Sample records for small-field digital mammography

  1. Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study.

    PubMed

    Skaane, Per; Young, Kari; Skjennald, Arnulf

    2003-12-01

    To compare screen-film and full-field digital mammography with soft-copy reading in a population-based screening program. Full-field digital and screen-film mammography were performed in 3,683 women aged 50-69 years. Two standard views of each breast were acquired with each modality. Images underwent independent double reading with use of a five-point rating scale for probability of cancer. Recall rates and positive predictive values were calculated. Cancer detection rates determined with both modalities were compared by using the McNemar test for paired proportions. Retrospective side-by-side analysis for conspicuity of cancers was performed by an external independent radiologist group with experience in both modalities. In 3,683 cases, 31 cancers were detected. Screen-film mammography depicted 28 (0.76%) malignancies, and full-field digital mammography depicted 23 (0.62%) malignancies. The difference between cancer detection rates was not significant (P =.23). The recall rate for full-field digital mammography (4.6%; 168 of 3,683 cases) was slightly higher than that for screen-film mammography (3.5%; 128 of 3,683 cases). The positive predictive value based on needle biopsy results was 46% for screen-film mammography and 39% for full-field digital mammography. Side-by-side image comparison for cancer conspicuity led to classification of 19 cancers as equal for probability of malignancy, six cancers as slightly better demonstrated at screen-film mammography, and six cancers as slightly better demonstrated at full-field digital mammography. There was no statistically significant difference in cancer detection rate between screen-film and full-field digital mammography. Cancer conspicuity was equal with both modalities. Full-field digital mammography with soft-copy reading is comparable to screen-film mammography in population-based screening.

  2. Simulation of digital mammography images

    NASA Astrophysics Data System (ADS)

    Workman, Adam

    2005-04-01

    A number of different technologies are available for digital mammography. However, it is not clear how differences in the physical performance aspects of the different imaging technologies affect clinical performance. Randomised controlled trials provide a means of gaining information on clinical performance however do not provide direct comparison of the different digital imaging technologies. This work describes a method of simulating the performance of different digital mammography systems. The method involves modifying the imaging performance parameters of images from a small field of view (SFDM), high resolution digital imaging system used for spot imaging. Under normal operating conditions this system produces images with higher signal-to-noise ratio (SNR) over a wide spatial frequency range than current full field digital mammography (FFDM) systems. The SFDM images can be 'degraded" by computer processing to simulate the characteristics of a FFDM system. Initial work characterised the physical performance (MTF, NPS) of the SFDM detector and developed a model and method for simulating signal transfer and noise properties of a FFDM system. It was found that the SNR properties of the simulated FFDM images were very similar to those measured from an actual FFDM system verifying the methodology used. The application of this technique to clinical images from the small field system will allow the clinical performance of different FFDM systems to be simulated and directly compared using the same clinical image datasets.

  3. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  4. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  5. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  6. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  7. CR digital mammography: an affordable entry.

    PubMed

    Fischer, Cathy

    2006-01-01

    CR full-field digital mammography (FFDM) has been used extensively in other countries, and it was one of the 4 digital mammography technologies employed in the Digital Mammographic Imaging Screening Trial. Affordability and easy integration with pre-existing mammography systems makes CR FFDM an attractive way to secure the advantages of filmless mammography imaging. CR mammography is true digital mammography--it is merely a different way of acquiring the image. The FDA has recently approved the first CR FFDM system for sale in the United States. At Gundersen Lutheran Health System (La Crosse, Wisconsin), CR FFDM is the most practical technology for realizing the potential everyday clinical benefits of filmless mammography imaging.

  8. Medical devices; radiology devices; reclassification of full-field digital mammography system. Final rule.

    PubMed

    2010-11-05

    The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  9. Digital mammography: more microcalcifications, more columnar cell lesions without atypia.

    PubMed

    Verschuur-Maes, Anoek H J; van Gils, Carla H; van den Bosch, Maurice A A J; De Bruin, Peter C; van Diest, Paul J

    2011-09-01

    The incidence of columnar cell lesions in breast core needle biopsies since full-field digital mammography in comparison with screen-filmed mammography was analyzed. As tiny microcalcifications characterize columnar cell lesions at mammography, we hypothesized that more columnar cell lesions are diagnosed since full-field digital mammography due to its higher sensitivity for microcalcifications. In all, 3437 breast core needle biopsies performed in three hospitals and resulting from in total 55 159 mammographies were revised: 1424 taken in the screen-filmed mammography and 2013 in the full-field digital mammography period. Between the screen-filmed mammography and full-field digital mammography periods, we compared the proportion of mammographies that led to core needle biopsies, the mammographic indication for core needle biopsies (density, microcalcifications, or both) and the proportion of columnar cell lesions with or without atypia. The columnar cell lesions were graded according to Schnitt, and we included atypical ductal hyperplasia arising in the context of columnar cell lesions. Proportions were compared using χ(2) tests and prevalence ratios were adjusted for age and hospital. We found that more core needle biopsies per mammogram were taken in the full-field digital mammography period (7.6%) compared with the screen-filmed mammography period (5.0%, P<0.0001). Microcalcifications were more often diagnosed with full-field digital mammography than with screen-filmed mammography (adjusted prevalence ratio: 1.14, confidence interval 95%: 1.01-1.28). Core needle biopsies from the full-field digital mammography era showed more columnar cell lesions (10.8%) than those from the screen-filmed mammography era (4.9%; adjusted prevalence ratio: 1.93, confidence interval 95%: 1.48-2.51), particularly due to more columnar cell lesions without atypia (8.2% respectively 2.8%) while the proportion of columnar cell lesions with atypia remained nearly constant (2.0 vs 2

  10. Digital Mammography with a Mosaic of CCD-Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1996-01-01

    The present invention relates generally to a mammography device and method and more particularly to a novel digital mammography device and method to detect microcalcifications of precancerous tissue. A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays. The novelty of this invention is that it provides a digital mammography device with large field coverage, high spatial resolution, scatter rejection, excellent contrast characteristics and lesion detectability under clinical conditions. This device also shields the patient from excessive radiation, can detect extremely small calcifications and allows manipulation and storage of the image.

  11. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    PubMed

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  12. Comparison of radiologist performance with photon-counting full-field digital mammography to conventional full-field digital mammography.

    PubMed

    Cole, Elodia B; Toledano, Alicia Y; Lundqvist, Mats; Pisano, Etta D

    2012-08-01

    The purpose of this study was to assess the performance of a MicroDose photon-counting full-field digital mammography (PCM) system in comparison to full-field digital mammography (FFDM) for area under the receiver-operating characteristic (ROC) curve (AUC), sensitivity, specificity, and feature analysis of standard-view mammography for women presenting for screening mammography, diagnostic mammography, or breast biopsy. A total of 133 women were enrolled in this study at two European medical centers, with 67 women who had a pre-existing 10-36 months FFDM enrolled prospectively into the study and 66 women who underwent breast biopsy and had screening PCM and diagnostic FFDM, including standard craniocaudal and mediolateral oblique views of the breast with the lesion, enrolled retrospectively. The case mix consisted of 49 cancers, 17 biopsy-benign cases, and 67 normal cases. Sixteen radiologists participated in the reader study and interpreted all 133 cases in both conditions, separated by washout period of ≥4 weeks. ROC curve and free-response ROC curve analyses were performed for noninferiority of PCM compared to FFDM using a noninferiority margin Δ value of 0.10. Feature analysis of the 66 cases with lesions was conducted with all 16 readers at the conclusion of the blinded reads. Mean glandular dose was recorded for all cases. The AUC for PCM was 0.947 (95% confidence interval [CI], 0.920-0.974) and for FFDM was 0.931 (95% CI, 0.898-0.964). Sensitivity per case for PCM was 0.936 (95% CI, 0.897-0.976) and for FFDM was 0.908 (95% CI, 0.856-0.960). Specificity per case for PCM was 0.764 (95% CI, 0.688-0.841) and for FFDM was 0.749 (95% CI, 0.668-0.830). Free-response ROC curve figures of merit were 0.920 (95% CI, 0.881-0.959) and 0.903 (95% CI, 0.858-0.948) for PCM and FFDM, respectively. Sensitivity per lesion was 0.903 (95% CI, 0.846-0.960) and 0.883 (95% CI, 0.823-0.944) for PCM and FFDM, respectively. The average false-positive marks per image of noncancer

  13. Cost-effectiveness of digital mammography breast cancer screening.

    PubMed

    Tosteson, Anna N A; Stout, Natasha K; Fryback, Dennis G; Acharyya, Suddhasatta; Herman, Benjamin A; Hannah, Lucy G; Pisano, Etta D

    2008-01-01

    The DMIST (Digital Mammography Imaging Screening Trial) reported improved breast cancer detection with digital mammography compared with film mammography in selected population subgroups, but it did not assess the economic value of digital relative to film mammography screening. To evaluate the cost-effectiveness of digital mammography screening for breast cancer. Validated, discrete-event simulation model. Data from DMIST and publicly available U.S. data. U.S. women age 40 years or older. Lifetime. Societal and Medicare. All-film mammography screening; all-digital mammography screening; and targeted digital mammography screening, which is age-targeted digital mammography (for women <50 years of age) and age- and density-targeted digital mammography (for women <50 years of age or women > or =50 years of age with dense breasts). Cost per quality-adjusted life-year (QALY) gained. All-digital mammography screening cost $331,000 (95% CI, $268,000 to $403,000) per QALY gained relative to all-film mammography screening but was more costly and less effective than targeted digital mammography screening. Targeted digital mammography screening resulted in more screen-detected cases of cancer and fewer deaths from cancer than either all-film or all-digital mammography screening, with cost-effectiveness estimates ranging from $26,500 (CI, $21,000 to $33,000) per QALY gained for age-targeted digital mammography to $84,500 (CI, $75,000 to $93,000) per QALY gained for age- and density-targeted digital mammography. In the Medicare population, the cost-effectiveness of density-targeted digital mammography screening varied from a base-case estimate of $97,000 (CI, $77,000 to $131,000) to $257,000 per QALY gained (CI, $91,000 to $536,000) in the alternative-case analyses, in which the sensitivity of film mammography was increased and the sensitivity of digital mammography in women with nondense breasts was decreased. Results were sensitive to the cost of digital mammography and to

  14. Digital Mammography and Digital Breast Tomosynthesis.

    PubMed

    Moseley, Tanya W

    2016-06-01

    Breast imaging technology has advanced significantly from the 1930s until the present. American women have a 1 in 8 chance of developing breast cancer. Mammography has been proven in multiple clinical trials to reduce breast cancer mortality. Although a mainstay of breast imaging and improved from film-screen mammography, digital mammography is not a perfect examination. Overlapping obscuring breast tissue limits mammographic interpretation. Breast digital tomosynthesis reduces and/or eliminates overlapping obscuring breast tissue. Although there are some disadvantages with digital breast tomosynthesis, this relatively lost-cost technology may be used effectively in the screening and diagnostic settings.

  15. Cost and cost-effectiveness of digital mammography compared with film-screen mammography in Australia.

    PubMed

    Wang, Shuhong; Merlin, Tracy; Kreisz, Florian; Craft, Paul; Hiller, Janet E

    2009-10-01

    A systematic review assessed the relative safety and effectiveness of digital mammography compared with film-screen mammography. This study utilised the evidence from the review to examine the economic value of digital compared with film-screen mammography in Australia. A cost-comparison analysis between the two technologies was conducted for the overall population for the purposes of breast cancer screening and diagnosis. In addition, a cost-effectiveness analysis was conducted for the screening subgroups where digital mammography was considered to be more accurate than film-screen mammography. Digital mammography in a screening setting is $11 more per examination than film-screen mammography, and $36 or $33 more per examination in a diagnostic setting when either digital radiography or computed radiography is used. In both the screening and diagnostic settings, the throughput of the mammography system had the most significant impact on decreasing the incremental cost/examination/year of digital mammography. Digital mammography is more expensive than film-screen mammography. Whether digital mammography represents good value for money depends on the eventual life-years and quality-adjusted life-years gained from the early cancer diagnosis. The evidence generated from this study has informed the allocation of public resources for the screening and diagnosis of breast cancer in Australia.

  16. Full-field digital mammography image data storage reduction using a crop tool.

    PubMed

    Kang, Bong Joo; Kim, Sung Hun; An, Yeong Yi; Choi, Byung Gil

    2015-05-01

    The storage requirements for full-field digital mammography (FFDM) in a picture archiving and communication system are significant, so methods to reduce the data set size are needed. A FFDM crop tool for this purpose was designed, implemented, and tested. A total of 1,651 screening mammography cases with bilateral FFDMs were included in this study. The images were cropped using a DICOM editor while maintaining image quality. The cases were evaluated according to the breast volume (1/4, 2/4, 3/4, and 4/4) in the craniocaudal view. The image sizes between the cropped image group and the uncropped image group were compared. The overall image quality and reader's preference were independently evaluated by the consensus of two radiologists. Digital storage requirements for sets of four uncropped to cropped FFDM images were reduced by 3.8 to 82.9 %. The mean reduction rates according to the 1/4-4/4 breast volumes were 74.7, 61.1, 38, and 24 %, indicating that the lower the breast volume, the smaller the size of the cropped data set. The total image data set size was reduced from 87 to 36.7 GB, or a 57.7 % reduction. The overall image quality and the reader's preference for the cropped images were higher than those of the uncropped images. FFDM mammography data storage requirements can be significantly reduced using a crop tool.

  17. Transition From Film to Digital Mammography

    PubMed Central

    van Ravesteyn, Nicolien T.; van Lier, Lisanne; Schechter, Clyde B.; Ekwueme, Donatus U.; Royalty, Janet; Miller, Jacqueline W.; Near, Aimee M.; Cronin, Kathleen A.; Heijnsdijk, Eveline A.M.; Mandelblatt, Jeanne S.; de Koning, Harry J.

    2015-01-01

    Introduction The National Breast and Cervical Cancer Early Detection Program (NBCCEDP) provides mammograms and diagnostic services for low-income, uninsured women aged 40–64 years. Mammography facilities within the NBCCEDP gradually shifted from plain-film to digital mammography. The purpose of this study is to assess the impact of replacing film with digital mammography on health effects (deaths averted, life-years gained [LYG]), costs (for screening and diagnostics), and number of women reached. Methods NBCCEDP 2010 data and data representative of the program’s target population were used in two established microsimulation models. Models simulated observed screening behavior including different screening intervals (annual, biennial, irregular) and starting ages (40, 50 years) for white, black, and Hispanic women. Model runs were performed in 2012. Results The models predicted 8.0–8.3 LYG per 1,000 film screens for black women, 5.9–7.5 for white women, and 4.0–4.5 for Hispanic women. For all race/ethnicity groups, digital mammography had more LYG than film mammography (2%–4%), but had higher costs (34%–35%). Assuming a fixed budget, 25%–26% fewer women could be served, resulting in 22%–24% fewer LYG if all mammograms were converted to digital. The loss in LYG could be reversed to an 8%–13% increase by only including biennial screening. Conclusions Digital could result in slightly more LYG than film mammography. However, with a fixed budget, fewer women may be served with fewer LYG. Changes in the program, such as only including biennial screening, will increase LYG/screen and could offset the potential decrease in LYG when shifting to digital mammography. PMID:25891052

  18. Digital mammography: physical principles and future applications.

    PubMed

    Gambaccini, Mauro; Baldelli, Paola

    2003-01-01

    Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.

  19. Breast cancer screening using tomosynthesis in combination with digital mammography.

    PubMed

    Friedewald, Sarah M; Rafferty, Elizabeth A; Rose, Stephen L; Durand, Melissa A; Plecha, Donna M; Greenberg, Julianne S; Hayes, Mary K; Copit, Debra S; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Miller, Dave P; Conant, Emily F

    2014-06-25

    Mammography plays a key role in early breast cancer detection. Single-institution studies have shown that adding tomosynthesis to mammography increases cancer detection and reduces false-positive results. To determine if mammography combined with tomosynthesis is associated with better performance of breast screening programs in the United States. Retrospective analysis of screening performance metrics from 13 academic and nonacademic breast centers using mixed models adjusting for site as a random effect. Period 1: digital mammography screening examinations 1 year before tomosynthesis implementation (start dates ranged from March 2010 to October 2011 through the date of tomosynthesis implementation); period 2: digital mammography plus tomosynthesis examinations from initiation of tomosynthesis screening (March 2011 to October 2012) through December 31, 2012. Recall rate for additional imaging, cancer detection rate, and positive predictive values for recall and for biopsy. A total of 454,850 examinations (n=281,187 digital mammography; n=173,663 digital mammography + tomosynthesis) were evaluated. With digital mammography, 29,726 patients were recalled and 5056 biopsies resulted in cancer diagnosis in 1207 patients (n=815 invasive; n=392 in situ). With digital mammography + tomosynthesis, 15,541 patients were recalled and 3285 biopsies resulted in cancer diagnosis in 950 patients (n=707 invasive; n=243 in situ). Model-adjusted rates per 1000 screens were as follows: for recall rate, 107 (95% CI, 89-124) with digital mammography vs 91 (95% CI, 73-108) with digital mammography + tomosynthesis; difference, -16 (95% CI, -18 to -14; P < .001); for biopsies, 18.1 (95% CI, 15.4-20.8) with digital mammography vs 19.3 (95% CI, 16.6-22.1) with digital mammography + tomosynthesis; difference, 1.3 (95% CI, 0.4-2.1; P = .004); for cancer detection, 4.2 (95% CI, 3.8-4.7) with digital mammography vs 5.4 (95% CI, 4.9-6.0) with digital mammography + tomosynthesis

  20. Bilateral Contrast-enhanced Dual-Energy Digital Mammography: Feasibility and Comparison with Conventional Digital Mammography and MR Imaging in Women with Known Breast Carcinoma

    PubMed Central

    Dershaw, D. David; Sung, Janice S.; Heerdt, Alexandra S.; Thornton, Cynthia; Moskowitz, Chaya S.; Ferrara, Jessica; Morris, Elizabeth A.

    2013-01-01

    Purpose To determine feasibility of performing bilateral dual-energy (DE) contrast agent–enhanced (CE) digital mammography and to evaluate its performance compared with conventional digital mammography and breast magnetic resonance (MR) imaging in women with known breast cancer. Materials and Methods This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained. Patient accrual began in March 2010 and ended in August 2011. Mean patient age was 49.6 years (range, 25–74 years). Feasibility was evaluated in 10 women with newly diagnosed breast cancer who were injected with 1.5 mL per kilogram of body weight of iohexol and imaged between 2.5 and 10 minutes after injection. Once feasibility was confirmed, 52 women with newly diagnosed cancer who had undergone breast MR imaging gave consent to undergo DE CE digital mammography. Positive findings were confirmed with pathologic findings. Results Feasibility was confirmed with no adverse events. Visualization of tumor enhancement was independent of timing after contrast agent injection for up to 10 minutes. MR imaging and DE CE digital mammography both depicted 50 (96%) of 52 index tumors; conventional mammography depicted 42 (81%). Lesions depicted by using DE CE digital mammography ranged from 4 to 67 mm in size (median, 17 mm). DE CE digital mammography depicted 14 (56%) of 25 additional ipsilateral cancers compared with 22 (88%) of 25 for MR imaging. There were two false-positive findings with DE CE digital mammography and 13 false-positive findings with MR imaging. There was one contralateral cancer, which was not evident with either modality. Conclusion Bilateral DE CE digital mammography was feasible and easily accomplished. It was used to detect known primary tumors at a rate comparable to that of MR imaging and higher than that of conventional digital mammography. DE CE digital mammography had a lower sensitivity for detecting additional ipsilateral

  1. FDA & digital mammography: why has FDA required full field digital mammography systems to be regulated as potentially dangerous devices for more than 10 years?

    PubMed

    Nields, Morgan W

    2010-05-01

    Digital mammography is routinely used in the US to screen asymptomatic women for breast cancer and currently over 50% of US screening centers employ the technology. In spite of FDAs knowledge that digital mammography requires less radiation than film mammography and that its equivalence has been proven in a prospective randomized trial, the agency has failed to allow the technology market access via the 510(k) pre market clearance pathway. As a result of the restrictive Pre Market Approval process, only four suppliers have received FDA approval. The resulting lack of a competitive market has kept costs high, restricted technological innovation, and impeded product improvements as a result of PMA requirements. Meanwhile, at least twelve companies are on the market in the EU and the resulting competitive market has lowered costs and provided increased technological choice. A cultural change with new leadership occurred in the early 90's at FDA. The historical culture at the Center for Devices and Radiological Health of collaboration and education gave way to one characterized by a lack of reliance on outside scientific expertise, tolerance of decision making by unqualified reviewers, and an emphasis on enforcement and punishment. Digital mammography fell victim to this cultural change and as a result major innovations like breast CT and computer aided detection technologies are also withheld from the market. The medical device law, currently under review by the Institute of Medicine, should be amended by the Congress so that new technologies can be appropriately classified in accordance with the risk based assessment classification system detailed in Chapter V of the Federal Food, Drug, and Cosmetic Act. A panel of scientific experts chartered by the NIH or IOM should determine the classification appropriate for new technologies that have no historical regulatory framework. This would be binding on FDA. Unless the law is changed we will likely again experience

  2. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study.

    PubMed

    Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin

    2015-12-01

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.

  3. Update on new technologies in digital mammography

    PubMed Central

    Patterson, Stephanie K; Roubidoux, Marilyn A

    2014-01-01

    Despite controversy regarding mammography’s efficacy, it continues to be the most commonly used breast cancer-screening modality. With the development of digital mammography, some improved benefit has been shown in women with dense breast tissue. However, the density of breast tissue continues to limit the sensitivity of conventional mammography. We discuss the development of some derivative digital technologies, primarily digital breast tomosynthesis, and their strengths, weaknesses, and potential patient impact. PMID:25152634

  4. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  5. [Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer--comparison with film-screen mammography].

    PubMed

    Kitahama, H

    1991-05-25

    The aim of this study is to present efficacy of storage phosphor-based digital mammography (CR-mammography) in diagnosis of breast cancer. Ninety-seven cases with breast cancer including 44 cases less than 2 cm in macroscopic size (t1 cases) were evaluated using storage phosphor-based digital mammography (2000 x 2510 pixels by 10 bits). Abnormal findings on CR-mammography were detected in 86 cases (88.7%) of 97 women with breast cancer. Sensitivity of CR-mammography was 88.7%. It was superior to that of film-screen mammography. On t1 breast cancer cases, sensitivity on CR-mammography was 88.6%. False negative rate in t1 breast cancer cases was reduced by image processing using CR-mammography. To evaluate microcalcifications, CR-mammograms and film-screen mammograms were investigated in 22 cases of breast cancer proven pathologically the existence of microcalcifications and 11 paraffin tissue blocks of breast cancer. CR-mammography was superior to film-screen mammography in recognizing of microcalcifications. As regards the detectability for the number and the shape of microcalcifications, CR-mammography was equivalent to film-screen mammography. Receiver operating characteristic (ROC) analysis by eight observers was performed for CR-mammography and film-screen mammography with 54 breast cancer patients and 54 normal cases. The detectability of abnormal findings of breast cancer on CR-mammography (ROC area = 0.91) was better than that on film-screen mammography (ROC area = 0.88) (p less than 0.05). Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer was discussed and demonstrated in this study.

  6. Screening Mammography and Digital Breast Tomosynthesis: Utilization Updates.

    PubMed

    Boroumand, Gilda; Teberian, Ida; Parker, Laurence; Rao, Vijay M; Levin, David C

    2018-05-01

    There have been many recent developments in breast imaging, including the 2009 revision of the U.S. Preventive Services Task Force's breast cancer screening guidelines and the approval of digital breast tomosynthesis (DBT) for clinical use in 2011. The objective of this study is to evaluate screening mammography utilization trends among the Medicare population from 2005 to 2015 and examine the volume of DBT studies performed in 2015, the first year for which procedural billing codes for DBT are available. We reviewed national Medicare Part B Physician/Supplier Procedure Summary master files from 2005 to 2015, to determine the annual utilization rate of screening mammography on the basis of procedure codes used for film-screen and digital screening mammography. We also used the Physician/Supplier Procedure Summary master files to determine the volume of screening and diagnostic DBT studies performed in 2015. The utilization rate of screening mammography per 1000 women in the Medicare fee-for-service population increased gradually every year, from 311.5 examinations in 2005 to a peak of 322.9 examinations in 2009, representing a compound annual growth rate of 0.9%. In 2010, the utilization rate abruptly decreased by 4.3% to 309.2 examinations, and it has not since recovered to pre-2010 levels. In 2015, 18.9% of screening and 16.2% of diagnostic digital mammography examinations included DBT as an add-on procedure. In contrast to the annual increase in screening mammography utilization from 2005 to 2009, an abrupt sustained decline in screening occurred beginning in 2010, coinciding with the release of U.S. Preventive Services Task Force recommendations. DBT utilization was somewhat limited in 2015, occurring in conjunction with less than 20% of digital mammography examinations.

  7. [Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution: a retrospective clinical study].

    PubMed

    Schulz-Wendtland, R; Hermann, K-P; Adamietz, B; Meier-Meitinger, M; Wenkel, E; Lell, M; Anders, K; Uder, M

    2011-02-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 µm FFDM (full-field digital mammography) system (DR) with an established 70 µm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS™ classification 4/5) and to assess the possible incremental value of the 50 µm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 µm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS™ 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 µm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but these results were not statistically significant (p<0.001). Considering the diagnostic accuracy, the new system (detector: resolution 50 µm) was also slightly superior to the well-known system (detector: resolution 70 µm) (80.1% versus 76.4%). Our study has shown that the new full-field digital mammography system using the novel detector compared with the already established FFDM system with respect to the assessment of microcalcification is at least equivalent.

  8. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.

    PubMed

    Kappadath, S Cheenu; Shaw, Chris C

    2005-11-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 microm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 microm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 microm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than approximately 250 microm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise.

  9. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappadath, S. Cheenu; Shaw, Chris C.

