Science.gov

Sample records for small terrestrial mammals

  1. Mycobacteria in Terrestrial Small Mammals on Cattle Farms in Tanzania

    PubMed Central

    Durnez, Lies; Katakweba, Abdul; Sadiki, Harrison; Katholi, Charles R.; Kazwala, Rudovick R.; Machang'u, Robert R.; Portaels, Françoise; Leirs, Herwig

    2011-01-01

    The control of bovine tuberculosis and atypical mycobacterioses in cattle in developing countries is important but difficult because of the existence of wildlife reservoirs. In cattle farms in Tanzania, mycobacteria were detected in 7.3% of 645 small mammals and in cow's milk. The cattle farms were divided into “reacting” and “nonreacting” farms, based on tuberculin tests, and more mycobacteria were present in insectivores collected in reacting farms as compared to nonreacting farms. More mycobacteria were also present in insectivores as compared to rodents. All mycobacteria detected by culture and PCR in the small mammals were atypical mycobacteria. Analysis of the presence of mycobacteria in relation to the reactor status of the cattle farms does not exclude transmission between small mammals and cattle but indicates that transmission to cattle from another source of infection is more likely. However, because of the high prevalence of mycobacteria in some small mammal species, these infected animals can pose a risk to humans, especially in areas with a high HIV-prevalence as is the case in Tanzania. PMID:21785686

  2. Morphological and molecular analysis of Ornithonyssus spp. (Acari: Macronyssidae) from small terrestrial mammals in Brazil.

    PubMed

    Nieri-Bastos, Fernanda A; Labruna, Marcelo B; Marcili, Arlei; Durden, Lance A; Mendoza-Uribe, Leonardo; Barros-Battesti, Darci M

    2011-12-01

    Based on chaetotaxy of the dorsal shield, the taxonomic status of many species of Ornithonyssus has been considered invalid, resulting in the synonymy of all Brazilian Ornithonyssus from small terrestrial wild mammals into one of the following four species: Ornithonyssus bacoti (Hirst, 1913), Ornithonyssus matogrosso (Fonseca, 1954), Ornithonyssus pereirai (Fonseca, 1935) or Ornithonyssus wernecki (Fonseca, 1935). Despite the revision of this genus in 1980, including all known species worldwide, the knowledge of Ornithonyssus in Brazil has not progressed for more than 40 years. Considering the potential importance of these haematophagous mites in transmitting rickettsial disease agents to animals and humans, we have revised Ornithonyssus species collected from small mammals in Brazil by means of morphological and molecular studies. Types and other material deposited in the Acari Collection of the Instituto Butantan (IBSP) were examined in addition to recently collected specimens. Morphological and genetic analysis of the 16S rDNA mitochondrial gene revealed that small terrestrial mammals in Brazil are parasitized by six species of Ornithonyssus mites: Ornithonyssus brasiliensis (Fonseca, 1939), O. matogrosso, O. monteiroi (Fonseca, 1941), O. pereirai, O. vitzthumi (Fonseca, 1941), and O. wernecki. An illustrated key to females of the valid Brazilian species of Ornithonyssus is included, based on optical and scanning electron microscopy. PMID:21786041

  3. Challenges to natural resource monitoring in a small border park: terrestrial mammals at Coronado National Memorial, Cochise County, Arizona

    USGS Publications Warehouse

    Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.

    2010-01-01

    Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.

  4. Lead concentrations: Bats vs. terrestrial small mammals collected near a major highway

    USGS Publications Warehouse

    Clark, D.R., Jr.

    1979-01-01

    Wholebody lead concentrations of two species of bats (big brown and little brown) and three species of terrestrial mammals (meadow voles, white-footed mice, and short-tailed shrews) trapped along the Baltimore-Washington Parkway in 1976 are compared, including embryo lead concentration. These data are also compared to those of previous studies conducted in Illinois and Virginia within 20 miles of highways with high traffic volumes. Minimum dosages of various lead compounds that cause mortality or reproductive impairment in six species of domestic mammals (horses, cattle, sheep, dogs, rats, and mice) are noted.

  5. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  6. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers. PMID:26818016

  7. Contrasting coloration in terrestrial mammals

    PubMed Central

    Caro, Tim

    2008-01-01

    Here I survey, collate and synthesize contrasting coloration in 5000 species of terrestrial mammals focusing on black and white pelage. After briefly reviewing alternative functional hypotheses for coloration in mammals, I examine nine colour patterns and combinations on different areas of the body and for each mammalian taxon to try to identify the most likely evolutionary drivers of contrasting coloration. Aposematism and perhaps conspecific signalling are the most consistent explanations for black and white pelage in mammals; background matching may explain white pelage. Evidence for contrasting coloration is being involved in crypsis through pattern blending, disruptive coloration or serving other functions, such as signalling dominance, lures, reducing eye glare or in temperature regulation has barely moved beyond anecdotal stages of investigation. Sexual dichromatism is limited in this taxon and its basis is unclear. Astonishingly, the functional significance of pelage coloration in most large charismatic black and white mammals that were new to science 150 years ago still remains a mystery. PMID:18990666

  8. Dietary characterization of terrestrial mammals

    PubMed Central

    Pineda-Munoz, Silvia; Alroy, John

    2014-01-01

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term ‘omnivore’ should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species. PMID:25009067

  9. Dietary characterization of terrestrial mammals.

    PubMed

    Pineda-Munoz, Silvia; Alroy, John

    2014-08-22

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term 'omnivore' should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species. PMID:25009067

  10. Small Mammal Intrigue.

    ERIC Educational Resources Information Center

    Cristol, Daniel A.

    1985-01-01

    Gives introductory information about the study of small mammals including the selection and use of harmless live-traps, handling and identification, techniques for observation and trapping in the wild, and safety measures. Suggests useful references for teachers wishing to develop a small mammal study program for their students. (JHZ)

  11. Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site.

    PubMed

    Talmage, S S; Walton, B T

    1993-12-01

    Mercury concentrations were determined in surface soil and biota at a contaminated terrestrial field site and were used to calculate transfer coefficients of mercury through various compartments of the ecosystem based on trophic relationships. Mercury concentrations in all compartments (soil, vegetation, invertebrates, and small mammals) were higher than mercury concentrations in corresponding samples at local reference sites. Nonetheless, mercury concentrations in biota did not exceed concentrations in the contaminated surface soil, which averaged 269 μg g(-1). Plant tissue concentrations of mercury were low (0.01 to 2.0 μg g(-1)) and yielded soil to plant transfer coefficients ranging from 3.7×10(-5) for seeds to 7.0×10(-3) for grass blades. Mercury concentrations in invertebrates ranged from 0.79 for harvestmen (Phalangida) to 15.5 μg g(-1) for undepurated earthworms (Oligochaeta). Mean food chain transfer coefficients for invertebrates were 0.88 for herbivores/omnivores and 2.35 for carnivores. Mean mercury concentrations in target tissue (kidney) were 1.16±1.16 μg g(-1) for the white-footed mouse (Peromyscus leucopus), a granivore, and 38.8±24.6 μg g(-1) for the shorttail shrew (Blarina brevicauda), an insectivore. Transfer coefficients for diet to kidney were 0.75 and 4.40 for P. leucopus and B. brevicauda, respectively. A comparison of kidney mercury residues measured in this study with values from controlled laboratory feeding studies from the literature indicate that B. brevicauda but not P. leucopus may be ingesting mercury at levels that are nephrotoxic. PMID:24201735

  12. Future hotspots of terrestrial mammal loss.

    PubMed

    Visconti, Piero; Pressey, Robert L; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-09-27

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  13. Future hotspots of terrestrial mammal loss

    PubMed Central

    Visconti, Piero; Pressey, Robert L.; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-01-01

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  14. SMALL MAMMAL USE OF MICROHABITAT REVIEWED

    EPA Science Inventory

    Small mammal microhabitat research has greatly influenced vertebrate community ecologists. There exists a "microhabitat paradigm" that states that sympatry among small mammal species is enabled by differential use of microhabitat (i.e., microhabitat partitioning). However, seve...

  15. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    PubMed

    Strong, Justin S; Leroux, Shawn J

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland. PMID:25170923

  16. Impact of Non-Native Terrestrial Mammals on the Structure of the Terrestrial Mammal Food Web of Newfoundland, Canada

    PubMed Central

    Strong, Justin S.; Leroux, Shawn J.

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland. PMID:25170923

  17. Highly athletic terrestrial mammals: horses and dogs.

    PubMed

    Poole, David C; Erickson, Howard H

    2011-01-01

    Evolutionary forces drive beneficial adaptations in response to a complex array of environmental conditions. In contrast, over several millennia, humans have been so enamored by the running/athletic prowess of horses and dogs that they have sculpted their anatomy and physiology based solely upon running speed. Thus, through hundreds of generations, those structural and functional traits crucial for running fast have been optimized. Central among these traits is the capacity to uptake, transport and utilize oxygen at spectacular rates. Moreover, the coupling of the key systems--pulmonary-cardiovascular-muscular is so exquisitely tuned in horses and dogs that oxygen uptake response kinetics evidence little inertia as the animal transitions from rest to exercise. These fast oxygen uptake kinetics minimize Intramyocyte perturbations that can limit exercise tolerance. For the physiologist, study of horses and dogs allows investigation not only of a broader range of oxidative function than available in humans, but explores the very limits of mammalian biological adaptability. Specifically, the unparalleled equine cardiovascular and muscular systems can transport and utilize more oxygen than the lungs can supply. Two consequences of this situation, particularly in the horse, are profound exercise-induced arterial hypoxemia and hypercapnia as well as structural failure of the delicate blood-gas barrier causing pulmonary hemorrhage and, in the extreme, overt epistaxis. This chapter compares and contrasts horses and dogs with humans with respect to the structural and functional features that enable these extraordinary mammals to support their prodigious oxidative and therefore athletic capabilities. PMID:23737162

  18. Habitat patterns in a small mammal community

    SciTech Connect

    Kitchings, J.T.; Levy, D.J.

    1981-11-01

    Microhabitat relationships between four sympatric small mammal species (Peromyscus leucopus, Ochrotomys nuttalli, Blarina brevicauda, and Tamias striatus) were examined to determine if their discriminant analysis of small mammal habitat represented a unique habitat utilization pattern for a specific small mammal community. The authors concluded that habitat is only one of many dimensions to be considered when studying the interactions of sympatric species. Reproductive strategy, activity patterns, and other factors make up the n-dimensional hyperspace of an animal's niche. Thus differences in habitat usage alone cannot be used to determine niche overlap and competition between species. (JMT)

  19. Comparison between the antioxidant status of terrestrial and diving mammals.

    PubMed

    Wilhelm Filho, D; Sell, F; Ribeiro, L; Ghislandi, M; Carrasquedo, F; Fraga, C G; Wallauer, J P; Simões-Lopes, P C; Uhart, M M

    2002-11-01

    Many diving mammals are known for their ability to deal with nitrogen supersaturation and to tolerate apnea for extended periods. They are all characterized by high oxygen-carrying capacity in blood together with high oxygen storage in their muscle mass due to large myoglobin concentrations. The above properties theoretically also imply a high tissue antioxidant defenses (AD) to counteract reactive oxygen species (ROS) generation associated with the rapid transition from apnea to reoxygenation. Different enzymatic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and non-enzymatic (levels of glutathione) AD as well as cellular damage (thiobarbituric acid-reactive substances contents, as a measure of lipoperoxidation) were measured in blood samples obtained from anesthetized animals, and also in blood obtained from recently dead diving mammals, and compared to some terrestrial mammals (n=5 in both groups). The results confirmed that diving mammals have, in general, higher antioxidant status compared to non-diving mammals. Apparently, to avoid exposure of tissues to changing high oxygen levels, and therefore to avoid an oxidative stress condition related to antioxidant consumption and increased ROS generation, diving mammals possess constitutive high levels of antioxidants in tissues. These data are in agreement with short-term AD adaptations related to torpor and to animals that experience large daily changes in oxygen consumption. These data are similar to the long-term adaptations of animals that undergo hibernation, estivation, freezing-thawing and dehydration-rehydration processes. In summary, animals that routinely face high changes in oxygen availability and/or consumption seem to show a general strategy to prevent oxidative damage by having either appropriate high constitutive AD and/or the ability to undergo arrested states, where depressed metabolic rates minimize the oxidative challenge. PMID

  20. The evolution of acoustic size exaggeration in terrestrial mammals.

    PubMed

    Charlton, Benjamin D; Reby, David

    2016-01-01

    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production. PMID:27598835

  1. Solid modeling of fossil small mammal teeth

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Hofmann, Peter; Daxner-Höck, Gudrun; Ketcham, Richard A.

    2011-09-01

    This paper presents an approach to create solid models of fossil small mammal teeth using a combination of microcomputed tomography, object based image analysis and voxel modeling. Small mammal teeth, because of their durability, are widely found in Cenozioc sediments the world over and play a key role in stratigraphy as well as in researching the rapid evolution and the paleogeographic spreading of small mammals. Recent advances in microcomputed tomography make this non-destructive analysis method an ideal data source for high-resolution 3D models of fossil small animal teeth. To derive internally consistent solid models of such fossils from micro-CT imagery, we propose a combination of 3D object based image analysis and solid modeling. Incorporating paleontological expert knowledge in the image processing cycle, object based image analysis yields topologically consistent image stacks classified by the main tooth components—enamel, dentine and pulp. Forwarding these data to a voxel modeling system, they can be quantitatively analyzed in an unprecedented manner: going beyond the possibilities of the state-of-art surface models, solid models are capable of unambiguously portraying the entire object volume—teeth can be peeled by material properties, subvolumes can be extracted and automatically analyzed by Boolean operations. The proposed method, which can be flexibly extended to handle a range of paleontological and geological micro-objects, is demonstrated with two typical fossil small mammal teeth.

  2. Effects of roads on small mammals

    USGS Publications Warehouse

    Adams, L.W.; Geis, A.D.

    1983-01-01

    (1) The study was designed to determine the effects of roads on the diversity, spatial distribution, and density of small mammals. (2) Forty species of small mammal (5859 individuals) were snap-trapped in the study. Data resulted from 144 360 trap-nights of effort for an average of 4.06 captures per 100 trap-nights. (3) Small mammal community structure and density were both influenced by roads. Community structure in right-of-way (ROW) habitat was different from that in adjacent habitat. Five species did not prefer ROW habitat: the golden mouse, dusky-footed woodrat, brush mouse, pinon mouse, and California red-backed vole. However, there were more species present in ROW habitat than in adjacent habitat. Grassland species generally preferred ROW habitat and many less habitat-specific species were distributed in ROW and adjacent habitat. (4) Small mammal density (all species combined) was greater in interstate ROW habitat than in adjacent habitat. This was also true individually for the eastern harvest mouse, white-footed mouse, meadow vole, prairie vole, vagrant shrew. Townsend's vole, and California vole. Small mammal density was less in county road ROWs than in adjacent habitat, probably because of the small size of these areas. The data indicate that ROW habitat and its accompanying edge are attractive no: only to grassland species but also to many less habitat-specific species that make use of the ROW-edge-adjacent habitat complex. (5) Mortality on interstate highways was greatest for those species with highest densities in ROW habitat, and did not appear to be detrimental to populations of these species.

  3. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. PMID:25987728

  4. Terrestrial mammal feces: a morphometric summary and description.

    PubMed

    Chame, Marcia

    2003-01-01

    The study of feces of terrestrial mammals brings out biological and ecological data such as the species presence, diet, behaviour, territory, parasitic fauna, and home-range use, which can be applied for conservation projects and support paleoecological research that use coprolites as the main source of study. Although the new biotechnological techniques allow more accurate data, the diagnosis based on morphometric analyses permits the primary identification of the taxonomic group origin to support the best choice of subsequent analyses. We present the compilation list of fecal shape and measurements available in the literature published in North America, Eastern and Southern Africa, Europe, and new data from Brazil. Shape and diameters are the best characteristics for taxonomic identification. Feces were assembled in 9 groups that reflect the Order, sometimes the Family, and even their common origin. PMID:12687767

  5. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated. PMID:24511825

  6. Bartonella spp. in Small Mammals, Benin.

    PubMed

    Martin-Alonso, Aarón; Houemenou, Gualbert; Abreu-Yanes, Estefanía; Valladares, Basilio; Feliu, Carlos; Foronda, Pilar

    2016-04-01

    This study aimed to investigate the prevalence and genetic diversity of Bartonella organisms in small mammals in Cotonou, Benin. We captured 163 rodents and 12 insectivores and successfully detected Bartonella DNA from 13 of the 175 small mammal individuals. Bartonella spp., identical or closely related to Bartonella elizabethae, Bartonella tribocorum, and Bartonella rochalimae, was detected. A potential new Bartonella species, proposed as Candidatus Bartonella mastomydis, was found in three Mastomys individuals and genetically characterized by targeting two housekeeping genes (rpoB and gltA) and the intergenic species region. However, 20.8% of gray rats were found to be infected with Bartonella spp., and none of the black rats analyzed was positive. This work may be important from a public health point of view due to the zoonotic nature of the Bartonella species detected and warrants further investigation on the unknown zoonotic potential of this newly proposed Bartonella species. PMID:26910412

  7. The Celtic fringe of Britain: insights from small mammal phylogeography.

    PubMed

    Searle, Jeremy B; Kotlík, Petr; Rambau, Ramugondo V; Marková, Silvia; Herman, Jeremy S; McDevitt, Allan D

    2009-12-22

    Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a 'Celtic fringe'. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM. PMID:19793757

  8. Effects of tillage practices and carbofuran exposure on small mammals

    USGS Publications Warehouse

    Albers, P.H.; Linder, G.; Nichols, J.D.

    1990-01-01

    We compared population estimates, body mass, movement, and blood chemistry of small mammals between conventionally tilled and no-till cornfields in Maryland and Pennsylvania to evaluate the effects of tillage practices and carbofuran exposure on small mammals.

  9. Small mammals as monitors of environmental contaminants.

    PubMed

    Talmage, S S; Walton, B T

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants. Based on information in these studies, each species' suitability as a monitor for a specific contaminant or type of contaminant was evaluated and subsequently ranked. A relationship between

  10. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  11. Radionuclides in small mammals of the Saskatchewan prairie, including implications for the boreal forest and Arctic tundra

    SciTech Connect

    Thomas, P.A.

    1995-12-31

    The focus of the study reported was to collect and examine baseline data on radionuclides in small prairie mammal food chains and to assess the feasibility of using small mammals as radionuclide monitors in terrestrial ecosystems, in anticipation of possible future nuclear developments in northern Saskatchewan and the Northwest Territories. The study report begins with a literature review that summarizes existing data on radionuclides in small mammals, their food, the ambient environment in Canadian terrestrial ecosystems, principles of terrestrial radioecology, soil and vegetation studies, and food chain studies. It then describes a field study conducted to investigate small mammal food chains at three southwestern Saskatchewan prairie sites. Activities included collection and analysis of water, soil, grains, and foliage samples; trapping of small mammals such as mice and voles, and analysis of gastrointestinal tract samples; and determination of food chain transfer of selected radionuclides from soil to plants and to small mammals. Recommendations are made for future analyses and monitoring of small mammals. Appendices include information on radiochemical methods, soil/vegetation studies and small mammal studies conducted at northern Saskatchewan mine sites, and analyses of variance.

  12. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    SciTech Connect

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  13. Influence of alternative silviculture on small mammals

    USGS Publications Warehouse

    Waldien, David L.; Hayes, John P.

    2006-01-01

    HIGHLIGHT: A variety of harvest methods promote diversity within forests while still generating income. For example, recent studies have shown that when dead wood is left on the forest floor during harvest, biodiversity increases. A new Cooperative Forest Ecosystem Research (CFER) program fact sheet summarizes how small mammals respond to dead wood in forests that are harvested with alternative methods. CFER is developing a series of fact sheets about responses to changes in young western Oregon forests. The fact sheets are designed to help resource managers balance management needs, including timber and wildlife. The USGS provides a primary source of financial support for CFER, a consortium of federal and state partners conducting research in support of the Northwest Forest Plan.

  14. Small mammals as monitors of environmental contaminants

    SciTech Connect

    Talmage, S.S.; Walton, B.T. )

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants.

  15. Bartonella infection in small mammals and their ectoparasites in Lithuania.

    PubMed

    Lipatova, Indre; Paulauskas, Algimantas; Puraite, Irma; Radzijevskaja, Jana; Balciauskas, Linas; Gedminas, Vaclovas

    2015-01-01

    The Bartonella pathogen is an emerging zoonotic agent. Epidemiological studies worldwide have demonstrated that small mammals are reservoir hosts of Bartonella spp. and their ectoparasites are potential vectors. The aim of this study was to investigate the prevalence of Bartonella infections in small mammals (Rodentia, Insectivora) and their ectoparasites (fleas and ticks) in Lithuania. A total of 430 small mammals representing nine species were captured with live-traps in Lithuania during 2013-2014. A total of 151 fleas representing eight species were collected from 109 (25.8%) small mammals. Five hundred and seventy ticks (Ixodes ricinus) were collected from 68 (16.1%) small mammals. Bartonella DNA was detected in 102 (23.7%) small mammals, 44 (29.1%) fleas and five (3.7%) pooled tick samples. Sequence analysis of 16S-23S rRNA ITS region showed that sequences were identical or similar to Bartonella grahamii, Bartonella taylorii and Bartonella rochalimae. This study is the first investigating the distribution and diversity of Bartonella species in small mammals and their ectoparasites in Lithuania. B. grahamii, B. taylorii, and B. rochalimae were detected in small mammals and their fleas, and B. grahamii in ticks obtained from small mammals. PMID:26344603

  16. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    SciTech Connect

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  17. Stress physiology in marine mammals: how well do they fit the terrestrial model?

    PubMed

    Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall

    2015-07-01

    Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested. PMID:25913694

  18. Elk herbivory alters small mammal assemblages in high elevation drainages

    USGS Publications Warehouse

    Parsons, Elliott W.R.; Maron, John L.; Martin, Thomas E.

    2012-01-01

    Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations.

  19. Road zone effects in small-mammal communities

    USGS Publications Warehouse

    Bissonette, J.A.; Rosa, S.A.

    2009-01-01

    Our study focused on the putative effects of roads on small-mammal communities in a high desert region of southern Utah. Specifically, we tested whether or not roads create adjacent zones characterized by lower small- mammal densities, abundance, and diversity. We sampled abundance of small mammals at increasing distances from Interstate 15 during two summers. We recorded 11 genera and 13 species. We detected no clear abundance, density, or diversity effects relative to distance from the road. Only two of 13 species were never captured near roads. The abundance of the remaining 11 small mammal species was either similar at different distances from the road or higher closer to the road. We conclude that although roads may act as barriers and possible sources of mortality, adjacent zones of vegetation often provide favorable microhabitat in the desert landscape for many small mammals. ?? 2009 by the author(s).

  20. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals.

    PubMed

    Gutierrez, Danielle B; Fahlman, Andreas; Gardner, Manuela; Kleinhenz, Danielle; Piscitelli, Marina; Raverty, Stephen; Haulena, Martin; Zimba, Paul V

    2015-06-01

    Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation - a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes. PMID:25812797

  1. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals

    PubMed Central

    Gutierrez, Danielle B.; Fahlman, Andreas; Gardner, Manuela; Kleinhenz, Danielle; Piscitelli, Marina; Raverty, Stephen; Haulena, Martin; Zimba, Paul V.

    2015-01-01

    Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation – a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes. PMID:25812797

  2. Temporal niche overlap among insectivorous small mammals.

    PubMed

    Vieira, Emerson M; Paise, Gabriela

    2011-12-01

    Being active in the same environment at different times exposes animals to the effects of very different environmental factors, both biotic and abiotic. In the present study, we used live traps equipped with timing devices to evaluate the potential role of biotic factors (competition and food abundance) on overall overlap in the temporal niche axis of 4 insectivorous small mammals in high-elevation grassland fields ('campos de altitude') of southern Brazil. Based on resources availability (invertebrates), data on animal captures were pooled in 2 seasons: 'scarcity' (June 2001-September 2001) and 'abundance' (November 2001-May 2002) seasons. We tested for non-random structure in temporal niche overlap among the species in each season. These species were the rodents Oxymycterus nasutus (Waterhouse, 1837), Deltamys sp., Akodon azarae (Fischer, 1829), and the marsupial Monodelphis brevicaudis Olfers, 1818. The studied community was mainly diurnal with crepuscular peaks. Simulations using the Pianka index of niche overlap indicated that the empirical assemblage-wide overlap was not significantly different from randomly generated patterns in the abundance season but significantly greater than expected by chance alone in the scarcity season. All the species showed an increase in temporal niche breadth during the abundance season, which appears to be related to longer daylength and high nocturnal temperatures. Patterns on both temporal niche overlap and temporal niche breadth were the opposite to those that we were expecting in the case of diel activity patterns determined by competition for dietary resources. Therefore, we conclude that competition did not seem to be preponderant for determining patterns of temporal niche overlap by the studied community. PMID:22182329

  3. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

  4. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals

    PubMed Central

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

  5. APPROACHES TO LUNG FUNCTION ASSESSMENT IN SMALL MAMMALS

    EPA Science Inventory

    The review chapter of pulmonary function assessment in small mammals first discusses basic principles and methods such as assessment of various pressures, volumes and flows. The three types of plethysmographs (pressure, flow and barometric) used by animal physiologists are evalua...

  6. Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany.

