous magnetized-plasma column.

  18. Medical Students' Attitudes Toward Non-Adherent Patients Before and After a Simulated Patient-Role Activity and Small-Group Discussion: Revisited

    PubMed Central

    Giordano, Christin; Castiglioni, Analia; Hernandez, Caridad

    2016-01-01

    Introduction This study seeks to explore whether the documented decline in medical student empathy can be prevented or slowed using simulated patient-role activities and small-group discussions about the patient experience of living with a chronic illness. Methods First-year students (M1, n = 118) at the University of Central Florida College of Medicine (UCFCOM) participated in a simulated patient-role activity resembling the experience of a patient with Type 2 diabetes mellitus. The activity included taking daily “medication,” participating in moderate exercise, and maintaining a low carbohydrate diet. At the end of the simulated patient-role activity, students took part in a small-group discussion about their experiences. Students completed the Jefferson Scale of Physician Empathy: Student Version (JSPE:S) before and after the activity. Additionally, fourth-year students (M4) at UCFCOM completed the JSPE:S to serve as the control, as this class completed the curriculum without any simulated patient-role activities. Results A total of 86 responses out of 118 possible M1 participants (73% response rate) were received. Of these, 62 surveys were completed and were therefore used for statistical analysis. A dependent sample t-test revealed no statistically significant increase on pre-activity (M = 111.15, SD = 8.56) and post-activity (M = 111.38, SD = 9.12) empathy scores (p = .78). A positive correlation was revealed to exist between pre- and post-activity empathy scores (r = 0.72, p < 0.001). Empathy comparisons for the full sample M1 post-activity results (n = 62) and the M4 results (n = 16, M = 106.56, SD = 10.61) revealed no statistically significant difference (p = .11). Discussion Although previous authors have shown that patient role-playing activities, such as those performed in this study, should maintain and/or increase empathy in medical students, our findings suggest that on a short-term scale, empathy levels were not affected by the

  19. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  20. Cyclotron Mode Frequency Shifts in Multi-Species Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Affolter, Matthew

    2014-10-01

    Plasmas exhibit a variety of cyclotron modes, which are used in a broad range of devices to manipulate and diagnose charged particles. Here we discuss cyclotron modes in trapped plasmas with a single sign of charge. Collective effects and electric fields shift these cyclotron mode frequencies away from the ``bare'' cyclotron frequencies Ωs ≡ qB /ms c for each species s. These electric fields may arise from applied trap potentials, from space charge including collective effects, and from image charge in the trap walls. We will describe a new laser-thermal cyclotron spectroscopy technique, applied to well-diagnosed pure ion plasmas. This technique enables detailed observations of cos (mθ) surface cyclotron modes with m = 0 , 1, and 2 in near rigid-rotor multi-species ion plasmas. For each species s, we observe cyclotron mode frequency shifts which are dependent on the plasma density through the E × B rotation frequency, and on the charge concentration of species s, in close agreement with recent theory. This includes the novel m = 0 radial ``breathing'' mode, which generates no external electric field except at the plasma ends. These cyclotron frequencies can be used to determine the plasma E × B rotation frequency and the species charge concentrations, in close agreement with our laser diagnostics. Here, this plasma characterization permits a determination of the ``bare'' cyclotron frequencies to an accuracy of 2 parts in 104. These new results give a physical basis for the ``space charge'' and ``amplitude'' calibration equations of cyclotron mass spectroscopy, widely used in molecular chemistry and biology. Also, at high temperatures there is preliminary evidence that radially-standing electrostatic Bernstein waves couple to the surface cyclotron modes, producing new resonant frequencies. Supported by NSF/DOE Partnership grants PHY-0903877 and DE-SC0002451.

  1. Mid-term results of 17-mm St. Jude Medical Regent prosthetic valves in elder patients with small aortic annuli: comparison with 19-mm bioprosthetic valves.