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DEmore » calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 {mu}m) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 {mu}m size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 {mu}m size range when the visibility criteria were lowered to barely visible. Calcifications smaller than {approx}250 {mu}m were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise.« less

  10. Effects of digital mammography uptake on downstream breast-related care among older women.

    PubMed

    Hubbard, Rebecca A; Zhu, Weiwei; Onega, Tracy L; Fishman, Paul; Henderson, Louise M; Tosteson, Anna N A; Buist, Diana S M

    2012-12-01

    Digital mammography is the dominant modality for breast cancer screening in the United States. No previous studies have investigated as to how introducing digital mammography affects downstream breast-related care. Compare breast-related health care use after a screening mammogram before and after introduction of digital mammography. Longitudinal study of screening mammograms from 14 radiology facilities contributing data to the Breast Cancer Surveillance Consortium performed 1 year before and 4 years after each facility introduced digital mammography, along with linked Medicare claims. We included 30,211 mammograms for women aged 66 years and older without breast cancer. Rates of false-positive recall and short-interval follow-up were based on radiologists' assessments and recommendations; rates of follow-up mammography, ultrasound, and breast biopsy use were based on Medicare claims. False-positive recall rates increased after the introduction of digital mammography. Follow-up mammography use was significantly higher across all 4 years after a facility began using digital mammography compared with the year before [year 1 odds ratio (OR) = 1.7, 95% confidence interval (CI), 1.4-2.1]. Among women with false-positive mammography results, use of ultrasound decreased significantly in the second through fourth years after digital mammography began (year 2 OR = 0.4, 95% CI, 0.3-0.6). Introduction of a new technology led to changes in health care use that persisted for at least 4 years. Comparative effectiveness research on new technologies should consider not only diagnostic performance but also downstream utilization attributable to this apparent learning curve.

  11. Detection of breast cancer with full-field digital mammography and computer-aided detection.

    PubMed

    The, Juliette S; Schilling, Kathy J; Hoffmeister, Jeffrey W; Friedmann, Euvondia; McGinnis, Ryan; Holcomb, Richard G

    2009-02-01

    The purpose of this study was to evaluate computer-aided detection (CAD) performance with full-field digital mammography (FFDM). CAD (Second Look, version 7.2) was used to evaluate 123 cases of breast cancer detected with FFDM (Senographe DS). Retrospectively, CAD sensitivity was assessed using breast density, mammographic presentation, histopathology results, and lesion size. To determine the case-based false-positive rate, patients with four standard views per case were included in the study group. Eighteen unilateral mammography examinations with nonstandard views were excluded, resulting in a sample of 105 bilateral cases. CAD detected 115 (94%) of 123 cancer cases: six of six (100%) in fatty breasts, 63 of 66 (95%) in breasts containing scattered fibroglandular densities, 43 of 46 (93%) in heterogeneously dense breasts, and three of five (60%) in extremely dense breasts. CAD detected 93% (41/44) of cancers manifesting as calcifications, 92% (57/62) as masses, and 100% (17/17) as mixed masses and calcifications. CAD detected 94% of the invasive ductal carcinomas (n = 63), 100% of the invasive lobular carcinomas (n = 7), 91% of the other invasive carcinomas (n = 11), and 93% of the ductal carcinomas in situ (n = 42). CAD sensitivity for cancers 1-10 mm (n = 55) was 89%; 11-20 mm (n = 37), 97%; 21-30 mm (n = 16), 100%; and larger than 30 mm (n = 15), 93%. The CAD false-positive rate was 2.3 marks per four-image case. CAD with FFDM showed a high sensitivity in identifying cancers manifesting as calcifications and masses. Sensitivity was maintained in cancers with lower mammographic sensitivity, including invasive lobular carcinomas and small neoplasms (1-20 mm). CAD with FFDM should be effective in assisting radiologists with earlier detection of breast cancer. Future studies are needed to assess CAD accuracy in larger populations.

  12. Assessing tumor extent on contrast-enhanced spectral mammography versus full-field digital mammography and ultrasound.

    PubMed

    Patel, Bhavika K; Garza, Sandra Alheli; Eversman, Sarah; Lopez-Alvarez, Yania; Kosiorek, Heidi; Pockaj, Barbara A

    To compare breast cancer size measurements on full-field digital mammography (FFDM), contrast-enhanced spectral mammography (CEDM), and ultrasound (US), with histologic tumor size used as the reference standard. Material and methods The HIPAA complaint, IRB approved study comprised 88 women with newly diagnosed breast cancer who underwent FFDM and CEDM;74 also had US. Breast density, histologic subtype, and maximum tumor measurements were recorded. Pearson correlation coefficients for FFDM, US, and CEDM vs histopathology were 0.598, 0.639, and 0.859, respectively (P<0.001). The following correlation coefficients were calculated for dense breasts (n=48): histopathology vs FFDM (0.555), US (0.633), and CEDM (0.843) (P<0.001); for nondense breasts (n=40), they were FFDM (0.618), US (0.512), and CEDM (0.885) (P<0.001). For size difference, the mean (SD) for histopathology vs FFDM, US, and CEDM was -1.3 (11.9) mm, -2.8 (11.1) mm, and 2.9 (9.5) mm, respectively. Limits of agreement were -24.8 to 22.0mm, -24.5 to 18.8mm, and -15.6 to 21.4mm, respectively. In patients with biopsy-proven malignancy, size measurements correlated well with histopathologic size, and were higher on CEDM than those for FFDM and US in patients with dense or nondense breasts. The added value of CEDM as a supplement to FFDM in determining tumor size, however, was greater in patients with dense breasts. CEDM may be a promising alternative preoperative measurement tool for breast cancer patients with dense breasts and/or limited access or contraindications to MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Experience with a proposed teleradiology system for digital mammography

    NASA Astrophysics Data System (ADS)

    Saulnier, Emilie T.; Mitchell, Robert J.; Abdel-Malek, Aiman A.; Dudding, Kathryn E.

    1995-05-01

    Teleradiology offers significant improvement in efficiency and effectiveness over current practices in traditional film/screen-based diagnosis. In the context of digital mammography, the increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper describes a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. Experience with a testbed prototype is described. The telemammography architecture is intended to consist of a main mammography diagnostic site serving several remote screening sites. As patient exams become available, they are forwarded by an image server to the diagnostic site over a WAN communications link. A radiologist at the diagnostic site views a patient exam as it arrives, interprets it, and then relays a report back to the technician at the remote site. A secondary future scenario consists of mobile units which forward images to a remote site, which then forwards them to the main diagnostic site. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). A specification of vendor-independent data formats and data transfer services for digital medical images, DICOM specifies a protocol suite starting at the application layer downward, including the TCP/IP layers. The current DICOM definition does not provide an information element that is specifically tailored to mammography, so we have used the DICOM secondary capture data format

  14. Study of signal-to-noise ratio in digital mammography

    NASA Astrophysics Data System (ADS)

    Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie

    2009-02-01

    Mammography techniques have recently advanced from those using analog systems (the screen-film system) to those using digital systems; for example, computed radiography (CR) and flat-panel detectors (FPDs) are nowadays used in mammography. Further, phase contrast mammography (PCM)-a digital technique by which images with a magnification of 1.75× can be obtained-is now available in the market. We studied the effect of the air gap in PCM and evaluated the effectiveness of an antiscatter x-ray grid in conventional mammography (CM) by measuring the scatter fraction ratio (SFR) and relative signal-to-noise ratio (rSNR) and comparing them between PCM and the digital CM. The results indicated that the SFRs for the CM images obtained with a grid were the lowest and that these ratios were almost the same as those for the PCM images. In contrast, the rSNRs for the PCM images were the highest, which means that the scattering of x-rays was sufficiently reduced by the air gap without the loss of primary x-rays.

  15. Implementation of Synthesized Two-dimensional Mammography in a Population-based Digital Breast Tomosynthesis Screening Program

    PubMed Central

    Zuckerman, Samantha P.; Keller, Brad M.; Maidment, Andrew D. A.; Barufaldi, Bruno; Weinstein, Susan P.; Synnestvedt, Marie; McDonald, Elizabeth S.

    2016-01-01

    Purpose To evaluate the early implementation of synthesized two-dimensional (s2D) mammography in a population screened entirely with s2D and digital breast tomosynthesis (DBT) (referred to as s2D/DBT) and compare recall rates and cancer detection rates to historic outcomes of digital mammography combined with DBT (referred to as digital mammography/DBT) screening. Materials and Methods This was an institutional review board–approved and HIPAA-compliant retrospective interpretation of prospectively acquired data with waiver of informed consent. Compared were recall rates, biopsy rates, cancer detection rates, and radiation dose for 15 571 women screened with digital mammography/DBT from October 1, 2011, to February 28, 2013, and 5366 women screened with s2D/DBT from January 7, 2015, to June 30, 2015. Two-sample z tests of equal proportions were used to determine statistical significance. Results Recall rate for s2D/DBT versus digital mammography/DBT was 7.1% versus 8.8%, respectively (P < .001). Biopsy rate for s2D/DBT versus digital mammography/DBT decreased (1.3% vs 2.0%, respectively; P = .001). There was no significant difference in cancer detection rate for s2D/DBT versus digital mammography/DBT (5.03 of 1000 vs 5.45 of 1000, respectively; P = .72). The average glandular dose was 39% lower in s2D/DBT versus digital mammography/DBT (4.88 mGy vs 7.97 mGy, respectively; P < .001). Conclusion Screening with s2D/DBT in a large urban practice resulted in similar outcomes compared with digital mammography/DBT imaging. Screening with s2D/DBT allowed for the benefits of DBT with a decrease in radiation dose compared with digital mammography/DBT. © RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on August 11, 2016. PMID:27467468

  16. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  17. Comparative Effectiveness of Digital Versus Film-Screen Mammography in Community Practice in the United States

    PubMed Central

    Kerlikowske, Karla; Hubbard, Rebecca A.; Miglioretti, Diana L.; Geller, Berta M.; Yankaskas, Bonnie C.; Lehman, Constance D.; Taplin, Stephen H.; Sickles, Edward A.

    2013-01-01

    Background Few studies have examined the comparative effectiveness of digital versus film-screen mammography in U.S. community practice. Objective To determine whether the interpretive performance of digital and film-screen mammography differs. Design Prospective cohort study. Setting Mammography facilities in the Breast Cancer Surveillance Consortium. Participants 329 261 women aged 40 to 79 years underwent 869 286 mammograms (231 034 digital; 638 252 film-screen). Measurements Invasive cancer or ductal carcinoma in situ diagnosed within 12 months of a digital or film-screen examination and calculation of mammography sensitivity, specificity, cancer detection rates, and tumor outcomes. Results Overall, cancer detection rates and tumor characteristics were similar for digital and film-screen mammography, but the sensitivity and specificity of each modality varied by age, tumor characteristics, breast density, and menopausal status. Compared with film-screen mammography, the sensitivity of digital mammography was significantly higher for women aged 60 to 69 years (89.9% vs. 83.0%; P = 0.014) and those with estrogen receptor-negative cancer (78.5% vs. 65.8%; P = 0.016); borderline significantly higher for women aged 40 to 49 years (82.4% vs. 75.6%; P = 0.071), those with extremely dense breasts (83.6% vs. 68.1%; P= 0.051), and pre- or perimenopausal women (87.1% vs. 81.7%; P = 0.057); and borderline significantly lower for women aged 50 to 59 years (80.5% vs. 85.1%; P = 0.097). The specificity of digital and film-screen mammography was similar by decade of age, except for women aged 40 to 49 years (88.0% vs. 89.7%; P< 0.001). Limitation Statistical power for subgroup analyses was limited. Conclusion Overall, cancer detection with digital or film-screen mammography is similar in U.S. women aged 50 to 79 years undergoing screening mammography. Women aged 40 to 49 years are more likely to have extremely dense breasts and estrogen receptor-negative tumors; if they are

  18. Interval breast cancer characteristics before, during and after the transition from screen-film to full-field digital screening mammography.

    PubMed

    van Bommel, Rob M G; Weber, Roy; Voogd, Adri C; Nederend, Joost; Louwman, Marieke W J; Venderink, Dick; Strobbe, Luc J A; Rutten, Matthieu J C; Plaisier, Menno L; Lohle, Paul N; Hooijen, Marianne J H; Tjan-Heijnen, Vivianne C G; Duijm, Lucien E M

    2017-05-05

    To determine the proportion of "true" interval cancers and tumor characteristics of interval breast cancers prior to, during and after the transition from screen-film mammography screening (SFM) to full-field digital mammography screening (FFDM). We included all women with interval cancers detected between January 2006 and January 2014. Breast imaging reports, biopsy results and breast surgery reports of all women recalled at screening mammography and of all women with interval breast cancers were collected. Two experienced screening radiologists reviewed the diagnostic mammograms, on which the interval cancers were diagnosed, as well as the prior screening mammograms and determined whether or not the interval cancer had been missed on the most recent screening mammogram. If not missed, the cancer was considered an occult ("true") interval cancer. A total of 442 interval cancers had been diagnosed, of which 144 at SFM with a prior SFM (SFM-SFM), 159 at FFDM with a prior SFM (FFDM-SFM) and 139 at FFDM with a prior FFDM (FFDM-FFDM). The transition from SFM to FFDM screening resulted in the diagnosis of more occult ("true") interval cancers at FFDM-SFM than at SFM-SFM (65.4% (104/159) versus 49.3% (71/144), P < 0.01), but this increase was no longer statistically significant in women who had been screened digitally for the second time (57.6% (80/139) at FFDM-FFDM versus 49.3% (71/144) at SFM-SFM). Tumor characteristics were comparable for the three interval cancer cohorts, except of a lower porportion (75.7 and 78.0% versus 67.2% af FFDM-FFDM, P < 0.05) of invasive ductal cancers at FFDM with prior FFDM. An increase in the proportion of occult interval cancers is observed during the transition from SFM to FFDM screening mammography. However, this increase seems temporary and is no longer detectable after the second round of digital screening. Tumor characteristics and type of surgery are comparable for interval cancers detected prior to, during and after the

  19. Potential Cost Savings of Contrast-Enhanced Digital Mammography.

    PubMed

    Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A

    2017-06-01

    The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.

  20. Digital breast tomosynthesis plus synthesised images versus standard full-field digital mammography in population-based screening (TOSYMA): protocol of a randomised controlled trial.

    PubMed

    Weigel, Stefanie; Gerss, Joachim; Hense, Hans-Werner; Krischke, Miriam; Sommer, Alexander; Czwoydzinski, Jörg; Lenzen, Horst; Kerschke, Laura; Spieker, Karin; Dickmaenken, Stefanie; Baier, Sonja; Urban, Marc; Hecht, Gerold; Heidinger, Oliver; Kieschke, Joachim; Heindel, Walter

    2018-05-14

    Development of digital breast tomosynthesis (DBT) provides a technology that generates three-dimensional data sets, thus reducing the pitfalls of overlapping breast tissue. Observational studies suggest that the combination of two-dimensional (2D) digital mammography and DBT increases diagnostic accuracy. However, because of duplicate exposure, this comes at the cost of an augmented radiation dose. This undesired adverse impact can be avoided by using synthesised 2D images reconstructed from the DBT data (s2D).We designed a diagnostic superiority trial on a high level of evidence with the aim of providing a comparison of screening efficacy parameters resulting from DBT+s2D versus the current screening standard 2D full-field digital mammography (FFDM) in a multicentre and multivendor setting on the basis of the quality-controlled, population-based, biennial mammography screening programme in Germany. 80 000 women in the eligible age 50-69 years attending the routine mammography screening programme and willing to participate in the TOSYMA trial will be assigned by 1:1 randomisation to either the intervention arm (DBT+s2D) or the control arm (FFDM) during a 12-month recruitment period in screening units of North Rhine-Westphalia and Lower Saxony. State cancer registries will provide the follow-up of interval cancers.Primary endpoints are the detection rate of invasive breast cancers at screening examination and the cumulative incidence of interval cancers in the 2 years after a negative examination. Secondary endpoints are the detection rate of ductal carcinoma in situ and of tumour size T1, the recall rate for assessment, the positive predictive value of recall and the cumulative 12-month incidence of interval cancers. An adaptive statistical design with one interim analysis provides the option to modify the design. This protocol has been approved by the local medical ethical committee (2016-132-f-S). Results will be submitted to international peer

  1. CMOS cassette for digital upgrade of film-based mammography systems

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  2. Mobile measurement setup according to IEC 62220-1-2 for DQE determination on digital mammography systems

    NASA Astrophysics Data System (ADS)

    Greiter, Matthias B.; Hoeschen, Christoph

    2010-04-01

    The international standard IEC 62220-1-2 defines the measurement procedure for determination of the detective quantum efficiency (DQE) of digital x-ray imaging devices used in mammography. A mobile setup complying to this standard and adaptable to most current systems was constructed in the Helmholtz Zentrum München to allow for an objective technical comparison of current full field digital mammography units employed in mammography screening in Germany. This article demonstrates the setup's capabilities with a focus on the measurement uncertainties of all quantities contributing to DQE measurements. Evaluation of uncertainties encompasses results from measurements on a Sectra Microdose Mammography in clinical use, as well as on a prototype of a Fujifilm Amulet system at various radiation qualities. Both systems have a high spatial resolution of 50 μm × 50 μm. The modulation transfer function (MTF), noise power spectrum (NPS) and DQE of the Sectra MDM are presented in comparison to results previously published by other authors.

  3. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  4. A comparison of the performance of digital mammography systems.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Guntern, D; Verdun, F R

    2007-03-01

    An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.

  5. Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts.

    PubMed

    Lee, Christoph I; Cevik, Mucahit; Alagoz, Oguzhan; Sprague, Brian L; Tosteson, Anna N A; Miglioretti, Diana L; Kerlikowske, Karla; Stout, Natasha K; Jarvik, Jeffrey G; Ramsey, Scott D; Lehman, Constance D

    2015-03-01

    To evaluate the effectiveness of combined biennial digital mammography and tomosynthesis screening, compared with biennial digital mammography screening alone, among women with dense breasts. An established, discrete-event breast cancer simulation model was used to estimate the comparative clinical effectiveness and cost-effectiveness of biennial screening with both digital mammography and tomosynthesis versus digital mammography alone among U.S. women aged 50-74 years with dense breasts from a federal payer perspective and a lifetime horizon. Input values were estimated for test performance, costs, and health state utilities from the National Cancer Institute Breast Cancer Surveillance Consortium, Medicare reimbursement rates, and medical literature. Sensitivity analyses were performed to determine the implications of varying key model parameters, including combined screening sensitivity and specificity, transient utility decrement of diagnostic work-up, and additional cost of tomosynthesis. For the base-case analysis, the incremental cost per quality-adjusted life year gained by adding tomosynthesis to digital mammography screening was $53 893. An additional 0.5 deaths were averted and 405 false-positive findings avoided per 1000 women after 12 rounds of screening. Combined screening remained cost-effective (less than $100 000 per quality-adjusted life year gained) over a wide range of incremental improvements in test performance. Overall, cost-effectiveness was most sensitive to the additional cost of tomosynthesis. Biennial combined digital mammography and tomosynthesis screening for U.S. women aged 50-74 years with dense breasts is likely to be cost-effective if priced appropriately (up to $226 for combined examinations vs $139 for digital mammography alone) and if reported interpretive performance metrics of improved specificity with tomosynthesis are met in routine practice.

  6. Digital information management: a progress report on the National Digital Mammography Archive

    NASA Astrophysics Data System (ADS)

    Beckerman, Barbara G.; Schnall, Mitchell D.

    2002-05-01

    Digital mammography creates very large images, which require new approaches to storage, retrieval, management, and security. The National Digital Mammography Archive (NDMA) project, funded by the National Library of Medicine (NLM), is developing a limited testbed that demonstrates the feasibility of a national breast imaging archive, with access to prior exams; patient information; computer aids for image processing, teaching, and testing tools; and security components to ensure confidentiality of patient information. There will be significant benefits to patients and clinicians in terms of accessible data with which to make a diagnosis and to researchers performing studies on breast cancer. Mammography was chosen for the project, because standards were already available for digital images, report formats, and structures. New standards have been created for communications protocols between devices, front- end portal and archive. NDMA is a distributed computing concept that provides for sharing and access across corporate entities. Privacy, auditing, and patient consent are all integrated into the system. Five sites, Universities of Pennsylvania, Chicago, North Carolina and Toronto, and BWXT Y12, are connected through high-speed networks to demonstrate functionality. We will review progress, including technical challenges, innovative research and development activities, standards and protocols being implemented, and potential benefits to healthcare systems.

  7. External validation of Medicare claims codes for digital mammography and computer-aided detection.

    PubMed

    Fenton, Joshua J; Zhu, Weiwei; Balch, Steven; Smith-Bindman, Rebecca; Lindfors, Karen K; Hubbard, Rebecca A

    2012-08-01

    While Medicare claims are a potential resource for clinical mammography research or quality monitoring, the validity of key data elements remains uncertain. Claims codes for digital mammography and computer-aided detection (CAD), for example, have not been validated against a credible external reference standard. We matched Medicare mammography claims for women who received bilateral mammograms from 2003 to 2006 to corresponding mammography data from the Breast Cancer Surveillance Consortium (BCSC) registries in four U.S. states (N = 253,727 mammograms received by 120,709 women). We assessed the accuracy of the claims-based classifications of bilateral mammograms as either digital versus film and CAD versus non-CAD relative to a reference standard derived from BCSC data. Claims data correctly classified the large majority of film and digital mammograms (97.2% and 97.3%, respectively), yielding excellent agreement beyond chance (κ = 0.90). Claims data correctly classified the large majority of CAD mammograms (96.6%) but a lower percentage of non-CAD mammograms (86.7%). Agreement beyond chance remained high for CAD classification (κ = 0.83). From 2003 to 2006, the predictive values of claims-based digital and CAD classifications increased as the sample prevalences of each technology increased. Medicare claims data can accurately distinguish film and digital bilateral mammograms and mammograms conducted with and without CAD. The validity of Medicare claims data regarding film versus digital mammography and CAD suggests that these data elements can be useful in research and quality improvement. ©2012 AACR.

  8. Impact of the Introduction of Digital Mammography in an Organized Screening Program on the Recall and Detection Rate.

    PubMed

    Campari, Cinzia; Giorgi Rossi, Paolo; Mori, Carlo Alberto; Ravaioli, Sara; Nitrosi, Andrea; Vacondio, Rita; Mancuso, Pamela; Cattani, Antonella; Pattacini, Pierpaolo

    2016-04-01

    In 2012, the Reggio Emilia Breast Cancer Screening Program introduced digital mammography in all its facilities at the same time. The aim of this work is to analyze the impact of digital mammography introduction on the recall rate, detection rate, and positive predictive value. The program actively invites women aged 45-74 years. We included women screened in 2011, all of whom underwent film-screen mammography, and all women screened in 2012, all of whom underwent digital mammography. Double reading was used for all mammograms, with arbitration in the event of disagreement. A total of 42,240 women underwent screen-film mammography and 45,196 underwent digital mammography. The recall rate increased from 3.3 to 4.4% in the first year of digital mammography (relative recall adjusted by age and round 1.46, 95% CI = 1.37-1.56); the positivity rate for each individual reading, before arbitration, rose from 3 to 5.7%. The digital mammography recall rate decreased during 2012: after 12 months, it was similar to the recall rate with screen-film mammography. The detection rate was similar: 5.9/1000 and 5.2/1000 with screen-film and digital mammography, respectively (adjusted relative detection rate 0.95, 95% CI = 0.79-1.13). The relative detection rate for ductal carcinoma in situ remained the same. The introduction of digital mammography to our organized screening program had a negative impact on specificity, thereby increasing the recall rate. The effect was limited to the first 12 months after introduction and was attenuated by the double reading with arbitration. We did not observe any relevant effects on the detection rate.

  9. Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2003-06-18

    Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent

  10. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    PubMed

    Schwab, Siegfried A; Brand, Michael; Schlude, Ina-Kristin; Wuest, Wolfgang; Meier-Meitinger, Martina; Distel, Luitpold; Schulz-Wendtland, Ruediger; Uder, Michael; Kuefner, Michael A

    2013-01-01

    To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM) and to estimate foci after FFDM and digital breast-tomosynthesis (DBT) using a biological phantom model. The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. Median in-vivo foci level/cell was 0.086 (range 0.067-0.116) before and 0.094 (0.076-0.126) after FFDM (p = 0.0004). In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140) at skin level and 0.035 (range 0.030-0.050) at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081) at skin level and 0.015 (range 0.006-0.020) at glandular level. In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  11. The effects of gray scale image processing on digital mammography interpretation performance.

    PubMed

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  12. A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Astley, Susan; Connor, Sophie; Lim, Yit; Tate, Catriona; Entwistle, Helen; Morris, Julie; Whiteside, Sigrid; Sergeant, Jamie; Wilson, Mary; Beetles, Ursula; Boggis, Caroline; Gilbert, Fiona

    2013-03-01

    Digital Breast Tomosynthesis (DBT) provides three-dimensional images of the breast that enable radiologists to discern whether densities are due to overlapping structures or lesions. To aid assessment of the cost-effectiveness of DBT for screening, we have compared the time taken to interpret DBT images and the corresponding two-dimensional Full Field Digital Mammography (FFDM) images. Four Consultant Radiologists experienced in reading FFDM images (4 years 8 months to 8 years) with training in DBT interpretation but more limited experience (137-407 cases in the past 6 months) were timed reading between 24 and 32 two view FFDM and DBT cases. The images were of women recalled from screening for further assessment and women under surveillance because of a family history of breast cancer. FFDM images were read before DBT, according to local practice. The median time for readers to interpret FFDM images was 17.0 seconds, with an interquartile range of 12.3-23.6 seconds. For DBT, the median time was 66.0 seconds, and the interquartile range was 51.1-80.5 seconds. The difference was statistically significant (p<0.001). Reading times were significantly longer in family history clinics (p<0.01). Although it took approximately four times as long to interpret DBT than FFDM images, the cases were more complex than would be expected for routine screening, and with higher mammographic density. The readers were relatively inexperienced in DBT interpretation and may increase their speed over time. The difference in times between clinics may be due to increased throughput at assessment, or decreased density.

  13. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: comparison of image quality and diagnostic performance.

    PubMed

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  14. Visualizing the Diffusion of Digital Mammography in New York State.

    PubMed

    Boscoe, Francis P; Zhang, Xiuling

    2017-04-01

    Background: Digital mammography saw rapid adoption during the first decade of the 2000s. We were interested in identifying the times and locations where the technology was introduced within the state of New York as a way of illustrating the uneven introduction of this technology. Methods: Using a sample of Medicare claims data from the period 2004 to 2012 from women ages 65 and over without cancer, we calculated the percentage of mammograms that were digital by zip code of residence and illustrated them with a series of smoothed maps. Results: Maps for three of the years (2005, 2008, and 2011) show the conversion from almost no digital mammography to nearly all digital mammography. The 2008 map reveals sharp disparities between areas that had and had not yet adopted the technology. Socioeconomic differences explain some of this pattern. Conclusions: Geographic disparities in access to medical technology are underappreciated relative to other sources of disparities. Our method provides a way of measuring and communicating this phenomenon. Impact: Our method could be applied to illuminate current examples, where access to medical technology is highly uneven, such as 3D tomography and robotic surgery. Cancer Epidemiol Biomarkers Prev; 26(4); 490-4. ©2017 AACR See all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences." ©2017 American Association for Cancer Research.