    PubMed

    Obiegala, Anna; Woll, Dietlinde; Karnath, Carolin; Silaghi, Cornelia; Schex, Susanne; Eßbauer, Sandra; Pfeffer, Martin

    2016-03-01

    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study's objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1); a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus. PMID:27015596

  7. Prevalence and Genotype Allocation of Pathogenic Leptospira Species in Small Mammals from Various Habitat Types in Germany

    PubMed Central

    Karnath, Carolin; Silaghi, Cornelia; Schex, Susanne; Eßbauer, Sandra; Pfeffer, Martin

    2016-01-01

    Small mammals serve as most important reservoirs for Leptospira spp., the causative agents of Leptospirosis, which is one of the most neglected and widespread zoonotic diseases worldwide. The knowledge about Leptospira spp. occurring in small mammals from Germany is scarce. Thus, this study’s objectives were to investigate the occurrence of Leptospira spp. and the inherent sequence types in small mammals from three different study sites: a forest in southern Germany (site B1); a National Park in south-eastern Germany (site B2) and a renaturalised area, in eastern Germany (site S) where small mammals were captured. DNA was extracted from kidneys of small mammals and tested for Leptospira spp. by real-time PCR. Positive samples were further analysed by duplex and conventional PCRs. For 14 positive samples, multi locus sequence typing (MLST) was performed. Altogether, 1213 small mammals were captured: 216 at site B1, 456 at site B2 and 541 at site S belonging to following species: Sorex (S.) araneus, S. coronatus, Apodemus (A.) flavicollis, Myodes glareolus, Microtus (Mi.) arvalis, Crocidura russula, Arvicola terrestris, A. agrarius, Mustela nivalis, Talpa europaea, and Mi. agrestis. DNA of Leptospira spp. was detected in 6% of all small mammals. At site B1, 25 small mammals (11.6%), at site B2, 15 small mammals (3.3%) and at site S, 33 small mammals (6.1%) were positive for Leptospira spp. Overall, 54 of the positive samples were further determined as L. kirschneri, nine as L. interrogans and four as L. borgpetersenii while five real-time PCR-positive samples could not be further determined by conventional PCR. MLST results revealed focal occurrence of L. interrogans and L. kirschneri sequence type (ST) 117 while L. kirschneri ST 110 was present in small mammals at all three sites. Further, this study provides evidence for a particular host association of L. borgpetersenii to mice of the genus Apodemus. PMID:27015596

  8. Serial population extinctions in a small mammal indicate Late Pleistocene ecosystem instability

    PubMed Central

    Brace, Selina; Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Miller, Rebecca; Otte, Marcel; Germonpré, Mietje; Blockley, Simon P. E.; Stewart, John R.; Barnes, Ian

    2012-01-01

    The Late Pleistocene global extinction of many terrestrial mammal species has been a subject of intensive scientific study for over a century, yet the relative contributions of environmental changes and the global expansion of humans remain unresolved. A defining component of these extinctions is a bias toward large species, with the majority of small-mammal taxa apparently surviving into the present. Here, we investigate the population-level history of a key tundra-specialist small mammal, the collared lemming (Dicrostonyx torquatus), to explore whether events during the Late Pleistocene had a discernible effect beyond the large mammal fauna. Using ancient DNA techniques to sample across three sites in North-West Europe, we observe a dramatic reduction in genetic diversity in this species over the last 50,000 y. We further identify a series of extinction-recolonization events, indicating a previously unrecognized instability in Late Pleistocene small-mammal populations, which we link with climatic fluctuations. Our results reveal climate-associated, repeated regional extinctions in a keystone prey species across the Late Pleistocene, a pattern likely to have had an impact on the wider steppe-tundra community, and one that is concordant with environmental change as a major force in structuring Late Pleistocene biodiversity. PMID:23185018

  9. Heavy metal bioaccumulation in vegetation and small mammals inhabiting a coal ash disposal site

    SciTech Connect

    Baron, L.A.; Garten, C.T.; Ashwood, T.L.

    1994-12-31

    Coal ash is exempted from treatment as a hazardous waste under RCRA Subtitle C. The US Environmental Protection Agency justifies this exemption contending that coal ash does not possess any of the four RCRA hazardous properties (ignitability, corrosivity, reactivity, or toxicity). However, metals in coal ash may accumulate to toxic levels in biota on ash disposal sites. From 1955 to 1989, the Department of Energy`s Oak Ridge Y-12 Plant sluiced coal ash to a 36-ha earthen retention basin (Filled Coal Ash Pond; FCAP); the basin drains to a small local stream. The FCAP is now revegetated, and a productive terrestrial ecosystem now exists on the site. Vegetation and small mammals were collected from the FCAP and a nearby reference site in September 1992, and June--September 1993. Vegetation and small mammals were analyzed for As, Cd, Cr, Pb, Se, Tl and Hg. Mean concentrations of Se and As for FCAP vs. reference site samples were significantly higher in deciduous tree foliage (18.9 {+-} 19.1 /{mu}g Se/g and 1.6 {+-} 0.69 /{mu}g As/g) and small mammals (2.4 {+-} 1.4 {mu}g Se/g and 0.16 {+-} 0.1 {mu}g As/g) inhabiting the FCAP. Thus, biota living on or near the ash disposal site have bioaccumulated Se and As. Concentrations of these metals in vegetation and small mammals are sufficient to cause toxic effects in their consumers.

  10. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide.

    PubMed

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian

    2014-07-01

    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species' evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals ("MammalDIET"). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  11. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic forest.

    PubMed

    Melo, Geruza L; Miotto, Barbara; Peres, Brisa; Cáceres, Nilton C

    2013-01-01

    Each animal species selects specific microhabitats for protection, foraging, or micro-climate. To understand the distribution patterns of small mammals on the ground and in the understorey, we investigated the use of microhabitats by small mammals in a deciduous forest of southern Brazil. Ten trap stations with seven capture points were used to sample the following microhabitats: liana, fallen log, ground litter, terrestrial ferns, simple-trunk tree, forked tree, and Piper sp. shrubs. Seven field phases were conducted, each for eight consecutive days, from September 2006 through January 2008. Four species of rodents (Akodon montensis, Sooretamys angouya, Oligoryzomys nigripes and Mus musculus) and two species of marsupials (Didelphis albiventris and Gracilinanus microtarsus) were captured. Captured species presented significant differences on their microhabitat use (ANOVA, p = 0.003), particularly between ground and understorey sites. Akodon montensis selected positively terrestrial ferns and trunks, S. angouya selected lianas, D. albiventris selected fallen trunks and Piper sp., and G. microtarsus choose tree trunks and lianas. We demonstrated that the local small-mammal assemblage does select microhabitats, with different types of associations between species and habitats. Besides, there is a strong evidence of habitat selection in order to diminish predation. PMID:23828340

  12. Small mammals of a bitterbrush-cheatgrass community

    SciTech Connect

    Gano, K.A.; Rickard, W.H.

    1982-01-01

    Small mammals were live-trapped in burned and unburned segments of a bitterbrush-cheatgrass community during the years 1974-1979. Results indicate that the shrub-dominated unburned area supports about three times as many small mammals as the cheatgrass-dominated burned area. Species composition was similar in both areas with the exception of one ground squirrel (Spermophilus townsendii) captured on the unburned area. Other species caught were the Great Basin pocket mouse (Perognathus parvus), deer mouse (Peromyscus maniculatus), northern grasshopper mouse (Onychomys leucogaster), and the western harvest mouse (Reithrodontomys megalotis).

  13. Training birds and small mammals for medical behaviors.

    PubMed

    Mattison, Sara

    2012-09-01

    The use of operant conditioning in a zoologic setting allows zookeepers and other animal caretakers to train birds and small mammals to participate willingly in medical procedures. By using operant conditioning with an emphasis on positive reinforcement, small mammals and birds can be trained to cooperate in their own medical care in many ways. This conditioning can reduce stress for animals, caretakers, and veterinarians as well as reduce the potential for animal injuries. This article includes case studies of what the author has identified as foundation behaviors, intermediate behaviors, and advanced behaviors and the methods used to train them. PMID:22998964

  14. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    PubMed Central

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian

    2014-01-01

    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  15. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  16. Helminth parasites of small mammals in Kerman province, southeastern Iran.

    PubMed

    Fasihi Harandi, Majid; Madjdzadeh, Seyed Massoud; Ahmadinejad, Mohammad

    2016-03-01

    Fifty-one specimens of small mammals were collected from different locations of Kerman province, southeastern Iran during 2007 and 2009. They constitute six species of rodents (Meriones persicus, Meriones libycus, Tatera indica, Dryomys nitedula and Mus musculus), one species of Erinaceomorpha (Paraechinus hypomelas) and one species of hare (Lepus europeus). The rate of helminthic infection was 45.1 % among all trapped specimens. In 28 out of 51 hunted specimens no intestinal helminth parasite was found. Of all mammals examined, 15 (29.4 %) had nematodes, 5 (9.8 %) had cestodes, and 3 (5.9 %) were infected with Acanthocephala. Five different species of parasites were isolated: Trichuris muris, Moniliformis moniliformis, Hymenolepis diminuta, Hymenolepis nana, and Mastophorus muris. Results of the present study indicate the potential of small mammals in the transmission of zoonotic helminthic infection. PMID:27065607

  17. Small mammals from Sima de los Huesos.

    PubMed

    Cuenca-Bescós, G; Laplana Conesa, C; Canudo, J I; Arsuaga, J L

    1997-01-01

    A small collection of rodents from Sima de los Huesos helps to clarify the stratigraphic position of this famous human locality. The presence of Allocricetus bursae and Pliomys lenki relictus and the size of A. bursae, Apodemus sylvaticus and Eliomys quercinus suggest a Middle Pleistocene age (Saalian) to the Clays where humans have been found. PMID:9300341

  18. PULMONARY FUNCTION TESTING IN SMALL LABORATORY MAMMALS

    EPA Science Inventory

    The lung is the primary organ likely to be exposed by inhalation studies and, therefore, measurement of changes in lung function are of particular interest to the pulmonary physiologist and toxicologist. Tests of pulmonary function have been developed which can be used with small...

  19. Pulmonary function testing in small laboratory mammals.

    PubMed Central

    O'Neil, J J; Raub, J A

    1984-01-01

    The lung is the primary organ likely to be exposed by inhalation studies and, therefore, measurement of changes in lung function are of particular interest to the pulmonary physiologist and toxicologist. Tests of pulmonary function have been developed which can be used with small animals to measure spirometry (lung volumes), mechanics, distribution of ventilation, gas exchange or control of ventilation. These tests were designed on the basis of similar tests which are used in humans to diagnose and manage patients with lung disease. A major difference is that many of the measurements are performed in anesthetized animals, while human pulmonary function is usually measured in awake cooperating individuals. In addition, the measurement of respiratory events in small animals requires sensitive and rapidly responding equipment, because signals may be small and events can occur quickly. In general, the measurements described provide information on the change in normal lung function which results primarily from structural changes. These tests of pulmonary function can be repetitively and routinely accomplished and the results appear to be highly reproducible. Although some are quite sophisticated, many can be undertaken with relatively inexpensive equipment and provide useful information for toxicological testing. PMID:6434299

  20. Small mammal herbivory: Feedbacks that help maintain desertified ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that herbivores contribute to feedbacks maintaining arid ecosystems in a degraded state. We studied small mammal herbivory on a subshrub, broom snakeweed (Gutierrezia sarothrae), and perennial grasses at three sites: (1) ungrazed black grama (Bouteloua eriopoda) grassland; (...

  1. A method of approximating range size of small mammals

    USGS Publications Warehouse

    Stickel, L.F.

    1965-01-01

    In summary, trap success trends appear to provide a useful approximation to range size of easily trapped small mammals such as Peromyscus. The scale of measurement can be adjusted as desired. Further explorations of the usefulness of the plan should be made and modifications possibly developed before adoption.

  2. Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695

  3. Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range

    PubMed Central

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695

  4. Isotope analyses of fossil small mammals in karstic sites

    NASA Astrophysics Data System (ADS)

    Garcia Alix, Antonio; Delgado Huertas, Antonio

    2016-04-01

    Fossil skeletal accumulations in kartstic complexes, such as caves, are quite common, especially during the Pliocene and Quaternary. These fossil assemblages are sometimes difficult to study, as specimens from different ages can be found together (time averaging). The traditional approach to study this kind of paleontological sites was taphonomic (understanding the origin and other factors affecting the bone accumulation) and/or taxonomic (systematic description of the remains). However, other kinds of analyses, such as biogeochemical techniques to reconstruct past diets and environments, are being more frequently used. Small-mammals have a wide geographical distribution, and their remains (bones and teeth) are extensively represented in the fossil record; therefore, isotopic analyses in fossil small-mammals are a powerful tool to reconstruct paleoenvironments. Field samples for small-mammal studies yield large amounts of sediment-residues that need to be reduced in the laboratory (usually by means of diluted hydrochloric or acetic acid). Therefore, samples of fossil small-mammal for isotopic analyses usually receive two different acid treatments: one to reduce the carbonate residue of the sediment, and afterwards another one to remove digenetic carbonates from the ground sample. Those treatments, along with the small size of the remains, may increase the probability of chemical fractionation during those pre-treatment stages. Those acid treatments are even more aggressive in kasrtic fossil localities, as limestone has to be dissolved to extract the small mammal remains. In this abstract, we present the results of two different treatments carried out in limestone from the Pliocene karstic locality of Moreda (Guadix Basin, Spain) and a control sample. One batch of samples were treated with a solution of 1M acetic acid-acetate calcium buffer (ph 4,5), and the rest with diluted acetic acid (at 15% concentration, Ph 2,2), which is the most used to reduce the sediments

  5. Effectiveness of Protected Areas for Representing Species and Populations of Terrestrial Mammals in Costa Rica

    PubMed Central

    González-Maya, José F.; Víquez-R, Luis R.; Belant, Jerrold L.; Ceballos, Gerardo

    2015-01-01

    Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species’ geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection. PMID:25970293

  6. Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica.

    PubMed

    González-Maya, José F; Víquez-R, Luis R; Belant, Jerrold L; Ceballos, Gerardo

    2015-01-01

    Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species' geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection. PMID:25970293

  7. Detection of diverse novel astroviruses from small mammals in China.

    PubMed

    Hu, Ben; Chmura, Aleksei A; Li, Jialu; Zhu, Guangjian; Desmond, James S; Zhang, Yunzhi; Zhang, Wei; Epstein, Jonathan H; Daszak, Peter; Shi, Zhengli

    2014-11-01

    Astroviruses infect humans and many animal species and cause gastroenteritis. To extensively understand the distribution and genetic diversity of astrovirus in small mammals, we tested 968 anal swabs from 39 animal species, most of which were bats and rodents. We detected diverse astroviruses in 10 bat species, including known bat astroviruses and a large number of novel viruses. Meanwhile, novel groups of astroviruses were identified in three wild rodent species and a remarkably high genetic diversity of astrovirus was revealed in Eothenomys cachinus. We detected astroviruses in captive-bred porcupines and a nearly full-length genome sequence was determined for one strain. Phylogenetic analysis of the complete ORF2 sequence suggested that this strain may share a common ancestor with porcine astrovirus type 2. Moreover, to our knowledge, this study reports the first discovery of astroviruses in shrews and pikas. Our results provide new insights for understanding these small mammals as natural reservoirs of astroviruses. PMID:25034867

  8. Estimation methodology in contemporary small mammal capture-recapture studies

    USGS Publications Warehouse

    Nichols, J.D.; Pollock, K.H.

    1983-01-01

    Estimators of population size and survival rate based on the Jolly-Seber capture-recapture model and the 'enumeration method' are described. Enumeration estimators are shown to estimate complicated functions of capture and survival probabilities and, in the case of the population size estimator, population size. Frequently-listed reasons for preferring enumeration estimators are discussed and the Jolly-Seber estimators are shown to be superior even in the case of heterogeneity and trap-happy response, the two sources of unequal capture probability most likely to occur in small mammal studies. New developments in probabilistic capture-recapture models are described, and these models are recommended for future small mammal capture-recapture studies.

  9. Differences in predatory pressure on terrestrial snails by birds and mammals.

    PubMed

    Rosin, Zuzanna M; Olborska, Paulina; Surmacki, Adrian; Tryjanowski, Piotr

    2011-09-01

    The evolution of shell polymorphism in terrestrial snails is a classic textbook example of the effect of natural selection in which avian and mammalian predation represents an important selective force on gene frequency. However, many questions about predation remain unclear, especially in the case of mammals. We collected 2000 specimens from eight terrestrial gastropod species to investigate the predation pressure exerted by birds and mice on snails. We found evidence of avian and mammalian predation in 26.5% and 36.8% of the shells. Both birds and mammals were selective with respect to snail species, size and morphs. Birds preferred the brown-lipped banded snail Cepaea nemoralis (L.) and mice preferred the burgundy snail Helix pomatia L. Mice avoided pink mid-banded C. nemoralis and preferred brown mid-banded morphs, which were neglected by birds. In contrast to mice, birds chose larger individuals. Significant differences in their predatory pressure can influence the evolution and maintenance of shell size and polymorphism of shell colouration in snails. PMID:21857115

  10. Corridors and olfactory predator cues affect small mammal behavior.

    SciTech Connect

    Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.

    2005-03-30

    Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connected by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.

  11. The future of terrestrial mammals in the Mediterranean basin under climate change

    PubMed Central

    Maiorano, Luigi; Falcucci, Alessandra; Zimmermann, Niklaus E.; Psomas, Achilleas; Pottier, Julien; Baisero, Daniele; Rondinini, Carlo; Guisan, Antoine; Boitani, Luigi

    2011-01-01

    The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. PMID:21844047

  12. Small mammal response to the introduction of cattle into a cottonwood floodplain

    USGS Publications Warehouse

    Samson, F.B.; Knopf, F.L.; Hass, L.B.

    1988-01-01

    Few differences between pastures in small mammal communities were evident prior to grazing, 1 month following grazing, and no differences in number or distribution of small mammals were observed 5 months following grazing. Each small mammal species exhibited different habitat use compared to availability and few habitat variables differed on grazed versus ungrazed pastures. Grazing at SCS recommendations in winter did not appear to have an initial effect on small mammal populations or their habitats in a Colorado floodplain.

  13. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem.

    PubMed

    Wood, M D; Leah, R T; Jones, S R; Copplestone, D

    2009-06-15

    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of (137)Cs, (238)Pu, (239+240)Pu and (241)Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis. PMID:19345398

  14. Comparative dynamics of small mammal populations in treefall gaps and surrounding understorey within Amazonian rainforest

    USGS Publications Warehouse

    Beck, H.; Gaines, M.S.; Hines, J.E.; Nichols, J.D.

    2004-01-01

    Variation in food resource availability can have profound effects on habitat selection and dynamics of populations. Previous studies reported higher food resource availability and fruit removal in treefall gaps than in the understorey. Therefore, gaps have been considered 'keystone habitat' for Neotropical frugivore birds. Here we test if this prediction would also hold for terrestrial small mammals. In the Amazon, we quantified food resource availability in eleven treefall gaps and paired understorey habitats and used feeding experiments to test if two common terrestrial rodents (Oryzomys megacephalus and Proechimys spp.) would perceive differences between habitats. We live-trapped small mammals in eleven gaps and understorey sites for two years, and compared abundance, fitness components (survival and per capita recruitment) and dispersal of these two rodent species across gaps and understorey and seasons (rainy and dry). Our data indicated no differences in resource availability and consumption rate between habitats. Treefall gaps may represent a sink habitat for Oryzomys where individuals had lower fitness, apparently because of habitat-specific ant predation on early life stages, than in the understorey, the source habitat. Conversely, gaps may be source habitat for Proechimys where individuals had higher fitness, than in the understorey, the sink habitat. Our results suggest the presence of source-sink dynamics in a tropical gap-understorey landscape, where two rodent species perceive habitats differently. This may be a mechanism for their coexistence in a heterogeneous and species-diverse system.

  15. Taphonomy for taxonomists: Implications of predation in small mammal studies

    NASA Astrophysics Data System (ADS)

    Fernández-Jalvo, Yolanda; Andrews, Peter; Denys, Christiane; Sesé, Carmen; Stoetzel, Emmanuelle; Marin-Monfort, Dolores; Pesquero, Dolores

    2016-05-01

    Predation is one of the most recurrent sources of bone accumulations. The influence of predation is widely studied for large mammal sites where humans, acting as predators, produce bone accumulations similar to carnivore accumulations. Similarly, small mammal fossil sites are mainly occupation levels of predators (nests or dens). In both cases, investigations of past events can be compared with present day equivalents or proxies. Chewing marks are sometimes present on large mammal predator accumulations, but digestion traits are the most direct indication of predation, and evidence for this is always present in small mammal (prey) fossil assemblages. Digestion grades and frequency indicates predator type and this is well established since the publication of Andrews (1990). The identification of the predator provides invaluable information for accurate interpretation of the palaeoenvironment. Traditionally, palaeoenvironmental interpretations are obtained from the taxonomic species identified in the site, but rather than providing direct interpretations of the surrounding palaeoenvironment, this procedure actually describes the dietary preferences of the predators and the type of occupation (nests, marking territory, dens, etc). This paper reviews the identification of traits produced by predators on arvicolins, murins and soricids using a method that may be used equally by taxonomists and taphonomists. It aims to provide the "tools" for taxonomists to identify the predator based on their methodology, which is examining the occlusal surfaces of teeth rather than their lateral aspects. This will greatly benefit both the work of taphonomists and taxonomists to recognize signs of predation and the improvement of subsequent palaeoecological interpretations of past organisms and sites by identifying both the prey and the predator.

  16. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.

    PubMed

    Meredith, Robert W; Janečka, Jan E; Gatesy, John; Ryder, Oliver A; Fisher, Colleen A; Teeling, Emma C; Goodbla, Alisha; Eizirik, Eduardo; Simão, Taiz L L; Stadler, Tanja; Rabosky, Daniel L; Honeycutt, Rodney L; Flynn, John J; Ingram, Colleen M; Steiner, Cynthia; Williams, Tiffani L; Robinson, Terence J; Burk-Herrick, Angela; Westerman, Michael; Ayoub, Nadia A; Springer, Mark S; Murphy, William J

    2011-10-28

    Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular time trees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene (KPg) mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the hypothesis concerning the delayed rise of present-day mammals during the Eocene Period. PMID:21940861

  17. Pinniped tuberculosis in Malayan tapirs (Tapirus indicus) and its transmission to other terrestrial mammals.

    PubMed

    Jurczynski, Kerstin; Lyashchenko, Konstantin P; Gomis, David; Moser, Irmgard; Greenwald, Rena; Moisson, Pierre

    2011-06-01

    In the last 7 yr, three different species of terrestrial mammals were diagnosed with Mycobacterium pinnipedii either within one collection or through the introduction of an infected animal from another zoo. The affected species included the Malayan tapir (Tapirus indicus), Bactrian camel (Camelus bactrianus bactrianus), and crested porcupine (Hystrix cristata). In the first zoo, all of these were living in exhibits adjacent to a group of South American sea lions (Otariaflavescens) and were cared for by the same keeper. One infected tapir was transferred to a different zoo and transmitted M. pinnipedii infection to three other Malayan tapirs. The tapirs were tested with various diagnostic methods, including comparative intradermal tuberculin test, PCR and culture of sputum samples, Rapid Test (RT), and multiantigen print immunoassay (MAPIA). The M. pinnipedii infection was confirmed at postmortem examination in all animals. RT and MAPIA showed the diagnostic potential for rapid antemortem detection of this important zoonotic disease. PMID:22946398

  18. Evolutionary origins of hepatitis A virus in small mammals.

    PubMed

    Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian

    2015-12-01

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses. PMID:26575627

  19. Evolutionary origins of hepatitis A virus in small mammals

    PubMed Central

    Drexler, Jan Felix; Corman, Victor M.; Lukashev, Alexander N.; van den Brand, Judith M. A.; Gmyl, Anatoly P.; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M.; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G.; Lemon, Stanley M.; Drosten, Christian

    2015-01-01

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3Dpol sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses. PMID:26575627

  20. Small mammal study of Sandia Canyon, 1994 and 1995

    SciTech Connect

    Bennett, K.; Biggs, J.

    1996-11-01

    A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

  1. Measurements of uranium in soils and small mammals

    SciTech Connect

    Miera, F.R. Jr.

    1980-12-01

    The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

  2. Interspecies comparison of chlorinated contaminant concentrations and profiles in wild terrestrial mammals from northwest Poland.

    PubMed

    Tomza-Marciniak, Agnieszka; Marciniak, Andrzej; Pilarczyk, Bogumiła; Prokulewicz, Agnieszka; Bąkowska, Małgorzata

    2014-05-01

    The aim of this study was to determine residual polychlorinated biphenyls (PCBs) and organochlorine pesticides in the adipose tissue of wild terrestrial mammals coming from the same area in northwest Poland and to compare the organochlorine content and profile between species. The study was performed on five mammalian species, including omnivores (badger, wild boar, raccoon dog) and herbivores (roe deer, red deer). The obtained results show that the levels of residues of most of the analyzed compounds were greater in omnivorous mammals than herbivorous mammals. We found differences in the pattern of accumulation of organochlorines. In the raccoon dog organochlorines accumulated in the following descending order: DDTs > PCBs > HCHs > endrin > dieldrin; in the badger, wild boar, and roe deer, the order was as follows: DDTs > HCHs > PCBs > endrin > dieldrin; and in red deer, the order was as follows: HCHs > DDTs > PCBs > endrin > dieldrin. PCB 153 was dominant in herbivores and in the wild boar, whereas in the raccoon dog it was lower than PCB 138 and in badger lower than PCB 180. These differences in the tested species may reflect differences in metabolic capacity and/or feeding habits and an uneven distribution of organochlorines in the area where the animals lived. Maximum residue levels (MRLs) were exceeded in single samples from animals whose meat and fat can be consumed by humans. The greatest number of cases where MRLs were exceeded was observed in the adipose tissue of the badger (HCHs, DDTs, endrin, non-dioxin-like PCBs) and the fewest in the adipose tissue of roe deer (only lindane). PMID:24430167

  3. The trap line as a measure of small mammal populations

    USGS Publications Warehouse

    Stickel, L.F.

    1948-01-01

    SUMMARY: The value of a line of traps as a measure of relative abundance of small mammals was studied by field trials on Peromyscus leucopus populations. Comparisons were made between the numbers of mice captured by a line of live traps and the numbers captured in intensive live trapping of a larger area surrounding the line. Trials were made in bottomland woods where mice were numerous and in upland woods where mice were less common. It was found that wood mice living in upland woods had significantly larger cruising ranges than those living in bottomland woods. Consequently, a line of traps in the bottomlands captured mice from a smaller surrounding territory than in the uplands. Therefore, comparisons of relative size of the mouse population in these two areas on the basis of line-trapping showed an erroneously large number for the upland woods. As a result of these trials and the studies of other workers, it is concluded that lines of traps are not fully reliable means of measuring relative abundance of small mammals.

  4. [Structure of parasitic arthropod communities in forest small mammals].

    PubMed

    Balashov, Iu S

    2004-01-01

    Species composition and structure of ectoparasite arthropod communities were examined all year round six years in the bank vole Clethrionomys glareolus, Ural wood mouse Apodemus uralensis and the common shrew Sorex araneus in forests of the Ilmen'-Volkhov depression. In total, 4500 host samples have been examined and all ectoparasites have been collected. The species composition of ectoparasite community in small mammal species are as follows: the bank vole--29 insect, tick and mite species, the common shrew--23 species, the Ural wood mouse--16 species. In forest biotopes, many temporary ectoparasitic species occur on several host species living in the same habitats under a forest canopy and contacting each other. A parasitic supracommunity in the ecosystem examined has a pool of temporary ectoparasites, which is available for all the community of small mammals. A role of different rodent and shrew species are hosts of insects and ticks changes depending on a density of potential host populations and numerous other environment factors. PMID:15656091

  5. Small mammal populations in a restored stream corridor

    SciTech Connect

    Wike, L.D.

    2000-03-13

    An opportunity to study the response of a small mammal community to restoration of a riparian wetland was provided by the Pen Branch project at the Savannah River Site (SRS). Live trapping of small mammals was conducted on six transects at Pen Branch in 1996 and 1998 and at three transects at Meyer's Branch, an unimpacted stream at SRS, in 1997 and 1998. Distributions of rates of capture of the four most common species were both spatially and temporally uneven. Kruskal-Wallis one-way analysis of variance found no significant differences in the relationship of capture rates between species and between treatment and both the within-stream control and Meyers Branch. Habitat use and movement within stream corridors appears to be dependent primarily on species, with age and sex perhaps contributing to preference and distance moved. The lack of differences in capture rates related to transect or treatment may be due to the close proximity of sample transects relative to the movement potential of the species sampled.

  6. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia

    PubMed Central

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B.

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  7. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia.

