Science.gov

Sample records for small structures research

  1. Radon entry into basements: Approach, experimental structures, and instrumentation of the small structures research project

    SciTech Connect

    Fisk, W.J.; Modera, M.P.; Sextro, R.G.; Garbesi, K.; Wollenberg, H.A.; Narasimhan, T.N.; Nuzum, T.; Tsang, Y.W.

    1992-02-01

    We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer of gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.

  2. Small Group Research

    ERIC Educational Resources Information Center

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  3. Small College, Big Research

    ERIC Educational Resources Information Center

    Markin, Karen M.

    2008-01-01

    When scientists at small colleges and universities seek research grants, they often run into challenges not faced by their colleagues at major institutions. It is, nonetheless, possible to maintain a research program at a small institution, says the writer, if people have a great deal of passion and a little ingenuity. Issues to consider at…

  4. [Research progress of small peptidomimetics].

    PubMed

    Wang, Jia; Sun, De-qun

    2015-08-01

    The study of peptide drugs has been an important direction in research and development of new drugs. However, lots of natural macromolecular peptides are limited in clinical use by their metabolic instability and low bioavailability. In recent years, the active small peptidomimetics open up a new hotspot of peptide drug development with the characteristics of low molecular weight, high bioactivity and structural modification. Many peptidomimetics are on the market or on the clinical study. This paper elaborated the small peptidomimetics approved by American Food and Drug Administration (FDA) from 2005 to 2014, and reviewed their researching status with source, synthetic method, chemical structure, marketing time, indication, clinical efficacy and safety. Research prospects in this field were discussed. PMID:26668991

  5. Structures research

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias; Mcginley, Williams; Shen, Ji-Yao

    1992-01-01

    The main objective of the structures group is to provide quality aerospace research with the Center for Aerospace Research - A NASA Center for Excellence at North Carolina Agricultural and Technical State University. The group includes dedicated faculty and students who have a proven record in the area of structures, in particular space structures. The participating faculty developed accurate mathematical models and effective computational algorithms to characterize the flexibility parameters of joint dominated beam-truss structures. Both experimental and theoretical modelling has been applied to the dynamic mode shapes and mode frequencies for a large truss system. During the past few months, the above procedures has been applied to the hypersonic transport plane model. The plane structure has been modeled as a lumped mass system by Doctor Abu-Saba while Doctor Shen applied the transfer matrix method with a piecewise continuous Timoshenko tapered beam model. Results from both procedures compare favorably with those obtained using the finite element method. These two methods are more compact and require less computer time than the finite element method. The group intends to perform experiments on structural systems including the hypersonic plane model to verify the results from the theoretical models.

  6. 2002 SMALL SYSTEM RESEARCH

    EPA Science Inventory

    As research on smaller treatment devices grows, interest is also growing on how POU/POE can fit into a utility's overall strategy of providing safe and affordable water to customers in community and non-community transient and non-transient systems of all sizes. The EPA has been ...

  7. Research at Small Canadian Universities.

    ERIC Educational Resources Information Center

    Owen, Michael

    1992-01-01

    There are many excellent scientists in the natural and human sciences in Canada's small universities. If the institutions implement internal procedures to encourage and foster a research climate and if research councils consider alternative strategies for research funding, research productivity could expand greatly in quality and scope. (MSE)

  8. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  9. SMALL DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    There are 159,796 Community Water Systems (CWSs) in the United States. Ninety-three percent of CWSs are considered very small to medium-sized systems that serve roughly 19% of the CWS population. In contrast, large to very large systems comprise just 7% of CWSs, but serve 81% of ...

  10. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  11. Alternatives in Small Market Research.

    ERIC Educational Resources Information Center

    Wimmer, Roger D.

    Research in broadcasting has increased substantially and can be used to aid in a variety of broadcast-related decisions. This paper focuses on audience analysis, an area of knowledge necessary for deciding analysis, an area of knowledge necessary for deciding special-program content, format changes, and aspects of news programming. Topics…

  12. Communicating Research to Small Drinking Water Systems: Dissemination by Researchers

    EPA Science Inventory

    This talk discusses the challenges of disseminating research relevant to small systems. The presentation discusses efforts by the U.S. EPA’s Office of Research and Development to effectively communicating drinking water information. In particular, communication approaches ...

  13. Small Wind Research Turbine: Final Report

    SciTech Connect

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  14. Industry Research and Recommendations for Small Buildings and Small Portfolios

    SciTech Connect

    Langner, Rois; Hendron, Bob; Pless, Shanti; Huppert, Mark; Cochrane, Ric

    2013-12-01

    Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings. DOE's Building Technologies Office works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector'spotential for significant energy savings and the need for investments in resources that are tailored to this sector's unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3-5 years that will support the implementation of high-potential energy efficiency opportunities for thisimportant sector. DOE is uniquely positioned to provide national leadership, objective information, and innovative tools, technologies, and services to support cost-effective energy savings in the fragmented and complex SBSP sector. Properly deployed, the DOE effort could enhance and complement current energy efficiency approaches. Small portfolios are loosely and qualitatively defined asportfolios of buildings that include only a small number of small buildings. This distinction is important because the report targets portfolio owners and managers who generally do not have staff and other resources to track energy use and pursue energy efficiency solutions.

  15. Federal research assessment of small business innovation research programs

    SciTech Connect

    Not Available

    1989-01-01

    Since 1983, federal agencies with large research and development budgets have operated Small Business Innovation Research (SBIR) programs to strengthen the role of small innovative firms in federally supported research and development. SBIR awards to small business have totaled over $1.35 billion through fiscal year 1988. In reauthorizing SBIR programs in 1986, the Congress directed GAO to study their effectiveness in meeting SBIR goals, which are to (1) stimulate technological innovation, (2) use small businesses to meet federal research and development needs, (3) increase private sector commercialization of innovations from federal research and development, and (4) encourage participation by minority and disadvantaged firms in technological innovation. The Congress also directed GAO to compare the quality of SBIR research with more traditional agency research and to obtain the views of agency and department heads on how SBIR programs have affected other research activities at their agencies. To obtain information on how well SBIR programs are meeting their goals and on the quality of research, GAO sent questionnaires to firms with SBIR projects and to government project officers responsible for SBIR and other research.

  16. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  17. Small scale structure on cosmic strings

    SciTech Connect

    Albrecht, A.

    1989-10-30

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs.

  18. NASA Small Business Innovation Research program

    NASA Technical Reports Server (NTRS)

    Johnson, Harry W.

    1985-01-01

    NASA activities in the framework of the 11-agency federal Small Business Innovation Research program are outlined in tables and graphs and briefly characterized. Statistics on the program are given; the technical topics covered are listed; and the procedures involved in evaluating applications for support are discussed. A number of typical defects in proposals are indicated, and recommendations for avoiding them are provided.

  19. Closing Small Rural Schools. Research Brief

    ERIC Educational Resources Information Center

    Flowers, Ronald

    2010-01-01

    As school districts face declining enrollment and stable or reduced funding they look for ways to contain costs and continue to provide a quality educational experience. In many states "a new wave of consolidation...may be at hand" (Kysilko, 2003). The research cites advantage for both consolidation and for maintaining small schools. The challenge…

  20. Small business innovation research program solicitation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Aeronautics and Space Administration invites eligible small business concerns to submit Phase 1 proposals for its 1994 Small Business Innovation Research (SBIR) Program, which is described in this twelfth annual NASA SBIR Program Solicitation. The 1994 solicitation period for Phase 1 proposals begins April 4, 1994 and ends June 15, 1994. Eligible firms with research or research and development capabilities (R/R&D) in any of the listed topic and subtopic areas are encouraged to participate. Through SBIR, NASA seeks innovative concepts addressing the program needs described in the SBIR solicitation subtopics and offering commercial application potential. This document contains program background information, outlines eligibility requirements for SBIR participants, describes the three SBIR program phases, and provides the information qualified offerors need to prepare and submit responsive proposals.

  1. Precision radiotherapy for small animal research.

    PubMed

    Matinfar, Mohammad; Iordachita, Iulian; Ford, Eric; Wong, John; Kazanzides, Peter

    2008-01-01

    Preclinical research using well characterized small animal models has provided tremendous benefits to medical research, enabling low cost, large scale trials with high statistical significance of observed effects. The goal of the Small Animal Radiation Research Platform (SARRP) is to make those models available for the development and evaluation of novel radiation therapies. SARRP demonstrates the capabilities of delivering high resolution, sub-millimeter, optimally planned conformal of radiation with on-board cone-beam CT (CBCT) guidance. The system requires accurate calibration of the x-ray beam for both imaging and radiation treatment. In this paper, we present a novel technique using an x-ray camera for calibration of the treatment beam. This technique does not require precise positioning or calibration of the x-ray camera. PMID:18982656

  2. 78 FR 11745 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... . SUPPLEMENTARY INFORMATION: On May 15, 2012, at 77 FR 28520 (available at http://www.gpo.gov/fdsys/pkg/FR-2012-05... and eligibility. On December 27, 2012 (77 FR 76215), SBA published a final rule, which amended the... RIN 3245-AG46 Small Business Size Regulations, Small Business Innovation Research (SBIR) Program...

  3. Small business innovation research. Abstracts of 1988 phase 1 awards

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  4. Photovoltaic Research in the Small Business Innovative Research Program

    SciTech Connect

    Bower, W.I.; Bulawka, A.

    1997-02-01

    The Small Business Innovative Research Program (SBIR) is currently authorized to be funded through September 30, 2000. The National Photovoltaics Program is a contributor to the Department of Energy (DOE) SBIR program. The small business photovoltaic industry has been benefiting from the SBIR program through awards that have funded basic research, new processes and products that have PV and other commercial applications. This paper provides information on SBIR opportunities, selected details of the SBIR program, statistics from the 1995 and 1996 DOE SBIR program, and methods for improving PV industry participation and success in the SBIR program. {copyright} {ital 1997 American Institute of Physics.}

  5. Funding big research with small money.

    PubMed

    Hickey, Joanne V; Koithan, Mary; Unruh, Lynn; Lundmark, Vicki

    2014-06-01

    This department highlights change management strategies that maybe successful in strategically planning and executing organizational change initiatives.With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools,and resources that mobilize and sustain organizational change initiatives.In this article, the guest authors introduce crowd sourcing asa strategy for funding big research with small money. PMID:24853791

  6. Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ying; Rana, Tariq M.

    Small (19-31-nucleotides) noncoding RNAs were identified in the past 10 years for their distinct function in gene silencing. The best known gene-silencing phenomenon, RNA interference (RNAi), is triggered in a sequence-specific manner by endogenously produced or exogenously introduced small doubled-stranded RNAs. As knowledge of the structure and function of the RNAi machinery has expanded, this phenomenon has become a powerful tool for biochemical research; it has enormous potential for therapeutics. This chapter summarizes significant aspects of three major classes of small noncoding, regulatory RNAs: small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Here, we focus on the biogenesis of these small RNAs, their structural features and coupled effectors as well as the mechanisms of each small regulatory RNA pathway which reveal fascinating ways by which gene silencing is controlled and fine-tuned at an epigenetic level.

  7. Small animal radiation research platform: imaging, mechanics, control and calibration.

    PubMed

    Matinfar, Mohammad; Gray, Owen; Iordachita, Iulian; Kennedy, Chris; Ford, Eric; Wong, John; Taylor, Russell H; Kazanzides, Peter

    2007-01-01

    In cancer research, well characterized small animal models of human cancer, such as transgenic mice, have greatly accelerated the pace of development of cancer treatments. The goal of the Small Animal Radiation Research Platform (SARRP) is to make those same models available for the development and evaluation of novel radiation therapies. In combination with advanced imaging methods, small animal research allows detailed study of biological processes, disease progression, and response to therapy, with the potential to provide a natural bridge to the clinical environment. The SARRP will realistically model human radiation treatment methods in standard animal models. In this paper, we describe the mechanical and control structure of the system. This system requires accurate calibration of the x-ray beam for both imaging and radiation treatment, which is presented in detail in the paper. PMID:18044657

  8. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program Policy Directives... Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) Policy... 2012. The Defense Authorization Act contained the SBIR/STTR Reauthorization Act of...

  9. Locating Small Leaks in Large Structures

    NASA Technical Reports Server (NTRS)

    Lawler, W. F.

    1983-01-01

    Test tool for detecting minute leads in bimetal joints, welds, or other locations employs fine-control valve and hypodermic needle. Test item is connected in conventional manner to helium mass spectrometer tuned to read extremely small amounts of helium gas. Uniqueness of method is ability to detect tiny leaks, through surfaces, not discoverable by gross coverage of test structures by helium gas.

  10. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  11. Proton structure functions at small x

    SciTech Connect

    Hentschinski, Martin

    2015-01-01

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recent result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F2 and FL, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F2 in the small x region, as measured at HERA. As a result, predictions for the structure function FL are found to be in agreement with the existing HERA

  12. Proton structure functions at small x

    DOE PAGESBeta

    Hentschinski, Martin

    2015-01-01

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F2 and FL, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F2 in the small x region, as measured at HERA. As a result, predictions for the structure function FL are found to be in agreement with the existing HERA data.« less

  13. Research and Development of Small Force Standards at NIM

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Song, Le; Meng, Feng; Zhang, Wei; Zhang, Zhimin; Zhang, Yue; Zheng, Yelong

    With the development and industrialization of micro- and nano- technology, small force measurements are widely applied in many fields such as advanced materials, bio-technology, aerospace and so on. For realizing traceable small forces and founding small force metrology hierarchy in China, NIM has launched a research project on small force metrology in 2011. 2 methods for small force realization at the scale of nano-Newton to micro-Newton are applied: electrical force based method and mass based method. The initial prototype of small force standard, which is based on the electrostatic force realization and adopts a coaxial cylindrical capacitor, has been developed and experimented. 2 kinds of micro force transmission mechanism are applied to the prototype: a parallelogram mechanism with 4 flexure hinges, and a lever-type force measurement system based on an elastic torsion bar. The structure and key units of 2 schemes are described in detail, the experiment results are demonstrated. The system stiffness of torsion bar scheme is smaller than that of flexure hinges scheme. In addition, structure of the initial prototype will be improved, and the environment conditions will be controlled strictly in our further experiments to minimize the creep of our system.

  14. Small Business Innovation Research, Post-Phase II Opportunity Assessment

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.

  15. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  16. Small Drinking Water Systems Research and Development

    EPA Science Inventory

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  17. An Annotated Bibliography of Small Town Research.

    ERIC Educational Resources Information Center

    Smith, Suzanne M.

    The purpose of this annotated bibliography is to list books, articles, and bulletins (written from 1900 to 1968) related to small towns in the United States. The work contributes to the project "Population Changes in Small Towns," sponsored by the Division of Social Sciences of the National Science Foundation and by the University of Wisconsin…

  18. Small-scale positive flower structures

    NASA Astrophysics Data System (ADS)

    Clendenin, C. W.

    1993-01-01

    Field relations indicate that small-scale positive flower structures along sub-regional strike-slip faults localize ore in particular 4 m thick, bedded ore zones in Mississippi Valley-type Pb-Zn deposits of the Viburnum Trend, southeast Missouri, U.S.A. Outwardly divergent, shallow-dipping, duplex-deformed fault splays control ore and merge inwardly with sub-vertical fault strands. The characteristics of both duplex-deformed splays and ore suggest that the flower structures acted as drains for fluids being moved vertically along the strike-slip faults. This ore control differs from pipe-like conduits of transtensional dilation jogs in that duplex-deformed splays form under transpression and develop horizontal veins adjacent to strike-slip faults.

  19. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  20. Nuclear structure functions at small x

    SciTech Connect

    Jalilian-Marian, Jamal

    2009-11-15

    I study the nuclear structure function F{sub 2}{sup A} and its logarithmic derivative in the high-energy limit (small-x region) using the color glass condensate formalism. In this limit the structure function F{sub 2} depends on the quark-antiquark dipole-target scattering cross section N{sub F}(x{sub bj},r{sub t},b{sub t}). The same dipole cross section appears in single-hadron and hadron-photon production cross sections in the forward rapidity region in deuteron (proton)-nucleus collisions at high energy, that is, at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). I use a parametrization of the dipole cross section, which has successfully been used to describe the deuteron-gold data at the RHIC, to compute the nuclear structure function F{sub 2}{sup A} and its log Q{sup 2} derivative (which is related to gluon distribution function in the double log limit). I provide a quantitative estimate of the nuclear shadowing of F{sub 2}{sup A} and the gluon distribution function in the kinematic region relevant to a future electron-ion collider.

  1. The structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  2. Standard methods for small hive beetle research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles, Aethina tumida, are parasites and scavengers of honey bee and other social bee colonies native to sub-Saharan Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honey bee subspecies. Very rapidly after A. tumida established pop...

  3. A Small Grants Program to Involve Communities in Research

    PubMed Central

    Thompson, Beti; Ondelacy, Stephanie; Godina, Ruby; Coronado, Gloria D.

    2010-01-01

    A key tenet of community-based participatory research is that communities be involved in all facets of research, from defining the problem to identifying solutions, to assisting in the research, and to participating in the publication of results. In this study, we instituted a small grants program for community participation. A Request for Applications (RFA) was developed and circulated widely throughout the Valley. The RFA sought proposals to address health disparities in cancer education, prevention, and treatment among Hispanics living in the Valley. Funds available were $2,500.00–3,500.00 for 1 year’s worth of work. To help evaluate the progress of the RFA community projects according to the perspectives of the Community Advisory Board (CAB), an open-ended, semi-structured interview was created and administered by a former staff member to CAB members. In 4 years, ten small grants proposed by community members were funded. Funds allocated totaled approximately $25,000. Interviews with CAB members indicated that the RFA program was perceived positively, but there were concerns about sustainability. Our community grants program resulted in the implementation of several novel cancer prevention programs conducted by a variety of community organizations in the Lower Yakima Valley. PMID:20146091

  4. Development of the Research Platform of Small Autonomous Blimp Robot

    NASA Astrophysics Data System (ADS)

    Takaya, Toshihiko; Kawamura, Hidenori; Yamamoto, Masahito; Ohuchi, Azuma

    A blimp robot is attractive as an small flight robot and can float in the air by buoyancy and realize safe to the crash small flight with low energy and can movement for a long time compared with other flight robots with low energy and can movement for a long time compared with other flight robots. However, control of an airplane robot is difficult for the nonlinear characteristic exposed to inertia by the air flow in response to influence. Therefore, the applied research which carried out the maximum use of such in recent years a blimp robot's feature is prosperous. In this paper, we realized development of blimp robot for research which can be used general-purpose by carrying out clue division of the blimp robot body at a unit, and constituting and building for research of blimp robot, and application development. On the other hand, by developing a general-purpose blimp robot research platform, improvement in the research efficiency of many researchers can be attained, and further, research start of blimp robot becomes easy and contributes to development of research. We performed the experiments for the above-mentioned proof. 1. Checked basic keeping position performance and that various orbital operation was possible. And the unit exchange ease of software unit was checked by the experiment which exchanges the control layer of software for learning control from PID control, and carries out comparison of operation. 2. In order to check the exchange ease of hardware unit, the sensor was exchanged for the microphon from the camera, and control of operation was checked. 3. For the unit addition ease, the microphon which carries out sound detection with the picture detection with a camera was added, and control of operation was verified. 4. The unit exchange was carried out for the check of a function addition and the topological map generation experiment by addition of an ultrasonic sensor was conducted. Developed blimp robot for research mounted the exchange ease

  5. Small Molecule Docking from Theoretical Structural Models

    NASA Astrophysics Data System (ADS)

    Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto

    Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.

  6. 77 FR 30227 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... (SBIR) Program and Small Business Technology Transfer (STTR) Program AGENCY: U.S. Small Business... (SBIR) and Small Business Technology Transfer (STTR) Programs. The proposed rule would implement... ownership, control and affiliation for participants in the SBIR and STTR Programs. This...

  7. Small business innovation research: Program solicitation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This, the seventh annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the Technical Topics and Subtopics in which SBIR Phase 1 proposals are solicited in 1989. These Topics and Subtopics cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired.

  8. Small Hydropower Research and Development Technology Project

    SciTech Connect

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  9. Building Research Cyberinfrastructure at Small/Medium Research Institutions

    ERIC Educational Resources Information Center

    Agee, Anne; Rowe, Theresa; Woo, Melissa; Woods, David

    2010-01-01

    A 2006 ECAR study defined cyberinfrastructure as the coordinated aggregate of "hardware, software, communications, services, facilities, and personnel that enable researchers to conduct advanced computational, collaborative, and data-intensive research." While cyberinfrastructure was initially seen as support for scientific and engineering…

  10. Education and Training that Meets the Needs of Small Business: A Systematic Review of Research

    ERIC Educational Resources Information Center

    Dawe, Susan; Nguyen, Nhi

    2007-01-01

    Small businesses account for the great majority of businesses and half the private sector employment in Australia, but only one third provide structured training for their employees. This study, a systematic review of existing research, set out to find clear evidence of intervention strategies that meet small business needs in relation to the…

  11. A small inexpensive minicomputer system for speech research

    NASA Technical Reports Server (NTRS)

    Morris, C. F.

    1975-01-01

    A small but very effective minicomputer-based speech processing system costing just over 30,000 dollars is described here. The hardware and software comprising the system are discussed as well as immediate and future research applications.

  12. Small Business Innovation Research Award Success Story: Proton Energy Systems

    SciTech Connect

    2011-04-01

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  13. The Advancement of Educational Research in Small States

    ERIC Educational Resources Information Center

    Crossley, Michael

    2008-01-01

    This paper critically examines the impact of global development agendas upon the nature and direction of educational development in small states. This generates a critique of the international transfer of western policy trajectories and related research modalities, identifies the strategic importance of small states, and explores possible ways…

  14. Structural evolution of small ruthenium cluster anions

    SciTech Connect

    Waldt, Eugen; Hehn, Anna-Sophia; Ahlrichs, Reinhart; Kappes, Manfred M.; Schooss, Detlef

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  15. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... fiscal years. On August 8, 2013, SBA published a notice in the Federal Register at 78 FR 48537 to... period for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR... ). SUPPLEMENTARY INFORMATION: Section 5165 of the SBIR/STTR Reauthorization Act of 2011, Public Law 112-81,...

  16. 77 FR 28520 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... businesses to understand and a bright-line test by which small businesses can easily determine whether they..., bright-line test for SBIR and STTR applicants to apply when determining eligibility with respect to size... owns 33% or more of the company) in order to create a bright-line test for applicants; (2)...

  17. 77 FR 76215 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... to sizestandards@SBA.gov . SUPPLEMENTARY INFORMATION: I. Background On May 15, 2012, at 77 FR 28520 (available at http://www.gpo.gov/fdsys/pkg/FR-2012-05-15/pdf/2012-11586.pdf ), the U.S. Small Business... FR 30227 (May 22, 2012). SBA held these outreach sessions in Washington, DC; Boston,...

  18. Probing small non-coding RNAs structures.

    PubMed

    Philippe, Jean-Vincent; Ayadi, Lilia; Branlant, Christiane; Behm-Ansmant, Isabelle

    2015-01-01

    The diverse roles of RNAs depend on their ability to fold so as to form biologically functional structures. Thus, understanding the function of a given RNA molecule often requires experimental analysis of its secondary structure by in vitro RNA probing, which is more accurate than using prediction programs only. This chapter presents in vitro RNA probing protocols that we routinely use, from RNA transcript production and purification to RNA structure determination using enzymatic (RNases T1, T2, and V1) and chemical (DMS, CMCT, kethoxal, and Pb(2+)) probing performed on both unlabeled and end-labeled RNAs. PMID:25791596

  19. Feasibility study of the Boeing Small Research Module (BSRM) concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, capabilities, and subsystem options for the Boeing Small Research Module (BSRM) are described. Specific scientific missions are defined based on NASA-Ames Research Center requirements and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.

  20. Revisiting Scale, Comparative Research and Education in Small States

    ERIC Educational Resources Information Center

    Brock, Colin; Crossley, Michael

    2013-01-01

    Comparative research on education in small states has attracted international attention since the mid-1980s when the Commonwealth sponsored a number of seminal meetings and publications, and became a key advocate for the advancement of such work. This article considers the place of different dimensions of scale in comparative research; re-examines…

  1. Small Business Consortium: Research Project in Vocational Education. Final Report.

    ERIC Educational Resources Information Center

    Belcher, Jacquelyn; Hutchison, Kae R.

    Five community colleges and two vocational technical institutes located in King County, Washington, together with the Washington State Department of Employment Security, undertook a research project to (1) collect nationally available information on current research and successful practices in assistance to small businesses; (2) conduct a survey…

  2. Structural properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  3. The Application of Reflexivity in Small Business Research and Implications for the Business Practitioner

    ERIC Educational Resources Information Center

    Harrison, Nigel; Kirkham, Janet

    2014-01-01

    This paper is based on a review of the lead author's research, which took the form of a self-narrative from a practitioner about the perceived realities of one small business and its owner. The paper explores the practical application of auto-ethnographic reflexive research methodologies and seeks to demonstrate that structured ways can be…

  4. NASA/USAF research in structural dynamics

    NASA Technical Reports Server (NTRS)

    Pinson, L. D.; Amos, A. K.

    1983-01-01

    Research in the structural dynamics of large space structures is discussed. The problems of structural response are emphasized. Dynamic modeling, structural members, finite element techniques, axial loads, and vibration tests are among the topics discussed.

  5. Electronic structure of small silicon clusters

    SciTech Connect

    Wales, D.J.

    1994-03-01

    Predictions of Stone`s tensor-surface-harmonic theory [Mol. Phys. 41, 1339 (1980)] for bonding in small silicon clusters are tested by {ital ab} {ital initio} calculations. Stable geometries, along with the energies and symmetries of the occupied molecular orbitals, may all be rationalized within the model. For example, local energy minima for Si{sub {ital n}}{sup 2{minus}} clusters are found which are isostructural to the borane and carborane clusters B{sub {ital n}}H{sub {ital n}}{sup 2{minus}} and C{sub 2}B{sub {ital n}{minus}2}H{sub {ital n}}. In particular, both Si{sub 12}{sup 2{minus}} and Si{sub 13}{sup 2+} exhibit icosahedral geometries which are true minima.

  6. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  7. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus_minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  8. Small scale retentive structures and Dinophysis

    NASA Astrophysics Data System (ADS)

    Xie, Hongqin; Lazure, Pascal; Gentien, Patrick

    2007-01-01

    Despite its rarity, Dinophysis acuminata is in terms of economic impact, the first toxic algal species along the coasts of Western Europe. It is observed at low levels (< 20 cell l - 1 ) all the year round but toxic events occur mainly in late spring and summer. D. acuminata ecophysiology is largely unknown due to the inability to culture it. Therefore, standard biomass models based on inorganic nutrition are largely inadequate. Presently, any progress in describing the conditions of population growth of this species will be a step forward to prediction of harmful events at the coast. This species has been observed at increased, albeit low cell densities in retentive eddies located in pycnocline layers. A concentration build-up of one species results from the balance between growth and loss processes, one of the latter being dispersal. The scales of interest for a D. acuminata population are of the order of 10 nautical miles on the horizontal and duration of 10 days, for a reported achievable growth rate of 0.6 day - 1 . A three dimensional (3D) hydrodynamical model of the Bay of Biscay has been elaborated to reproduce hydrological structures over the last decade. We attempt here to relate the existence of retentive structures revealed from simulations under realistic forcing conditions and the toxic coastal events recorded in the 10-year time series of the French plankton monitoring network database. The eddies in the coastal area appear to be directly related with the Dinophysis coastal events and they may be a potential effective tool to predict those.

  9. Small Business Innovation Research. Abstracts of Phase I awards, 1999

    SciTech Connect

    1999-12-01

    This booklet presents technical abstracts of Phase I awards made in Fiscal Year (FY) 1999 under the DOE Small Business Innovation Research (SBIR) program. SBIR research explores innovative concepts in important technological and scientific areas that can lead to valuable new technology and products. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications, as described by the awardee, are given after each abstract. Individuals and organizations, including venture capital and larger industrial firms, with an interest in the research described in any of the abstracts are encouraged to contact the appropriate small business directly.

  10. Robotic Delivery of Complex Radiation Volumes for Small Animal Research

    PubMed Central

    Matinfar, Mohammad; Iordachita, Iulian; Wong, John; Kazanzides, Peter

    2011-01-01

    The Small Animal Radiation Research Platform (SARRP) is a novel and complete system capable of delivering multidirectional (focal), kilo-voltage radiation fields to targets in small animals under robotic control using cone-beam CT (CBCT) image guidance. The capability of the SARRP to deliver highly focused beams to multiple animal models provides new research opportunities that more realistically bridge laboratory research and clinical translation. This paper describes the design and operation of the SARRP for precise radiation delivery. Different delivery procedures are presented which enable the system to radiate through a series of points, representative of a complex shape. A particularly interesting case is shell dose irradiation, where the goal is to deliver a high dose of radiation to the shape surface, with minimal dose to the shape interior. The ability to deliver a dose shell allows mechanistic research of how a tumor interacts with its microenvironment to sustain its growth and lead to its resistance or recurrence. PMID:21643448

  11. Feasibility study of the Boeing Small Research Module (BSRM) concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, capabilities, and subsystem options are described for the Boeing Small Research Module (BSRM). Specific scientific missions are defined and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.

  12. 75 FR 15756 - Small Business Innovation Research Program Policy Directive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... Phase II award threshold amount from $750,000 to $1,000,000 (FR 48004). Congress established the current... (67 FR 6008, Sept. 24, 2002). SBA has determined that to restore the average economic value of the... announces a final amendment to the Small Business Innovation Research (SBIR) Program Policy Directive...

  13. Biomedical Research Experiences for Biology Majors at a Small College

    ERIC Educational Resources Information Center

    Stover, Shawn K.; Mabry, Michelle L.

    2010-01-01

    A program-level assessment of the biology curriculum at a small liberal arts college validates a previous study demonstrating success in achieving learning outcomes related to content knowledge and communication skills. Furthermore, research opportunities have been provided to complement pedagogical strategies and give students a more complete…

  14. LEADERSHIP IN SMALL MILITARY UNITS--SOME RESEARCH FINDINGS.

    ERIC Educational Resources Information Center

    LANGE, CARL J.

    THE EFFECT OF A LEADER'S ACTIONS ON HIS FOLLOWERS IN SMALL MILITARY UNITS WAS THE SUBJECT OF SEVERAL RESEARCH STUDIES CONDUCTED TO EXPLORE THE NATURE OF THE LEADERSHIP PROCESS, WITH THE ULTIMATE GOAL OF DEVELOPING TRAINING THAT WOULD USE IMPROVED PRESENTATIONAL MATERIALS AND WOULD BE BASED ON LEADERSHIP DOCTRINE WITH DEMONSTRATED VALIDITY. THE…

  15. Current research in composite structures at NASA's Langley Research Center

    NASA Technical Reports Server (NTRS)

    Card, Michael F.; Starnes, James H., Jr.

    1988-01-01

    Research on the mechanics of composite structures at NASA's Langley Research Center is discussed. The advantages and limitations of special purpose and general purpose analysis tools used in research are reviewed. Future directions in computational structural mechanics are described to address analysis short-comings. Research results on the buckling and postbuckling of unstiffened and stiffened composite structures are presented. Recent investigations of the mechanics of failure in compression and shear are reviewed. Preliminary studies of the dynamic response of composite structures due to impacts encountered during crash-landings are presented. Needs for future research are discussed.

  16. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  17. Fluorescence and Cerenkov luminescence imaging. Applications in small animal research.

    PubMed

    Schwenck, J; Fuchs, K; Eilenberger, S H L; Rolle, A-M; Castaneda Vega, S; Thaiss, W M; Maier, F C

    2016-04-12

    This review addresses small animal optical imaging (OI) applications in diverse fields of basic research. In the past, OI has proven to be cost- and time-effective, allows real-time imaging as well as high-throughput analysis and does not imply the usage of ionizing radiation (with the exception of Cerenkov imaging applications). Therefore, this technique is widely spread - not only geographically, but also among very different fields of basic research - and is represented by a large body of publications. Originally used in oncology research, OI is nowadays emerging in further areas like inflammation and infectious disease as well as neurology. Besides fluorescent probe-based contrast, the feasibility of Cerenkov luminescence imaging (CLI) has been recently shown in small animals and thus represents a new route for future applications. Thus, this review will focus on examples for OI applications in inflammation, infectious disease, cell tracking as well as neurology, and provides an overview over CLI. PMID:27067794

  18. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  19. The Structure of Positive Interpersonal Relations in Small Groups.