  15. Grid removal and impact on population dose in full-field digital mammography.

    PubMed

    Gennaro, Gisella; Katz, Luc; Souchay, Henri; Klausz, Remy; Alberelli, Claudio; di Maggio, Cosimo

    2007-02-01

    The study purpose was to determine the impact of anti-scatter grid removal on patient dose, in full field digital mammography. Dose saving, phantom based, was evaluated with the constraint that images acquired with and without grid would provide the same contrast-to-noise ratio (CNR). The digital equipment employed a flat panel detector with cesium iodide for x-ray to light conversion, 100 microm pixel size; the x-ray source was a dual-track tube with selectable filtration. Poly(methyl-emathocrylate) (PMMA) layers in the range 20-70 mm were used to simulate the absorption of different breast thickness, while two Al foils, 0.1 and 0.2 mm thick were used to provide a certain CNR. Images with grid were acquired with the same beam quality as selected in full automatic exposure mode and the mAs levels as close as possible, and the CNR measured for each thickness between 20 and 70 mm. Phantom images without grid were acquired in manual exposure mode, by selecting the same anode/filter combination and kVp as the image with grid at the same thickness, but varying mAs from 10 to 200. For each thickness, an image without aluminum was acquired for each mAs value, in order to obtain a flat image to be used to subtract the scatter nonuniformity from the phantom images. After scatter subtraction, the CNR was measured on images without grid. The mAs value that should be set to acquire a phantom image without grid so that it has the same CNR as the corresponding grid image was calculated. Therefore, mAs reduction percentage was determined versus phantom thickness. Results showed that dose saving was lower than 30% for PMMA equivalent breast thinner than 40 mm, decreased below 10% for intermediate thickness (45-50 mm), but there was no dose gain for thickness beyond 60 mm. By applying the mAs reduction factors to a clinical population derived from a data base of 4622 breasts, dose benefit was quantified in terms of population dose. On the average, the overall dose reduction was

  16. Effect of age on breast cancer screening using tomosynthesis in combination with digital mammography.

    PubMed

    Rafferty, Elizabeth A; Rose, Stephen L; Miller, Dave P; Durand, Melissa A; Conant, Emily F; Copit, Debra S; Friedewald, Sarah M; Plecha, Donna M; Ott, Ingrid L; Hayes, Mary K; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Niklason, Loren T

    2017-08-01

    To determine the effect of tomosynthesis imaging as a function of age for breast cancer screening. Screening performance metrics from 13 institutions were examined for 12 months prior to introduction of tomosynthesis (period 1) and compared to those after introduction of tomosynthesis (period 2, range 3-22 months). Screening metrics for women ages 40-49, 50-59, 60-69, and 70+ , included rates per 1000 screens for recalls, biopsies, cancers, and invasive cancers detected. Performance parameters were compared for women screened with digital mammography alone (n = 278,908) and digital mammography + tomosynthesis (n = 173,414). Addition of tomosynthesis to digital mammography produced significant reductions in recall rates for all age groups and significant increases in cancer detection rates for women 40-69. Largest recall rate reduction with tomosynthesis was for women 40-49, decreasing from 137 (95% CI 117-156) to 115 (95% CI 95-135); difference, -22 (95% CI -26 to -18; P < .001). Simultaneous increase in invasive cancer detection rate for women 40-49 from 1.6 (95% CI 1.2-1.9) to 2.7 (95% CI 2.2-3.1) with tomosynthesis (difference, 1.1; 95% CI 0.6-1.6; P < .001) was observed. Addition of tomosynthesis to digital mammography increased invasive cancer detection rates for women 40-69 and decreased recall rates for all age groups with largest performance gains seen in women 40-49. The similar performance seen with tomosynthesis screening for women in their 40s compared to digital mammography for women in their 50s argues strongly for commencement of mammography screening at age 40 using tomosynthesis.

  17. Digital Mammography in Young Women: Is a Single View Sufficient?

    PubMed

    Gossner, Johannes

    2016-03-01

    Single view mammography may be a less time consuming, more comfortable and radiation reduced alternative for young women, but there are no studies examining this approach after the implementation of digital mammography into clinical practice. Retrospective analysis of all mammographies performed in women younger than 40 years during a 24 month period. The sample consisted of 109 women with 212 examined breasts. All patients initially received standard two- view mammography. In the study setting the MLO- views were read by a single viewer and compared to a composite reference standard. In this sample 7 malignant findings were present and the review of the MLO-view detected 6 of them (85%). In patients with dense breasts 4 out of 5 malignant findings were found on the single-view (sensitivity 80%) and all 2 malignant findings were detected in patients with low breast density (sensitivity 100%). There were 7 false positive findings (3.3%). i.e. in total 8 out of 212 examined breasts were therefore misinterpreted (3.8%). Single view digital mammography detects the vast majority of malignant findings, especially in low density breast tissue and the rate of false-positive findings is within acceptable limits. Therefore this approach may be used in different scenarios (for example in increasing patient throughout in resource poor settings, reducing radiation burden in the young or in combination with ultrasound to use the strengths of both methods). More research on this topic is needed to establish its potential role in breast imaging.

  18. Digital mammography. Why hasn't it been approved for U.S. hospitals?

    PubMed

    2000-01-01

    Mammography is the only major imaging technique still unavailable in the United States in digital form. This is because the Food and Drug Administration (FDA) has been unable to devise an effective method for manufacturers to demonstrate the safety and efficacy of digital mammography systems. As a result, the agency has been unable to approve any of those systems for marketing in the United States. In this Regulatory Update, we describe FDA's recent efforts to help manufacturers obtain approval and the reasons those efforts have so far proved ineffective.

  19. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    PubMed

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values < .001). Breast density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Gonzalez, A.; Sanmiguel, R. E.

    2008-08-11

    Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.

  1. Characterization of scatter in digital mammography from physical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Stephanie M., E-mail: Stephanie.Leon@uth.tmc.edu; Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible withmore » a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about

  2. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories.

    PubMed

    Tagliafico, A S; Tagliafico, G; Cavagnetto, F; Calabrese, M; Houssami, N

    2013-11-01

    To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging-Reporting and Data System (BI-RADS) categories, using automated software. Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity(©), developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (p<0.0001). There was a good correlation between the BI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, p<0.01 and r=0.48, p<0.01, respectively). Using DBT, breast density values were lower than those obtained using 2D FFDM, with a non-linear relationship across the BI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories.

  3. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  4. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  5. Position paper: recommendations for a digital mammography quality assurance program V4.0.

    PubMed

    Heggie, J C P; Barnes, P; Cartwright, L; Diffey, J; Tse, J; Herley, J; McLean, I D; Thomson, F J; Grewal, R K; Collins, L T

    2017-09-01

    In 2001 the ACPSEM published a position paper on quality assurance in screen film mammography which was subsequently adopted as a basis for the quality assurance programs of both the Royal Australian and New Zealand College of Radiologists (RANZCR) and of BreastScreen Australia. Since then the clinical implementation of digital mammography has been realised and it has become evident that existing screen-film protocols were not appropriate to assure the required image quality needed for reliable diagnosis or to address the new dose implications resulting from digital technology. In addition, the advantages and responsibilities inherent in teleradiology are most critical in mammography and also need to be addressed. The current document is the result of a review of current overseas practice and local experience in these areas. At this time the technology of digital imaging is undergoing significant development and there is still a lack of full international consensus about some of the detailed quality control (QC) tests that should be included in quality assurance (QA) programs. This document describes the current status in digital mammography QA and recommends test procedures that may be suitable in the Australasian environment. For completeness, this document also includes a review of the QA programs required for the various types of digital biopsy units used in mammography. In the future, international harmonisation of digital quality assurance in mammography and changes in the technology may require a review of this document. Version 2.0 represented the first of these updates and key changes related to image quality evaluation, ghost image evaluation and interpretation of signal to noise ratio measurements. In Version 3.0 some significant changes, made in light of further experience gained in testing digital mammography equipment were introduced. In Version 4.0, further changes have been made, most notably digital breast tomosynthesis (DBT) testing and QC have

  6. The Impact of Acquisition Dose on Quantitative Breast Density Estimation with Digital Mammography: Results from ACRIN PA 4006.

    PubMed

    Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina

    2016-09-01

    Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation

  7. The Impact of Acquisition Dose on Quantitative Breast Density Estimation with Digital Mammography: Results from ACRIN PA 4006

    PubMed Central

    Chen, Lin; Ray, Shonket; Keller, Brad M.; Pertuz, Said; McDonald, Elizabeth S.; Conant, Emily F.

    2016-01-01

    Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88–0.95; weighted κ = 0.83–0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76–0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density

  8. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    NASA Astrophysics Data System (ADS)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  9. Clinical Evaluation of a Digital Mammography Based on Micro-Lithography (Breast Cancer)

    DTIC Science & Technology

    1994-01-20

    7-9, Mannheim. Schnetztor - V flag; 1992: 90-91. 2. Panizza P., Del Maschio A. Digital Luminescence Mammography. Digital Radiography Workshop: Quality...Assurance and Radiation Protection. May 7-9, Mannheim. Schnetztor - Verlag; 1992:66-67. 3. Panizza P., Cattaneo M., Rodighiero M.G., et al. Course on

  10. Diagnostic accuracy of contrast-enhanced spectral mammography in comparison to conventional full-field digital mammography in a population of women with dense breasts.

    PubMed

    Mori, Miki; Akashi-Tanaka, Sadako; Suzuki, Satoko; Daniels, Murasaki Ikeda; Watanabe, Chie; Hirose, Masanori; Nakamura, Seigo

    2017-01-01

    Contrast-enhanced spectral mammography to compare clinical efficacy of contrast-enhanced spectral mammography (CESM) and conventional digital mammography (MMG) with histopathology as gold standard in dense breasts. A total of 143 breasts of 72 women who underwent CESM and MMG between 2011 and 2014 at Showa University Hospital were analyzed. 129 (90.2 %) of 143 breasts revealed dense breasts on MMG. 58 (40.6 %) of 143 breasts were diagnosed with breast cancer at histopathology. The remaining 85 breasts were diagnosed with benign findings after image assessments and/or core needle biopsy. CESM revealed 8 false-negative cases among 58 breast cancer cases (sensitivity 86.2 %) and 5 false-positive cases (specificity 94.1 %). Accuracy was 90.9 %. Conventional MMG was assessed true positive in 31 of 58 breast cancer cases (sensitivity 53.4 %) and false positive in 12 cases (specificity 85.9 %). Accuracy was 72.7 %. Sensitivity (p < 0.001), specificity (p = 0.016) and accuracy (p < 0.001) were significantly higher on CESM compared to MMG. MMG missed malignancy in 27 breasts. Of these, 25 were dense breasts. Of these 25, 20 (80.0 %) breasts were positive on CESM. These findings suggest that CESM offers superior clinical performance compared to MMG. Use of CESM may decrease false negatives especially for women with dense breasts.

  11. Initial Image Quality and Clinical Experience with New CR Digital Mammography System: A Phantom and Clinical Study

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique; Alfonso, Beatriz Y. Álvarez; Castellanos, Gustavo Casian; Enríquez, Jesús Gabriel Franco

    2008-08-01

    The goal of the study was to evaluate the first CR digital mammography system (® Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CR Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography.

  12. Initial Image Quality and Clinical Experience with New CR Digital Mammography System: A Phantom and Clinical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona, Enrique; Enriquez, Jesus Gabriel Franco; Alfonso, Beatriz Y. Alvarez

    2008-08-11

    The goal of the study was to evaluate the first CR digital mammography system ( registered Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CRmore » Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography.« less

  13. Digital Mammography with a Mosaic of CCD Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1998-01-01

    A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image is discussed. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays.

  14. Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography.

    PubMed

    Stout, Natasha K; Lee, Sandra J; Schechter, Clyde B; Kerlikowske, Karla; Alagoz, Oguzhan; Berry, Donald; Buist, Diana S M; Cevik, Mucahit; Chisholm, Gary; de Koning, Harry J; Huang, Hui; Hubbard, Rebecca A; Miglioretti, Diana L; Munsell, Mark F; Trentham-Dietz, Amy; van Ravesteyn, Nicolien T; Tosteson, Anna N A; Mandelblatt, Jeanne S

    2014-06-01

    Compared with film, digital mammography has superior sensitivity but lower specificity for women aged 40 to 49 years and women with dense breasts. Digital has replaced film in virtually all US facilities, but overall population health and cost from use of this technology are unclear. Using five independent models, we compared digital screening strategies starting at age 40 or 50 years applied annually, biennially, or based on density with biennial film screening from ages 50 to 74 years and with no screening. Common data elements included cancer incidence and test performance, both modified by breast density. Lifetime outcomes included mortality, quality-adjusted life-years, and screening and treatment costs. For every 1000 women screened biennially from age 50 to 74 years, switching to digital from film yielded a median within-model improvement of 2 life-years, 0.27 additional deaths averted, 220 additional false-positive results, and $0.35 million more in costs. For an individual woman, this translates to a health gain of 0.73 days. Extending biennial digital screening to women ages 40 to 49 years was cost-effective, although results were sensitive to quality-of-life decrements related to screening and false positives. Targeting annual screening by density yielded similar outcomes to targeting by age. Annual screening approaches could increase costs to $5.26 million per 1000 women, in part because of higher numbers of screens and false positives, and were not efficient or cost-effective. The transition to digital breast cancer screening in the United States increased total costs for small added health benefits. The value of digital mammography screening among women aged 40 to 49 years depends on women's preferences regarding false positives. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Selective photon counter for digital x-ray mammography tomosynthesis

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  16. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers.

    PubMed

    Knox, Mark; O'Brien, Angela; Szabó, Endre; Smith, Clare S; Fenlon, Helen M; McNicholas, Michelle M; Flanagan, Fidelma L

    2015-06-01

    Full field digital mammography (FFDM) is increasingly replacing screen film mammography (SFM) in breast screening programs. Interval breast cancers are an issue in all screening programs and the purpose of our study is to assess the impact of FFDM on the classification of interval breast cancers at independent blind review and to compare the mammographic features of interval cancers at FFDM and SFM. This study included 138 cases of interval breast cancer, 76 following an FFDM screening examination and 62 following screening with SFM. The prior screening mammogram was assessed by each of five consultant breast radiologists who were blinded to the site of subsequent cancer. Subsequent review of the diagnostic mammogram was performed and cases were classified as missed, minimal signs, occult or true interval. Mammographic features of the interval cancer at diagnosis and any abnormality identified on the prior screening mammogram were recorded. The percentages of cancers classified as missed at FFDM and SFM did not differ significantly, 10.5% (8 of 76) at FFDM and 8.1% (5 of 62) at SFM (p=.77). There were significantly less interval cancers presenting as microcalcifications (alone or in association with another abnormality) following screening with FFDM, 16% (12 of 76) than following a SFM examination, 32% (20 of 62) (p=.02). Interval breast cancers continue to pose a problem at FFDM. The switch to FFDM has changed the mammographic presentation of interval breast cancer, with less interval cancers presenting in association with microcalcifications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    PubMed

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  18. A methodology to evaluate differential costs of full field digital as compared to conventional screen film mammography in a clinical setting.

    PubMed

    Ciatto, S; Brancato, B; Baglioni, R; Turci, M

    2006-01-01

    The use of full field digital mammography (FFDM) in alternative to conventional screen film mammography (SFM) in the current practice is delayed by the high costs of FFDM. The present study, performed at the Centro per lo Studio e la Prevenzione Oncologica of Florence, using both FFDM and SFM, was aimed at estimating the impact of introducing the new FFDM technique on overall mammography costs. We estimated the differential costs of both methods, based on real expenditures, as provided by the administrative department, and on radiologists, radiographers and other staff's working time. Two different workload scenarios (5000 and 10,000 tests/year per mammography equipment) were considered. Common costs of both techniques were censored for study purpose. Beside a higher cost due to purchase and hire/leasing costs of equipment, FFDM implies a greater workload for radiologists (reading time almost doubled). SFM implies a greater workload for the administrative staff to run the archive and for loading/unloading films of the roller viewer, whereas no different workload has been observed for radiographers. Overall FFDM costs 24.22-26.46 for examination more than SFM for the 5000 tests scenario and 9.91-12.15 more for the 10,000 tests scenario. Although present study estimates cannot easily be generalised to any local setting, the model for cost calculation is easy to be exported to another scenario by applying different local parameters. The advantages made available by FFDM (computerised data recording, tele-transmission, tele-reporting, tele-consulting, automatic display on monitor of previous exams and use of CAD) may justify the higher cost, but a limited reduction in purchase and assistance costs could easily allow a turnover, with FFDM being more convenient than SFM even on the cost side.

  19. Monte Carlo Simulation of X-Ray Spectra in Mammography and Contrast-Enhanced Digital Mammography Using the Code PENELOPE

    NASA Astrophysics Data System (ADS)

    Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E.

    2013-04-01

    In this work, the Monte Carlo (MC) code PENELOPE was employed for simulation of x-ray spectra in mammography and contrast-enhanced digital mammography (CEDM). Spectra for Mo, Rh and W anodes were obtained for tube potentials between 24-36 kV, for mammography, and between 45-49 kV, for CEDM. The spectra obtained from the simulations were analytically filtered to correspond to the anode/filter combinations usually employed in each technique (Mo/Mo, Rh/Rh and W/Rh for mammography and Mo/Cu, Rh/Cu and W/Cu for CEDM). For the Mo/Mo combination, the simulated spectra were compared with those obtained experimentally, and for spectra for the W anode, with experimental data from the literature, through comparison of distribution shape, average energies, half-value layers (HVL) and transmission curves. For all combinations evaluated, the simulated spectra were also compared with those provided by different models from the literature. Results showed that the code PENELOPE provides mammographic x-ray spectra in good agreement with those experimentally measured and those from the literature. The differences in the values of HVL ranged between 2-7%, for anode/filter combinations and tube potentials employed in mammography, and they were less than 5% for those employed in CEDM. The transmission curves for the spectra obtained also showed good agreement compared to those computed from reference spectra, with average relative differences less than 12% for mammography and CEDM. These results show that the code PENELOPE can be a useful tool to generate x-ray spectra for studies in mammography and CEDM, and also for evaluation of new x-ray tube designs and new anode materials.

  20. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  1. Transition from film to digital mammography: impact for breast cancer screening through the national breast and cervical cancer early detection program.

    PubMed

    van Ravesteyn, Nicolien T; van Lier, Lisanne; Schechter, Clyde B; Ekwueme, Donatus U; Royalty, Janet; Miller, Jacqueline W; Near, Aimee M; Cronin, Kathleen A; Heijnsdijk, Eveline A M; Mandelblatt, Jeanne S; de Koning, Harry J

    2015-05-01

    The National Breast and Cervical Cancer Early Detection Program (NBCCEDP) provides mammograms and diagnostic services for low-income, uninsured women aged 40-64 years. Mammography facilities within the NBCCEDP gradually shifted from plain-film to digital mammography. The purpose of this study is to assess the impact of replacing film with digital mammography on health effects (deaths averted, life-years gained [LYG]); costs (for screening and diagnostics); and number of women reached. NBCCEDP 2010 data and data representative of the program's target population were used in two established microsimulation models. Models simulated observed screening behavior including different screening intervals (annual, biennial, irregular) and starting ages (40, 50 years) for white, black, and Hispanic women. Model runs were performed in 2012. The models predicted 8.0-8.3 LYG per 1,000 film screens for black women, 5.9-7.5 for white women, and 4.0-4.5 for Hispanic women. For all race/ethnicity groups, digital mammography had more LYG than film mammography (2%-4%), but had higher costs (34%-35%). Assuming a fixed budget, 25%-26% fewer women could be served, resulting in 22%-24% fewer LYG if all mammograms were converted to digital. The loss in LYG could be reversed to an 8%-13% increase by only including biennial screening. Digital could result in slightly more LYG than film mammography. However, with a fixed budget, fewer women may be served with fewer LYG. Changes in the program, such as only including biennial screening, will increase LYG/screen and could offset the potential decrease in LYG when shifting to digital mammography. Copyright © 2015 American Journal of Preventive Medicine. All rights reserved.

  2. The development of efficient X-ray conversion material for digital mammography

    NASA Astrophysics Data System (ADS)

    Oh, K.; Shin, J.; Kim, S.; Lee, Y.; Jeon, S.; Kim, J.; Nam, S.

    2012-02-01

    In this study, an experimental method based on theory is used to develop photoconductor that can replace the a-Se currently used as X-ray conversion layer in digital mammography. This is necessary because a-Se produced by the commercial fabrication method, of physical vapor deposition, has exhibited several problems when applied to digital mammography: instability due to crystallization and defect expansion due to high operating voltages, which is called the aging effect. Therefore, our work focused on developing a method of fabricating X-ray conversion films that do not suffer from crystallization and X-ray damage and optimizing the factors affecting the properties of the candidate photoconductors in order to acquire sufficient electrical signals to detect minute calcifications. The photoconductors were initially selected after the requirements for X-ray conversion materials, such as high atomic absorption, density, band-gap energy, work function, and resistivity, were examined. We selected HgI2, PbI2, and PbO because of their basic properties. Next, we experimentally investigated the performance of film samples fabricated by sedimentation and screen printing instead of physical vapor deposition. The structure of the X-ray conversion films (e.g., the thickness, electrodes, and blocking layer) were optimized for the application of a relatively low voltage to the X-ray conversion layer. The performance of the films were morphologically and electrically evaluated under mammography X-ray exposure conditions, and compared with those of a-Se films produced by physical vapor deposition. PbO appeared to be the most suitable alternative material because its electrical properties, such as the dark current, sensitivity, and signal-to-noise ratio (SNR), did not reveal the X-ray damage problem, and thus were maintained after repeated exposure to X-rays. Although PbO showed low sensitivity to X-ray exposure, its SNR was superior to that of the other materials, which is expected

  3. [Radiation dose evaluation in a photon-counting digital mammography unit].

    PubMed

    Matsubara, Kosuke; Matsumoto, China; Mochiya, Yuko; Toda, Kanako; Noto, Kimiya; Koshida, Kichiro

    2014-05-01

    The purpose of our study was to evaluate radiation dose and beam quality in photon-counting digital mammography (PCDM) and compare them with those in a full-field digital mammography (FFDM) unit. Dose variation in the X-ray tube axis direction, aluminum half-value layer, average glandular and skin doses, and contrast-to-noise ratio (CNR) were evaluated for the PCDM and FFDM units. In PCDM, the dose variation in the X-ray tube axis direction was greater than that in FFDM. At a tube voltage of 28 kV, the first half-value layers were 0.407 mmAl for PCDM, 0.357 mmAl for FFDM with a molybdenum target and molybdenum filter (Mo/Mo), and 0.579 mmAl for FFDM with a tungsten target and rhodium filter (W/Rh). The average glandular doses with 45-mm-equivalent breast thickness were 0.723 mGy for the PCDM, 1.55 mGy for the FFDM with Mo/Mo in low-dose mode, and 0.835 mGy for the FFDM with W/Rh in low-dose mode. In PCDM, the skin dose was equivalent to or lower than that in FFDM. The CNR was 2.65±0.04, 2.35±0.04, and 2.52±0.03 for the PCDM, FFDM with Mo/Mo, and that with W/Rh, respectively. The CNR for PCDM was significantly higher than that for FFDM (p<0.001). It is therefore possible to reduce the radiation dose to the patient by using a PCDM unit while maintaining a significantly higher CNR than with the FFDM unit.

  4. Comparison of synthetic mammography, reconstructed from digital breast tomosynthesis, and digital mammography: evaluation of lesion conspicuity and BI-RADS assessment categories.

    PubMed

    Mariscotti, Giovanna; Durando, Manuela; Houssami, Nehmat; Fasciano, Mirella; Tagliafico, Alberto; Bosco, Davide; Casella, Cristina; Bogetti, Camilla; Bergamasco, Laura; Fonio, Paolo; Gandini, Giovanni

    2017-12-01

    To compare the interpretive performance of synthetic mammography (SM), reconstructed from digital breast tomosynthesis (DBT), and full-field digital mammography (FFDM) in a diagnostic setting, covering different conditions of breast density and mammographic signs. A retrospective analysis was conducted on 231 patients, who underwent FFDM and DBT (from which SM images were reconstructed) between September 2014-September 2015. The study included 250 suspicious breast lesions, all biopsy proven: 148 (59.2%) malignant and 13 (5.2%) high-risk lesions were confirmed by surgery, 89 (35.6%) benign lesions had radiological follow-up. Two breast radiologists, blinded to histology, independently reviewed all cases. Readings were performed with SM alone, then with FFDM, collecting data on: probability of malignancy for each finding, lesion conspicuity, mammographic features and dimensions of detected lesions. Agreement between readers was good for BI-RADS classification (Cohen's k-coefficient = 0.93 ± 0.02) and for lesion dimension (Wilcoxon's p = 0.76). Visibility scores assigned to SM and FFDM for each lesion were similar for non-dense and dense breasts, however, there were significant differences (p = 0.0009) in distribution of mammographic features subgroups. SM and FFDM had similar sensitivities in non-dense (respectively 94 vs. 91%) and dense breasts (88 vs. 80%) and for all mammographic signs (93 vs. 87% for asymmetric densities, 96 vs. 75% for distortion, 92 vs. 85% for microcalcifications, and both 94% for masses). Based on all data, there was a significant difference in sensitivity for SM (92%) vs. FFDM (87%), p = 0.02, whereas the two modalities yielded similar results for specificity (SM: 60%, FFDM: 62%, p = 0.21). SM alone showed similar interpretive performance to FFDM, confirming its potential role as an alternative to FFDM in women having tomosynthesis, with the added advantage of halving the patient's dose exposure.

  5. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  6. Comparison of tissue equalization, and premium view post-processing methods in full field digital mammography.