    PubMed

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327

  8. Small Mammals: Common Surgical Procedures of Rodents, Ferrets, Hedgehogs, and Sugar Gliders.

    PubMed

    Miwa, Yasutsugu; Sladky, Kurt K

    2016-01-01

    Small mammal surgical procedures are a part of clinical veterinary practice and are performed with regularity. Anesthetic and analgesic techniques are important components of any successful small mammal surgical procedure. Many basic surgical principles used in dogs and cats can be directly applied to small mammals, but tissues tend to be smaller and thinner, and hemostasis is critical with small patients due to risk of death with minimal blood loss. Common surgical procedures in small mammals include integumentary mass and abscess excision, reproductive procedures, gastrointestinal foreign body removal, urolith removal, prolapsed tissues associated with the gastrointestinal tract, intra-abdominal mass excision, and hepatic surgery. PMID:26611930

  9. Random versus Game Trail-Based Camera Trap Placement Strategy for Monitoring Terrestrial Mammal Communities

    PubMed Central

    Cusack, Jeremy J.; Dickman, Amy J.; Rowcliffe, J. Marcus; Carbone, Chris; Macdonald, David W.; Coulson, Tim

    2015-01-01

    Camera trap surveys exclusively targeting features of the landscape that increase the probability of photographing one or several focal species are commonly used to draw inferences on the richness, composition and structure of entire mammal communities. However, these studies ignore expected biases in species detection arising from sampling only a limited set of potential habitat features. In this study, we test the influence of camera trap placement strategy on community-level inferences by carrying out two spatially and temporally concurrent surveys of medium to large terrestrial mammal species within Tanzania’s Ruaha National Park, employing either strictly game trail-based or strictly random camera placements. We compared the richness, composition and structure of the two observed communities, and evaluated what makes a species significantly more likely to be caught at trail placements. Observed communities differed marginally in their richness and composition, although differences were more noticeable during the wet season and for low levels of sampling effort. Lognormal models provided the best fit to rank abundance distributions describing the structure of all observed communities, regardless of survey type or season. Despite this, carnivore species were more likely to be detected at trail placements relative to random ones during the dry season, as were larger bodied species during the wet season. Our findings suggest that, given adequate sampling effort (> 1400 camera trap nights), placement strategy is unlikely to affect inferences made at the community level. However, surveys should consider more carefully their choice of placement strategy when targeting specific taxonomic or trophic groups. PMID:25950183

  10. Isotopic partitioning by small mammals in the subnivium.

    PubMed

    Calandra, Ivan; Labonne, Gaëlle; Mathieu, Olivier; Henttonen, Heikki; Lévêque, Jean; Milloux, Marie-Jeanne; Renvoisé, Élodie; Montuire, Sophie; Navarro, Nicolas

    2015-09-01

    In the Arctic, food limitation is one of the driving factors behind small mammal population fluctuations. Active throughout the year, voles and lemmings (arvicoline rodents) are central prey in arctic food webs. Snow cover, however, makes the estimation of their winter diet challenging. We analyzed the isotopic composition of ever-growing incisors from species of voles and lemmings in northern Finland trapped in the spring and autumn. We found that resources appear to be reasonably partitioned and largely congruent with phylogeny. Our results reveal that winter resource use can be inferred from the tooth isotopic composition of rodents sampled in the spring, when trapping can be conducted, and that resources appear to be partitioned via competition under the snow. PMID:26445663

  11. Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study.

    PubMed

    Dumont, Maitena; Laurin, Michel; Jacques, Florian; Pellé, Eric; Dabin, Willy; de Buffrénil, Vivian

    2013-05-01

    Inner vertebral architecture is poorly known, except in human and laboratory animals. In order to document this topic at a broad comparative level, a 2D-histomorphometric study of vertebral centra was conducted in a sample of 98 therian mammal species, spanning most of the size range and representing the main locomotor adaptations known in therian taxa. Eleven variables relative to the development and geometry of trabecular networks were extracted from CT scan mid-sagittal sections. Phylogeny-informed statistical tests were used to reveal the respective influences of phylogeny, size, and locomotion adaptations on mammalian vertebral structure. The use of random taxon reshuffling and squared change parsimony reveals that 9 of the 11 characteristics (the two exceptions are total sectional area and structural polarization) contain a phylogenetic signal. Linear discriminant analyses suggest that the sampled taxa can be arranged into three categories with respect to locomotion mode: a) terrestrial + flying + digging + amphibious forms, b) coastal oscillatory aquatic taxa, and c) pelagic oscillatory aquatic forms represented by oceanic cetaceans. Pairwise comparison tests and linear regressions show that, when specific size increases, the length of trabecular network (Tt.Tb.Le), as well as trabecular proliferation in total sections (Pr.Tb.Tt), increase with positive allometry. This process occurs in all locomotion categories but is particularly pronounced in pelagic oscillators. Conversely, mean trabecular width has a lesser increase with size in pelagic oscillators. Trabecular orientation is not influenced by size. All tests were corrected for multiple testing. By using six structural variables or indices, locomotion mode can be predicted with a 97.4% success rate for terrestrial forms, 66.7% for coastal oscillatory, and 81.3% for pelagic oscillatory. The possible functional meaning of these results and their potential use for paleobiological inference of locomotion in

  12. Patterns of relative diversity within riparian small mammal communities, Platte River Watershed, Colorado

    USGS Publications Warehouse

    Olson, T.E.; Knopf, Fritz L.

    1988-01-01

    Relative diversity within and between small mammal assemblages of riparian and upland vegetation was evaluated at 6 study areas across an elevational gradient. In contrast to avian diversity analyses conducted at the same sites, species richness, relative diversity, and faunal similarity of small mammals were greater among upland rather than riparian communities across the cline. Beta diversity between riparian and upland small mammal communities is greater at higher elevations within the watershed. These higher elevation portions of watersheds must be emphasized in management strategies to conserve regional integrity of native small mammal faunas.

  13. Concentration ratios for small mammals collected from the exposed sediments of a 137Cs contaminated reservoir.

    PubMed

    Paller, Michael H; Timothy Jannik, G; Wike, Lynn D

    2006-01-01

    (137)Cs concentration ratios were computed for small mammals collected from the dried sediments of a partially drained, contaminated reservoir. Soil (137)Cs activity concentrations were heterogeneous on small and large spatial scales and had a geometric mean of 253 (range 23-2110) Bq/kg dry weight. Mean (137)Cs activity concentrations in composite cotton rat Sigmodon hispidus and cotton mouse Peromyscus gossypinus samples averaged 2480 (range 556-6670) and 471 (range 96-1000) Bq/kg whole body dry weight, respectively. About 50% of the variance in cotton rat tissue (137)Cs activity was explained by variation in soil (137)Cs activity. Soil-to-animal dry weight concentration ratios averaged 6.0 for cotton rats and 1.2 for cotton mice and were generally similar to (137)Cs concentration ratios for herbivorous, homeothermic animals from other contaminated ecosystems. In the RESRAD-BIOTA dose model, the default wet-weight concentration ratio for (137)Cs in terrestrial animals is 110 resulting in an estimate of internal and external radiation doses to terrestrial biota that is 44 times more than the dose calculated with the actual measured wet-weight concentration ratio for cotton rats (1.6). These results show that site-specific concentration ratios can significantly affect the estimation of dose. PMID:16963166

  14. Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada.

    PubMed

    Philippa, J D W; Leighton, F A; Daoust, P Y; Nielsen, O; Pagliarulo, M; Schwantje, H; Shury, T; Van Herwijnen, R; Martina, B E E; Kuiken, T; Van de Bildt, M W G; Osterhaus, A D M E

    2004-07-31

    Antibody titres to selected pathogens (canine adenovirus [CAV-2], feline herpesvirus [FHV], phocine herpesvirus [PHV-1], canine distemper virus, dolphin morbillivirus [DMV], phocine distemper virus [PDV], parainfluenza virus type 3 [PI3], rabies virus, dolphin rhabdovirus [DRV], canine coronavirus, feline coronavirus, feline leukaemia virus, Borrelia burgdorferi and Toxoplasma gondii) were determined in whole blood or serum samples from selected free-ranging terrestrial carnivores and marine mammals, including cougars (Fellis concolor), lynxes (Fellis lynx), American badgers (Taxidea taxus), fishers (Martes pennanti), wolverines (Gulo gulo), wolves (Canis lupus), black bears (Ursus americanus), grizzly bears (Ursus arctos), polar bears (Ursus maritimus), walruses (Odobenus rosmarus) and belugas (Delphinapterus leucas), which had been collected at several locations in Canada between 1984 and 2001. Antibodies to a number of viruses were detected in species in which these infections have not been reported before, for example, antibodies to CAV-2 in walruses, to PDV in black bears, grizzly bears, polar bears, lynxes and wolves, to DMV in grizzly bears, polar bears, walruses and wolves, to PI3 in black bears and fishers, and to DRV in belugas and walruses. PMID:15338705

  15. Future directions in training of veterinarians for small exotic mammal medicine: expectations, potential, opportunities, and mandates.

    PubMed

    Rosenthal, Karen

    2006-01-01

    Small exotic mammals have been companions to people for almost as long as dogs and cats have been. The challenge for veterinary medicine today is to decipher the tea leaves and determine whether small mammals are fad or transient pets or whether they will still be popular in 20 years. This article focuses on pet small-mammal medicine, as the concerns of the laboratory animal are better known and may differ profoundly from those of a pet. Dozens of species of small exotic mammals are kept as pets. These pet small-mammal species have historically served human purposes other than companionship: for hunting, for their pelts, or for meat. Now, they are common pets. At present, most veterinary schools lack courses in the medical care of these animals. Veterinary students need at least one required class to introduce them to these pets. Currently, there are no small-mammal-only residency programs. This does not correspond with current needs. The only way to judge current needs is by assessing what employers are looking for. In a recent JAVMA classified section, almost 30% of small-animal practices in suburban/urban areas were hiring veterinarians with knowledge of exotic pets. All veterinarians must recognize that pet exotic small mammals have changed the landscape of small-animal medicine. It is a reality that, today, many small-animal practices see pet exotic small mammals on a daily basis. PMID:17035210

  16. Phylogenetic Analysis of Conservation Priorities for Aquatic Mammals and Their Terrestrial Relatives, with a Comparison of Methods

    PubMed Central

    May-Collado, Laura J.; Agnarsson, Ingi

    2011-01-01

    Background Habitat loss and overexploitation are among the primary factors threatening populations of many mammal species. Recently, aquatic mammals have been highlighted as particularly vulnerable. Here we test (1) if aquatic mammals emerge as more phylogenetically urgent conservation priorities than their terrestrial relatives, and (2) if high priority species are receiving sufficient conservation effort. We also compare results among some phylogenetic conservation methods. Methodology/Principal Findings A phylogenetic analysis of conservation priorities for all 620 species of Cetartiodactyla and Carnivora, including most aquatic mammals. Conservation priority ranking of aquatic versus terrestrial species is approximately proportional to their diversity. However, nearly all obligated freshwater cetartiodactylans are among the top conservation priority species. Further, ∼74% and 40% of fully aquatic cetartiodactylans and carnivores, respectively, are either threatened or data deficient, more so than their terrestrial relatives. Strikingly, only 3% of all ‘high priority’ species are thought to be stable. An overwhelming 97% of these species thus either show decreasing population trends (87%) or are insufficiently known (10%). Furthermore, a disproportional number of highly evolutionarily distinct species are experiencing population decline, thus, such species should be closely monitored even if not currently threatened. Comparison among methods reveals that exact species ranking differs considerably among methods, nevertheless, most top priority species consistently rank high under any method. While we here favor one approach, we also suggest that a consensus approach may be useful when methods disagree. Conclusions/Significance These results reinforce prior findings, suggesting there is an urgent need to gather basic conservation data for aquatic mammals, and special conservation focus is needed on those confined to freshwater. That evolutionarily distinct

  17. Avian ecosystem functions are influenced by small mammal ecosystem engineering

    PubMed Central

    2013-01-01

    Background Birds are important mobile link species that contribute to landscape-scale patterns by means of pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by comparing their foraging effort across sites with a range of runway densities, including sites without runways. We measured granivory by granivorous and omnivorous birds at Rinconada de Maipú, central Chile. As a measure of potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale. Results We recorded that birds found food sources sooner and ate more at sites with higher densities of degu runways, cururo mounds, trees, and fewer shrubs. These sites also had higher invertebrate prey richness but lower invertebrate prey abundance. This implies that omnivorous birds, and possibly insectivorous birds, forage for invertebrates in the same plots with high degu runway densities where granivory takes place. In an exploratory analysis we also found that plot-scale functional diversity for four avian ecosystem functions were moderately to weakly correllated to expected ecosystem function outcomes at the plot scale. Conclusions Degu ecosystem engineering affects the behavior of avian mobile link species and is thus correlated with ecosystem functioning at relatively small spatial scales. PMID:24359802

  18. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals.

    PubMed

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ(13)C and δ(15)N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ(13)C and δ(15)N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ(15)N (16.31±3.01‰ and 17.86±2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ(15)N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ(13)C values, age-dependent differences were not registered. δ(15)N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. PMID:27179319

  19. Experimental analysis of methods for measuring small mammal populations

    USGS Publications Warehouse

    Stickel, L.F.

    1946-01-01

    SUMMARY: The Peromyscus leucopus on a 17-acre study area were live-trapped, marked, and released over a seven-day period. On the three following nights intensive snap-trapping was done on the central acre of the study plot. The animals caught by snap traps in the central acre represented the population of the central acre and several surrounding acres. By the currently accepted methods of interpreting snap-trap data, the population per acre would be considered to be 23 adults. The live-trap data show that the true population was between six and seven adults per acre. Modern methods of live-trapping are shown to be valid for population studies. Two methods are presented for the conversion of live-trap data into per acre figures. Errors involved in the current use of snap-trap data are discussed and snap-trap methods are shown to be invalid for determining actual population numbers. It should be practical to use a snap-trap quadrant technique to obtain a relative measure or index figure for small mammal populations.

  20. Rickettsia species in fleas collected from small mammals in Slovakia.

    PubMed

    Špitalská, Eva; Boldiš, Vojtech; Mošanský, Ladislav; Sparagano, Olivier; Stanko, Michal

    2015-11-01

    Epidemiological and epizootiological studies of Rickettsia felis and other Rickettsia spp. are very important, because their natural cycle has not yet been established completely. In total, 315 fleas (Siphonaptera) of 11 species of Ceratophyllidae, Hystrichopsyllidae and Leptopsyllidae families were tested for the presence of Rickettsia species and Coxiella burnetii with conventional and specific quantitative real-time PCR assays. Fleas were collected from five rodent hosts (Myodes glareolus, Apodemus flavicollis, Apodemus agrarius, Microtus subterraneus, Microtus arvalis) and three shrew species (Sorex araneus, Neomys fodiens, Crocidura suaveolens) captured in Eastern and Southern Slovakia. Overall, Rickettsia spp. was found in 10.8% (34/315) of the tested fleas of Ctenophthalmus agyrtes, Ctenophthalmus solutus, Ctenophthalmus uncinatus and Nosopsyllus fasciatus species. Infected fleas were coming from A. flavicollis, A. agrarius, and M. glareolus captured in Eastern Slovakia. C. burnetii was not found in any fleas. R. felis, Rickettsia helvetica, unidentified Rickettsia, and rickettsial endosymbionts were identified in fleas infesting small mammals in the Košice region, Eastern Slovakia. This study is the first report of R. felis infection in C. solutus male flea collected from A. agrarius in Slovakia. PMID:26346455

  1. Hantavirus testing in small mammal populations of northcentral New Mexico

    SciTech Connect

    Biggs, J.; Bennett, K.; Foxx, T.

    1995-07-01

    In 1993, an outbreak of a new strain of hantavirus in the southwestern US indicated that deer mice (Peromyscus maniculatus) was the primary carrier of the virus. In 1993 and 1994, the Ecological Studies Team (EST) at Los Alamos National Laboratory surveyed small mammal populations in Los Alamos County, New Mexico, primarily for ecological risk assessment (ecorisk) studies. At the request of the Centers for Disease Control (CDC) and the School of Medicine at the University of New Mexico, EST also collected blood samples from captured animals for use in determining seroprevalence of hantavirus in this region due to the recent outbreak of this virus in the four-comers region of the Southwest. The deer mouse was the most commonly captured species during the tripping sessions. Other species sampled included harvest mice (Reithrodontomys megalotis), least chipmunk (Eutamias minimus), long-tailed vole (Microtus longicaudus), Mexican woodrat (Neotoma mexicana), and brush mouse (Peromyscus boylii). The team collected blood samples from tripped animals following CDC`s suggested guidelines. Results of the 1993 and 1994 hantavirus testing identified a total overall seroprevalence of approximately 5.5% and 4.2%, respectively. The highest seroprevalence rates were found in deer mice seri (3--6%), but results on several species were inconclusive; further studies will be necessary, to quantify seroprevalence rates in those species. Seroprevalence rates for Los Alamos County were much lower than elsewhere in the region.

  2. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. PMID:24530799

  3. A long-lasting wireless stimulator for small mammals

    PubMed Central

    Hentall, Ian D.

    2013-01-01

    The chronic effects of electrical stimulation in unrestrained awake rodents are best studied with a wireless neural stimulator that can operate unsupervised for several weeks or more. A robust, inexpensive, easily built, cranially implantable stimulator was developed to explore the restorative effects of brainstem stimulation after neurotrauma. Its connectorless electrodes directly protrude from a cuboid epoxy capsule containing all circuitry and power sources. This physical arrangement prevents fluid leaks or wire breakage and also simplifies and speeds implantation. Constant-current pulses of high compliance (34 volts) are delivered from a step-up voltage regulator under microprocessor control. A slowly pulsed magnetic field controls activation state and stimulation parameters. Program status is signaled to a remote reader by interval-modulated infrared pulses. Capsule size is limited by the two batteries. Silver oxide batteries rated at 8 mA-h were used routinely in 8 mm wide, 15 mm long and 4 mm high capsules. Devices of smaller contact area (5 by 12 mm) but taller (6 mm) were created for mice. Microstimulation of the rat's raphe nuclei with intermittent 5-min (50% duty cycle) trains of 30 μA, 1 ms pulses at 8 or 24 Hz frequency during 12 daylight hours lasted 21.1 days ±0.8 (mean ± standard error, Kaplan-Meir censored estimate, n = 128). Extended lifetimes (>6 weeks, no failures, n = 16) were achieved with larger batteries (44 mA-h) in longer (18 mm), taller (6 mm) capsules. The circuit and electrode design are versatile; simple modifications allowed durable constant-voltage stimulation of the rat's sciatic nerve through a cylindrical cathode from a subcutaneous pelvic capsule. Devices with these general features can address in small mammals many of the biological and technical questions arising neurosurgically with prolonged peripheral or deep brain stimulation. PMID:24130527

  4. Negative Effects of an Exotic Grass Invasion on Small-Mammal Communities

    PubMed Central

    Freeman, Eric D.; Sharp, Tiffanny R.; Larsen, Randy T.; Knight, Robert N.; Slater, Steven J.; McMillan, Brock R.

    2014-01-01

    Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function. PMID:25269073

  5. Negative effects of an exotic grass invasion on small-mammal communities.

    PubMed

    Freeman, Eric D; Sharp, Tiffanny R; Larsen, Randy T; Knight, Robert N; Slater, Steven J; McMillan, Brock R

    2014-01-01

    Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function. PMID:25269073

  6. Line Transect Surveys Underdetect Terrestrial Mammals: Implications for the Sustainability of Subsistence Hunting.

    PubMed

    Fragoso, José M V; Levi, Taal; Oliveira, Luiz F B; Luzar, Jeffrey B; Overman, Han; Read, Jane M; Silvius, Kirsten M

    2016-01-01

    Conservation of Neotropical game species must take into account the livelihood and food security needs of local human populations. Hunting management decisions should therefore rely on abundance and distribution data that are as representative as possible of true population sizes and dynamics. We simultaneously applied a commonly used encounter-based method and an infrequently used sign-based method to estimate hunted vertebrate abundance in a 48,000-km2 indigenous landscape in southern Guyana. Diurnal direct encounter data collected during three years along 216, four-kilometer -long transects consistently under-detected many diurnal and nocturnal mammal species readily detected through sign. Of 32 species analyzed, 31 were detected by both methods; however, encounters did not detect one and under-detected another 12 of the most heavily hunted species relative to sign, while sign under-detected 12 never or rarely collected species relative to encounters. The six most important game animals in the region, all ungulates, were not encountered at 11-40% of village and control sites or on 29-72% of transects where they were detected by sign. Using the sign methodology, we find that tapirs, one of the terrestrial vertebrates considered most sensitive to overexploitation, are present at many sites where they were never visually detected during distance sampling. We find that this is true for many other species as well. These high rates of under-detection suggest that behavioral changes in hunted populations may affect apparent occurrence and abundance of these populations. Accumulation curves (detection of species on transects) were much steeper for sign for 12 of 16 hunted species than for encounters, but that pattern was reversed for 12 of 16 species unhunted in our area. We conclude that collection of sign data is an efficient and effective method of monitoring hunted vertebrate populations that complements encounter and camera-trapping methods in areas impacted by

  7. Line Transect Surveys Underdetect Terrestrial Mammals: Implications for the Sustainability of Subsistence Hunting

    PubMed Central

    Levi, Taal; Oliveira, Luiz F. B.; Luzar, Jeffrey B.; Overman, Han; Read, Jane M.

    2016-01-01

    Conservation of Neotropical game species must take into account the livelihood and food security needs of local human populations. Hunting management decisions should therefore rely on abundance and distribution data that are as representative as possible of true population sizes and dynamics. We simultaneously applied a commonly used encounter-based method and an infrequently used sign-based method to estimate hunted vertebrate abundance in a 48,000-km2 indigenous landscape in southern Guyana. Diurnal direct encounter data collected during three years along 216, four-kilometer -long transects consistently under-detected many diurnal and nocturnal mammal species readily detected through sign. Of 32 species analyzed, 31 were detected by both methods; however, encounters did not detect one and under-detected another 12 of the most heavily hunted species relative to sign, while sign under-detected 12 never or rarely collected species relative to encounters. The six most important game animals in the region, all ungulates, were not encountered at 11–40% of village and control sites or on 29–72% of transects where they were detected by sign. Using the sign methodology, we find that tapirs, one of the terrestrial vertebrates considered most sensitive to overexploitation, are present at many sites where they were never visually detected during distance sampling. We find that this is true for many other species as well. These high rates of under-detection suggest that behavioral changes in hunted populations may affect apparent occurrence and abundance of these populations. Accumulation curves (detection of species on transects) were much steeper for sign for 12 of 16 hunted species than for encounters, but that pattern was reversed for 12 of 16 species unhunted in our area. We conclude that collection of sign data is an efficient and effective method of monitoring hunted vertebrate populations that complements encounter and camera-trapping methods in areas impacted by

  8. Terrestrial Scavenging of Marine Mammals: Cross-Ecosystem Contaminant Transfer and Potential Risks to Endangered California Condors (Gymnogyps californianus).

    PubMed

    Kurle, Carolyn M; Bakker, Victoria J; Copeland, Holly; Burnett, Joe; Jones Scherbinski, Jennie; Brandt, Joseph; Finkelstein, Myra E

    2016-09-01

    The critically endangered California condor (Gymnogyps californianus) has relied intermittently on dead-stranded marine mammals since the Pleistocene, and this food source is considered important for their current recovery. However, contemporary marine mammals contain persistent organic pollutants that could threaten condor health. We used stable carbon and nitrogen isotope, contaminant, and behavioral data in coastal versus noncoastal condors to quantify contaminant transfer from marine mammals and created simulation models to predict the risk of reproductive impairment for condors from exposure to DDE (p,p'-DDE), a major metabolite of the chlorinated pesticide DDT. Coastal condors had higher whole blood isotope values and mean concentrations of contaminants associated with marine mammals, including mercury (whole blood), sum chlorinated pesticides (comprised of ∼95% DDE) (plasma), sum polychlorinated biphenyls (PCBs) (plasma), and sum polybrominated diphenyl ethers (PBDEs) (plasma), 12-100-fold greater than those of noncoastal condors. The mean plasma DDE concentration for coastal condors was 500 ± 670 (standard deviation) (n = 22) versus 24 ± 24 (standard deviation) (n = 8) ng/g of wet weight for noncoastal condors, and simulations predicted ∼40% of breeding-age coastal condors have DDE levels associated with eggshell thinning in other avian species. Our analyses demonstrate potentially harmful levels of marine contaminant transfer to California condors, which could hinder the recovery of this terrestrial species. PMID:27434394

  9. How may the regional climate change redraw the European terrestrial wild mammals' living territory in the 21st century?

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Bartholy, Judit; Pongracz, Rita; Hufnagel, Levente

    2013-04-01

    Climate is one of the abiotic factors, which controls primarily the range areas of wildlife. Animals tend to occupy geographical regions with climatic conditions, which are optimal to their specific needs. Due to the projected global warming and climate change the living territory of wild animals' may be reshaped in the future, some of the species may even suffer extinction. In this research we aim to estimate how climate change alters the distributions of European terrestrial mammal species and modifies biodiversity in the 21st century. For this purpose, first, hierarchical cluster analysis is applied to species for forming major groups. Climatic information is provided by using the E-OBS gridded database for 1961-1990. Then, carefully selecting typical species from the major groups it is possible to predict changes in area by displaying their climate indicator profile maps. For the range datasets the Atlas of European Mammals are analyzed, which was published in 1999 and is now widely used as a reference work. It contains data for pre-1970 and post-1970 presence of mammal species in Europe. Then, in order to assess future changes, available datasets of regional climate model results from the European project ENSEMBLES for 1951-2100 using the moderate SRES A1B emission scenario are considered with 25 km horizontal resolution. Simultaneous analysis of climate simulations and animal range datasets enables us to evaluate the vulnerability of European terrestrial mammal species to regional climate change. The results suggest that rapid change and significant decline in habitats and fauna redraw the wild animals' living territory and make them migrate northward.

  10. Integrating small mammal community variables into aircraft-wildlife collision management plans at Namibian airports.

    PubMed

    Hauptfleisch, Morgan L; Avenant, Nico L

    2015-11-01

    Understanding ecosystems within and around airports can help to determine the causes and possible mitigation measures for collisions between aircraft and wildlife. Small mammal communities are an important component of the semi-arid savanna ecosystems of Namibia, its productivity and its ecosystem integrity. They are also a major direct attractant for raptors at airports. The present study compared the abundance and diversity of small mammals between Namibia's 2 main airport properties (Hosea Kutako International Airport and Eros Airport), and among areas of land used for various purposes surrounding the airports. A total of 2150 small mammals (3 orders, 11 species) were captured over 4 trapping seasons. Small mammal abundance was significantly higher at the end of the growing season than during the non-growing season. The grass mowing regimen in current management plans at the airports resulted in a significant reduction of small mammal abundance at Hosea Kutako during the non-growing season only, thus indicating that annual mowing is effective but insufficient to reduce the overall abundance of mammal prey species for raptors. Small mammal numbers were significantly higher at Hosea Kutako Airport compared to the cattle and game farming land surrounding the airport, while no differences in small mammal densities or diversity were found for areas with different land uses at and surrounding Eros. The study suggests that the fence around Hosea Kutako provides a refuge for small mammals, resulting in higher densities. It also indicates that different surrounding land use practices result in altered ecosystem function and productivity, an important consideration when identifying wildlife attractants at airports. PMID:26331534

  11. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species. PMID:20495547

  12. Radiocarbon dating of small terrestrial gastropod shells in North America

    USGS Publications Warehouse

    Pigati, J.S.; Rech, J.A.; Nekola, J.C.