    ERIC Educational Resources Information Center

    Davis, James A.; Leinhardt, Samuel

    The authors sought to test Homans' proposition that small groups inevitably generate a social structure which combines subgroups (cliques) and a ranking system. We present a graph theoretical model of such a structure and prove that a necessary and sufficient condition for its existence is the absence of seven particular triad types. Expected…

  20. Research on the detection technology to dim and small target

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chen, Feng; Huang, Jianming; Wei, Xiangquan

    2015-03-01

    With the development of Space Technology, the demand to Space Surveillance System is more urgent than before. The paper studies the dim and small target of long range. Firstly, it describes the research status of dim and small target abroad and the two detection principle of DBT and TBD. Secondly, it focuses on the higher-order correlation method, dynamic programming method and projection transformation method of TBD. Finally, it studies the image sequence simulation of different signal to noise ratio (SNR) with the real-time data from the aircraft in orbit. The image sequence is used to experimental verification. The test results show the dim and small target detection capability and applicable occasion of different methods. At the same time, it provides a new idea to the development of long-distance optical detector.

  1. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  2. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  3. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    SciTech Connect

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  4. Cyberinfrastructure to Support Collaborative Research Within Small Ecology Labs

    NASA Astrophysics Data System (ADS)

    Laney, C.; Jaimes, A.; Cody, R. P.; Kassin, A.; Salayandia, L.; Tweedie, C. E.

    2011-12-01

    Increasingly, ecological research programs addressing complex challenges are driving technological innovations that allow the acquisition and analysis of data collected over larger spatial scales and finer temporal resolutions. Many research labs are shifting from deploying technicians or students into the field to setting up automated sensors. These sensors can cost less on an individual basis, provide continuous and reliable data collection, and allow researchers to spend more time analyzing data and testing hypotheses. They can provide an enormous amount of complex information about an ecosystem. However, the effort to manage, analyze, and disseminate that information can be daunting. Small labs unfamiliar with these efforts may find their capacity to publish at competitive rates hindered by information management. Such labs would be well served by an easy to manage cyberinfrastructure (CI) that is organized in a modular, plug-and-play design and is amenable to a wide variety of data types. Its functionality would permit addition of new sensors and perform automated data analysis and visualization. Such a system would conceivably enhance access to data from small labs through web services, thereby improving the representation of smaller labs in scientific syntheses and enhancing the spatial and temporal coverage of such efforts. We present a CI that is designed to meet the needs of a small but heavily instrumented research site located within the USDA ARS Jornada Experimental Range in the northern Chihuahuan Desert. This site was constructed and is operated by the Systems Ecology Lab at the University of Texas at El Paso (UTEP), a relatively small and young lab. Researchers at the site study land-atmosphere carbon, water, and energy fluxes at a mixed creosote (Larrea tridentata) - mesquite (Prosopis glandulosa) shrubland. The site includes an eddy covariance tower built to AmeriFlux and FLUXNET specifications, a robotic cart that measures hyperspectral

  5. Small watershed-scale research and the challenges ahead

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that

  6. Frozen spin targets in ribosomal structure research.

    PubMed

    Stuhrmann, H B

    1991-01-01

    Polarized neutron scattering strongly depends on nuclear spin polarisation, particularly on proton spin polarisation. A single proton in a deuterated environment then is as efficient as 10 electrons in X-ray anomalous diffraction. Neutron scattering from the nuclear spin label is controlled by the polarisation of neutron spins and nuclear spins. Pure deuteron spin labels and proton spin labels are created by NMR saturation. We report on results obtained from the large subunit of E. coli ribosomes which have been obtained at the research reactor of GKSS using the polarized target facility developed by CERN. The nuclear spins were oriented with respect to an external field by dynamic nuclear polarisation. Proton spin polarisations of more than 80% were obtained in ribosomes at temperatures below 0.5 K. At T = 130 mK the relaxation time of the polarized target is one month (frozen spin target). Polarized small-angle neutron scattering of the in situ structure of rRNA and the total ribosomal protein (TP) has been determined from the frozen spin targets of the large ribosomal subunit, which has been deuterated in the TP and rRNA respectively. The results agree with those from neutron scattering in H2O/D2O mixtures obtained at room temperature. This is a necessary prerequisite for the planned determination of the in situ structure of individual ribosomal proteins and especially of that of ribosome bound mRNA and tRNAs. PMID:1720669

  7. Nuclear Structure Research at Richmond

    SciTech Connect

    Beausang, Cornelius W.

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  8. Small Research Balloons in a Physics Course for Education Majors

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  9. Introduction to Small Telescope Research Communities of Practice

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.

    2016-06-01

    Communities of practice are natural, usually informal groups of people who work together. Experienced members teach new members the “ropes.” Social learning theorist Etienne Wenger’s book, Communities of Practice: Learning, Meaning, and Identity, defined the field. There are, in astronomy, many communities of practice. One set of communities uses relatively small telescopes to observe brighter objects such as eclipsing binaries, intrinsically variable stars, transiting exoplanets, tumbling asteroids, and the occultation of background stars by asteroids and the Moon. Advances in low cost but increasingly powerful instrumentation and automation have greatly increased the research capabilities of smaller telescopes. These often professional-amateur (pro-am) communities engage in research projects that require a large number of observers as exemplified by the American Association of Variable Star Observers. For high school and community college students with an interest in science, joining a student-centered, small telescope community of practice can be both educational and inspirational. An example is the now decade-long Astronomy Research Seminar offered by Cuesta College in San Luis Obispo, California. Each student team is required to plan a project, obtain observations (either locally or via a remote robotic telescope), analyze their data, write a paper, and submit it for external review and publication. Well over 100 students, composed primarily of high school juniors and seniors, have been coauthors of several dozen published papers. Being published researchers has boosted these students’ educational careers with admissions to choice schools, often with scholarships. This seminar was recently expanded to serve multiple high schools with a volunteer assistant instructor at each school. The students meet regularly with their assistant instructor and also meet online with other teams and the seminar’s overall community college instructor. The seminar

  10. High quality, small molecule-activity datasets for kinase research.

    PubMed

    Sharma, Rajan; Schürer, Stephan C; Muskal, Steven M

    2016-01-01

    Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR) data. Bioactivity databases such as the Kinase Knowledgebase (KKB), WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note. PMID:27429748

  11. High quality, small molecule-activity datasets for kinase research

    PubMed Central

    Sharma, Rajan; Schürer, Stephan C.; Muskal, Steven M.

    2016-01-01

    Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR) data. Bioactivity databases such as the Kinase Knowledgebase (KKB), WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note. PMID:27429748

  12. Teaching and Research in Astronomy using Small Aperture Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Pandey, S. K.

    2006-08-01

    Small aperture (<1m, typically 20-50cm) optical telescopes with adequate back-end instrumentation (photometer, CCD camera and CCD spectrograph etc) can be used for spreading the joy and excitement of observational astronomy among postgraduate and research students in Colleges/. On the basis of over a decade's experience in observing with small optical telescopes it has been amply demonstrated that such a facility, which any University department can hope to procure and maintain, can be effectively used for teaching as well quality research. The Physics Department of Pt Ravishankar Shukla University at Raipur, India offers Astronomy & Astrophysics (A&A) as one of the specialization as a part of M Sc program in Physics. A set of observational exercises has been incorporated with a view to provide training in observations, analysis and interpretation of the astronomical data to the students. Observing facilities available in the department include 8"-14" aperture telescopes (CGE series from Celestron) equipped with the new-state-of-the-art backend instrumentation like Photometer, CCD Camera and also a CCD spectrograph. Observing facility of this kind is ideally suited for continuous monitoring of a variety of variable stars, and thus can provide valuable data for understanding the physics of stellar variability. This is especially true for a class of variable stars known as chromospherically active stars. The stars belonging to this class have variable light curves, and the most puzzling feature is that their light curves change year after year in a rather queerer way. A large fraction of these active stars are bright ones and, hence, the importance of small aperture telescope for collecting the much needed photometric data. For over a decade the research activity using 14" optical telescope is focused on photometric monitoring of well known as well suspected active stars. This together with spectroscopic data using observing facility at Indian Observatories has led

  13. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  14. Small Molecule Ligands for Bulged RNA Secondary Structures

    PubMed Central

    Meyer, S. Todd; Hergenrother, Paul J.

    2016-01-01

    A class of wedge-shaped small molecules has been designed, synthesized, and shown to bind bulged RNA secondary structures. These minimally cationic ligands exhibit good affinity and selectivity for certain RNA bulges as demonstrated in a fluorescent intercalator displacement assay. PMID:19678613

  15. Group marginalization: extending research on interpersonal rejection to small groups.

    PubMed

    Betts, Kevin R; Hinsz, Verlin B

    2013-11-01

    An extensive research literature has examined the reactions of individuals facing interpersonal rejection. Small groups can also be rejected, but current research tells us little about the experiences of groups and their members directly. We integrate findings from various literatures to gain insight into shared rejection experiences and their outcomes. Of most practical importance, we argue that groups can be expected to react with more hostility than individuals when rejected. Four existing models that account for how group processes might alter such reactions are examined: a need-threat model, a rejection-identification model, a multimotive model, and a dual attitudes model. Aspects of these models are then integrated into a unifying framework that is useful for understanding hostile reactions to group marginalization. Implications for natural groups such as terrorist cells, school cliques, racial and ethnic minorities, and gangs are discussed. PMID:23928559

  16. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  17. Suggestions for Structuring a Research Article

    ERIC Educational Resources Information Center

    Klein, James D.; Reiser, Robert A.

    2014-01-01

    Researchers often experience difficulty as they attempt to prepare journal articles that describe their work. The purpose of this article is to provide researchers in the field of education with a series of suggestions as to how to clearly structure each section of a research manuscript that they intend to submit for publication in a scholarly…

  18. The Development of Small Primate Models for Aging Research

    PubMed Central

    Fischer, Kathleen E.; Austad, Steven N.

    2015-01-01

    Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining “small” primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species—two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)—that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans. PMID:21411860

  19. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  20. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104....

  1. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104....

  2. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104....

  3. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104....

  4. Visualization of small scale structures on high resolution DEMs

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky

  5. Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.

    PubMed

    Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M

    2014-11-01

    In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural

  6. Structure design of the telescope for Small-JASMINE program

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Yasuda, Susumu; Yano, Taihei; Niwa, Yoshito; Kobayashi, Yukiyasu; Kashima, Shingo; Goda, Naoteru; Yamada, Yoshiyuki

    2014-08-01

    Small-JASMINE program (Japan Astrometry Satellite Mission for INfrared Exploration) is one of applicants for JAXA (Japan Aerospace Exploration Agency) space science missions launched by Epsilon Launch Vehicles, and now being reviewed in the Science Committee of ISAS (Institute of Space and Astronautical Science), JAXA. Telescope of 300 mm aperture diameter will focus to the central region of the Milky Way Galactic. The target of Small-JASMINE is to obtain reliable measurements of extremely small stellar motions with the highest accuracy of 10 μ arcseconds and to provide precise distances and velocities of multitudes of stars up to 30,000 light years. Preliminary Structure design of Small- JASMINE has been done and indicates to satisfy all of requirements from the mission requirement, the system requirement, Epsilon Launch conditions and interfaces of the small science satellite standard bus. High margin of weight for the mission allows using all super invar structure that may reduce unforeseen thermal distortion risk especially caused by connection of different materials. Thermal stability of the telescope is a key issue and should be verified in a real model at early stage of the development.

  7. Does small scale structure significantly affect cosmological dynamics?

    PubMed

    Adamek, Julian; Clarkson, Chris; Durrer, Ruth; Kunz, Martin

    2015-02-01

    The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined background cosmological model. It may not. Smoothing over structure adds in an extra contribution, transferring power from small scales up to large. Second-order perturbation theory implies that the effect is small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is actually determined by the ratio of the Hubble scales at matter-radiation equality and today-which are entirely unrelated. This implies that a universe with significantly lower temperature today could have significant backreaction from more power on small scales, and so provides the ideal testing ground for understanding backreaction. We investigate this using two different N-body numerical simulations-a 3D Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact the virialization of structure saturates the backreaction effect at the same level independently of the equality scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it may still contribute at the percent level to certain cosmological observables and therefore it cannot be neglected in precision cosmology. PMID:25699430

  8. Maturation processes and structures of small secreted peptides in plants

    PubMed Central

    Tabata, Ryo; Sawa, Shinichiro

    2014-01-01

    In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognized by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signaling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarize recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants. PMID:25071794

  9. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  10. Small Business Innovation Research: Abstracts of Phase 1 awards, 1994

    SciTech Connect

    Not Available

    1994-12-31

    The Small Business Innovation Research (SBIR) program enables DOE to obtain effective, innovative solutions to important problems through the private sector, which has a commercial incentive to pursue the resulting technology and bring it to the marketplace. The growing number of awardees, many of them started in business in response to SBIR solicitations, is becoming a significant resource for the solution of high risk, high technology problems for the Department. As detailed here, this publication describes the technical efforts for SBIR Phase 1 awards in 1994. It is intended for the educated layman, and may be of particular interest to potential investors who wish to get in on the ground floor of exciting opportunities. Contained in this booklet are abstracts of the Phase 1 awards made in FY 1994 under the DOE SBIR program. The 212 Phase 1 projects described here were selected in a highly competitive process from a total of 2,276 grant applications received in response to the 1994 DOE annual SBIR Solicitation. The selections for awards were made on scientific and technical merit, as judged against the specific criteria listed in the Solicitation. Conclusions were reached on the basis of detailed reports returned by reviewers drawn from DOE laboratories, universities, private industry, and government. (Any discrepancies noted in prior DOE releases naming the firms selected for awards are due either to the firm changing its name after the award selection or to the firm not proceeding to a signed grant.) It is expected that between one-third and one-half of the Phase 1 projects will be continued into Phase 2. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications are given after each abstract. Individuals and organizations with an interest in the research described are encouraged to contact the appropriate small business directly.

  11. Kinks and small-scale structure on cosmic strings

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.

    2009-12-15

    We discuss some hitherto puzzling features of the small-scale structure of cosmic strings. We argue that kinks play a key role, and that an important quantity to study is their sharpness distribution. In particular we suggest that for very small scales the two-point correlation function of the string tangent vector varies linearly with the separation and not as a fractional power, as proposed by Polchinski and Rocha [Phys. Rev. D 74, 083504 (2006)]. However, our results are consistent with theirs, because the range of scales to which this linearity applies shrinks as evolution proceeds.

  12. Successes of Small Business Innovation Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  13. Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors

    PubMed Central

    Chak, Li-Ling; Okamura, Katsutomo

    2014-01-01

    A general feature of Argonaute-dependent small RNAs is their base-paired precursor structures, and precursor duplex structures are often required for confident annotation of miRNA genes. However, this rule has been broken by discoveries of functional small RNA species whose precursors lack a predictable double-stranded (ds-) RNA structure, arguing that duplex structures are not prerequisite for small RNA loading to Argonautes. The biological significance of single-stranded (ss-) RNA loading has been recognized particularly in systems where active small RNA amplification mechanisms are involved, because even a small amount of RNA molecules can trigger the production of abundant RNA species leading to profound biological effects. However, even in the absence of small RNA amplification mechanisms, recent studies have demonstrated that potent gene silencing can be achieved using chemically modified synthetic ssRNAs that are resistant to RNases in mice. Therefore, such ssRNA-mediated gene regulation may have broader roles than previously recognized, and the findings have opened the door for further research to optimize the design of ss-siRNAs toward future pharmaceutical and biomedical applications of gene silencing technologies. In this review, we will summarize studies about endogenous ssRNA species that are bound by Argonaute proteins and how ssRNA precursors are recognized by various small RNA pathways. PMID:24959173

  14. Small business innovation research: Abstracts of 1984. Phase 1 awards

    NASA Technical Reports Server (NTRS)

    1985-01-01

    On September 27, 1984, the National Aeronautics and Space Administration announced the selection of Phase I projects for the Small Business Innovation Research Program. These awards resulted from the evaluation of proposals submitted in response to the 1984 Program Solicitation, SBIR 84-1. In order to make available information on the technical content of the Phase I projects supported by the NASA SBIR Program, the abstracts of those proposals which resulted in awards of contracts are given. In addition, the name and address of the firm performing the work are given for those who may desired additional information about the project. Propulsion, aerodynamics, computer techniques, exobiology and composite materials are among the areas covered.

  15. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  16. Structural investigations of fat fractals using small-angle scattering

    NASA Astrophysics Data System (ADS)

    Anitas, Eugen M.

    2015-01-01

    Experimental small-angle scattering (SAS) data characterized, on a double logarithmic scale, by a succession of power-law decays with decreasing values of scattering exponents, can be described in terms of fractal structures with positive Lebesgue measure (fat fractals). Here we present a theoretical model for fat fractals and show how one can extract structural information about the underlying fractal using SAS method, for the well known fractals existing in the literature: Vicsek and Menger sponge. We calculate analytically the fractal structure factor and study its properties in momentum space. The models allow us to obtain the fractal dimension at each structural level inside the fractal, the number of particles inside the fractal and about the most common distances between the center of mass of the particles.

  17. Composite fuselage shell structures research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  18. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Jansen, J; De Rijk, P; De Wachter, R

    1997-01-01

    The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ . PMID:9016516

  19. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Van den Broeck, I; De Rijk, P; De Wachter, R

    1994-01-01

    The database on small ribosomal subunit RNA structure contains (June 1994) 2824 nucleotide sequences. All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. The complete database is made available to the scientific community through anonymous ftp on our server in Antwerp. A special effort was made to improve electronic retrieval and a program is supplied that allows to create different file formats. The database can also be obtained from the EMBL nucleotide sequence library. PMID:7524022

  20. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Nicolaï, S; De Rijk, P; De Wachter, R

    1996-01-01

    The Antwerp database on small ribosomal subunit RNA offers over 4300 nucleotide sequences (August 1995). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. The complete database is made available to the scientific community through anonymous ftp and World Wide Web(WWW). PMID:8594609

  1. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Caers, A; De Rijk, P; De Wachter, R

    1998-01-01

    About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ PMID:9399829

  2. Program of Research in Structures and Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  3. Metastable structures and size effects in small group dynamics

    PubMed Central

    Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco

    2014-01-01

    In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical “leadership” pattern, and in “cognitive” terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves “as if” it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical

  4. Aircraft structures research at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duberg, John E

    1955-01-01

    A review is made of the test techniques that have been developed and used by the NACA for experimental research in aircraft structures at elevated temperatures. Some experimental results are presented. Remarks are included on the problem of model scaling for testing of structures at high temperatures. (author)

  5. Structural Equation Modeling in Rehabilitation Counseling Research

    ERIC Educational Resources Information Center

    Chan, Fong; Lee, Gloria K.; Lee, Eun-Jeong; Kubota, Coleen; Allen, Chase A.

    2007-01-01

    Structural equation modeling (SEM) has become increasingly popular in counseling, psychology, and rehabilitation research. The purpose of this article is to provide an overview of the basic concepts and applications of SEM in rehabilitation counseling research using the AMOS statistical software program.

  6. Hollow Polyhedral Structures in Small Gold Sulfide Clusters

    SciTech Connect

    Pei, Dr. Yong; Shao, Nan; Li, Prof. Hui; Jiang, Deen; Zeng, X.C.

    2011-01-01

    Using ab initio methods, we investigate the structural evolution of a family of gold-sulfide cluster anions (Au{sub m}S{sub n}{sup -}). We show that this family of clusters exhibits simple size-evolution rules and novel hollow polyhedron structures. The highly stable Au{sub m}S{sub n}{sup -} species such as Au{sub 6}S{sub 4}{sup -}, Au{sub 9}S{sub 5}{sup -}, Au{sub 9}S{sub 6}{sup -}, Au{sub 10}S{sub 6}{sup -}, Au{sub 11}S{sub 6}{sup -}, Au{sub 12}S{sub 8}{sup -}, and Au{sub 13}S{sub 8}{sup -} detected in the recent ion mobility mass spectrometry experiment of Au{sub 25}(SCH{sub 2}CH{sub 2}Ph){sub 18} (Angel et al. ACS Nano2010, 4, 4691) are found to possess either quasi-tetrahedron, pyramidal, quasi-triangular prism, or quasi-cuboctahedron structures. The formation of these polyhedron structures are attributed to the high stability of the S-Au-S structural unit. A unique 'edge-to-face' growth mechanism is proposed to understand the structural evolution of the small Au{sub m}S{sub n}{sup -} cluster. A 3:2 ratio rule of Au/S is suggested for the formation of a hollow polyhedron structure among small-sized Au{sub m}S{sub m} clusters.

  7. Low-force magneto-rheological damper design for small-scale structural control experimentation

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin D.; Velazquez, Antonio; Swartz, R. Andrew

    2015-03-01

    Experimental validation of novel structural control algorithms is a vital step in both developing and building acceptance for this technology. Small-scale experimental test-beds fulfill an important role in the validation of multiple-degree-offreedom (MDOF) and distributed semi-active control systems, allowing researchers to test the control algorithms, communication topologies, and timing-critical aspects of structural control systems that do not require full-scale specimens. In addition, small-scale building specimens can be useful in combined structural health monitoring (SHM) and LQG control studies, diminishing safety concerns during experiments by using benchtop-scale rather than largescale specimens. Development of such small-scale test-beds is hampered by difficulties in actuator construction. In order to be a useful analog to full-scale structures, actuators for small-scale test-beds should exhibit similar features and limitations as their full-scale counterparts. In particular, semi-active devices, such as magneto-rheological (MR) fluid dampers, with limited authority (versus active mass dampers) and nonlinear behavior are difficult to mimic over small force scales due to issues related to fluid containment and friction. In this study, a novel extraction-type small-force (0- 10 N) MR-fluid damper which exhibits nonlinear hysteresis similar to a full-scale, MR-device is proposed. This actuator is a key development to enable the function of a small-scale structural control test-bed intended for wireless control validation studies. Experimental validation of this prototype is conducted using a 3-story scale structure subjected to simulated single-axis seismic excitation. The actuator affects the structural response commanded by a control computer that executes an LQG state feedback control law and a modified Bouc-Wen lookup table that was previously developed for full-scale MR-applications. In addition, damper dynamic limitations are characterized and

  8. Study of small magnetic structures in the solar photosphere

    NASA Astrophysics Data System (ADS)

    Cabello, I.; Domingo, V.; Bonet, J. A.; Blanco Rodríguez, J.; Balmaceda, L. A.

    2013-05-01

    The study of small scale magnetic structures in the solar photosphere is of great relevance for the understanding of the global behaviour of the Sun. Because of the small spatial and temporal scales involved, the use of high resolution images and fast cadence is fundamental for their study. In order to obtain such images, sophisticated computational techniques that compensate for the atmospheric degradation and telescope aberration have been developed, improving in this way the spatial resolution. In this work, we use G-band images obtained with the 1 m-Swedish Solar Telescope located at La Palma (Canary Islands, Spain). The images have been restored with MOMFBD (Multi-Object Multi-Frame Blind Deconvolution), a technique that combines multiple images acquired in a short time interval. The resulting images have a resolution close to the diffraction limit of the telescope (0.1 arcsec) allowing the study of very small bright structures present in the inter-granular lanes in the solar photosphere, known as Bright Points. It is highlighted the great presence of magnetic structures in quiet Sun regions analyzed from different observational campaigns. The density of BPs in the quiet Sun shows a decrease as we approach the limb, with values of ≃q 1% at the centre (μ ≈ 1), and ≃q 0.2% at μ ≈ 0.3. We also present the discovery of small vortexes detected in the solar surface through the movement of BPs, with radii around 241 km and lifetimes longer than 5 minutes. Further analyses, comprising longer time series and information from different solar layers, are being performed aiming at a more in-depth knowledge of these phenomena.

  9. The structure and function of small nucleolar ribonucleoproteins

    PubMed Central

    Reichow, Steve L.; Hamma, Tomoko; Ferré-D'Amaré, Adrian R.; Varani, Gabriele

    2007-01-01

    Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequence-specific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these protein–RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose-2′-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs. PMID:17284456

  10. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  11. Shielding considerations for the small animal radiation research platform (SARRP).

    PubMed

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2013-05-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1-3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  12. SHIELDING CONSIDERATIONS FOR THE SMALL ANIMAL RADIATION RESEARCH PLATFORM (SARRP)

    PubMed Central

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2014-01-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m3 enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1–3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  13. Small UAV Research and Evolution in Long Endurance Electric Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Chu, Julio; Motter, Mark A.; Carter, Dennis L.; Ol, Michael; Zeune, Cale

    2007-01-01

    This paper describes recent research into the advancement of small, electric powered unmanned aerial vehicle (UAV) capabilities. Specifically, topics include the improvements made in battery technology, design methodologies, avionics architectures and algorithms, materials and structural concepts, propulsion system performance prediction, and others. The results of prototype vehicle designs and flight tests are discussed in the context of their usefulness in defining and validating progress in the various technology areas. Further areas of research need are also identified. These include the need for more robust operating regimes (wind, gust, etc.), and continued improvement in payload fraction vs. endurance.

  14. Hierarchical structures in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Bica, E.

    2010-04-01

    We investigate the degree of spatial correlation among extended structures in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). To this purpose, we work with subsamples characterized by different properties such as age and size, taken from the updated catalogue of Bica et al. or gathered in the present work. The structures are classified as star clusters or non-clusters (basically, nebular complexes and their stellar associations). The radius distribution functions follow power laws (dN/dR ~ R-α) with slopes and maximum radius (Rmax) that depend on object class (and age). Non-clusters are characterized by α ~ 1.9 and Rmax <~ 472pc, while young clusters (age <~10Myr) have α ~ 3.6 and Rmax <~ 15pc and old ones (age >~600Myr) have α ~ 2.5 and Rmax <~ 40pc. Young clusters present a high degree of spatial self-correlation and, especially, correlate with star-forming structures, which does not occur with the old ones. This is consistent with the old clusters having been heavily mixed up, since their ages correspond to several LMC and SMC crossing times. On the other hand, with ages corresponding to fractions of the respective crossing times, the young clusters still trace most of their birthplace structural pattern. Also, small clusters (R < 10pc), as well as small non-clusters (R < 100pc), are spatially self-correlated, while their large counterparts of both classes are not. The above results are consistent with a hierarchical star formation scenario for the LMC and SMC.

  15. Emerging applications of small angle solution scattering in structural biology

    PubMed Central

    Chaudhuri, Barnali N

    2015-01-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu. PMID:25516491

  16. Electron Precipitation Associated with Small-Scale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Michell, R.; Samara, M.; Grubbs, G. A., II; Hampton, D. L.; Bonnell, J. W.; Ogasawara, K.

    2014-12-01

    We present results from the Ground-to-Rocket Electrons Electrodynamics Correlative Experiment (GREECE) sounding rocket mission, where we combined high-resolution ground-based auroral imaging with high time-resolution precipitating electron measurements. The GREECE payload successfully launched from Poker Flat, Alaska on 03 March 2014 and reached an apogee of approximately 335 km. The narrow field-of-view auroral imaging was taken from Venetie, AK, which is directly under apogee. This enabled the small-scale auroral features at the magnetic footpoint of the rocket payload to be imaged in detail. The electron precipitation was measured with the Acute Precipitating Electron Spectrometer (APES) onboard the payload. Features in the electron data are matched up with their corresponding auroral structures and boundaries, enabling measurement of the exact electron distributions responsible for the specific small-scale auroral features. These electron distributions will then be used to infer what the potential electron acceleration processes were.

  17. The fine structure of capillaries and small arteries.

    PubMed

    MOORE, D H; RUSKA, H

    1957-05-25

    Details of capillary endothelia of the mammalian heart are described and compared with capillaries of other organs and tissues. Continuous invagination and pinching off of the plasma membrane to form small vesicles which move across the cytoplasm are suggested as constituting a means of active and selective transmission through capillary walls (12). This might be designated as cytopempsis (transmission by cell). The fine structure of the different layers in the walls of small heart arteries is demonstrated. Endothelial protrusions extend through windows of the elestica interna to make direct contact with smooth muscle plasma membranes. The elastica interna appears to vary greatly in both thickness and density, and probably restricts filtration, diffusion, and osmosis to such an extent that windows and the transport mechanisms described (cytopempsis) are necessary for the functional integrity of the smooth muscle layer. The contractile material consists of very fine, poorly oriented filaments. PMID:13438930

  18. On the relation between the small world structure and scientific activities.

    PubMed

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications. PMID:25780922

  19. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  20. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  1. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  2. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  3. Magnetic Field Structure of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Magalhaes, A. M.; Margoniner, V. E.; Pereyra, A.; Rodrigues, C. V.; Coyne, G. V.

    1996-05-01

    We describe an on-going observational program to determine the magnetic field structure of the Small Magellanic Cloud (SMC). The project employs CCD images which allow the determination of the linear polarization of a large number of stars in each field. The data are being collected at the CTIO 1.5m telescope using a visitor polarimetry unit on the direct CCD camera. The data are been gathered mainly in the Northeast and Wing sections of the SMC. These regions have been presumably affected by past interactions with the Large Magellanic Cloud. Support by FAPESP, CNPq, CAPES and USP is gratefully acknowledged.

  4. Recent global trends in structural materials research

    NASA Astrophysics Data System (ADS)

    Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki

    2013-02-01

    Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural

  5. Experimental research on structural dynamics and control

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Horner, G. C.; Cole, S. R.

    1981-01-01

    This report describes an apparatus at the NASA Langley Research Center for conducting research on dynamics and control of structural dynamics systems. The apparatus consists of a 3.66 m (12 ft.) long flexible beam to which are attached four electromagnetic actuators, nine noncontacting sensors to measure deflection of beam at various locations, and four strain gage type load cells one at each actuator attachment point. The important feature of the apparatus is that the actuators can be controlled and deflection and load sensor data can be processed in real time using the research centers CDC Cyber 175 computer system - thereby allowing research to be conducted on structural dynamics systems using advanced control laws. The facility is described in the report along with a detailed discussion of the actuators used.

  6. Structural evaluation of phospholipidic nanovesicles containing small amounts of chitosan.

    PubMed

    Mertins, Omar; Cardoso, Mateus Borba; Pohlmann, Adriana Raffin; da Silveira, Nádya Pesce

    2006-08-01

    In this study we present a full characterization of nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan. The nanovesicles were prepared by the reverse phase evaporation method, including the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal particles. Structural changes as a function of the chitosan amount and the filter porosity used in the nanovesicles preparation were studied employing Static and Dynamic Light Scattering as well as Small Angle X-ray Scattering. The hydrodynamic radius of the nanovesicles ranged between 106 and 287 nm, depending on the chitosan contents and the filter porosity. A comparison with nanovesicles free of chitosan indicates the existence of higher contents of multilamellar structures that depends on the chitosan concentration in the vesicles containing chitosan. Typical spherical vesicles having nanometric diameters with polydispersity mostly desired in the biomedical area could only be achieved by filtration through a 0.45 microm porous filter. PMID:17037851

  7. Small magnetic structures in the photosphere, radiative properties

    NASA Astrophysics Data System (ADS)

    Palacios, Judith; Domingo, Vicente; Cabello, Iballa; Bonet, José Antonio; Sánchez Almeida, Jorge

    The three dimensional structure of small magnetic field features in the photosphere, their dynamic behavior and their radiative properties are studied. We analyze data obtained in simultaneous observations made on Sept 29 and 30, 2007 with the HINODE spacecraft and the Swedish Solar Telescope (SST) in La Palma in different wavelengths, such as CaII (396.85 nm) and CN (388.35 nm) and other with Hinode data; and Gband (430.56 nm) with SST. Tha analysis is completed with high resolution Gband and Gcontinuum (436.39 nm) images from SST obtained on 2005 and 2006. Magnetograms have been obtained from both observatories. SST images have been processed with MOMFB code. Ribbon-like structures and "flowers" are studied in detail. Comparisons with solar atmospheric models are presented.