    PubMed

    Chen, Baoying; Wang, Wei; Huang, Jin; Zhao, Ming; Cui, Guangbin; Xu, Jing; Guo, Wei; Du, Pang; Li, Pei; Yu, Jun

    2010-10-01

    To retrospectively evaluate the diagnostic abilities of 2 post-processing methods provided by GE Senographe DS system, tissue equalization (TE) and premium view (PV) in full field digital mammography (FFDM). In accordance with the ethical standards of the World Medical Association, this study was approved by regional ethics committee and signed informed patient consents were obtained. We retrospectively reviewed digital mammograms from 101 women (mean age, 47 years; range, 23-81 years) in the modes of TE and PV, respectively. Three radiologists, fully blinded to the post-processing methods, all patient clinical information and histologic results, read images by using objective image interpretation criteria for diagnostic information end points such as lesion border delineation, definition of disease extent, visualization of internal and surrounding morphologic features of the lesions. Also, overall diagnostic impression in terms of lesion conspicuity, detectability and diagnostic confidence was assessed. Between-group comparisons were performed with Wilcoxon signed rank test. Readers 1, 2, and 3 demonstrated significant overall better impression of PV in 29, 27, and 24 patients, compared with that for TE in 12, 13, and 11 patients, respectively (p<0.05). Significant (p<0.05) better impression of PV was also demonstrated for diagnostic information end points. Importantly, PV proved to be more sensitive than TE while detecting malignant lesions in dense breast rather than benign lesions and malignancy in non-dense breast (p<0.01). PV compared with TE provides marked better diagnostic information in FFDM, particularly for patients with malignancy in dense breast. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Contrast-enhanced digital mammography (CEDM): imaging modeling, computer simulations, and phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew

    2005-04-01

    Contrast enhanced digital mammography (CEDM), which is based upon the analysis of a series of x-ray projection images acquired before/after the administration of contrast agents, may provide physicians critical physiologic and morphologic information of breast lesions to determine the malignancy of lesions. This paper proposes to combine the kinetic analysis (KA) of contrast agent uptake/washout process and the dual-energy (DE) contrast enhancement together to formulate a hybrid contrast enhanced breast-imaging framework. The quantitative characteristics of materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filter, breast tissues/lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systematically modeled. The contrast-noise-ration (CNR) of iodinated lesions and mean absorbed glandular dose were estimated mathematically. The x-ray techniques optimization was conducted through a series of computer simulations to find the optimal tube voltage, filter thickness, and exposure levels for various breast thicknesses, breast density, and detectable contrast agent concentration levels in terms of detection efficiency (CNR2/dose). A phantom study was performed on a modified Selenia full field digital mammography system to verify the simulated results. The dose level was comparable to the dose in diagnostic mode (less than 4 mGy for an average 4.2 cm compressed breast). The results from the computer simulations and phantom study are being used to optimize an ongoing clinical study.

  8. Pipeline for effective denoising of digital mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; Bakic, Predrag R.; Foi, Alessandro; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Denoising can be used as a tool to enhance image quality and enforce low radiation doses in X-ray medical imaging. The effectiveness of denoising techniques relies on the validity of the underlying noise model. In full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT), calibration steps like the detector offset and flat-fielding can affect some assumptions made by most denoising techniques. Furthermore, quantum noise found in X-ray images is signal-dependent and can only be treated by specific filters. In this work we propose a pipeline for FFDM and DBT image denoising that considers the calibration steps and simplifies the modeling of the noise statistics through variance-stabilizing transformations (VST). The performance of a state-of-the-art denoising method was tested with and without the proposed pipeline. To evaluate the method, objective metrics such as the normalized root mean square error (N-RMSE), noise power spectrum, modulation transfer function (MTF) and the frequency signal-to-noise ratio (SNR) were analyzed. Preliminary tests show that the pipeline improves denoising. When the pipeline is not used, bright pixels of the denoised image are under-filtered and dark pixels are over-smoothed due to the assumption of a signal-independent Gaussian model. The pipeline improved denoising up to 20% in terms of spatial N-RMSE and up to 15% in terms of frequency SNR. Besides improving the denoising, the pipeline does not increase signal smoothing significantly, as shown by the MTF. Thus, the proposed pipeline can be used with state-of-the-art denoising techniques to improve the quality of DBT and FFDM images.

  9. Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program.

    PubMed

    Caumo, Francesca; Zorzi, Manuel; Brunelli, Silvia; Romanucci, Giovanna; Rella, Rossella; Cugola, Loredana; Bricolo, Paola; Fedato, Chiara; Montemezzi, Stefania; Houssami, Nehmat

    2018-04-01

    Purpose To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography compared with those after full-field digital mammography (FFDM). Materials and Methods This prospective study included 16 666 asymptomatic women aged 50-69 years who were recruited in April 2015 through March 2016 for DBT plus synthetic 2D screening in the Verona screening program. A comparison cohort of women screened with FFDM (n = 14 423) in the previous year was included. Screening detection measures for the two groups were compared by calculating the proportions associated with each outcome, and the relative rates (RRs) were estimated with multivariate logistic regression. Results Cancer detection rate (CDR) for DBT plus synthetic 2D imaging was 9.30 per 1000 screening examinations versus 5.41 per 1000 screening examinations with FFDM (RR, 1.72; 95% confidence interval [CI]: 1.30, 2.29). CDR was significantly higher in patients screened with DBT plus synthetic 2D imaging than in those screened with FFDM among women classified as having low breast density (RR, 1.53; 95% CI: 1.13, 2.10) or high breast density (RR, 2.86; 95% CI: 1.42, 6.25). The positive predictive value (PPV) for recall was almost doubled with DBT plus synthetic 2D imaging: 23.3% versus 12.9% of recalled patients who were screened with FFDM (RR, 1.81; 95% CI: 1.34, 2.47). The recall rate was similar between groups (RR, 0.95; 95% CI: 0.84, 1.06), whereas the recall rate with invasive assessment was higher for DBT plus synthetic 2D imaging than for FFDM (RR, 1.93; 95% CI: 1.31, 2.03). The mean number of screening studies interpreted per hour was significantly lower for screening examinations performed with DBT plus synthetic 2D imaging (38.5 screens per hour) than with FFDM (60 screens per hour) (P < .001). Conclusion DBT plus synthetic 2D imaging increases CDRs with recall rates comparable to those of FFDM. DBT plus synthetic 2D imaging

  10. Budget impact analysis of switching to digital mammography in a population-based breast cancer screening program: a discrete event simulation model.

    PubMed

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs.

  11. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    PubMed Central

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  12. Satellite teleradiology test bed for digital mammography

    NASA Astrophysics Data System (ADS)

    Barnett, Bruce G.; Dudding, Kathryn E.; Abdel-Malek, Aiman A.; Mitchell, Robert J.

    1996-05-01

    Teleradiology offers significant improvement in efficiency and patient compliance over current practices in traditional film/screen-based diagnosis. The increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper will describe a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology and National Electrical Manufacturers Association. The testbed uses several Sun workstations running SunOS, which emulate a rural examination facility connected to a central diagnostic facility, and uses a TCP-based DICOM application to transfer images over a satellite link. Network performance depends on the product of the bandwidth times the round- trip time. A satellite link has a round trip of 513 milliseconds, making the bandwidth-delay a significant problem. This type of high bandwidth, high delay network is called a Long Fat Network, or LFN. The goal of this project was to quantify the performance of the satellite link, and evaluate the effectiveness of TCP over an LFN. Four workstations have Sun's HSI/S (High Speed Interface) option. Two are connected by a cable, and two are connected through a satellite link. Both interfaces have the same T1 bandwidth (1.544 Megabits per second). The only difference was the round trip time. Even with large window buffers, the time to transfer a file over the satellite link was significantly longer, due to the bandwidth-delay. To

  13. Reduction of false-positives in a CAD scheme for automated detection of architectural distortion in digital mammography

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Mencattini, Arianna; Casti, Paola; Martinelli, Eugenio; di Natale, Corrado; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2018-02-01

    This paper proposes a method to reduce the number of false-positives (FP) in a computer-aided detection (CAD) scheme for automated detection of architectural distortion (AD) in digital mammography. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automated detection of AD in breast images. The usual approach is automatically detect possible sites of AD in a mammographic image (segmentation step) and then use a classifier to eliminate the false-positives and identify the suspicious regions (classification step). This paper focus on the optimization of the segmentation step to reduce the number of FPs that is used as input to the classifier. The proposal is to use statistical measurements to score the segmented regions and then apply a threshold to select a small quantity of regions that should be submitted to the classification step, improving the detection performance of a CAD scheme. We evaluated 12 image features to score and select suspicious regions of 74 clinical Full-Field Digital Mammography (FFDM). All images in this dataset contained at least one region with AD previously marked by an expert radiologist. The results showed that the proposed method can reduce the false positives of the segmentation step of the CAD scheme from 43.4 false positives (FP) per image to 34.5 FP per image, without increasing the number of false negatives.

  14. Dual-energy contrast-enhanced digital mammography: initial clinical results of a multireader, multicase study

    PubMed Central

    2012-01-01

    Introduction The purpose of this study was to compare the diagnostic accuracy of dual-energy contrast-enhanced digital mammography (CEDM) as an adjunct to mammography (MX) ± ultrasonography (US) with the diagnostic accuracy of MX ± US alone. Methods One hundred ten consenting women with 148 breast lesions (84 malignant, 64 benign) underwent two-view dual-energy CEDM in addition to MX and US using a specially modified digital mammography system (Senographe DS, GE Healthcare). Reference standard was histology for 138 lesions and follow-up for 12 lesions. Six radiologists from 4 institutions interpreted the images using high-resolution softcopy workstations. Confidence of presence (5-point scale), probability of cancer (7-point scale), and BI-RADS scores were evaluated for each finding. Sensitivity, specificity and ROC curve areas were estimated for each reader and overall. Visibility of findings on MX ± CEDM and MX ± US was evaluated with a Likert scale. Results The average per-lesion sensitivity across all readers was significantly higher for MX ± US ± CEDM than for MX ± US (0.78 vs. 0.71 using BIRADS, p = 0.006). All readers improved their clinical performance and the average area under the ROC curve was significantly superior for MX ± US ± CEDM than for MX ± US ((0.87 vs 0.83, p = 0.045). Finding visibility was similar or better on MX ± CEDM than MX ± US in 80% of cases. Conclusions Dual-energy contrast-enhanced digital mammography as an adjunct to MX ± US improves diagnostic accuracy compared to MX ± US alone. Addition of iodinated contrast agent to MX facilitates the visualization of breast lesions. PMID:22697607

  15. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  16. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  17. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.

    PubMed

    Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina

    2012-08-01

    The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a

  18. The use of ultrasonography and digital mammography in women under 40 years with symptomatic breast cancer: a 7-year Irish experience.

    PubMed

    Redmond, C E; Healy, G M; Murphy, C F; O'Doherty, A; Foster, A

    2017-02-01

    Breast cancer in women under 40 years of age is rare and typically presents symptomatically. The optimal imaging modality for this patient group is controversial. Most women undergo ultrasonography with/without mammography. Young women typically have dense breasts, which can obscure the features of malignancy on film mammography, however, initial studies have suggested that digital mammography may have a more accurate diagnostic performance in younger women. Ultrasound generally performs well in this age group, although it is poor at detecting carcinoma in situ (DCIS). To evaluate the comparative diagnostic performance of ultrasonography and digital mammography in the initial diagnostic evaluation of women under 40 years of age with symptomatic breast cancer. Retrospective review of all women under the age of 40 years managed at our symptomatic breast cancer unit from January 2009 to December 2015. There were 120 patients that met the inclusion criteria for this study. The sensitivity of ultrasonography and digital mammography for breast cancer in this patient group was 95.8 and 87.5 %, respectively. The patients with a false negative mammographic examination were more likely to have dense breasts (p < 0.01). Five patients had a false negative ultrasonographic examination, withal of whom were diagnosed with DCIS detected by mammography. This study demonstrates the superior sensitivity of ultrasound for breast cancer in women under the age of 40 years, however, the results show that digital mammography has an important complimentary role in the comprehensive assessment of these patients, particularly in the diagnosis of DCIS.

  19. Hexagonal wavelet processing of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  20. Blurred digital mammography images: an analysis of technical recall and observer detection performance.

    PubMed

    Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-03-01

    Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.

  1. Blurred digital mammography images: an analysis of technical recall and observer detection performance

    PubMed Central

    Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-01-01

    Objective: Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. Methods: 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. Results: The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. Conclusion: According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. PMID:28134567

  2. A comparison of the performance of modern screen-film and digital mammography systems.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J-F; Verdun, F R

    2005-06-07

    This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

  3. TL dosimetry for quality control of CR mammography imaging systems

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  4. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  5. [Analysis of Cost-effectiveness of screening for breast cancer with conventional mammography, digital and magnetic resonance imaging].

    PubMed

    Peregrino, Antonio Augusto de Freitas; Vianna, Cid Manso de Mello; de Almeida, Carlos Eduardo Veloso; Gonzáles, Gabriela Bittencourt; Machado, Samara Cristina Ferreira; Costa e Silva, Frances Valéria; Rodrigues, Marcus Paulo da Silva

    2012-01-01

    A cost-effectiveness analysis was conducted in screening for breast cancer. The use of conventional mammography, digital and magnetic resonance imaging were compared with natural disease history as a baseline. A Markov model projected breast cancer in a group of 100,000 women for a 30 year period, with screening every two years. Four distinct scenarios were modeled: (1) the natural history of breast cancer, as a baseline, (2) conventional film mammography, (3) digital mammography and (4) magnetic resonance imaging. The costs of the scenarios modeled ranged from R$ 194.216,68 for natural history, to R$ 48.614.338,31, for screening with magnetic resonance imaging. The difference in effectiveness between the interventions ranged from 300 to 78.000 years of life gained in the cohort. The ratio of incremental cost-effectiveness in terms of cost per life-year gains, conventional mammographic screening has produced an extra year for R$ 13.573,07. The ICER of magnetic resonance imaging was R$ 2.904.328,88, compared to no screening. In conclusion, it is more cost-effective to perform the screening with conventional mammography than other technological interventions.

  6. Validation of a modified PENELOPE Monte Carlo code for applications in digital and dual-energy mammography

    NASA Astrophysics Data System (ADS)

    Del Lama, L. S.; Cunha, D. M.; Poletti, M. E.

    2017-08-01

    The presence and morphology of microcalcification clusters are the main point to provide early indications of breast carcinomas. However, the visualization of those structures may be jeopardized due to overlapping tissues even for digital mammography systems. Although digital mammography is the current standard for breast cancer diagnosis, further improvements should be achieved in order to address some of those physical limitations. One possible solution for such issues is the application of the dual-energy technique (DE), which is able to highlight specific lesions or cancel out the tissue background. In this sense, this work aimed to evaluate several quantities of interest in radiation applications and compare those values with works present in the literature to validate a modified PENELOPE code for digital mammography applications. For instance, the scatter-to-primary ratio (SPR), the scatter fraction (SF) and the normalized mean glandular dose (DgN) were evaluated by simulations and the resulting values were compared to those found in earlier studies. Our results present a good correlation for the evaluated quantities, showing agreement equal or better than 5% for the scatter and dosimetric-related quantities when compared to the literature. Finally, a DE imaging chain was simulated and the visualization of microcalcifications was investigated.

  7. Mammography: an update of the EUSOBI recommendations on information for women.

    PubMed

    Sardanelli, Francesco; Fallenberg, Eva M; Clauser, Paola; Trimboli, Rubina M; Camps-Herrero, Julia; Helbich, Thomas H; Forrai, Gabor

    2017-02-01

    This article summarises the information to be offered to women about mammography. After a delineation of the aim of early diagnosis of breast cancer, the difference between screening mammography and diagnostic mammography is explained. The need to bring images and reports from the previous mammogram (and from other recent breast imaging examinations) is highlighted. Mammography technique and procedure are described with particular attention to discomfort and pain experienced by a small number of women who undergo the test. Information is given on the recall during a screening programme and on the request for further work-up after a diagnostic mammography. The logic of the mammography report and of classification systems such as R1-R5 and BI-RADS is illustrated, and brief but clear information is given about the diagnostic performance of the test, with particular reference to interval cancers, i.e., those cancers that are missed at screening mammography. Moreover, the breast cancer risk due to radiation exposure from mammography is compared to the reduction in mortality obtained with the test, and the concept of overdiagnosis is presented with a reliable estimation of its extent. Information about new mammographic technologies (tomosynthesis and contrast-enhanced spectral mammography) is also given. Finally, frequently asked questions are answered. • Direct digital mammography should be preferred to film-screen or phosphor plates. • Screening (in asymptomatic women) should be distinguished from diagnosis (in symptomatic women). • A breast symptom has to be considered even after a negative mammogram. • Digital breast tomosynthesis increases cancer detection and decreases the recall rate. • Contrast-enhanced spectral mammography can help in cancer detection and lesion characterisation.

  8. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    PubMed

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  9. 76 FR 60848 - National Mammography Quality Assurance Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    .../phone line to learn about possible modifications before coming to the meeting. Agenda: On November 4... status of the Full Field Digital Mammography universal quality control manual. FDA intends to make...

  10. Noise power spectra of images from digital mammography detectors.

    PubMed

    Williams, M B; Mangiafico, P A; Simoni, P U

    1999-07-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. We begin with a brief review of the fundamentals of NPS theory and measurement, derive explicit expressions for calculation of the one- and two-dimensional (1D and 2D) NPS, and discuss some of the considerations and tradeoffs when these concepts are applied to digital systems. Measurements of the NPS of two detectors for digital mammography are presented to illustrate some of the implications of the choices available. For both systems, two-dimensional noise power spectra obtained over a range of input fluence exhibit pronounced asymmetry between the orthogonal frequency dimensions. The 2D spectra of both systems also demonstrate dominant structures both on and off the primary frequency axes indicative of periodic noise components. Although the two systems share many common noise characteristics, there are significant differences, including markedly different dark-noise magnitudes, differences in NPS shape as a function of both spatial frequency and exposure, and differences in the natures of the residual fixed pattern noise following flat fielding corrections. For low x-ray exposures, quantum noise-limited operation may be possible only at low spatial frequency. Depending on the method of obtaining the 1D NPS (i.e., synthetic slit scanning or slice extraction from the 2D NPS), on-axis periodic structures can be misleadingly smoothed or missed entirely. Our measurements indicate that for these systems, 1D spectra useful for the purpose of detective quantum efficiency calculation may be obtained from thin cuts through the central portion of the calculated 2D NPS. On the other hand, low-frequency spectral values do not converge to an asymptotic value with increasing slit length when 1D spectra are generated using the scanned synthetic slit method. Aliasing can contribute significantly to the digital NPS, especially near the

  11. Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung

    2015-06-01

    We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.

  12. Contrast-enhanced Spectral Mammography: Technique, Indications, and Clinical Applications.

    PubMed

    Bhimani, Chandni; Matta, Danielle; Roth, Robyn G; Liao, Lydia; Tinney, Elizabeth; Brill, Kristin; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) combines the benefits of full field digital mammography with the concept of tumor angiogenesis. Technique and practical applications of CESM are discussed. An overview of the technique is followed by a demonstration of practical applications of CESM in our practice. We have successfully implemented CESM into our practice as a screening, diagnostic, staging, and treatment response tool. It is important to understand the technique of CESM and how to incorporate it into practice. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Correlation between quantified breast densities from digital mammography and 18F-FDG PET uptake.

    PubMed

    Lakhani, Paras; Maidment, Andrew D A; Weinstein, Susan P; Kung, Justin W; Alavi, Abass

    2009-01-01

    To correlate breast density quantified from digital mammograms with mean and maximum standardized uptake values (SUVs) from positron emission tomography (PET). This was a prospective study that included 56 women with a history of suspicion of breast cancer (mean age 49.2 +/- 9.3 years), who underwent 18F-fluoro-2-deoxyglucose (FDG)-PET imaging of their breasts as well as digital mammography. A computer thresholding algorithm was applied to the contralateral nonmalignant breasts to quantitatively estimate the breast density on digital mammograms. The breasts were also classified into one of four Breast Imaging Reporting and Data System categories for density. Comparisons between SUV and breast density were made using linear regression and the Student's t-test. Linear regression of mean SUV versus average breast density showed a positive relationship with a Pearson's correlation coefficient of R(2) = 0.83. The quantified breast densities and mean SUVs were significantly greater for mammographically dense than nondense breasts (p < 0.0001 for both). The average quantified densities and mean SUVs of the breasts were significantly greater for premenopausal than postmenopausal patients (p < 0.05). 8/51 (16%) of the patients had maximum SUVs that equaled 1.6 or greater. There is a positive linear correlation between quantified breast density on digital mammography and FDG uptake on PET. Menopausal status affects the metabolic activity of normal breast tissue, resulting in higher SUVs in pre- versus postmenopausal patients.

  14. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Bo; Zhao Wei

    2008-05-15

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of viewmore » angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of {+-}25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 {mu}m. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame

  15. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  16. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2018-05-01

    This work investigates the detection performance of specialist and non-specialist observers for different targets in 2D-mammography and digital breast tomosynthesis (DBT) using the OPTIMAM virtual clinical trials (VCT) Toolbox and a 4-alternative forced choice (4AFC) assessment paradigm. Using 2D-mammography and DBT images of virtual breast phantoms, we compare the detection limits of simple uniform spherical targets and irregular solid masses. Target diameters of 4 mm and 6 mm have been chosen to represent target sizes close to the minimum detectable size found in breast screening, across a range of controlled contrast levels. The images were viewed by a set of specialist observers (five medical physicists and six experienced clinical readers) and five non-specialists. Combined results from both observer groups indicate that DBT has a significantly lower detectable threshold contrast than 2D-mammography for small masses (4 mm: 2.1% [DBT] versus 6.9% [2D]; 6 mm: 0.7% [DBT] versus 3.9% [2D]) and spheres (4 mm: 2.9% [DBT] versus 5.3% [2D]; 6 mm: 0.3% [DBT] versus 2.2% [2D]) (p  <  0.0001). Both observer groups found spheres significantly easier to detect than irregular solid masses for both sizes and modalities (p  <  0.0001) (except 4 mm DBT). The detection performances of specialist and non-specialist observers were generally found to be comparable, where each group marginally outperformed the other in particular detection tasks. Within the specialist group, the clinical readers performed better than the medical physicists with irregular masses (p  <  0.0001). The results indicate that using spherical targets in such studies may produce over-optimistic detection thresholds compared to more complex masses, and that the superiority of DBT for detecting masses over 2D-mammography has been quantified. The results also suggest specialist observers may be supplemented by non-specialist observers (with training) in some types of 4AFC studies.

  17. Dual-energy in mammography: feasibility study

    NASA Astrophysics Data System (ADS)

    Jafroudi, Hamid; Lo, Shih-Chung B.; Li, Huai; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1996-04-01

    The purpose of this work is to examine the feasibility of dual-energy techniques to enhance the detection of microcalcifications in digital mammography. The digital mammography system used in this study consists of two different mammography systems; one is the conventional mammography system with molybdenum target and Mo filtration and the other is the clinical version of a low dose x-ray system with tungsten target and aluminum filtration. The low dose system is optimized for screen-film mammography with a highly efficient scatter rejection device built by Fischer Imaging Systems for evaluation at NIH. The system was designed by the University of Southern California based on multiparameter optimization techniques. Prototypes of this system have been constructed and evaluated at the Center for Devices and Radiological Health. The digital radiography system is based on the Fuji 9000 computed radiography (CR) system which uses a storage phosphor imaging plate as the receptor. High resolution plates (HR-V) are used in this study. Dual-energy is one technique to reduce the structured noise associated with the complexity of the background of normal anatomy surrounding a lesion. This can be done by taking the advantage of the x-ray attenuation characteristics of two different structures such as soft tissue and bone in chest radiography. We have applied this technique to the detection of microcalcifications in mammography. The overall system performance based on this technique is evaluated. Results presented are based on the evaluation of phantom images.

  18. Detector evaluation of a prototype amorphous selenium-based full field digital mammography system

    NASA Astrophysics Data System (ADS)

    Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.

    2005-04-01

    This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.

  19. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtainedmore » by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the

  20. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  1. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    PubMed

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise

  2. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium.

    PubMed

    Lehman, Constance D; Arao, Robert F; Sprague, Brian L; Lee, Janie M; Buist, Diana S M; Kerlikowske, Karla; Henderson, Louise M; Onega, Tracy; Tosteson, Anna N A; Rauscher, Garth H; Miglioretti, Diana L

    2017-04-01

    Purpose To establish performance benchmarks for modern screening digital mammography and assess performance trends over time in U.S. community practice. Materials and Methods This HIPAA-compliant, institutional review board-approved study measured the performance of digital screening mammography interpreted by 359 radiologists across 95 facilities in six Breast Cancer Surveillance Consortium (BCSC) registries. The study included 1 682 504 digital screening mammograms performed between 2007 and 2013 in 792 808 women. Performance measures were calculated according to the American College of Radiology Breast Imaging Reporting and Data System, 5th edition, and were compared with published benchmarks by the BCSC, the National Mammography Database, and performance recommendations by expert opinion. Benchmarks were derived from the distribution of performance metrics across radiologists and were presented as 50th (median), 10th, 25th, 75th, and 90th percentiles, with graphic presentations using smoothed curves. Results Mean screening performance measures were as follows: abnormal interpretation rate (AIR), 11.6 (95% confidence interval [CI]: 11.5, 11.6); cancers detected per 1000 screens, or cancer detection rate (CDR), 5.1 (95% CI: 5.0, 5.2); sensitivity, 86.9% (95% CI: 86.3%, 87.6%); specificity, 88.9% (95% CI: 88.8%, 88.9%); false-negative rate per 1000 screens, 0.8 (95% CI: 0.7, 0.8); positive predictive value (PPV) 1, 4.4% (95% CI: 4.3%, 4.5%); PPV2, 25.6% (95% CI: 25.1%, 26.1%); PPV3, 28.6% (95% CI: 28.0%, 29.3%); cancers stage 0 or 1, 76.9%; minimal cancers, 57.7%; and node-negative invasive cancers, 79.4%. Recommended CDRs were achieved by 92.1% of radiologists in community practice, and 97.1% achieved recommended ranges for sensitivity. Only 59.0% of radiologists achieved recommended AIRs, and only 63.0% achieved recommended levels of specificity. Conclusion The majority of radiologists in the BCSC surpass cancer detection recommendations for screening

  3. Comparison of Breast Density Between Synthesized Versus Standard Digital Mammography.

    PubMed

    Haider, Irfanullah; Morgan, Matthew; McGow, Anna; Stein, Matthew; Rezvani, Maryam; Freer, Phoebe; Hu, Nan; Fajardo, Laurie; Winkler, Nicole

    2018-06-12

    To evaluate perceptual difference in breast density classification using synthesized mammography (SM) compared with standard or full-field digital mammography (FFDM) for screening. This institutional review board-approved, retrospective, multireader study evaluated breast density on 200 patients who underwent baseline screening mammogram during which both SM and FFDM were obtained contemporaneously from June 1, 2016, through November 30, 2016. Qualitative breast density was independently assigned by seven readers initially evaluating FFDM alone. Then, in a separate session, these same readers assigned breast density using synthetic views alone on the same 200 patients. The readers were again blinded to each other's assignment. Qualitative density assessment was based on BI-RADS fifth edition. Interreader agreement was evaluated with κ statistic using 95% confidence intervals. Testing for homogeneity in paired proportions was performed using McNemar's test with a level of significance of .05. For patients across the SM and standard 2-D data set, diagnostic testing with McNemar's test with P = 0.32 demonstrates that the minimal density transitions across FFDM and SM are not statistically significant density shifts. Taking clinical significance into account, only 8 of 200 (4%) patients had clinically significant transition (dense versus not dense). There was substantial interreader agreement with overall κ in FFDM of 0.71 (minimum 0.53, maximum 0.81) and overall SM κ average of 0.63 (minimum 0.56, maximum 0.87). Overall subjective breast density assignment by radiologists on SM is similar to density assignment on standard 2-D mammogram. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Contrast-enhanced dual-energy digital subtraction mammography: optimization of the beam energy

    NASA Astrophysics Data System (ADS)

    Kwan, Alexander L. C.; Boone, John M.; Le-Petross, Huong; Lindfors, Karen K.; Seibert, J. A.; Lewin, John M.