    2010-01-01

    Fossil shells of small terrestrial gastropods are commonly preserved in wetland, alluvial, loess, and glacial deposits, as well as in sediments at many archeological sites. These shells are composed largely of aragonite (CaCO3) and potentially could be used for radiocarbon dating, but they must meet two criteria before their 14C ages can be considered to be reliable: (1) when gastropods are alive, the 14C activity of their shells must be in equilibrium with the 14C activity of the atmosphere, and (2) after burial, their shells must behave as closed systems with respect to carbon. To evaluate the first criterion, we conducted a comprehensive examination of the 14C content of the most common small terrestrial gastropods in North America, including 247 AMS measurements of modern shell material (3749 individual shells) from 46 different species. The modern gastropods that we analyzed were all collected from habitats on carbonate terrain and, therefore, the data presented here represent worst-case scenarios. In sum, ~78% of the shell aliquots that we analyzed did not contain dead carbon from limestone or other carbonate rocks even though it was readily available at all sites, 12% of the aliquots contained between 5 and 10% dead carbon, and a few (3% of the total) contained more than 10%. These results are significantly lower than the 20-30% dead carbon that has been reported previously for larger taxa living in carbonate terrain. For the second criterion, we report a case study from the American Midwest in which we analyzed fossil shells of small terrestrial gastropods (7 taxa; 18 AMS measurements; 173 individual shells) recovered from late-Pleistocene sediments. The fossil shells yielded 14C ages that were statistically indistinguishable from 14C ages of well-preserved plant macrofossils from the same stratum. Although just one site, these results suggest that small terrestrial gastropod shells may behave as closed systems with respect to carbon over geologic

  13. Diversity and habitat association of small mammals in Aridtsy forest, Awi Zone, Ethiopia

    PubMed Central

    BANTIHUN, Getachew; BEKELE, Afework

    2015-01-01

    Here, we conducted a survey to examine the diversity, distribution and habitat association of small mammals from August 2011 to February 2012 incorporating both wet and dry seasons in Aridtsy forest, Awi Zone, Ethiopia. Using Sherman live traps and snap traps in four randomly selected trapping grids, namely, natural forest, bushland, grassland and farmland, a total of 468 individuals comprising eight species of small mammals (live traps) and 89 rodents of six species (snap traps) were trapped in 2352 and 1200 trap nights, respectively. The trapped small mammals included seven rodents and one insectivore: Lophuromys flavopuntatus (30.6%), Arvicanthis dembeensis (25.8%), Stenocephalemys albipes (20%), Mastomys natalensis (11.6%), Pelomys harringtoni (6.4%), Acomys cahirinus (4.3%), Lemniscomys zebra (0.2%) and the greater red musk shrew (Crocidura flavescens, 1.1%). Analysis showed statistically significant variations in the abundance and habitat preferences of small mammals between habitats during wet and dry seasons. PMID:25855227

  14. A small-scale survey of hantavirus in mammals from Indiana.

    PubMed

    Dietrich, N; Pruden, S; Ksiazek, T G; Morzunov, S P; Camp, J W

    1997-10-01

    In order to determine if hantaviruses were present in mice and other small mammals in Indiana (USA), small mammals were trapped in Brown, LaPorte, Tippecanoe and Whitley counties. Sixty-seven small mammals were trapped during August and September 1994. Sixty-three Peromyscus leucopus, one Microtus pennsylvanicus, one Zapus hudsonius and two Blarina brevicauda were captured and tested for hantaviruses. Six P. leucopus were found to have antibody to Sin Nombre virus (SN) by IgG ELISA, and a 139 bp fragment of SN-like hantavirus was amplified from five of them. All six of the positive P. leucopus were from LaPorte County. No other small mammals had evidence of infection with SN virus. This study presents the first report of Sin Nombre-like hantavirus in P. leucopus from Indiana. PMID:9391967

  15. Diversity and habitat association of small mammals in Aridtsy forest, Awi Zone, Ethiopia.

    PubMed

    Bantihun, Getachew; Bekele, Afework

    2015-03-18

    Here, we conducted a survey to examine the diversity, distribution and habitat association of small mammals from August 2011 to February 2012 incorporating both wet and dry seasons in Aridtsy forest, Awi Zone, Ethiopia. Using Sherman live traps and snap traps in four randomly selected trapping grids, namely, natural forest, bushland, grassland and farmland, a total of 468 individuals comprising eight species of small mammals (live traps) and 89 rodents of six species (snap traps) were trapped in 2352 and 1200 trap nights, respectively. The trapped small mammals included seven rodents and one insectivore: Lophuromys flavopuntatus (30.6%), Arvicanthis dembeensis (25.8%), Stenocephalemys albipes (20%), Mastomys natalensis (11.6%), Pelomys harringtoni (6.4%), Acomys cahirinus (4.3%), Lemniscomys zebra (0.2%) and the greater red musk shrew (Crocidura flavescens, 1.1%). Analysis showed statistically significant variations in the abundance and habitat preferences of small mammals between habitats during wet and dry seasons. PMID:25855227

  16. NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals in nitrogen cycling is poorly understood and could have reverberations back to the producer community by maintaining or even magnifying increased nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) ...

  17. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    SciTech Connect

    West, E; Woollett, J

    2004-11-16

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grassland community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.

  18. Effects of corridors on home range sizes and interpatch movements of three small mammal species.

    SciTech Connect

    Mabry, Karen, E.; Barrett, Gary, W.

    2002-04-30

    Mabry, K.E., and G.W. Barrett. 2002. Effects of corridors on home range sizes and interpatch movements of three small mammal species. Landscape Ecol. 17:629-636. Corridors are predicted to benefit populations in patchy habitats by promoting movement, which should increase population densities, gene flow, and recolonization of extinct patch populations. However, few investigators have considered use of the total landscape, particularly the possibility of interpatch movement through matrix habitat, by small mammals. This study compares home range sizes of 3 species of small mammals, the cotton mouse, old field mouse and cotton rat between patches with and without corridors. Corridor presence did not have a statistically significant influence on average home range size. Habitat specialization and sex influenced the probability of an individual moving between 2 patches without corridors. The results of this study suggest that small mammals may be more capable of interpatch movement without corridors than is frequently assumed.

  19. How-to-Do-It: Tracing Small Mammal Movements with Fluorescent Pigments.

    ERIC Educational Resources Information Center

    Mullican, Tim R.; Streubel, Donald P.

    1989-01-01

    Discussed is an activity designed to teach small mammal ecology and the scientific method using fluorescent dyes and pigments. Procedures for analyzing home ranges and social organizations are described. A list of 16 references is included. (CW)

  20. Spatial distribution of an infectious disease in a small mammal community

    NASA Astrophysics Data System (ADS)

    Correa, Juana P.; Bacigalupo, Antonella; Fontúrbel, Francisco E.; Oda, Esteban; Cattan, Pedro E.; Solari, Aldo; Botto-Mahan, Carezza

    2015-10-01

    Chagas disease is a zoonosis caused by the parasite Trypanosoma cruzi and transmitted by insect vectors to several mammals, but little is known about its spatial epidemiology. We assessed the spatial distribution of T. cruzi infection in vectors and small mammals to test if mammal infection status is related to the proximity to vector colonies. During four consecutive years we captured and georeferenced the locations of mammal species and colonies of Mepraia spinolai, a restricted-movement vector. Infection status on mammals and vectors was evaluated by molecular techniques. To examine the effect of vector colonies on mammal infection status, we constructed an infection distance index using the distance between the location of each captured mammal to each vector colony and the average T. cruzi prevalence of each vector colony, weighted by the number of colonies assessed. We collected and evaluated T. cruzi infection in 944 mammals and 1976 M. spinolai. We found a significant effect of the infection distance index in explaining their infection status, when considering all mammal species together. By examining the most abundant species separately, we found this effect only for the diurnal and gregarious rodent Octodon degus. Spatially explicit models involving the prevalence and location of infected vectors and hosts had not been reported previously for a wild disease.

  1. Land use and small mammal predation effects on shortgrass prairie birds

    USGS Publications Warehouse

    Stanley, T.R.

    2010-01-01

    Grassland birds endemic to the central shortgrass prairie ecoregion of the United States have experienced steep and widespread declines over the last 3 decades, and factors influencing reproductive success have been implicated. Nest predation is the major cause of nest failure in passerines, and nesting success for some shortgrass prairie birds is exceptionally low. The 3 primary land uses in the central shortgrass prairie ecoregion are native shortgrass prairie rangeland (62), irrigated and nonirrigated cropland (29), and Conservation Reserve Program (CRP, 8). Because shortgrasscropland edges and CRP may alter the community of small mammal predators of grassland bird nests, I sampled multiple sites on and near the Pawnee National Grasslands in northeast Colorado, USA, to evaluate 1) whether small mammal species richness and densities were greater in CRP fields and shortgrass prairiecropland edges compared to shortgrass prairie habitats, and 2) whether daily survival probabilities of ground-nesting grassland bird nests were negatively correlated with densities of small mammals. Small mammal species richness and densities, estimated using trapping webs, were generally greater along edges and on CRP sites compared to shortgrass sites. Vegetation did not differ among edges and shortgrass sites but did differ among CRP and shortgrass sites. Daily survival probabilities of artificial nests at edge and CRP sites and natural nests at edge sites did not differ from shortgrass sites, and for natural nests small mammal densities did not affect nest survival. However, estimated daily survival probability of artificial nests was inversely proportional to thirteen-lined ground squirrel (Spermophilus tridecemlineatus) densities. In conclusion, these data suggest that although land-use patterns on the shortgrass prairie area in my study have substantial effects on the small mammal community, insufficient data existed to determine whether land-use patterns or small mammal density

  2. Small mammal abundance in Mediterranean post-fire habitats: a role for predators?

    NASA Astrophysics Data System (ADS)

    Torre, I.; Díaz, M.

    2004-05-01

    We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m 2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently-burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.

  3. Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains

    USGS Publications Warehouse

    Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M., Jr.

    2005-01-01

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.

  4. The impact of buffer strips and stream-side grazing on small mammals in southwestern Wisconsin

    USGS Publications Warehouse

    Chapman, Erik W.; Ribic, C.A.

    2002-01-01

    The practice of continuously grazing cattle along streams has caused extensive degradation of riparian habitats. Buffer strips and managed intensive rotational grazing (MIRG) have been proposed to protect and restore stream ecosystems in Wisconsin. However, the ecological implications of a switch from traditional livestock management to MIRG or buffer strip establishment have not been investigated. Differences in small mammal communities associated with riparian areas on continuously grazed and MIRG pastures, as well as vegetative buffer strips adjacent to row crops, were investigated in southwestern Wisconsin during May-September 1997 and 1998. More species (mean of 6-7) were found on the buffer sites than on the pasture sites (mean of 2-5). Total small mammal abundance on buffer sites was greater than on the pastures as well: there were 3-5 times as many animals on the buffer sites compared to the pasture sites, depending on year. There were no differences in species richness or total abundance between MIRG and continuously grazed pastures in either year. Total small mammal abundance was greater near the stream than away from the stream, regardless of farm management practice but there were no differences in species richness. Buffer strips appear to support a particularly rich and abundant small mammal community. Although results did not detect a difference in small mammal use between pasture types, farm-wide implications of a conversion from continuous to MIRG styles of grazing may benefit small mammals indirectly by causing an increase in the prevalence of pasture in the agricultural landscape.

  5. Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe

    PubMed Central

    Xin, Xiao-Ping; Liu, Zhi-Tao; Song, Yan-Ling

    2016-01-01

    Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus gradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities.

  6. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  7. A comparison of small-mammal communities in a desert riparian floodplain

    USGS Publications Warehouse

    Ellison, Laura E.; van Riper, Charles, III

    1998-01-01

    We compared small-mammal communities between inactive floodplain and actively flooded terraces of riparian habitat in the Verde Valley of central Arizona. We used species diversity, abundance, weight of adult males, number of juveniles, number of reproductively active individuals, longevity, residency status, and patterns of microhabitat use to compare the two communities. Although abundances of small mammals tended to be higher in the active floodplain, species diversity was greater in the inactive floodplain. Results were inconsistent with our initial prediction that actively flooded riparian habitat acts as a species source, whereas inactive floodplain acts as a sink or dispersal site for small mammals. Within each habitat type, we found evidence of significant microhabitat separation among the three most abundant small-mammal species (Peromyscus boylii, P. eremicus, and Neotoma albigula). Percent cover by annual and perennial grasses and shrubs, substrate, and frequency of shrubs, trees, and debris were significant determinants of small-mammal distribution within a habitat type. We found that the three most abundant species selected a nonrandom subset of available habitat. Nonrandom use of habitat and microhabitat separation were the two most important mechanisms structuring small-mammal communities in riparian habitat of central Arizona.

  8. The interaction of disturbances and small mammal community dynamics in a lowland forest in Belize.

    PubMed

    Klinger, R

    2006-11-01

    1. Three floods (July 2000, August 2002, September 2003) and a hurricane (October 2001) that occurred in a lowland forest in the southern Maya Mountains of Belize presented an opportunity to evaluate the influence of these disturbances on the structure of a small mammal assemblage. 2. Four terrestrial and four primarily scansorial/arboreal species were trapped July 2000-March 2005 in six grids over 14 irregularly spaced trapping periods. 3. Community dynamics were characterized more by changes in species composition than changes in diversity. The dynamics were driven by species-specific variation in abundance, with changes in composition generally, but not exclusively, due to the occurrence or disappearance of species at low abundance. Despite the disturbances, species richness remained relatively constant. Evenness within the assemblage was consistently low, primarily as a result of dominance by one species, Heteromys desmarestianus. 4. Effects of flooding on community structure were direct but relatively brief (< 1 year), and varied with the duration and intensity of flooding. Effects from the hurricane were indirect but long-lasting and strongly related to severely reduced food resources. 5. This study suggests that long-term dynamics in the structure of many animal communities in the tropics often results from interactions between direct and indirect effects of disturbance. It also suggests that community resistance will depend on variation in disturbance type and regime, but resilience will be determined by the life-history characteristics of each species. PMID:17032355

  9. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  10. The Grinnell Project; Small Mammal Responses to Climate in California

    NASA Astrophysics Data System (ADS)

    Conroy, C. C.; Koo, M.; Monahan, B.; Parra, J.; Moritz, C.

    2006-12-01

    Between 1915 and 1920, Joseph Grinnell and colleagues investigated the diversity of mammals, reptiles, amphibians and birds across what they termed the Yosemite Transect, an area spanning portions of the San Joaquin Valley, the Sierra Nevada, including about 1/3 of Yosemite National Park, and ending at Mono Lake. Their data collection included preservation of series of specimens at a large number of locations, point counts of birds, photography and extensive natural history notes, all of which are still archived at the Museum of Vertebrate Zoology at UC Berkeley. Beginning in 2003, researchers from the MVZ began retracing this work, collecting specimens, using point counts, and retaking some photographs. The comparison of the two periods indicates that some mammals have shifted their ranges greatly. Most taxa show an elevation increase, either an increase at the top for middle elevation species, or a retraction at the bottom for higher elevation species. However, not all species moved, and one high elevation species moved down. To further investigate how changes observed in Yosemite might also apply to larger spatial scales, our group has been using historic climate surfaces, historic specimen localities, and a variety of modeling methods to predict statewide changes in species' distributions. Other potential sites to be revisited include the Lassen Transect in Northern California, the Colorado River, and the San Bernardino Mountains.

  11. Lower richness of small wild mammal species and chagas disease risk.

    PubMed

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Lima, Valdirene dos Santos; Monteiro, Kerla Joeline Lima; Otaviano, Joel Carlos Rodrigues; Ferreira da Silva, Luiz Felipe Coutinho; Jansen, Ana Maria

    2012-01-01

    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease. PMID:22616021

  12. Use of habitats by non-volant small mammals in Cerrado in Central Brazil.

    PubMed

    Santos-Filho, M; Frieiro-Costa, F; Ignácio, Á R A; Silva, M N F

    2012-11-01

    Non-volant small mammals are organisms capable of yielding precise information on richness, abundance and species composition variations related to the use of habitats. The aim of this research was to compare these variations in Cerrado sensu stricto, Palm Forest, Gallery Forest and Rocky Field. From May 1999 to February 2000, we surveyed non-volant small mammals (hence small mammals) in Serra das Araras Ecological Station. We captured 218 individuals and recaptured 62 individuals, belonging to 21 taxa, 13 rodents and eight marsupials, in a total of 13200 trap-nights. Capture success was 1.7%. We observed higher richness of small mammals in forested areas (Gallery Forest and Palm Forest) than in open areas (Rocky Field and Cerrado sensu stricto). The Palm Forest had the highest richness of marsupials, possibly due to the quality of a specific niche. The Rocky Field had the smallest richness, but with very high abundance of few species, mainly Thrichomys pachyurus and Monodelphis domestica. Forest habitats had similar species composition. The open habitats, Cerrado sensu stricto and Rocky Field, had a distinct species composition between them, and also when compared to forested areas. Different species are exclusive or showed preference for specific habitats. The protection of horizontally heterogeneous biomes, such as Cerrado, has a fundamental importance to the maintenance of the regional diversity of the small mammal community of Central Brazil. PMID:23295519

  13. Toxoplasma gondii and Neospora caninum in wild small mammals: Seroprevalence, DNA detection and genotyping.

    PubMed

    Machačová, Tereza; Ajzenberg, Daniel; Žákovská, Alena; Sedlák, Kamil; Bártová, Eva

    2016-06-15

    Generally, rodents and other small mammals are considered as one of the sources of Toxoplasma gondii or Neospora caninum infection for cats and dogs as the definitive hosts of these two parasites, respectively. The aim of the study was to find out the prevalence of these two parasites in wild small mammals from the Czech Republic and to characterize T. gondii isolates by methods of molecular biology. A total of 621 wild small mammals were caught in the Czech Republic during years 2002-2014. Antibodies to T. gondii were detected by latex agglutination test in six (2.5%) of 240 small mammals (in two A. agrarius and four A. flavicollis). Antibodies to N. caninum were detected by commercially available competitive-inhibition enzyme-linked immunosorbent assay in one A. flavicolis (0.4%). Three of 427 (0.7%) liver samples were positive for T. gondii by PCR while negative for N. caninum. All embryo samples (n=102) were negative for both T. gondii and N. caninum. The three liver samples positive for T. gondii DNA (two from A. flavicollis and one from A. sylvaticus) were genotyped by 15 microsatellite markers and characterized as type II. To our knowledge, this is the first information about genetic characterization of T. gondii isolates in small mammals from Europe and the first detection of N. caninum antibodies in wild rodents from the Czech Republic. PMID:27198782

  14. Effect of downed woody debris on small mammal anti-predator behavior.

    SciTech Connect

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  15. Assessing small mammal abundance with track-tube indices and mark-recapture population estimates

    USGS Publications Warehouse

    Wiewel, A.S.; Clark, W.R.; Sovada, M.A.

    2007-01-01

    We compared track-tube sampling with mark-recapture livetrapping and evaluated a track-tube index, defined as the number of track tubes with identifiable small mammal tracks during a 4-night period, as a predictor of small mammal abundance estimates in North Dakota grasslands. Meadow voles (Microtus pennsylvanicus) were the most commonly recorded species by both methods, but were underrepresented in track-tube sampling, whereas 13-lined ground squirrels (Spermophilus tridecemlineatus) and Franklin's ground squirrels (S. franklinii) were overrepresented in track-tube sampling. Estimates of average species richness were lower from track tubes than from livetrapping. Regression models revealed that the track-tube index was at best a moderately good predictor of small mammal population estimates because both the form (linear versus curvilinear) and slope of the relationship varied between years. In addition, 95% prediction intervals indicated low precision when predicting population estimates from new track-tube index observations. Track tubes required less time and expense than mark-recapture and eliminated handling of small mammals. Using track tubes along with mark-recapture in a double sampling for regression framework would have potential value when attempting to estimate abundance of small mammals over large areas. ?? 2007 American Society of Mammalogists.

  16. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  17. Control of small mammal damage in the Alberta oil sands reclamation and afforestation program

    SciTech Connect

    Radvanyi, A.

    1980-12-01

    Open-pit mining procedures being conducted in the oil sands of northeast Alberta greatly disrupt many acres of the environment. The reclamation and afforestation program intended to restore the forest habitat encountered an unanticipated problem when a large percentage of young nursery-raised trees planted on a tailings pond dyke and on overburden dump sites were found to have been girdled by a population of meadow voles which had become established in the dense grass habitat created to stabilize steep sandy slopes of the spoil piles. The study monitored small mammal populations through a high, low, and a second high level commensurate with the 3- to 4-year population cycle of small mammals. A control technique utilizing grain treated with an anticoagulant rodenticide made available to the mice in poisoned bait feeder stations effectively reduced small mammal numbers to very low levels and reduced girdling damage from an average of 50% to 1-2%.

  18. A framework for assessment and monitoring of small mammals in a lowland tropical forest.

    PubMed

    Solari, Sergio; Rodriguez, Juan José; Vivar, Elena; Velazco, Paul M

    2002-05-01

    Development projects in tropical forests can impact biodiversity. Assessment and monitoring programs based on the principles of adaptive management assist managers to identify and reduce such impacts. The small mammal community is one important component of a forest ecosystem that may be impacted by development projects. In 1996, a natural gas exploration project was initiated in a Peruvian rainforest. The Smithsonian Institution's Monitoring and Assessment of Biodiversity program cooperated with Shell Prospecting and Development Peru to establish an adaptive management program to protect the region's biodiversity. In this article, we discuss the role of assessing and monitoring small mammals in relation to the natural gas project. We outline the conceptual issues involved in establishing an assessment and monitoring program, including setting objectives, evaluating the results and making appropriate decisions. We also summarize the steps taken to implement the small mammal assessment, provide results from the assessment and discuss protocols to identify appropriate species for monitoring. PMID:12125752

  19. Elk herbivory alters small mammal assemblages in high-elevation drainages.

    PubMed

    Parsons, Elliott W R; Maron, John L; Martin, Thomas E

    2013-03-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant-herbivore interactions. We explored short-term responses of small mammal communities to recent exclusion of Rocky Mountain elk (Cervus elaphus) in high-elevation riparian drainages in northern Arizona, where elk impacts on vegetation have increased over the past quarter century associated with climate change. We used 10-ha elk exclosures paired with unfenced control drainages to examine how browsing influenced the habitat use, relative abundance, richness and diversity of a small mammal assemblage. We found that the small mammal assemblage changed significantly after 5 years of elk exclusion. Relative abundance of voles (Microtus mexicanus) increased in exclosure drainages, likely due to an increase in habitat quality. The relative abundances of woodrats (Neotoma neomexicana) and two species of mice (Peromyscus maniculatus and P. boylii) decreased in the controls, while remaining stable in exclosures. The decline of mice in control drainages was likely due to the decline in shrub cover that they use. Thus, elk exclusion may have maintained or improved habitat for mice inside the exclosures while habitat quality and mouse abundance both declined outside the fences. Finally, small mammal species richness increased in the exclosures relative to the controls while species diversity showed no significant trends. Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations. PMID:23163813

  20. Distribution, density, and biomass of introduced small mammals in the southern mariana islands

    USGS Publications Warehouse

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely

  1. An Inventory of Terrestrial Mammals at National Parks in the Northeast Temperate Network and Sagamore Hill National Historic Site

    USGS Publications Warehouse

    Gilbert, A.T.; O'Connell, A.F., Jr.; Annand, E.M.; Talancy, N.W.; Sauer, J.R.; Nichols, J.D.

    2008-01-01

    An inventory of mammals was conducted during 2004 at nine national park sites in the Northeast Temperate Network (NETN): Acadia National Park (NP), Marsh-Billings-Rockefeller National Historical Park (NHP), Minute Man NHP, Morristown NHP, Roosevelt-Vanderbilt National Historic Site (NHS), Saint-Gaudens NHS, Saugus Iron Works NHS, Saratoga NHP, and Weir Farm NHS. Sagamore Hill NHS, part of the Northeast Coastal and Barrier Network (NCBN), was also surveyed. Each park except Acadia NP was sampled twice, once in the winter/spring and again in the summer/fall. During the winter/spring visit, indirect measure (IM) sampling arrays were employed at 2 to 16 stations and included sampling by remote cameras, cubby boxes (covered trackplates), and hair traps. IM stations were established and re-used during the summer/fall sampling period. Trapping was conducted at 2 to 12 stations at all parks except Acadia NP during the summer/fall period and consisted of arrays of small-mammal traps, squirrel-sized live traps, and some fox-sized live traps. We used estimation-based procedures and probabilistic sampling techniques to design this inventory. A total of 38 species was detected by IM sampling, trapping, and field observations. Species diversity (number of species) varied among parks, ranging from 8 to 24, with Minute Man NHP having the most species detected. Raccoon (Procyon lotor), Virginia Opossum (Didelphis virginiana), Fisher (Martes pennanti), and Domestic Cat (Felis silvestris) were the most common medium-sized mammals detected in this study and White-footed Mouse (Peromyscus leucopus), Northern Short-tailed Shrew (Blarina brevicauda), Deer Mouse (P. maniculatus), and Meadow Vole (Microtus pennsylvanicus) the most common small mammals detected. All species detected are considered fairly common throughout their range including the Fisher, which has been reintroduced in several New England states. We did not detect any state or federal endangered or threatened species.

  2. An inventory of terrestrial mammals at national parks in the Northeast Temperate Network and Sagamore Hill National Historic Site

    USGS Publications Warehouse

    Gilbert, Andrew T.; O'Connell, Allan F.; Annand, Elizabeth M.; Talancy, Neil W.; Sauer, John R.; Nichols, James D.

    2008-01-01

    An inventory of mammals was conducted during 2004 at nine national park sites in the Northeast Temperate Network (NETN): Acadia National Park (NP), Marsh-Billings-Rockefeller National Historical Park (NHP), Minute Man NHP, Morristown NHP, Roosevelt-Vanderbilt National Historic Site (NHS), Saint-Gaudens NHS, Saugus Iron Works NHS, Saratoga NHP, and Weir Farm NHS. Sagamore Hill NHS, part of the Northeast Coastal and Barrier Network (NCBN), was also surveyed. Each park except Acadia NP was sampled twice, once in the winter/spring and again in the summer/fall. During the winter/spring visit, indirect measure (IM) sampling arrays were employed at 2 to 16 stations and included sampling by remote cameras, cubby boxes (covered trackplates), and hair traps. IM stations were established and re-used during the summer/fall sampling period. Trapping was conducted at 2 to 12 stations at all parks except Acadia NP during the summer/fall period and consisted of arrays of small-mammal traps, squirrel-sized live traps, and some fox-sized live traps. We used estimation-based procedures and probabilistic sampling techniques to design this inventory. A total of 38 species was detected by IM sampling, trapping, and field observations. Species diversity (number of species) varied among parks, ranging from 8 to 24, with Minute Man NHP having the most species detected. Raccoon (Procyon lotor), Virginia Opossum (Didelphis virginiana), Fisher (Martes pennanti), and Domestic Cat (Felis silvestris) were the most common medium-sized mammals detected in this study and White-footed Mouse (Peromyscus leucopus), Northern Short-tailed Shrew (Blarina brevicauda), Deer Mouse (P. maniculatus), and Meadow Vole (Microtus pennsylvanicus) the most common small mammals detected. All species detected are considered fairly common throughout their range including the Fisher, which has been reintroduced in several New England states. We did not detect any state or federal endangered or threatened species.