  8. Structural biological materials: Overview of current research

    NASA Astrophysics Data System (ADS)

    Chen, P.-Y.; Lin, A. Y.-M.; Stokes, A. G.; Seki, Y.; Bodde, S. G.; McKittrick, J.; Meyers, M. A.

    2008-06-01

    Through specific biological examples this article illustrates the complex designs that have evolved in nature to address strength, toughness, and weight optimization. Current research is reviewed, and the structure of some shells, bones, antlers, crab exoskeletons, and avian feathers and beaks is described using the principles of materials science and engineering by correlating the structure with mechanical properties. In addition, the mechanisms of deformation and failure are discussed.

  9. On the Relation between the Small World Structure and Scientific Activities

    PubMed Central

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers’ productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications. PMID:25780922

  10. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    PubMed Central

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  11. Extreme events and small-scale structure in computational turbulence

    NASA Astrophysics Data System (ADS)

    Zhai, X. M.; Yeung, P. K.; Sreenivasan, K. R.

    2015-11-01

    Detailed analyses have been made of data from a direct numerical simulation of turbulence on a periodic domain with 81923 grid points designed to improve our understanding of small-scale structure and intermittency. At the Reynolds number of this simulation (1300 based on the Taylor scale) extreme events of dissipation and enstrophy as large as 105 times the mean value are observed. These events are shown to possess a form that is different from similar events at low Reynolds numbers. Extreme vorticity appears to be ``chunky'' in character, in contrast to elongated vortex tubes at moderately large amplitudes commonly reported in the literature. We track the temporal evolution of these extreme events and find that they are generally short-lived, which suggests frequent sampling on-the-fly is useful. Extreme magnitudes of energy dissipation rate and enstrophy are essentially coincident in space and remain so during their evolution. Numerical tests show sensitivity to small-scale resolution and sampling but not machine precision. The connections expected between indicators of fine-scale intermittency such as acceleration statistics and the anomalous scaling of high-order velocity structure functions are also investigated. Supported by NSF Grant ACI-1036170 (Track 1 Petascale Resource Allocations Program).

  12. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration.

    PubMed

    Green, David W; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a "water-tight" barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  13. Research Directions in Cotton Structure and Quality Research at the USDA, Southern Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cotton and Structure (CSQ) Research Unit is a core cotton research unit at the Southern Regional Research Center (SRRC). The mission of the CSQ is to develop and improve the methods for assessing quality and structural attributes of cotton fiber through all stages of production and processing. S...

  14. Scanning Magnetoresistance Microscopy Studies of Small Magnetic and Electrical Structures

    NASA Astrophysics Data System (ADS)

    Xiao, Gang

    2004-03-01

    Many physical objects generate microscopic magnetic-field images near their surfaces. Such images reveal important signatures of inherent electrical and magnetic processes within the objects. For example, the image of a magnetic thin film discloses its internal magnetic domain structure. Electrical currents inside an semiconductor chip generate surface magnetic field images, which not only contain information about the electrical current distribution, but also the frequencies with which various components on a chip operates. A type II superconductor also creates an image of threading magnetic flux lines, whose structure and dynamics are fundamental properties. We have developed a sensitive and high-resolution magnetic microscope that is capable of non-invasively imaging, characterizing, and investigating spatial magnetic field patterns. At the heart of the microscope is a miniaturized magnetic-tunnel-junction (MTJ) or giant magnetoresistance (GMR) sensor, capable to work at high speed, under ambient conditions, and over a wide bandwidth. This type of MR microscopy (MRM) offers many advantages over the magnetic force microscopy (MFM) and others. It measures the absolute local magnetic field, and its sensor does not generate invasive field as a magnetic tip would. The MRM can also measure dynamic magnetic images in a time varying external field. We will present results obtained from a wide range of structures using MRM, including small magnetic structures and state-of-the-art integrated circuits. This work supported by NSF is a collaboration with B. Schrag, X.Y. Liu, and G. Singh.

  15. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... SBIR and STTR Programs as a result of certain provisions of the Reauthorization Act (see 77 FR 30227.... SBA published a notice in the Federal Register, 77 FR 16313, on March 20, 2012 explaining this data... August 6, 2012 Part II Small Business Administration 13 CFR Chapter I Small Business Innovation...

  16. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  17. TESOL, Teacher Identity, and the Need for "Small Story" Research

    ERIC Educational Resources Information Center

    Vasquez, Camilla

    2011-01-01

    Narrative research in TESOL still remains very much in its infancy. And the predominant mode of narrative research in TESOL--following the trend in educational research, as well as in other social sciences--has clearly been that of narrative inquiry, with its concomitant privileging of autobiographical "big stories", or researcher-elicited…

  18. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  19. 76 FR 77510 - Applications for New Awards; Small Business Innovation Research Program (SBIR)-Phase I

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... Applications for New Awards; Small Business Innovation Research Program (SBIR)--Phase I AGENCY: Office of... Research (NIDRR), Department of Education ACTION: Notice. Overview Information Small Business Innovation... technological innovation in the private sector, strengthen the role of small business in meeting...

  20. 48 CFR 227.7204 - Contracts under the Small Business Innovative Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Contracts under the Small Business Innovative Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovative Research Program. When contracting under the Small...

  1. MeV Dark Matter and Small Scale Structure

    SciTech Connect

    Hooper, Dan; Kaplinghat, Manoj; Strigari, Louis E.; Zurek, Kathryn M.; /Wisconsin U., Madison

    2007-04-01

    WIMPs with electroweak scale masses (neutralinos, etc.) remain in kinetic equilibrium with other particle species until temperatures approximately in the range of 10 MeV to 1 GeV, leading to the formation of dark matter substructure with masses as small as 10{sup -4} M{sub {circle_dot}} to 10{sup -12} M{sub {circle_dot}}. However, if dark matter consists of particles with MeV scale masses, as motivated by the observation of 511 keV emission from the Galactic Bulge, such particles are naturally expected to remain in kinetic equilibrium with the cosmic neutrino background until considerably later times. This would lead to a strong suppression of small scale structure with masses below about 10{sup 7}M{sub {circle_dot}} to 10{sup 4} M{sub {circle_dot}}. This cutoff scale has important implications for present and future searches for faint Local Group satellite galaxies and for the missing satellites problem.

  2. Analysis of PKR Structure by Small-Angle Scattering

    SciTech Connect

    VanOudenhove, Jennifer; Anderson, Eric; Krueger, Susan; Cole, James L.

    2009-04-27

    Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 {angstrom}. The p(r) distance distribution function exhibits a peak near 30 {angstrom}, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.

  3. [Structure of parasitic arthropod communities in forest small mammals].

    PubMed

    Balashov, Iu S

    2004-01-01

    Species composition and structure of ectoparasite arthropod communities were examined all year round six years in the bank vole Clethrionomys glareolus, Ural wood mouse Apodemus uralensis and the common shrew Sorex araneus in forests of the Ilmen'-Volkhov depression. In total, 4500 host samples have been examined and all ectoparasites have been collected. The species composition of ectoparasite community in small mammal species are as follows: the bank vole--29 insect, tick and mite species, the common shrew--23 species, the Ural wood mouse--16 species. In forest biotopes, many temporary ectoparasitic species occur on several host species living in the same habitats under a forest canopy and contacting each other. A parasitic supracommunity in the ecosystem examined has a pool of temporary ectoparasites, which is available for all the community of small mammals. A role of different rodent and shrew species are hosts of insects and ticks changes depending on a density of potential host populations and numerous other environment factors. PMID:15656091

  4. A design guide and specification for small explosive containment structures

    SciTech Connect

    Marchand, K.A.; Cox, P.A.; Polcyn, M.A.

    1994-12-01

    The design of structural containments for testing small explosive devices requires the designer to consider the various aspects of the explosive loading, i.e., shock and gas or quasistatic pressure. Additionally, if the explosive charge has the potential of producing damaging fragments, provisions must be made to arrest the fragments. This may require that the explosive be packed in a fragment attenuating material, which also will affect the loads predicted for containment response. Material also may be added just to attenuate shock, in the absence of fragments. Three charge weights are used in the design. The actual charge is used to determine a design fragment. Blast loads are determined for a {open_quotes}design charge{close_quotes}, defined as 125% of the operational charge in the explosive device. No yielding is permitted at the design charge weight. Blast loads are also determined for an over-charge, defined as 200% of the operational charge in the explosive device. Yielding, but no failure, is permitted at this over-charge. This guide emphasizes the calculation of loads and fragments for which the containment must be designed. The designer has the option of using simplified or complex design-analysis methods. Examples in the guide use readily available single degree-of-freedom (sdof) methods, plus static methods for equivalent dynamic loads. These are the common methods for blast resistant design. Some discussion of more complex methods is included. Generally, the designer who chooses more complex methods must be fully knowledgeable in their use and limitations. Finally, newly fabricated containments initially must be proof tested to 125% of the operational load and then inspected at regular intervals. This specification provides guidance for design, proof testing, and inspection of small explosive containment structures.

  5. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  6. Small-scale structure in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less.

  7. Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-10-01

    The topological and dynamical features of small scales are studied in the context of decaying magnetohydrodynamic turbulent flows using direct numerical simulations. Joint probability density functions (PDFs) of the invariants of gradient quantities related to the velocity and the magnetic fields demonstrate that structures and dynamics at the time of maximum dissipation depend on the large scale initial conditions at the examined Reynolds numbers. This is evident in particular from the fact that each flow has a different shape for the joint PDF of the invariants of the velocity gradient in contrast to the universal teardrop shape of hydrodynamic turbulence. The general picture that emerges from the analysis of the invariants is that regions of high vorticity are correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent flows. Magnetic strain dominated regions are also well correlated with region of high current density j. Viscous dissipation ({∝ } S^2) as well as Ohmic dissipation ({∝ } j^2) resides in regions where strain and rotation are locally almost in balance. The structures related to the velocity gradient possess different characteristics than those associated with the magnetic field gradient with the latter being locally more quasi-two dimensional.

  8. Detecting small scale CO2 emission structures using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen

    2016-04-01

    Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology

  9. The Physical Character of Small-Scale Interstellar Structures

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

  10. HERU research in support of the USDA Small Watershed Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nation is confronted with issues related to aging infrastructure. The USDA Small Watershed Program flood control dams are a part of that aging infrastructure and as a result have many unique challenges. The National Rehabilitation Amendment of 2000 has helped set into motion a program of addre...

  11. A Research Brief: Small Learning Communities--Recommendations for Success

    ERIC Educational Resources Information Center

    Urban Education Collaborative, 2010

    2010-01-01

    Over the last 15 years, a variety of efforts to transform American high schools have gained both public and private support. Significant among these efforts are initiatives to implement small learning communities (SLCs). Like other reform efforts, SLCs have several goals, including "downsizing large schools, meeting the needs of at-risk students,…

  12. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  13. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    NASA Astrophysics Data System (ADS)

    Sands, Ashley E.

    2015-01-01

    Astronomy data management refers to all actions taken upon data over the course of the entire research process. It includes activities involving the collection, organization, analysis, release, storage, archiving, preservation, and curation of research data. Astronomers have cultivated data management tools, infrastructures, and local practices to ensure the use and future reuse of their data. However, new sky surveys will soon amass petabytes of data requiring new data management strategies.The goal of this dissertation, to be completed in 2015, is to identify and understand data management practices and the infrastructure and expertise required to support best practices. This will benefit the astronomy community in efforts toward an integrated scholarly communication framework.This dissertation employs qualitative, social science research methods (including interviews, observations, and document analysis) to conduct case studies of data management practices, covering the entire data lifecycle, amongst three populations: Sloan Digital Sky Survey (SDSS) collaboration team members; Individual and small-group users of SDSS data; and Large Synoptic Survey Telescope (LSST) collaboration team members. I have been observing the collection, release, and archiving of data by the SDSS collaboration, the data practices of individuals and small groups using SDSS data in journal articles, and the LSST collaboration's planning and building of infrastructure to produce data.Preliminary results demonstrate that current data management practices in astronomy are complex, situational, and heterogeneous. Astronomers often have different management repertoires for working on sky surveys and for their own data collections, varying their data practices as they move between projects. The multitude of practices complicates coordinated efforts to maintain data.While astronomy expertise proves critical to managing astronomy data in the short, medium, and long term, the larger astronomy

  14. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  15. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  16. Small Scale Structure and Turbulence in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Spangler, Steven

    Radio scintillation observations show fluctuations in electromagnetic wave properties (intensity, interferometer phase, etc) on spatial scales as small as hundreds of kilometers. These observations indicate that irregularities in the interstellar plasma density also exist on these scales. In this talk I will discuss what observations of these irregularities tell us about the nature of interstellar turbulence. I will be particularly interested in information on suitable mathematical models of such turbulence, as well as the mechanisms responsible for its generation. The small scale irregularities are important because their physics is arguably relatively simple; they probably respond to temporal and spatial variations in the turbulent kinetic and magnetic energy densities. Physical processes such as gravitation, radiative cooling, and ion-neutral collisional effects are important on larger scales and probably complicate the interpretation of observations on such scales. However, they should be unimportant on the scales probed by radio scintillations. The generally-observed Kolmogorov spectrum for these irregularities strongly indicates the existence of an inertial subrange of density and (probably) magnetic field and fluid velocity from scales of order 1015 cm to as small as 10^7 cm. This observation indicates that ion-neutral collisional or ambipolar effects, which would set an inner scale near the upper end of this range, cannot be dominant in the interstellar plasma probed by radio wave scintillations. One can speculate that structures formed by ion-neutral effects might manifest themselves in strong refractive scintillation phenomena, enhanced low frequency variability, and perhaps the "tiny-scale" ISM features (Heiles 1997, ApJ 481, 193). Interstellar scintillation observations also present consistent evidence for anisotropy of scattering, indicating anisotropic, magnetic field-aligned density irregularities. From existent observations, we would conclude that

  17. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  18. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  19. Structural Elucidation of a Small Molecule Inhibitor of Protein Disulfide Isomerase

    PubMed Central

    2015-01-01

    Compound libraries provide a starting point for multiple biological investigations, but the structural integrity of compounds is rarely assessed experimentally until a late stage in the research process. Here, we describe the discovery of a neuroprotective small molecule that was originally incorrectly annotated with a chemical structure. We elucidated the correct structure of the active compound using analytical chemistry, revealing it to be the natural product securinine. We show that securinine is protective in a cell model of Huntington disease and identify the binding site of securinine to its target, protein disulfide isomerase using NMR chemical shift perturbation studies. We show that securinine displays favorable pharmaceutical properties, making it a promising compound for in vivo studies in neurodegenerative disease models. In addition to finding this unexpected activity of securinine, this study provides a systematic roadmap to those who encounter compounds with incorrect structural annotation in the course of screening campaigns. PMID:26500720

  20. A Small Acoustic Goniometer for General Purpose Research

    PubMed Central

    Pook, Michael L.; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  1. A Small Acoustic Goniometer for General Purpose Research.

    PubMed

    Pook, Michael L; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  2. Science Education Research vs. Physics Education Research: A Structural Comparison

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  3. Aeroservoelastic and structural dynamics research on smart structures conducted at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Rivas McGowan, Anna-Maria; Wilkie, W. K.; Moses, Robert W.; Lake, Renee C.; Pinkerton Florance, Jennifer L.; Weiseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-06-01

    An overview of smart structures research currently underway a the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally validated finite element and aeroservoelastic modeling techniques; conducting bench experimental test to assess feasibility and understand system trade-offs; and conducting large-scale wind-tunnel of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  4. Community-oriented support and research structures

    NASA Astrophysics Data System (ADS)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas

    2009-07-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Jülich Supercomputing Centre of the Forschungszentrum Jülich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are structured

  5. A small rodent research facility for flight with Columbus laboratory.

    PubMed

    Adami, G; Falcetti, G

    2002-07-01

    During 2001 ESA has finalised the definition of an animal holding facility able to support experimentation with small rodent for the ISS International Space Station. The name of this facility is MISS or Mice on ISS. A facility Science Team is consolidating with ESA the MISS Requirement specification that is driving the Phase A/B Study, where Laben is acting as Prime contractor. In the frame of this Phase A/B that will last until the end 2003, Laben is working in co-operation with qualified European companies with recognised specific area of excellence and heritage. This article presents the Study heritage, the different scenarios under assessment, the critical areas to be explored and then preliminary candidates for bread boarding that is the final task of the Study to consolidate the final Facility Specification. PMID:15002605

  6. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Special provisions for Small Business Innovation Research Grants. 600.381 Section 600.381 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research...

  7. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Special provisions for Small Business Innovation Research Grants. 600.381 Section 600.381 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research...

  8. Small Business and Vocational Education and Training. Research at a Glance.

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research, Leabrook (Australia).

    This issue in the series, "Research at a Glance," explores Australian small business and its attitudes to training, needs, how small business becomes involved in training, and how training happens. It begins with an overview of findings, some policy options, and a list of 11 references used in preparation of this publication. Research findings are…

  9. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    SciTech Connect

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  10. Equilibrium Geometries and Electronic Structure of Small Silicon Monohydrides Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Jucai; Bai, Xue; Li, Chunping; Xu, Wenguo; Xiao, Wensheng

    The geometries and energies of small silicon monohydride clusters (Si2H-Si10H) have been systematically investigated by density functional theory (DFT) scheme with DZP++ basis sets. Several possible geometric arrangements and electronic states have been considered for each cluster. The results on Si2H-Si4H are in good accordance with previous ab initio calculation. The geometry of ground state of Si2H is found to be a bridged C2v structure, and Si3H to be a bridged C2v, while Si4H a non-bridged Cs symmetry with 2A‧ state. The non-bridged geometries of ground state of Si5H-Si10H have been found to be corresponding to C2v (2B1), C2v (2B1), C5v (2A1), Cs (2A‧‧) (have two types), C1 (not symmetry), and Cs (2A‧), respectively. The results on Si5H, Si6H, Si8H and Si9H are different from previous calculations. Compared silicon clusters (Sin) with silicon monohydrides (SinH) clusters, the addition of a single hydrogen atom cannot cause great changes in the ground state geometries of Si2, Si3, Si4, Si7, Si9, and Si10 clusters, while in the ground state geometries of Si5, Si6 and Si8 clusters the change is great. The dissociation energies calculated indicates that Si4H, Si7H, and Si10H clusters are less stable than others.

  11. Distributed Acquisition for Geomagnetic Research (DAGR) for SmallSats

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Bonalsky, T. M.; Wendel, D. E.; Simpson, D. G.; Beach, T. L.; Allen, L.; Clavier, O.

    2015-12-01

    Geomagnetic field measurements are a fundamental, key parameter measurement for any space weather application, particularly for tracking the electromagnetic energy input in the Ionosphere-Thermosphere system and for high latitude dynamics governed by the large-scale field-aligned currents. The full characterization of the Magnetosphere-Ionosphere-Thermosphere coupled system necessitates measurements with higher spatial/temporal resolution and from multiple locations simultaneously. This becomes extremely challenging in the current state of shrinking budgets. Traditionally, including a science-grade magnetometer in a mission necessitates very costly integration and design (sensor on long boom) and imposes magnetic cleanliness restrictions on all components of the bus and payload. Recent advances in Smallsat and Cubesat developments offer a pathway for the proliferation of measurements. However, the Cubesat bus is a small volume in which to include all traditional bus components and payload, and the low cost of such programs makes the acquisition of clean Geomagnetic field observations a challenge. This work presents our approach of combining multiple sensitive onboard sensors with an innovative algorithm approach that enables high quality magnetic field measurements in Cubesats.

  12. Proton Fingerprints Portray Molecular Structures: Enhanced Description of the 1H NMR Spectra of Small Molecules

    PubMed Central

    Napolitano, José G.; Lankin, David C.; McAlpine, James B.; Niemitz, Matthias; Korhonen, Samuli-Petrus; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D 1H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their 1H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed. PMID:24007197

  13. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  14. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    PubMed

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites. PMID:27219505

  15. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  16. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Cheng, He; Yuan, Guangcui; Han, Charles C.; Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng

    2014-01-01

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional 3He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å-1 to 0.5 Å-1 in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript.

  17. Decommissioning Small Research and Training Reactors; Experience on Three Recent University Projects - 12455

    SciTech Connect

    Gilmore, Thomas; DeWitt, Corey; Miller, Dustin; Colborn, Kurt

    2012-07-01

    Decommissioning small reactors within the confines of an active University environment presents unique challenges. These range from the radiological protection of the nearby University population and grounds, to the logistical challenges of working in limited space without benefit of the established controlled, protected, and vital areas common to commercial facilities. These challenges, and others, are discussed in brief project histories of three recent (calendar year 2011) decommissioning activities at three University training and research reactors. These facilities include three separate Universities in three states. The work at each of the facilities addresses multiple phases of the decommissioning process, from initial characterization and pre-decommissioning waste removal, to core component removal and safe storage, through to complete structural dismantlement and site release. The results of the efforts at each University are presented, along with the challenges that were either anticipated or discovered during the decommissioning efforts, and results and lessons learned from each of the projects. (authors)

  18. Structure Optimization and Evaluation of Small Adjustable Diameter Grinding Wheel

    NASA Astrophysics Data System (ADS)

    Yao, Yiyong; Li, Yuanyuan; Zhao, Liping; Zhao, Hu

    Focus on the uneven deformation of conventional adjustable diameter grinding wheel (ADGW), a structure optimization and evaluation method of ADGW was proposed in this paper. Firstly, the evaluation index system and structure optimization framework of ADGW was established to obtain the optimization objective of ADGW. Then a simulated experiment was provided. The flexible units of ADGW with different structures and geometries were selected to analyze the unevenness of deformation. The comparison results showed that the proposed method can improve the ADGW structures effectively and provide a technical approach for evaluating the structure design of ADGW.

  19. Managing Change in Small Scottish Primary Schools. SCRE Research Report Series.

    ERIC Educational Resources Information Center

    Wilson, Valerie; McPake, Joanna

    This report describes Scottish research on ways in which headteachers in small primary schools managed mandated changes. The research focused on implementation of four recent major initiatives: 5-14 Curriculum Guidelines, School Development Planning, Staff Development and Appraisal, and Devolved School Management. Research methods included a…

  20. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Innovation Research (SBIR) Program. (a) Use the clause at 252.227-7018, Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data...

  1. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Innovation Research (SBIR) Program. (a) Use the clause at 252.227-7018, Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data...

  2. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Innovation Research (SBIR) Program. (a) Use the clause at 252.227-7018, Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data...

  3. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Innovation Research (SBIR) Program. (a) Use the clause at 252.227-7018, Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data...

  4. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Innovation Research (SBIR) Program. (a) Use the clause at 252.227-7018, Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data...

  5. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha

    PubMed Central

    Roberts, Joanna D.; Thapaliya, Arjun; Martínez-Lumbreras, Santiago; Krysztofinska, Ewelina M.; Isaacson, Rivka L.

    2015-01-01

    The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research. PMID:26734616

  6. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  7. Structural Biology and Molecular Applications Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  8. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  9. Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.

    1996-12-01

    The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at.{percent} in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores ({approx_equal}1{endash}50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology. {copyright} {ital 1996 Materials Research Society.}

  10. Detection of small exchange fields in S/F structures

    NASA Astrophysics Data System (ADS)

    Vasenko, A. S.; Kawabata, S.; Ozaeta, A.; Golubov, A. A.; Stolyarov, V. S.; Bergeret, F. S.; Hekking, F. W. J.

    2015-06-01

    Ferromagnetic materials with exchange fields Eex smaller or of the order of the superconducting gap Δ are important for applications of corresponding (s-wave) superconductor/ferromagnet/superconductor (SFS) junctions. Presently such materials are not known but there are several proposals how to create them. Small exchange fields are in principle difficult to detect. Based on our results we propose reliable detection methods of such small Eex. For exchange fields smaller than the superconducting gap the subgap differential conductance of the normal metal-ferromagnet-insulator-superconductor (NFIS) junction shows a peak at the voltage bias equal to the exchange field of the ferromagnetic layer, eV =Eex. Thus measuring the subgap conductance one can reliably determine small Eex < Δ. In the opposite case Eex > Δ one can determine the exchange field in scanning tunneling microscopy (STM) experiment. The density of states of the FS bilayer measured at the outer border of the ferromagnet shows a peak at the energy equal to the exchange field, E =Eex. This peak can be only visible for small enough exchange fields of the order of few Δ.

  11. 6. FLYWHEEL FOR THE 32/28 STRUCTURAL MILL. THE SMALL ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FLYWHEEL FOR THE 32/28 STRUCTURAL MILL. THE SMALL ELECTRIC MOTOR IN FOREGROUND MAY HAVE BEEN USED TO HELP START THE MILL. - U.S. Steel Homestead Works, Structural Mill, Along Monongahela River, Homestead, Allegheny County, PA

  12. Partnership Working in Small Rural Primary Schools: The Best of Both Worlds. Research Report

    ERIC Educational Resources Information Center

    Hill, Robert

    2014-01-01

    The aim of the research was to investigate the most effective ways for small rural primary schools to work together in order to improve provision and raise standards. The project sought to examine the circumstances and context of small rural schools in Lincolnshire and evaluate their different leadership models (such as collaborations,…

  13. 77 FR 47797 - Federal Acquisition Regulation; Small Business Set Asides for Research and Development Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... 9000-AM33 Federal Acquisition Regulation; Small Business Set Asides for Research and Development... to amend the Federal Acquisition Regulation (FAR) to clarify that contracting officers shall set... revise paragraph (b)(2) of FAR 19.502-2, ``Total small business set-asides,'' to clarify that...

  14. A Review of Research on Small-School Student Participation in Extracurricular Activities.

    ERIC Educational Resources Information Center

    Stevens, Neil G.; Peltier, Gary L.

    1994-01-01

    Research reveals that high school students in small schools participate more in extracurricular activities than their peers in large schools; that a high degree of student participation provides opportunities for enhancing leadership, responsibility, and motivation; that students in small schools feel needed; and that the benefits of…

  15. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    SciTech Connect

    2011-08-31

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  16. Training and Human Resource Issues in Small E-Businesses: Towards a Research Agenda

    ERIC Educational Resources Information Center

    Matlay, Harry

    2004-01-01

    A great deal has been written in recent years about the internet and the emergence of e-businesses operating in the global e-economy. Although a small proportion of the expanding literature on this topic is based on empirically rigorous research, the bulk of publications tend to be of limited value to small business owner/managers. Furthermore,…

  17. Structure of Csm2 elucidates the relationship between small subunits of CRISPR-Cas effector complexes.

    PubMed

    Venclovas, Česlovas

    2016-05-01

    Type I and type III CRISPR-Cas effector complexes share similar architecture and have homologous key subunits. However, the relationship between the so-called small subunits of these complexes remains a contentious issue. Here, it is shown that the recently solved structure of Thermotoga maritima Csm2 represents a dimer with the extensive structure swapping between monomers. Unswapping the structure generates a compact globular monomer which shares similar structure and surface properties with Cmr5, the small subunit of a related Cmr complex. Detailed analysis of available structures of small subunits reveals that they all have a common fold suggesting their common origin. PMID:27091242

  18. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  19. The Structure and Climate of Size: Small Scale Schooling in an Urban District

    ERIC Educational Resources Information Center

    LeChasseur, Kimberly

    2009-01-01

    This study explores mechanisms involved in small scale schooling and student engagement. Specifically, this study questions the validity of arguments for small scale schooling reforms that confound the promised effects of small scale schooling "structures" (such as smaller enrollments, schools-within-schools, and smaller class sizes) with the…

  20. Structure and dynamics of small van der Waals complexes

    SciTech Connect

    Loreau, J.

    2014-10-06

    We illustrate computational aspects of the calculation of the potential energy surfaces of small (up to five atoms) van der Waals complexes with high-level quantum chemistry techniques such as the CCSD(T) method with extended basis sets. We discuss the compromise between the required accuracy and the computational time. Further, we show how these potential energy surfaces can be fitted and used in dynamical calculations such as non-reactive inelastic scattering.

  1. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    PubMed

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase. PMID:25524322

  2. Small-scale polymer structures enabled by thiol-ene copolymer systems

    NASA Astrophysics Data System (ADS)

    Kasprzak, Scott Edward

    2009-12-01

    The research described herein is aimed at exploring the thermomechanical properties of thiol-ene polymers in bulk form, investigating the ability of thiol-ene polymers to behave desirably as photolithographic media, and providing the first characterization of the mechanical properties of two-photon stereolithography-produced polymer structures. The thiol-ene polymerization reaction itself is well-characterized and described in the literature, but the thermomechanical properties of thiol-ene and thiol-ene/acrylate polymers still require more rigorous study. Understanding the behavior of thiol-ene networks is a crucial step towards their expanded use in bulk form, and particularly in specialized applications such as shape memory devices. Additionally, the thiol-ene polymerization reaction mechanism exhibits unique properties which make these polymers well suited to photolithography, overcoming the typical dichotomy of current materials which either exhibit excellent photolithographic behavior or have controllable properties. Finally, before two-photon stereolithography can create mechanisms and devices which can serve any mechanically functional role, the mechanical properties of the polymers they produce must be quantitatively characterized, which is complicated by the extremely small scale at which these structures are produced. As such, mechanical characterization to date has been strictly qualitative. Fourier transfer infrared spectroscopy revealed functional group conversion information and sol-fraction testing revealed the presence of unconverted monomer and impurities, while dynamic mechanical analysis (DMA) and tensile testing revealed the thermomechanical responses of the systems. Nanoindentation was employed to characterize the mechanical properties of micrometer-scale polymer structures produced by two-photon stereolithography. Optical and electron microscopy were exploited to provide both quantitative and qualitative evaluations of thiol-ene/acrylate and

  3. Introduction to Journal of Structural Geology special issue on "Deformation of the lithosphere. How small structures tell a big story"

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; de Bresser, Hans; Drury, Martyn; Prior, David J.; Wenk, Hans-Rudolf

    2015-02-01

    This special issue Deformation of the Lithosphere. How small structures tell a big story is dedicated to Professor Henk Zwart (1924-2012). The theme is inspired by Henk's retirement lecture entitled Mountains must indeed be studied with a microscope (19 February 1988). Henk Zwart was a pioneer in linking microstructural research with the large-scale issues concerning lithospheric rheology and deformation. The famous Zwart's Hen House, representing the nine diagnostic relationships of porphyroblast growth with respect to the timing of deformation, is still a key element in contemporary textbooks on structural geology and microtectonics. This particular insight may not have occurred if it wasn't for a mistake made by the thin-section maker in the Leiden lab of Henk Zwart. By accident a thin section of a Pyrenean metamorphic rock was made, not perpendicular to the lineation - as was the standard procedure in those early days of structural geology - but parallel to the lineation. That mistake and Henk's recognition that the lineation parallel view gave more useful information changed structural geology and microtectonics.

  4. Decagonal and hexagonal structures in small gold particles

    NASA Astrophysics Data System (ADS)

    José-Yacamán, M.; Herrera, R.; Gómez, A.; Tehuacanero, S.; Schabes-Retchkiman, P.

    1990-11-01

    In the present work we report the study of gold particles using HREM and image processing. Particles which are not conventional fcc are discussed as well as penta-twinned particles which show twin boundaries that do not join along a common point. It is shown that there are particles with an hcp structure. This structure is probably due to repeated faulting and excess vacancies.

  5. Molecular locks and keys: the role of small molecules in phytohormone research

    PubMed Central

    Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea

    2014-01-01

    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283

  6. Structuring Research Opportunities for All Biology Majors.

    ERIC Educational Resources Information Center

    Lewis, Susan E.; Conley, Lisa K.; Horst, Cynthia J.

    2003-01-01

    Describes a required research experience program for all biology majors instituted in the biology department of Carroll College. Discusses successes and challenges of coordinating a program that involves 20-40 research projects each year. (Author/NB)

  7. Research in Structures and Dynamics, 1984

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)

    1984-01-01

    A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.

  8. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  9. The structure of small penta-twinned gold particles

    NASA Astrophysics Data System (ADS)

    Gao, Pei-Yu; Kunath, W.; Gleiter, H.; Weiss, K.