    2005-04-01

    The implementation of contrast-enhanced dual-energy digital subtraction mammography may lead to better identification of breast tumors, and thus provide a lower cost and more widely available alternative to breast MRI. This technique involves the acquisition of low- and high-energy images after the IV administration of iodinated contrast agent. In this study, the effect of the beam energy (kVp) was examined using the CNR2/dose metric, where CNR is the contrast-to-noise ratio and dose implies the mean glandular dose. The mean glandular dose was calculated using parameterized normalized glandular dose coefficients (DgN), which allowed the computation of the mean glandular dose for the modeled spectra considered in this study, coupled with incident kerma measurements. Optimization studies were performed using a dedicated cone-beam breast CT scanner designed and fabricated in our laboratory, with the system operating in stationary imaging mode. A flat tissue-equivalent phantom (7.5 cm in thickness) was placed at the isocenter of the scanner, and an air gap of 34.5 cm was used in lieu of a grid. Dilute iodine-based contrast agent was introduced into the phantoms using plastic vials. Data were acquired from 40 to 90 kVp at 10 kVp intervals. Due to the low mA available on the breast CT system, a large number of images (1000) were acquired in fluoroscopic mode, which allowed us to match the dose and noise properties for each kVp combinations by changing the number of images used for averaging. Preliminary results demonstrate that the best CNR2/dose is achieved with a 50 kVp low-energy image and a 90 kVp high-energy image. Consequently, radiation doses for contrast-enhanced mammography should be far lower than regular mammography. Since the spatial resolution requirements should also be lower than regular mammography, dual-energy contrast-enhanced mammography, when performed using the optimal technique factor, may indeed provide very similar diagnostic information as breast

  5. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factorsmore » were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1

  6. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors.

    PubMed

    Aslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2007-06-01

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 microm and the field of view 24 x 26 cm2. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 microGy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration.

  7. Testing a dual-modality system that combines full-field digital mammography and automated breast ultrasound

    PubMed Central

    Vaughan, Christopher L; Douglas, Tania S; Said-Hartley, Qonita; Baasch, Roland V; Boonzaier, James A; Goemans, Brian C; Harverson, John; Mingay, Michael W; Omar, Shuaib; Smith, Raphael V; Venter, Nielen C; Wilson, Heidi S

    2015-01-01

    Purpose The aim of this study was to test a novel dual-modality imaging system that combines full-field digital mammography (FFDM) and automated breast ultrasound (ABUS) in a single platform. Our Aceso system, named after the Greek goddess of healing, was specifically designed for the early detection of cancer in women with dense breast tissue. Materials and Methods Aceso was first tested using two industry standards: a CDMAM phantom as endorsed by EUREF was used to assess the FFDM images; and the CIRS 040GSE ultrasound phantom was imaged to evaluate the quality of the ABUS images. In addition, 58 women participated in a clinical trial: 51 were healthy volunteers aged between 40 and 65, while 7 were patients referred by the breast clinic, 6 of whom had biopsy-proven breast cancer. Results The CDMAM tests showed that the FFDM results were “acceptable” but fell short of “achievable” which was attributed to the low dose used. The ABUS images had good depth penetration (80 mm) and adequate axial resolution (0.5 mm) but the lateral resolution of 2 mm was judged to be too coarse. In a 42-year old volunteer with extremely dense breast tissue, the ABUS modality detected a lesion (a benign cyst) that was mammographically occult in the FFDM image. For a 73-year old patient with fatty breasts, a malignant lesion was successfully detected and co-registered in the FFDM and ABUS images. On average, each woman spent less than 11 minutes in the acquisition room. Conclusions While there is room for improvement in the quality of both the FFDM and ABUS images, Aceso has demonstrated its ability to acquire clinically meaningful images for a range of women with varying breast densities and therefore has potential as a screening device. PMID:27133694

  8. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    PubMed

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2018-01-01

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p < .001; specificity remained high (>.90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  9. Slot scanning versus antiscatter grid in digital mammography: comparison of low-contrast performance using contrast-detail measurement

    NASA Astrophysics Data System (ADS)

    Lai, Chao-Jen; Shaw, Chris C.; Geiser, William; Kappadath, Srinivas C.; Liu, Xinming; Wang, TianPeng; Tu, Shu-Ju; Altunbas, Mustafa C.

    2004-05-01

    Slot scanning imaging techniques allow for effective scatter rejection without attenuating primary x-rays. The use of these techniques should generate better image quality for the same mean glandular dose (MGD) or a similar image quality for a lower MGD as compared to imaging techniques using an anti-scatter grid. In this study, we compared a slot scanning digital mammography system (SenoScan, Fisher Imaging Systems, Denver, CO) to a full-field digital mammography (FFDM) system used in conjunction with a 5:1 anti-scatter grid (SenoGraphe 2000D, General Electric Medical Systems, Milwaukee, WI). Images of a contrast-detail phantom (University Hospital Nijmegen, The Netherlands) were reviewed to measure the contrast-detail curves for both systems. These curves were measured at 100%, 71%, 49% and 33% of the reference mean glandular dose (MGD), as determined by photo-timing, for the Fisher system and 100% for the GE system. Soft-copy reading was performed on review workstations provided by the manufacturers. The correct observation ratios (CORs) were also computed and used to compare the performance of the two systems. The results showed that, based on the contrast-detail curves, the performance of the Fisher images, acquired at 100% and 71% of the reference MGD, was comparable to the GE images at 100% of the reference MGD. The CORs for Fisher images were 0.463 and 0.444 at 100% and 71% of the reference MGD, respectively, compared to 0.453 for the GE images at 100% of the reference MGD.

  10. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    PubMed

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  11. The length of time necessary to break even after converting to digital mammography.

    PubMed

    Hiatt, M D; Carr, J J; Manning, R L

    2000-01-01

    The cost differences between film-based mammography (FBM) and digital mammography (DM) were estimated after discussions with hospital personnel and industry representatives. Human resource costs were not included. The fixed cost of FBM per machine was estimated to be $50,000 and the variable cost $4.60 per examination. The fixed cost of DM per machine was estimated to be $102,000 and the variable cost $0.10 per examination. The total number of examinations required to break even was therefore 11,556. At a rate of 15 examinations per machine per day and with 251 working days per year, it would take 3.1 years to break even. In the first year after the break-even point had been attained, $16,943 would be saved for every 3765 examinations performed. Extrapolating to the USA as a whole, in which 23 million mammographic examinations are performed each year, suggests that the annual savings from going filmless would be more than $103 million.

  12. Retrospective analysis of a detector fault for a full field digital mammography system

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.

    2006-11-01

    This paper describes objective and subjective image quality measurements acquired as part of a routine quality assurance (QA) programme for an amorphous selenium (a-Se) full field digital mammography (FFDM) system between August-04 and February-05. During this period, the FFDM detector developed a fault and was replaced. A retrospective analysis of objective image quality parameters (modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE)) is presented to try and gain a deeper understanding of the detector problem that occurred. These measurements are discussed in conjunction with routine contrast-detail (c-d) results acquired with the CDMAM (Artinis, The Netherlands) test object. There was significant reduction in MTF over this period of time indicating an increase in blurring occurring within the a-Se converter layer. This blurring was not isotropic, being greater in the data line direction (left to right across the detector) than in the gate line direction (chest wall to nipple). The initial value of the 50% MTF point was 6 mm-1; for the faulty detector the 50% MTF points occurred at 3.4 mm-1 and 1.0 mm-1 in the gate line and data line directions, respectively. Prior to NNPS estimation, variance images were formed of the detector flat field images. Spatial distribution of variance was not uniform, suggesting that the physical blurring process was not constant across the detector. This change in variance with image position implied that the stationarity of the noise statistics within the image was limited and that care would be needed when performing objective measurements. The NNPS measurements confirmed the results found for the MTF, with a strong reduction in NNPS as a function of spatial frequency. This reduction was far more severe in the data line direction. A somewhat tentative DQE estimate was made; in the gate line direction there was little change in DQE up to 2.5 mm-1 but at the Nyquist

  13. Cost-effectiveness of digital mammography screening before the age of 50 in The Netherlands.

    PubMed

    Sankatsing, Valérie D V; Heijnsdijk, Eveline A M; van Luijt, Paula A; van Ravesteyn, Nicolien T; Fracheboud, Jacques; de Koning, Harry J

    2015-10-15

    In the Netherlands, routine mammography screening starts at age 50. This starting age may have to be reconsidered because of the increasing breast cancer incidence among women aged 40 to 49 and the recent implementation of digital mammography. We assessed the cost-effectiveness of digital mammography screening that starts between age 40 and 49, using a microsimulation model. Women were screened before age 50, in addition to the current programme (biennial 50-74). Screening strategies varied in starting age (between 40 and 50) and frequency (annual or biennial). The numbers of breast cancers diagnosed, life-years gained (LYG) and breast cancer deaths averted were predicted and incremental cost-effectiveness ratios (ICERs) were calculated to compare screening scenarios. Biennial screening from age 50 to 74 (current strategy) was estimated to gain 157 life years per 1,000 women with lifelong follow-up, compared to a situation without screening, and cost €3,376/LYG (3.5% discounted). Additional screening increased the number of LYG, compared to no screening, ranging from 168 to 242. The costs to generate one additional LYG (i.e., ICER), comparing a screening strategy to the less intensive alternative, were estimated at €5,329 (biennial 48-74 vs. current strategy), €7,628 (biennial 45-74 vs. biennial 48-74), €10,826 (biennial 40-74 vs. biennial 45-74) and €18,759 (annual 40-49 + biennial 50-74 vs. biennial 40-74). Other strategies (49 + biennial 50-74 and annual 45-49 + biennial 50-74) resulted in less favourable ICERs. These findings show that extending the Dutch screening programme by screening between age 40 and 49 is cost-effective, particularly for biennial strategies. © 2015 UICC.

  14. Effect of the Availability of Prior Full-Field Digital Mammography and Digital Breast Tomosynthesis Images on the Interpretation of Mammograms

    PubMed Central

    Catullo, Victor J.; Chough, Denise M.; Ganott, Marie A.; Kelly, Amy E.; Shinde, Dilip D.; Sumkin, Jules H.; Wallace, Luisa P.; Bandos, Andriy I.; Gur, David

    2015-01-01

    Purpose To assess the effect of and interaction between the availability of prior images and digital breast tomosynthesis (DBT) images in decisions to recall women during mammogram interpretation. Materials and Methods Verbal informed consent was obtained for this HIPAA-compliant institutional review board–approved protocol. Eight radiologists independently interpreted twice deidentified mammograms obtained in 153 women (age range, 37–83 years; mean age, 53.7 years ± 9.3 [standard deviation]) in a mode by reader by case-balanced fully crossed study. Each study consisted of current and prior full-field digital mammography (FFDM) images and DBT images that were acquired in our facility between June 2009 and January 2013. For one reading, sequential ratings were provided by using (a) current FFDM images only, (b) current FFDM and DBT images, and (c) current FFDM, DBT, and prior FFDM images. The other reading consisted of (a) current FFDM images only, (b) current and prior FFDM images, and (c) current FFDM, prior FFDM, and DBT images. Fifty verified cancer cases, 60 negative and benign cases (clinically not recalled), and 43 benign cases (clinically recalled) were included. Recall recommendations and interaction between the effect of prior FFDM and DBT images were assessed by using a generalized linear model accounting for case and reader variability. Results Average recall rates in noncancer cases were significantly reduced with the addition of prior FFDM images by 34% (145 of 421) and 32% (106 of 333) without and with DBT images, respectively (P < .001). However, this recall reduction was achieved at the cost of a corresponding 7% (23 of 345) and 4% (14 of 353) reduction in sensitivity (P = .006). In contrast, availability of DBT images resulted in a smaller reduction in recall rates (false-positive interpretations) of 19% (76 of 409) and 26% (71 of 276) without and with prior FFDM images, respectively (P = .001). Availability of DBT images resulted in 4% (15 of

  15. National Performance Benchmarks for Modern Diagnostic Digital Mammography: Update from the Breast Cancer Surveillance Consortium.

    PubMed

    Sprague, Brian L; Arao, Robert F; Miglioretti, Diana L; Henderson, Louise M; Buist, Diana S M; Onega, Tracy; Rauscher, Garth H; Lee, Janie M; Tosteson, Anna N A; Kerlikowske, Karla; Lehman, Constance D

    2017-04-01

    Purpose To establish contemporary performance benchmarks for diagnostic digital mammography with use of recent data from the Breast Cancer Surveillance Consortium (BCSC). Materials and Methods Institutional review board approval was obtained for active or passive consenting processes or to obtain a waiver of consent to enroll participants, link data, and perform analyses. Data were obtained from six BCSC registries (418 radiologists, 92 radiology facilities). Mammogram indication and assessments were prospectively collected for women undergoing diagnostic digital mammography and linked with cancer diagnoses from state cancer registries. The study included 401 548 examinations conducted from 2007 to 2013 in 265 360 women. Results Overall diagnostic performance measures were as follows: cancer detection rate, 34.7 per 1000 (95% confidence interval [CI]: 34.1, 35.2); abnormal interpretation rate, 12.6% (95% CI: 12.5%, 12.7%); positive predictive value (PPV) of a biopsy recommendation (PPV 2 ), 27.5% (95% CI: 27.1%, 27.9%); PPV of biopsies performed (PPV 3 ), 30.4% (95% CI: 29.9%, 30.9%); false-negative rate, 4.8 per 1000 (95% CI: 4.6, 5.0); sensitivity, 87.8% (95% CI: 87.3%, 88.4%); and specificity, 90.5% (95% CI: 90.4%, 90.6%). Among cancers detected, 63.4% were stage 0 or 1 cancers, 45.6% were minimal cancers, the mean size of invasive cancers was 21.2 mm, and 69.6% of invasive cancers were node negative. Performance metrics varied widely across diagnostic indications, with cancer detection rate (64.5 per 1000) and abnormal interpretation rate (18.7%) highest for diagnostic mammograms obtained to evaluate a breast problem with a lump. Compared with performance during the screen-film mammography era, diagnostic digital performance showed increased abnormal interpretation and cancer detection rates and decreasing PPVs, with less than 70% of radiologists within acceptable ranges for PPV 2 and PPV 3 . Conclusion These performance measures can serve as national

  16. High-rate x-ray spectroscopy in mammography with a CdTe detector: a digital pulse processing approach.

    PubMed

    Abbene, L; Gerardi, G; Principato, F; Del Sordo, S; Ienzi, R; Raso, G

    2010-12-01

    Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  17. Clinical study of contrast-enhanced digital mammography and the evaluation of blood and lymphatic microvessel density

    PubMed Central

    Cruz-Bastida, Juan P; Rosado-Méndez, Iván M; Villaseñor-Navarro, Yolanda; Pérez-Ponce, Héctor; Galván, Héctor A; Trujillo-Zamudio, Flavio E; Sánchez-Suárez, Patricia; Benítez-Bribiesca, Luis

    2016-01-01

    Objective: To correlate image parameters in contrast-enhanced digital mammography (CEDM) with blood and lymphatic microvessel density (MVD). Methods: 18 Breast Imaging-Reporting and Data System (BI-RADS)-4 to BI-RADS-5 patients were subjected to CEDM. Craniocaudal views were acquired, two views (low and high energy) before iodine contrast medium (CM) injection and four views (high energy) 1–5 min afterwards. Processing included registration and two subtraction modalities, traditional single-energy temporal (high-energy) and “dual-energy temporal with a matrix”, proposed to improve lesion conspicuity. Images were calibrated into iodine thickness, and iodine uptake, contrast, time–intensity and time–contrast kinetic curves were quantified. Image indicators were compared with MVD evaluated by anti-CD105 and anti-podoplanin (D2-40) immunohistochemistry. Results: 11 lesions were cancerous and 7 were benign. CEDM subtraction strongly increased conspicuity of lesions enhanced by iodine uptake. A strong correlation was observed between lymphatic vessels and blood vessels; all benign lesions had <30 blood microvessels per field, and all cancers had more than this value. MVD showed no correlation with iodine uptake, nor with contrast. The most frequent curve was early uptake followed by plateau for uptake and contrast in benign and malignant lesions. The positive-predictive value of uptake dynamics was 73% and that of contrast was 64%. Conclusion: CEDM increased lesion visibility and showed additional features compared with conventional mammography. Lack of correlation between image parameters and MVD is probably due to tumour tissue heterogeneity, mammography projective nature and/or dependence of extracellular iodine irrigation on tissue composition. Advances in knowledge: Quantitative analysis of CEDM images was performed. Image parameters and MVD showed no correlation. Probably, this is indication of the complex dependence of CM perfusion on tumour

  18. Computer-aided detection (CAD) of breast cancer on full field digital and screening film mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Xuejun; Qian, Wei; Song, Xiaoshan; Qian, Yuyan; Song, Dansheng; Clark, Robert A.

    2003-05-01

    Full-field digital mammography (FFDM) as a new breast imaging modality has potential to detect more breast cancers or to detect them at smaller sizes and earlier stages compared with screening film mammography (SFM). However, its performance needs verification, and it would pose new problems for the development of CAD methods for breast cancer detection and diagnosis. Performance evaluation of CAD systems on FFDM and SFM has been conducted in this study, respectively. First, an adaptive CAD system employing a series of advanced modules has been developed on FFDM. Second, a standardization approach has been developed to make the CAD system independent of characteristics of digitizer or imaging modalities for mammography. CAD systems developed previously for SFM and developed in this study for FFDM have been evaluated on FFDM and SFM images without and with standardization, respectively, to examine the performance improvement of the CAD system developed in this study. Computerized free-response receiver operating characteristic (FROC) analysis has been adopted as performance evaluation method. Compared with previous one, the CAD system developed in this study demonstrated significantly performance improvements. However, the comparison results have shown that the performances of final CAD system in this study are not significantly different on FFDM and on SFM after standardization. It needs further study on the assessment of CAD system performance on FFDM and SFM modalities.

  19. Physical characteristics of GE Senographe Essential and DS digital mammography detectors.

    PubMed

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordóñez, Pedro L

    2008-02-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.

  20. Getting started with protocol for quality assurance of digital mammography in the clinical centre of Montenegro.

    PubMed

    Ivanovic, S; Bosmans, H; Mijovic, S

    2015-07-01

    The purpose of this work is (i) to work out a test procedure for quality assurance (QA) in digital mammography with newly released test equipment, including the MagicMax mam multimeter (IBA, Germany) and the anthropomorphic tissue equivalent phantom Mammo AT (IBA, Germany), and (ii) to determine whether a first digital computer radiography (CR) system in Montenegro meets the current European standards. Tested parameters were tube output (µGy mAs(-1)) and output rate (mGy s(-1)), reproducibility and accuracy of tube voltage, half value layer, reproducibility and accuracy of the AEC system, exposure control steps, image receptor's response function, image quality and printer stability test. The evaluated dosimetric quantity is the average glandular dose (AGD) as evaluated from PMMA slabs simulating breast tissue. The main findings are that QA can be organised in Montenegro. (1) All measured parameters are within the range described in European protocols except the tube voltage which deviated more than ± 1 kV. The automatic determination of the HVL was satisfactorily. AGD ranged from 0.66 to 7.02 mGy for PMMA thicknesses from 20 to 70 mm, and is in accordance with literature data. (2) The image quality score as obtained with the anthropomorphic tissue equivalent phantom Mammo AT for the CR system was similar to findings on the authors' conventional screen-film mammography. (3) In clinical practice the mammograms are printed. The CR reader produces images with a pixel size of 43.75 µm, which is compatible with the laser printer (39 µm laser spot spacing). The image processing algorithm embedded in the reader successfully processes mammograms with desirable image brightness and contrast in the printed image. The authors conclude that this first digital mammography system seems a good candidate for breast cancer screening applications. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.

    PubMed

    Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E

    2016-06-01

    Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Use of prior mammograms in the transition to digital mammography: a performance and cost analysis.

    PubMed

    Taylor-Phillips, S; Wallis, M G; Duncan, A; Gale, A G

    2012-01-01

    Breast screening in Europe is gradually changing from film to digital imaging and reporting of cases. In the transition period prior mammograms (from the preceding screening round) are films thereby potentially causing difficulties in comparison to current digital mammograms. To examine this breast screening performance was measured at a digital mammography workstation with prior mammograms displayed in different formats, and the associated costs calculated. 160 selected difficult cases (41% malignant) were read by eight UK qualified mammography readers in three conditions: with film prior mammograms; with digitised prior mammograms; or without prior mammograms. Lesion location and probability of malignancy were recorded, alongside a decision of whether to recall each case for further tests. JAFROC analysis showed a difference between conditions (p=.006); performance with prior mammograms in either film or digitised formats was superior to that without prior mammograms (p<.05). There was no difference in the performance when the prior mammograms were presented in film or digitised form. The number of benign or normal cases recalled was 26% higher without prior mammograms than with digitised or film prior mammograms (p<.05). This would correspond to an increase in recall rate at the study hospital from 4.3% to 5.5% with no associated increase in cancer detection rate. The cost of this increase was estimated to be £11,581 (€13,666) per 10,000 women screened, which is higher than the cost of digitised (£11,114/€13,115), or film display (£6451/€7612) of the prior mammograms. It is recommended that, where available, prior mammograms are used in the transition to digital breast screening. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  4. Abbreviated Breast MRI and Digital Tomosynthesis Mammography in Screening Women With Dense Breasts | Division of Cancer Prevention

    Cancer.gov

    This randomized phase II trial studies how well abbreviated breast magnetic resonance imaging (MRI) and digital tomosynthesis mammography work in detecting cancer in women with dense breasts. Abbreviated breast MRI is a low cost procedure in which radio waves and a powerful magnet linked to a computer and used to create detailed pictures of the breast in less than 10 minutes.

  5. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  6. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    NASA Astrophysics Data System (ADS)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  7. Automated Percentage of Breast Density Measurements for Full-field Digital Mammography Applications.

    PubMed

    Fowler, Erin E E; Vachon, Celine M; Scott, Christopher G; Sellers, Thomas A; Heine, John J

    2014-08-01

    Increased mammographic breast density is a significant risk factor for breast cancer. A reproducible, accurate, and automated breast density measurement is required for full-field digital mammography (FFDM) to support clinical applications. We evaluated a novel automated percentage of breast density measure (PDa) and made comparisons with the standard operator-assisted measure (PD) using FFDM data. We used a nested breast cancer case-control study matched on age, year of mammogram and diagnosis with images acquired from a specific direct x-ray conversion FFDM technology. PDa was applied to the raw and clinical display (or processed) representation images. We evaluated the transformation (pixel mapping) of the raw image, giving a third representation (raw-transformed), to improve the PDa performance using differential evolution optimization. We applied PD to the raw and clinical display images as a standard for measurement comparison. Conditional logistic regression was used to estimate the odd ratios (ORs) for breast cancer with 95% confidence intervals (CI) for all measurements; analyses were adjusted for body mass index. PDa operates by evaluating signal-dependent noise (SDN), captured as local signal variation. Therefore, we characterized the SDN relationship to understand the PDa performance as a function of data representation and investigated a variation analysis of the transformation. The associations of the quartiles of operator-assisted PD with breast cancer were similar for the raw (OR: 1.00 [ref.]; 1.59 [95% CI, 0.93-2.70]; 1.70 [95% CI, 0.95-3.04]; 2.04 [95% CI, 1.13-3.67]) and clinical display (OR: 1.00 [ref.]; 1.31 [95% CI, 0.79-2.18]; 1.14 [95% CI, 0.65-1.98]; 1.95 [95% CI, 1.09-3.47]) images. PDa could not be assessed on the raw images without preprocessing. However, PDa had similar associations with breast cancer when assessed on 1) raw-transformed (OR: 1.00 [ref.]; 1.27 [95% CI, 0.74-2.19]; 1.86 [95% CI, 1.05-3.28]; 3.00 [95% CI, 1.67-5.38]) and 2

  8. An Evaluation of Stereoscopic Digital Mammography for Earlier Detection of Breast Cancer and Reduced Rate of Recall

    DTIC Science & Technology

    2004-08-01

    on a pair of high -resolution, LCD medical monitors. The change to the new workstation has required us to rewrite the software... In the original CRT-based system, the two 7 images forming a stereo pair were displayed alternately on the same CRT face, at a high frame rate (120 Hz...then, separately, receive the stereo screening exam on the research GE digital mammography unit.

  9. Compositional breast imaging using a dual-energy mammography protocol

    PubMed Central

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  10. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    PubMed Central

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  11. Seamless lesion insertion in digital mammography: methodology and reader study

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2016-03-01

    Collection of large repositories of clinical images containing verified cancer locations is costly and time consuming due to difficulties associated with both the accumulation of data and establishment of the ground truth. This problem poses a significant challenge to the development of machine learning algorithms that require large amounts of data to properly train and avoid overfitting. In this paper we expand the methods in our previous publications by making several modifications that significantly increase the speed of our insertion algorithms, thereby allowing them to be used for inserting lesions that are much larger in size. These algorithms have been incorporated into an image composition tool that we have made publicly available. This tool allows users to modify or supplement existing datasets by seamlessly inserting a real breast mass or micro-calcification cluster extracted from a source digital mammogram into a different location on another mammogram. We demonstrate examples of the performance of this tool on clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM). Finally, we report the results of a reader study evaluating the realism of inserted lesions compared to clinical lesions. Analysis of the radiologist scores in the study using receiver operating characteristic (ROC) methodology indicates that inserted lesions cannot be reliably distinguished from clinical lesions.