  3. Using of Synchrotron radiation for study of multielement composition of the small mammals diet and tissues

    NASA Astrophysics Data System (ADS)

    Bezel, V. S.; Koutzenogii, K. P.; Mukhacheva, S. V.; Chankina, O. V.; Savchenko, T. I.

    2007-05-01

    The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of "geochemical selection" of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous ( bank vole) and carnivorous ( Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.

  4. Influence of landscape elements on population densities and habitat use of three small-mammal species.

    SciTech Connect

    Mabry, Karen, E.; Dreelin, Erin, A.; Barrett, Gary, W.

    2003-01-01

    Mabry, K.E., E.A. Dreelin, and G.W. Barrett. 2003. Influence of landscape elements on population densities and habitat use of three small-mammal species. J. Mammology. 84(1):20-25. Corridor effects on population densities and habitat use of 3 small mammal species were assessed in an experimentally fragmented landscape. Corridor presence did not have a statistically significant effect on population densities of cotton rats or cotton mice; however, a significant effect was observed for old-field mice. The results suggest that landscape fragmentation and habitat structure may have varying effects on population densities of different species.

  5. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect

    Cypher, B.L.

    1995-02-13

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  6. Terrestrial Mammal Occupancy in the Context of Widespread Forest Loss and a Proposed Interoceanic Canal in Nicaragua's Decreasingly Remote South Caribbean Region.

    PubMed

    Jordan, Christopher A; Schank, Cody J; Urquhart, Gerald R; Dans, Armando J

    2016-01-01

    Central America is experiencing rapid forest loss and habitat degradation both inside and outside of protected areas. Despite increasing deforestation, the Caribbean region of Nicaragua plays an important role in the survival or extinction of large mammal populations in Central America given that it still retains core areas of habitat for large mammal species. The proposed interoceanic canal project that would bisect the southern half of this Caribbean region represents a new threat that, combined with an advancing agricultural frontier, could affect populations of large mammal species such as jaguars, white-lipped peccaries, and Baird's tapirs. We used occupancy models to examine the relative occupancy probabilities for an assemblage of terrestrial mammals in the south Caribbean region of Nicaragua to identify current core areas for our study species and conduct a preliminary evaluation of the potential impacts of the proposed interoceanic canal. We modeled a community level distribution of eight species with varying levels of sensitivity to human encroachment and a range of habitat associations. Our model results reveal three priority areas for terrestrial mammal conservation in our study area. The mapped predictions show that the only remaining area of suitable habitat for large mammals in the path of the proposed interoceanic canal is a relatively thin strip of forest that runs along the Caribbean Coast. In light of these findings, we propose five recommendations that will help ensure the conservation of this area of the proposed canal route as suitable habitat for our study species. PMID:27007122

  7. Terrestrial Mammal Occupancy in the Context of Widespread Forest Loss and a Proposed Interoceanic Canal in Nicaragua's Decreasingly Remote South Caribbean Region

    PubMed Central

    Jordan, Christopher A.; Schank, Cody J.; Urquhart, Gerald R.; Dans, Armando J.

    2016-01-01

    Central America is experiencing rapid forest loss and habitat degradation both inside and outside of protected areas. Despite increasing deforestation, the Caribbean region of Nicaragua plays an important role in the survival or extinction of large mammal populations in Central America given that it still retains core areas of habitat for large mammal species. The proposed interoceanic canal project that would bisect the southern half of this Caribbean region represents a new threat that, combined with an advancing agricultural frontier, could affect populations of large mammal species such as jaguars, white-lipped peccaries, and Baird’s tapirs. We used occupancy models to examine the relative occupancy probabilities for an assemblage of terrestrial mammals in the south Caribbean region of Nicaragua to identify current core areas for our study species and conduct a preliminary evaluation of the potential impacts of the proposed interoceanic canal. We modeled a community level distribution of eight species with varying levels of sensitivity to human encroachment and a range of habitat associations. Our model results reveal three priority areas for terrestrial mammal conservation in our study area. The mapped predictions show that the only remaining area of suitable habitat for large mammals in the path of the proposed interoceanic canal is a relatively thin strip of forest that runs along the Caribbean Coast. In light of these findings, we propose five recommendations that will help ensure the conservation of this area of the proposed canal route as suitable habitat for our study species. PMID:27007122

  8. Aggregated Transfer Factors For Small Mammals Collected From the Exposed Sediments Of A 137 Cs Contaminated Reservoir

    SciTech Connect

    Paller, Michael H.; Jannika, G. Timothy; Wike, Lynn D

    2005-10-04

    {sup 137}Cs transfer factors were computed for small mammals collected from the dried sediment areas of a partially drained, contaminated reservoir. Soil {sup 137}Cs concentrations were heterogeneous on small and large spatial scales, with a geometric mean of 253.1 Bq/kg dry weight. About 50% of the variance in cotton rat Sigmodon hispidus tissue {sup 137}Cs levels was explained by variation in soil {sup 137}Cs levels. Soil to animal transfer factors (whole body dry weight) averaged 6.0 for cotton rats and 1.2 for cotton mice Peromyscus gossypinus. These values are similar to {sup 137}Cs transfer factors for herbivorous, homeothermic animals from other contaminated ecosystems. Site-specific transfer factors can significantly affect the estimation of dose. In the RESRAD-BIOTA dose model, the default transfer factor for {sup 137}Cs in terrestrial animals is 110 resulting in an estimate of radiation dose to terrestrial biota that is 16 times more than the dose calculated with the actual measured transfer factor.

  9. Small mammal tooth enamel carbon isotope record of C4 grasses in late Neogene China

    NASA Astrophysics Data System (ADS)

    Arppe, Laura; Kaakinen, Anu; Passey, Benjamin H.; Zhang, Zhaoqun; Fortelius, Mikael

    2015-10-01

    The spatiotemporal pattern of the late Cenozoic spread of C4 vegetation is an important indicator of environmental change that is intertwined with the uplift of the Himalaya and Tibetan Plateau, and the development of the East Asian monsoons. To explore the spread of C4 vegetation in China and shed new light on regional climatic evolution, we measured δ13C values of more than 200 small mammal teeth (primarily rodents and lagomorphs) using a laser ablation isotope ratio mass spectrometry approach. Small mammals are highly sensitive indicators of their environment because they have limited spatial ranges and because they have minimal time-averaging of carbon isotope signatures of dietary components. The specimens originate from four classic Late Miocene fossil localities, Lufeng, Yuanmou, Lingtai, and Ertemte, along a southwest-northeast transect from Yunnan Province to Inner Mongolia. In Yunnan (Lufeng, Yuanmou) and on the Loess Plateau (Lingtai), the small mammal δ13C values record nearly pure C3 ecosystems, and mixed but C3-based ecosystems, respectively, in agreement with previous studies based on carbon isotopes of large herbivores and soil carbonates. In Inner Mongolia, the micromammalian tooth enamel δ13C record picks up the presence of C4 vegetation where large mammal samples do not, indicating a mixed yet C3-dominated ecosystem at ~ 6 Ma. As a whole, the results support a scenario of northward increasing C4 grass abundance in a pattern that mirrors northward decreasing precipitation of the summer monsoon system. The results highlight differences between large and small mammals as indicators of C4 vegetation in ancient ecosystems, particularly the ability of small mammal δ13C values to detect the presence of minor components of the vegetation structure.

  10. Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense.

    PubMed

    Powell, Roger A; Proulx, Gilbert

    2003-01-01

    We propose that researchers integrate ethics, performance criteria, techniques, and common sense when developing research trapping programs and in which members of institutional animal care and use committees address these topics when evaluating research protocols. To ask questions about ethics is in the best tradition of science, and researchers must be familiar with codes of ethics and guidelines for research published by professional societies. Researchers should always work to improve research methods and to decrease the effects on research animals, if for no other reason than to minimize the chances that the methods influence the animals' behavior in ways that affect research results. Traps used in research should meet performance criteria that address state-of-the-art trapping technology and that optimize animal welfare conditions within the context of the research. The proposal includes the following criteria for traps used in research: As Criterion I, killing-traps should render >/= 70% of animals caught irreversibly unconscious in /= 70% of animals with mammals, according to which traps fulfill Criteria I and II for which species, and techniques for short-term, long-term, and permanent marking of mammals. PMID:13130157

  11. THE subfossil occurrence and paleoecological significance of small mammals at ankilitelo cave, southwestern Madagascar

    USGS Publications Warehouse

    Muldoon, K.M.; De Blieux, D. D.; Simons, E.L.; Chatrath, P.S.

    2009-01-01

    Small mammals are rarely reported from subfossil sites in Madagascar despite their importance for paleoenvironmental reconstruction, especially as it relates to recent ecological changes on the island. We describe the uniquely rich subfossil small mammal fauna from Ankilitelo Cave, southwestern Madagascar. The Ankilitelo fauna is dated to the late Holocene (???500 years ago), documenting the youngest appearances of the extinct giant lemur taxa Palaeopropithecus, Megaladapis, and Archaeolemur, in association with abundant remains of small vertebrates, including bats, tenrecs, carnivorans, rodents, and primates. The Ankilitelo fauna is composed of 34 mammalian species, making it one of the most diverse Holocene assemblages in Madagascar. The fauna comprises the 1 st report of the short-tailed shrew tenrec (Microgale brevicaudata) and the ring-tailed mongoose (Galidia elegans) in southwestern Madagascar. Further, Ankilitelo documents the presence of southwestern species that are rare or that have greatly restricted ranges today, such as Nasolo's shrew tenrec (M. nasoloi), Grandidier's mongoose (Galidictis grandidieri), the narrow-striped mongoose (Mungotictis decemlineata), and the giant jumping rat (Hypogeomys antimena). A simple cause for the unusual small mammal occurrences at Ankilitelo is not obvious. Synergistic interactions between climate change, recent fragmentation and human-initiated degradation of forested habitats, and community-level processes, such as predation, most likely explain the disjunct distributions of the small mammals documented at Ankilitelo. ?? 2009 American Society of Mammalogists.

  12. Powdertracking Small Mammals: An Illuminating Exercise for Undergraduates.

    ERIC Educational Resources Information Center

    Hoagland, Donald B.

    1993-01-01

    Describes an easy-to-use, inexpensive field trip/laboratory exercise designed to delineate the home ranges of small animals. Students participate in the design of the exercise; collection, analysis, and interpretation of data; and the presentation of results. Contains 19 references. (DDR)

  13. Terrestrial outgoing radiation measurements with small satellite mission

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Dewitte, Steven; Karatekin, Ozgur; Chevalier, André; Conscience, Christian

    2015-04-01

    The solar force is the main driver of the Earth's climate. For a balanced climate system, the incoming solar radiation is equal to the sum of the reflected visible and reemitted thermal radiation at top of the atmosphere (TOA). Thus the energy imbalance plays an important role to diagnose the health of nowadays climate. However it remains a challenge to directly track the small Energy imbalance in Earth's Radiation Budget (EIERB) from space due to the complicities of the Earth's climate system and the limitation on long term stability of space instrument. The terrestrial outgoing radiation (TOR) has been recoded with a Bolometric Oscillation Sensor onboard PICAD microsatellite. In this presentation, we will report the three years TOR observed with PICARD-BOS and its further comparison with the CERES product. However the data acquired from this mission is still not enough to derive the EIERB. But the heritage gained from this experiment shields a light on the EIERB tracking with the small satellite even a cubesat mission.

  14. 75 FR 66065 - Small Takes of Marine Mammals Incidental to Specified Activities; Exploratorium Relocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... (75 FR 42691), requesting comments from the public on the proposed IHA. Description of the Specified... Federal Register (75 FR 42691, July 22, 2010) and a summary is provided here. To make room for the new... Authorization (IHA) to the Exploratorium, allowing the take of small numbers of marine mammals, by Level...

  15. Natural infection of small mammal species in Minnesota with the agent of human granulocytic ehrlichiosis.

    PubMed

    Walls, J J; Greig, B; Neitzel, D F; Dumler, J S

    1997-04-01

    The natural reservoirs for the agent of human granulocytic ehrlichiosis (HGE) are suspected to be the small mammals that host immature stages of Ixodes scapularis ticks. To determine if such small mammals are naturally infected, we collected blood and serum samples from small mammal species in rural and suburban areas of Minneapolis and St. Paul, Minn. Samples were collected from white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus), southern red-backed voles (Clethrionomys gapperi), and insectivorous shrews (Blarina brevicauda and Sorex cinereus). Blood samples were tested by PCR for active infection with the HGE agent, and sera from P. leucopus mice were tested for serologic evidence of infection by indirect immunofluorescence. PCR analyses revealed the presence of HGE agent DNA in 20 of the 190 samples (10.5%) tested. Of the 119 P. leucopus mouse serum samples that were analyzed, 12 (10.1%) contained Ehrlichia equi antibodies. In 3 of 119 (2.5%) P. leucopus mice from which both blood and serum were collected. HGE agent DNA and antibodies against E. equi were present. Animals with evidence of infection with the HGE agent are widely distributed around the Minneapolis-St. Paul area in regions with known I. scapularis tick activity. Small mammals that are frequent hosts for larval I. scapularis ticks and that are found in areas where HGE occurs are likely to be a major reservoir from which infected ticks that bite humans are derived. PMID:9157141

  16. Cattle grazing and small mammals on the Sheldon National Wildlife Refuge, Nevada

    USGS Publications Warehouse

    Oldemeyer, John L.; Allen-Johnson, L. R.

    1988-01-01

    We studied effects of cattle grazing on small mammal microhabitat and abundance in northwestern Nevada. Abundance, diversity, and microhabitat were compared between a 375-ha cattle exclosure and a deferred-rotation grazing allotment which had a three-year history of light to moderate use. No consistent differences were found in abundance, diversity, or microhabitat between the two areas.

  17. Small mammals in saltcedar (Tamarix ramosissima) - invaded and native riparian habitats of the western Great Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive saltcedar species have replaced native riparian trees on numerous river systems throughout the western US, raising concerns about how this habitat conversion may affect wildlife. For periods ranging from 1-10 years, small mammal populations were monitored at six riparian sites impacted by s...

  18. Effects of bridge construction on songbirds and small mammals at Blennerhassett Island, Ohio River, USA.

    PubMed

    Vance, Joshua A; Angus, Norse B; Anderson, James T

    2013-09-01

    Construction of man-made objects such as roads and bridges may have impacts on wildlife depending on species or location. We investigated songbirds and small mammals along the Ohio River, WV, USA at a new bridge both before and after construction and at a bridge crossing that was present throughout the study. Comparisons were made at each site over three time periods (1985-1987 [Phase I] and 1998-2000 [Phase II] [pre-construction], 2007-2009 [Phase III] [post-construction]) and at three distances (0, 100, 300 m) from the bridge or proposed bridge location. Overall, 70 songbirds and 10 small mammals were detected during the study. Cliff swallows (Petrochelidon pyrrhonota) and rock pigeons (Columba livia) showed high affinity for bridges (P < 0.05). Combined small mammal abundances increased between Phases I and II (P < 0.05), but did not differ between Phases II and III (P > 0.05). Species richness and diversity for songbirds and small mammals did not differ before and after bridge construction (P > 0.05). We found that most species sampled did not respond to the bridge crossing, and believe that the bridge is not causing any measurable negative density impacts to the species we investigated. The new bridge does provide habitat for exotic rock pigeons that are adjusted to man-made structures for nesting. PMID:23435850

  19. Effects of anthropogenic and demographic factors on patterns of parasitism in African small mammal communities.

    PubMed

    Salzer, Johanna S; Carroll, Darin S; Williams-Newkirk, Amanda Jo; Lang, Stefanie; Peterhans, Julian Kerbis; Rwego, Innocent B; Ockers, Sandra; Gillespie, Thomas R

    2015-03-01

    Habitat disturbance often results in alterations in community structure of small mammals. Additionally, the parasites harboured by these small mammals may be impacted by environmental changes or indirectly affected by changes in available hosts. To improve our understanding of this interplay, we examined the patterns of parasitism in small mammal communities from a variety of habitats in forested Uganda. Small mammals were collected from areas experiencing variable habitat disturbance, host density and species richness. The analysis focused on 3 most abundant rodent species, Lophuromys aquilus, Praomys jacksoni and Hylomyscus stella, and a diverse group of parasites they harbour. The impact of various habitat and host community factors on parasite prevalence was examined using linear regression and Spearman's rank-order correlation. We further investigated the parasite communities associated with each individual using correspondence analysis. We determined that, parasite prevalence and richness may be occasionally influenced by community and habitat factors, but taxonomy is a driving force in influencing the parasite community harboured by an individual host. Ultimately, applying general principles across a broad range of disturbance levels and diverse host communities needs to be approached with caution in complex communities. PMID:25262668

  20. Road network in an agrarian landscape: Potential habitat, corridor or barrier for small mammals?

    NASA Astrophysics Data System (ADS)

    Redon (de), Louis; Le Viol, Isabelle; Jiguet, Frédéric; Machon, Nathalie; Scher, Olivier; Kerbiriou, Christian

    2015-01-01

    If the negative effects of road networks on biodiversity are now recognized, their role as barriers, habitats or corridors remain to be clarified in human altered landscapes in which road verges often constitute the few semi-natural habitats where a part of biodiversity important for ecosystem functioning may maintain. In human-dominated landscape, their roles are crucial to precise in comparison to other habitats for small mammal species considered as major natural actors (pests (voles) or biological control agents (shrew)). We studied these roles through the comparison of small mammal abundance captured (418 individuals belonging to 8 species) using non-attractive pitfall traps (n = 813) in 176 sampled sites distributed in marginal zones of road and crop, in natural areas and in fields. We examined the effect of roadside width and isolation of sites. We found the higher small mammal abundances in roadside verges and an effect of width margins for shrews. The significant effect of the distance to the next adjacent natural habitat at the same side of the road on the relative abundance of Sorex coronatus, and the absence of a significant effect of distance to the next natural habitat at the opposite side of road, suggest that highway and road verges could be used as corridor for their dispersal, but have also a barrier effect for shrews. Our results show that in intensive agricultural landscapes roadside and highway verges may often serve as refuge, habitat and corridor for small mammals depending on species and margin characteristics.

  1. Anaplasma phagocytophilum infection in small mammal hosts of Ixodes ticks, western United States.

    PubMed

    Foley, Janet E; Nieto, Nathan C; Adjemian, Jennifer; Dabritz, Haydee; Brown, Richard N

    2008-07-01

    A total of 2,121 small mammals in California were assessed for Anaplasma phagocytophilum from 2006 through 2008. Odds ratios were >1 for 4 sciurids species and dusky-footed woodrats. High seroprevalence was observed in northern sites. Ten tick species were identified. Heavily infested rodent species included meadow voles, woodrats, deer mice, and redwood chipmunks. PMID:18598645

  2. NITROGEN OUTPUTS FROM FECAL AND URINE DEPOSITION OF SMALL MAMMALS: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals to nitrogen cycling is poorly understood, but it could have reverberations back to the producer community by maintaining or perhaps magnifying nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of ...

  3. IMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We exam...

  4. THE INTERACTION OF HABITAT FRAGMENTATION, PLANT, AND SMALL MAMMAL SUCCESSION IN AN OLD FIELD

    EPA Science Inventory

    We compared the density and spatial distribution of four small mammal species (Microtus ochrogaster, Peromyscus maniculatus, Sigmodon hispidus, and P. luecopus) along with general measures of an old field plant community across two successional phases (1984-1986 and 1994-1996) of...

  5. IIMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examin...

  6. Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows.

    PubMed

    Diatta, Georges; Duplantier, Jean-Marc; Granjon, Laurent; Bâ, Khalilou; Chauvancy, Gilles; Ndiaye, Mady; Trape, Jean-François

    2015-12-01

    Tick-borne relapsing fever (TBRF) is a zoonotic disease caused by several Borrelia species transmitted to humans by Ornithodoros tick vectors. In West Africa, Borrelia crocidurae is a common cause of disease in many rural populations. Small mammals act as reservoirs of infection. We report here the results of surveys that investigated the occurrence of B. crocidurae infection in rodents and insectivores from eight countries of West and Central Africa. Animals were identified at the species level and tested for Borrelia either by examination of thick blood film, intra-peritoneal inoculation of blood or brain tissues into laboratory mice, or by molecular techniques. A total of 4358 small mammals belonging to 38 species and 7 families were collected, including 3225 specimens collected in areas where the occurrence of Ornithodoros sonrai tick in rodent burrows was documented, and 1133 in areas where this tick was absent. In areas with O. sonrai, Borrelia infection was demonstrated in 287 of 3109 (9.2%) small mammals tested, and none was documented in 1004 animals tested from other areas. There was no relationship between the occurrence of Rhipicephalus, Hyaloma and Argas ticks in burrows and the distribution of Borrelia infection in small mammals. The 287 specimens infected by Borrelia belonged to 15 rodent and shrew species, including three Saharo-Sahelian species - Gerbillus gerbillus, Gerbillus occiduus and Gerbillus tarabuli - identified as reservoirs for TBRF with a distribution restricted to this area. In Sudan and Sudano-Sahelian areas, Arvicanthis niloticus, Mastomys erythroleucus and Mastomys huberti were the main reservoir of infection. Although most small mammals species collected had a large distribution in West and Central Africa, the fact that only animals collected in areas with O. sonrai were found infected suggest that this tick is the only vector of TBRF in rodents and insectivores in this part of Africa. PMID:26327444

  7. Organochlorine pesticides and polychlorinated biphenyl congeners in wild terrestrial mammals from Croatia: Interspecies comparison of residue levels and compositions.

    PubMed

    Herceg Romanić, Snježana; Klinčić, Darija; Kljaković-Gašpić, Zorana; Kusak, Josip; Reljić, Slaven; Huber, Đuro

    2015-10-01

    In this pilot study, we investigated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the adipose tissues of two free-ranging terrestrial carnivores from Croatia sampled in 2010 and 2011: the brown bear (Ursus arctos; N=32) and the grey wolf (Canis lupus; N=29). Concentrations of ∑OCPs and ΣPCBs ranged from 0.45 to 4.09 ng g(-1) lipid mass (lm) and from 0.93 to 8.52 ng g(-1) lm in brown bear, and from 1.18 to 5.67 ng g(-1) lm and 2.68 to 48.9 ng g(-1) lm in grey wolf adipose tissues, respectively. PCBs were dominant accounting for over 72% of total analyzed persistent organic pollutants (POPs). The sum of six indicator non-dioxin-like PCBs (Σ6IndNDL PCBs) made up 60-93% and 58-85% of the total congener concentrations in brown bears and wolves, respectively. Although the levels of the measured parameters were significantly higher in grey wolves than in bears, the contaminant profiles of the two species were similar, with γ-HCH, HCB, β-HCH and DDE as major OCP contaminants, and PCB-153>PCB-180≈PCB-170>PCB-138 as the dominant congeners. The sum of hexachlorocyclohexanes (ΣHCHs) and 8 toxicologically relevant dioxin-like PCBs (Σ8ToxDL PCBs) was higher in the males than in the females of the brown bear. Concentrations of ΣDDTs, HCB, ΣOCP, ΣPCBs, Σ6IndNDL PCBs, and toxicologically relevant non-dioxin-like PCBs (ΣToxNDL PCBs) were significantly positively correlated with lipid content in the grey wolf. Concentrations of OCPs and PCBs in brown bears and wolves from Croatia were low and normal for large terrestrial mammals. PMID:26002287

  8. Effects of the removal of large herbivores on fleas of small mammals.

    PubMed

    McCauley, Douglas J; Keesing, Felicia; Young, Truman; Dittmar, Katharina

    2008-12-01

    The removal of large herbivorous mammals can cause dramatic increases in the densities of small mammals. These small mammals are hosts for a variety of ectoparasites, many of which are important pathogens of human diseases such as plague and murine typhus. It is thus valuable from a human health perspective to understand if large herbivore removals can indirectly affect ectoparasite numbers and thus potentially alter disease risk. To make this determination, we experimentally excluded large herbivores and measured the number of fleas present on the numerically dominant small mammal, the pouched mouse, Saccostomus mearnsi. Removing large herbivores nearly doubled S. mearnsi density, while the percentage of mice infested with fleas (prevalence) and the average number of fleas per sampled mouse (intensity) remained constant. The net effect of doubling the number of mice via the removal of large herbivores was a near doubling in the number of fleas present in the study habitat. Because these fleas also parasitize humans and can serve as disease vectors, this work empirically demonstrates a potential mechanism by which ecosystem alterations could affect human risk for zoonotic diseases. PMID:19263845

  9. Trends in North American small mammals found in common barn-owl (Tyto alba) dietary studies

    USGS Publications Warehouse

    Clark, D.R., Jr.; Bunck, C.M.

    1991-01-01

    Data on mammals were compiled from published studies of common barn-owl (Tyto alba) pellets. Mammalian composition of pellet samples was analyzed within geographic regions in regard to year, mean annual precipitation, latitude, and number of individual mammals in the sample. Percentages of individuals in pellets that were shrews increased whereas the percentages of rodents decreased with greater mean annual precipitation, especially in northern and western areas of North America. From the 1920s through 1980s, in northern and eastern areas the percentage of species that was shrews decreased, and in northern and central areas the percentage of individuals that was murid rats and mice increased. Human alterations of habitats during these seven decades are postulated to have caused changes in available small mammals, leading to changes in the barn-owl diet.

  10. Physiological adaptations of small mammals to desert ecosystems.

    PubMed

    Schwimmer, Hagit; Haim, Abraham

    2009-12-01

    Adaptations of animals to the xeric environment have been studied in various taxonomic groups and across several deserts. Despite the impressive data that have been accumulated, the focus in most of these studies is mainly on the significance of one variable at a time. Here, we attempt to integrate between responses of several physiological systems, challenged by increasing diet and water salinity and extreme temperatures, acquired in different studies of thermo and osmo-regulatory adaptations, of small rodents, to the xeric environment. Studies have shown differential thermoregulatory responses to increased dietary salinity, which were attributed to habitat and habits of the relevant species. In the thermoregulatory studies, a potential adaptive significance of low metabolic rate was demonstrated. From an evolutionary point of view, the most important adaptation is in the timing of reproduction, as it enables the transfer of genetic properties to the next generation in an unpredictable ecosystem, where reproduction might not occur every year. Results in this aspect show that increased dietary salinity, through an increase in vasopressin plasma levels, plays an important role as a regulator of the reproductive system. We assume that the amount of food existing in the habitat and the amount of reserves in the animal in the form of white adipose tissue are important for reproduction. Photoperiod affects all studied physiological responses, emphasizing the importance of pre-acclimation to seasonal characteristics. We summarize the existing data and suggest neuro-endocrine pathways, which have a central role in these adaptations by affecting thermoregulation, osmoregulation and reproduction to create the optimal response to xeric conditions. These hypotheses can be used as the basis for future studies. PMID:21392308

  11. Conservation on international boundaries: the impact of security barriers on selected terrestrial mammals in four protected areas in Arizona, USA.