    PubMed

    Teshima, Hideki; Ikebuchi, Masahiko; Sano, Toshikazu; Tai, Ryuta; Horio, Naohiro; Irie, Hiroyuki

    2014-09-01

    This study was designed to compare the mid-term outcomes after aortic valve replacement (AVR) between 17-mm mechanical heart valves (MV) and 19-mm bioprosthetic valves (BV) in elderly patients with small aortic annuli. Between 2000 and 2011, 127 consecutive patients (mean age 79 years; 87 % female) underwent AVR for aortic valve stenosis with a small aortic annulus. 19-mm BV (n = 67) was implanted. When the 19-mm BV did not fit the annulus, 17-mm St. Jude Medical Regent prosthetic mechanical valve (n = 60) was used instead of an aortic root-enlargement procedure. The follow-up rate was 94.0 % in the BV group, and 98.5 % in the MV group. No significant differences in survival rate and valve-related complications were found between the 2 groups. In-hospital mortality rates were 1.5 % (n = 1) in the BV group and 5.0 % (n = 3) in the MV group. Late mortality rates were 3.9 % per patient-years (p-y; n = 8) in the BV group, and 6.0 % per p-y (n = 10) in the MV group. Five-year Kaplan-Meier survival rates were 62 % in the BV group, and 72 % in the MV group (log-rank P = 0.280). Freedom from major adverse valve-related stroke and cerebral bleeding events was 92.5 and 98.5 % in the BV group, and 94.7 and 100 % in the MV group. AVR using 17-mm MV in elder patients with small aortic annuli provided equivalent mid-term clinical results to that with 19-mm BV. PMID:24878870

  2. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Morales, G. J.

    2016-06-01

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3  ×  107 s‑1.

  3. Large-signal theory of gyro traveling wave tubes in cyclotron harmonics

    SciTech Connect

    Nusinovich, G.S.; Li, H. )

    1992-06-01

    A nonlinear theory of gyro traveling wave tubes (gyro-TWT's) at cyclotron harmonics has been developed taking into account the electron velocity spread and the possibility of operating with significant Doppler frequency up-shift (CARM operation). In this paper, the authors will show that the orbital efficiency of the relativistic gyro-TWT operating at the second cyclotron harmonic with large frequency up-conversion may exceed 60%. We also show that the influence of the axial inhomogeneity of the wave field on the relation between amplitudes of electric and magnetic fields of the wave causes small changes in the efficiency of gyro-TWT's. The results obtained demonstrate the sensitivity of the harmonic gyro-TWT efficiency with respect to electron velocity spread at different axial wave numbers. In the final section of the paper the expressions for the gain are derived and discussed.

  4. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGESBeta

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  5. The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Altarawneh, Moaz M; Analytis, James G

    2011-01-14

    Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.

  6. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  7. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  8. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  9. Electron cyclotron emission diagnostics on KSTAR tokamak.

    PubMed

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration. PMID:21033954

  10. Ion Cyclotron Resonance Heating System on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2009-08-01

    Ion cyclotron resonance heating (ICRH) system which will provide at least than 10 MW heating power, with a frequency range from 25 MHz to 100 MHz, is being built up for the EAST. The system includes high-power and wide-frequency radio amplifier, transmission line as well as resonant double loop (RDL) antenna. As a part of this system a sub-ICRH system unit with a ultimate output power of 2.5 MW was set up and employed for heating experiment. The maximum of the launched power reached 200 kW in 2008.

  11. C235-V3 cyclotron for a proton therapy center to be installed in the hospital complex of radiation medicine (Dimitrovgrad)

    NASA Astrophysics Data System (ADS)

    Galkin, R. V.; Gurskii, S. V.; Jongen, Y.; Karamysheva, G. A.; Kazarinov, M. Yu.; Korovkin, S. A.; Kostromin, S. A.; Calderan, J.-M.; Cahay, P.; Mokrenko, S. P.; Morozov, N. A.; Nkongolo, H.; Ol'shevskii, A. G.; Paradis, Y.; Petrov, D. S.; Romanov, V. M.; Samsonov, E. V.; Syresin, E. M.; Shakun, A. N.; Shakun, N. G.; Shirkov, G. D.; Shirkov, S. G.