  12. The effect of image processing on the detection of cancers in digital mammography.

    PubMed

    Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C

    2014-08-01

    OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.

  13. The Future of Contrast-Enhanced Mammography.

    PubMed

    Covington, Matthew F; Pizzitola, Victor J; Lorans, Roxanne; Pockaj, Barbara A; Northfelt, Donald W; Appleton, Catherine M; Patel, Bhavika K

    2018-02-01

    The purpose of this article is to discuss facilitators of and barriers to future implementation of contrast-enhanced mammography (CEM) in the United States. CEM provides low-energy 2D mammographic images analogous to digital mammography and contrast-enhanced recombined images that allow assessment of neovascularity similar to that offered by MRI. The utilization of CEM in the United States is currently low but could increase rapidly given the many potential indications for its clinical use.

  14. Improvement in diagnostic performance of breast cancer: comparison between conventional digital mammography alone and conventional mammography plus digital breast tomosynthesis.

    PubMed

    Ohashi, Ryoko; Nagao, Michinobu; Nakamura, Izumi; Okamoto, Takahiro; Sakai, Shuji

    2018-04-12

    The aim of this study was to determine if the diagnostic performance of breast lesion examinations could be improved using both digital breast tomosynthesis (DBT) and conventional digital mammography (CDM). Our institutional review board approved the protocol, and patients were provided the opportunity to opt out of the study. A total of 628 patients aged 22-91 years with abnormal screening results or clinical symptoms were consecutively enrolled between June 2015 and March 2016. All patients underwent DBT and CDM, and 1164 breasts were retrospectively analyzed by three radiologists who interpreted the results based on the Breast Imaging Reporting and Data System. Categories 4 and 5 were considered positive, and pathological results were the gold standard. The diagnostic performance of CDM and CDM plus DBT was compared using the mean areas under the receiver operating characteristic (ROC) curves. A total of 100 breast cancer cases were identified. The areas under the ROC curves were 0.9160 (95% confidence interval 0.8779-0.9541) for CDM alone and 0.9376 (95% confidence interval 0.9019-0.9733) for CDM plus DBT. The cut-off values for both CDM alone and CDM plus DBT measurements were 4, with sensitivities of 61.0% (61/100) and 83.0% (83/100), respectively, and specificities of 99.1% (1054/1064) and 98.9% (1052/1064), respectively. CDM yielded 39 false-negative diagnoses, while CDM plus DBT identified breast cancer in 22 of those cases (56.4%). The combination of DBT and CDM for the diagnosis of breast cancer in women with abnormal examination findings or clinical symptoms proved effective and should be used to improve the diagnostic performance of breast cancer examinations.

  15. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.

    PubMed

    Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco

    2014-03-01

    Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.

  16. Do mammographic technologists affect radiologists’ diagnostic mammography interpretative performance?

    PubMed Central

    Henderson, Louise M.; Benefield, Thad; Bowling, J. Michael; Durham, Danielle; Marsh, Mary W.; Schroeder, Bruce F.; Yankaskas, Bonnie C.

    2015-01-01

    Objective The purpose of this study was to determine whether the technologist has an effect on the radiologists’ interpretative performance of diagnostic mammography. Materials and Methods Using data from a community based mammography registry from 1994 to 2009, we identified 162,755 diagnostic mammograms interpreted by 286 radiologists and performed by 303 mammographic technologists. We calculated sensitivity, false positive rate, and positive predictive value of biopsy (PPV2) for examinations performed (images taken) by each mammographic technologist, separately for film and digital modalities. We assessed the variability of these performance measures among mammographic technologists, using mixed effects logistic regression and taking into account the clustering of examinations within women, radiologists, and radiology practice. Results Among the 291 technologists performing film examinations, mean sensitivity of the examinations they performed was 83.0% (95% Confidence Interval (CI)=80.8–85.2%), mean false positive rate was 8.5 per 1000 examinations (95%CI: 8.0–9.0%), and mean PPV2 was 27.1% (95%CI: 24.8–29.4). For the 45 technologists performing digital examinations, mean sensitivity of the examinations they performed was 79.6% (95%CI: 73.1–86.2%), mean false positive rate was 8.8 (95%CI: 7.5–10.0%), and mean PPV2 was 23.6% (95%CI: 18.8–28.4%). We found significant variation by technologist in the sensitivity, false positive rate, and PPV2 for film but not digital mammography (p<0.0001 for all 3 film performance measures). Conclusions Our results suggest that the technologist has an influence on radiologists’ performance of diagnostic film mammography but not digital. Future work should examine why this difference by modality exists and determine if similar patterns are observed for screening mammography. PMID:25794085

  17. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  18. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  19. Volumetric breast density affects performance of digital screening mammography.

    PubMed

    Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico

    2017-02-01

    To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.

  20. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  1. Digital tomosynthesis mammography using a parallel maximum-likelihood reconstruction method

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Zhang, Juemin; Moore, Richard; Rafferty, Elizabeth; Kopans, Daniel; Meleis, Waleed; Kaeli, David

    2004-05-01

    A parallel reconstruction method, based on an iterative maximum likelihood (ML) algorithm, is developed to provide fast reconstruction for digital tomosynthesis mammography. Tomosynthesis mammography acquires 11 low-dose projections of a breast by moving an x-ray tube over a 50° angular range. In parallel reconstruction, each projection is divided into multiple segments along the chest-to-nipple direction. Using the 11 projections, segments located at the same distance from the chest wall are combined to compute a partial reconstruction of the total breast volume. The shape of the partial reconstruction forms a thin slab, angled toward the x-ray source at a projection angle 0°. The reconstruction of the total breast volume is obtained by merging the partial reconstructions. The overlap region between neighboring partial reconstructions and neighboring projection segments is utilized to compensate for the incomplete data at the boundary locations present in the partial reconstructions. A serial execution of the reconstruction is compared to a parallel implementation, using clinical data. The serial code was run on a PC with a single PentiumIV 2.2GHz CPU. The parallel implementation was developed using MPI and run on a 64-node Linux cluster using 800MHz Itanium CPUs. The serial reconstruction for a medium-sized breast (5cm thickness, 11cm chest-to-nipple distance) takes 115 minutes, while a parallel implementation takes only 3.5 minutes. The reconstruction time for a larger breast using a serial implementation takes 187 minutes, while a parallel implementation takes 6.5 minutes. No significant differences were observed between the reconstructions produced by the serial and parallel implementations.

  2. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  3. Estimation of mean glandular dose for patients who undergo mammography and studying the factors affecting it

    NASA Astrophysics Data System (ADS)

    Barzanje, Sana L. N. H.; Harki, Edrees M. Tahir Nury

    2017-09-01

    The objective of this study was to determine mean glandular dose (MGD) during diagnostic mammography. This study was done in two hospitals in Hawler city in Kurdistan -region /Iraq, the exposure parameters kVp and mAs was recorded for 40 patients under go mammography. The MGD estimated by multiplied ESD with normalized glandular dose (Dn). The ESD measured indirectly by measuring output radiation mGy/mAs by using PalmRAD 907 as a suitable detector (Gigger detector).the results; shown that the mean and its standard deviation of MGD for Screen Film Mammography and Digital Mammography are (0.95±0.18)mGy and (0.99±0.26)mGy, respectively. And there is a significant difference between MGD for Screen Film Mammography and Digital Mammography views (p≤0. 05). Also the mean value and its standard deviation of MGD for screen film mammography is (0.96±0.21) for CC projection and (1.03±0.3) mGy for MLO projection, but mean value and its standard deviation evaluated of MGD for digital mammography is (0.92±0.17) mGy for CC projection and (0.98±0.2) mGy for MLO projection. As well as, the effect of kVp and mAs in MGD were studied, shows that in general as kVp and mAs increased the MGD increased accordingly in both of mammography systems.

  4. Breast screening using 2D-mammography or integrating digital breast tomosynthesis (3D-mammography) for single-reading or double-reading--evidence to guide future screening strategies.

    PubMed

    Houssami, Nehmat; Macaskill, Petra; Bernardi, Daniela; Caumo, Francesca; Pellegrini, Marco; Brunelli, Silvia; Tuttobene, Paola; Bricolo, Paola; Fantò, Carmine; Valentini, Marvi; Ciatto, Stefano

    2014-07-01

    We compared detection measures for breast screening strategies comprising single-reading or double-reading using standard 2D-mammography or 2D/3D-mammography, based on the 'screening with tomosynthesis or standard mammography' (STORM) trial. STORM prospectively examined screen-reading in two sequential phases, 2D-mammography alone and integrated 2D/3D-mammography, in asymptomatic women participating in Trento and Verona (Northern Italy) population-based screening services. Outcomes were ascertained from assessment and/or excision histology or follow-up. For each screen-reading strategy we calculated the number of detected and non-detected (including interval) cancers, cancer detection rates (CDRs), false positive recall (FPR) measures and incremental CDR relative to a comparator strategy. We estimated the false:true positive (FP:TP) ratio and sensitivity of each mammography screening strategy. Paired binary data were compared using McNemar's test. Amongst 7292 screening participants, there were 65 (including six interval) breast cancers; estimated first-year interval cancer rate was 0.82/1000 screens (95% confidence interval (CI): 0.30-1.79/1000). For single-reading, 35 cancers were detected at both 2D and 2D/3D-mammography, 20 cancers were detected only with 2D/3D-mammography compared with none at 2D-mammography alone (p<0.001) and 10 cancers were not detected. For double-reading, 39 cancers were detected at 2D-mammography and 2D/3D-mammography, 20 were detected only with 2D/3D-mammography compared with none detected at 2D-mammography alone (p<0.001) and six cancers were not detected. The incremental CDR attributable to 2D/3D-mammography (versus 2D-mammography) of 2.7/1000 screens (95% CI: 1.6-4.2) was evident for single and for double-reading. Incremental CDR attributable to double-reading (versus single-reading) of 0.55/1000 screens (95% CI: -0.02-1.4) was evident for 2D-mammography and for 2D/3D-mammography. Estimated FP:TP ratios showed that 2D/3D-mammography

  5. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics.

    PubMed

    Delakis, Ioannis; Wise, Robert; Morris, Lauren; Kulama, Eugenia

    2015-11-01

    The purpose of this work was to evaluate the contrast-detail performance of full field digital mammography (FFDM) systems using ideal (Hotelling) observer Signal-to-Noise Ratio (SNR) methodology and ascertain whether it can be considered an alternative to the conventional, automated analysis of CDMAM phantom images. Five FFDM units currently used in the national breast screening programme were evaluated, which differed with respect to age, detector, Automatic Exposure Control (AEC) and target/filter combination. Contrast-detail performance was analysed using CDMAM and ideal observer SNR methodology. The ideal observer SNR was calculated for input signal originating from gold discs of varying thicknesses and diameters, and then used to estimate the threshold gold thickness for each diameter as per CDMAM analysis. The variability of both methods and the dependence of CDMAM analysis on phantom manufacturing discrepancies also investigated. Results from both CDMAM and ideal observer methodologies were informative differentiators of FFDM systems' contrast-detail performance, displaying comparable patterns with respect to the FFDM systems' type and age. CDMAM results suggested higher threshold gold thickness values compared with the ideal observer methodology, especially for small-diameter details, which can be attributed to the behaviour of the CDMAM phantom used in this study. In addition, ideal observer methodology results showed lower variability than CDMAM results. The Ideal observer SNR methodology can provide a useful metric of the FFDM systems' contrast detail characteristics and could be considered a surrogate for conventional, automated analysis of CDMAM images. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cain, Elizabeth Hope; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.

  7. Breast Cancer Screening, Mammography, and Other Modalities.

    PubMed

    Fiorica, James V

    2016-12-01

    This article is an overview of the modalities available for breast cancer screening. The modalities discussed include digital mammography, digital breast tomosynthesis, breast ultrasonography, magnetic resonance imaging, and clinical breast examination. There is a review of pertinent randomized controlled trials, studies and meta-analyses which contributed to the evolution of screening guidelines. Ultimately, 5 major medical organizations formulated the current screening guidelines in the United States. The lack of consensus in these guidelines represents an ongoing controversy about the optimal timing and method for breast cancer screening in women. For mammography screening, the Breast Imaging Reporting and Data System lexicon is explained which corresponds with recommended clinical management. The presentation and discussion of the data in this article are designed to help the clinician individualize breast cancer screening for each patient.

  8. Mammography Prevalence within 2 Two Years (Age 40+) - Small Area Estimates

    Cancer.gov

    For mammography, a woman 40 years of age or older must have reported having at least one mammography in her life. Furthermore, she should have had the most recent one within the last two years by the time of interview.

  9. [Digital breast tomosynthesis : technical principles, current clinical relevance and future perspectives].

    PubMed

    Hellerhoff, K

    2010-11-01

    In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.

  10. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  11. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  12. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporalmore » subtraction CEDM by a power law, with model parameters α and β. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, α and β, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers β to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing β by about 0.07 compared to DM, with α unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases α by

  13. The impact of digital mammography on screening a young cohort of women for breast cancer in an urban specialist breast unit.

    PubMed

    Perry, Nicholas M; Patani, N; Milner, S E; Pinker, K; Mokbel, K; Allgood, P C; Duffy, S W

    2011-04-01

    To compare the diagnostic performance of full-field digital mammography (FFDM) with screen-film mammography (SFM) in a corporate screening programme including younger women. Data were available on 14,946 screening episodes, 5010 FFDM and 9936 SFM. Formal analysis was by logistic regression, adjusting for age and calendar year. FFDM is compared with SFM with reference to cancer detection rates, cancers presenting as clustering microcalcifications, recall rates and PPV of recall. Overall detection rates were 6.4 cancers per thousand screens for FFDM and 2.8 per thousand for SFM (p < 0.001). In women aged 50+ cancer detection was significantly higher for FFDM at 8.6 per thousand vs. 4.0 per thousand, (p = 0.002). In women <50, cancer detection was also significantly higher for FFDM at 4.3 per thousand vs. 1.4 per thousand, (p = 0.02). Cancers detected as clustering microcalcifications increased from 0.4 per thousand with SFM to 2.0 per thousand with FFDM. Rates of assessment recall were higher for FFDM (7.3% vs. 5.0%, p < 0.001). FFDM provided a higher PPV for assessment recall, (32 cancers/364 recalls, 8.8%) than SFM, (28 cancers/493 recalls, 5.7%). Cancer detection rates were significantly higher for FFDM than for SFM, especially for women <50, and cancers detected as clustering microcalcifications.

  14. Conditional random field modelling of interactions between findings in mammography

    NASA Astrophysics Data System (ADS)

    Kooi, Thijs; Mordang, Jan-Jurre; Karssemeijer, Nico

    2017-03-01

    Recent breakthroughs in training deep neural network architectures, in particular deep Convolutional Neural Networks (CNNs), made a big impact on vision research and are increasingly responsible for advances in Computer Aided Diagnosis (CAD). Since many natural scenes and medical images vary in size and are too large to feed to the networks as a whole, two stage systems are typically employed, where in the first stage, small regions of interest in the image are located and presented to the network as training and test data. These systems allow us to harness accurate region based annotations, making the problem easier to learn. However, information is processed purely locally and context is not taken into account. In this paper, we present preliminary work on the employment of a Conditional Random Field (CRF) that is trained on top the CNN to model contextual interactions such as the presence of other suspicious regions, for mammography CAD. The model can easily be extended to incorporate other sources of information, such as symmetry, temporal change and various patient covariates and is general in the sense that it can have application in other CAD problems.

  15. Task-based lens design with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  16. Task-based lens design, with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians (DOGs). The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to the physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The SNR of the channelized Hotelling observer is used to quantify the detectability of the simulated lesion (signal) upon the simulated mammographic background. In this work, plots of channelized Hotelling SNR vs. signal location for various lens apertures, various working distances, and various focusing places are shown. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  17. Comparison of model and human observer performance in FFDM, DBT, and synthetic mammography

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda; Glick, Stephen J.; Samei, Ehsan; Lo, Joseph Y.

    2016-03-01

    Reader studies are important in assessing breast imaging systems. The purpose of this work was to assess task-based performance of full field digital mammography (FFDM), digital breast tomosynthesis (DBT), and synthetic mammography (SM) using different phantom types, and to determine an accurate observer model for human readers. Images were acquired on a Hologic Selenia Dimensions system with a uniform and anthropomorphic phantom. A contrast detail insert of small, low-contrast disks was created using an inkjet printer with iodine-doped ink and inserted in the phantoms. The disks varied in diameter from 210 to 630 μm, and in contrast from 1.1% contrast to 2.2% in regular increments. Human and model observers performed a 4-alternative forced choice experiment. The models were a non-prewhitening matched filter with eye model (NPWE) and a channelized Hotelling observer with either Gabor channels (Gabor-CHO) or Laguerre-Gauss channels (LG-CHO). With the given phantoms, reader scores were higher in FFDM and DBT than SM. The structure in the phantom background had a bigger impact on outcome for DBT than for FFDM or SM. All three model observers showed good correlation with humans in the uniform background, with ρ between 0.89 and 0.93. However, in the structured background, only the CHOs had high correlation, with ρ=0.92 for Gabor-CHO, 0.90 for LG-CHO, and 0.77 for NPWE. Because results of any analysis can depend on the phantom structure, conclusions of modality performance may need to be taken in the context of an appropriate model observer and a realistic phantom.

  18. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  19. Enhancement of breast periphery region in digital mammography

    NASA Astrophysics Data System (ADS)

    Menegatti Pavan, Ana Luiza; Vacavant, Antoine; Petean Trindade, Andre; Quini, Caio Cesar; Rodrigues de Pina, Diana

    2018-03-01

    Volumetric breast density has been shown to be one of the strongest risk factor for breast cancer diagnosis. This metric can be estimated using digital mammograms. During mammography acquisition, breast is compressed and part of it loses contact with the paddle, resulting in an uncompressed region in periphery with thickness variation. Therefore, reliable density estimation in the breast periphery region is a problem, which affects the accuracy of volumetric breast density measurement. The aim of this study was to enhance breast periphery to solve the problem of thickness variation. Herein, we present an automatic algorithm to correct breast periphery thickness without changing pixel value from internal breast region. The correction pixel values from periphery was based on mean values over iso-distance lines from the breast skin-line using only adipose tissue information. The algorithm detects automatically the periphery region where thickness should be corrected. A correction factor was applied in breast periphery image to enhance the region. We also compare our contribution with two other algorithms from state-of-the-art, and we show its accuracy by means of different quality measures. Experienced radiologists subjectively evaluated resulting images from the tree methods in relation to original mammogram. The mean pixel value, skewness and kurtosis from histogram of the three methods were used as comparison metric. As a result, the methodology presented herein showed to be a good approach to be performed before calculating volumetric breast density.

  20. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation.

    PubMed

    Alshafeiy, Taghreed I; Wadih, Antoine; Nicholson, Brandi T; Rochman, Carrie M; Peppard, Heather R; Patrie, James T; Harvey, Jennifer A

    2017-07-01

    The purpose of this study was to compare assessments of breast density on synthetic 2D images as compared with digital 2D mammograms. This retrospective study included consecutive women undergoing screening with digital 2D mammography and tomosynthesis during May 2015 with a negative or benign outcome. In separate reading sessions, three radiologists with 5-25 years of clinical experience and 1 year of experience with synthetic 2D mammography read digital 2D and synthetic 2D images and assigned breast density categories according to the 5th edition of BI-RADS. Inter- and intrareader agreement was assessed for each BI-RADS density assessment and combined dense and nondense categories using percent agreement and Cohen kappa coefficient for consensus and all reads. A total of 309 patients met study inclusion criteria. Agreement between consensus BI-RADS density categories assigned for digital and synthetic 2D mammography was 80.3% (95% CI, 75.4-84.5%) with κ = 0.73 (95% CI, 0.66-0.79). For combined dense and nondense categories, agreement reached 91.9% (95% CI, 88.2-94.7%). For consensus readings, similar numbers of patients were shifted between nondense and dense categories (11 and 14, respectively) with the synthetic 2D compared with digital 2D mammography. Interreader differences were apparent; assignment to dense categories was greater with digital 2D mammography for reader 1 (odds ratio [OR], 1.26; p = 0.002), the same for reader 2 (OR, 0.91; p = 0.262), and greater with synthetic 2D mammography for reader 3 (OR, 0.86; p = 0.033). Overall, synthetic 2D mammography is comparable with digital 2D mammography in assessment of breast density, though there is some variability by reader. Practices can readily adopt synthetic 2D mammography without concern that it will affect density assessment and subsequent recommendations for supplemental screening.

  1. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    NASA Astrophysics Data System (ADS)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  2. Evaluating the Training of Chinese-Speaking Community Health Workers to Implement a Small-Group Intervention Promoting Mammography.

    PubMed

    Gu, Jiayan; Maxwell, Annette E; Ma, Grace X; Qian, Xiaokun; Tan, Yin; Hsieh, Hsing-Chuan; Tu, Shin-Ping; Wang, Judy Huei-Yu

    2018-04-14

    This study evaluated the training of Chinese American Community Health Workers (CHWs) to implement a small-group mammography video and discussion program as part of a randomized controlled trial that had the goal to increase adherence to mammography screening guidelines among Chinese American women. A total of 26 Chinese American CHWs in the metropolitan Washington DC area, Southern California, and New York City participated in a 4-h training workshop and completed surveys before and after the workshop to assess their knowledge regarding mammography screening guidelines and human subjects protection rules. The results showed significantly increased knowledge of mammography screening guidelines and human subjects protection rules (both p < 0.01) after the training. CHWs were also trained to lead a discussion of the video, including screening benefits and misconceptions. Forty-three audio recordings of discussions led by 13 active CHWs were transcribed and qualitatively analyzed to assess implementation fidelity. Ten out of 13 active CHWs fully addressed about 3 of the 5 benefit items, and 11 out of 13 CHWs fully addressed more than 5 of the 9 misconception items. Chinese CHWs can be trained to implement research-based intervention programs. However, a one-time training resulted in moderate adherence to the discussion protocol. Ongoing or repeat trainings throughout the intervention period may be needed to enhance implementation fidelity.

  3. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.

    PubMed

    Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio

    2017-07-01

    The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P < 0.05) of most parameters. The volumetric and area breast density median values from FFDM are, respectively, 8% and 77% higher than DBT estimations. Both algorithms classify 35% and 55% of breasts into BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.

  4. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    PubMed

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  5. Effectiveness and cost-effectiveness of double reading in digital mammography screening: A systematic review and meta-analysis.

    PubMed

    Posso, Margarita; Puig, Teresa; Carles, Misericòrdia; Rué, Montserrat; Canelo-Aybar, Carlos; Bonfill, Xavier

    2017-11-01

    Double reading is the strategy of choice for mammogram interpretation in screening programmes. It remains, however, unknown whether double reading is still the strategy of choice in the context of digital mammography. Our aim was to determine the effectiveness and cost-effectiveness of double reading versus single reading of digital mammograms in screening programmes. We performed a systematic review by searching the PubMed, Embase, and Cochrane Library databases up to April 2017. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool and CHEERS (Consolidated Health Economic Evaluation Reporting Standards) checklist to assess the methodological quality of the diagnostic studies and economic evaluations, respectively. A proportion's meta-analysis approach, 95% Confidence Intervals (95% CI) and test of heterogeneity (P values) were used for pooled results. Costs are expressed US$ PPP (United States Dollar purchasing power parities). The PROSPERO ID of this Systematic Review's protocol is CRD42014013804. Of 1473 potentially relevant hits, four high-quality studies were included. The pooled cancer detection rate of double reading was 6.01 per 1000 screens (CI: 4.47‰-7.77‰), and it was 5.65 per 1000 screens (CI: 3.95‰-7.65‰) for single reading (P=0.76). The pooled proportion of false-positives of double reading was 47.03 per 1000 screens (CI: 39.13‰-55.62‰) and it was 40.60 per 1000 screens (CI: 38.58‰-42.67‰) for single reading (P=0.12). One study reported, for double reading, an ICER (Incremental Cost-Effectiveness Ratio) of 16,684 Euros (24,717 US$ PPP; 2015 value) per detected cancer. Single reading+CAD (computer-aided-detection) was cost-effective in Japan. The evidence of benefit for double reading compared to single reading for digital mammography interpretation is scarce. Double reading seems to increase operational costs, have a not significantly higher false-positive rate, and a similar cancer detection rate. Copyright

  6. Automatic patient dose registry and clinical audit on line for mammography.

    PubMed

    Ten, J I; Vano, E; Sánchez, R; Fernandez-Soto, J M

    2015-07-01

    The use of automatic registry systems for patient dose in digital mammography allows clinical audit and patient dose analysis of the whole sample of individual mammography exposures while fulfilling the requirements of the European Directives and other international recommendations. Further parameters associated with radiation exposure (tube voltage, X-ray tube output and HVL values for different kVp and target/filter combinations, breast compression, etc.) should be periodically verified and used to evaluate patient doses. This study presents an experience in routine clinical practice for mammography using automatic systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Digital mammography: comparative performance of color LCD and monochrome CRT displays.

    PubMed

    Samei, Ehsan; Poolla, Ananth; Ulissey, Michael J; Lewin, John M

    2007-05-01

    To evaluate the comparative performance of high-fidelity liquid crystal display (LCD) and cathode ray tube (CRT) devices for mammography applications, and to assess the impact of LCD viewing angle on detection accuracy. Ninety 1 k x 1 k images were selected from a database of digital mammograms: 30 without any abnormality present, 30 with subtle masses, and 30 with subtle microcalcifications. The images were used with waived informed consent, Health Insurance Portability and Accountability Act compliance, and Institutional Review Board approval. With postprocessing presentation identical to those of the commercial mammography system used, 1 k x 1 k sections of images were viewed on a monochrome CRT and a color LCD in native grayscale, and with a grayscale representative of images viewed from a 30 degrees or 50 degrees off-normal viewing angle. Randomized images were independently scored by four experienced breast radiologists for the presence of lesions using a 0-100 grading scale. To compare diagnostic performance of the display modes, observer scores were analyzed using receiver operating characteristic (ROC) and analysis of variance. For masses and microcalcifications, the detection rate in terms of the area under the ROC curve (A(z)) showed a 2% increase and a 4% decrease from CRT to LCD, respectively. However, differences were not statistically significant (P > .05). The viewing angle data showed better microcalcification detection but lower mass detection at 30 degrees viewing orientation. The overall results varied notably from observer to observer yielding no statistically discernible trends across all observers, suggesting that within the 0-50 degrees viewing angle range and in a controlled observer experiment, the variation in the contrast response of the LCD has little or no impact on the detection of mammographic lesions. Although CRTs and LCDs differ in terms of angular response, resolution, noise, and color, these characteristics seem to have little

  8. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  9. Evaluation of clinical image processing algorithms used in digital mammography.