    PubMed

    McCallum, Jamie W; Rowcliffe, J Marcus; Cuthill, Innes C

    2014-01-01

    Several thousand terrestrial protected areas (PAs) lie on international boundaries. Because international boundaries can be focal points for trade, illegal activity and development, such PAs can be vulnerable to a range of anthropogenic threats. There is an increasing trend towards the erection of international boundary infrastructure (including fences, barriers and ditches) in many parts of the world, which may reduce the risk of these anthropogenic threats to some PAs. However this may restrict home range and access to resources for some native species. We sought to understand the impacts of these two different types of threat by using camera traps to measure the activity level of humans, native and invasive mammals in four US PAs on the Mexican international boundary. Comparisons were made between treatment areas with barriers and those without. Results showed that puma and coati were more likely to appear in treatment areas without barriers, whereas humans were not observed more frequently in one treatment area over another. The suggestion is that the intermittent fencing present in this part of the world does affect some native species, but does not necessarily restrict the movement of humans (including illegal migrants), who may negatively impact native species. PMID:24717982

  12. Conservation on International Boundaries: The Impact of Security Barriers on Selected Terrestrial Mammals in Four Protected Areas in Arizona, USA

    PubMed Central

    McCallum, Jamie W.; Rowcliffe, J. Marcus; Cuthill, Innes C.

    2014-01-01

    Several thousand terrestrial protected areas (PAs) lie on international boundaries. Because international boundaries can be focal points for trade, illegal activity and development, such PAs can be vulnerable to a range of anthropogenic threats. There is an increasing trend towards the erection of international boundary infrastructure (including fences, barriers and ditches) in many parts of the world, which may reduce the risk of these anthropogenic threats to some PAs. However this may restrict home range and access to resources for some native species. We sought to understand the impacts of these two different types of threat by using camera traps to measure the activity level of humans, native and invasive mammals in four US PAs on the Mexican international boundary. Comparisons were made between treatment areas with barriers and those without. Results showed that puma and coati were more likely to appear in treatment areas without barriers, whereas humans were not observed more frequently in one treatment area over another. The suggestion is that the intermittent fencing present in this part of the world does affect some native species, but does not necessarily restrict the movement of humans (including illegal migrants), who may negatively impact native species. PMID:24717982

  13. Species Richness and Range Size of the Terrestrial Mammals of the World: Biological Signal within Mathematical Constraints

    PubMed Central

    Soberón, Jorge; Ceballos, Gerardo

    2011-01-01

    We explore global spatial diversity patterns for terrestrial mammals using as a tool range-diversity plots. These plots display simultaneously information about the number of species in localities and their spatial covariance in composition. These are highly informative, as we show by linking range-diversity plots with maps and by highlighting the correspondences between well defined regions of the plots with geographical regions or with taxonomic groups. Range-diversity plots are mathematically constrained by the lines of maximum and minimum mean covariance in species composition. We show how regions in the range-diversity plot corresponding to the line of maximum covariance correspond to large continental masses, and regions near the lower limit of the range-diversity plot correspond to archipelagos and mountain ranges. We show how curves of constant covariance correspond to nested faunas. Finally, we show that the observed distribution of the covariance range has significantly longer tails than random, with clear geographic correspondences. At the scale of our data we found that range-diversity plots reveal biodiversity patterns that cannot be replicated by null models, and correspond to conspicuous terrain features and taxonomic groupings. PMID:21573112

  14. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    PubMed

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area. PMID:26867276

  15. Bomb radiocarbon in metabolically inert tissues from terrestrial and marine mammals

    SciTech Connect

    Bada, J.L.; Vrolijk, C.D.; Brown, S.; Druffel, E.R.M.; Hedges, R.E.M.

    1987-10-01

    We report here radiocarbon measurements of monkey eye lens nucleus proteins and a narwhal tusk, biological tissues which have sampled the bomb radiocarbon signal in different ways. The results confirm the metabolic inertness of eye lens nucleus proteins and demonstrate the feasibility of measuring radiocarbon in small samples of biological tissue using accelerator mass spectrometry (AMS). The narwhal tusk provides a unique record of the radiocarbon activity in Arctic Ocean waters over most of the 20th century.

  16. Small mammal carbon isotope ecology across the Miocene-Pliocene boundary, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Hynek, Scott A.; Passey, Benjamin H.; Prado, José Luis; Brown, Francis H.; Cerling, Thure E.; Quade, Jay

    2012-03-01

    The late Miocene expansion of plants using the C4 photosynthetic pathway in South America has been documented by tooth enamel carbon isotope ratios (δ13Cen). However, a more detailed understanding of this ecological event is hampered by poor chronological control on the widespread fossil localities from which isotopic data are derived. This study develops a δ13Cen record from a single 2500 m-thick stratigraphic section in subtropical South America. Strata at Puerta de Corral Quemado (PCQ), northwestern Argentina, span 9 to 3.5 Ma in age, and existing paleosol carbonate data (δ13Cpc) document C4 expansion across the Miocene-Pliocene boundary. Comparison of δ13Cen data with δ13Cpc data at high stratigraphic resolution refines understanding of this ecological event in South America. Small mammal δ13Cen data in particular are complementary to that of large mammal and paleosol δ13C data. Small mammal teeth integrate isotopic data over much shorter temporal and spatial scales than large mammal teeth, providing a sensitive measure of local vegetation and placing constraints on the landscape distribution of C3 and C4 plants. Explicit consideration of the distinctive carbon isotope enrichment factor between enamel and diet for rodents (ɛ*en-diet = 11‰, as opposed to 14‰ for large mammals) allows for unequivocal inference of C4 vegetation ~ 1 Ma prior to that inferred from large mammal δ13Cen data, and ~ 2 Ma prior to δ13Cpc data. This multiproxy record demonstrates that C4 plants were a stable component of the ecosystem hundreds of thousands of years prior to their major ecological expansion, and that the expansion of C4 plants was pulsed at PCQ. Two periods of ecological change are demonstrated by δ13C and δ18O data at ~ 7 Ma and 5.3 Ma (coincident with the Miocene-Pliocene boundary). Development of small mammal δ13Cen records on other continents may provide similar insight into the early stages of the global C4 event.

  17. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change

    PubMed Central

    Terry, Rebecca C.; Rowe, Rebecca J.

    2015-01-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities—particularly the spread of nonnative annual grasslands—has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  18. Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals.

    PubMed

    Mizukawa, Hazuki; Nomiyama, Kei; Nakatsu, Susumu; Yachimori, Shuuji; Hayashi, Terutake; Tashiro, Yutaka; Nagano, Yasuko; Tanabe, Shinsuke

    2013-03-01

    Residue levels and patterns of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), their hydroxylated metabolites (OH-PCBs, OH-PBDEs), and methoxylated PBDEs (MeO-PBDEs) in the blood of various terrestrial mammals in Japan, including cats, raccoon dogs, dogs, masked palm civets, foxes, raccoons, badgers, and mongooses were determined. Tri- through penta-chlorinated OH-PCBs were predominant in cat blood, whereas hexa- through octa-chlorinated OH-PCBs were found in other species. High proportion of BDE209 was found in all species, suggesting exposure to municipal waste and soil containing higher levels of deca-BDE products. 6OH-/MeO-BDE47 and 2'OH-/MeO-BDE68 were dominant in all terrestrial mammals. This is first report on the detection of OH-/MeO-PBDEs in the blood of terrestrial mammals. High concentrations of OH-/MeO-PBDEs were found in cats, suggesting the intake of these compounds from seafood. Cats exhibited higher accumulation and specific patterns of OH-PCBs, OH-PBDEs, and MeO-PBDEs, they may be at a high risk from these metabolites. PMID:23246744

  19. Analysis of regional climate change impacts on European terrestrial wild mammal's living territory in the 21st century based on ENSEMBLES simulations

    NASA Astrophysics Data System (ADS)

    Nagy, J.; Bartholy, J.; Pongracz, R.; Hufnagel, L.

    2012-04-01

    Animals tend to occupy geographical regions with climatic conditions, which are optimal to the specific needs of the given species. _Due to the projected global warming and climate change the wild animals' living territory may be reshaped in the future. In this research we aim to estimate the regional impacts of climate change to the European terrestrial mammals. The climate profile indicator of every species was estimated by using the E-OBS database for 1961-1990. The results show that rapid change and significant decline in habitats redraw the wild animals' living territory and make them migrate northward. Applied datasets for regional climate model results using 25 km horizontal resolution are available from the European project ENSEMBLES for 1951-2100 using A1B scenario. For the range datasets the Atlas of European Mammals are analyzed, which was published in 1999 and is now widely used as a reference work. It contains data for the pre-1970 and post-1970 presence of mammal species in Europe. Simultaneous analysis of climate simulations and animal range datasets enables us to evaluate the vulnerability of the European terrestrial mammal species to regional climate change.

  20. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  1. Effects of disturbance on small mammal community structure in the New Jersey Pinelands, USA.

    PubMed

    Shenko, Alicia N; Bien, Walter F; Spotila, James R; Avery, Harold W

    2012-03-01

    We compared small mammal community composition among undisturbed habitats and habitats disturbed by military operations on Warren Grove Gunnery Range (WGR) in the New Jersey Pinelands. WGR is one of the largest tracts of protected land within this globally rare ecosystem. Disturbance in the form of fire, mowing, soil disruption and logging has had a large effect on small mammal occurrence and distribution. Of the 14 small mammal species that occur in the Pinelands, 9 live on WGR, including large populations of the southern bog lemming (Synaptomys cooperi Baird, 1858) and meadow jumping mouse [Zapus hudsonius (Zimmermann, 1780)]. Simpson's Index of Diversity was 0 for most disturbed sites and was generally greater in wetlands than in uplands. White-footed mouse [Peromyscus leucopus (Rafinesque, 1818)] was the most common species on WGR and had a dominant effect on species diversity and community similarity indices. It dominated upland habitats and was the only species to occur in several disturbed habitats, whereas all 9 species occurred in wetlands. Principal components analysis indicated that most variation in species diversity was explained by disturbance and differences between upland and wetland habitats, due to presence of white-footed mice in disturbed and upland sites. Meadow jumping mice, southern bog lemmings and red-back voles [Myodes gapperi (Vigors, 1830)] were positively correlated with wetland habitats, and pine voles [Microtus pinetorum (Le Conte, 1830)], short-tail shrews [Blarina brevicauda (Say, 1823)] and eastern chipmunks [Tamias striatus (Linnaeus, 1758)] were associated with uplands. Habitat heterogeneity at WGR, including extensive undisturbed wetlands and uplands supported a rich diversity of small mammal species. PMID:22405445

  2. Small mammal community succession on the beach of Dongting Lake, China after the Three Gorges Project.

    PubMed

    Zhang, Meiwen; Wang, Yong; Li, Bo; Guo, Cong; Huang, Guoxian; Shen, Guo; Zhou, Xunjun

    2014-06-01

    Although the Three Gorges Project (TGP) may have affected the population structure and distribution of plant and animal communities, few studies have analyzed the effect of this project on small mammal communities. Therefore, the present paper compares the small mammal communities inhabiting the beaches of Dongting Lake using field investigations spanning a 20-year period, both before and after the TGP was implemented. Snap traps were used throughout the census. The results indicate that the TGP caused major changes to the structure of the small mammal community at a lake downstream of the dam. First, species abundance on the beaches increased after the project commenced. The striped field mouse (Apodemus agrarius) and the Norway rat (Rattus norvegicus), which rarely inhabited the beach before the TGP, became abundant (with marked population growth) once water was impounded by the Three Gorges Reservoir. Second, dominant species concentration indices exhibited a stepwise decline, indicating that the community structure changed from a single dominant species to a more diverse species mix after TGP implementation. Third, the regulation of water discharge release by the TGP might have caused an increase in the species diversity of the animal community on the beaches. A significant difference in diversity indices was obtained before and after the TGP operation. Similarity indices also indicate a gradual increase in species numbers. Hence, a long-term project should be established to monitor the population fluctuations of the Yangtze vole (Microtus fortis), the striped field mouse and the Norway rat to safeguard against population outbreaks (similar to the Yangtze vole outbreak in 2007), which could cause crop damage to adjacent farmland, in addition to documenting the succession process of the small mammal community inhabiting the beaches of Dongting Lake. PMID:24148252

  3. Radionuclide contaminant analysis of small mammals at Area G, TA-54, Los Alamos National Laboratory, 1995

    SciTech Connect

    Bennett, K.; Biggs, J.; Fresquez, P.

    1997-01-01

    At Los Alamos National Laboratory, small mammals were sampled at two waste burial sites (Site 1-recently disturbed and Site 2-partially disturbed) at Area G, Technical Area 54 and a control site on Frijoles Mesa (Site 4) in 1995. Our objectives were (1) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify if the primary mode of contamination to small mammals is by surface contact or ingestion/inhalation. Three composite samples of at least rive animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr , {sup 238}Pu, {sup 239}Pu, total U, {sup 137}Cs, and {sup 3}H. Significantly higher (parametric West at p=0.05) levels of total U, {sup 241}Am, {sup 238}Pu and {sup 239}Pu were detected in pelts than in carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Our results show higher concentrations in pelts compared to carcasses, which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had a significantly higher (alpha=0.05, P=0.0125) mean tritium concentration in carcasses than Site 2 or Site 4. In addition Site 1 also had a significantly higher (alpha=0.05, p=0.0024) mean tritium concentration in pelts than Site 2 or Site 4. Site 2 had a significantly higher (alpha=0.05, P=0.0499) mean {sup 239}Pu concentration in carcasses than either Site 1 or Site 4.

  4. Radionuclide contaminant analysis of small mammals at Area G, TA-54, 1994

    SciTech Connect

    Biggs, J.; Bennett, K.; Fresquez, P.

    1995-09-01

    Small mammals were sampled at two waste burial sites (1 and 2) at Area G, TA-54 and a control site outside Area G (Site 3) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, total U, and gamma spectroscopy (including {sup 137}Cs). Significantly higher (parametric t-test at p = 0.05) levels of total U, {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 40}K were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. The authors results show higher concentrations in pelts compared to carcasses which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had significantly higher (alpha = 0.05, F = 0.0095) total U concentrations in carcasses than Sites 2 and 3. Site 2 had significantly higher (alpha = 0.05, F = 0.0195) {sup 239}Pu concentrations in carcasses than either Site 1 or Site 3. A significant difference in {sup 90}Sr concentration existed between Sites 1 and 2 (alpha = 0.05, F = 0.0681) and concentrations of {sup 40}K at Site 1 were significantly different from Site 3.

  5. Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil.

    PubMed

    Sponchiado, Jonas; Melo, Geruza L; Landulfo, Gabriel A; Jacinavicius, Fernando C; Barros-Battesti, Darci M; Cáceres, Nilton C

    2015-07-01

    We describe ectoparasite fauna associated with small mammals in fragments of Cerrado biome, central-western Brazil. We analyzed the level of associations and the aggregation patterns according to seasonal and host variations. Small mammals were systematically captured in 54 woodland fragments from February 2012 to July 2013. A total of 1040 animals belonging to eight marsupial and 12 rodent species were sampled; 354 individuals were parasitized by 33 ectoparasite species (twenty five Mesostigmata, seven Phthiraptera and one Siphonaptera). A total of 49 ecological relationships between ectoparasites and small mammals were observed, 24 being new association records. The overall specialization index of all ectoparasites and host species was 0.91 with significant deviation from a random host-parasite association, suggesting a high host-parasite specialization in this system. Specialization indices for ectoparasites ranged from moderate to high, while among host was high, for most species. Contrary to the overall pattern, some ectoparasites had higher prevalence and mean intensity of infestation in the dry season. Overall, ectoparasite prevalence and mean intensity of infestation were not significantly associated with host gender. This study provides significant information about the ectoparasites ecology in relation to specificity, seasonality and hosts gender, contributing to the understanding of host-parasite relationships in Brazilian savannah. PMID:25912954

  6. Scaling the relative dominance of exogenous drivers in structuring desert small mammal assemblages

    NASA Astrophysics Data System (ADS)

    Rodríguez, Daniela; Ojeda, Ricardo A.

    2015-11-01

    Assemblage patterns could be primarily generated by two types of drivers: exogenous (such as environmental and climatic factors) and endogenous (interactions such as competition, predation, mutualism or herbivory). The most widely accepted hypothesis states that at smaller scales (such as patch scale), interspecific interactions are the major drivers structuring communities, whereas at larger regional scales, factors such as climate, topography and soil act as ecological filters that determine assemblage composition. The general aim of this paper is to compare different exogenous drivers in terms of their relative dominance in structuring desert small mammal communities across a range of spatial scales, from patch to regional, and compare them with previous results on endogenous drivers. Our results show that as spatial scale increases, the explanatory power of exogenous factors also increases, e.g. from 17% at the patch scale (i.e. abundance) to 99% at the regional scale (i.e. diversity). Moreover, environmental drivers vary in type and strength depending on the community estimator across several spatial scales. On the other hand, endogenous drivers such as interspecific interactions are more important at the patch scale, diminishing in importance towards the regional scale. Therefore, the relative importance of exogenous versus endogenous drivers affects small mammal assemblage structure at different spatial scales. Our results fill up a knowledge gap concerning ecological drivers of assemblage structure at intermediate spatial scales for Monte desert small mammals, and highlight the importance of dealing with multi-causal factors in explaining ecological patterns of assemblages.

  7. Small mammals from the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala

    USGS Publications Warehouse

    Matson, Jason O.; Ordóñez-Garza, Nicté; Woodman, Neal; Bulmer, Walter; Eckerlin, Ralph P.; Hanson, J. Delton

    2014-01-01

    We surveyed the small mammals of remnant mixed hardwood-coniferous cloud forest at elevations ranging from 2,100–2,300 m in the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala. Removal-trapping using a combination of live traps, snap traps, and pitfall traps for 6 days in January 2007 resulted in 175 captures of 15 species of marsupials, shrews, and rodents. This diversity of small mammals is the highest that we have recorded from a single locality of the 10 visited during eight field seasons in the highlands of Guatemala. Based on captures, the most abundant species in the community of small mammals is Peromyscus grandis (n = 50), followed by Handleyomys rhabdops (n = 27), Heteromys desmarestianus(n = 18), Reithrodontomys mexicanus (n = 17), Handleyomys saturatior (n = 16), Sorex veraepacis (n = 15), and Scotinomys teguina (n = 13). The remaining eight species were represented by one to five individuals.

  8. Molecular Identification of Echinococcus multilocularis Infection in Small Mammals from Northeast, Iran

    PubMed Central

    Beiromvand, Molouk; Akhlaghi, Lame; Fattahi Massom, Seyed Hossein; Meamar, Ahmad Reza; Darvish, Jamshid; Razmjou, Elham

    2013-01-01

    Background Alveolar echinococcosis is a zoonotic disease caused by the metacestode of Echinococcus multilocularis. Many species of small mammals, including arvicolid rodents or Ochotona spp., are natural intermediate hosts of the cestode. The main aim of this study was to identify natural intermediate hosts of E. multilocularis in Chenaran County, Razavi Khorasan Province, northeastern Iran, where the prevalence of infected wild and domestic carnivores is high. Methodology/Principal Findings A program of trapping was carried out in five villages in which this cestode was reported in carnivores. The livers of 85 small mammals were investigated for the presence of E. multilocularis infection using multiplex PCR of mitochondrial genes. Infections were identified in 30 specimens: 23 Microtus transcaspicus, three Ochotona rufescens, two Mus musculus, one Crocidura gmelini, and one Apodemus witherbyi. Conclusions/Significance A range of small mammals therefore act as natural intermediate hosts for the transmission of E. multilocularis in Chenaran County, and the prevalence suggested that E. multilocularis infection is endemic in this region. The existence of the life cycle of this potentially lethal cestode in the vicinity of human habitats provides a significant risk of human infection. PMID:23875048

  9. Ecological characteristics of small mammals on a radioactive waste disposal area in southeastern Idaho

    SciTech Connect

    Groves, C.R.; Keller, B.L.

    1983-01-01

    Species composition, diversity, biomass and densities of small mammal populations were examined in crested wheatgrass (Agropyron cristatum) and Russian thistle (Salsola kali) habitats on a solid radioactive waste disposal area and in native sagebrush (Artemisia tridentala) habitat surrounding the disposal area. The 15-month live-trapping study resulted in the marketing of 2384 individuals representing 10 species of small mammals. The deer mouse (Peromyscus maniculatus) was the most common rodent in both disposal area habitats and the adjacent sagebrush habitat; Ord's kangaroo rat (Dipodomys ordii) was also an abundant rodent in all vegetation types. The montane vole (Microtus montanus) was common only in crested wheatgrass stands on the disposal area. Although the adjacent native sagebrush habitat had the highest species diversity and the Russian thistle habitat on the disposal area had the lowest, the total rodent density was not significantly different among the three vegetation types. Crested wheatgrass within the disposal area contained the largest rodent biomass throughout the study, in part due to an increasing M. montanus population. The peak small mammal biomass of 5000 g/ha in creasted wheatgrass and sagebrush habitats was considerably higher than previously reported for similar habitats. Differences in diversity and biomass between the disposal area and surrounding native habitat are most likely related to differences in soil compaction and vegetation between these two areas.

  10. Land use determinants of small mammal abundance and distribution in a plague endemic area of Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Kimaro, Didas N; Kihupi, Nganga I; Gulinck, Hubert; Mulungu, Loth S; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August-October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals' habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution. PMID:26867281

  11. Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.

    PubMed

    Soga, Masashi; Koike, Shinsuke

    2013-01-01

    Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches) and landscape (amount of suitable habitat surrounding of focal patches) factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides) in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha) as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans. PMID:23300951

  12. Large Forest Patches Promote Breeding Success of a Terrestrial Mammal in Urban Landscapes

    PubMed Central

    Soga, Masashi; Koike, Shinsuke

    2013-01-01

    Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches) and landscape (amount of suitable habitat surrounding of focal patches) factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides) in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3–797.8 ha) as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans. PMID:23300951

  13. The translation into Spanish of the OIE Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees): problems, solutions and conclusions.

    PubMed

    Crespo León, F; Gutiérrez Díez, F; Rodríguez Ferri, F; León Vizcaíno, L; Cuello Gijón, F; Gimeno, E J; Zepeda Sein, C; Sánchez Vizcaíno Rodríguez, J M; Cerón Madrigal, J J; Cantos Gómez, P; Schudel, A

    2005-12-01

    In order to carry out the translation into Spanish of the Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees) ensuring full scientific and linguistic accuracy, its authors relied on coordination between three types of experts: linguistic, translational and veterinary. In this paper the planning, execution and quality control of such work, which was undertaken with the support and guarantee of the World Organisation for Animal Health (OIE), is reported. In the conclusions the authors describe what they view as necessary guidelines for the OIE to apply in the future regarding its linguistic policy. The working methodology reported in connection with the translation of the Terrestrial Manual into Spanish will be useful for the translation of the Terrestrial Manual or other texts into languages other than Spanish, whether or not they are among the official languages of the OIE. PMID:16642778

  14. The crouching of the shrew: Mechanical consequences of limb posture in small mammals.

    PubMed

    Riskin, Daniel K; Kendall, Corinne J; Hermanson, John W

    2016-01-01

    An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals-whether crouching or more upright-compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body's momentum in the direction of travel. PMID:27413633

  15. Long-term effects of precommercial thinning on small mammals in northern Maine

    USGS Publications Warehouse

    Homyack, J.A.; Harrison, D.J.; Krohn, W.B.

    2005-01-01

    Precommercial thinning (PCT) is being practiced increasingly throughout the Acadian forest of eastern North America to meet silvicultural objectives; however, effects of this practice on wildlife, both immediately and several years post-treatment are not well understood. Forest dependent small mammals have ecological roles as prey for numerous avian and mammalian predators, dispersers of seeds, fruit, and spores, and contribute to nutrient cycling. Researchers in the northwestern USA have suggested that thinning of young, regenerating clearcuts may increase the abundance and diversity of some forest-dependent small mammals by increasing rates of forest development and enhancing the ecological representation of mid-successional stands across managed landscapes. We examined the effects of PCT within conifer-dominated forest stands 1-, 6-, 11-, and 16-years post-treatment, on abundances of mice, voles, and shrews, and on within-stand structure in the commercially managed, Acadian forests of northern Maine. We live-trapped small mammals on 24 herbicide-treated clearcuts treated with PCT and on 13 similar, unthinned stands during summers of 2000 and 2001. Thinning of mid-successional conifer stands resulted in increased abundances, (red-backed voles, Clethrionomys gapperi, P = 0.008; masked shrews, Sorex cinereus, P < 0.001) or had no detectable effect on (deer mice, Peromyscus maniculatus, P = 0.544; short-tailed shrews, Blarina brevicauda, P = 0.517) the 4 most common species of Muridae and Soricidae in northern Maine. In general, abundance of deer mice responded more positively to increasing development class and to the number of years since thinning than other species of small mammals. Several within-stand habitat characteristics associated with stand maturity, such as larger stem diameters and a partially open canopy, occurred in thinned stands. Thus, PCT may accelerate the development of habitat attributes typical of mid-successional conifer stands in intensively

  16. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  17. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals.

    PubMed

    Mason, Matthew J

    2016-02-01

    Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat. PMID:26104342

  18. Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada.

    PubMed

    Jardine, Claire M; Reid-Smith, Richard J; Rousseau, Joyce; Weese, J Scott

    2013-04-01

    We sampled 325 small and medium-sized wild mammals in Ontario, Canada in 2007 and 2010 to determine the prevalence and characteristics of Clostridium difficile in wild mammals living in proximity to captive wildlife and livestock. Clostridium difficile was isolated from five of 109 animals (4.6%) on four of 25 farms (16%), but was not isolated from any of the 216 samples from raccoons (Procyon lotor) living on the grounds of the Toronto Zoo. The positive animals included two raccoons from one beef farm, one raccoon from a different beef farm, one raccoon from a swine farm, and a shrew (Blarina brevicauda) from a dairy farm. None had evidence of gastrointestinal disease. Three of the five isolates were toxinotype variants (II, IV, and XIII) that are rarely identified in humans and domestic animals. The other two were toxinotype 0, a common toxinotype in humans and animals; however, all five isolates were of different ribotypes. None of the recovered ribotypes were recognized as ribotypes present in the authors' reference library of over 3,000 human and domestic animal C. difficile isolates. Neither the public health nor the animal health relevance of these findings is clear. It is not known whether C. difficile is a pathogen of small and medium-sized wild mammals, although the susceptibility of various laboratory species suggests it could cause disease. PMID:23568920

  19. Last glacial maximum environments in northwestern Patagonia revealed by fossil small mammals

    NASA Astrophysics Data System (ADS)

    Tammone, Mauro N.; Hajduk, Adan; Arias, Pablo; Teta, Pablo; Lacey, Eileen A.; Pardiñas, Ulyses F. J.