    2014-06-01

    Proton therapy is an effective method of treating oncologic diseases. In Russia, construction of several centers for proton and ion therapy is slated for the years to come. A proton therapy center in Dimitrovgrad will be the first. The Joint Institute for Nuclear Research (Russia) in collaboration with Ion Beam Application (IBA) (Belgium) has designed an C235-V3 medical proton cyclotron for this center. It outperforms previous versions of commercial IBA cyclotrons, which have already been installed in 11 oncologic hospital centers in different countries. Experimental and calculation data for the beam dynamics in the C235-V3 medical cyclotron are presented. Reasons for beam losses during acceleration are considered, the influence of the magnetic field radial component in the midplane of the accelerator and main resonances is studied, and a beam extraction system is designed. In 2011-2012 in Dubna, the cyclotron was mounted, its magnetic field was properly configured, acceleration conditions were optimized, and beam extraction tests were carried out after which it was supplied to Dimitrovgrad. In the C235-V3 cyclotron, an acceleration efficiency of 72% and an extraction efficiency of 62% have been achieved without diaphragming to form a vertical profile of the beam.

  12. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images. PMID:27260346

  13. Theory of the perpendicular-field cyclotron-resonance anomaly in potassium

    NASA Astrophysics Data System (ADS)

    Lacueva, G.; Overhauser, A. W.

    1986-03-01

    A simple metal, having a spherical Fermi surface, should not exhibit cyclotron resonance when the magnetic field is perpendicular to the surface. Nevertheless, a sharp resonance was observed by Grimes in potassium. This phenomenon can be explained by a charge-density-wave (CDW) broken symmetry. A small cylindrical piece of Fermi surface, bounded by the CDW gap and the first minigap, contains electrons having very small velocity. These electrons provide a mechanism for the anomalous resonance even though their relative concentration is only ~4×10-4. This same group of electrons is responsible for the sharp photoemission peak (reported by Jensen and Plummer) from (110) surfaces of Na and K.

  14. Design Studies for an Ultra High Field K80 Cyclotron

    NASA Astrophysics Data System (ADS)

    Schubert, Jeff; Blosser, Henry

    1996-05-01

    We are investigating the use of a wide-bore, 8 T magnet as a component of an ultra high field cyclotron. Such a machine would use the highest magnetic field of any cyclotron, to date. The K80 `Eight Tesla Cyclotron' would have roughly the same magnetic rigidity (Bρ) as the Oak Ridge Isochronous Cyclotron in a package of only one fourth the radius, with a corresponding reduction in cost. This cyclotron could accelerate particles with a charge state Q/A = 1/4 to a final energy of between 5 and 6 MeV/nucleon, the energy range currently being used to study superdeformed, high angular momentum nuclei that result from glancing collisions. Studies thus far have stressed achieving sufficient vertical focusing (ν_z) despite the high magnetic field level. The high field also reduces the space available for central region structures, which complicates early-turn focusing, orbit centering and the design of the spiral inflector.

  15. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  16. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  17. Lack of independent effect of type 2 diabetes beyond characteristic comorbidities and medications on small muscle mass exercising muscle blood flow and exercise tolerance.

    PubMed

    Poitras, Veronica J; Bentley, Robert F; Hopkins-Rosseel, Diana H; LaHaye, Stephen A; Tschakovsky, Michael E