    PubMed

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  10. Effect of filter on average glandular dose and image quality in digital mammography

    NASA Astrophysics Data System (ADS)

    Songsaeng, C.; Krisanachinda, A.; Theerakul, K.

    2016-03-01

    To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.

  11. Small fields measurements with radiochromic films

    PubMed Central

    Gonzalez-Lopez, Antonio; Vera-Sanchez, Juan-Antonio; Lago-Martin, Jose-Domingo

    2015-01-01

    The small fields in radiotherapy are widely used due to the development of techniques such as intensity-modulated radiotherapy and stereotactic radio surgery. The measurement of the dose distributions for small fields is a challenge. A perfect dosimeter should be independent of the radiation energy and the dose rate and should have a negligible volume effect. The radiochromic (RC) film characteristics fit well to these requirements. However, the response of RC films and their digitizing processes present a significant spatial inhomogeneity problem. The present work uses a method for two-dimensional (2D) measurement with RC films based on the reduction of the spatial inhomogeneity of both the film and the film digitizing process. By means of registering and averaging several measurements of the same field, the inhomogeneities are mostly canceled. Measurements of output factors (OFs), dose profiles (in-plane and cross-plane), and 2D dose distributions are presented. The field sizes investigated are 0.5 × 0.5 cm2, 0.7 × 0.7 cm2, 1 × 1 cm2, 2 × 2 cm2, 3 × 3 cm2, 6 × 6 cm2, and 10 × 10 cm2 for 6 and 15 MV photon beams. The OFs measured with the RC film are compared with the measurements carried out with a PinPoint ionization chamber (IC) and a Semiflex IC, while the measured transversal dose profiles were compared with Monte Carlo simulations. The results obtained for the OFs measurements show a good agreement with the values obtained from RC films and the PinPoint and Semiflex chambers when the field size is greater or equal than 2 × 2 cm2. These agreements give confidence on the accuracy of the method as well as on the results obtained for smaller fields. Also, good agreement was found between the measured profiles and the Monte Carlo calculated profiles for the field size of 1 × 1 cm2. We expect, therefore, that the presented method can be used to perform accurate measurements of small fields. PMID:26170551

  12. Small fields measurements with radiochromic films.

    PubMed

    Gonzalez-Lopez, Antonio; Vera-Sanchez, Juan-Antonio; Lago-Martin, Jose-Domingo

    2015-01-01

    The small fields in radiotherapy are widely used due to the development of techniques such as intensity-modulated radiotherapy and stereotactic radio surgery. The measurement of the dose distributions for small fields is a challenge. A perfect dosimeter should be independent of the radiation energy and the dose rate and should have a negligible volume effect. The radiochromic (RC) film characteristics fit well to these requirements. However, the response of RC films and their digitizing processes present a significant spatial inhomogeneity problem. The present work uses a method for two-dimensional (2D) measurement with RC films based on the reduction of the spatial inhomogeneity of both the film and the film digitizing process. By means of registering and averaging several measurements of the same field, the inhomogeneities are mostly canceled. Measurements of output factors (OFs), dose profiles (in-plane and cross-plane), and 2D dose distributions are presented. The field sizes investigated are 0.5 × 0.5 cm(2), 0.7 × 0.7 cm(2), 1 × 1 cm(2), 2 × 2 cm(2), 3 × 3 cm(2), 6 × 6 cm(2), and 10 × 10 cm(2) for 6 and 15 MV photon beams. The OFs measured with the RC film are compared with the measurements carried out with a PinPoint ionization chamber (IC) and a Semiflex IC, while the measured transversal dose profiles were compared with Monte Carlo simulations. The results obtained for the OFs measurements show a good agreement with the values obtained from RC films and the PinPoint and Semiflex chambers when the field size is greater or equal than 2 × 2 cm(2). These agreements give confidence on the accuracy of the method as well as on the results obtained for smaller fields. Also, good agreement was found between the measured profiles and the Monte Carlo calculated profiles for the field size of 1 × 1 cm(2). We expect, therefore, that the presented method can be used to perform accurate measurements of small fields.

  13. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation.

    PubMed

    Durand, Melissa A

    2018-04-04

    Digital breast tomosynthesis (DBT) has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D) has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  14. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography.

    PubMed

    Wang, Juan; Nishikawa, Robert M; Yang, Yongyi

    2017-07-01

    Mammograms acquired with full-field digital mammography (FFDM) systems are provided in both "for-processing'' and "for-presentation'' image formats. For-presentation images are traditionally intended for visual assessment by the radiologists. In this study, we investigate the feasibility of using for-presentation images in computerized analysis and diagnosis of microcalcification (MC) lesions. We make use of a set of 188 matched mammogram image pairs of MC lesions from 95 cases (biopsy proven), in which both for-presentation and for-processing images are provided for each lesion. We then analyze and characterize the MC lesions from for-presentation images and compare them with their counterparts in for-processing images. Specifically, we consider three important aspects in computer-aided diagnosis (CAD) of MC lesions. First, we quantify each MC lesion with a set of 10 image features of clustered MCs and 12 textural features of the lesion area. Second, we assess the detectability of individual MCs in each lesion from the for-presentation images by a commonly used difference-of-Gaussians (DoG) detector. Finally, we study the diagnostic accuracy in discriminating between benign and malignant MC lesions from the for-presentation images by a pretrained support vector machine (SVM) classifier. To accommodate the underlying background suppression and image enhancement in for-presentation images, a normalization procedure is applied. The quantitative image features of MC lesions from for-presentation images are highly consistent with that from for-processing images. The values of Pearson's correlation coefficient between features from the two formats range from 0.824 to 0.961 for the 10 MC image features, and from 0.871 to 0.963 for the 12 textural features. In detection of individual MCs, the FROC curve from for-presentation is similar to that from for-processing. In particular, at sensitivity level of 80%, the average number of false-positives (FPs) per image region is 9

  15. Do pre-trained deep learning models improve computer-aided classification of digital mammograms?

    NASA Astrophysics Data System (ADS)

    Aboutalib, Sarah S.; Mohamed, Aly A.; Zuley, Margarita L.; Berg, Wendie A.; Luo, Yahong; Wu, Shandong

    2018-02-01

    Digital mammography screening is an important exam for the early detection of breast cancer and reduction in mortality. False positives leading to high recall rates, however, results in unnecessary negative consequences to patients and health care systems. In order to better aid radiologists, computer-aided tools can be utilized to improve distinction between image classifications and thus potentially reduce false recalls. The emergence of deep learning has shown promising results in the area of biomedical imaging data analysis. This study aimed to investigate deep learning and transfer learning methods that can improve digital mammography classification performance. In particular, we evaluated the effect of pre-training deep learning models with other imaging datasets in order to boost classification performance on a digital mammography dataset. Two types of datasets were used for pre-training: (1) a digitized film mammography dataset, and (2) a very large non-medical imaging dataset. By using either of these datasets to pre-train the network initially, and then fine-tuning with the digital mammography dataset, we found an increase in overall classification performance in comparison to a model without pre-training, with the very large non-medical dataset performing the best in improving the classification accuracy.

  16. MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.

    PubMed

    Yaffe, M; Hill, M

    2012-06-01

    To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.

  17. Contrast Enhanced Spectral Mammography: A Review.

    PubMed

    Patel, Bhavika K; Lobbes, M B I; Lewin, John

    2018-02-01

    Contrast-enhanced spectral mammography (CESM) provides low-energy 2D mammographic images comparable to standard digital mammography and a post-contrast recombined image to assess tumor neovascularity similar to magnetic resonance imaging (MRI). The utilization of CESM in the United States is currently low but could increase rapidly given many potential indications for clinical use. This article discusses historical background and literature review of indications and diagnostic accuracy of CESM to date. CESM is a growing technique for breast cancer detection and diagnosis that has levels of sensitivity and specificity on par with contrast-enhanced breast MRI. Because of its similar performance and ease of implementation, CESM is being adopted for multiple indications previously reserved for MRI, such as problem-solving, disease extent in newly diagnosed patients, and evaluating the treatment response of neoadjuvant chemotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging.

    PubMed

    Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina

    2016-04-01

    To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment.

  19. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging

    PubMed Central

    Pertuz, Said; McDonald, Elizabeth S.; Weinstein, Susan P.; Conant, Emily F.

    2016-01-01

    Purpose To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Materials and Methods Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board–approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration–cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Results Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging–based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Conclusion Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment. © RSNA, 2015 Online supplemental material is available for this article. PMID:26491909

  20. Contrast-enhanced Spectral Mammography: Modality-Specific Artifacts and Other Factors Which May Interfere with Image Quality.

    PubMed

    Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Performance evaluation of a retrofit digital detector-based mammography system.

    PubMed

    Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde

    2016-02-01

    A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Image processing can cause some malignant soft-tissue lesions to be missed in digital mammography images.

    PubMed

    Warren, L M; Halling-Brown, M D; Looney, P T; Dance, D R; Wallis, M G; Given-Wilson, R M; Wilkinson, L; McAvinchey, R; Young, K C

    2017-09-01

    To investigate the effect of image processing on cancer detection in mammography. An observer study was performed using 349 digital mammography images of women with normal breasts, calcification clusters, or soft-tissue lesions including 191 subtle cancers. Images underwent two types of processing: FlavourA (standard) and FlavourB (added enhancement). Six observers located features in the breast they suspected to be cancerous (4,188 observations). Data were analysed using jackknife alternative free-response receiver operating characteristic (JAFROC) analysis. Characteristics of the cancers detected with each image processing type were investigated. For calcifications, the JAFROC figure of merit (FOM) was equal to 0.86 for both types of image processing. For soft-tissue lesions, the JAFROC FOM were better for FlavourA (0.81) than FlavourB (0.78); this difference was significant (p=0.001). Using FlavourA a greater number of cancers of all grades and sizes were detected than with FlavourB. FlavourA improved soft-tissue lesion detection in denser breasts (p=0.04 when volumetric density was over 7.5%) CONCLUSIONS: The detection of malignant soft-tissue lesions (which were primarily invasive) was significantly better with FlavourA than FlavourB image processing. This is despite FlavourB having a higher contrast appearance often preferred by radiologists. It is important that clinical choice of image processing is based on objective measures. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Development of a stationary digital breast tomosynthesis system for clinical applications

    NASA Astrophysics Data System (ADS)

    Tucker, Andrew Wallace

    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s

  4. Mammography

    MedlinePlus

    ... Prior Mammograms Helps Radiologists Detect Breast Cancer MammographySavesLives.org A general information resource on breast imaging from ... doctors: Breast Density and Breast Cancer Screening RTAnswers.org Radiation Therapy for Breast Cancer MedLinePlus Mammography top ...

  5. Measurements on a full-field digital mammography system with a photon counting crystalline silicon detector

    NASA Astrophysics Data System (ADS)

    Lundqvist, Mats; Danielsson, Mats; Cederstroem, Bjoern; Chmill, Valery; Chuntonov, Alexander; Aslund, Magnus

    2003-06-01

    Sectra Microdose is the first single photon counting mammography detector. An edge-on crystalline silicon detector is connected to application specific integrated circuits that individually process each photon. The detector is scanned across the breast and the rejection of scattered radiation exceeds 97% without the use of a Bucky. Processing of each x-rays individually enables an optimization of the information transfer from the x-rays to the image in a way previously not possible. Combined with an almost absence of noise from scattered radiation and from electronics we foresee a possibility to reduce the radiation dose and/or increase the image quality. We will discuss fundamental features of the new direct photon counting technique in terms of dose efficiency and present preliminary measurements for a prototype on physical parameters such as Noise Power Spectra (NPS), MTF and DQE.

  6. Slit-scanning differential phase-contrast mammography: first experimental results

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Daerr, Heiner; Koehler, Thomas; Martens, Gerhard; van Stevendaal, Udo

    2014-03-01

    The demands for a large field-of-view (FOV) and the stringent requirements for a stable acquisition geometry rank among the major obstacles for the translation of grating-based, differential phase-contrast techniques from the laboratory to clinical applications. While for state-of-the-art Full-Field-Digital Mammography (FFDM) FOVs of 24 cm x 30 cm are common practice, the specifications for mechanical stability are naturally derived from the detector pixel size which ranges between 50 and 100 μm. However, in grating-based, phasecontrast imaging, the relative placement of the gratings in the interferometer must be guaranteed to within micro-meter precision. In this work we report on first experimental results on a phase-contrast x-ray imaging system based on the Philips MicroDose L30 mammography unit. With the proposed approach we achieve a FOV of about 65 mm x 175 mm by the use of the slit-scanning technique. The demand for mechanical stability on a micrometer scale was relaxed by the specific interferometer design, i.e., a rigid, actuator-free mount of the phase-grating G1 with respect to the analyzer-grating G2 onto a common steel frame. The image acquisition and formation processes are described and first phase-contrast images of a test object are presented. A brief discussion of the shortcomings of the current approach is given, including the level of remaining image artifacts and the relatively inefficient usage of the total available x-ray source output.

  7. Slit-scanning differential x-ray phase-contrast mammography: proof-of-concept experimental studies.

    PubMed

    Koehler, Thomas; Daerr, Heiner; Martens, Gerhard; Kuhn, Norbert; Löscher, Stefan; van Stevendaal, Udo; Roessl, Ewald

    2015-04-01

    The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. The authors achieve a FOV of 160 × 196 mm consisting of two disjoint areas measuring 77 × 196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G0. Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build.

  8. Cancer Cases from ACRIN Digital Mammographic Imaging Screening Trial: Radiologist Analysis with Use of a Logistic Regression Model1

    PubMed Central

    Pisano, Etta D.; Acharyya, Suddhasatta; Cole, Elodia B.; Marques, Helga S.; Yaffe, Martin J.; Blevins, Meredith; Conant, Emily F.; Hendrick, R. Edward; Baum, Janet K.; Fajardo, Laurie L.; Jong, Roberta A.; Koomen, Marcia A.; Kuzmiak, Cherie M.; Lee, Yeonhee; Pavic, Dag; Yoon, Sora C.; Padungchaichote, Wittaya; Gatsonis, Constantine

    2009-01-01

    Purpose: To determine which factors contributed to the Digital Mammographic Imaging Screening Trial (DMIST) cancer detection results. Materials and Methods: This project was HIPAA compliant and institutional review board approved. Seven radiologist readers reviewed the film hard-copy (screen-film) and digital mammograms in DMIST cancer cases and assessed the factors that contributed to lesion visibility on both types of images. Two multinomial logistic regression models were used to analyze the combined and condensed visibility ratings assigned by the readers to the paired digital and screen-film images. Results: Readers most frequently attributed differences in DMIST cancer visibility to variations in image contrast—not differences in positioning or compression—between digital and screen-film mammography. The odds of a cancer being more visible on a digital mammogram—rather than being equally visible on digital and screen-film mammograms—were significantly greater for women with dense breasts than for women with nondense breasts, even with the data adjusted for patient age, lesion type, and mammography system (odds ratio, 2.28; P < .0001). The odds of a cancer being more visible at digital mammography—rather than being equally visible at digital and screen-film mammography—were significantly greater for lesions imaged with the General Electric digital mammography system than for lesions imaged with the Fischer (P = .0070) and Fuji (P = .0070) devices. Conclusion: The significantly better diagnostic accuracy of digital mammography, as compared with screen-film mammography, in women with dense breasts demonstrated in the DMIST was most likely attributable to differences in image contrast, which were most likely due to the inherent system performance improvements that are available with digital mammography. The authors conclude that the DMIST results were attributable primarily to differences in the display and acquisition characteristics of the

  9. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    PubMed

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  10. Changing patterns of microcalcification on screening mammography for prediction of breast cancer.

    PubMed

    Kim, Kwan Il; Lee, Kyung Hee; Kim, Tae Ryung; Chun, Yong Soon; Lee, Tae Hoon; Choi, Hye Young; Park, Heung Kyu

    2016-05-01

    The presence of microcalcification on mammography is one of the earliest signs in breast cancer detection. However, it is difficult to distinguish malignant calcifications from benign calcifications. The aim of this study is to evaluate correlation between changing patterns of microcalcification on screening mammography and malignant breast lesions. Medical records and diagnostic images of 67 women who had previously undergone at least two digital mammograms at least 6 months apart and underwent mammography-guided needle localization and surgical excision between 2011 and 2013 were retrospectively reviewed and analyzed. Breast cancer was detected in the surgical specimens of 20 patients (29.9 %). Annual change of extent of microcalcification on mammography showed statistically significant correlation with pathologic outcome (P = 0.023). The changing pattern of new appearance or increased extent of microcalcification on mammography had positive predictive value of 54.8 % for breast cancer, and it was a statistically significant predictor for breast cancer (P = 0.012). Shape or number change of microcalcification without increased extent had less accurate predictive value for breast cancer, particularly in women younger than 50 years (P < 0.001). This study showed that the pattern of increased extent of microcalcification on screening mammography was a significant predictor for breast cancer. We suggest that mammography-guided needle localization and surgical excision should be considered when increased extent of microcalcification is observed on screening mammography and closed follow-up without pathologic confirmation can be permitted if absence of extension of microcalcification was confirmed in women younger than 50 years.

  11. Beyond the mammography debate: a moderate perspective.

    PubMed

    Kaniklidis, C

    2015-06-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) "the mammography debate you will have with you always." Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis-also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions.

  12. Beyond the mammography debate: a moderate perspective

    PubMed Central

    Kaniklidis, C

    2015-01-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) “the mammography debate you will have with you always.” Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis—also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions. PMID:26089721

  13. Migration of the digital interactive breast-imaging teaching file

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Sickles, Edward A.; Huang, H. K.; Zhou, Xiaoqiang

    1998-06-01

    The digital breast imaging teaching file developed during the last two years in our laboratory has been used successfully at UCSF (University of California, San Francisco) as a routine teaching tool for training radiology residents and fellows in mammography. Building on this success, we have ported the teaching file from an old Pixar imaging/Sun SPARC 470 display system to our newly designed telemammography display workstation (Ultra SPARC 2 platform with two DOME Md5/SBX display boards). The old Pixar/Sun 470 system, although adequate for fast and high-resolution image display, is 4- year-old technology, expensive to maintain and difficult to upgrade. The new display workstation is more cost-effective and is also compatible with the digital image format from a full-field direct digital mammography system. The digital teaching file is built on a sophisticated computer-aided instruction (CAI) model, which simulates the management sequences used in imaging interpretation and work-up. Each user can be prompted to respond by making his/her own observations, assessments, and work-up decisions as well as the marking of image abnormalities. This effectively replaces the traditional 'show-and-tell' teaching file experience with an interactive, response-driven type of instruction.

  14. Free software for performing physical analysis of systems for digital radiography and mammography.

    PubMed

    Donini, Bruno; Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco

    2014-05-01

    In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online (www.medphys.it/downloads.htm). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.

  15. Toward a standard reference database for computer-aided mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, Júlia E. E.; Gueld, Mark O.; de A. Araújo, Arnaldo; Ott, Bastian; Deserno, Thomas M.

    2008-03-01

    Because of the lack of mammography databases with a large amount of codified images and identified characteristics like pathology, type of breast tissue, and abnormality, there is a problem for the development of robust systems for computer-aided diagnosis. Integrated to the Image Retrieval in Medical Applications (IRMA) project, we present an available mammography database developed from the union of: The Mammographic Image Analysis Society Digital Mammogram Database (MIAS), The Digital Database for Screening Mammography (DDSM), the Lawrence Livermore National Laboratory (LLNL), and routine images from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Using the IRMA code, standardized coding of tissue type, tumor staging, and lesion description was developed according to the American College of Radiology (ACR) tissue codes and the ACR breast imaging reporting and data system (BI-RADS). The import was done automatically using scripts for image download, file format conversion, file name, web page and information file browsing. Disregarding the resolution, this resulted in a total of 10,509 reference images, and 6,767 images are associated with an IRMA contour information feature file. In accordance to the respective license agreements, the database will be made freely available for research purposes, and may be used for image based evaluation campaigns such as the Cross Language Evaluation Forum (CLEF). We have also shown that it can be extended easily with further cases imported from a picture archiving and communication system (PACS).

  16. Dutch digital breast cancer screening: implications for breast cancer care.

    PubMed

    Timmers, Johanna M; den Heeten, Gerard J; Adang, Eddy M; Otten, Johannes D; Verbeek, André L; Broeders, Mireille J

    2012-12-01

    In comparison to other European population-based breast cancer screening programmes, the Dutch programme has a low referral rate, similar breast cancer detection and a high breast cancer mortality reduction. The referral rate in the Netherlands has increased over time and is expected to rise further, mainly following nationwide introduction of digital mammography, completed in 2010. This study explores the consequences of the introduction of digital mammography on the balance between referral rate, detection of breast cancer, diagnostic work-up and associated costs. Detailed information on diagnostic work-up (chart review) was obtained from referred women (n = 988) in 2000-06 (100% analogue mammography) and 2007 (75% digital mammography) in Nijmegen, the Netherlands. The average referral rate increased from 15 (2000-06) to 34 (2007) per 1000 women screened. The number of breast cancers detected increased from 5.5 to 7.8 per 1000 screens, whereas the positive predictive value fell from 37% to 23%. A sharp rise in diagnostic work-up procedures and total diagnostic costs was seen. On the other hand, costs of a single work-up slightly decreased, as less surgical biopsies were performed. Our study shows that a low referral rate in combination with the introduction of digital mammography affects the balance between referral rate and detection rate and can substantially influence breast cancer care and associated costs. Referral rates in the Netherlands are now more comparable to other countries. This effect is therefore of value in countries where implementation of digital breast cancer screening has just started or is still under discussion.

  17. MASTOS: Mammography Simulation Tool for design Optimization Studies.

    PubMed

    Spyrou, G; Panayiotakis, G; Tzanakos, G

    2000-01-01

    Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.

  18. Mammography and MRI for screening women who underwent chest radiation therapy (lymphoma survivors): recommendations for surveillance from the Italian College of Breast Radiologists by SIRM.

    PubMed

    Mariscotti, Giovanna; Belli, Paolo; Bernardi, Daniela; Brancato, Beniamino; Calabrese, Massimo; Carbonaro, Luca A; Cavallo-Marincola, Beatrice; Caumo, Francesca; Clauser, Paola; Martinchich, Laura; Montemezzi, Stefania; Panizza, Pietro; Pediconi, Federica; Tagliafico, Alberto; Trimboli, Rubina M; Zuiani, Chiara; Sardanelli, Francesco

    2016-11-01

    Women who underwent chest radiation therapy (CRT) during pediatric/young-adult age (typically, lymphoma survivors) have an increased breast cancer risk, in particular for high doses. The cumulative incidence from 40 to 45 years of age is 13-20 %, similar to that of BRCA mutation carriers for whom contrast-enhanced magnetic resonance imaging (MRI) is recommended. However, in women who underwent CRT, MRI sensitivity is lower (63-80 %) and that of mammography higher (67-70 %) than those observed in women with hereditary predisposition, due to a higher incidence of ductal carcinoma in situ with microcalcifications and low neoangiogenesis. A sensitivity close to 95 % can be obtained only using mammography as an adjunct to MRI. Considering the available evidence, women who underwent CRT before 30 receiving a cumulative dose ≥10 Gy should be invited after 25 (or, at least, 8 years after CRT) to attend the following program: 1. interview about individual risk profile and potential of breast imaging; 2. annual MRI using the same protocol recommended for women with hereditary predisposition; 3. annual bilateral two-view full-field digital mammography or digital breast tomosynthesis (DBT) with synthetic 2D reconstructions. Mammography and MRI can be performed at once or alternately every 6 months. In the case of MRI or contrast material contraindications, ultrasound will be performed instead of MRI. Reporting using BI-RADS is recommended. At the age for entering population screening, the individual risk profile will be discussed with the woman about opting for only mammography/DBT screening or for continuing the intensive protocol.

  19. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    PubMed

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  20. Frequently Asked Questions about Digital Mammography

    MedlinePlus

    ... in digital cameras, which convert x-rays into electrical signals. The electrical signals are used to produce images of the ... DBT? Digital breast tomosynthesis is a relatively new technology. In DBT, the X-ray tube moves in ...

  1. Solid-state dosimeters: A new approach for mammography measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brateman, Libby F., E-mail: bratel@radiology.ufl.edu; Heintz, Philip H.

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-fieldmore » digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the

  2. Characterization of invisible breast cancers in digital mammography and tomosynthesis: radio-pathological correlation.

    PubMed

    Aguilar Angulo, P M; Romero Castellano, C; Ruiz Martín, J; Sánchez-Camacho González-Carrato, M P; Cruz Hernández, L M

    To review the radio-pathologic features of symptomatic breast cancers not detected at digital mammography (DM) and digital breast tomosynthesis (DBT). Retrospective analysis of 169 lesions from symptomatic patients with breast cancer that were studied with DM, DBT, ultrasound (US) and magnetic resonance (MR). We identified occult lesions (true false negatives) in DM and DBT. Clinical data, density, US and MR findings were analyzed as well as histopathological results. We identified seven occult lesions in DM and DBT. 57% (4/7) of the lesions were identified in high-density breasts (type c and d), and the rest of them in breasts of density type b. Six carcinomas were identified at US and MR (BI-RADS 4 masses); the remaining lesion was only identified at MR. The tumor size was larger than 3cm at MRI in 57% of the lesions. All tumors were ductal infiltrating carcinomas, six of them with high stromal proportion. According to molecular classification, we found only one triple-negative breast cancer, the other lesions were luminal-type. We analyzed the tumor margins of two resected carcinomas that were not treated with neoadjuvant chemotherapy, both lesions presented margins that displaced the adjacent parenchyma without infiltrating it. Occult breast carcinomas in DM and DBT accounted for 4% of lesions detected in patients with symptoms. They were mostly masses, all of them presented the diagnosis of infiltrating ductal carcinoma (with predominance of the luminal immunophenotype) and were detected in breasts of density type b, c and d. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. WE-DE-207B-08: Towards Standardization of X-Ray Filters in Digital Mammography-Enabled Breast Tomosynthesis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixedmore » Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470

  4. Attenuation characteristics of fiberoptic plates for digital mammography and other X-ray imaging applications.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S

    2003-01-01

    Spatially coherent fiberoptic plates are important components of some charge-coupled device (CCD)-based x-ray imaging systems. These plates efficiently transmit scintillations from the phosphor, and also filter out x-rays not absorbed by the phosphor, thus protecting the CCD from direct x-ray interaction. The thickness of the fiberoptic plate and the CCD package present a significant challenge in the design of a digital x-ray cassette capable of insertion into the existing film-screen cassette holders of digital mammography systems. This study was performed with an aim to optimize fiberoptic plate thickness. Attenuation measurements were performed on nine fiberoptic plates varying in material composition that exhibit desirable optical characteristics such as good coupling efficiency. Mammographic spectra from a clinical mammographic system and an Americium-241 (Am-241) source (59.54 KeV) were used. The spectra were recorded with a high-resolution cadmium zinc telluride (CZT)-based spectrometer and corrected for dead time and pile-up. The linear attenuation coefficients varied by a factor of 3 in the set of tested fiberoptic plates at both mammographic energies and 59.54 keV. Our results suggest that a 3-mm thick high-absorption plate might provide adequate for shielding at mammographic energies. A thickness of 2-mm is feasible for mammographic applications with further optimization of the fiberoptic plate composition by incorporating non-scintillating, high-atomic number material. This would allow more space for cooling components of the cassette and for a more compact device, which is critical for clinical implementation of the technology.