    2014-07-01

    Comparisons of historical and modern assemblages of mammals can yield important insights into patterns and processes of environmental change. Here, we present the first analyses of small mammal assemblages present in northern Patagonia during the last glacial maximum (LGM). Using remains obtained from owl pellets excavated from an archeological cave site (Arroyo Corral I, levels VII-V, carbon dates of 22,400-21,530 cal yr BP), we generate estimates of the minimum number of individuals for all species detected; these estimates, in turn are used to determine relative species abundances. Comparisons of these data with similar analyses of small mammal remains obtained from a second archeological site (ACoII, levels IV-V, carbon dates of 10,010-9220 cal yr BP) as well as from modern owl pellets reveal pronounced changes in relative species abundance since the LGM. In particular, Euneomys chinchilloides and Ctenomys sociabilis - the predominant species during the LGM - declined markedly, suggesting a change from open, bare habitat punctuated by patches of wet meadows and shrubs to the more densely vegetated mosaic of ecotone habitats found in this region today. These data provide important new insights into the environmental changes that have occurred in northern Patagonia over the last 20,000 years.

  20. [Structure of populations and ecological nishes of ectoparasites in the parasite communities of small forest mammals].

    PubMed

    Balashov, Iu S; Bochkov, A V; Vashchenok, V S; Grigor'eva, L A; Staniukovich, M K; Tret'iakov, K A

    2007-01-01

    The paper reports the results of eight-year investigations on the ectoparasites of rodents and insectivores carried out in southern taiga of the Ilmen-Volkhov lowland (Novgorod Region) and Kurgolovsky reserve (Leningrad Region). Twelve species of small mammals were captured including three dominate species--bank vole Clethrionomys glareolus (2722 specimens), common shrew Sorex araneus (1658 specimens), and wood mouse Apodemus uralensis (367 specimens). Parasite community of the bank vole comprises 34 species of mites, ticks, and insects, the community of common shrew comprises 25 species, and the community of A. uralensis includes 28 species. Taxonomic diversity of the ectoparasite communities was shown to be based on the diversity of types of parasitism and ecological nishes of the host body. Permanent ectoparasites are found to be represented by 2 species of lie and 14 species of acariform mites. The group of temporary parasites includes 13 species of fleas, 10 species of gamasid mites. 3 ixodid species and 1 Trombiculidae. There is a common pool of temporary parasites of small mammals in the ecological system of taiga. Significance of different shrew and rodent species as hosts were found to be dependent on the population density in possible hosts and many other factors. Species diversity in the parasite communities of different small mammal species is dependent on the number of possible ecological nishes in the host body. Actual infill of these nishes by ectoparasites is usually lesser than potential one. Species composition of temporary parasites, their occurrence and abundance changes according to season. Interspecific competition in the temporary parasite species can decrease because of the seasonal disjunction of their population peaks. Diversification of the ecological niches of ectoparasites allow simultaneous feeding of more parasite individuals on one host, than in the case of parasitising of single species or several species with similar ecological

  1. A killer appetite: metabolic consequences of carnivory in marine mammals.

    PubMed

    Williams, T M; Haun, J; Davis, R W; Fuiman, L A; Kohin, S

    2001-07-01

    Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey. PMID:11440865

  2. Small mammal abundance and habitat relationships on deciduous forested sites with different susceptibility to gypsy moth defoliation

    NASA Astrophysics Data System (ADS)

    Yahner, Richard H.; Smith, Harvey R.

    1991-01-01

    Small mammals are important predators of gypsy moths ( Lymantria dispar L.), which are major defoliators of deciduous forests in the northeastern United States. Abundance and habitat relationships of small mammals were studied during summers 1984 and 1985 on forested sites at Moshannon and Rothrock state forests in two physiographic regions of Pennsylvania (Allegheny High Plateaus Province and Valley and Ridge Province, respectively) that varied in potential susceptibility to defoliation. The white-footed mouse ( Peromyscus leucopus), which is a major vertebrate predator of gypsy moths, was the most common small mammal on all sites. Of the four common species, northern short-tailed shrews ( Blarina brevicauda), southern red-backed voles ( Clethrionomys gapperi), and white-footed mice were more abundant at Moshannon compared to Rothrock State Forest, but masked shrews ( Sorex cinereus) were more abundant at Rothrock. Elevation was a major factor affecting abundance and distribution of small mammals. Because of the greater abundance of small mammals and more suitable physiographic features at Moshannon compared to Rothrock State Forest, small mammals may be more effective as predators on gypsy moths in the Allegheny High Plateaus than the Valley and Ridge Province of Pennsylvania.

  3. Small mammals cause non-trophic effects on habitat and associated snails in a native system.

    PubMed

    Huntzinger, Mikaela; Karban, Richard; Maron, John L

    2011-12-01

    Legacy effects occur when particular species or their interactions with others have long-lasting impacts, and they are increasingly recognized as important determinants of ecological processes. However, when such legacy effects have been explicitly explored, they most often involve the long-term direct effects of species on systems, as opposed to the indirect effects. Here, we explore how a legacy of small mammal exclusion on the abundance of a shrub, bush lupine (Lupinus arboreus), influences the abundance of a native land snail (Helminthoglypta arrosa) in coastal prairie and dune habitats in central California. The factors that limit populations of land snails are very poorly known despite the threats to the persistence of this group of species. In grasslands, prior vole (Microtus californicus) exclusion created long-lasting gains in bush lupine abundance, mediated through the seedbank, and was associated with increased snail numbers (10×) compared to control plots where mammals were never excluded. Similar plots in dune habitat showed no difference in snail numbers due to previous mammal exclusion. We tested whether increased competition for food, increased predation, and/or lower desiccation explained the decline in snail numbers in plots with reduced lupine cover. Tethering experiments supported the hypothesis that voles can have long-lasting impacts as ecosystem engineers, reducing woody lupine habitat required for successful aestivation by snails. These results add to a growing list of studies that have found that non-trophic interactions can be limiting to invertebrate consumers. PMID:21691854

  4. The crouching of the shrew: Mechanical consequences of limb posture in small mammals

    PubMed Central

    Kendall, Corinne J.; Hermanson, John W.

    2016-01-01

    An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals–whether crouching or more upright–compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body’s momentum in the direction of travel. PMID:27413633

  5. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated that plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.

  6. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  7. Faunal analysis of chigger mites (Acari: Prostigmata) on small mammals in Yunnan province, southwest China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu

    2015-08-01

    This paper studied the species diversity and fauna distribution of chigger mites on small mammals in Yunnan province, southwest Yunnan. In total, 120,138 individuals of chigger mites were collected from 13,760 individual small mammals, and these mites were identified as comprising two families, 26 genera, and 274 species. Of the five zoogeographical subregions, the mite species diversity in subregions I and II was higher than that in subregions III, IV, and V. Four mite species (Leptotrombidium scutellare, Leptotrombidium sinicum, Leptotrombidium deliense, and Helenicula simena) were the most dominant species in the whole province. Several vector species of chigger mites co-existed in Yunnan, and L. deliense (a main vector of scrub typhus in China) was mainly distributed in subregions IV and V with lower latitude and average altitude whereas L. scutellare (also a main vector in China) was mainly distributed in subregions I, II, and III with higher latitude and average altitude. Some geographically widely distributed mite species were also the mites with wide host ranges and low host specificity. The dominant mite species and their clustering tendency in the dendrogram of hierarchical clustering analysis were highly in accordance with the zoogeographical divisions. The species diversity of chigger mites showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3,500 m) along the vertical gradients and reached the highest value in the middle altitude regions in 2,000-2,500 m. The highest species diversity of the mites and their small mammal hosts happened in the regions around the Hengduan Mountains, which is a hotspot of biodiversity in Asia continent. The host and its sample size, geographical scope, landscape, topography, and some other factors comprehensively influence the species diversity and faunal distribution of chigger mites. A systematic field investigation with a wide geographical scope and large host sample is strongly recommended

  8. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland.

    PubMed

    Hurst, Zachary M; McCleery, Robert A; Collier, Bret A; Fletcher, Robert J; Silvy, Nova J; Taylor, Peter J; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  9. Comparison of small mammal species diversity near wastewater outfalls, natural streams, and dry canyons

    SciTech Connect

    Raymer, D.F.; Biggs, J.R.

    1994-03-01

    A wide range of plant and wildlife species utilizes water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to compare nocturnal small mammal communities at wet areas created by wastewater outfalls with communities in naturally created wet and dry areas. Thirteen locations within LANL boundaries were selected for small mammal mark-recapture trapping. Three of these locations lacked surface water sources and were classified as {open_quotes}dry,{close_quotes} while seven sites were associated with wastewater outfalls ({open_quotes}outfall{close_quotes} sites), and three were located near natural sources of surface water ({open_quotes}natural{close_quotes} sites). Data was collected on site type (dry, outfall or natural), location, species trapped, and the tag number of each individual captured. This data was used to calculate mean number of species, percent capture rate, and species diversity at each type of site. When data from each type of site was pooled, there were no significant differences in these variables between dry, outfall, and natural types. However, when data from individual sites was compared, tests revealed significant differences. All sites in natural areas were significantly higher than dry areas in daily mean number of species, percent capture rate, and species diversity. Most outfall sites were significantly higher than dry areas in all three variables tested. When volume of water from each outfall site was considered, these data indicated that the number of species, percent capture rate, and species diversity of nocturnal small mammals were directly related to the volume of water at a given outfall.

  10. Spatial capture-recapture model performance with known small-mammal densities.

    PubMed

    Gerber, Brian D; Parmenter, Robert R

    2015-04-01

    Abundance and density of wild animals are important ecological metrics. However, estimating either is fraught with challenges; spatial capture-recapture (SCR) models are a relatively new class of models that attempt to ameliorate common challenges, providing a statistically coherent framework to estimate abundance and density. SCR models are increasingly being used in ecological and conservation studies of mammals worldwide, but have received little testing with empirical field data. We use data collected via a web and grid sampling design to evaluate the basic SCR model where small-mammal abundance (N) and density (D) are known (via exhaustive sampling). We fit the basic SCR model with and without a behavioral effect to 11 small-mammal populations for each sampling design using a Bayesian and likelihood SCR modeling approach. We compare SCR and ad hoc density estimators using frequentist performance measures. We found Bayesian and likelihood SCR estimates of density (D) and abundance (N) to be similar. We also found SCR models to have moderately poor frequentist coverage of D and N (45-73%), high deviation from truth (i.e., accuracy; D, 17-29%; N, 16-29%), and consistent negative bias across inferential paradigms, sampling designs, and models. With the trapping grid data, the basic SCR model generally performed more poorly than the best ad hoc estimator (behavior CR super-population estimate divided by the full mean maximum distance moved estimate of the effective trapping area), whereas with the trapping web data, the best-performing SCR model (null) was comparable to the best distance model. Relatively poor frequentist SCR coverage resulted from higher precision (SCR coefficients of variation [CVs] < ad hoc CVs); however D and D were fairly well correlated (r2 range of 0.77-0.96). SCR's negative relative bias (i.e., average underestimation of the true density) suggests additional heterogeneity in detection and/or that small mammals maintained asymmetric home

  11. Nidicolous ticks of small mammals in Anaplasma phagocytophilum-enzootic sites in northern California

    PubMed Central

    Foley, Janet; Rejmanek, Daniel; Fleer, Katryna; Nieto, Nathan

    2011-01-01

    Ixodes spp. tick-borne zoonotic diseases are present across the Holarctic in humans, domestic animals, and wildlife. Small mammals are reservoirs for the rickettsial pathogen Anaplasma phagocytophilum and tick vectors may include catholic-feeding bridge vectors as well as host-specialist or nidicolous ticks. Far western North American communities in which A. phagocytophilum is maintained are complex ecologically, with multiple reservoir host and tick species, multiple strains of the bacterial pathogen A. phagocytophilum and differences in dynamics of hosts and vectors across heterogeneous landscapes. We evaluated sites in northern California in order to identify primarily nidicolous ticks and the hosts they infest. A total of 667 ticks was found in 11 study sites, including 288 on flags and 379 attached to small mammals. Larvae were over-represented among attached ticks and adults on flags. The most abundant species was I. pacificus. Two-hundred fourteen nidicolous ticks were found, most abundantly I. angustus and I. spinipalpis. All adult I. ochotonae, I. auritulus, I. angustus, I. jellisoni, and I. woodi were female, while the male:female ratio of I. spinipalpis was 1.2:1 and 1:1 for I. pacificus. The greatest number of ticks was obtained from Tamias ochrogenys, Peromyscus spp., and Neotoma fuscipes. Of 234 small mammal individuals that were infested with Ixodes spp., only 81 (34.6%) were infested with I. pacificus. The remaining infested small mammals hosted nidicolous tick species. Eight ticks were PCR-positive, including 6 I. pacificus (one adult, one larva, and 6 nymphs), and 2 adult I. ochotonae and high PCR prevalences of 18% and 9% were detected in woodrats and chipmunks, respectively. Nymphal I. angustus ticks were active year-long with a possible increase in August while larval activity was only observed in December and spring months and adults only during spring and fall. Overall, we show high tick species richness and year-round high levels of

  12. Species diversity of ectoparasitic chigger mites (Acari: Prostigmata) on small mammals in Yunnan Province, China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong

    2016-09-01

    Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope

  13. Reinvasion of small mammals, reptiles, amphibians and insects on a reclaimed coal strip-mine

    SciTech Connect

    Ireland, T.T.; Schemnitz, S.D.; Wolters, G.L.

    1990-12-31

    We conducted wildlife and vegetation sampling on sites reclaimed in 1979, 1982, and 1986, as well as unmined sites, on The Pittsburgh & Midway (P&M) Coal Mining Co.`s McKinley Mine in McKinley County, New Mexico. In June, July, and August 1988 and 1989 we samples small mammals, reptiles, amphibians and insects. Soil and vegetation sampling was conducted in July and September 1988, respectively. We found several significant differences (P < 0.05) among plant and animal data that may have suggested differences between study sites. Recent reclamation procedures conducted or proposed by P&M promise increased wildlife value of reclaimed sites.

  14. Nidicolous ticks of small mammals in Anaplasma phagocytophilum-enzootic sites in northern California.

    PubMed

    Foley, Janet; Rejmanek, Daniel; Fleer, Katryna; Nieto, Nathan

    2011-06-01

    Ixodes spp. tick-borne zoonotic diseases are present across the Holarctic in humans, domestic animals, and wildlife. Small mammals are reservoirs for the rickettsial pathogen Anaplasma phagocytophilum and tick vectors may include catholic-feeding bridge vectors as well as host-specialist or nidicolous ticks. Far western North American communities in which A. phagocytophilum is maintained are complex ecologically, with multiple reservoir host and tick species, multiple strains of the bacterial pathogen A. phagocytophilum and differences in dynamics of hosts and vectors across heterogeneous landscapes. We evaluated sites in northern California in order to identify primarily nidicolous ticks and the hosts they infest. A total of 667 ticks was found in 11 study sites, including 288 on flags and 379 attached to small mammals. Larvae were over-represented among attached ticks and adults on flags. The most abundant species was I. pacificus. Two-hundred fourteen nidicolous ticks were found, most abundantly I. angustus and I. spinipalpis. All adult I. ochotonae, I. auritulus, I. angustus, I. jellisoni, and I. woodi were female, while the male:female ratio of I. spinipalpis was 1.2:1 and 1:1 for I. pacificus. The greatest number of ticks was obtained from Tamias ochrogenys, Peromyscus spp., and Neotoma fuscipes. Of 234 small mammal individuals that were infested with Ixodes spp., only 81 (34.6%) were infested with I. pacificus. The remaining infested small mammals hosted nidicolous tick species. Eight ticks were PCR-positive, including 6 I. pacificus (one adult, one larva, and 6 nymphs), and 2 adult I. ochotonae and high PCR prevalences of 18% and 9% were detected in woodrats and chipmunks, respectively. Nymphal I. angustus ticks were active year-long with a possible increase in August while larval activity was only observed in December and spring months and adults only during spring and fall. Overall, we show high tick species richness and year-round high levels of

  15. Sampling Small Mammals in Southeastern Forests: The Importance of Trapping in Trees

    SciTech Connect

    Loeb, S.C.; Chapman, G.L.; Ridley, T.R.

    1999-01-01

    We investigated the effect of sampling methodology on the richness and abundance of small mammal communities in loblolly pine forests. Trapping in trees using Sherman live traps was included along with routine ground trapping using the same device. Estimates of species richness did not differ among samples in which tree traps were included or excluded. However, diversity indeces (Shannon-Wiener, Simpson, Shannon and Brillouin) were strongly effected. The indeces were significantly greater than if tree samples were included primarily the result of flying squirrel captures. Without tree traps, the results suggested that cotton mince dominated the community. We recommend that tree traps we included in sampling.

  16. Small mammal populations in Maryland meadows during four years of herbicide (Brominal? ) applications

    USGS Publications Warehouse

    Clark, D.R., Jr.; Moulton, C.A.; Hines, J.E.; Hoffman, D.J.

    1996-01-01

    The herbicide Brominal? was applied at the recommended rate to one plot in each of three paired 0.6-ha plots; the other three plots were used as controls. Plots were sprayed once in the fall of 1988 and 1989 and twice in the spring of 1990 and 1991. Small mammals were trapped three times during each activity season (April?October) to obtain population estimates before and after spraying and in the spring preceding fall spraying or the fall following spring spraying. Population estimates immediately after spraying gave no evidence of direct mortality. By 1991, dicot vegetation on treated plots was suppressed and mean numbers of meadow voles (Microtus pennsylvanicus) were less than on control plots. Because meadow voles favor dicots over monocots in their diet, reduced availability of dicots may have been related to the smaller vole population estimates. Species diversity of small mammals was negatively correlated with size of vole populations, but was not different between treated and control plots. Brominal apparently induced opaque corneas in nine voles. The condition was found in two voles too small to have been conceived at the time of the last previous spray nearly 8 months earlier, suggesting exposure to residue alone.

  17. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  18. Effects of Large and Small-Source Seismic Surveys on Marine Mammals and Sea Turtles

    NASA Astrophysics Data System (ADS)

    Holst, M.; Richardson, W. J.; Koski, W. R.; Smultea, M. A.; Haley, B.; Fitzgerald, M. W.; Rawson, M.

    2006-05-01

    L-DEO implements a marine mammal and sea turtle monitoring and mitigation program during its seismic surveys. The program consists of visual observations, mitigation, and/or passive acoustic monitoring (PAM). Mitigation includes ramp ups, powerdowns, and shutdowns of the seismic source if marine mammals or turtles are detected in or about to enter designated safety radii. Visual observations for marine mammals and turtles have taken place during all 11 L-DEO surveys since 2003, and PAM was done during five of those. Large sources were used during six cruises (10 to 20 airguns; 3050 to 8760 in3; PAM during four cruises). For two interpretable large-source surveys, densities of marine mammals were lower during seismic than non- seismic periods. During a shallow-water survey off Yucatán, delphinid densities during non-seismic periods were 19x higher than during seismic; however, this number is based on only 3 sightings during seismic and 11 sightings during non-seismic. During a Caribbean survey, densities were 1.4x higher during non-seismic. The mean closest point of approach (CPA) for delphinids for both cruises was significantly farther during seismic (1043 m) than during non-seismic (151 m) periods (Mann-Whitney U test, P < 0.001). Large whales were only seen during the Caribbean survey; mean CPA during seismic was 1722 m compared to 1539 m during non-seismic, but sample sizes were small. Acoustic detection rates with and without seismic were variable for three large-source surveys with PAM, with rates during seismic ranging from 1/3 to 6x those without seismic (n = 0 for fourth survey). The mean CPA for turtles was closer during non-seismic (139 m) than seismic (228 m) periods (P < 0.01). Small-source surveys used up to 6 airguns or 3 GI guns (75 to 1350 in3). During a Northwest Atlantic survey, delphinid densities during seismic and non-seismic were similar. However, in the Eastern Tropical Pacific, delphinid densities during non-seismic were 2x those during

  19. Small mammal community composition in cornfields, roadside ditches, and prairies in eastern Nebraska

    USGS Publications Warehouse

    Kirsch, E.M.

    1997-01-01

    Community composition of small mammals was examined in prairies, cornfields, and their adjacent roadside ditches in eastern Nebraska. Western harvest mice (Reithrodontomys megalotis) and meadow voles (Microtus pennsylvanicus) were associated with prairie habitat, were common in ditches, but avoided cornfields. Prairie voles (M. Ochrogaster) and white-footed mice (Peromyscus leucopus) were associated with ditch habitat, were common in prairies, but avoided cornfields. Short-tailed shrews (Blarina brevicauda) avoided cornfields, were associated with ditches next to cornfields, but were common in prairies and ditches next to prairies. Deer mice (P. Maniculatus) were associated with cornfields but were relatively common in prairies and ditches. House mice (Mus musculus) were most common in ditches next to cornfields, occurred in cornfields and ditches next to prairies, but were not captured in prairies. Although community composition appears to differ among prairies, ditches, and cornfields, ditches support a more complete suite of the native small mammal species in large and relatively even numbers, whereas cornfields only support deer mice in large numbers.

  20. Association patterns of ticks (Acari: Ixodida: Ixodidae, Argasidae) of small mammals in Cerrado fragments, western Brazil.

    PubMed

    Sponchiado, Jonas; Melo, Geruza L; Martins, Thiago F; Krawczak, Felipe S; Labruna, Marcelo B; Cáceres, Nilton C

    2015-03-01

    The present study describes ticks associated with small mammals and analyzes the aggregation patterns according to seasonal and host variations in the Cerrado biome, central-western Brazil. Small mammals were systematically captured in 54 woodland fragments from February 2012 to July 2013. A total of 1,040 animals belonging to eight marsupial and 12 rodent species were captured; 265 animals were parasitized by eight tick species (in decreasing order of abundance): Ornithodoros mimon, Amblyomma coelebs, Amblyomma sculptum, Amblyomma ovale, Amblyomma parvum, Amblyomma dubitatum, Amblyomma parkeri, and Ixodes amarali. With few exceptions, collected ticks were larvae and nymphs. Among the more abundant animals, the marsupial Didelphis albiventris showed the highest tick prevalence (84.4 %), mean abundance (19.2), mean intensity (22.8), richness of ticks species (n = 7), and total abundance of ticks (n = 2,457). Amblyomma sculptum and O. mimon were the most generalist species, collected on four host species. Fifteen new tick-host associations are reported for the first time. Most ticks showed higher prevalence and mean intensity in the dry season, regardless of host species. Overall, tick prevalence and mean intensity of infestation were significantly associated with host gender. Finally, the importance of the large number of records of the argasid O. mimon is discussed. PMID:25633262

  1. Patterns of small mammal microhabitat utilization in cedar glade and deciduous forest habitats

    SciTech Connect

    Seagle, S.W.

    1985-01-01

    Differential microhabitat use by the small mammals inhabiting a cedar glade and a deciduous forest was investigated using discriminant function analysis of 30 structural parameters measured around the capture site of each animal. Ochrotomys nuttalli and Peromyscus leucopus utilize different microhabitats in the cedar glade, as do Blarina brevicauda and P. leucopus in the deciduous forest. P. leucopus was found to be a microhabitat generalist in the deciduous forest and a specialist in the cedar glade, whereas O. nuttalli and B. bravicauda were a microhabitat generalist and specialist, respectively. The sexes of P. leucopus were found to occupy different microhabitats in the deciduous forest but not in the cedar glade. Female P. leucopus occupied microhabitat with better protective cover in the deciduous forest. Comparisons of microhabitats used by the two species captured in each habitat with a random microhabitat sample and trap sites at which no animals were captured indicate that each habitat is a complex matrix of microhabitats, some of which are used by small mammals and some of which are not. 24 references, 5 figures, 5 tables.

  2. Ticks (Acari: Ixodidae) on small mammals in Kootenay National Park, British Columbia, Canada.

    PubMed

    Anstead, Clare A; Hwang, Yeen Ten; Chilton, Neil B

    2013-11-01

    Two hundred and ninety-one ticks (i.e., 185 larvae, 72 nymphs, and 34 adults) were removed from 153 small mammals comprising six species collected in Verdant Forest, Numa Forest, and Marble Canyon within Kootenay National Park, British Columbia, Canada. Morphological examination and molecular analyses (i.e., polymerase chain reaction-single-strand conformation polymorphism [PCR-SSCP] and DNA sequencing of the mitochondrial 16S rRNA gene) of the ticks revealed that most individuals were Ixodes angustus Neumann. All life cycle stages of I. angustus were found primarily on southern red-backed voles, Clethrionomys gapperi (Vigors). Two Dermacentor andersoni Stiles females were also found on these small mammals. The results of the molecular analyses also revealed that there were three 16S haplotypes of I. angustus and two 16S haplotypes of D. andersoni. A comparison of available sequence data suggests genetic divergence between I. angustus near the western and eastern limits of the species distributional range in North America. Additional studies are needed to determine whether there are genetic differences between I. angustus from North America, Japan, and Russia, and whether there is geographical variation in the ability of ticks to transmit pathogens to their mammalian hosts. PMID:24843924

  3. Drivers of Intensity and Prevalence of Flea Parasitism on Small Mammals in East African Savanna Ecosystems.

    PubMed

    Young, Hillary S; Dirzo, Rodolfo; McCauley, Douglas J; Agwanda, Bernard; Cattaneo, Lia; Dittmar, Katharina; Eckerlin, Ralph P; Fleischer, Robert C; Helgen, Lauren E; Hintz, Ashley; Montinieri, John; Zhao, Serena; Helgen, Kristofer M

    2015-06-01

    The relative importance of environmental factors and host factors in explaining variation in prevalence and intensity of flea parasitism in small mammal communities is poorly established. We examined these relationships in an East African savanna landscape, considering multiple host levels: across individuals within a local population, across populations within species, and across species within a landscape. We sampled fleas from 2,672 small mammals of 27 species. This included a total of 8,283 fleas, with 5 genera and 12 species identified. Across individual hosts within a site, both rodent body mass and season affected total intensity of flea infestation, although the explanatory power of these factors was generally modest (<10%). Across host populations in the landscape, we found consistently positive effects of host density and negative effects of vegetation cover on the intensity of flea infestation. Other factors explored (host diversity, annual rainfall, anthropogenic disturbance, and soil properties) tended to have lower and less consistent explanatory power. Across host species in the landscape, we found that host body mass was strongly positively correlated with both prevalence and intensity of flea parasitism, while average robustness of a host species to disturbance was not correlated with flea parasitism. Cumulatively, these results provide insight into the intricate roles of both host and environmental factors in explaining complex patterns of flea parasitism across landscape mosaics. PMID:25634599

  4. The influence of trap density and sampling duration on the detection of small mammal species richness

    USGS Publications Warehouse

    Conard, J.M.; Baumgardt, J.A.; Gipson, P.S.; Althoff, D.P.