    1989-03-01

    The structural feathers of penta-twinned gold particles (size between 2 and 6 nm) generated by gas evaporation have been investigated by high resolution TEM. The structural characteristic of penta-twinned particles is different from that of quasi-crystals that the five coherent or incoherent twin boundaries separating the twin oriented segments do not join up along a common edge. The lattice parameter is reduced by 4 5% in comparison to that of bulk gold. The formation of the penta-twinned particles is proposed to occur by particle collision. The particles were observed to be crystalline at ambient temperature.

  10. Exploring the Small Scale Structure of N103B

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Burrows, D. N.; Nousek, J.; Garmire, G.; Hughes, J. P.; Slane, P.

    2000-12-01

    We present the preliminary results of a 40.8 ks Chandra ACIS observation of the young supernova remnant (SNR) N103B located in the Large Magellanic Cloud. The image reveals structure at the arc-second level, including several bright knots and filamentary structures. The remnant has the characteristic spectrum of a type Ia SNR, containing stron lines of Fe, He- and H-like Si, S, Ar, and Ca. Spectra of several bright knots are presented. Preliminary analysis, including equivalent width images in the brighter lines of Si and S have revealed spatial variations in the emission strength of these elements. These variations are further explored.

  11. Consensus Problems on Small World Graphs: A Structural Study

    NASA Astrophysics Data System (ADS)

    Hovareshti, Pedram; Baras, John S.

    Consensus problems arise in many instances of collaborative control of multi-agent complex systems; where it is important for the agents to act in coordination with the other agents. To reach coordination, agents need to share information. In large groups of agents the information sharing should be local in some sense, due to energy limitations, reliability, and other constraints. A consensus protocol is an iterative method that provides the group with a common coordination variable. However, local information exchange limits the speed of convergence of such protocols. Therefore, in order to achieve high convergence speed, we should be able to design appropriate network topologies. A reasonable conjecture is that the small world graphs should result in good convergence speed for consensus problems because their low average pairwise path length should speed the diffusion of information in the system. In this paper we address this conjecture by simulations and also by studying the spectral properties of a class of matrices corresponding to consensus problems on small world graphs.

  12. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  13. Sensitive Educational Research in Small States and Territories: The Case of Macau

    ERIC Educational Resources Information Center

    Morrison, Keith

    2006-01-01

    This paper explores the sensitivities of conducting educational research in small states and territories, where the very act of conducting research, aside from its purposes or focuses, is itself a sensitive matter. The paper takes a "critical case study" of Macau and examines cultural, educational, political, micro-political, interpersonal and…

  14. Perceptions of the UK's Research Excellence Framework 2014: A Small Survey of Academics

    ERIC Educational Resources Information Center

    Murphy, Tony; Sage, Daniel

    2015-01-01

    Earlier work inspired by a body of literature raised important questions about the workings of the UK's Research Excellence Framework (REF) and its predecessor the Research Assessment Framework (RAE), and noted the possible adverse outcomes of such processes. This paper builds on this by examining the findings of a small survey of social science…

  15. "It's Really Making a Difference": How Small-Scale Research Projects Can Enhance Teaching and Learning

    ERIC Educational Resources Information Center

    Dexter, Barbara; Seden, Roy

    2012-01-01

    Following an internal evaluation exercise, using Action Research, this paper identifies the positive impact of small-scale research projects on teaching and learning at a single case study UK University. Clear evidence is given of how the projects benefited students and staff, and enhanced institutional culture. Barriers to better practice are…

  16. Small Group Communication Research of the 1970's: A Synthesis and Critique.

    ERIC Educational Resources Information Center

    Cragan, John F.; Wright, David W.

    One hundred studies on small group communication that were published in speech communication journals from 1969 to 1978 are summarized and critiqued in this paper. The literature is classified into three new lines of research (critical variable, process, and tangential) and three continuing lines of research (leadership, discussion, and pedagogy).…

  17. The structure of borders in a small world.

    PubMed

    Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk

    2010-01-01

    Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970

  18. Mechanism Research on Melting Loss of Coppery Tuyere Small Sleeve in Blast Furnace

    NASA Astrophysics Data System (ADS)

    Chai, Yi-Fan; Zhang, Jian-Liang; Ning, Xiao-Jun; Wei, Guang-Yun; Chen, Yu-Ting

    2016-01-01

    The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve's melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.

  19. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via

  20. Proposals for an influential role of small tokamaks in mainstream fusion physics and technology research

    NASA Astrophysics Data System (ADS)

    Van Oost, G.; Del Bosco, E.; Gryaznevich, M. P.; Malaquias, A.; Mank, G.

    2006-12-01

    Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confinement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies, which because of the risky nature cannot be done in large machines without preliminary studies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. All these tasks are well recognised and reflected in documents and understood by the large tokamak teams. Recent experimental results will be presented of contributions to mainstream fusion physics and technology research on small tokamaks involved in the IAEA Coordinated Research Project "Joint Research using small tokamaks", started in 2004.

  1. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  2. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  3. Small-Scale High-Temperature Structures in Flare Regions

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Chernov, G. P.; Hanaoka, I.

    2001-04-01

    When analyzing YOHKOH/SXT, HXT (soft and hard X-ray) images of solar flares against the background of plasma with a temperature T ~ 6 MK, we detected localized (with minimum observed sizes of approximately 2000 km) high-temperature structures (HTSs) with T = (20-50) MK with a complex spatial-temporal dynamics. Quasi-stationary, stable HTSs form a chain of hot cores that encircles the flare region and coincides with the magnetic loop. No structures are seen in the emission measure. We reached conclusions about the reduced heat conductivity (a factor of ~10^3 lower than the classical isotropic one) and high thermal insulation of HTSs. The flare plasma becomes collisionless in the hottest HTSs (T > 20 MK). We confirm the previously investigated idea of spatial heat localization in the solar atmosphere in the form of HTSs during flare heating with a volume nonlocalized source. Based on localized soliton solutions of a nonlinear heat conduction equation with a generalized flare-heating source of a potential form including radiative cooling, we discuss the nature of HTSs.

  4. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  5. Manson structure team will help guide research

    NASA Astrophysics Data System (ADS)

    Hartung, Jack

    The Manson impact structure, in northwest-central Iowa, is about 35 km in diameter and the largest such structure known in the United States. Scientific interest in the Manson structure increased sharply last year when preliminary 40Ar/39Ar data indicated a time for the impact of less than, but not much less than, 70 million years. That age is temptingly close to the time established for the Cretaceous/Tertiary (K/T) boundary, about 66 million years ago, and allows the possibility of a connection between the Manson impact and mass extinctions produced by the K/T boundary event

  6. Strength and Dislocation Structure Evolution of Small Metals under Vibrations

    NASA Astrophysics Data System (ADS)

    Ngan, Alfonso

    2015-03-01

    It is well-known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. In this work, we explore the effects of a superimposed small oscillatory load on metal plasticity, from the nano- to macro-size range, and from audible to ultrasonic frequency ranges. Macroscopic and nano-indentation were performed on aluminum, copper and molybdenum, and the results show that the simultaneous application of oscillatory stresses can lower the hardness of these samples. More interestingly, EBSD and TEM observations show that subgrain formation and reduction in dislocation density generally occurred when stress oscillations were applied. These findings point to an important knowledge gap in metal plasticity - the existing understanding of ultrasound softening in terms of the vibrations either imposing additional stress waves to augment the quasi-static applied load, or heating up the metal, whereas the metal's intrinsic deformation resistance or dislocation interactive processes are assumed unaltered by the ultrasound, is proven wrong by the present results. Furthermore, in the case of nanoindentation, the Continuous Stiffness Measurement technique for contact stiffness measurement assumes that the imposed signal-carrier oscillations do not intrinsically alter the material properties of the specimen, and again, the present results prove that this can be wrong. To understand the enhanced subgrain formation and dislocation annihilation, Discrete Dislocation Dynamics (DDD) simulations were carried out and these show that when an oscillatory stress is superimposed on a quasi-static applied stress, reversals of motion of dislocations may occur, and these allow the dislocations to revisit repeatedly suitable configurations for annihilation. DDD, however, was unable to predict the observed subgrain formation presumably because the number of dislocations that can be handled is not large

  7. Small scale flux emergence, small flares, and the unresolved fine structure: modeling and observations

    NASA Astrophysics Data System (ADS)

    Haraldson Hansteen, Viggo H.

    2016-05-01

    The emergence of flux through the photosphere and into the outer solar atmosphere is known to produce dynamic events in the chromosphere and corona. In this talk we will describe three-dimensional (3d) magnetohydrodynamic simulations of magnetic flux emergence in a model that spans the convection zone and into the outer solar atmosphere with the Bifrost code. We will contrast this with models in which no flux emergence occurs. These are a ``realistic'' model, in the sense that the parameters and physical effects that control the atmosphere can be used to produce diagnostics that can be directly compared with observations. Thus we will also contrast the model predictions with with SST and IRIS observations of an emerging flux region. We discuss the evolution of the model and several synthetic observables. We discuss the model's possible relevance to the so called 'unresolved fine structure' observed in the solar transition region. Finally, we will report on developments to merge `deeper' models constructed from MURaM simulations with Bifrost models of the chromosphere and corona in flare relevant simulations.

  8. Astronomy Education and Research With Digital Viewing: Forming a New Network of Small Observatories

    NASA Astrophysics Data System (ADS)

    Bogard, Arthur; Hamilton, T. S.

    2011-01-01

    Small observatories face two major hindrances in teaching astronomy to students: weather and getting students to recognize what they're seeing. The normal astronomy class use of a single telescope with an eyepiece is restricted to good skies, and it allows only one viewer at a time. Since astronomy labs meet at regular times, bad weather can mean the loss of an entire week. As for the second problem, students often have difficulties recognizing what they are seeing through an eyepiece, and the instructor cannot point out the target's features. Commercial multimedia resources, although structured and easy to explain to students, do not give students the same level of interactivity. A professor cannot improvise a new target nor can he adjust the image to view different features of an object. Luckily, advancements in technology provide solutions for both of these limitations without breaking the bank. Astronomical video cameras can automatically stack, align, and integrate still frames, providing instructors with the ability to explain things to groups of students in real time under actual seeing conditions. Using Shawnee State University's Mallincam on an 8" Cassegrain, our students are now able to understand and classify both planetary and deep sky objects better than they can through an eyepiece. To address the problems with weather, SSU proposes forming a network among existing small observatories. With inexpensive software and cameras, telescopes can be aligned and operated over the web, and with reciprocal viewing agreements, users who are clouded out could view from another location. By partnering with institutions in the eastern hemisphere, even daytime viewing would be possible. Not only will this network aid in instruction, but the common user interface will make student research projects much easier.

  9. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  10. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  11. NASA Small Business Innovation Research Program. Composite List of Projects, 1983 to 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA SBIR Composite List of Projects, 1983 to 1989, includes all projects that have been selected for support by the Small Business Innovation Research (SBIR) Program of NASA. The list describes 1232 Phase 1 and 510 Phase 2 contracts that had been awarded or were in negotiation for award in August 1990. The main body is organized alphabetically by name of the small businesses. Four indexes cross-reference the list. The objective of this listing is to provide information about the SBIR program to anyone concerned with NASA research and development activities.

  12. The Fund for Astrophysical Research: Ten Years of the Small Grants Program

    NASA Astrophysics Data System (ADS)

    Upgren, A. R.; Aller, L. H.; Dunham, W. B.; Philip, A. G. Davis

    1996-12-01

    The Fund for Astrophysical Research, Inc. is a non-profit research corporation, incorporated under the laws of New York State in 1936. It was founded in that year by Charles G. Thompson and Alice Bemis Thompson, to advance research in astrophysics. Theodore Dunham, Jr. served as its scientific director from its founding until his death in 1984. In 1985, the FAR created a program to distribute small research grants among the North American community of astronomers. The grants were named in honor of Dunham. This paper summarizes the results of the first decade of the program.

  13. Bias in Research Grant Evaluation Has Dire Consequences for Small Universities.

    PubMed

    Murray, Dennis L; Morris, Douglas; Lavoie, Claude; Leavitt, Peter R; MacIsaac, Hugh; Masson, Michael E J; Villard, Marc-Andre

    2016-01-01

    Federal funding for basic scientific research is the cornerstone of societal progress, economy, health and well-being. There is a direct relationship between financial investment in science and a nation's scientific discoveries, making it a priority for governments to distribute public funding appropriately in support of the best science. However, research grant proposal success rate and funding level can be skewed toward certain groups of applicants, and such skew may be driven by systemic bias arising during grant proposal evaluation and scoring. Policies to best redress this problem are not well established. Here, we show that funding success and grant amounts for applications to Canada's Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program (2011-2014) are consistently lower for applicants from small institutions. This pattern persists across applicant experience levels, is consistent among three criteria used to score grant proposals, and therefore is interpreted as representing systemic bias targeting applicants from small institutions. When current funding success rates are projected forward, forecasts reveal that future science funding at small schools in Canada will decline precipitously in the next decade, if skews are left uncorrected. We show that a recently-adopted pilot program to bolster success by lowering standards for select applicants from small institutions will not erase funding skew, nor will several other post-evaluation corrective measures. Rather, to support objective and robust review of grant applications, it is necessary for research councils to address evaluation skew directly, by adopting procedures such as blind review of research proposals and bibliometric assessment of performance. Such measures will be important in restoring confidence in the objectivity and fairness of science funding decisions. Likewise, small institutions can improve their research success by more strongly supporting productive

  14. Bias in Research Grant Evaluation Has Dire Consequences for Small Universities

    PubMed Central

    Murray, Dennis L.; Morris, Douglas; Lavoie, Claude; Leavitt, Peter R.; MacIsaac, Hugh; Masson, Michael E. J.; Villard, Marc-Andre

    2016-01-01

    Federal funding for basic scientific research is the cornerstone of societal progress, economy, health and well-being. There is a direct relationship between financial investment in science and a nation’s scientific discoveries, making it a priority for governments to distribute public funding appropriately in support of the best science. However, research grant proposal success rate and funding level can be skewed toward certain groups of applicants, and such skew may be driven by systemic bias arising during grant proposal evaluation and scoring. Policies to best redress this problem are not well established. Here, we show that funding success and grant amounts for applications to Canada’s Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program (2011–2014) are consistently lower for applicants from small institutions. This pattern persists across applicant experience levels, is consistent among three criteria used to score grant proposals, and therefore is interpreted as representing systemic bias targeting applicants from small institutions. When current funding success rates are projected forward, forecasts reveal that future science funding at small schools in Canada will decline precipitously in the next decade, if skews are left uncorrected. We show that a recently-adopted pilot program to bolster success by lowering standards for select applicants from small institutions will not erase funding skew, nor will several other post-evaluation corrective measures. Rather, to support objective and robust review of grant applications, it is necessary for research councils to address evaluation skew directly, by adopting procedures such as blind review of research proposals and bibliometric assessment of performance. Such measures will be important in restoring confidence in the objectivity and fairness of science funding decisions. Likewise, small institutions can improve their research success by more strongly supporting productive

  15. Modelling of Dust Extinction through Dark Clouds: Small Scale Structure

    NASA Astrophysics Data System (ADS)

    Clemens, D.; Lada, C.

    1993-12-01

    In order to understand some curious effects discovered in analyzing our deep JHK near-infrared survey of the background stars probing the IC 5146 dark cloud complex (Lada, Lada, Clemens, & Bally 1993), we have constructed a simple model of the dust extinction through a molecular cloud. The effect noticed involved a correlation between the dispersion of the E(H-K) based estimate of A_V, when the stellar estimates of E(H-K) were binned into arcmin sized bins, with the mean A_V computed for those bins. The sense of the correlation is that the dispersion of the extinction rises with the extinction in a nearly linear fashion. Further, the dispersion of the dispersion also rises with extinction. Our model was constructed to try to understand the origin of this unexpected behavior. The model consists of a Poisson generator to populate a bin with stars and various extinction generating functions to add extinction to each star. Additionally, measurement noise and varying amounts of foreground star contamination are added to simulate the actual observations. Remarkably, this simple model is able to rule out several cloud structure models, including uniform extinction across an arcmin sized bin and the case of dense clumplets (rocks) embedded in a low extinction medium. We show that a power law parameterization of the extinction variation with position across a bin is able to fully reproduce the observations for a fairly robust set of power law indices. We also show that foreground star contamination plus any simple extinction model cannot reproduce the observations, while foreground star contamination does not appreciably affect the power law extinction model for foreground stellar fractions less than 30 - 50% of the total stellar content.

  16. Structures of Biological Minerals in Dental Research

    PubMed Central

    Mathew, Mathai; Takagi, Shozo

    2001-01-01

    Structural features of some calcium phosphates of biological interest are described. Structure of hydroxyapatite (OHAp), considered as the prototype for the inorganic component of bones and teeth is discussed with respect to the kinds and locations of ionic substitutions. Octacalcium phosphate (OCP), is a probable precursor in biological mineralization. OCP has a layer type structure, with one layer quite similar to that of OHAp and the other, a hydrated layer consisting of more widely spaced Ca, and PO4 ions and the water molecules. The closeness of fit in the apatitic layers of OCP and OHAp accounts for the epitaxial, interlayered mixtures formed by these compounds and the in situ conversion of OCP to OHAp. Possible roles of OCP in biological mineralization are discussed. PMID:27500063

  17. Towards systematic planning of small-scale hydrological intervention-based research

    NASA Astrophysics Data System (ADS)

    Pramana, K. E. R.; Ertsen, M. W.; van de Giesen, N. C.

    2015-09-01

    Many small-scale water development initiatives are accompanied by hydrological research to study either the shape of the intervention or its impacts. Humans influence both, and thus one needs to take human agency into account. This paper focuses on the effects of human actions in the intervention and its associated hydrological research, as these effects have not yet been discussed explicitly in a systematic way. In this paper, we propose a systematic planning, based on evaluating three hydrological research projects in small-scale water intervention projects in Vietnam, Kenya, and Indonesia. The main purpose of the three projects was to understand the functioning of interventions in their hydrological contexts. Aiming for better decision-making on hydrological research in small-scale water intervention projects, we propose two analysis steps: (1) being prepared for surprises and (2) cost-benefit analysis. By performing the two analyses continuously throughout a small-scale hydrological intervention based project, effective hydrological research can be achieved.

  18. Faculty research productivity and organizational structure in schools of nursing.

    PubMed

    Kohlenberg, E M

    1992-01-01

    The purpose of this study was to identify the relationship between faculty research productivity and organizational structure in schools of nursing. The need for nursing research has been widely recognized by members of the nursing profession, yet comparatively few engage in conducting research. Although contextual variables have been investigated that facilitate or inhibit nursing research, the relationship between organizational structure and nursing research productivity has not been examined. This problem was examined within the context of the Entrepreneurial Theory of Formal Organizations. A survey methodology was used for data collection. Data on individual faculty research productivity and organizational structure in the school of nursing were obtained through the use of a questionnaire. A random sample of 300 faculty teaching in 60 master's and doctoral nursing schools in the United States was used. The instruments for data collection were Wakefield-Fisher's Adapted Scholarly Productivity Index and Hall's Organizational Inventory. The data were analyzed using Pearson Product-Moment Correlation Coefficients and multiple correlation/regression techniques. The overall relationship between faculty research productivity and organizational structure in schools of nursing was not significant at the .002 level of confidence. Although statistically significant relationships were not identified, scholarly research productivity and its subscale prepublication and research activities tended to vary positively with procedural specifications in a highly bureaucratic organizational structure. Further research may focus on identification of structural variables that support highly productive nurse researchers. PMID:1401563

  19. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in

  20. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  1. Structure and Agency in Transition Research

    ERIC Educational Resources Information Center

    Heinz, Walter R.

    2009-01-01

    Based on the results of transition studies in the UK, Germany, USA and Canada, the virtues of analysing the structural contexts, institutional arrangements and the young peoples' action orientations are presented. In the first decade of the twenty-first century, school and the labour market have become more and more decoupled and transition routes…

  2. Small business innovation research program solicitation: Closing date July 16, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is the eighth annual solicitation by NASA addressed to small business firms, inviting them to submit proposals for research, or research and development, activities in some of the science and engineering areas of interest to NASA. The solicitation describes the Small Business Innovative Research (SBIR) program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the technical topics and subtopics for which SBIR proposals are solicited. These cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired.

  3. Rhetorical Structure of Biochemistry Research Articles

    ERIC Educational Resources Information Center

    Kanoksilapatham, Budsaba

    2005-01-01

    This paper reports on the results of a move analysis [Swales, J. (1990). "Genre analysis." Cambridge: Cambridge University Press] of 60 biochemistry research articles. First, a corpus was systematically compiled to ensure that it represents core journals in the focused discipline. Then, coding reliability analysis was conducted to demonstrate…

  4. Structural Analysis and Ethnographic Research in Education

    ERIC Educational Resources Information Center

    Korn, Karen Abney; Watras, Joseph

    2009-01-01

    To illustrate how theoretical studies should blend with empirical research, this article describes how scholars changed the ways they thought about schools and poverty. It begins with a historical review of the perspective of educational theorists and public policy prior to the 1970s. Taking a Marxist perspective, Bowles and Gintis (1976)…

  5. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.

    PubMed

    Li, Jin; Xu, Chengzhen; Wang, Lei; Liang, Hong; Feng, Weixing; Cai, Zhongxi; Wang, Ying; Cong, Wang; Liu, Yunlong

    2016-08-01

    Prediction of RNA secondary structures is an important problem in computational biology and bioinformatics, since RNA secondary structures are fundamental for functional analysis of RNA molecules. However, small RNA secondary structures are scarce and few algorithms have been specifically designed for predicting the secondary structures of small RNAs. Here we propose an algorithm named "PSRna" for predicting small-RNA secondary structures using reverse complementary folding and characteristic hairpin loops of small RNAs. Unlike traditional algorithms that usually generate multi-branch loops and 5[Formula: see text] end self-folding, PSRna first estimated the maximum number of base pairs of RNA secondary structures based on the dynamic programming algorithm and a path matrix is constructed at the same time. Second, the backtracking paths are extracted from the path matrix based on backtracking algorithm, and each backtracking path represents a secondary structure. To improve accuracy, the predicted RNA secondary structures are filtered based on their free energy, where only the secondary structure with the minimum free energy was identified as the candidate secondary structure. Our experiments on real data show that the proposed algorithm is superior to two popular methods, RNAfold and RNAstructure, in terms of sensitivity, specificity and Matthews correlation coefficient (MCC). PMID:27045556

  6. Investigation of current university research concerning energy conversion and conservation in small single-family dwellings

    NASA Technical Reports Server (NTRS)

    Grossman, G. R.; Roberts, A. S., Jr.

    1975-01-01

    An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.

  7. Structural Dynamics Branch research and accomplishments for FY 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Presented here is a collection of FY 1990 research highlights from the Structural Dynamics Branch at the NASA Lewis Research Center. Highlights are from the branch's major work areas: aeroelasticity, vibration control, dynamic systems, and computational structural methods. A listing is given of FY 1990 branch publications.

  8. Structural dynamics branch research and accomplishments for FY 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Fiscal year 1988 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center are described. Highlights from the branch's major work areas -- aeroelasticity, vibration control, dynamic systems, and computational structural methods -- are included as well as a complete listing of the FY 88 branch publications.

  9. Structural Equation Modelling: A Primer for Music Education Researchers

    ERIC Educational Resources Information Center

    Teo, Timothy

    2010-01-01

    Structural equation modelling (SEM) is a method for analysis of multivariate data from both non-experimental and experimental research. The method combines a structural model linking latent variables and a measurement model linking observed variables with latent variables. Its use in social science and educational research has grown since the…

  10. Rhetorical Structure of Research Articles in Agricultural Science

    ERIC Educational Resources Information Center

    Shi, Huimin; Wannaruk, Anchalee

    2014-01-01

    Although the rhetorical structure of research articles (RA) has been extensively examined from individual sections to complete IMRD sections regarding different disciplines, no research has been addressed to the overall rhetorical structure of RAs as a whole entity in the field of agricultural science. In this study, we analyzed 45 agricultural…

  11. Structural dynamics branch research and accomplishments for fiscal year 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications.

  12. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  13. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  14. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  15. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1981-01-01

    Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.

  16. Research Program for Vibration Control in Structures

    NASA Technical Reports Server (NTRS)

    Mingori, D. L.; Gibson, J. S.

    1986-01-01

    Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.

  17. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  18. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures

    SciTech Connect

    Fang, Xianyang; Stagno, Jason R.; Bhandari, Yuba R.; Zuo, Xiaobing; Wang, Yun-Xing

    2015-02-01

    Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNAmolecules, particularly those that have proven difficult to study using other structuredetermination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.

  19. Enhancing Educational Research and Development Activity through Small Grant Schemes: A Case Study

    ERIC Educational Resources Information Center

    Morris, Clare; Fry, Heather

    2006-01-01

    There are many funding schemes in existence for small projects in educational development, but fewer equivalent research schemes. Data from an evaluation of two schemes at one institution are used as the catalyst for considering such schemes in wider contextual and theoretical perspectives. The evaluation analysed success rate data, project…

  20. The Smaller the Better? A Review of Research on Small Rural Schools in Sweden

    ERIC Educational Resources Information Center

    Aberg-Bengtsson, Lisbeth

    2009-01-01

    This review of 30 years of research in small rural schools in Sweden includes projects focusing directly upon rural education and rural schools, reports from national agencies, and official statistics. Two main foci were found: (i) the quality of education and pupils' academic performance, and (ii) the economics of running schools in different…

  1. Problems and Prospects Confronting Rural and Small Schools: A Review of Research.

    ERIC Educational Resources Information Center

    Swick, Kevin J.; Henley, Lawrence J.

    A review of research on rural/small schools' problems, prospects, and possible alternatives indicates that these schools find themselves in a cycle of financial trouble, community disintegration, and dwindling population; they face problems such as low tax base, lack of financial support by state and federal government, inadequate facilities and…

  2. Can We Find Solutions with People? Participatory Action Research with Small Organic Producers in Andalusia

    ERIC Educational Resources Information Center

    Cuellar-Padilla, Mamen; Calle-Collado, Angel

    2011-01-01

    This paper reports on an experiment linking science with people. Taking as a paradigm the holistic scientific approach fostered by agroecology, we present a methodological proposal for the implementation of participatory action research in rural areas. Our aims were various: to solve a specific problem, i.e. the exclusion of small- and…

  3. Small

    SciTech Connect

    Montoya, Joseph

    2013-07-18

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energy conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.

  4. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  5. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (FEB...

  6. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (MAY...

  7. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (MAR...

  8. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (MAR...

  9. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (JUN...

  10. An Action Research Process on University Tutorial Sessions with Small Groups: Presentational Tutorial Sessions and Online Communication

    ERIC Educational Resources Information Center

    Alcaraz-Salarirche, Noelia; Gallardo-Gil, Monsalud; Herrera-Pastor, David; Servan-Nunez, Maria Jose

    2011-01-01

    We describe and analyse the action research process carried out by us as teachers in a general didactics course in the University of Malaga (Spain). The course methodology combined lectures to the whole class and small-group work. We were in charge of guiding small-group work. In the small groups, students researched on an educational innovation…

  11. Small is beautiful but smaller is the aim: review of a life of research.

    PubMed

    Curtis, A S G

    2004-01-01

    cell and cell or cell and substrate. Problems with cell adhesion molecules are discussed. Contact guidance of cells by oriented structures and Paul Weiss--Tests with grating replicas suggested that topographic rather than biochemical explanations were applicable. It became clearer later that this was an area of research waiting for microfabrication. Albert Harris influenced me considerably to start thinking about mechanical forces produced by cells. Pulling at cells showed effects on the cytoskeleton and on cell cycle time. Such thoughts led to a microfabricated device for tendon repair. Recent photoelastic measurements with the Polscope have allowed much more detailed analysis of the forces between cells. The interesting results on microfabricated devices led to work on nanostructures. Results led the Glasgow group to consider dimensions of structures and how cells could sense such small objects and questions about why order and size may be important. Differential protein adsorption onto surfaces seems to provide defective explanations of the effects. The results will be discussed in terms of very recent theories of cell interaction and cell signals and possible future developments will be outlined. PMID:15508070

  12. Developmental research as a way to an empirically based didactical structure of science

    NASA Astrophysics Data System (ADS)

    Lijnse, P. L.

    In the past decades, much work has been done in science education on large-scale curriculum development, ranging from a structure-of-the-discipline approach to STS. At the same time, research on students' ideas has drawn attention to the underestimated problems of learning and teaching, which may largely explain the limited success of the curriculum efforts as far as cognitive learning is concerned. Proposed solutions are mainly inspired by a constructivist cognitive science perspective and are formulated as general teaching strategies that aim at a more or less forced process of conceptual change. However, in our view, developmental research is needed in which small-scale curriculum development is cyclically coupled to indepth classroom research of teaching-learning processes. Such research should resuit in worked out examples of successful ways of teaching, according to new conceptual curriculum structures. Designing such didactical structures constitutes a longer term research program, which asks for international exchange and cooperation.

  13. Fully automated high-quality NMR structure determination of small 2H-enriched proteins

    PubMed Central

    Tang, Yuefeng; Schneider, William M.; Shen, Yang; Raman, Srivatsan; Inouye, Masayori; Baker, David; Roth, Monica J.

    2010-01-01

    Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using <4 days of data collection and fully automated data analysis methods together with CS-Rosetta. The resulting CspA structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with 15N- and 13C-edited NOESY data obtained with a perdeuterated 15N, 13C-enriched 13CH3 methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR. PMID:20734145

  14. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  15. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  16. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    technologies are suitable for implementation in a large individual laboratory or by a small group of collaborating investigators for structural biology, functional proteomics, ligand screening and structural genomics research. PMID:21371586

  17. Structural biology computing: Lessons for the biomedical research sciences.

    PubMed

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. PMID:23828134

  18. Small satellites and RPAS in global-change research: Summary and conclusions

    SciTech Connect

    Banks, P.; Cornwall, J.M.; Dyson, F.; Fortson, N.; Koonin, S.; Max, C.; MacDonald, G.; Ride, S.; Ruderman, M.; Treiman, S.; Vesecky, J.; Westervelt, R.; Zachariasen, F.

    1992-01-01

    JASON has now conducted two studies on the use of small satellites and remotely-piloted aircraft (RPAs) in global change research, with special reference to the DOE Atmospheric Radiation Measurement (ARM) program and to DARPA`s Small Satellite program. The studies centered around meetings, one in January and the other in June 1991, to which we invited representatives of all areas of the global change program and of the DOD satellite science and technology community. We have already issued a report on the January study. Here we summarize the main themes and results of our Summer Study; the full report will be issued shortly.

  19. 77 FR 23228 - Notice of Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Notice of Submission for OMB Review; Small Business Innovation Research (SBIR) Program--Phase II--Grant... application for the Small Business Innovation Research (SBIR) Program (CFDA 84.133). This is in response to... Innovation Research (SBIR) Program--Phase II--Grant Application Package. OMB Control Number: 1820-0685....

  20. 77 FR 23229 - Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase I-Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Submission for OMB Review; Small Business Innovation Research (SBIR) Program--Phase I--Grant Application... for the Small Business Innovation Research (SBIR) Program (CFDA 84.133). This is in response to Public... Innovation Research (SBIR) Program--Phase I--Grant Application Package. OMB Control Number: 1820-0684....