    2015-08-01

    Persons with type 2 diabetes (T2D) are believed to have reduced exercise tolerance; this may be partly due to impaired exercising muscle blood flow (MBF). Whether there is an impact of T2D on exercising MBF within the typical constellation of comorbidities (hypertension, dyslipidemia, obesity) and their associated medications has not been investigated. We tested the hypothesis that small muscle mass exercise tolerance is reduced in persons with T2D versus Controls (matched for age, body mass index, fitness, comorbidities, non-T2D medications) and that this is related to blunted MBF. Eight persons with T2D and eight controls completed a forearm critical force (fCFimpulse) test as a measure of exercise tolerance (10-min intermittent maximal effort forearm contractions; the average contraction impulse in the last 30 sec quantified fCFimpulse). Forearm blood flow (FBF; ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured; forearm vascular conductance (FVK) was calculated. Data are means ± SD, T2D versus Control. fCFimpulse was not different between groups (136.9 ± 47.3  N·sec vs. 163.1 ± 49.7 N·sec, P = 0.371) nor was the ∆FBF from rest to during exercise at fCFimpulse (502.9 ± 144.6 vs. 709.1 ± 289.2 mL/min, P = 0.092), or its determinants ∆FVK and ∆MAP (both P > 0.05), although there was considerable interindividual variability. ∆FBF was strongly related to fCFimpulse (r = 0.727, P = 0.002), providing support for the relationship between oxygen delivery and exercise tolerance. We conclude that small muscle mass exercising MBF and exercise tolerance are not impaired in representative persons with T2D versus appropriately matched controls. This suggests that peripheral vascular control impairment does not contribute to reduced exercise tolerance in this population. PMID:26265750

  18. The Impact of Tumor Size on Outcomes After Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Allibhai, Zishan; Taremi, Mojgan; Bezjak, Andrea; Brade, Anthony; Hope, Andrew J.; Sun, Alexander; Cho, B.C. John

    2013-12-01

    Purpose: Stereotactic body radiation therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC) offers excellent control rates. Most published series deal mainly with small (usually <4 cm), peripheral, solitary tumors. Larger tumors are associated with poorer outcomes (ie, lower control rates, higher toxicity) when treated with conventional RT. It is unclear whether SBRT is sufficiently potent to control these larger tumors. We therefore evaluated and examined the influence of tumor size on treatment outcomes after SBRT. Methods and Materials: Between October 2004 and October 2010, 185 medically inoperable patients with early (T1-T2N0M0) NSCLC were treated on a prospective research ethics board-approved single-institution protocol. Prescription doses were risk-adapted based on tumor size and location. Follow-up included prospective assessment of toxicity (as per Common Terminology Criteria for Adverse Events, version 3.0) and serial computed tomography scans. Patterns of failure, toxicity, and survival outcomes were calculated using Kaplan-Meier method, and the significance of tumor size (diameter, volume) with respect to patient, treatment, and tumor factors was tested. Results: Median follow-up was 15.2 months. Tumor size was not associated with local failure but was associated with regional failure (P=.011) and distant failure (P=.021). Poorer overall survival (P=.001), disease-free survival (P=.001), and cause-specific survival (P=.005) were also significantly associated with tumor size (with tumor volume more significant than diameter). Gross tumor volume and planning target volume were significantly associated with grade 2 or worse radiation pneumonitis. However, overall rates of grade ≥3 pneumonitis were low and not significantly affected by tumor or target size. Conclusions: Currently employed stereotactic body radiation therapy dose regimens can provide safe effective local therapy even for larger solitary NSCLC tumors (up to 5.7 cm

  19. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  20. A real-time beam-profile monitor for a PET cyclotron

    SciTech Connect

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  1. Coherent cyclotron motion beyond Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Maag, T.; Bayer, A.; Baierl, S.; Hohenleutner, M.; Korn, T.; Schüller, C.; Schuh, D.; Bougeard, D.; Lange, C.; Huber, R.; Mootz, M.; Sipe, J. E.; Koch, S. W.; Kira, M.

    2016-02-01

    In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics. However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons. Although this surprising theorem has been exploited in sophisticated quantum phenomena, such as ultrastrong light-matter coupling, superradiance and coherent control, the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols. Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn's theorem. Anharmonic Landau ladder climbing and distinct terahertz four- and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn's theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons.

  2. Fundamental and harmonic electron cyclotron maser emission

    NASA Astrophysics Data System (ADS)

    Winglee, R. M.