    2008-01-01

    Assessing species richness of small mammal communities is an important research objective for many live-trapping studies designed to assess or monitor biological diversity. We tested the effectiveness and efficiency of various trap densities for determining estimates and counts of small mammal species richness. Trapping was conducted in grassland habitats in northeastern Kansas during spring and fall of 2002 and 2003. Estimates and counts of species richness were higher at increased trap densities. This effect appeared to be primarily due to the higher number of individuals sampled at higher trap densities. At least 3 nights duration was needed to produce a stable estimate of species richness for the range of trap densities tested (9-144 trap stations/ha). Higher trap densities generally reached stable richness estimates in fewer nights than low density trapping arrangements. Given that counts and estimates of species richness were influenced by trap density and sampling duration, it is critical that these parameters are selected to most effectively meet research objectives.

  5. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns

    PubMed Central

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E.; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P.; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species’ responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  6. The influence of small mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    The amount and rate at which water may penetrate a protective barrier and come into contact with buried radioactive waste is a major concern. Because burrowing animals eventually will reside on the surface of any protective barrier, the effect these burrow systems may have on the loss or retention of water needs to be determined. The first section of this document summarizes the known literature relative to small mammals and the effects that burrowing activities have on water distribution, infiltration, and the overall impact of burrows on the ecosystem. Topics that are summarized include burrow air pressures, airflow, burrow humidity, microtopography, mounding, infiltration, climate, soil evaporation, and discussions of large pores relative to water distribution. The second section of this document provides the results of the study that was conducted at the Hanford Site to determine what effect small mammal burrows have on water storage. This Biointrusion task is identified in the Permanent Isolation Surface Barrier Development Plan in support of protective barriers. This particular animal intrusion task is one part of the overall animal intrusion task identified in Animal Intrusion Test Plan.

  7. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns.

    PubMed

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species' responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  8. Comparison of small mammal prevalence of Leishmania (Leishmania) mexicana in five foci of cutaneous leishmaniasis in the State of Campeche, Mexico.

    PubMed

    Van Wynsberghe, N R; Canto-Lara, S B; Sosa-Bibiano, E I; Rivero-Cárdenas, N A; Andrade-Narváez, F J

    2009-01-01

    In the Yucatan Peninsula of Mexico, 95% of the human cases of Cutaneous Leishmaniasis are caused by Leishmania (Leishmania) mexicana with an incidence rate of 5.08 per 100,000 inhabitants. Transmission is limited to the winter months (November to March). One study on wild rodents has incriminated Ototylomys phyllotis and Peromyscus yucatanicus as primary reservoirs of L. (L.) mexicana in the focus of La Libertad, Campeche. In the present study, the prevalence of both infection and disease caused by L. (L.) mexicana in small terrestrial mammals were documented during five transmission seasons (1994-2004) in five foci of Leishmaniasis in the state of Campeche. Foci separated by only 100 km, with similar relative abundances of small mammals, were found to differ significantly in their prevalence of both symptoms and infection. Transmission rates and reservoir species seemed to change in space as well as in time which limited the implementation of effective control measures of the disease even in a small endemic area such as the south of the Yucatan Peninsula. PMID:19390737

  9. Radiation exposure and dose to small mammals in radon-rich soils.

    PubMed

    Macdonald, C R; Laverock, M J

    1998-07-01

    Protection of the environment from radionuclide releases requires knowledge of the normal background levels of radiation exposure in the exposed biotic community and an estimate of the detriment caused by additional exposure. This study modeled the background exposure and dose to the lungs of small burrowing mammals from 222Rn in artificial burrows in radon-rich soils at a site in southeastern Manitoba. E-PERM chambers used to measure 222Rn in soil showed good reproducibility of measurement, with an average coefficient of variance (CV) of about 10%. Geometric mean (GM) 222Rn concentrations at nine randomly selected sites ranged from 5,490 Bq/m3 (GSD = 1.57, n = 7) to 41,000 Bq/m3 (GSD = 1.02, n = 5). Long-term monitoring of 222Rn concentrations in artificial burrows showed large variation within and between burrows and did not show consistent variation with season, orientation of the burrow opening, or levels of 226Ra in the soil. Annual GM concentrations in individual burrows ranged from 7,480 Bq/m3 (GSD = 1.60) to 18,930 Bq/m3 (GSD = 1.81) in burrows several meters apart. A grand GM of 9,990 Bq/m3 (GSD = 1.81, n = 214) was measured over the site for the year. An exposure model was constructed for five small mammal species based on their respiration rates and the number of hours spent in the burrow, active or hibernating, exposed to soil gas 222Rn, and the time spent out of the burrow exposed to atmospheric 222Rn. A background dose of 0.9 mGy/a from atmospheric 222Rn (40 Bq/m3) was estimated for a large-bodied (80 kg), nonburrowing animal living on the soil surface. The highest exposures (mJ/a) in burrowing mammals occurred in those species with the highest respiration rates. Hibernation accounted for a small fraction of total annual exposure (<5%) because of very low respiration rates during this period. Absorbed dose to lung (mGy/a) was highest in the pocket gopher and decreased in the larger animals because of larger lung mass. Using mean 222Rn concentrations

  10. A trait-based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals track climate change?

    PubMed

    Santini, Luca; Cornulier, Thomas; Bullock, James M; Palmer, Stephen C F; White, Steven M; Hodgson, Jenny A; Bocedi, Greta; Travis, Justin M J

    2016-07-01

    Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability. PMID:27073017

  11. Physiological and behavioural responses of a small heterothermic mammal to fire stimuli.

    PubMed

    Stawski, Clare; Matthews, Jaya K; Körtner, Gerhard; Geiser, Fritz

    2015-11-01

    The predicted increase of the frequency and intensity of wildfires as a result of climate change could have a devastating impact on many species and ecosystems. However, the particular physiological and behavioural adaptions of animals to survive fires are poorly understood. We aimed to provide the first quantitative data on physiological and behavioural mechanisms used by a small heterothermic marsupial mammal, the fat-tailed dunnart (Sminthopsis crassicaudata), that may be crucial for survival during and immediately after a fire. Specifically, we aimed to determine (i) whether captive torpid animals are able to respond to fire stimuli and (ii) which energy saving mechanisms are used in response to fires. The initial response of torpid dunnarts to smoke exposure was to arouse immediately and therefore express shorter and shallower torpor bouts. Dunnarts also increased activity after smoke exposure when food was provided, but not when food was withheld. A charcoal/ash substrate, imitating post-fire conditions, resulted in a decrease in torpor use and activity, but only when food was available. Our novel data suggests that heterothermic mammals are able to respond to fire stimuli, such as smoke, to arouse from torpor as an initial response to fire and adjust torpor use and activity levels according to food availability modulated by fire cues. PMID:26343772

  12. Ticks (Acari: Ixodidae) collected from small and medium-sized Kansas mammals.

    PubMed

    Brillhart, D B; Fox, L B; Upton, S J

    1994-05-01

    Seven species of hard-bodied ticks were collected from 20 species of small and medium-sized mammals in Kansas; Amblyomma americanum L., Dermacentor variabilis (Say), Haemaphysalis leporispalustris (Packard), Ixodes cookei Packard, I. kingi Bishopp, I. sculptus Neumann, and I. texanus Banks. Dermacentor variabilis was found statewide, A. americanum only in the eastern one-third of the state, and the Ixodes spp. and H. leporispalustris were widely scattered. The most common tick found was D. variabilis, both by itself and in association with other ticks. Mammals that ticks were collected from included Canis latrans Say, Cynomys ludovicianus ludovicianus (Ord), Didelphis virginianus Kerr, Geomys bursarius (Shaw), Lynx rufus (Schreber), Marmota monax bunkeri Black, Mephitis mephitis (Schreber), Microtus ochrogaster (Wagner), Mus musculus L., Peromyscus leucopus (Rafinesque), P. maniculatus (Wagner), Procyon lotor hirtus Nelson and Goldman, Reithrodontomys megalotis (Baird), Sciurus niger rufiventer Geoffroy, Sigmodon hispidus texianus (Audubon and Bachman), Sylvilagus floridanus (J. A. Allen), Taxidea taxus taxus (Schreber), and Vulpes velox velox (Say). PMID:8057327

  13. Novel Babesia and Hepatozoon agents infecting non-volant small mammals in the Brazilian Pantanal, with the first record of the tick Ornithodoros guaporensis in Brazil.

    PubMed

    Wolf, Rafael William; Aragona, Mônica; Muñoz-Leal, Sebastián; Pinto, Leticia Borges; Melo, Andréia Lima Tomé; Braga, Isis Assis; Costa, Jackeliny dos Santos; Martins, Thiago Fernandes; Marcili, Arlei; Pacheco, Richard de Campos; Labruna, Marcelo B; Aguiar, Daniel Moura

    2016-04-01

    Taking into account the diversity of small terrestrial mammals of the Pantanal, the present study aimed to verify the occurrence of infection by Ehrlichia spp., Anaplasma spp., Rickettsia spp., Hepatozoon spp., Babesia spp. and parasitism by ticks in non-volant small mammals collected in the Brazilian Pantanal. Samples of blood, liver and spleen were collected from 64 captured animals, 22 marsupials and 42 rodents. Pathogen detection was performed by the use of genus-specific Polymerase Chain Reaction (PCR) assays. Ticks collected from the animals consisted of Amblyomma sculptum and Amblyomma triste nymphs, and Ornithodoros guaporensis larvae. None of the vertebrate samples (blood, liver, or spleen) yielded detectable DNA of Rickettsia spp. or Ehrlichia spp. The blood of the rodent Hylaeamys megacephalus yielded an Anaplasma sp. genotype (partial 16S rRNA gene) 99% similar to multiple Anaplasma spp. genotypes around the world. The blood of three rodents of the species Calomys callosus were positive for a novel Hepatozoon sp. agent, phylogenetically related (18S rDNA gene) to distinct Hepatozoon genotypes that have been detected in rodents from different parts of the world. One marsupial (Monodelphis domestica) and three rodents (Thrichomys pachyurus) were positive to novel piroplasmid genotypes, phylogenetically (18S rDNA gene) related to Theileria bicornis, Cytauxzoon manul, and Cytauxzoon felis. The present study provides the first molecular detection of Hepatozoon sp. and piroplasmids in small mammals in Brazil. Additionally, we expanded the distribution of O. guaporensis to Brazil, since this tick species was previously known to occur only in Bolivia. PMID:26782931

  14. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization.

    PubMed Central

    Bilton, D T; Mirol, P M; Mascheretti, S; Fredga, K; Zima, J; Searle, J B

    1998-01-01

    There is a general perception that central and northern Europe were colonized by range expansion from Mediterranean refugia at the end of the last glaciation. Data from various species support this scenario, but we question its universality. Our mitochondrial DNA studies on three widespread species of small mammal suggest that colonization may have occurred from glacial refugia in central Europe-western Asia. The haplotypes on the Mediterranean peninsulae are distinctive from those found elsewhere. Rather than contributing to the postglacial colonization of Europe, Mediterranean populations of widespread small mammals may represent long-term isolates undergoing allopatric speciation. This could explain the high endemism of small mammals associated with the Mediterranean peninsulae. PMID:9699314

  15. Small mammals from the early Pleistocene of the Granada Basin, southern Spain

    NASA Astrophysics Data System (ADS)

    García-Alix, Antonio; Minwer-Barakat, Raef; Suárez, Elvira Martín; Freudenthal, Matthijs

    2009-09-01

    The Pliocene and Pleistocene continental sedimentary records of the western sector of the Granada Basin, southern Spain, consist of alternating fluvial and lacustrine/palustrine sediments. Two Quaternary sections from this sector have been sampled: Huétor Tájar and Tojaire. They have yielded remains of rodents, insectivores and lagomorphs. The presence in the Huétor Tájar and Tojaire sections of Mimomys, Apodemus atavus, Castillomys rivas and two different species of Allophaiomys, indicates an Early Pleistocene age. These deposits, which are related to a fluvio-lacustrine system, can be differentiated from an older (Pliocene) braided fluvial system. Their dating has important repercussions on the paleogeographic reconstruction of the basin. The conditions inferred from the ecological preferences of the small mammal associations are wet and cold. These associations suggest a predominance of open herbaceous habitats, followed by forested habitats; semiaquatic habitats are the least represented.

  16. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals.

    PubMed

    Guardone, Lisa; Deplazes, Peter; Macchioni, Fabio; Magi, Marta; Mathis, Alexander

    2013-10-18

    Several species of Trichuridae nematodes can infect dogs, cats and wild mammals. The diagnosis of these infections relies on the microscopic identification of eggs which are characterized by a similar "lemon" shape and polar plugs in all Trichuridae. Thus, morphological diagnosis to species level is challenging. The use of biomolecular diagnostic methods is desirable but very little genetic data are known from Trichuridae of carnivores and small mammals. The aim of this work was to genetically characterize several species of Trichuridae that can affect dogs, cats and wild mammals, as a basis to develop molecular diagnostic tests. Specimens (adult worms or eggs) of Eucoleus aerophilus (syn. Capillaria aerophila), Eucoleus boehmi (syn. Capillaria boehmi), Pearsonema plica (syn. Capillaria plica), Aonchotheca putorii (syn. Capillaria putorii), Calodium hepaticum (syn. Capillaria hepatica), Calodium splenaecum (syn. Capillaria splenaeca) and Trichuris vulpis were obtained from carcasses of red foxes, feces of dogs, the liver of a vole and from the spleen of Crocidura sp. Parts of the small subunit rRNA (18S rRNA) gene and of the mitochondrial cytochrome c oxidase subunit I (cox 1 mtDNA) gene were amplified from the above mentioned nematodes, yielding the first 18S rRNA gene sequences of all the capillariid nematodes and the first cox 1 mtDNA sequences of E. boehmi, P. plica, C. hepaticum, A. putorii and T. vulpis. The 18S rRNA gene is highly conserved among the different species and not suitable as a target for specific diagnostic oligonucleotides. However, these sequences contribute to a better understanding of the complex taxonomic relations among Trichuridae. Indeed, a dendrogram based on the 18S rRNA gene locus supports the latest taxonomic revision. Interspecies divergence was much higher at the cox 1 mtDNA gene locus, rendering it suitable for DNA barcoding and particularly valuable in resolving closely related species. Furthermore, the mitochondrial genetic

  17. Small mammals as indicators of short-term and long-term disturbance in mixed prairie

    USGS Publications Warehouse

    Leis, S.A.; Leslie, David M., Jr.; Engle, David M.; Fehmi, J.S.

    2008-01-01

    Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p < 0.01) with short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends. ?? Springer Science+Business Media B.V. 2007.

  18. Relating Demographic Characteristics of a Small Mammal to Remotely Sensed Forest-Stand Condition

    PubMed Central

    Lada, Hania; Thomson, James R.; Cunningham, Shaun C.; Mac Nally, Ralph

    2014-01-01

    Many ecological systems around the world are changing rapidly in response to direct (land-use change) and indirect (climate change) human actions. We need tools to assess dynamically, and over appropriate management scales, condition of ecosystems and their responses to potential mitigation of pressures. Using a validated model, we determined whether stand condition of floodplain forests is related to densities of a small mammal (a carnivorous marsupial, Antechinus flavipes) in 60 000 ha of extant river red gum (Eucalyptus camaldulensis) forests in south-eastern Australia in 2004, 2005 and 2011. Stand condition was assessed remotely using models built from ground assessments of stand condition and satellite-derived reflectance. Other covariates, such as volumes of fallen timber, distances to floods, rainfall and life stages were included in the model. Trapping of animals was conducted at 272 plots (0.25 ha) across the region. Densities of second-year females (i.e. females that had survived to a second breeding year) and of second-year females with suckled teats (i.e. inferred to have been successful mothers) were higher in stands with the highest condition. There was no evidence of a relationship with stand condition for males or all females. These outcomes show that remotely-sensed estimates of stand condition (here floodplain forests) are relatable to some demographic characteristics of a small mammal species, and may provide useful information about the capacity of ecosystems to support animal populations. Over-regulation of large, lowland rivers has led to declines in many facets of floodplain function. If management of water resources continues as it has in recent decades, then our results suggest that there will be further deterioration in stand condition and a decreased capacity for female yellow-footed antechinuses to breed multiple times. PMID:24621967

  19. Relating demographic characteristics of a small mammal to remotely sensed forest-stand condition.

    PubMed

    Lada, Hania; Thomson, James R; Cunningham, Shaun C; Mac Nally, Ralph

    2014-01-01

    Many ecological systems around the world are changing rapidly in response to direct (land-use change) and indirect (climate change) human actions. We need tools to assess dynamically, and over appropriate management scales, condition of ecosystems and their responses to potential mitigation of pressures. Using a validated model, we determined whether stand condition of floodplain forests is related to densities of a small mammal (a carnivorous marsupial, Antechinus flavipes) in 60,000 ha of extant river red gum (Eucalyptus camaldulensis) forests in south-eastern Australia in 2004, 2005 and 2011. Stand condition was assessed remotely using models built from ground assessments of stand condition and satellite-derived reflectance. Other covariates, such as volumes of fallen timber, distances to floods, rainfall and life stages were included in the model. Trapping of animals was conducted at 272 plots (0.25 ha) across the region. Densities of second-year females (i.e. females that had survived to a second breeding year) and of second-year females with suckled teats (i.e. inferred to have been successful mothers) were higher in stands with the highest condition. There was no evidence of a relationship with stand condition for males or all females. These outcomes show that remotely-sensed estimates of stand condition (here floodplain forests) are relatable to some demographic characteristics of a small mammal species, and may provide useful information about the capacity of ecosystems to support animal populations. Over-regulation of large, lowland rivers has led to declines in many facets of floodplain function. If management of water resources continues as it has in recent decades, then our results suggest that there will be further deterioration in stand condition and a decreased capacity for female yellow-footed antechinuses to breed multiple times. PMID:24621967

  20. Fleas of Small Mammals on Reunion Island: Diversity, Distribution and Epidemiological Consequences

    PubMed Central

    Guernier, Vanina; Lagadec, Erwan; LeMinter, Gildas; Licciardi, Séverine; Balleydier, Elsa; Pagès, Frédéric; Laudisoit, Anne; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    The diversity and geographical distribution of fleas parasitizing small mammals have been poorly investigated on Indian Ocean islands with the exception of Madagascar where endemic plague has stimulated extensive research on these arthropod vectors. In the context of an emerging flea-borne murine typhus outbreak that occurred recently in Reunion Island, we explored fleas' diversity, distribution and host specificity on Reunion Island. Small mammal hosts belonging to five introduced species were trapped from November 2012 to November 2013 along two altitudinal transects, one on the windward eastern and one on the leeward western sides of the island. A total of 960 animals were trapped, and 286 fleas were morphologically and molecularly identified. Four species were reported: (i) two cosmopolitan Xenopsylla species which appeared by far as the prominent species, X. cheopis and X. brasiliensis; (ii) fewer fleas belonging to Echidnophaga gallinacea and Leptopsylla segnis. Rattus rattus was found to be the most abundant host species in our sample, and also the most parasitized host, predominantly by X. cheopis. A marked decrease in flea abundance was observed during the cool-dry season, which indicates seasonal fluctuation in infestation. Importantly, our data reveal that flea abundance was strongly biased on the island, with 81% of all collected fleas coming from the western dry side and no Xenopsylla flea collected on almost four hundred rodents trapped along the windward humid eastern side. The possible consequences of this sharp spatio-temporal pattern are discussed in terms of flea-borne disease risks in Reunion Island, particularly with regard to plague and the currently emerging murine typhus outbreak. PMID:25188026

  1. Phylogenetic and morphological relationships between nonvolant small mammals reveal assembly processes at different spatial scales

    PubMed Central

    Luza, André Luís; Gonçalves, Gislene Lopes; Hartz, Sandra Maria

    2015-01-01

    The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter- and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland-forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species-trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co-occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community

  2. Small mammals as indicators of short-term and long-term disturbance in mixed prairie.

    PubMed

    Leis, Sherry A; Leslie, David M; Engle, David M; Fehmi, Jeffrey S

    2008-02-01

    Disturbance by military maneuvers over short and long time scales may have differential effects on grassland communities. We assessed small mammals as indicators of disturbance by military maneuvers in a mixed prairie in southern Oklahoma USA. We examined sites on two soil series, Foard and Lawton, across a gradient of disturbance intensity. A MANOVA showed that abundance of small mammals was associated (p = 0.03) with short-term (cover of vehicle tracks) disturbance but was not associated (p = 0.12) with long-term (loss of soil organic carbon, SOC) disturbance intensity. At the individual species level, Sigmodon hispidus (cotton rat) and Peromyscus maniculatus (deer mouse) occurred across all levels of disturbance and in both soil types. Only P. maniculatus abundance changed (p < 0.01) with short-term disturbance and increased by about one individual per 5% of additional track-cover. Abundance of P. maniculatus also increased (p = 0.04) by about three individuals per 1% increase in soil carbon. Chaetodipus hispidus (hispid pocket mouse) and Reithrodontomys fulvescens (fulvous harvest mouse) only occurred in single soil types limiting their potential as more general indicators. Abundance of P. maniculatus was positively related to shifts in plant species composition and likely reflected changes in vegetation structure (i.e. litter depth) and forage availability resulting from disturbance. Peromyscus maniculatus may be a useful biological indicator of ecosystem change because it responded predictably to both long-term and short-term disturbance and, when coupled with soil, plant, and disturbance history variables, can reveal land condition trends. PMID:17458511

  3. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    PubMed

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites. PMID:27219505

  4. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  5. Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies

    USGS Publications Warehouse

    Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, B.; Conlin, D.B.; Holmes, B.E.

    2010-01-01

    Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.

  6. Effects of aerial applications of esfenvalerate on small mammals and birds in Douglas-fir seed orchards

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Rice, C.P.; Grove, R.A.

    1992-01-01

    Although no adverse effects were documented, this study did not provide data sufficient to adequately test for effects of aerial spraying of esfenvalerate on small mammal populations or nesting of birds in Douglas-fir seed orchards. Small mammal trapping data were too sparse to provide statistical testing with reasonable power. Residues of the R and S forms of fenvalerate were low with maxima of 0.56 and 1.72 ?g/g, respectively in pelage of a deer mouse. No diagnostic residue data are available to interpret our results.

  7. Small mammals associated with colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the Southern High Plains

    USGS Publications Warehouse

    Pruett, A.L.; Boal, C.W.; Wallace, M.C.; Whitlaw, H.A.; Ray, J.D.

    2010-01-01

    We compared diversity and abundance of small mammals at colonies of black-tailed prairie dogs (Cynomys ludovicianus) and paired non-colony sites. Of colonies of black-tailed prairie dogs in our study area, >80 were on slopes of playa lakes; thus, we used sites of colonies and non-colonies that were on slopes of playa lakes. We trapped small mammals on 29 pairs of sites. Overall abundance did not differ between types of sites, but some taxa exhibited associations with colonies (Onychomys leucogaster) or non-colonies (Chaetodipus hispidus, Reithrodontomys, Sigmodon hispidus). Diversity and evenness of small mammals did not differ between colonies and non-colonies in 2002, but were higher on non-colonies in 2003. Although we may not have detected some rare or infrequently occurring species, our data reveal differences in diversity and evenness of more common species among the types of sites. Prairie dogs are touted as a keystone species with their colonies associated with a greater faunal diversity than adjacent lands. Our findings contradict several studies reporting greater diversity and abundance of small mammals at colonies of prairie dogs. We suggest that additional research across a wider landscape and incorporating landscape variables beyond the immediate trapping plot may further elucidate interspecific associations between black-tailed prairie dogs and species of small rodents.

  8. Status and challenges for conservation of small mammal assemblages in South America.

    PubMed

    Kelt, Douglas A; Meserve, Peter L

    2014-08-01

    South America spans about 44° latitude, covers almost 18 million km(2) , and is second only to Africa in continental mammal species richness. In spite of this richness, research on the status of this fauna and on the nature and magnitude of contemporary threats remains limited. Distilling threats to this diverse fauna at a continental scale is challenging, in part because of the limited availability of rigorous studies. Recognizing this constraint, we summarize key threats to small mammals in South America, emphasizing the roles of habitat loss and degradation, direct persecution, and the increasing threat of climate change. We focus on three regional 'case studies': the tropical Andes, Amazonia and adjacent lowland regions, and the southern temperate region. We close with a brief summary of recent findings at our long-term research site in north-central Chile as they pertain to projected threats to this fauna. Habitat alteration is a pervasive threat that has been magnified by market forces and globalization (e.g. extensive agricultural development in Amazonia), and threatens increasing numbers of populations and species. Climate change poses even greater threats, from changes in rainfall and runoff regimes and resulting changes in vegetative structure and composition to secondary influences on fire dynamics. It is likely that many changes have yet to be recognized, but existing threats suggest that the future may bring dramatic changes in the distribution of many mammal taxa, although it is not clear if key habitat elements (vegetation) will respond as rapidly as climatic factors, leading to substantial uncertainty. Climate change is likely to result in 'winners' and 'losers' but available information precludes detailed assessment of which species are likely to fall into which category. In the absence of long-term monitoring and applied research to characterize these threats more accurately, and to develop strategies to reduce their impacts, managers already are

  9. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?

    PubMed

    Lovegrove, Barry G; Canale, Cindy; Levesque, Danielle; Fluch, Gerhard; Reháková-Petrů, Milada; Ruf, Thomas

    2014-01-01

    There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some

  10. Critical evaluation of polychlorinated biphenyl toxicity in terrestrial and marine mammals: increasing impact of non-ortho and mono-ortho coplanar polychlorinated biphenyls from land to ocean.

    PubMed

    Kannan, N; Tanabe, S; Ono, M; Tatsukawa, R

    1989-11-01

    Residues of potentially toxic non-ortho chlorine substituted coplanar 3,3',4,4'-tetra-,3,3',4,4',5-penta-, 3,3',4,4',5,5'-hexachlorobiphenyl and their mono- and di-ortho analogs 2,3',4,4',5-penta, 2,3,3',4,4'-penta-, 2,3,3',4,4',5-hexa- and 2,2',3,3',4,4'-hexa-, 2,2',3,4,4',5-hexachlorobiphenyl) were determined in humans, dogs, cats (terrestrial), a finless porpoise (Neophocoena phocoenoides--coastal), Dall's porpoises (Phocoenoides dalli, dalli), Baird's beaked whales (Berardius bairdii) and killer whales (Orcinus orca--open ocean). Among the coplanar polychlorinated biphenyl (PCB) congeners, the concentration of the di-ortho congeners was the highest and the non-ortho congeners was the lowest. However, all three coplanar PCBs occurred at significantly higher levels than toxic polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The relative bioconcentration and metabolic capacity of terrestrial and marine mammals to these chemicals, suggest that the toxic threat of coplanar PCBs increases from land to ocean, but the reverse is true for PCDDs and PCDFs. The toxic threat of coplanar PCBs to higher aquatic predators such as cetaceans was principally assessed by 2,3,7,8-T4CDD Toxic Equivalent Analysis which is based on the induction of arylhydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD). Analysis indicates, in particular, that the bioaccumulation of toxic 3,3',4,4',5-penta- and 2,3,3',4,4'-pentachlorobiphenyls in carnivorous marine mammals is a cause for considerable concern. PMID:2515809