  1. Clustering Methods with Qualitative Data: a Mixed-Methods Approach for Prevention Research with Small Samples.

    PubMed

    Henry, David; Dymnicki, Allison B; Mohatt, Nathaniel; Allen, James; Kelly, James G

    2015-10-01

    Qualitative methods potentially add depth to prevention research but can produce large amounts of complex data even with small samples. Studies conducted with culturally distinct samples often produce voluminous qualitative data but may lack sufficient sample sizes for sophisticated quantitative analysis. Currently lacking in mixed-methods research are methods allowing for more fully integrating qualitative and quantitative analysis techniques. Cluster analysis can be applied to coded qualitative data to clarify the findings of prevention studies by aiding efforts to reveal such things as the motives of participants for their actions and the reasons behind counterintuitive findings. By clustering groups of participants with similar profiles of codes in a quantitative analysis, cluster analysis can serve as a key component in mixed-methods research. This article reports two studies. In the first study, we conduct simulations to test the accuracy of cluster assignment using three different clustering methods with binary data as produced when coding qualitative interviews. Results indicated that hierarchical clustering, K-means clustering, and latent class analysis produced similar levels of accuracy with binary data and that the accuracy of these methods did not decrease with samples as small as 50. Whereas the first study explores the feasibility of using common clustering methods with binary data, the second study provides a "real-world" example using data from a qualitative study of community leadership connected with a drug abuse prevention project. We discuss the implications of this approach for conducting prevention research, especially with small samples and culturally distinct communities. PMID:25946969

  2. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  3. A Statistical Test of the Relationship between Galactic HI Structure and Small-scale Structure in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2014-06-01

    The archive of IRIS, PLANCK and WMAP data available at the IRSA website of IPAC allows the apparent associations between galactic neutral hydrogen (HI) features and small-scale structure in WMAP and PLANCK data to be closely examined. In addition, HI new observations made with the Green Bank Telescope are used to perform a statistical test of putative associations. It is concluded that attention should be paid to the possibility that some of the small-scale structure found in WMAP and PLANCK data harbors the signature of a previously unrecognized source of high-frequency continuum emission in the Galaxy.

  4. Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities.

  5. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  6. Small karstic Dobra River (Croatia) suggested as natural laboratory for impactite research

    NASA Astrophysics Data System (ADS)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Sikder, Arif M.

    2016-04-01

    An unexpected anomaly of magnetic susceptibility (MS) was observed in stream sediments of the upper course of the karstic Dobra River (Croatia). Preliminary results pointed to a possible impactite, formed by a shock event caused by a meteorite impact or by volcanic processes [1]. In addition to geophysical experiments, petrological and geochemical studies are reported [2, 3]. The multidisciplinary work for identification and confirmation of impact structure is still in progress. Results will be presented and the difficulties due to weathering and transport processes will be discussed and compared with recent literature [4, 5]. In reported results numerous evidences exist, which are in support of impact origin, such as vesicular glass with quench texture, ballen textures in the lechatelierite, presence of Troilite, etc. We suggest that the Dobra River from its source to the abyss in Ogulin (Upper Dobra) is a possible natural laboratory for studying processes of mixing between impactite material and fluvial sediments within a small area, including spherules exposed to water and in the overbank sediments. Especially the introduction of isotope studies in this research and enlargement of multinational team of experts are suggested. Literature: [1] Franči\\vsković-Bilinski, S., Bilinski, H., Scholger, R., Tomašić, N., Maldini, K. (2014): Magnetic spherules in sediments of the sinking karstic Dobra River (Croatia). Journal of soils and sediments 14(3), 600-614. [2] Franči\\vsković-Bilinski, S., Sikder, A.M., Bilinski, H., Castano, C.E., Garman, G.C. (2015): Traces of meteorite impact in the sediments of karstic Dobra River (Croatia). 15th International multidisciplinary scientific geoconference SGEM 2015 Conference proceedings, Vol. 1, 507-514. [3] Sikder, A.M., Franči\\vsković-Bilinski, S., Bilinski, H., Castano, C.E., Clifford, D.M., Turner, J.B., Garman, G.C. (2015): Petrographic analysis of the magnetic spherules from the sediments of karastic Dobra River

  7. Personality Research Form: Factor Structure and Response Style Involvement

    ERIC Educational Resources Information Center

    Stricker, Lawrence J.

    1974-01-01

    Explores factor structure of the Personality Research Form (PRF) and examines the inventory's relations with response styles. In general, the PRF content scales correlate moderately with each other and with measures of acquiescence, social desirability, and defensiveness response biases. (Author)

  8. Design and analysis of appropriate technology for small farmers: cropping systems research in the Philippines

    SciTech Connect

    Chapman, J.A.

    1983-01-01

    The invention of early-maturing and high-yielding rice varieties has opened up possibilities of increased production and incomes for small farmers in Asia and elsewhere. However, the new varieties were developed under optimal conditions not commonly found on small farms. Therefore, though yields on experiment stations have improved markedly, average farm yields remain low. Agricultural and social scientists are now realizing that greater attention should be given to the specific environmental circumstances facing farmers, socioeconomic as well as agroclimatic, before and during new technology development. Accordingly, the International Rice Research Institute (IRRI) began technology development for small farmers by undertaking experimentation on farmers' fields in several agroclimatic situations. This study formed part of IRRI's Cropping Systems Program research efforts in rainfed lowland areas of Iloilo, the Philippines, applying a modified methodological approach to identifying and evaluating appropriate new technologies. Study results clearly indicate the desirability and feasibility of ex-ante evaluation of existing and notional new technologies for their potential suitability to the socioeconomic and agroclimatic circumstances faced by small farmers.

  9. sRNAtoolbox: an integrated collection of small RNA research tools.

    PubMed

    Rueda, Antonio; Barturen, Guillermo; Lebrón, Ricardo; Gómez-Martín, Cristina; Alganza, Ángel; Oliver, José L; Hackenberg, Michael

    2015-07-01

    Small RNA research is a rapidly growing field. Apart from microRNAs, which are important regulators of gene expression, other types of functional small RNA molecules have been reported in animals and plants. MicroRNAs are important in host-microbe interactions and parasite microRNAs might modulate the innate immunity of the host. Furthermore, small RNAs can be detected in bodily fluids making them attractive non-invasive biomarker candidates. Given the general broad interest in small RNAs, and in particular microRNAs, a large number of bioinformatics aided analysis types are needed by the scientific community. To facilitate integrated sRNA research, we developed sRNAtoolbox, a set of independent but interconnected tools for expression profiling from high-throughput sequencing data, consensus differential expression, target gene prediction, visual exploration in a genome context as a function of read length, gene list analysis and blast search of unmapped reads. All tools can be used independently or for the exploration and downstream analysis of sRNAbench results. Workflows like the prediction of consensus target genes of parasite microRNAs in the host followed by the detection of enriched pathways can be easily established. The web-interface interconnecting all these tools is available at http://bioinfo5.ugr.es/srnatoolbox. PMID:26019179

  10. sRNAtoolbox: an integrated collection of small RNA research tools

    PubMed Central

    Rueda, Antonio; Barturen, Guillermo; Lebrón, Ricardo; Gómez-Martín, Cristina; Alganza, Ángel; Oliver, José L.; Hackenberg, Michael

    2015-01-01

    Small RNA research is a rapidly growing field. Apart from microRNAs, which are important regulators of gene expression, other types of functional small RNA molecules have been reported in animals and plants. MicroRNAs are important in host-microbe interactions and parasite microRNAs might modulate the innate immunity of the host. Furthermore, small RNAs can be detected in bodily fluids making them attractive non-invasive biomarker candidates. Given the general broad interest in small RNAs, and in particular microRNAs, a large number of bioinformatics aided analysis types are needed by the scientific community. To facilitate integrated sRNA research, we developed sRNAtoolbox, a set of independent but interconnected tools for expression profiling from high-throughput sequencing data, consensus differential expression, target gene prediction, visual exploration in a genome context as a function of read length, gene list analysis and blast search of unmapped reads. All tools can be used independently or for the exploration and downstream analysis of sRNAbench results. Workflows like the prediction of consensus target genes of parasite microRNAs in the host followed by the detection of enriched pathways can be easily established. The web-interface interconnecting all these tools is available at http://bioinfo5.ugr.es/srnatoolbox PMID:26019179

  11. Simulation and experiment research of aerodynamic performance of small axial fans with struts

    NASA Astrophysics Data System (ADS)

    Chu, Wei; Lin, Peifeng; Zhang, Li; Jin, Yingzi; Wang, Yanping; Kim, Heuy Dong; Setoguchi, Toshiaki

    2016-06-01

    Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream of the rotor. The cross section of the struts is changed to the cylindrical shapes for the investigation: one is in the same hydraulic diameter as the square struts and another one is in the same cross section as the square struts. Influence of the shape of the struts on the static pressure characteristics, the internal flow and the sound emission of the small axial fans are studied. Standard K-ɛ turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field, and the curves of the pressure rising against the flow rate are obtained, which demonstrates that the simulation results are in nice consistence with the experimental data. The steady calculation results are set as the initial field in the unsteady calculation. Large eddy simulation and PISO algorithm are used in the transient calculation, and the Ffowcs Williams-Hawkings model is introduced to predict the sound level at the eight monitoring points. The research results show that: the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square struts, and the efficiencies increase by about 28.6%. The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts.

  12. NASA's Management and Utilization of the Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Mexcur, Winfield Paul

    2003-01-01

    The United Space Congress established the SBIR program in 1982 for the following purposes: ( 1) Stimulate technological innovation (2) Increase private-sector commercialization derived from federal R&D (3) Use small business to meet federal R&D needs (4) Foster and encourage participation by disadvantaged persons and women in technological innovation The STTR program was established in 1992 with the additional requirement of having a small business partner with a research institution (usually a university) for the purpose of transferring intellectual property from the research institution to the small business concern for enabling a government technical need and furthering the technological development for the purpose of developing commercial products. The government of Japan has established a program that models portions of the U.S. SBIR and STTR programs. They are very interested in how NASA has been so successful in fulfilling the Congressional objectives of these programs. In particular, they want to understand the management practices and incentives that are provided to enable partnerships between business enterprises, academia and government. The speech will also focus on some of the many successful technologies (on a conceptual level) that have been developed through NASA s SBIR and STTR programs and mechanisms used to promote cooperation between small businesses, large businesses, academia and government agencies within the United States. The speech is on a conceptual level, focusing on U.S. and NASA policies and management implementation practices. No enabling technical discussion will be held.

  13. Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery

    PubMed Central

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2014-01-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. PMID:23633219

  14. Synthesizing in-stream structure design guidelines from small-scale and field-scale physical experiments

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Hill, C.; Plott, J.; Diplas, P.; Sotiropoulos, F.

    2011-12-01

    Rock vanes, cross vanes, bendway weirs and other similar flow control structures have been studied as part of a multifaceted research program to improve quantitative design guidelines for frequently used stream restoration structures. These structures are typically used in stream restoration projects with the intent of protecting unstable streambanks, preventing undesired lateral migration, or improving aquatic habitat. Despite their frequent use, extensive research-based quantitative design guidelines do not readily exist. As part of this project, a series of small-scale physical model experiments were completed in the St. Anthony Falls Laboratory (SAFL) Tilting Bed Flume measuring 3D flow velocities and sediment scour patterns downstream of stream restoration flow control structures. On a larger scale, similar experiments were completed in the SAFL Outdoor StreamLab (OSL), a near full-scale meandering stream research facility. Two final components of this research program, full-scale field monitoring and computational simulations, provide researchers with a multi-scale dataset. A focal point of the analysis lies on the scour patterns induced by these structures, yet transferring these results into engineering design standards remains a challenge. The issues of dealing with multiple scales of flow control structures, the sediment used in these experiments, and the effects they will have in real-world stream restoration applications is a complex problem. The small-scale flume experiments examined single structures in a straight channel with uniform grain sizes. Large-scale OSL experiments were completed in a specific meandering channel geometry and grain sizes unique to that facility. Field monitoring provides data in complex, real-world environments, yet it is unique to specific locations and at a much lower resolution than available from controlled research facilities. The extensive dataset resulting from this research program provides the means to develop

  15. Research of micro-prism distribution on the bottom surface of the small-size integrated light guide plate.

    PubMed

    Xu, Ping; Huang, Yanyan; Su, Zhijie; Zhang, Xulin; Luo, Tongzheng; Peng, Wenda

    2015-02-23

    The luminance uniformity of the backlight module (BLM) importantly depends on the microstructure distribution on the bottom surface of the light guide plate (LGP). Based on the small-size integrated LGP (ILGP) proposed, we put forward a distribution expression of micro-prisms on the bottom surface of the ILGP, and present the relational expressions between the coefficients of the analytical expression and the structural parameters of the ILGP, such as the light guide length L, width of the ILGP W, thickness of the ILGP H, and space between light emitting diodes (LEDs) d. Then, the research results above are applied to the design of the small-size ILGPs. Not only can the micro-structure distributions on the bottom surface of the ILGPs be directly given, but also the simulation results show that the luminance uniformities of the integrated BLMs are higher than 85%. The research indicates that the expressions proposed in this paper are correct and effective, and have important guiding significances and referential value. PMID:25836524

  16. Small Business Innovation Research. Program solicitation. Closing date: July 22, 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The sixth annual Small Business Innovation Research (SBIR) solicitation by NASA, describes the program, identifies eligibility requirements, outlines proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in the SBIR program. It also identifies in Section 8.0 and Appendix D, the specific technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1988.

  17. Small-Scale Heterogeneity in Deep-Sea Nematode Communities around Biogenic Structures

    PubMed Central

    Hasemann, Christiane; Soltwedel, Thomas

    2011-01-01

    The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments. PMID:22216193

  18. Small-scale heterogeneity in deep-sea nematode communities around biogenic structures.

    PubMed

    Hasemann, Christiane; Soltwedel, Thomas

    2011-01-01

    The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure "sponge" on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments. PMID:22216193

  19. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    SciTech Connect

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  20. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules.

    PubMed

    Vizcaino, Maria I; Engel, Philipp; Trautman, Eric; Crawford, Jason M

    2014-07-01

    The gene cluster responsible for synthesis of the unknown molecule "colibactin" has been identified in mutualistic and pathogenic Escherichia coli. The pathway endows its producer with a long-term persistence phenotype in the human bowel, a probiotic activity used in the treatment of ulcerative colitis, and a carcinogenic activity under host inflammatory conditions. To date, functional small molecules from this pathway have not been reported. Here we implemented a comparative metabolomics and targeted structural network analyses approach to identify a catalog of small molecules dependent on the colibactin pathway from the meningitis isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent small molecules are proposed based on structural characterizations and network relationships. The network will provide a roadmap for the structural and functional elucidation of a variety of other small molecules encoded by the pathway. From the characterized small molecule set, in vitro bacterial growth inhibitory and mammalian CNS receptor antagonist activities are presented. PMID:24932672

  1. Structural dynamics branch research and accomplishments to FY 1992

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  2. Factor Structures of Three Measures of Research Self-Efficacy

    ERIC Educational Resources Information Center

    Forester, Michelle; Kahn, Jeffrey H.; Hesson-McInnis, Matthew S.

    2004-01-01

    Measures of research self-efficacy have the potential to facilitate graduate training and mentoring, but the hypothesized factor structures of these measures have not been confirmed empirically. Moreover, the underlying dimensions of research self-efficacy across multiple measures are unknown. Graduate students in psychology programs (N = 1,004)…

  3. Bridging Emotion Research: From Biology to Social Structure

    ERIC Educational Resources Information Center

    Rogers, Kimberly B.; Kavanagh, Liam

    2010-01-01

    Emotion research demonstrates that problems of theoretical interest or practical significance are not divided neatly along disciplinary boundaries. Researchers acknowledge both organic and social underpinnings of emotion, but the intersections between biological and structural processes can be difficult to negotiate. In this article, the authors…

  4. Structural Analysis of Parent-Child Research Models.

    ERIC Educational Resources Information Center

    Sigel, Irving E.

    Structural models and classes of variables used in parent/child research are identified, and their implications are briefly discussed. The five types of research models appraised are noninteractive, unidirectional, bidirectional, family network, and sociopolitical. It is asserted that, taken together, the typology of models provides a system by…

  5. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  6. Research Articles in Applied Linguistics: Structures from a Functional Perspective

    ERIC Educational Resources Information Center

    Ruiying, Yang; Allison, Desmond

    2004-01-01

    This paper presents the main lines of a genre analysis of the macro-structures of research articles (RAs) in applied linguistics, an area that deserves more attention both for pedagogic and research reasons. The analysis is based upon a detailed study of a corpus of 40 RAs, selected as random sets of 10 drawn from four leading journals in the…

  7. Fabrication of small-scale structures with non-planar features

    SciTech Connect

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  8. Capitalizing on Community: the Small College Environment and the Development of Researchers

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2014-03-01

    Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.

  9. Effect of three-body interactions on the structure of small clusters

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.; White, P. J.

    1980-01-01

    Minimum energy configurations of microclusters (up to six atoms) have been calculated using two- and three-body interactions. Structural changes were parametrically analyzed as a function of the intensity of three-body forces. The results are qualitative in nature; they indicate, however, that three-body interactions play an important role in the equilibrium structure of microclusters. The effect of the intensity of the three-body interactions on the structure of small clusters is not manifested in a continuous manner. Rather, changes in the energetically most stable structure occur abruptly. The results are in qualitative agreement with experimental observations as well as other calculations.

  10. Technical note: Harmonising metocean model data via standard web services within small research groups

    NASA Astrophysics Data System (ADS)

    Signell, Richard P.; Camossi, Elena

    2016-05-01

    Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.

  11. Technical note: Harmonizing met-ocean model data via standard web services within small research groups

    NASA Astrophysics Data System (ADS)

    Signell, R. P.; Camossi, E.

    2015-11-01

    Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.

  12. Education, Training and Employment in Small-Scale Enterprises: Three Industries in Sao Paulo, Brazil. IIEP Research Report No. 63.

    ERIC Educational Resources Information Center

    Leite, Elenice M.; Caillods, Francoise

    Despite the prophecies forecasting their probable disappearance or annihilation, small-scale enterprises have persisted in the Brazilian industrial structure since 1950. To account for the survival of small firms in Brazil, specifically in the state of Sao Paulo, a study examined 100 small firms in three industrial sectors: clothing, mechanical…

  13. Giant magnetoresistance sensing technologies for detecting small defects in metallic structures

    NASA Astrophysics Data System (ADS)

    Obeid, Simon

    Giant magnetoresistance (GMR) has been used with Eddy current testing to detect small defects not only in thin film structures but also in multilayered metallic structures. This work detected small scratches in the thin film under the surface where these defects were unable to be inspected or monitored by regular testing. In addition, rotational GMR magnetic sensor based Eddy current probes were used for detecting buried corner cracks at the edge of holes in metallic structures. The results of this study proved that giant magnetoresistance is very powerful and effective to sense the magnetic field, which is the result from the perturbation of the Eddy currents caused by a defect. This method can be used for quality control of metallization layers on silicon wafer and to detect cracks in thick structures such as cracks in aging aircraft.

  14. Landmark studies on the glucagon subfamily of GPCRs: from small molecule modulators to a crystal structure

    PubMed Central

    Yang, De-hua; Zhou, Cai-hong; Liu, Qing; Wang, Ming-wei

    2015-01-01

    The glucagon subfamily of class B G protein-coupled receptors (GPCRs) has been proposed to be a crucial drug target for the tretmaent of type 2 diabetes. The challenges associated with determining the crystal structures of class B GPCRs relate to their large amino termini and the lack of available small molecule ligands to stabilize the receptor proteins. Following our discovery of non-peptidic agonists for glucagon-like peptide-1 receptor (GLP-1R) that have therapeutic effects, we initiated collaborative efforts in structural biology and recently solved the three-dimensional (3D) structure of the human glucagon receptor (GCGR) 7-transmembrane domain, providing in-depth information about the underlying signaling mechanisms. In this review, some key milestones in this endeavor are highlighted, including discoveries of small molecule ligands, their roles in receptor crystallization, conformational changes in transmembrane domains (TMDs) upon activation and structure-activity relationship analyses. PMID:26279155

  15. Structural biology research at the National Synchroton Light Source

    SciTech Connect

    1996-05-01

    The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

  16. Small area comparisons of health: applications for policy makers and challenges for researchers.

    PubMed

    Veugelers, Paul J; Hornibrook, Shane

    2002-01-01

    It is a challenge to researchers to present their results in a way that serves the needs of health policy makers. Small area maps of life expectancy provide an insightful presentation. In this study, we pursued small area comparisons on a scale that is smaller than is currently available on a province-wide basis. We visualized Nova Scotia's provincial variation in health and identified the Cape Breton Regional Municipality and Halifax's disadvantaged "North End" neighbourhood as areas with major health concerns. The observed health differences are only partially explained by socioeconomic factors such as income and unemployment. The study also demonstrated the feasibility of small area comparisons at the level of census consolidated subdivisions and neighbourhoods. There are various methodological challenges for researchers, however: allocation procedures such as the postal code-conversion-file may introduce substantial error; the application of appropriate spatial smoothing procedures is crucial to the interpretation of regional variation in health; and the migration of frail individuals to nursing homes affects the geographic variation in health. PMID:12443566

  17. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    SciTech Connect

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

  18. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  19. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  20. Probabilistic structural mechanics research for parallel processing computers

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.

    1991-01-01

    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.

  1. Mare ridges and related studies: Part D: small structures of the Taurus-Littrow region

    USGS Publications Warehouse

    Scott, David H.

    1973-01-01

    Apollo 17 permission geologic studies of the Taurus-Littrow region of the Moon revealed numerous small structures, in both mare and terra, having somewhat similar morphologies and variously resembling fault scarps, flow fronts, and mare ridges. Many of these features are too small to be identified on Lunar Orbiter IV photographs, which provided the most comprehensive, high-resolution coverage of this area before the later Apollo missions. The panoramic- and metric-camera photographs of Apollo 17 were taken at lower Sun angles than those of Apollo 15, which were used for the geologic mapping (refs. 31-40 and 31-41), and thus more clearly reveal fine details of texture and relief. In the illustrations of this part, several of these small structures are compared. It is concluded that they probably developed as lava extrusions from fractures and fissures; they cannot be easily explained by faulting.

  2. Research on the structural dynamics verification of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Hanks, Brantley R.

    1993-01-01

    Langley spacecraft structural dynamics research based on a broad range of experimental and analytical studies, which contributed to the technology base for designing and building advanced spacecraft structures, is reviewed. It is concluded that considerable progress has been made toward developing the scale model technology for validating mathematical models used to predict the on-orbit dynamic behavior of spacecraft structures. Advanced suspension systems for testing models of spacecraft as well as feasibility of using modal data to detect damage in truss-type structures were demonstrated.

  3. A High-Throughput Processor for Flight Control Research Using Small UAVs

    NASA Technical Reports Server (NTRS)

    Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.

    2006-01-01

    There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.

  4. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  5. [Research on Small-Type and High-Spectral-Resolution Grating Monochromator].

    PubMed

    Yang, Zeng-peng; Tang, Yu-guo; Bayanheshig; Cui, Ji-cheng; Yang, Jin

    2016-01-01

    Monochromator is the necessary equipment for spectral imager to calibrate the spectrum continuously. In order to calibrate the hyperspectral imaging spectrometer continuously, a small-type and high-spectral-resolution grating monochromator is designed. The grating monochromator with horizontal Czerny-Turner structure is designed with high-spectral-resolution as a starting point, and the design idea is discussed in detail from choosing the grating, calculating the focal length, the sizes of entrance slit and exit slit, among others. Using this method, the necessary structure parameters are determined, and the impact of the necessary structure parameters for spectral resolution and volume is given. According to the optical characteristics of the grating monochromator, the mechanical structures of the instrument are designed for small and handy from the components of the entrance slit, the collimator lens and imaging objective lens, the scanning structures, the fuselage and so on. The relationship of the sine mechanism parameters for output wavelength and wavelength scanning accuracy is given. The design and adjustment of the instrument are completed. The visible spectrums of mercury lamp are used as calibration lines, and the calibration curve is acquired by using least square method. This paper gives a method that combining the limit error of the step number and the calibration curve to evaluate the wavelength repeatability and wavelength precision. The datum of experiment shows that the spectral resolution of the instrument is better than 0.1 nm in the wavelength band from 400 to 800 nm. Simultaneously the wave-length repeatability reach to ± 0.96 6 nm and the precision reach to ± 0.096 9 nm. PMID:27228781

  6. Relative Effects of Three Questioning Strategies in Ill-Structured, Small Group Problem Solving

    ERIC Educational Resources Information Center

    Byun, Hyunjung; Lee, Jung; Cerreto, Frank A.

    2014-01-01

    The purpose of this research is to investigate the relative effectiveness of using three different question-prompt strategies on promoting metacognitive skills and performance in ill-structured problem solving by examining the interplay between peer interaction and cognitive scaffolding. An ill-structured problem-solving task was given to three…

  7. SBDN: an information portal on small bodies and interplanetary dust inside the Europlanet Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; de Sanctis, Maria Cristina; Carraro, Francesco; Fonte, Sergio; Giacomini, Livia; Politi, Romolo

    In the framework of the Sixth Framework Programme (FP6) for Research and Technological Development of the European Community, the Europlanet project started the Integrated and Distributed Information Service (IDIS) initiative. The goal of this initiative was to "...offer to the planetary science community a common and user-friendly access to the data and infor-mation produced by the various types of research activities: earth-based observations, space observations, modelling and theory, laboratory experiments...". Four scientific nodes, repre-sentative of a significant fraction of the scientific themes covered by planetary sciences, were created: the Interiors and Surfaces node, the Atmospheres node, the Plasma node and the Small Bodies and Dust node. The original Europlanet program evolved into the Europlanet Research Infrastructure project, funded by the Seventh Framework Programme (FP7) for Research and Technological Development, and the IDIS initiative has been renewed with the addiction of a new scientific node, the Planetary Dynamics node. Here we present the Small Bodies and Dust node (SBDN) and the services it already provides to the scientific community, i.e. a searchable database of resources related to its thematic domains, an online and searchable cat-alogue of emission lines observed in the visible spectrum of comet 153P/2002 C1 Ikeya-Zhang supplemented by a visualization facility, a set of models of the simulated evolution of comet 67P/Churyumov-Gerasimenko with a particular focus on the effects of the distribution of dust and a information system on meteors through the Virtual Meteor Observatory. We will also introduce the new services that will be implemented and made available in the course of the Europlanet Research Infrastructure project.

  8. Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research.

    PubMed

    Okusanya, Olugbenga T; Madajewski, Brian; Segal, Erin; Judy, Brendan F; Venegas, Ollin G; Judy, Ryan P; Quatromoni, Jon G; Wang, May D; Nie, Shuming; Singhal, Sunil

    2015-04-01

    Fluorescence guided surgery (FGS) is a developing field of surgical and oncologic research. Practically, FGS has shown useful applications in urologic surgery, benign biliary surgery, colorectal cancer liver metastasis resection, and ovarian cancer debulking. Most notably in in cancer surgery, FGS allows for the clear delineation of cancerous tissue from benign tissue. FGS requires the utilization of a fluorescent contrast agent and an intraoperative fluorescence imaging device (IFID). Currently available IFIDs are expensive, unable to work with multiple fluorophores, and can be cumbersome. This study aims to describe the development and utility of a small, cost-efficient, and interchangeable IFID made from commercially available components. Extensive research was done to design and construct a light-weight, portable, and cost-effective IFID. We researched the capabilities, size, and cost of several camera types and eventually decided on a near-infrared (NIR) charged couple device (CCD) camera for its overall profile. The small portable interchangeable imager of fluorescence (SPIIF) is a "scout" IFID system for FGS. The main components of the SPIIF are a NIR CCD camera with an articulating light filter. These components and a LED light source with an attached heat sink are mounted on a small metal platform. The system is connected to a laptop by a USB 2.0 cable. Pixielink © software on the laptop runs the system by controlling exposure time, gain, and image capture. After developing the system, we evaluated its utility as an IFID. The system weighs less than two pounds and can cover a large area. Due to its small size, it is easily made sterile by covering it with any sterile plastic sheet. To determine the system's ability to detect fluorescent signal, we used the SPIIF to detect indocyanine green under ex and in-vivo conditions and fluorescein under ex-vivo conditions. We found the SPIIF was able to detect both ICG and fluorescein under different depths of a

  9. Small Portable Interchangeable Imager of Fluorescence for Fluorescence Guided Surgery and Research

    PubMed Central

    Okusanya, Olugbenga T.; Madajewski, Brian; Segal, Erin; Judy, Brendan F.; Venegas, Ollin G.; Judy, Ryan P.; Quatromoni, Jon G.; Wang, May D.; Nie, Shuming; Singhal, Sunil

    2014-01-01

    Fluorescence guided surgery (FGS) is a developing field of surgical and oncologic research. Practically, FGS has shown useful applications in urologic surgery, benign biliary surgery, colorectal cancer liver metastasis resection, and ovarian cancer debulking. Most notably in in cancer surgery, FGS allows for the clear delineation of cancerous tissue from benign tissue. FGS requires the utilization of a fluorescent contrast agent and an intraoperative fluorescence imaging device (IFID). Currently available IFIDs are expensive, unable to work with multiple fluorophores, and can be cumbersome. This study aims to describe the development and utility of a small, cost-efficient, and interchangeable IFID made from commercially available components. Extensive research was done to design and construct a light-weight, portable, and cost-effective IFID. We researched the capabilities, size, and cost of several camera types and eventually decided on a near-infrared (NIR) charged couple device (CCD) camera for its overall profile. The small portable interchangeable imager of fluorescence (SPIIF) is a “scout” IFID system for FGS. The main components of the SPIIF are a NIR CCD camera with an articulating light filter. These components and a LED light source with an attached heat sink are mounted on a small metal platform. The system is connected to a laptop by a USB 2.0 cable. Pixielink © software on the laptop runs the system by controlling exposure time, gain, and image capture. After developing the system, we evaluated its utility as an IFID. The system weighs less than two pounds and can cover a large area. Due to its small size, it is easily made sterile by covering it with any sterile plastic sheet. To determine the system’s ability to detect fluorescent signal, we used the SPIIF to detect indocyanine green under ex and in-vivo conditions and fluorescein under ex-vivo conditions. We found the SPIIF was able to detect both ICG and fluorescein under different depths of

  10. Complex sound stimuli representation by small neural groups in subcortical auditory structure

    NASA Astrophysics Data System (ADS)

    Lyzwa, Dominika

    The neural representation of complex natural sound stimuli in higher auditory structures is not yet well understood. Based on neurophysiological recordings from the mammalian auditory midbrain, neural responses to complex (natural and also artificial) sounds are investigated and mapped with respect to temporal and spectral neural tuning in the subcortical structure. The mapping includes spiking activity of single neurons and small neural clusters and local field potential activity. A neural model is presented which captures the mapping and also the similarity of responses across the auditory structure, and is used to predict responses to novel sound. Financial support by Bernstein Focus Neural Technology Goettingen, Grant Number #01GQ0811.

  11. Experimental research on tape spring supported space inflatable structures

    NASA Astrophysics Data System (ADS)

    Cook, Andrew J.; Walker, Scott J. I.

    2016-01-01

    This paper presents experimental research that continues the development of inflatable hybrid structures for space applications. Inflatables provide a concept with much scope for further incorporation into the structures of future spacecraft. They offer considerable savings in mass and stowed volume for spacecraft, providing possible reductions in satellite costs. Existing boom configurations make use of inflatables including solar arrays and the NGST sunshield. However these typically soft systems could be improved by incorporating tape springs as structural stiffeners along the length of the boom, creating hybrid structures. This research builds on previous experimental work undertaken at the University of Southampton looking at cantilever inflatable and hybrid booms. The focus of this research is to identify the structural performance improvement of adding tape springs to cantilever inflatable booms. This is achieved by tip deflection testing to determine the bending moment and rigidity performances of these structures allowing a comparison between the two technologies. Several hybrid booms are created and tested in various orientations to identify the optimal tape spring effectiveness. It was found that adding a pair of tape springs will increase stiffness of the hybrid structure by up to 4.9 times for an increase of 2.4 times the boom mass.

  12. Computational investigation of the electronic and structural properties of ultra small-diameter boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Giahi, Masoud

    2010-06-01

    The electronic and structural properties of ultra small-diameter (3,0) and (4,0) zigzag and (2,2) and (3,3) armchair models of boron nitride nanotubes (BNNTs) are investigated by density functional theory (DFT) calculations. The atomic geometries of the considered models are optimized and then the electric field gradient (EFG) tensors are calculated at the sites of boron-11 and nitrogen-14 nuclei in the optimized structures. The results indicate that the small-diameter boron nitride nanotubes are proper for contributing to intermolecular interactions whereas the zigzag models are more preferred rather than the armchair ones. Furthermore, the boron-11 nuclei play dominant roles in the characterization of the electronic and structural properties of the BNNTs. The DFT calculations are performed by the GAUSSIAN 98 package.