    1985-10-01

    The plasma conditions and features of the energetic electron distribution in electron cyclotron maser emission for which growth in a particular mode is favored when the ratio of the plasma frequency omega(p) to the electron cyclotron frequency Omega(e) is greater than about 0.3 are determined. It is shown that growth at the fundamental is suppressed as omega(p)/Omega(e) increases and emission at harmonics of Omega(e) dominates. Growth at harmonics of Omega(e) is not restricted to the O and X modes, but can also occur for the Z mode. Whether or not growth in a particular mode dominates depends both on omega(p)/Omega(e) and on the form of the distribution. If the density of the energetic electrons is sufficiently large, the dispersion relations of the O and X modes are modified so that the group velocities of the growing O and X mode waves can be comparable to that of the growing Z mode waves.

  3. Ion cyclotron bands in VLF saucers

    NASA Technical Reports Server (NTRS)

    Maeda, Kaichi; Fung, Shing F.; Calvert, Wynne

    1990-01-01

    In the wideband VLF data obtained by the polar orbiting DE-1 satellite over the polar night ion trough region of the upper ionosphere, conspicuous frequency-band structures are found to occur both in absorption and emission, particularly associating with VLF saucers. The attenuation bands indicate that the ions of atomic hydrogen from the polar ionosphere are accelerated by the ac electric fields of VLF waves oscillating normal to the static magnetic field, analogous to a cyclotron accelerator. The observed frequencies of the cyclotron harmonics suggest that the acceleration is taking place in the layer below the satellite at a geocentric distance of less than about 1.5 earth radii. This example indicates the existence of upward propagating hiss at those altitudes inside the auroral zone. On the other hand, the frequency shifts of the emission bands are attributed to a combination of two different types of Doppler shift, one due to the orbital motion of the satellite and the other due to the upward motion of the medium at the emission source. This indicates the existence of an upward plasma flow at the source, with a velocity of the order of 20 km/s inside the saucer. The amount of this frequency shift decreases with increasing harmonic order, indicating a higher phase velocity for the electrostatic waves of higher harmonic order.

  4. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  5. Acceleration of tritons with a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Wegmann, H.; Huenges, E.; Muthig, H.; Morinaga, H.

    1981-01-01

    With the compact cyclotron at the Faculty of the Technical University of Munich, tritons have been accelerated to an energy of 7 MeV. A safe and reliable operation of the gas supply for the ion source was obtained by a new tritium storage system. A quantity of 1500 Ci tritium is stored by two special Zr-Al getter pumps in a non-gaseous phase. The tritium can be released in well-defined amounts by heating the getter material. During triton acceleration the pressure in the cyclotron vacuum chamber is maintained only by a large titanium sputter-ion pump, thus forming a closed vacuum system without any exhaust of tritium contaminated gas. Any tritium contaminations in the air can be detected by an extremely sensitive tritium monitoring system. The triton beam with a maximum intensity of 30 μA has been used so far to produce neutron-rich radioisotopes such as 28Mg, 43K or 72Zn, which are successfully applied in tracer techniques in the studies of biological systems.

  6. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGESBeta

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  7. Electron Cyclotron Resonance Heating on TEXTOR

    SciTech Connect

    Westerhof, E.; Hoekzema, J.A.; Hogeweij, G.M.D.

    2005-02-15

    TEXTOR is equipped with two gyrotrons at 110 and 140 GHz, respectively. Both share a single power supply and a confocal quasi-optical transmission line. They cannot be operated simultaneously. The 110-GHz gyrotron with limited power and pulse length (300 kW; 200 ms) has been used in a first series of experiments on electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) and for collective Thomson scattering (CTS) diagnostics of energetic ions. In the future the 110-GHz gyrotron will be operated exclusively for CTS diagnostics, while for ECRH and ECCD, the newly installed 140-GHz, high-power (800-kW), long-pulse (>3-s) gyrotron is now available. The highlights of first ECRH experiments with the 110-GHz gyrotron are reported. These include observations of internal transport barriers with ECRH on various target plasmas: in the current plateau phase of both ohmic and radiation improved mode (RI-mode) discharges. In addition, sawtooth control by localized ECRH is demonstrated. First results on CTS include the observation of the slowing down of energetic ions and of the redistribution of energetic ions in sawtooth crashes.

  8. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  9. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  10. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.