  13. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  14. Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Meneguzzi, Maurice; Pouquet, Annick; Sulem, Pierre-Louis

    Small-scale structures in turbulent flows appear as a subtle mixture of order and chaos that could play an important role in the energetics. The aim here is a better understanding of the similarities and differences between vortex and current dynamics, and of the influence of these structures on the statistical and transport properties of hydrodynamic and magnetohydrodynamic turbulence, with special concern for fusion plasmas, and solar or magnetospheric environments. Special emphasis is given to the intermittency at inertial scales and to the coherent structures at small scales. Magnetic reconnection and the dynamo effect are also discussed, together with the effect of stratification and inhomogeneity. The impact of hydrodynamic concepts on astro and geophysical observations are reviewed.

  15. NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    2001-01-01

    The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.

  16. Big Data: the challenge for small research groups in the era of cancer genomics

    PubMed Central

    Noor, Aisyah Mohd; Holmberg, Lars; Gillett, Cheryl; Grigoriadis, Anita

    2015-01-01

    In the past decade, cancer research has seen an increasing trend towards high-throughput techniques and translational approaches. The increasing availability of assays that utilise smaller quantities of source material and produce higher volumes of data output have resulted in the necessity for data storage solutions beyond those previously used. Multifactorial data, both large in sample size and heterogeneous in context, needs to be integrated in a standardised, cost-effective and secure manner. This requires technical solutions and administrative support not normally financially accounted for in small- to moderate-sized research groups. In this review, we highlight the Big Data challenges faced by translational research groups in the precision medicine era; an era in which the genomes of over 75 000 patients will be sequenced by the National Health Service over the next 3 years to advance healthcare. In particular, we have looked at three main themes of data management in relation to cancer research, namely (1) cancer ontology management, (2) IT infrastructures that have been developed to support data management and (3) the unique ethical challenges introduced by utilising Big Data in research. PMID:26492224

  17. Big Data: the challenge for small research groups in the era of cancer genomics.

    PubMed

    Noor, Aisyah Mohd; Holmberg, Lars; Gillett, Cheryl; Grigoriadis, Anita

    2015-11-17

    In the past decade, cancer research has seen an increasing trend towards high-throughput techniques and translational approaches. The increasing availability of assays that utilise smaller quantities of source material and produce higher volumes of data output have resulted in the necessity for data storage solutions beyond those previously used. Multifactorial data, both large in sample size and heterogeneous in context, needs to be integrated in a standardised, cost-effective and secure manner. This requires technical solutions and administrative support not normally financially accounted for in small- to moderate-sized research groups. In this review, we highlight the Big Data challenges faced by translational research groups in the precision medicine era; an era in which the genomes of over 75,000 patients will be sequenced by the National Health Service over the next 3 years to advance healthcare. In particular, we have looked at three main themes of data management in relation to cancer research, namely (1) cancer ontology management, (2) IT infrastructures that have been developed to support data management and (3) the unique ethical challenges introduced by utilising Big Data in research. PMID:26492224

  18. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  19. National Institutes of Health phase I, Small Business Innovation Research applications: fiscal year 1983 results.

    PubMed

    Vener, K J

    1985-08-01

    A review of the 356 disapproved Small Business Innovation Research (SBIR) proposals submitted to the National Institutes of Health (NIH) for fiscal year 1983 funding was undertaken to identify the most common shortcomings of those disapproved applications. The shortcomings were divided into four general classes by using the scheme developed by other authors when describing the reasons for the disapproval of regular NIH research applications. Comparison of the reasons for disapproval of SBIR applications with regular applications suggests comparable difficulties in the areas of the problem and the approach. There is some indication, however, that the SBIR proposals may have been weaker in the category of the principal investigator (PI). In general, it is the responsibility of the PI to demonstrate that the work is timely and can be performed with available technology and expertise, and that the guidelines for the NIH SBIR program have been satisfied. PMID:4018273

  20. Teachers As Researchers: Improving Practice in Rural and Small Schools. Rural, Small Schools Network Information Exchange: Number 11, Fall 1991.

    ERIC Educational Resources Information Center

    Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.

    This packet includes reprints of journal articles and other information exploring reflective practice and action research among rural educators. The four sections of the packet cover concepts of reflective practice and action research; examples of reflective practice at both the elementary and secondary levels; issues such as encouraging…

  1. Talking Science: The research evidence on the use of small group discussions in science teaching

    NASA Astrophysics Data System (ADS)

    Bennett, Judith; Hogarth, Sylvia; Lubben, Fred; Campbell, Bob; Robinson, Alison

    2010-01-01

    This paper reports the findings of two systematic reviews of the use and effects of small group discussions in high school science teaching. Ninety-four studies were included in an overview (systematic map) of work in the area, and 24 studies formed the basis of the in-depth reviews. The reviews indicate that there is considerable diversity in the topics used to promote small group discussions. They also demonstrate that students often struggle to formulate and express coherent arguments, and demonstrate a low level of engagement with tasks. The reviews suggest that groups function more purposefully, and understanding improves most, when specifically constituted such that differing views are represented, when some form of training is provided for students on effective group work, and when help in structuring discussions is provided in the form of "cues". Single-sex groups function more purposefully than mixed-sex groups, though improvements in understanding are independent of gender composition of groups. Finally, the reviews demonstrate very clearly that, for small group discussions to be effective, teachers and students need to be given explicit teaching in the skills associated with the development of arguments and the characteristics associated with effective group discussions. In addition to the substantive findings, the paper also reports on key features of the methods employed to gather and analyse data. Of particular note are the two contrasting approaches to data analysis, one adopting a grounded theory approach and the other drawing on established methods of discourse analysis.

  2. Scaling the relative dominance of exogenous drivers in structuring desert small mammal assemblages

    NASA Astrophysics Data System (ADS)

    Rodríguez, Daniela; Ojeda, Ricardo A.

    2015-11-01

    Assemblage patterns could be primarily generated by two types of drivers: exogenous (such as environmental and climatic factors) and endogenous (interactions such as competition, predation, mutualism or herbivory). The most widely accepted hypothesis states that at smaller scales (such as patch scale), interspecific interactions are the major drivers structuring communities, whereas at larger regional scales, factors such as climate, topography and soil act as ecological filters that determine assemblage composition. The general aim of this paper is to compare different exogenous drivers in terms of their relative dominance in structuring desert small mammal communities across a range of spatial scales, from patch to regional, and compare them with previous results on endogenous drivers. Our results show that as spatial scale increases, the explanatory power of exogenous factors also increases, e.g. from 17% at the patch scale (i.e. abundance) to 99% at the regional scale (i.e. diversity). Moreover, environmental drivers vary in type and strength depending on the community estimator across several spatial scales. On the other hand, endogenous drivers such as interspecific interactions are more important at the patch scale, diminishing in importance towards the regional scale. Therefore, the relative importance of exogenous versus endogenous drivers affects small mammal assemblage structure at different spatial scales. Our results fill up a knowledge gap concerning ecological drivers of assemblage structure at intermediate spatial scales for Monte desert small mammals, and highlight the importance of dealing with multi-causal factors in explaining ecological patterns of assemblages.

  3. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Hirasawa, Naohiko; the Ant-Plane Group

    As part of the Ant-Plane project for summertime scientific research and logistics in the coastal region of Antarctica, we developed six types of small autonomous UAVs (unmanned aerial vehicles, similar to drones; we term these vehicles ‘Ant-Planes’) based on four types of airframe. In test flights, Ant-Plane 2 cruised within 20 m accuracy along a straight course during calm weather at Sakurajima Volcano, Kyushu, Japan. During a period of strong winds (22 m/s) at Mt. Chokai, Akita Prefecture, Japan, Ant-Plane 2 maintained its course during a straight flight but deviated when turning leeward. An onboard 3-axis magneto-resistant magnetometer (400 g) recorded variations in the magnetic field to an accuracy of 10 nT during periods of calm wind, but strong magnetic noise was observed during high winds, especially head winds. Ant-Plane 4-1 achieved a continuous flight of 500 km, with a maximum flight altitude of 5690 m. The Ant-Plane can be used for various types of Antarctic research as a basic platform for airborne surveys, but further development of the techniques employed in takeoff and landing are required, as well as ready adjustment of the engine and the development of small onboard instruments with greater reliability.

  4. Validation of the Small Hot Jet Acoustic Rig for Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2005-01-01

    The development and acoustic validation of the Small Hot Jet Aeroacoustic Rig (SHJAR) is documented. Originally conceived to support fundamental research in jet noise, the rig has been designed and developed using the best practices of the industry. While validating the rig for acoustic work, a method of characterizing all extraneous rig noise was developed. With this in hand, the researcher can know when the jet data being measured is being contaminated and design the experiment around this limitation. Also considered is the question of uncertainty, where it is shown that there is a fundamental uncertainty of 0.5dB or so to the best experiments, confirmed by repeatability studies. One area not generally accounted for in the uncertainty analysis is the variation which can result from differences in initial condition of the nozzle shear layer. This initial condition was modified and the differences in both flow and sound were documented. The bottom line is that extreme caution must be applied when working on small jet rigs, but that highly accurate results can be made independent of scale.

  5. Modeling RNA topological structures using small angle X-ray scattering.

    PubMed

    Bhandari, Yuba R; Jiang, Wei; Stahlberg, Eric A; Stagno, Jason R; Wang, Yun-Xing

    2016-07-01

    Detailed understanding of the structure and function relationship of RNA requires knowledge about RNA three-dimensional (3D) topological folding. However, there are very few unique RNA entries in structure databases. This is due to challenges in determining 3D structures of RNA using conventional methods, such as X-ray crystallography and NMR spectroscopy, despite significant advances in both of these technologies. Computational methods have come a long way in accurately predicting the 3D structures of small (<50nt) RNAs to within a few angstroms compared to their native folds. However, lack of an apparent correlation between an RNA primary sequence and its 3D fold ultimately limits the success of purely computational approaches. In this context, small angle X-ray scattering (SAXS) serves as a valuable tool by providing global shape information of RNA. In this article, we review the progress in determining RNA 3D topological structures, including a new method that combines secondary structural information and SAXS data to sample conformations generated through hierarchical moves of commonly observed RNA motifs. PMID:27090001

  6. GIANT: pattern analysis of molecular interactions in 3D structures of protein–small ligand complexes

    PubMed Central

    2014-01-01

    Background Interpretation of binding modes of protein–small ligand complexes from 3D structure data is essential for understanding selective ligand recognition by proteins. It is often performed by visual inspection and sometimes largely depends on a priori knowledge about typical interactions such as hydrogen bonds and π-π stacking. Because it can introduce some biases due to scientists’ subjective perspectives, more objective viewpoints considering a wide range of interactions are required. Description In this paper, we present a web server for analyzing protein–small ligand interactions on the basis of patterns of atomic contacts, or “interaction patterns” obtained from the statistical analyses of 3D structures of protein–ligand complexes in our previous study. This server can guide visual inspection by providing information about interaction patterns for each atomic contact in 3D structures. Users can visually investigate what atomic contacts in user-specified 3D structures of protein–small ligand complexes are statistically overrepresented. This server consists of two main components: “Complex Analyzer”, and “Pattern Viewer”. The former provides a 3D structure viewer with annotations of interacting amino acid residues, ligand atoms, and interacting pairs of these. In the annotations of interacting pairs, assignment to an interaction pattern of each contact and statistical preferences of the patterns are presented. The “Pattern Viewer” provides details of each interaction pattern. Users can see visual representations of probability density functions of interactions, and a list of protein–ligand complexes showing similar interactions. Conclusions Users can interactively analyze protein–small ligand binding modes with statistically determined interaction patterns rather than relying on a priori knowledge of the users, by using our new web server named GIANT that is freely available at http://giant.hgc.jp/. PMID:24423161

  7. Biological Structures, Interactions, Function and Behavior: Research Opportunities for Physicists

    NASA Astrophysics Data System (ADS)

    Concepcion, Gisela P.

    2008-06-01

    Studies on marine biomolecules at the Marine Natural Products Laboratory (MNPL) and studies on biomedically relevant proteins at the Virtual Laboratory of Biomolecular Structures (VIRLS) of the University of the Philippines Marine Science Institute (UPMSI) are presented. These serve to illustrate some underlying principles of biological structures, interactions, function and behavior, and also to draw out some unresolved questions in biology of possible interest to non-biologists. The Biological Structures course offered at UPMSI, which aims to introduce underlying biological principles to non-biology majors and to promote trans-disciplinary research efforts, is also presented.

  8. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    SciTech Connect

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-09-25

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. An analysis of hourly load data indicates that the offices and retail stores in our sample provided significant demand response, while the restaurants did not. Thermostat data provides further evidence that restaurants attempted to precool and reduce AC service during event hours, but were unable to because their air-conditioning units were undersized. On a 100 F reference day, load impacts of all participants during events averaged 14%, while load impacts of office and retail buildings (excluding restaurants) reached 20%. Overall, pilot participants including restaurants had 2007-2008 summer energy savings of 20% and bill savings of 30%. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability

  9. Thermal Threshold: Research Study on Small Fiber Dysfunction in Distal Diabetic Polyneuropathy

    PubMed Central

    Jimenez-Cohl, Pedro; Grekin, Carlos; Leyton, Cristian; Vargas, Claudio; Villaseca, Roberto

    2012-01-01

    Objective The most commonly used technique for diagnosis of diabetic neuropathy (DN) is nervous conduction (NC). Our hypothesis is that the use of the thermal threshold (TT) technique to evaluate small fiber damage, which precedes large fiber damage, could enable earlier diagnosis and diminish false negatives. Research Design and Methods The study involved 70 asymptomatic patients with type 2 diabetes mellitus (T2DM) all being treated with oral hypoglycemic medication, and having negative metabolic control levels with glycosylated hemoglobin A1c greater than 7% and less than 8%. Diabetic neuropathy was their only evident complication. All other complications or other causes of neuropathy were discarded. Their time of evolution was 1 to 48 months since date of diagnosis of diabetes. Both thermal threshold and sensory and motor nervous conduction were determined in upper and lower limbs. Results Nervous conduction was found normal in 81% and altered in 19% of patients (large fiber neuropathy). Thermal threshold was normal in 57% and altered in 43% of patients (small fiber neuropathy). In those with normal TTs, no case with an altered NC was found (p < 0.001). Patients with altered TTs could have normal (57%) or altered NC (43%). Thus, NC showed a high frequency of false negatives for DN (57% of 30 cases). The frequency of small fiber neuropathy found with the TT test was higher than that of large fiber neuropathy found with the NC test (p < 0.001) and was found at an earlier age. Conclusions The TT test demonstrated a higher frequency of neuropathy than the NC test in clinically asymptomatic T2DM patients. We suggest that small fiber should be studied before large fiber function to diagnosis distal and symmetrical DN. PMID:22401337

  10. Activities of the Structures Division, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the NASA Lewis Research Center, Structures Division's 1990 Annual Report is to give a brief, but comprehensive, review of the technical accomplishments of the Division during the past calendar year. The report is organized topically to match the Center's Strategic Plan. Over the years, the Structures Division has developed the technology base necessary for improving the future of aeronautical and space propulsion systems. In the future, propulsion systems will need to be lighter, to operate at higher temperatures and to be more reliable in order to achieve higher performance. Achieving these goals is complex and challenging. Our approach has been to work cooperatively with both industry and universities to develop the technology necessary for state-of-the-art advancement in aeronautical and space propulsion systems. The Structures Division consists of four branches: Structural Mechanics, Fatigue and Fracture, Structural Dynamics, and Structural Integrity. This publication describes the work of the four branches by three topic areas of Research: (1) Basic Discipline; (2) Aeropropulsion; and (3) Space Propulsion. Each topic area is further divided into the following: (1) Materials; (2) Structural Mechanics; (3) Life Prediction; (4) Instruments, Controls, and Testing Techniques; and (5) Mechanisms. The publication covers 78 separate topics with a bibliography containing 159 citations. We hope you will find the publication interesting as well as useful.

  11. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  12. The Use of Structural Equation Modeling in Counseling Psychology Research

    ERIC Educational Resources Information Center

    Martens, Matthew P.

    2005-01-01

    Structural equation modeling (SEM) has become increasingly popular for analyzing data in the social sciences, although several broad reviews of psychology journals suggest that many SEM researchers engage in questionable practices when using the technique. The purpose of this study is to review and critique the use of SEM in counseling psychology…

  13. Personality Research Form: Factor Structure and Response Style Involvement.

    ERIC Educational Resources Information Center

    Stricker, Lawrence J.

    The aims of this study were (1) to explore the factor structure of the Personality Research Form (PRF) and (2) to examine the inventory's relations with response styles. In general the PRF content scales correlated moderately with each other and with measures of acquiesence, social desirability, and defensiveness response Biases. Six oblique…

  14. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  15. The Importance of Structure Coefficients in Regression Research.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Borrello, Gloria M.

    1985-01-01

    Multiple regression analysis is frequently being employed in experimental and non-experimental research. However, when data include predictor variables that are correlated, some regression results can become difficult to interpret. This paper presents a study to provide a demonstration that structure coefficients may be useful in these cases.…

  16. Gregory Research Beliefs Scale: Factor Structure and Internal Consistency

    ERIC Educational Resources Information Center

    Gregory, Virgil L., Jr.

    2010-01-01

    Objective: This study evaluates the factor structure and internal consistency of the Gregory Research Beliefs Scale (GRBS). Method: Data were collected from subject matter experts, a pilot study, an online sample, and a classroom sample. Psychometric analyses were conducted after combining the online and classroom samples. Results: An a priori…

  17. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  18. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  19. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research. PMID:17355868

  20. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    USGS Publications Warehouse

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  1. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function.

    PubMed

    Ghosh, Arnab; Komar, Anton A

    2015-01-01

    High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may facilitate eukaryote-specific reactions in the initiation phase of protein synthesis. This review summarizes emerging data describing the structural and functional significance of eukaryote-specific extensions of conserved small ribosomal subunit proteins, particularly their possible roles in recruitment and spatial organization of eukaryote-specific initiation factors. PMID:26779416

  2. An unusually small dimer interface is observed in all available crystal structures of cytosolic sulfotransferases

    PubMed Central

    Weitzner, Brian; Meehan, Thomas; Xu, Qifang; Dunbrack, Roland L.

    2009-01-01

    Cytosolic sulfotransferases catalyze the sulfonation of hormones, metabolites, and xenobiotics. Many of these proteins have been shown to form homo- and heterodimers. An unusually small dimer interface was previously identified by Petrotchenko et al. (FEBS Lett 490, 39-43, 2001) by crosslinking, protease digestion, and mass spectrometry, and verified by site-directed mutagenesis. Analysis of the crystal packing interfaces in all 28 available crystal structures consisting of 17 crystal forms shows that this interface occurs in all of them. With a small number of exceptions, the publicly available databases of biological assemblies contain either monomers or incorrect dimers. Even crystal structures of mouse SULT1E1, which is a monomer in solution, contain the common dimeric interface, although distorted and missing two important salt bridges. PMID:19173308

  3. Reconstruction of the inner structure of small scale mining waste dumps by combining GPR and ERTdata.

    NASA Astrophysics Data System (ADS)

    Kniess, Rudolf; Martin, Tina

    2015-04-01

    Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated

  4. Antigenic and structural features of goblet-cell mucin of human small intestine.

    PubMed Central

    Mantle, M; Forstner, G G; Forstner, J F

    1984-01-01

    With the use of a newly developed solid-phase radioimmunoassay method, the major antigenic determinants of human small-intestinal goblet-cell mucin were investigated and related to the overall tertiary structure of the mucin. Preliminary hapten inhibition studies with various oligosaccharides of known sequence and structure suggested that the determinants did not reside in carbohydrate. Exhaustive thiol reduction, however, almost abolished antigenicity, caused breakdown of the mucin into small heterogeneous glycopeptides, and liberated a 'link' peptide of Mr 118000. Western 'blots' of reduced mucin from polyacrylamide gels on to nitrocellulose sheets showed that a small amount of residual antigenicity remained in large-Mr glycopeptides (Mr greater than 200000). The 'link' peptide was not antigenic. Timed Pronase digestion of native mucin resulted in a progressive loss of antigenic determinants. Gel electrophoresis revealed that after 8h of digestion the 118000-Mr peptide had disappeared, whereas antigenicity, which was confined to large-Mr glycopeptides, was destroyed much more slowly with time (70% by 24h, 100% by 72h). Despite the loss of antigenicity, 72h-Pronase-digested glycopeptides retained all of the carbohydrate of the native mucin. Therefore the antibody to human small-intestinal mucin appears to recognize a 'naked' (non-glycosylated and Pronase-susceptible) peptide region(s) of mucin glycopeptides. For full antigenicity, however, disulphide bonds are required to stabilize a specific three-dimensional configuration of the 'naked' region. Images Fig. 4. Fig. 6. PMID:6199017

  5. Backscattering from small-scale breaking wave turbulence structure generated by FLUENT

    NASA Astrophysics Data System (ADS)

    Luo, Gen; Zhang, Min

    2014-12-01

    A breaking wave can exert a great influence on the electromagnetic (EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics (CFD) software FLUENT, and the backscattering radar cross section (RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either. In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.

  6. Extremely small test cell structure for resistive random access memory element with removable bottom electrode

    SciTech Connect

    Koh, Sang-Gyu; Kishida, Satoru; Kinoshita, Kentaro

    2014-02-24

    We established a method of preparing an extremely small memory cell by fabricating a resistive random access memory (ReRAM) structure on the tip of a cantilever of an atomic force microscope. This structure has the high robustness against the drift of the cantilever, and the effective cell size was estimated to be less than 10 nm in diameter due to the electric field concentration at the tip of the cantilever, which was confirmed using electric field simulation. The proposed structure, which has a removable bottom electrode, enables not only the preparation of a tiny ReRAM structure but also the performance of unique experiments, by making the most of its high robustness against the drift of the cantilever.

  7. Quantification of Complex Topologies in Macromolecular and Nanoscale Structures using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Pradhan, Siddharth; Ramachandran, Ramanth; Rai, Durgesh; Beaucage, Gregory

    2012-02-01

    Polymers are characterized by molecular weight distribution, tacticity, block copolymer content and branch content and chain topology. The branch structure and particularly the topology of branched chains has remained a difficult characterization problem. Recently we have developed a scaling model that can be coupled with small-angle scattering to measure the average branch length, number of branches and branch-on-branch structure in macromolecules of complex topology. This method has been extended to understand the structure of two dimensional structures and crumpling in these macromolecular systems. We have explored a wide range of materials in this regard. This poster will give an overview of the current uses for the scaling model for macromolecular topology. References pertaining to this poster can be found at http://www.eng.uc.edu/˜gbeaucag/BranchingPapers.html.

  8. Small Angle X-ray Scattering in Structural Investigation of Selected Biological Systems

    SciTech Connect

    Kozak, Maciej

    2007-11-26

    Small angle X-ray scattering method (SAXS) is a technique complementary to the protein crystallography, allowing determination of the structural parameters such as the radius of gyration or the maximum size characterizing the macromolecules, and providing information on the conformational changes taking place in solution. The use of SAXS method enables a comparison of the protein crystal structure with the data collected in solution. Recent development of the measurement techniques (mainly those based on synchrotron radiation) and calculation methods has permitted introduction of advanced techniques also in the field of structural analysis of biomolecules (e.g. for determination of the shape of the protein molecule in solution). The paper presents a few selected methods of structural analysis of biological systems based on the SAXS data and illustrates their performance on the example of xylanase from Trichoderma longibrachiatum and a model phospholipid system.

  9. A mathematical model of the structure and evolution of small-scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, Charles E.

    1990-01-01

    A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.

  10. Role of "magic" numbers in structure formation in small silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Redel', L. V.; Gafner, Yu. Ya.; Gafner, S. L.

    2015-10-01

    The molecular dynamics method with the modified tight-binding (TB-SMA) potential has been used to study thermal stability of the initial fcc phase in perfect silver clusters to 2 nm in diameter. Dimensional boundaries of nanoparticles, at which the internal atomic configuration changes upon heating, have been determined using the molecular dynamics simulation. It has been shown that the temperature factor can cause the transition from the initial fcc phase to other structural modifications, including those with pentagonal symmetry, in small Ag clusters. It has been demonstrated that "magic" numbers play an important role in the formation of the internal structure of silver clusters.

  11. Spectroscopic and structural elucidation of amino acid derivatives and small peptides: experimental and theoretical tools.

    PubMed

    Kolev, Tsonko; Spiteller, Michael; Koleva, Bojidarka

    2010-01-01

    This mini review deals with the modern aspects of the spectroscopy and structural elucidation of amino acid derivatives and small biologically active compounds. Free peptide bond rotation in these systems yields various conformers, which possess differing biological activities. Another phenomenon is the intermolecular or intramolecular stacking observed in aromatic small peptides. Specifically, the main aim is to illustrate the successful application of the "complex tool", consisting of a combination of the theoretical approximation methods with experimental linear polarized infrared (IR-LD) and/or Raman spectroscopy of oriented colloid suspensions in a nematic host. The possibilities and limitations of the approach for detailed vibrational assignment and structural elucidation of small peptides are discussed. Having in mind that physical and chemical properties of these systems can be precisely calculated by means of ab initio and DFT methods at Hartee-Fock, MP2 and B3LYP level of theory, varying basis sets, the results obtained allow a precise assignment of many vibrational bands to the corresponding normal modes, electronic structures and conformational state. The validity of the conclusions about the structure or vibrational properties of these systems have been supported, compared and/or additionally proved by the results from independent physical methods. In this respect (1)H and (13)C-NMR, single crystal X-ray diffraction, HPLC tandem mass spectrometry as well as thermal methods are all employed. A well ordered crystal must first be grown in order to determine the molecular structure by the absolute method of single crystal X-ray diffraction. Although the 3D structures of peptides have been determined over the past decades, peptide crystallization is still a major obstacle to X-ray diffraction work, the presence of chiral centre/s makes for this difficulty. For this reason the "complex tool" presented can be regarded as an alternative method for obtaining of

  12. Effect of small perturbations on the evolution of polycrystalline structure during plastic deformation

    NASA Astrophysics Data System (ADS)

    Korznikova, E. A.; Baimova, Yu. A.; Kistanov, A. A.; Dmitriev, S. V.; Korznikov, A. V.

    2014-09-01

    The method of molecular dynamics has been used to study the influence of initial perturbations on the evolution of grain boundaries during the shear plastic deformation of a two-dimensional polycrystalline material with nanoscale grains. It has been shown that short-term thermalization-induced small perturbations result in noticeable differences in grain boundaries configurations at the deformation of 0.05 and the polycrystal completely loses its initial grain boundary structure at the deformation of 0.4.

  13. Structure and Genome Organization of Cherry Virus A (Capillovirus, Betaflexiviridae) from China Using Small RNA Sequencing

    PubMed Central

    Wang, Jiawei; Zhai, Ying; Liu, Weizhen; Dhingra, Amit

    2016-01-01

    Cherry virus A (CVA) (Capillovirus, Betaflexiviridae) is widely present in cherry-growing areas. We obtained the complete genome of a CVA isolate (CVA-TA) using small RNA deep sequencing, followed by overlapping reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). The newly identified 5′-untranslated region (5′-UTR) from CVA-TA may form additional hairpin and loop structures to stabilize the CVA genome. PMID:27174277

  14. Structure and Genome Organization of Cherry Virus A (Capillovirus, Betaflexiviridae) from China Using Small RNA Sequencing.

    PubMed

    Wang, Jiawei; Zhai, Ying; Liu, Weizhen; Dhingra, Amit; Pappu, Hanu R; Liu, Qingzhong

    2016-01-01

    Cherry virus A (CVA) (Capillovirus, Betaflexiviridae) is widely present in cherry-growing areas. We obtained the complete genome of a CVA isolate (CVA-TA) using small RNA deep sequencing, followed by overlapping reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). The newly identified 5'-untranslated region (5'-UTR) from CVA-TA may form additional hairpin and loop structures to stabilize the CVA genome. PMID:27174277

  15. Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering

    PubMed Central

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca2+] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level—which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains. PMID:20371319

  16. Utilization of the Building-Block Approach in Structural Mechanics Research

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen

    2005-01-01

    In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are

  17. Effective small group teaching strategies for research supervision - A case study

    NASA Astrophysics Data System (ADS)

    Pathirana, Assela

    2010-05-01

    UNESCO-IHE's students are unique in several aspects: they are mid-career professionals separated from their last university experience by a number of years in the profession, they are from diverse social and cultural backgrounds, and they often have relatively clear understanding on the diverse problems in the practice of engineering in their respective countries and are focused on solving those. As a result of the diversity in many forms, managing effective groups during the research phase of the UNESCO-IHE master's course pose considerable challenge. In this paper, we present a unique combination of tools and approaches that are employed in managing a small group of students (between five and ten) in one study area, who were working on diverse research topics that had the common denominator of mathematical modelling. We blend a number of traditional (e.g. seminars, group discussions, focused training sessions) and non-traditional (e.g. Using collaboration platforms like WIKI, peer-learning) approaches so that the cohesion of the group in maintained and every member benefits from being a part of the group. Four years of experience with employing this blend of tools on a six-month long master's research programme showed us: The approach motivates the students to perform focusing not only on the end-goal of their research study, but on the process of day to day work that lead to that goal. The students' self-confidence is often enhanced by being a part of close-knit group. Initial workload of the teacher increases significantly by this approach, but later this is more than compensated by the fact that the teacher has to do little maintain the momentum. Both strong and not so-strong students equally benefit from the approach. A significant number of students develop a keen interest in being involved in research further. (e.g. engaging in doctoral studies.)

  18. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  19. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    SciTech Connect

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  20. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  1. Obtaining structural information of small proteins using solid-state nanopores and high-bandwidth measurements

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, David; Lanci, Christopher; Saven, Jeffery; Drndic, Marija

    2015-03-01

    The use of biological nanopores sensors to characterize proteins has proved a fruitful field of study. Solid-state nanopores hold several advantages over their biological counterparts, including the ability to tune pore diameter and their robustness to external conditions. Despite these advantages, the use of solid-state nanopores for protein analysis has proved difficult due to rapid translocation times of proteins and poor signal-to-noise of small peptides. Recently, improvements in high-bandwidth acquisition and in signal-to-noise have made the study of small peptides using solid-state nanopores feasible. Here we report on the detection and characterization of peptides as small as 33 amino-acids in length using sub-10 nm thin silicon nitride nanopores, giving high signal levels, combined with high-bandwidth electronics. In addition we show differentiation between monomers and dimer forms of the GCN-4 p1 leucine zipper, a coil-coil structure, and compare this with the unstructured 33-mer. The differentiation between these two forms demonstrates the possibility of extracting useful structural information from short peptide structures using modern solid-state nanopore systems.

  2. Burrowing by small polychaetes - mechanics, behavior and muscle structure of Capitella sp.

    PubMed

    Grill, Susann; Dorgan, Kelly M

    2015-05-15

    Worms of different sizes extend burrows through muddy sediments by fracture, applying dorso-ventral forces that are amplified at the crack tip. Smaller worms displace sediments less than larger worms and therefore are limited in how much force they can apply to burrow walls. We hypothesized that small worms would exhibit a transition in burrowing mechanics, specifically a lower limit in body size for the ability to burrow by fracture, corresponding with an ontogenetic transition in muscle morphology. Kinematics of burrowing in a mud analog, external morphology and muscle arrangement were examined in juveniles and adults of the small polychaete Capitella sp. We found that it moves by peristalsis, and no obvious differences were observed among worms of different sizes; even very small juveniles were able to burrow through a clear mud analog by fracture. Interestingly, we found that in addition to longitudinal and circular muscles needed for peristaltic movements, left- and right-handed helical muscles wrap around the thorax of worms of all sizes. We suggest that in small worms helical muscles may function to supplement forces generated by longitudinal muscles and to maintain hydrostatic pressure, enabling higher forces to be exerted on the crack wall. Further research is needed, however, to determine whether surficial sediments inhabited by small worms fail by fracture or plastically deform under forces of the magnitudes applied by Capitella sp. PMID:25827841

  3. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  4. Strengthening Structured Abstracts for Education Research: The Need for Claim-Based Structured Abstracts

    ERIC Educational Resources Information Center

    Kelly, Anthony E.; Yin, Robert K.

    2007-01-01

    Recent policy recommendations involving the putative primacy of randomized clinical trials in educational settings have reignited research paradigm debates. The authors of this article use the vehicle of strengthening structured journal abstracts to point out the argumentative character of all education research claims. They offer suggestions to…

  5. Visualizing chemical structure-subcellular localization relationships using fluorescent small molecules as probes of cellular transport

    PubMed Central

    2013-01-01

    Background To study the chemical determinants of small molecule transport inside cells, it is crucial to visualize relationships between the chemical structure of small molecules and their associated subcellular distribution patterns. For this purpose, we experimented with cells incubated with a synthetic combinatorial library of fluorescent, membrane-permeant small molecule chemical agents. With an automated high content screening instrument, the intracellular distribution patterns of these chemical agents were microscopically captured in image data sets, and analyzed off-line with machine vision and cheminformatics algorithms. Nevertheless, it remained challenging to interpret correlations linking the structure and properties of chemical agents to their subcellular localization patterns in large numbers of cells, captured across large number of images. Results To address this challenge, we constructed a Multidimensional Online Virtual Image Display (MOVID) visualization platform using off-the-shelf hardware and software components. For analysis, the image data set acquired from cells incubated with a combinatorial library of fluorescent molecular probes was sorted based on quantitative relationships between the chemical structures, physicochemical properties or predicted subcellular distribution patterns. MOVID enabled visual inspection of the sorted, multidimensional image arrays: Using a multipanel desktop liquid crystal display (LCD) and an avatar as a graphical user interface, the resolution of the images was automatically adjusted to the avatar’s distance, allowing the viewer to rapidly navigate through high resolution image arrays, zooming in and out of the images to inspect and annotate individual cells exhibiting interesting staining patterns. In this manner, MOVID facilitated visualization and interpretation of quantitative structure-localization relationship studies. MOVID also facilitated direct, intuitive exploration of the relationship between the

  6. Status of research aimed at predicting structural integrity

    SciTech Connect

    Reuter, W.G.

    1997-12-31

    Considerable research has been performed throughout the world on measuring the fracture toughness of metals. The existing capability fills the need encountered when selecting materials, thermal-mechanical treatments, welding procedures, etc., but cannot predict the fracture process of structural components containing cracks. The Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology have been collaborating for a number of years on developing capabilities for using fracture toughness results to predict structural integrity. Because of the high cost of fabricating and testing structural components, these studies have been limited to predicting the fracture process in specimens containing surface cracks. This paper summarizes the present status of the experimental studies of using fracture toughness data to predict crack growth initiation in specimens (structural components) containing surface cracks. These results are limited to homogeneous base materials.

  7. Community Staying Power: A Small Rural Place and Its Role in Rural Development. Research Publication No. 171.

    ERIC Educational Resources Information Center

    Douglas, Louis H.; Shelley, Scott

    Dunlap, Kansas, identified as a stereotypical dying small town in a 1962 study, was restudied in 1974-75 in an effort to test the dying small town hypothesis (supported only by aggregate census data and casual observation rather than by specific studies). Researchers using unobtrusive observation of Dunlap and seven nearby unincorporated villages,…

  8. Evidence of Community Structure in Biomedical Research Grant Collaborations

    PubMed Central

    Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R

    2014-01-01

    Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the Modularity Index and the Maximum Partition Density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate

  9. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  10. Is there much variation in variation? Revisiting statistics of small area variation in health services research

    PubMed Central

    Ibáñez, Berta; Librero, Julián; Bernal-Delgado, Enrique; Peiró, Salvador; López-Valcarcel, Beatriz González; Martínez, Natalia; Aizpuru, Felipe

    2009-01-01

    Background The importance of Small Area Variation Analysis for policy-making contrasts with the scarcity of work on the validity of the statistics used in these studies. Our study aims at 1) determining whether variation in utilization rates between health areas is higher than would be expected by chance, 2) estimating the statistical power of the variation statistics; and 3) evaluating the ability of different statistics to compare the variability among different procedures regardless of their rates. Methods Parametric bootstrap techniques were used to derive the empirical distribution for each statistic under the hypothesis of homogeneity across areas. Non-parametric procedures were used to analyze the empirical distribution for the observed statistics and compare the results in six situations (low/medium/high utilization rates and low/high variability). A small scale simulation study was conducted to assess the capacity of each statistic to discriminate between different scenarios with different degrees of variation. Results Bootstrap techniques proved to be good at quantifying the difference between the null hypothesis and the variation observed in each situation, and to construct reliable tests and confidence intervals for each of the variation statistics analyzed. Although the good performance of Systematic Component of Variation (SCV), Empirical Bayes (EB) statistic shows better behaviour under the null hypothesis, it is able to detect variability if present, it is not influenced by the procedure rate and it is best able to discriminate between different degrees of heterogeneity. Conclusion The EB statistics seems to be a good alternative to more conventional statistics used in small-area variation analysis in health service research because of its robustness. PMID:19341469

  11. Rheo-small-angle neutron scattering at the National Institute of Standards and Technology Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Porcar, L.; Pozzo, D.; Langenbucher, G.; Moyer, J.; Butler, P. D.

    2011-08-01

    We describe the design and operation of a modified commercial rheometer to simultaneously perform rheological measurements and structural studies by small angle neutron scattering (SANS). The apparatus uses a Couette geometry shear cell allowing two of the three scattering planes to be observed by performing experiments in either the radial or tangential geometries. The device enables small angle neutron scattering patterns to be obtained simultaneously with a wide variety of rheological measurements such as stress/strain flow curves, oscillatory deformations, and creep, recovery and relaxation tests, from -20 °C to 150 °C, for samples with viscosities varying by several orders of magnitude. We give a brief report of recent experiments performed on a dispersion of acicular nanoparticles and biopolymer network under stress demonstrating the utility of such measurements. This device has been developed at the National Institute of Standards and Technology's Center for Neutron Research (NCNR) and made available to the complex fluids community as part of the standard sample environment equipment.

  12. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  13. Rainfall simulation experiments with a small portable rainfall simulator: research on runoff generation and soil erosion

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Peter, Klaus Daniel; Fister, Wolfgang; Wirtz, Stefan; Butzen, Verena; Brings, Christine; Marzen, Miriam; Casper, Markus C.; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    The results of more than 500 rainfall simulations with a small portable rainfall simulator at various locations in West and North Africa and South and Central Europe will be presented. The analysis of this comprehensive database offers results concerning different research objectives: - erodibility of local soils regarding different vegetation cover, stone cover and land uses - runoff generation in gully catchments - process oriented experiments on the influence of sealing and crusting - trail erosion caused by goat- or sheep-trampling - recent erosion on geomorphological forms Runoff coefficients range from 0 to 100 % and eroded material from 0 to 500 g m^-2 during 30 min experiments with a rainfall intensity of 40 mm h^-1.

  14. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    NASA Astrophysics Data System (ADS)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  15. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  16. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    SciTech Connect

    Jermoumi, M; Ngwa, W; Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R

    2014-06-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.

  17. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  18. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  19. Engine structures: A bibliography of Lewis Research Center's research for 1980-1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Structures Division of the NASA Lewis Research Center from 1980 through 1987. All the publications were announced in the l980 to 1987 issues of STAR (Scientific and Technical Aerospace Reports) and or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  20. Whither Ribosome Structure and Dynamics Research? (A Perspective).

    PubMed

    Frank, Joachim

    2016-09-11

    As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems. PMID:27178840

  1. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  2. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  3. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering.

    PubMed

    Nagy, Gergely; Kovács, László; Ünnep, Renáta; Zsiros, Ottó; Almásy, László; Rosta, László; Timmins, Peter; Peters, Judith; Posselt, Dorthe; Garab, Győző

    2013-07-01

    We demonstrate the power of time-resolved small-angle neutron scattering experiments for the investigation of the structure and structural reorganizations of multilamellar photosynthetic membranes. In addition to briefly summarizing our results on thylakoid membranes isolated from higher plants and in unicellular organisms, we discuss the advantages and technical and methodological limitations of time-resolved SANS. We present a detailed and more systematical investigation of the kinetics of light-induced structural reorganizations in isolated spinach thylakoid membranes, which show how changes in the repeat distance and in the long-range order of the multilamellar membranes can be followed with a time resolution of seconds. We also present data from comparative measurements performed on thylakoid membranes isolated from tobacco. PMID:23839900

  4. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn(N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed.

  5. Radio Brightness Temperatures and Angular Dimensions of Recently Predicted Vl-Bi Small-Scale Structures

    NASA Astrophysics Data System (ADS)

    Opher, R.

    1990-11-01

    RESUMEN. Muestro que analisis recientes publicados de fuentes de radio galacticas y extragalacticas predicen estructuras en pequera escala en fuentes de radio extendidas, remanentes de supernova, vientos protoestelares, nubes moleculares, distorsiones del fondo de 3 K, enanas blancas magnetizadas, estrellas de tipo tardio y el Sol. Discuto las temperatu- ras de brillo de radio de estas estructuras y sus ditnensiones. Muestro que estas estructuras son detectables con las sensibilidades actuales de VLBI (o en el futuro cercano). ABSTRACT. I show that recently published analysis of galactic and extragalactic radio sources make predictions of small-scale structures in extended radio sources, supernovae remnants, protostellar winds, molecu- lar clouds, distortions of the 3 K background, magnetized white dwarf binaries, late-type stars and the sun. I discuss the radio brightness temperatures of these structures and their dimensions. I show that these structures are detectable with present (or near future) VLBI sensitivities. : RADIO SOURCES-EXTENDED

  6. Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules.

    PubMed

    Brémond, Éric; Savarese, Marika; Su, Neil Qiang; Pérez-Jiménez, Ángel José; Xu, Xin; Sancho-García, Juan Carlos; Adamo, Carlo

    2016-02-01

    In this Letter we report the error analysis of 59 exchange-correlation functionals in evaluating the structural parameters of small- and medium-sized organic molecules. From this analysis, recently developed double hybrids, such as xDH-PBE0, emerge as the most reliable methods, while global hybrids confirm their robustness in reproducing molecular structures. Notably the M06-L density functional is the only semilocal method reaching an accuracy comparable to hybrids'. A comparison with errors obtained on energetic databases (including thermochemistry, reaction barriers, and interaction energies) indicate that most of the functionals have a coherent behavior, showing low (or high) deviations on both energy and structure data sets. Only a few of them are more prone toward one of these two properties. PMID:26730741

  7. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    SciTech Connect

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  8. Research and Development for Ultra-High Gradient Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Dolgashev, Valery; Higashi, Yasuo; Spataro, Bruno

    2010-11-01

    Research on the basic physics of high-gradient, high frequency accelerator structures and the associated RF/microwave technology are essential for the future of discovery science, medicine and biology, energy and environment, and national security. We will review the state-of-the-art for the development of high gradient linear accelerators. We will present the research activities aimed at exploring the basic physics phenomenon of RF breakdown. We present the experimental results of a true systematic study in which the surface processing, geometry, and materials of the structures have been varied, one parameter at a time. The breakdown rate or alternatively, the probability of breakdown/pulse/meter has been recorded for different operating parameters. These statistical data reveal a strong dependence of breakdown probability on surface magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view of electric field dependence.

  9. Health Disparities Research Among Small Tribal Populations: Describing Appropriate Criteria for Aggregating Tribal Health Data.

    PubMed

    Van Dyke, Emily R; Blacksher, Erika; Echo-Hawk, Abigail L; Bassett, Deborah; Harris, Raymond M; Buchwald, Dedra S

    2016-07-01

    In response to community concerns, we used the Tribal Participatory Research framework in collaboration with 5 American-Indian communities in Washington, Idaho, and Montana to identify the appropriate criteria for aggregating health data on small tribes. Across tribal sites, 10 key informant interviews and 10 focus groups (n = 39) were conducted between July 2012 and April 2013. Using thematic analysis of focus group content, we identified 5 guiding criteria for aggregating tribal health data: geographic proximity, community type, environmental exposures, access to resources and services, and economic development. Preliminary findings were presented to focus group participants for validation at each site, and a culminating workshop with representatives from all 5 tribes verified our final results. Using this approach requires critical assessment of research questions and study designs by investigators and tribal leaders to determine when aggregation or stratification is appropriate and how to group data to yield robust results relevant to local concerns. At project inception, tribal leaders should be consulted regarding the validity of proposed groupings. After regular project updates, they should be consulted again to confirm that findings are appropriately contextualized for dissemination. PMID:27268030

  10. MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP).

    PubMed

    Ngwa, Wilfred; Korideck, Houari; Chin, Lee M; Makrigiorgos, G Mike; Berbeco, Ross I

    2011-12-01

    The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice. Surgically implanted metal oxide semiconductor field effect transistors (MOSFET) dosimeters were employed for the dose assessment. The results reveal differences between the calculated and measured dose of -3.5 to 0.5%, -5.2 to -0.7%, -3.9 to 0.5%, -5.9 to 2.5%, -5.5 to 0.5%, and -4.3 to 0% for the left kidney, liver, pancreas, prostate, left lung, and brain, respectively. Overall, the findings show less than 6% difference between the delivered and calculated dose, without tissue heterogeneity corrections. These results provide a useful assessment of the need for tissue heterogeneity corrections in SARRP dose calculations for clinically relevant tumor model sites. PMID:21962005

  11. Diverse Metastable Structures Formed by Small Oligomers of α-Synuclein Probed by Force Spectroscopy

    PubMed Central

    Sosova, Iveta; Belov, Miro; Woodside, Michael T.

    2014-01-01

    Oligomeric aggregates are widely suspected as toxic agents in diseases caused by protein aggregation, yet they remain poorly characterized, partly because they are challenging to isolate from a heterogeneous mixture of species. We developed an assay for characterizing structure, stability, and kinetics of individual oligomers at high resolution and sensitivity using single-molecule force spectroscopy, and applied it to observe the formation of transient structured aggregates within single oligomers of α-synuclein, an intrinsically-disordered protein linked to Parkinson’s disease. Measurements of the molecular extension as the proteins unfolded under tension in optical tweezers revealed that even small oligomers could form numerous metastable structures, with a surprisingly broad range of sizes. Comparing the structures formed in monomers, dimers and tetramers, we found that the average mechanical stability increased with oligomer size. Most structures formed within a minute, with size-dependent rates. These results provide a new window onto the complex α-synuclein aggregation landscape, characterizing the microscopic structural heterogeneity and kinetics of different pathways. PMID:24475132

  12. Small-scale spatial structuring of interstitial invertebrates on three embayed beaches, Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Cooke, Belinda C.; Goodwin, Ian D.; Bishop, Melanie J.

    2014-10-01

    An understanding of ecological processes hinges upon an understanding of the spatial structuring of their key biotic components. Interstitial invertebrates are a ubiquitous and ecologically important component of sandy beach ecosystems. As many sandy beach taxa have limited dispersal, it may be expected that their populations exhibit a high degree of spatial structuring, yet the spatial scales across which they display baseline variability remain largely unknown. To assess (1) whether interstitial invertebrates display patchiness on embayed sandy beaches, (2) whether the size of patches they form is consistent across three geographically proximal beaches, (3) the key environmental correlates of this variation and (4) its taxonomic dependence, samples were collected at regular (0.5 m) intervals along 15 m long geomorphically similar stretches of three proximal intermediate beaches and analyses of spatial autocorrelation were conducted. On each of the three beaches, interstitial invertebrate communities formed patches of 2-4.5 m in diameter. Spatial structuring of invertebrate communities was driven by harpacticoid copepods and gastrotrichs, and corresponded to spatial structuring of sediments. Sediments, however, explained only 33% of spatial variation in faunal communities, indicating the importance of other abiotic and/or biotic factors. Our study highlights that even on seemingly homogeneous sandy beaches, faunal communities may display considerable small-scale spatial structuring. Examination of spatial structure may lead to a greater understanding of the ecological processes in this system.

  13. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  14. Impact of size, secondary structure, and counterions on the binding of small ribonucleic acids to layered double hydroxide nanoparticles.

    PubMed

    Rodriguez, Blanca V; Pescador, Jorge; Pollok, Nicole; Beall, Gary W; Maeder, Corina; Lewis, L Kevin

    2015-01-01

    Use of ribonucleic acid (RNA) interference to regulate protein expression has become an important research topic and gene therapy tool, and therefore, finding suitable vehicles for delivery of small RNAs into cells is of crucial importance. Layered double metal hydroxides such as hydrotalcite (HT) have shown great promise as nonviral vectors for transport of deoxyribose nucleic acid (DNA), proteins, and drugs into cells, but the adsorption of RNAs to these materials has been little explored. In this study, the binding of small RNAs with different lengths and levels of secondary structure to HT nanoparticles has been analyzed and compared to results obtained with small DNAs in concurrent experiments. Initial experiments established the spectrophotometric properties of HT in aqueous solutions and determined that HT particles could be readily sedimented with near 100% efficiencies. Use of RNA+HT cosedimentation experiments as well as electrophoretic mobility shift assays demonstrated strong adsorption of RNA 25mers to HT, with twofold greater binding of single-stranded RNAs relative to double-stranded molecules. Strong affinities were also observed with ssRNA and dsRNA 54mers and with more complex transfer RNA molecules. Competition binding and RNA displacement experiments indicated that RNA-HT associations were strong and were only modestly affected by the presence of high concentrations of inorganic anions. PMID:26620852

  15. Using Service-Learning Projects to Jump Start Research at Small Institutions

    NASA Astrophysics Data System (ADS)

    Ongley, L. K.; Spigel, K.; Olin, J.

    2010-12-01

    Geoscientists at small institutions must frequently be very creative about funding and conducting research. High teaching loads, tuition-driven budgets, and a dearth of geosciences colleagues all contribute challenges to an intellectual life that includes research as a scholarship endeavor. Fortunately, service-learning can be used as a multi-purpose pedagogical technique. Unity College is a very small environmentally-focused undergraduate institution in rural Maine with a student population of less than 600 students. Our students really appreciate learning in the field and through participation in projects that impact the communities in which they live and study. Our Environmental Science (geosciences) and Environmental Analysis (chemistry) majors have been showing increasing interest in pursuing graduate school and independent projects in greater and greater depth. In the past 5 years we have had a complete turn-over in geoscience and chemistry faculty (2 persons), a shift that has brought new ideas to campus and a different idea about importance of research. Unity College has always been a big proponent of community-based projects so the extension to service learning as a pedagogical technique has been smooth. A wide variety of towns, schools, land trusts, pond associations and other groups approach Unity College with project ideas. We are best equipped to handle suggestions that relate to environmental chemistry and to lake sedimentation owing to the research interests of our geoscience faculty. We present two examples of ways to sequence student work that ultimately end in student/faculty research projects. Sophomores in the Unity College Environmental Stewardship Core curriculum may choose to take a course that introduces lake sedimentation as a tool to study environmental change. Students in the course take several sediment cores to analyze proxies of environmental change to reconstruct past environments. The final results are reported to the community

  16. Biosimilar structural comparability assessment by NMR: from small proteins to monoclonal antibodies.

    PubMed

    Japelj, Boštjan; Ilc, Gregor; Marušič, Jaka; Senčar, Jure; Kuzman, Drago; Plavec, Janez

    2016-01-01

    Biosimilar drug products must have a demonstrated similarity with respect to the reference product's molecules in order to ensure both the effectiveness of the drug and the patients' safety. In this paper the fusion framework of a highly sensitive NMR fingerprinting approach for conformational changes and mathematically-based biosimilarity metrics is introduced. The final goal is to translate the complex spectral information into biosimilarity scores, which are then used to estimate the degree of similarity between the biosimilar and the reference product. The proposed method was successfully applied to a small protein, i.e., filgrastim (neutropenia treatment), which is the first biosimilar approved in the United States, and a relatively large protein, i.e., monoclonal antibody rituximab (lymphoma treatment). This innovative approach introduces a new level of sensitivity to structural changes that are induced by, e.g., a small pH shift or other changes in the protein formulation. PMID:27578487

  17. Biosimilar structural comparability assessment by NMR: from small proteins to monoclonal antibodies

    PubMed Central

    Japelj, Boštjan; Ilc, Gregor; Marušič, Jaka; Senčar, Jure; Kuzman, Drago; Plavec, Janez

    2016-01-01

    Biosimilar drug products must have a demonstrated similarity with respect to the reference product’s molecules in order to ensure both the effectiveness of the drug and the patients’ safety. In this paper the fusion framework of a highly sensitive NMR fingerprinting approach for conformational changes and mathematically-based biosimilarity metrics is introduced. The final goal is to translate the complex spectral information into biosimilarity scores, which are then used to estimate the degree of similarity between the biosimilar and the reference product. The proposed method was successfully applied to a small protein, i.e., filgrastim (neutropenia treatment), which is the first biosimilar approved in the United States, and a relatively large protein, i.e., monoclonal antibody rituximab (lymphoma treatment). This innovative approach introduces a new level of sensitivity to structural changes that are induced by, e.g., a small pH shift or other changes in the protein formulation. PMID:27578487

  18. Structure based approaches for targeting non-coding RNAs with small molecules

    PubMed Central

    Shortridge, Matthew D.; Varani, Gabriele

    2015-01-01

    The increasing appreciation of the central role of non-coding RNAs (miRNAs and long non coding RNAs) in chronic and degenerative human disease makes them attractive therapeutic targets. This would not be unprecedented: the bacterial ribosomal RNA is a mainstay for antibacterial treatment, while the conservation and functional importance of viral RNA regulatory elements has long suggested they would constitute attractive targets for new antivirals. Oligonucleotide-based chemistry has obvious appeals but also considerable pharmacological limitations that are yet to be addressed satisfactorily. Recent studies identifying small molecules targeting non-coding RNAs may provide an alternative approach to oligonucleotide methods. Here we review recent work investigating new structural and chemical principles for targeting RNA with small molecules. PMID:25687935

  19. Augmented active surface model for the recovery of small structures in CT.

    PubMed

    Bradshaw, Andrew Philip; Taubman, David S; Todd, Michael J; Magnussen, John S; Halmagyi, G Michael

    2013-11-01

    This paper devises an augmented active surface model for the recovery of small structures in a low resolution and high noise setting, where the role of regularization is especially important. The emphasis here is on evaluating performance using real clinical computed tomography (CT) data with comparisons made to an objective ground truth acquired using micro-CT. In this paper, we show that the application of conventional active contour methods to small objects leads to non-optimal results because of the inherent properties of the energy terms and their interactions with one another. We show that the blind use of a gradient magnitude based energy performs poorly at these object scales and that the point spread function (PSF) is a critical factor that needs to be accounted for. We propose a new model that augments the external energy with prior knowledge by incorporating the PSF and the assumption of reasonably constant underlying CT numbers. PMID:24048014

  20. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    PubMed Central

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  1. Research on small signal detection of optical voltage/current transformer

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Guoqing; Cai, Xingguo; Guo, Zhizhong; Yu, Wenbin; Huo, Guangyu

    2013-08-01

    This paper researches the signal conditioning program of optical voltage/current transformer and the imbalance during the transmission of dual optical path, gives a brief introduction to the basic principle of optical voltage transformer based on electro-optic Pockels effect and optical current transformer based on Faraday Magnetic-optical Effect, and induces a general expression form of output light intensities This paper research on the signal modulation methods for the system: AC and DC modulations. What is more, the advantages and disadvantages of both modulations in the system will be analyzed. Considering the characteristics that the systematic noise and signal have the spectrum overlapping and that when there is any fault, the fact that in the small signal detection system the output SNR of AC modulation is better than that of DC modulation will be proved. For the parameter changes caused by the environment factors, the feedback control linked by the DSP is imported, it automatically adjusts the balance of the two branch parameters, acquires the measured component in the condition of the two branch unbalance parameters. Furthermore, this paper researches on the influence of imbalance of the dual optical path on the signal detection system. It analyzes the error characteristics due to different kinds of losses and to component matching disorders and other intrinsic factors and then put forward the method to calculate balancing factors by means of the RMS of 50Hz signal. The result proves that using this method can improve the output SNR of optical voltage/current transformer to some extent.

  2. A programing system for research and applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.

    1981-01-01

    The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.

  3. SM-TF: A structural database of small molecule-transcription factor complexes.

    PubMed

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc. PMID:27010673

  4. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  5. Self-monitoring surveillance system for prestressing tendons. Phase I small business innovation research

    SciTech Connect

    Tabatabai, H.

    1995-12-01

    Assured safety and operational reliability of post-tensioned concrete components of nuclear power plants are of great significance to the public, electric utilities, and regulatory agencies. Prestressing tendons provide principal reinforcement for containment and other structures. In this phase of the research effort, the feasibility of developing a passive surveillance system for identification of ruptures in tendon wires was evaluated and verified. The concept offers high potential for greatly increasing effectiveness of presently-utilized periodic tendon condition surveillance programs. A one-tenth scale ring model of the Palo Verde nuclear containment structure was built inside the Structural Laboratory. Dynamic scaling (similitude) relationships were used to relate measured sensor responses recorded during controlled wire breakages to the expected prototype containment tendon response. Strong and recognizable signatures were detected by the accelerometers used. It was concluded that the unbonded prestressing tendons provide an excellent path for transmission of stress waves resulting from wire breaks. Accelerometers placed directly on the bearing plates at the ends of tendons recorded high-intensity waveforms. Accelerometers placed elsewhere on concrete surfaces of the containment model revealed substantial attenuation and reduced intensities of captured waveforms. Locations of wire breaks could be determined accurately through measurement of differences in arrival times of the signal at the sensors. Pattern recognition systems to be utilized in conjunction with the proposed concept will provide a basis for an integrated and automated tool for identification of wire breaks.

  6. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    PubMed Central

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-01-01

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and

  7. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    SciTech Connect

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J.

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  8. THE OPACITY OF THE INTERGALACTIC MEDIUM DURING REIONIZATION: RESOLVING SMALL-SCALE STRUCTURE

    SciTech Connect

    Emberson, J. D.; Thomas, Rajat M.; Alvarez, Marcelo A.

    2013-02-15

    Early in the reionization process, the intergalactic medium (IGM) would have been quite inhomogeneous on small scales, due to the low Jeans mass in the neutral IGM and the hierarchical growth of structure in a cold dark matter universe. This small-scale structure acted as an important sink during the epoch of reionization, impeding the progress of the ionization fronts that swept out from the first sources of ionizing radiation. Here we present results of high-resolution cosmological hydrodynamics simulations that resolve the cosmological Jeans mass of the neutral IGM in representative volumes several Mpc across. The adiabatic hydrodynamics we follow are appropriate in an unheated IGM, before the gas has had a chance to respond to the photoionization heating. Our focus is determination of the resolution required in cosmological simulations in order to sufficiently sample and resolve small-scale structure regulating the opacity of an unheated IGM. We find that a dark matter particle mass of m {sub dm} {approx}< 50 M {sub Sun} and box size of L {approx}> 1 Mpc are required. With our converged results we show how the mean free path of ionizing radiation and clumping factor of ionized hydrogen depend on the ultraviolet background flux and redshift. We find, for example at z = 10, clumping factors typically of 10-20 for an ionization rate of {Gamma} {approx} (0.3-3) Multiplication-Sign 10{sup -12} s{sup -1}, with corresponding mean free paths of {approx}3-15 Mpc, extending previous work on the evolving mean free path to considerably smaller scales and earlier times.

  9. Near-Field Sound Localization Based on the Small Profile Monaural Structure.

    PubMed

    Kim, Youngwoong; Kim, Keonwook

    2015-01-01

    The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA) are derived by the designed model. From an azimuthal distance of 3-15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body. PMID:26580618

  10. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    PubMed Central

    Kim, Youngwoong; Kim, Keonwook

    2015-01-01

    The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA) are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body. PMID:26580618

  11. Research and Development of a Small-Scale Adsorption Cooling System

    NASA Astrophysics Data System (ADS)

    Gupta, Yeshpal

    The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for the lack of small-scale systems such as low Coefficient of Performance (COP), high capital cost, scalability, and limited performance data. A numerical model to simulate an adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70--120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation

  12. Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering.

    PubMed

    Milner, Emily M; Skipper, Neal T; Howard, Christopher A; Shaffer, Milo S P; Buckley, David J; Rahnejat, K Adam; Cullen, Patrick L; Heenan, Richard K; Lindner, Peter; Schweins, Ralf

    2012-05-23

    Solutions of negatively charged graphene (graphenide) platelets were produced by intercalation of nanographite with liquid potassium-ammonia followed by dissolution in tetrahydrofuran. The structure and morphology of these solutions were then investigated by small-angle neutron scattering. We found that >95 vol % of the solute is present as single-layer graphene sheets. These charged sheets are flat over a length scale of >150 Å in solution and are strongly solvated by a shell of solvent molecules. Atomic force microscopy on drop-coated thin films corroborated the presence of monolayer graphene sheets. Our dissolution method thus offers a significant increase in the monodispersity achievable in graphene solutions. PMID:22574888

  13. The behavior of the heavy quarks structure functions at small-x

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Rezaei, B.

    2015-08-01

    The behavior of the charm and bottom structure functions (Fki(x, Q2), where i = c, and b; k = 2, and L) at small-x is considered with respect to the hard-Pomeron and saturation models. Having checked that this behavior predicate the heavy flavor reduced cross-sections concerning the unshadowed and shadowed corrections. We will show that the effective exponents for the unshadowed and saturation corrections are independent of x and Q2, and also the effective coefficients are dependent to ln Q2 compared to Donnachie-Landshoff (DL) and color dipole models (CDMs).

  14. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  15. Small angle X-ray scattering data and structure factor fitting for the study of the quaternary structure of the spermidine N-acetyltransferase SpeG

    PubMed Central

    Weigand, Steven; Filippova, Ekaterina V.; Kiryukhina, Olga; Anderson, Wayne F.

    2015-01-01

    Here we describe the treatment of the small-angle X-ray Scattering (SAXS) data used during SpeG quaternary structure study as part of the research article “Substrate induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG” published in Journal of Molecular Biology [1]. These data were collected on two separate area detectors as separate dilution series of the SpeG and the SpeG with spermine samples along with data from their companion buffers. The data were radially integrated, corrected for incident beam variation, and scaled to absolute units. After subtraction of volume-fraction scaled buffer scattering and division by the SpeG concentration, multiple scattering curves free of an inter-molecular structure factor were derived from the dilution series. Rather than extrapolating to infinite dilution, the structure factor contribution was estimated by fitting to the full set of data provided by dividing the scattering curves of a dilution series by the curve from the most dilute sample in that series. PMID:26793756

  16. Small angle X-ray scattering data and structure factor fitting for the study of the quaternary structure of the spermidine N-acetyltransferase SpeG.

    PubMed

    Weigand, Steven; Filippova, Ekaterina V; Kiryukhina, Olga; Anderson, Wayne F

    2016-03-01

    Here we describe the treatment of the small-angle X-ray Scattering (SAXS) data used during SpeG quaternary structure study as part of the research article "Substrate induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG" published in Journal of Molecular Biology [1]. These data were collected on two separate area detectors as separate dilution series of the SpeG and the SpeG with spermine samples along with data from their companion buffers. The data were radially integrated, corrected for incident beam variation, and scaled to absolute units. After subtraction of volume-fraction scaled buffer scattering and division by the SpeG concentration, multiple scattering curves free of an inter-molecular structure factor were derived from the dilution series. Rather than extrapolating to infinite dilution, the structure factor contribution was estimated by fitting to the full set of data provided by dividing the scattering curves of a dilution series by the curve from the most dilute sample in that series. PMID:26793756

  17. Research for Improved Health: Variability and Impact of Structural Characteristics in Federally Funded Community Engaged Research

    PubMed Central

    Pearson, Cythina R.; Duran, Bonnie; Oetzel, John; Margarati, Maya; Villegas, Malia; Lucero, Julie; Wallerstein, Nina

    2016-01-01

    Background Although there is strong scientific, policy, and community support for community-engaged research (CEnR)—including community-based participatory research (CBPR)—the science of CEnR is still developing. Objective To describe structural differences in federally funded CEnR projects by type of research (i.e., descriptive, intervention, or dissemination/policy change) and race/ethnicity of the population served. Methods We identified 333 federally funded projects in 2009 that potentially involved CEnR, 294 principal investigators/project directors (PI/PD) were eligible to participate in a key informant (KI) survey from late 2011 to early 2012 that asked about partnership structure (68% response rate). Results The National Institute on Minority Health & Health Disparities (19.1%), National Cancer Institute (NCI; 13.3%), and the Centers for Disease Control and Prevention (CDC; 12.6%) funded the most CEnR projects. Most were intervention projects (66.0%). Projects serving American Indian or Alaskan Native (AIAN) populations (compared with other community of color or multiple-race/unspecified) were likely to be descriptive projects (p < .01), receive less funding (p < .05), and have higher rates of written partnership agreements (p < .05), research integrity training (p < .05), approval of publications (p < .01), and data ownership (p < .01). AIAN-serving projects also reported similar rates of research productivity and greater levels of resource sharing compared with those serving multiple-race/unspecified groups. Conclusions There is clear variability in the structure of CEnR projects with future research needed to determine the impact of this variability on partnering processes and outcomes. In addition, projects in AIAN communities receive lower levels of funding yet still have comparable research productivity to those projects in other racial/ethnic communities. PMID:25981421

  18. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars.

    PubMed

    Fernandez-Castanon, J; Bomboi, F; Rovigatti, L; Zanatta, M; Paciaroni, A; Comez, L; Porcar, L; Jafta, C J; Fadda, G C; Bellini, T; Sciortino, F

    2016-08-28

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation. PMID:27586949

  19. Small-scale structure and turbulence observed in MAP/WINE)

    NASA Technical Reports Server (NTRS)

    Blix, T. A.

    1989-01-01

    During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.

  20. Structure and orientation of small particles of platinum deposited on NaCl and mica

    NASA Technical Reports Server (NTRS)

    Renou, A.; Gillet, M.

    1979-01-01

    The structure of small platinum particles condensed in vacuum onto NaCl (001), NaCl (111) and mica substrates was studied by electron diffraction and electron microscopy. Results show that above a certain substrate temperature decahedral or icosahedral particles are formed. These particles are practically absent with substrates cleaved in high vacuum. They are always much less numerous than in gold films prepared under the same conditions. Assumptions made to explain this phenomenon are: (1) the initial growth of an abnormal structure of the nuclei as opposed by the substrate; (2) the particles disappear before they attain a size which corresponds to the observations; and (3) the particles result from a coalescence mechanism leading to multiple twinned particles.

  1. Landscape structure in a managed forest mosaic of the Southern Appalachian Mountains and its influence on songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Leimgruber, Peter

    Forests in the Appalachian Mountains have been severely affected by logging in the past and little old-growth is left. The remaining forests form a heterogeneous mosaic of different forest successions. A concern for conservation is how additional logging will alter the mosaic and its fauna. I studied the effects of logging on the landscape mosaic and how changes in the landscape structure influence small mammals and birds in the George Washington National Forest, Virginia. My dissertation also included research on how to improve techniques for landscape ecological studies, such as roadside monitoring of birds and mapping of forest resources using remote sensing and Geographic Information Systems (GIS). Because of the scale dependency of landscape-ecological relationships, I investigated how landscape structure in the forest mosaic changes with increasing scales. I determined threshold scales at which structure changed markedly. After establishing a baseline, I examined how logging affected the intensity and location of such thresholds. I found thresholds in landscape structure exist at 400-, 500-, and 800-m intervals from the outer edge of the cut. While logging did not change threshold location and intensity for global landscape indices, such as dominance and contagion, thresholds for focal indices, such as mean patch size and percent cover for early-successional forest, changed markedly. Using GIS, I determined how logging affected small mammals and birds at the landscape scale. I divided the landscape into three zones (zone 1, inside logged areas; zone 2, 20--400 m from logged areas; zone 3, 1000--1500 m from logged areas). Logging changed species presence and richness more drastically in close proximity of cuts than on the landscape and influenced birds more strongly than mammals. In the cuts, edge-adapted birds, such as the indigo bunting (Passerina cyanea), replaced forest interior species, such as the Acadian flycatcher (Empidonax virescens). Most

  2. Future Secretariat: an innovation research coordination and governance structure

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Johan, R.; Cramer, W.; Fukushi, K.; Allard, S.

    2014-12-01

    Future Earth, an emerging global sustainability research program, will be managed by a novel, internationally distributed secretariat spanning the globe and providing a platform for co-design, co-production, and co-delivery of knowledge to support research on the earth system, global development and transformation toward sustainability. The Future Earth secretariat has an innovative structure consisting of five global hubs functioning as a single entity; these hubs are located in Canada, Japan, France, Sweden, and the United States. The secretariat's reach is extended through a set of regional hubs covering Latin America, the Middle East, Africa, Europe, and Asia, with the potential to expand to additional areas. This secretariat will operate under the auspices of the Future Earth Governing Council The Future Earth Secretariat will support and enable the implementation of knowledge-sharing between research and stakeholder communities to enable society to cope with and to alter global environmental trends, and to transition society toward sustainability. The secretariat will provide coordination support to over 25 global environmental core projects and committees; coordinate scientific work across the whole Future Earth agenda; develop and implement innovative mechanisms for bottom-up inputs, synthesis and integration. Future Earth, as a research program, aims to support global transformations toward sustainability through partnerships among scientific and stakeholder communities worldwide. It brings together existing international environmental research core projects associated with DIVERSITAS, the International Geosphere-Biosphere Programme, the International Human Dimensions Programme, and the World Climate Research Programme—to support coordinated, interdisciplinary research that can be used by decision makers seeking to reduce their impact and provide more sustainable products and services. USGCRP partners with Future Earth through scientific participation in

  3. Can Smoothing Help When Equating with Unrepresentative Small Samples? Research Report. ETS RR-11-09

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2011-01-01

    The study evaluated the effectiveness of log-linear presmoothing (Holland & Thayer, 1987) on the accuracy of small sample chained equipercentile equatings under two conditions (i.e., using small samples that differed randomly in ability from the target population "versus" using small samples that were distinctly different from the target…

  4. A miniature research vessel: A small-scale ocean-exploration demonstration of geophysical methods

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Boston, B.; Sleeper, J. D.; Cameron, M. E.; Togia, H.; Anderson, A.; Sigurdardottir, T. D.; Tree, J. P.

    2015-12-01

    Graduate student members of the University of Hawaii Geophysical Society have designed a small-scale model research vessel (R/V) that uses sonar to create 3D maps of a model seafloor in real-time. A pilot project was presented to the public at the School of Ocean and Earth Science and Technology's (SOEST) Biennial Open House weekend in 2013 and, with financial support from the Society of Exploration Geophysicists and National Science Foundation, was developed into a full exhibit for the same event in 2015. Nearly 8,000 people attended the two-day event, including children and teachers from Hawaii's schools, home school students, community groups, families, and science enthusiasts. Our exhibit demonstrates real-time sonar mapping of a cardboard volcano using a toy size research vessel on a programmable 2-dimensional model ship track suspended above a model seafloor. Ship waypoints were wirelessly sent from a Windows Surface tablet to a large-touchscreen PC that controlled the exhibit. Sound wave travel times were recorded using an ultrasonic emitter/receiver attached to an Arduino microcontroller platform and streamed through a USB connection to the control PC running MatLab, where a 3D model was updated as the ship collected data. Our exhibit demonstrates the practical use of complicated concepts, like wave physics, survey design, and data processing in a way that the youngest elementary students are able to understand. It provides an accessible avenue to learn about sonar mapping, and could easily be adapted to talk about bat and marine mammal echolocation by replacing the model ship and volcano. The exhibit received an overwhelmingly positive response from attendees and incited discussions that covered a broad range of earth science topics.

  5. Recent Research Trends on the Enzymatic Synthesis of Structured Lipids.

    PubMed

    Kim, Byung Hee; Akoh, Casimir C

    2015-08-01

    Structured lipids (SLs) are lipids that have been chemically or enzymatically modified from their natural biosynthetic form. Because SLs are made to possess desired nutritional, physicochemical, or textural properties for various applications in the food industry, many research activities have been aimed at their commercialization. The production of SLs by enzymatic procedures has a great potential in the future market because of the specificity of lipases and phospholipases used as the biocatalysts. The aim of this review is to provide concise information on the recent research trends on the enzymatic synthesis of SLs of commercial interest, such as medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free or low-trans plastic fats (such as margarines and shortenings), low-calorie fats/oils, health-beneficial fatty acid-rich fats/oils, mono- or diacylglycerols, and structurally modified phospholipids. This limited review covers 108 research articles published between 2010 and 2014 which were searched in Web of Science. PMID:26189491

  6. Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Wagner, M. F.-X.

    2016-06-01

    Most investigations on NiTi-based shape memory alloys involve large-scale bulk material; knowledge about the martensitic transformation in small-scale NiTi structures is still limited. In this paper, we study the microstructures of thin NiTi layers and their mechanical properties, and we discuss typical challenges that arise when experiments are performed on small samples. A physical vapor deposition (PVD) process was used to deposit thin NiTi wires with a cross section of 15 × 15 μm2 and dogbone-shaped samples 5 × 500 μm2. Microstructural properties were characterized by X-ray diffraction, electron backscatter diffraction, and scanning electron microscopy. Moreover, tensile tests were performed using optical strain measurements in order to observe martensite band formation during cyclic loading. The surfaces of the crystalline wires reflect the columnar growth of NiTi during deposition. The wires exhibit pseudoelastic material behavior during tensile testing. Fracture typically occurs along the columns because the column growth direction is perpendicular to the straining direction. Electropolishing removes these local stress raisers and hence increases fracture strains. Our results demonstrate that the pseudoelastic properties of the PVD-processed materials agree well with those of conventional NiTi, and that they provide new opportunities to study the fundamentals of martensitic transformation in small-scale model systems.

  7. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.

    PubMed

    Montini-Ballarin, Florencia; Calvo, Daniel; Caracciolo, Pablo C; Rojo, Francisco; Frontini, Patricia M; Abraham, Gustavo A; V Guinea, Gustavo

    2016-07-01

    To these days, the production of a small diameter vascular graft (<6mm) with an appropriate and permanent response is still challenging. The mismatch in the grafts mechanical properties is one of the principal causes of failure, therefore their complete mechanical characterization is fundamental. In this work the mechanical response of electrospun bilayered small-diameter vascular grafts made of two different bioresorbable synthetic polymers, segmented poly(ester urethane) and poly(L-lactic acid), that mimic the biomechanical characteristics of elastin and collagen is investigated. A J-shaped response when subjected to internal pressure was observed as a cause of the nanofibrous layered structure, and the materials used. Compliance values were in the order of natural coronary arteries and very close to the bypass gold standard-saphenous vein. The suture retention strength and burst pressure values were also in the range of natural vessels. Therefore, the bilayered vascular grafts presented here are very promising for future application as small-diameter vessel replacements. PMID:26872337

  8. Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Wagner, M. F.-X.

    2016-03-01

    Most investigations on NiTi-based shape memory alloys involve large-scale bulk material; knowledge about the martensitic transformation in small-scale NiTi structures is still limited. In this paper, we study the microstructures of thin NiTi layers and their mechanical properties, and we discuss typical challenges that arise when experiments are performed on small samples. A physical vapor deposition (PVD) process was used to deposit thin NiTi wires with a cross section of 15 × 15 μm2 and dogbone-shaped samples 5 × 500 μm2. Microstructural properties were characterized by X-ray diffraction, electron backscatter diffraction, and scanning electron microscopy. Moreover, tensile tests were performed using optical strain measurements in order to observe martensite band formation during cyclic loading. The surfaces of the crystalline wires reflect the columnar growth of NiTi during deposition. The wires exhibit pseudoelastic material behavior during tensile testing. Fracture typically occurs along the columns because the column growth direction is perpendicular to the straining direction. Electropolishing removes these local stress raisers and hence increases fracture strains. Our results demonstrate that the pseudoelastic properties of the PVD-processed materials agree well with those of conventional NiTi, and that they provide new opportunities to study the fundamentals of martensitic transformation in small-scale model systems.

  9. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    PubMed Central

    Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  10. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging.

    PubMed

    Greco, A; Mancini, M; Gargiulo, S; Gramanzini, M; Claudio, P P; Brunetti, A; Salvatore, M

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  11. Promoting space research and applications in developing countries through small satellite missions

    NASA Astrophysics Data System (ADS)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  12. Small copepods structuring mesozooplankton community dynamics in a tropical estuary-coastal system

    NASA Astrophysics Data System (ADS)

    Rakhesh, M.; Raman, A. V.; Ganesh, T.; Chandramohan, P.; Dehairs, F.

    2013-07-01

    It is important to know the ultimate role of small copepods in structuring mesozooplankton community pattern and diversity on an estuary-coastal gradient. Here multivariate analyses were used to elucidate this in the Godavari estuary, on the east coast of India. During May 2002, corresponding to the spring intermonsoon, mesozooplankton were sampled from 4 GPS fixed stations in the estuarine reaches of River Godavari and 19 in the coastal waters where Godavari enters the Bay of Bengal. There were 91 mesozooplankton taxa represented by 23 divergent groups. Copepods were by far the most prominent in terms of species richness, numerical abundance, and widespread distribution followed by appendicularians. Small copepods of families Paracalanidae, Acartiidae, Oithonidae, Corycaeidae, Oncaeidae, and Euterpinidae dominated. There were differing regional mesozooplankton/copepod communities, that segregated the estuary-coastal sites into different biotic assemblages: Group-I representing the estuary proper, Group-II estuary mouth and near shore, Group-III the intermediate coastal stations and Group-IV the coastal-offshore waters. Alpha (SRp, H', J', Δ*) and beta diversity (MVDISP, β, β-dissimilarity) measures varied noticeably across these assemblages/areas. The significant correlation of small copepod abundance with total mesozooplankton abundance and biomass (mgDM.m-3) in the estuarine (r: 0.40) and coastal (r: 0.46-0.83) waters together with a regression analysis of diversity measures have revealed the importance of small copepods in the overall mesozooplankton/copepod community structure. There were 'characterizing' and 'discriminating' species, responsible for the observed assemblage patterns. Mesozooplankton/copepod community structure and the size-spectra observed during this study indicate an estuarine-coastal gradient in plankton tropho-dynamics that may shift between a microbial dominated system inside the estuary and mixotrophy in the coastal waters. The

  13. a Study of the Magnetic and Structural Properties of Small Iron and Cobalt Particles

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunita Bhardwaj

    The magnetic and structural properties of Fe and Co particles with different surface chemistries have been investigated in the size range of 50-400 A. The particles were prepared by vapor deposition in an inert environment. Particles with different surface chemistries were obtained: passivated with oxygen (Metal(Fe,Co)/FeO), sandwiched between two silver films (Metal(Fe,Co)/Ag), and surrounded by a Mg matrix (Metal(Fe,Co)/Mg). The effect of surface chemistry and particle size on the magnetic properties was studied. An attempt was made to explain the origin of high coercivity and reduced magnetization in small ferromagnetic particles by studying their microstructure, hysteresis, magnetization, exchange coupling and magnetic interactions. Magnetization, Mossbauer and structural data clearly show a "core-shell" morphology, where the core is metallic and the shell is polycrystalline Fe(Co)-oxide. The results indicate that the oxide shell controls both the magnitude and the temperature dependence of coercivity. The exchange coupling at the core-shell interface results in large anisotropy, which not only enhances the coercivity, but also causes larger switching field distributions. The surface oxide shell also contributes towards a reduction in magnetization of the small ferromagnetic particles by inducing strong pinning of the moments at the core-shell interface.

  14. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Li, Jun

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  15. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering.

    PubMed

    Eyssautier, Joëlle; Levitz, Pierre; Espinat, Didier; Jestin, Jacques; Gummel, Jérémie; Grillo, Isabelle; Barré, Loïc

    2011-06-01

    Complementary neutron and X-ray small angle scattering results give prominent information on the asphaltene nanostructure. Precise SANS and SAXS measurements on a large q-scale were performed on the same dilute asphaltene-toluene solution, and absolute intensity scaling was carried out. Direct comparison of neutron and X-ray spectra enables description of a fractal organization made from the aggregation of small entities of 16 kDa, exhibiting an internal fine structure. Neutron contrast variation experiments enhance the description of this nanoaggregate in terms of core-shell disk organization, giving insight into core and shell dimensions and chemical compositions. The nanoaggregates are best described by a disk of total radius 32 Å with 30% polydispersity and a height of 6.7 Å. Composition and density calculations show that the core is a dense and aromatic structure, contrary to the shell, which is highly aliphatic. These results show a good agreement with the general view of the Yen model (Yen, T. F.; et al. Anal. Chem.1961, 33, 1587-1594) and as for the modified Yen model (Mullins, O. C. Energy Fuels2010, 24, 2179-2207), provide characteristic dimensions of the asphaltene nanoaggregate in good solvent. PMID:21553910

  16. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    PubMed

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  17. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    PubMed Central

    Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na+ and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5’CCUG/3’GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  18. Small-angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls

    PubMed Central

    Jacques, David A; Trewhella, Jill

    2010-01-01

    The last decade has seen a dramatic increase in the use of small-angle scattering for the study of biological macromolecules in solution. The drive for more complete structural characterization of proteins and their interactions, coupled with the increasing availability of instrumentation and easy-to-use software for data analysis and interpretation, is expanding the utility of the technique beyond the domain of the biophysicist and into the realm of the protein scientist. However, the absence of publication standards and the ease with which 3D models can be calculated against the inherently 1D scattering data means that an understanding of sample quality, data quality, and modeling assumptions is essential to have confidence in the results. This review is intended to provide a road map through the small-angle scattering experiment, while also providing a set of guidelines for the critical evaluation of scattering data. Examples of current best practice are given that also demonstrate the power of the technique to advance our understanding of protein structure and function. PMID:20120026

  19. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    PubMed Central

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Background Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. Methodology/Principal Findings In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. Conclusion/Significance This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible. PMID:22355395

  20. Joint Effects of Structural Racism and Income Inequality on Small-for-Gestational-Age Birth

    PubMed Central

    Wallace, Maeve E.; Liu, Danping; Grantz, Katherine L.

    2015-01-01

    Objectives. We examined potential synergistic effects of racial and socioeconomic inequality associated with small-for-gestational-age (SGA) birth. Methods. Electronic medical records from singleton births to White and Black women in 10 US states and the District of Columbia (n = 121 758) were linked to state-level indicators of structural racism, including the ratios of Blacks to Whites who were employed, were incarcerated, and had a bachelor’s or higher degree. We used state-level Gini coefficients to assess income inequality. Generalized estimating equations models were used to quantify the adjusted odds of SGA birth associated with each indicator and the joint effects of structural racism and income inequality. Results. Structural racism indicators were associated with higher odds of SGA birth, and similar effects were observed for both races. The joint effects of racial and income inequality were significantly associated with SGA birth only when levels of both were high; in areas with high inequality levels, adjusted odds ratios ranged from 1.81 to 2.11 for the 3 structural racism indicators. Conclusions. High levels of racial inequality and socioeconomic inequality appear to increase the risk of SGA birth, particularly when they co-occur. PMID:26066964

  1. Structural and electronic properties of small bimetallic Ag-Cu clusters

    NASA Astrophysics Data System (ADS)

    Kilimis, D. A.; Papageorgiou, D. G.

    2010-01-01

    The structural and electronic properties of small gas-phase AgmCun clusters with m+n=2-5 atoms are investigated using spin-polarized density functional theory. The LANL2DZ effective core potential and the corresponding basis set are employed while the performance of several exchange-correlation functionals is assessed. For a given cluster size all possible compositions are subject to optimization using a variety of initial structures. The geometry, binding energy, relative stability, ionization potential, electron affinity and HOMO-LUMO gap are reported for the lowest energy structure of every cluster size and composition. The results show that planar structures are favored, triangular for trimers, rhombic for tetramers and trapezoidal for pentamers. Moreover, for tetramers and pentamers we found that silver atoms demonstrate a clear tendency to occupy edge positions. The calculation of electronic properties indicates that although all exchange-correlation functionals predict the same trends, the choice of method is crucial concerning the final quantitative results.

  2. Structural study of a small molecule receptor bound to dimethyllysine in lysozyme

    PubMed Central

    McGovern, Róise E.; Snarr, Brendan D.; Lyons, Joseph A.; McFarlane, James; Whiting, Amanda L.; Paci, Irina; Hof, Fraser; Crowley, Peter B.

    2014-01-01

    Lysine is a ubiquitous residue on protein surfaces. Post translational modifications of lysine, including methylation to the mono-, di- or trimethylated amine result in chemical and structural alterations that have major consequences for protein interactions and signalling pathways. Small molecules that bind to methylated lysines are potential tools to modify such pathways. To make progress in this direction, detailed structural data of ligands in complex with methylated lysine is required. Here, we report a crystal structure of p-sulfonatocalix[4]arene (sclx4) bound to methylated lysozyme in which the lysine residues were chemically modified from Lys-NH3+ to Lys-NH(Me2)+. Of the six possible dimethyllysine sites, sclx4 selected Lys116-Me2 and the dimethylamino substituent was deeply buried in the calixarene cavity. This complex confirms the tendency for Lys-Me2 residues to form cation-π interactions, which have been shown to be important in protein recognition of histone tails bearing methylated lysines. Supporting data from NMR spectroscopy and MD simulations confirm the selectivity for Lys116-Me2 in solution. The structure presented here may serve as a stepping stone to the development of new biochemical reagents that target methylated lysines. PMID:25530835

  3. Prospect for characterizing interacting soft colloidal structures using spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Liu, Yun; Pynn, Roger; Robertson, J. L.; Shew, Chwen-Yang; Smith, Gregory Scott

    2011-01-01

    Spin-echo small angle neutron scattering (SESANS) presents a new experimental tool for structural investigation. Regarding the material study using neutron scattering it is of particular novel: Due to the action of spin echo encoding, SESANS registers the spatial correlations function in real space, which is distinct from the measurables of conventional elastic neutron scattering techniques. To make viable the use of SESANS in structural characterization, particularly for the interacting colloidal suspensions, we have conducted a theoretical study focusing on understanding the essential features of the SESANS correlation functions obtained from different model systems consisting of particles with uniform density profile (J. Chem. Phys. 132, 174509 (2010)). Within the same framework, we continue to explore the prospect of using SESANS to investigate the structural characteristics of colloid systems consisting of particle with non-uniform intra-particle mass distribution. As an example, a Gaussian model of interacting soft colloids is put forward in our mean-field calculations to investigate the manifestation of structural softness in SESANS measurement. The exploration shows a characteristically different SESANS correlation function for interacting soft colloids, in comparison to that of the referential uniform hard sphere system, due to the Abel transform imbedded in the mathematical formalism bridging the SESANS spectra and the spatial autocorrelation.

  4. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Reise, K.

    1981-12-01

    On the tidal flats of the island of Sylt (eastern part of the North Sea) the quantity of micro- and meiofauna associated with shoots of seagrass (Zostera noltii), with infaunal bivalves (Macoma balthica), and with tubes and burrows of polychaetes (Pygospio elegans, Pectinaria koreni, Nereis diversicolor, Nereis virens, Arenicola marina) was found to add up to 5 to 33 % of the overall abundance. These structures, taken together, account for 10 to 50 % of the faunal abundance on an average tidal flat at Sylt. The quantitative effect of biogenic structures at the sediment surface (casts and funnels) is small compared to that of tubes and burrows penetrating the anaerobic subsurface layer. In providing stable oxic microenvironments these elite structures frequently bring together more individuals than occur in the entire reducing sediment below surface. Faunal composition of irrigated dwellings of large infauna is different from that of the oxic surface sediment. The common denominator of all elite structures of the subsurface is an oxic halo. Burrows without such a halo are unattractive. There is no evidence that owners of burrows prey on their smaller inmates.

  5. Effects of melatonin and Pycnogenol on small artery structure and function in spontaneously hypertensive rats.

    PubMed

    Rezzani, Rita; Porteri, Enzo; De Ciuceis, Carolina; Bonomini, Francesca; Rodella, Luigi F; Paiardi, Silvia; Boari, Gianluca E M; Platto, Caterina; Pilu, Annamaria; Avanzi, Daniele; Rizzoni, Damiano; Agabiti Rosei, Enrico

    2010-06-01

    It was suggested that oxidative stress has a key role in the development of endothelial dysfunction, as well as microvascular structural alterations. Therefore, we have investigated 2 substances with antioxidant properties: melatonin and Pycnogenol. We treated 7 spontaneously hypertensive rats (SHRs) with melatonin and 7 with Pycnogenol for 6 weeks. We compared results obtained with those observed in 7 SHRs and 7 Wistar-Kyoto normotensive control rats kept untreated. Mesenteric small resistance arteries were dissected and mounted on a wire myograph, and a concentration-response curve to acetylcholine was performed. Aortic contents of metalloproteinase 2, Bax, inducible NO synthase, and cyclooxygenase 2 were evaluated, together with the aortic content of total collagen and collagen subtypes and apoptosis rate. A small reduction in systolic blood pressure was observed. A significant improvement in mesenteric small resistance artery structure and endothelial function was observed in rats treated with Pycnogenol and melatonin. Total aortic collagen content was significantly greater in untreated SHRs compared with Wistar-Kyoto control rats, whereas a full normalization was observed in treated rats. Apoptosis rate was increased in the aortas of untreated SHRs compared with Wistar-Kyoto control rats; an even more pronounced increase was observed in treated rats. Bax and metalloproteinase 2 expressions changed accordingly. Cyclooxygenase 2 and inducible NO synthase were more expressed in the aortas of untreated SHRs compared with Wistar-Kyoto control rats; this pattern was normalized by both treatments. In conclusion, our data suggest that treatment with Pycnogenol and melatonin may protect the vasculature, partly independent of blood pressure reduction, probably through their antioxidant effects. PMID:20421515

  6. Solving the small-scale structure puzzles with dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Foot, Robert; Vagnozzi, Sunny

    2016-07-01

    Small-scale structure is studied in the context of dissipative dark matter, arising for instance in models with a hidden unbroken Abelian sector, so that dark matter couples to a massless dark photon. The dark sector interacts with ordinary matter via gravity and photon-dark photon kinetic mixing. Mirror dark matter is a theoretically constrained special case where all parameters are fixed except for the kinetic mixing strength, epsilon. In these models, the dark matter halo around spiral and irregular galaxies takes the form of a dissipative plasma which evolves in response to various heating and cooling processes. It has been argued previously that such dynamics can account for the inferred cored density profiles of galaxies and other related structural features. Here we focus on the apparent deficit of nearby small galaxies (``missing satellite problem"), which these dissipative models have the potential to address through small-scale power suppression by acoustic and diffusion damping. Using a variant of the extended Press-Schechter formalism, we evaluate the halo mass function for the special case of mirror dark matter. Considering a simplified model where Mbaryons propto Mhalo, we relate the halo mass function to more directly observable quantities, and find that for epsilon ≈ 2 × 10‑10 such a simplified description is compatible with the measured galaxy luminosity and velocity functions. On scales Mhalo lesssim 108 Msolar, diffusion damping exponentially suppresses the halo mass function, suggesting a nonprimordial origin for dwarf spheroidal satellite galaxies, which we speculate were formed via a top-down fragmentation process as the result of nonlinear dissipative collapse of larger density perturbations. This could explain the planar orientation of satellite galaxies around Andromeda and the Milky Way.

  7. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  8. Small-scale Structuring of Ellerman Bombs at the Solar Limb

    NASA Astrophysics Data System (ADS)

    Nelson, C. J.; Scullion, E. M.; Doyle, J. G.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s-1, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical "flaring" (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  9. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    SciTech Connect

    Nelson, C. J.; Doyle, J. G.; Scullion, E. M.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  10. Supersonic cruise research aircraft structural studies: Methods and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.

    1981-01-01

    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  11. Progress in the research and development of photonic structure devices

    NASA Astrophysics Data System (ADS)

    Pham, Van Hoi; Bui, Huy; Van Nguyen, Thuy; Nguyen, The Anh; Son Pham, Thanh; Pham, Van Dai; Cham Tran, Thi; Trang Hoang, Thu; Ngo, Quang Minh

    2016-03-01

    In this paper we review the results of the research and development of photonic structure devices performed in the Institute of Materials Science in the period from 2010-2015. We have developed a configuration of 1D photonic crystal (PC) microcavities based on porous silicon (PS) layers and applied them to optical sensing devices that can be used for the determination of organic content with a very low concentration in different liquid environments. Various important scientific and technological applications of photonic devices such as the ultralow power operation of microcavity lasers, the inhibition of spontaneous emissions and the manipulation of light amplification by combining the surface plasmonic effect and the microcavity are expected. We developed new kinds of photonic structures for optical filters based on guided-mode resonances in coupled slab waveguide gratings, which have great potential for application in fiber-optic communication and optical sensors.

  12. Structural control research and experiments at NASA/LaRC

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1983-01-01

    Research progress in the area of structural dynamics and control using the flexible beam facility at the NASA Langley Research Center is reviewed. Particular attention is placed on the progress in adaptive control and reliability improvements using advanced control concepts. Both theoretical and experimental results are given to indicate the nature of the work being undertaken. In the adaptive control area, emphasis is placed on parameter and system identification and in comparison of competing on-line algorithms. Also, results are presented for on-line modal control laws that are interfaced to a parameter identification scheme. This provides an on-line distributed adaptive control system. In the reliability area, a design process is outlined that incorporates reliability over the design mission life.

  13. Crystal structure of ubiquitin-like small archaeal modifier protein 1 (SAMP1) from Haloferax volcanii.

    PubMed

    Jeong, Young Jee; Jeong, Byung-Cheon; Song, Hyun Kyu

    2011-02-01

    The ubiquitin-like (Ubl) system has been shown to be ubiquitous in all three kingdoms of life following the very recent characterization of ubiquitin-like small archaeal modifier proteins (SAMP1 and 2) from Haloferax volcanii. The ubiquitin (Ub) and Ubl molecules in eukaryotes have been studied extensively and their cellular functions are well established. Biochemical and structural data pertaining to prokaryotic Ubl protein (Pup) continue to be reported. In contrast to eukaryotes and prokaryotes, no structural information on the archaeal Ubl molecule is available. Here we determined the crystal structure of SAMP1 at 1.55Å resolution and generated a model of SAMP2. These were then compared with other Ubl molecules from eukaryotes as well as prokaryotes. The structure of SAMP1 shows a β-grasp fold of Ub, suggesting that the archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. The current structure identifies the location of critical elements such a single lysine residue (Lys4), C-terminal di-glycine motif, hydrophobic patches near leucine 60, and uniquely inserted α-helical segments (α1 and α3) in SAMP1. Based on the structure of SAMP1, several Ub-like features of SAMPs such as poly-SAMPylation and non-covalent interactions have been proposed, which should provide the basis for further investigations concerning the molecular function of archaeal Ubls and the large super-family of β-grasp fold proteins in the archaeal kingdom. PMID:21216237

  14. Unified control/structure design and modeling research

    NASA Technical Reports Server (NTRS)

    Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.

    1986-01-01

    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.

  15. Heat sink structural design concepts for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.

    1977-01-01

    Hypersonic research aircraft design requires careful consideration of thermal stresses. This paper relates some of the problems in a heat sink structural design that can be avoided by appropriate selection of design options including material selection, design concepts, and load paths. Data on several thermal loading conditions are presented on various conventional designs including bulkheads, longerons, fittings, and frames. Results indicate that conventional designs are inadequate and that acceptable designs are possible by incorporating innovative design practices. These include nonintegral pressure compartments, ball-jointed links to distribute applied loads without restraining the thermal expansion, and material selections based on thermal compatibility.

  16. Technique for Solving Electrically Small to Large Structures for Broadband Applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram; Chowdhury, Indranil

    2011-01-01

    Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is

  17. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    SciTech Connect

    Grimme, Stefan Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT

  18. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-01

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  19. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound–target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  20. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of