  5. Clinical evaluation of a mobile digital specimen radiography system for intraoperative specimen verification.

    PubMed

    Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth

    2014-08-01

    Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.

  6. High-speed large angle mammography tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline

    2006-03-01

    A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.

  7. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support

    PubMed Central

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [−0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors. PMID:26324395

  8. Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system

    NASA Astrophysics Data System (ADS)

    Toker, Emre; Piccaro, Michele F.

    1993-12-01

    We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.

  9. Estimating the relative utility of screening mammography.

    PubMed

    Abbey, Craig K; Eckstein, Miguel P; Boone, John M

    2013-05-01

    The concept of diagnostic utility is a fundamental component of signal detection theory, going back to some of its earliest works. Attaching utility values to the various possible outcomes of a diagnostic test should, in principle, lead to meaningful approaches to evaluating and comparing such systems. However, in many areas of medical imaging, utility is not used because it is presumed to be unknown. In this work, we estimate relative utility (the utility benefit of a detection relative to that of a correct rejection) for screening mammography using its known relation to the slope of a receiver operating characteristic (ROC) curve at the optimal operating point. The approach assumes that the clinical operating point is optimal for the goal of maximizing expected utility and therefore the slope at this point implies a value of relative utility for the diagnostic task, for known disease prevalence. We examine utility estimation in the context of screening mammography using the Digital Mammographic Imaging Screening Trials (DMIST) data. We show how various conditions can influence the estimated relative utility, including characteristics of the rating scale, verification time, probability model, and scope of the ROC curve fit. Relative utility estimates range from 66 to 227. We argue for one particular set of conditions that results in a relative utility estimate of 162 (±14%). This is broadly consistent with values in screening mammography determined previously by other means. At the disease prevalence found in the DMIST study (0.59% at 365-day verification), optimal ROC slopes are near unity, suggesting that utility-based assessments of screening mammography will be similar to those found using Youden's index.

  10. Can tailored interventions increase mammography use among HMO women?

    PubMed

    Lipkus, I M; Rimer, B K; Halabi, S; Strigo, T S

    2000-01-01

    Telephone counseling and tailored print communications have emerged as promising methods for promoting mammography screening. However, there has been little research testing, within the same randomized field trial, of the efficacy of these two methods compared to a high-quality usual care system for enhancing screening. This study addressed the question: Compared to usual care, is tailored telephone counseling more effective than tailored print materials for promoting mammography screening? Three-year randomized field trial. One thousand ninety-nine women aged 50 and older recruited from a health maintenance organization in North Carolina. Women were randomized to 1 of 3 groups: (1) usual care, (2) tailored print communications, and (3) tailored telephone counseling. Adherence to mammography screening based on self-reports obtained during 1995, 1996, and 1997. Compared to usual care alone, telephone counseling promoted a significantly higher proportion of women having mammograms on schedule (71% vs 61%) than did tailored print (67% vs 61%) but only after the first year of intervention (during 1996). Furthermore, compared to usual care, telephone counseling was more effective than tailored print materials at promoting being on schedule with screening during 1996 and 1997 among women who were off-schedule during the previous year. The effects of the intervention were most pronounced after the first intervention. Compared to usual care, telephone counseling seemed particularly effective at promoting change among nonadherent women, the group for whom the intervention was developed. These results suggest that telephone counseling, rather than tailored print, might be the preferred first-line intervention for getting nonadherent women on schedule for mammography screening. Many questions would have to be answered about why the tailored print intervention was not more powerful. Nevertheless, it is clear that additional interventions will be needed to maintain women

  11. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support.

    PubMed

    Molina, Yamile; Ornelas, India J; Doty, Sarah L; Bishop, Sonia; Beresford, Shirley A A; Coronado, Gloria D

    2015-10-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [-0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  13. Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography

    NASA Astrophysics Data System (ADS)

    Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.

    2017-02-01

    This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p  =  0.0001 and p  =  0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability

  14. Breast masses in mammography classification with local contour features.

    PubMed

    Li, Haixia; Meng, Xianjing; Wang, Tingwen; Tang, Yuchun; Yin, Yilong

    2017-04-14

    Mammography is one of the most popular tools for early detection of breast cancer. Contour of breast mass in mammography is very important information to distinguish benign and malignant mass. Contour of benign mass is smooth and round or oval, while malignant mass has irregular shape and spiculated contour. Several studies have shown that 1D signature translated from 2D contour can describe the contour features well. In this paper, we propose a new method to translate 2D contour of breast mass in mammography into 1D signature. The method can describe not only the contour features but also the regularity of breast mass. Then we segment the whole 1D signature into different subsections. We extract four local features including a new contour descriptor from the subsections. The new contour descriptor is root mean square (RMS) slope. It can describe the roughness of the contour. KNN, SVM and ANN classifier are used to classify benign breast mass and malignant mass. The proposed method is tested on a set with 323 contours including 143 benign masses and 180 malignant ones from digital database of screening mammography (DDSM). The best accuracy of classification is 99.66% using the feature of root mean square slope with SVM classifier. The performance of the proposed method is better than traditional method. In addition, RMS slope is an effective feature comparable to most of the existing features.

  15. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with anmore » iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  16. Digital tripwire: a small automated human detection system

    NASA Astrophysics Data System (ADS)

    Fischer, Amber D.; Redd, Emmett; Younger, A. Steven

    2009-05-01

    A low cost, lightweight, easily deployable imaging sensor that can dependably discriminate threats from other activities within its field of view and, only then, alert the distant duty officer by transmitting a visual confirmation of the threat would provide a valuable asset to modern defense. At present, current solutions suffer from a multitude of deficiencies - size, cost, power endurance, but most notably, an inability to assess an image and conclude that it contains a threat. The human attention span cannot maintain critical surveillance over banks of displays constantly conveying such images from the field. DigitalTripwire is a small, self-contained, automated human-detection system capable of running for 1-5 days on two AA batteries. To achieve such long endurance, the DigitalTripwire system utilizes an FPGA designed with sleep functionality. The system uses robust vision algorithms, such as a partially unsupervised innovative backgroundmodeling algorithm, which employ several data reduction strategies to operate in real-time, and achieve high detection rates. When it detects human activity, either mounted or dismounted, it sends an alert including images to notify the command center. In this paper, we describe the hardware and software design of the DigitalTripwire system. In addition, we provide detection and false alarm rates across several challenging data sets demonstrating the performance of the vision algorithms in autonomously analyzing the video stream and classifying moving objects into four primary categories - dismounted human, vehicle, non-human, or unknown. Performance results across several challenging data sets are provided.

  17. Evaluation of computer-aided detection of lesions in mammograms obtained with a digital phase-contrast mammography system.

    PubMed

    Tanaka, Toyohiko; Nitta, Norihisa; Ohta, Shinichi; Kobayashi, Tsuyoshi; Kano, Akiko; Tsuchiya, Keiko; Murakami, Yoko; Kitahara, Sawako; Wakamiya, Makoto; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi

    2009-12-01

    A computer-aided detection (CAD) system was evaluated for its ability to detect microcalcifications and masses on images obtained with a digital phase-contrast mammography (PCM) system, a system characterised by the sharp images provided by phase contrast and by the high resolution of 25-μm-pixel mammograms. Fifty abnormal and 50 normal mammograms were collected from about 3,500 mammograms and printed on film for reading on a light box. Seven qualified radiologists participated in an observer study based on receiver operating characteristic (ROC) analysis. The average of the areas under ROC curve (AUC) values for the ROC analysis with and without CAD were 0.927 and 0.897 respectively (P = 0.015). The AUC values improved from 0.840 to 0.888 for microcalcifications (P = 0.034) and from 0.947 to 0.962 for masses (P = 0.025) respectively. The application of CAD to the PCM system is a promising approach for the detection of breast cancer in its early stages.

  18. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne

    2018-02-01

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  19. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality.

    PubMed

    Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde

    2018-01-25

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  20. Feasibility study for positron emission mammography.

    PubMed

    Thompson, C J; Murthy, K; Weinberg, I N; Mako, F

    1994-04-01

    A feasibility study is presented for a small, low-cost, dedicated device for positron emission mammography. Two detector arrays above and below the breast would be placed in a conventional mammography unit. These detectors are sensitive to positron annihilation radiation, and are connected to a coincidence circuit and a multiplane image memory. Images of the distribution of positron-emitting isotope are obtained in real time by incrementing the memory location at the intersection of each line of response. Monte Carlo simulations of a breast phantom are compared with actual scans of this phantom in a conventional PET scanner. The simulations and experimental data are used to predict the performance of the proposed system. Spatial resolution experiments using very narrow bismuth germanate BGO crystals suggest that spatial resolutions of about 2 mm should be possible. The efficiency of the proposed device is about ten times that of a conventional brain scanner. The scatter fraction is greater, but the scattered radiation has a very flat distribution. By designing the device to fit in an existing mammography unit, conventional mammograms can be taken after the injection of the radio-pharmaceutical allowing exact registration of the emission and conventional mammographic images.

  1. The radiation metrology network related to the field of mammography: implementation and uncertainty analysis of the calibration system

    NASA Astrophysics Data System (ADS)

    Peixoto, J. G. P.; de Almeida, C. E.

    2001-09-01

    It is recognized by the international guidelines that it is necessary to offer calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The contribution of the radiation metrology network to the users of mammography is reviewed in this work. Also steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. They are at present available at several primary standard dosimetry laboratories (PSDLs), namely the PTB, NIST and BEV and a few secondary standard dosimetry laboratories (SSDLs) such as at the University of Wisconsin and at the IAEA's SSDL. We discuss the uncertainties involved in all steps of the calibration chain in accord with the ISO recommendations.

  2. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E. E.; Sellers, T. A.; Lu, B.

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed tomore » create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these

  3. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.

    PubMed

    Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A; Wei, Jun; Cha, Kenny

    2016-12-01

    Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a

  4. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography

    PubMed Central

    Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Wei, Jun; Cha, Kenny

    2016-01-01

    Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. Methods: A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted

  5. With the Advent of Tomosynthesis in the Workup of Mammographic Abnormality, is Spot Compression Mammography Now Obsolete? An Initial Clinical Experience.

    PubMed

    Ni Mhuircheartaigh, Neasa; Coffey, Louise; Fleming, Hannah; O' Doherty, Ann; McNally, Sorcha

    2017-09-01

    To determine if the routine use of spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and architectural distortion since the availability of digital breast tomosynthesis. We introduced breast tomosynthesis in the workup of screen detected abnormalities in our screening center in January 2015. During an initial learning period with tomosynthesis standard spot compression views were also performed. Three consultant breast radiologists retrospectively reviewed all screening mammograms recalled for assessment over the first 6-month period. We assessed retrospectively whether there was any additional diagnostic information obtained from spot compression views not already apparent on tomography. All cases were also reviewed for any additional lesions detected by tomosynthesis, not detected on routine 2-view screening mammography. 548 women screened with standard 2-view digital screening mammography were recalled for assessment in the selected period and a total of 565 lesions were assessed. 341 lesions were assessed by both tomosynthesis and routine spot compression mammography. The spot compression view was considered more helpful than tomosynthesis in only one patient. This was because the breast was inadequately positioned for tomosynthesis and the area in question was not adequately imaged. Apart from this technical error there was no asymmetry, distortion or mass where spot compression provided more diagnostic information than tomosynthesis alone. We detected three additional cancers on tomosynthesis, not detected by routine screening mammography. From our initial experience with tomosynthesis we conclude that spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and distortions where tomosynthesis is available. © 2017 Wiley Periodicals, Inc.

  6. Effect of exposure factors on image quality in screening mammography.

    PubMed

    Alkhalifah, K; Brindabhan, A; Alsaeed, R

    2017-11-01

    The aim of this research was to study the effect of exposure factors on image quality for digital screening mammography units in Kuwait which use Tungsten (W) targets with Rhodium (Rh) and Silver (Ag) as filters. Mammography Accreditation Phantom Model 015 was imaged using a Hologic Selenia Digital mammography unit with W targets and Rh and Ag filters. Four images, each at 26, 28, 30, and 32 kVp, were obtained using each target-filter combination (W/Rh and W/Ag). The images were evaluated by five senior technologists for the number of specks, fibers and masses visible on each image. Statistical analysis was carried out using non-parametric tests at p = 0.05 level. There were significant changes in the visibility of fibers and specks between different kVp values with W/Rh (p < 0.001). However, with W/Ag combination, significant differences were observed in the fibers only (p < 0.001). Among the kVp values used, 28 kV emerged as the optimal value. Comparison of images obtained with the two filter materials, led to significant differences in the visibility of fibers and specks (p < 0.008). At 32 kVp, there were significant differences in the visibility of specks only (p < 0.008). A W/Rh target-filter combination provides better image quality than that provided by W/Ag. In particular, 30 and 32 kVp X-ray beams produce higher quality images than the lower kV values. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  7. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  8. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group.

    PubMed

    Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R

    2000-09-01

    To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.

  9. Comparison of software and human observers in reading images of the CDMAM test object to assess digital mammography systems

    NASA Astrophysics Data System (ADS)

    Young, Kenneth C.; Cook, James J. H.; Oduko, Jennifer M.; Bosmans, Hilde

    2006-03-01

    European Guidelines for quality control in digital mammography specify minimum and achievable standards of image quality in terms of threshold contrast, based on readings of images of the CDMAM test object by human observers. However this is time-consuming and has large inter-observer error. To overcome these problems a software program (CDCOM) is available to automatically read CDMAM images, but the optimal method of interpreting the output is not defined. This study evaluates methods of determining threshold contrast from the program, and compares these to human readings for a variety of mammography systems. The methods considered are (A) simple thresholding (B) psychometric curve fitting (C) smoothing and interpolation and (D) smoothing and psychometric curve fitting. Each method leads to similar threshold contrasts but with different reproducibility. Method (A) had relatively poor reproducibility with a standard error in threshold contrast of 18.1 +/- 0.7%. This was reduced to 8.4% by using a contrast-detail curve fitting procedure. Method (D) had the best reproducibility with an error of 6.7%, reducing to 5.1% with curve fitting. A panel of 3 human observers had an error of 4.4% reduced to 2.9 % by curve fitting. All automatic methods led to threshold contrasts that were lower than for humans. The ratio of human to program threshold contrasts varied with detail diameter and was 1.50 +/- .04 (sem) at 0.1mm and 1.82 +/- .06 at 0.25mm for method (D). There were good correlations between the threshold contrast determined by humans and the automated methods.

  10. Value Analysis of Digital Breast Tomosynthesis for Breast Cancer Screening in a US Medicaid Population.

    PubMed

    Miller, Jeffrey D; Bonafede, Machaon M; Herschorn, Sally D; Pohlman, Scott K; Troeger, Kathleen A; Fajardo, Laurie L

    2017-04-01

    Better understanding regarding the clinical-economic value of digital breast tomosynthesis (DBT) for breast cancer screening for Medicaid enrollees is needed to help inform sound, value-based decision making. The objective of this study was to conduct a clinical-economic value analysis of DBT for breast cancer screening among women enrolled in Medicaid to assess the potential clinical benefits, associated expenditures, and net budget impact of DBT. Two annual screening mammography scenarios were evaluated with an economic model: (1) full-field digital mammography and (2) combined full-field digital mammography and DBT. The model focused on two main drivers of DBT value: (1) capacity for DBT to reduce the number of women recalled for additional follow-up imaging and diagnostic services and (2) capacity of DBT to facilitate earlier diagnosis of cancer at earlier stages, when treatment costs are lower. Model analysis results showed that the use of DBT as a mammographic screening modality by Medicaid enrollees potentially reduces the need for follow-up diagnostic services and improves the detection of invasive cancers, allowing earlier, less costly treatment. With the modest incremental reimbursement of $37 for DBT expected for a typical Medicaid claim, annual cost savings from DBT predicted by the model amounts to $8.14 per patient, potentially translating into more than $12,000 savings per year for an average-sized Medicaid plan and as much as $207,000 savings per year for a typical state Medicaid program. Wider adoption of DBT presents an opportunity to deliver value-based care to Medicaid programs and to help address disparities and barriers to accessing preventive care by some of the nation's most vulnerable citizens. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Small Organisations and Cultural Institutions--A Digital Future?

    ERIC Educational Resources Information Center

    Spence, Jaqueline

    2005-01-01

    Purpose: This paper aims to examine how technology presents both problems and opportunities for the historian, the researcher, small organisations, and cultural heritage institutions. Ways of safeguarding historical material in digital form are suggested, and the role of cultural heritage bodies as managers of sustainable digital collections is…

  12. The Future of Mammography: Radiology Residents’ Experiences, Attitudes, and Opinions

    PubMed Central

    Baxi, Shrujal S.; Snow, Jacqueline G.; Liberman, Laura; Elkin, Elena B.

    2011-01-01

    OBJECTIVE The objective of our study was to assess the experiences and preferences of radiology residents with respect to breast imaging. MATERIALS AND METHODS We surveyed radiology residents at 26 programs in New York and New Jersey. Survey topics included plans for subspecialty training, beliefs, and attitudes toward breast imaging and breast cancer screening and the likelihood of interpreting mammography in the future. RESULTS Three hundred forty-four residents completed the survey (response rate, 62%). The length of time spent training in breast imaging varied from no dedicated time (37%) to 1–8 weeks (40%) to more than 9 weeks (23%). Most respondents (97%) agreed that mammography is important to women’s health. More than 85% of residents believed that mammography should be interpreted by breast imaging specialists. Respondents shared negative views about mammography, agreeing with statements that the field was associated with a high risk of malpractice (99%), stress (94%), and low reimbursement (68%). Respondents endorsed several positive attributes of mammography, including job availability (97%), flexible work schedules (94%), and few calls or emergencies (93%). Most radiology residents (93%) said that they were likely to pursue subspecialty training, and 7% expressed interest in breast imaging fellowships. CONCLUSION Radiology residents’ negative and positive views about mammography seem to be independent of time spent training in mammography and of future plans to pursue fellowship training in breast imaging. Systematic assessment of the plans and preferences of radiology residents can facilitate the development of strategies to attract trainees to careers in breast imaging. PMID:20489113

  13. Continuing screening mammography in women aged 70 to 79 years: impact on life expectancy and cost-effectiveness.

    PubMed

    Kerlikowske, K; Salzmann, P; Phillips, K A; Cauley, J A; Cummings, S R

    1999-12-08

    Mammography is recommended and is cost-effective for women aged 50 to 69 years, but the value of continuing screening mammography after age 69 years is not known. In particular, older women with low bone mineral density (BMD) have a lower risk of breast cancer and may benefit less from continued screening. To compare life expectancy and cost-effectiveness of screening mammography in elderly women based on 3 screening strategies. Decision analysis and cost-effectiveness analysis using a Markov model. General population of women aged 65 years or older. The analysis compared 3 strategies: (1) Undergoing biennial mammography from age 65 to 69 years; (2) undergoing biennial mammography from age 65 to 69 years, measurement of distal radial BMD at age 65 years, discontinuing screening at age 69 years in women in the lowest BMD quartile for age, and continuing biennial mammography to age 79 years in those in the top 3 quartiles of distal radius BMD; and (3) undergoing biennial mammography from age 65 to 79 years. Deaths due to breast cancer averted, life expectancy, and incremental cost-effectiveness ratios. Compared with discontinuing mammography screening at age 69 years, measuring BMD at age 65 years in 10000 women and continuing mammography to age 79 years only in women with BMD in the top 3 quartiles would prevent 9.4 deaths and add, on average, 2.1 days to life expectancy at an incremental cost of $66773 per year of life saved. Continuing mammography to age 79 years in all 10000 elderly women would prevent 1.4 additional breast cancer deaths and add only 7.2 hours to life expectancy at an incremental cost of $117689 per year of life saved compared with only continuing mammography to age 79 years in women with BMD in the top 3 quartiles. This analysis suggests that continuing mammography screening after age 69 years results in a small gain in life expectancy and is moderately cost-effective in those with high BMD and more costly in those with low BMD. Women

  14. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  15. Results of a 2011 national questionnaire for investigation of mean glandular dose from mammography in Japan.

    PubMed

    Asada, Y; Suzuki, S; Minami, K; Shirakawa, S

    2014-03-01

    Diagnostic reference levels (DRLs) for mammography have yet to be created in Japan. A national questionnaire investigation into radiographic conditions in Japan was carried out for the purpose of creating DRLs. Items investigated included the following: tube voltage; tube current; current-time product; source-image distance; craniocaudal view; automatic exposure control (AEC) settings; name of mammography unit; image receptor system (computed radiography (CR), flat panel detector (FPD), or film/screen (F/S)); and supported or unsupported monitor diagnosis (including monitor resolution). Estimation of the mean glandular dose (MGD) for mammography was performed and compared with previous investigations. The MGD was 1.58(0.48) mGy, which did not significantly differ from a 2007 investigation. In relation to image receptors, although no difference in average MGD values was observed between CR and FPD systems, F/S systems had a significantly decreased value compared to both CR and FPDs. Concerning digital systems (FPDs), the MGD value of the direct conversion system was significantly higher than the indirect conversion system. No significant difference in MGD value was evident concerning type of monitor diagnosis for either the CR or the FPD digital systems; however, hard copies were used more often in CR. No significant difference in the MGD value was found in relation to monitor resolution. This report suggests ways to lower the doses patients undergoing mammography receive in Japan, and serves as reference data for 4.2 cm compressed breast tissue of 50% composition DRLs. Furthermore, our findings suggest that further optimisation of FPD settings can promote a reduction in the MGD value.

  16. Adding the power of iodinated contrast media to the credibility of mammography in breast cancer diagnosis.

    PubMed

    Tsigginou, Alexandra; Gkali, Christina; Chalazonitis, Athanasios; Feida, Eleni; Vlachos, Dimitrios Efthymios; Zagouri, Flora; Rellias, Ioannis; Dimitrakakis, Constantine

    2016-11-01

    Dual-energy contrast-enhanced spectral mammography (CESM) represents a relatively new diagnostic tool adjunct to mammography. The aim of this study was to strengthen the breast imaging-reporting and data system (BIRADS) classification score in order to improve early breast cancer diagnosis. For this reason, we propose a sum score, termed malignancy potential score (MPS), incorporating the standard BIRADS score and our proposed CESM score. From September 2014 to September 2015, 216 females (age range, 26-85 years; mean age 54.6 years) underwent CESM evaluation of mammographic findings that were primarily assessed as BIRADS 2-5. 10 of these patients had bilateral findings; a total of 226 lesions were examined. High-energy image evaluation was based on the intensity of contrast enhancement of the lesion compared with background enhancement, categorized as Type -1, 0, 1 or 2 enhancement. Histopathology reports were compared with imaging assessment. 98 of 226 lesions were malignant and 128 of 226 lesions were benign. The area under the curve was 0.843, 0.888 and 0.917 for mammographic BIRADS score, CESM score and MPS, respectively, with p-value < 0.05. The sensitivity, specificity and accuracy rates were 91.83, 80.47 and 85.40%, respectively, when a best MPS cut-off point of 4 was used. The malignancy potential score (MPS) has higher diagnostic performance than digital mammography or CESM alone. MPS empowers the credibility of the digital mammography BIRADS score and our proposed type of enhancement in dual-energy CESM and is a diagnostic tool that increases the accuracy rate in early breast cancer diagnosis.

  17. Conflicting national recommendations and the use of screening mammography: does the physician's recommendation matter?

    PubMed

    Taplin, S H; Urban, N; Taylor, V M; Savarino, J

    1997-01-01

    This study evaluated whether women's perceptions of the conflicting recommendations for breast cancer screening were associated with decreased use of mammography. We conducted a random-digit-dial telephone survey of 1024 women in four communities of western Washington State. In addition to collecting data for demographics, beliefs about mammography, and insurance coverage, we inquired whether the respondents were aware of any conflicting recommendations about when to begin or how frequently to perform screening mammography, whether their physicians had recommended a mammogram, and whether they were likely to do what their physicians recommended. After grouping women according to whether they perceived conflicting recommendations, we used chi-square statistics to compare the distribution of proportions of women by age, race, household income, education, and insurance coverage. To estimate the odds of their having a mammogram in the previous 2 years (yes or no), we used multivariate logistic regression and included the above variables as covariates. Sixty-two percent of eligible women completed the survey, and 49 percent (479 of 985) perceived conflicting recommendations. The association between perceiving conflict and mammography use was not significant. Eighty-three percent of women who perceived conflicting recommendations reported being more comfortable using their own judgment about getting the procedure. After controlling for whether women perceived conflicting recommendations and all other factors, women who said they followed their physician's advice but did not recall their physician recommending mammography were 71 percent less likely to have received a recent mammogram than were women who reported their physician did recommend it (odds ratio 0.29, confidence interval 0.16-0.51). The conflicting recommendations surrounding breast cancer screening are not influencing women's choices about mammography. The physician recommendation and women's self

  18. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  19. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer.

    PubMed

    Ghanbarzadeh Dagheyan, Ashkan; Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-25

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients' overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  20. CADx Mammography

    NASA Astrophysics Data System (ADS)

    Costaridou, Lena

    Although a wide variety of Computer-Aided Diagnosis (CADx) schemes have been proposed across breast imaging modalities, and especially in mammography, research is still ongoing to meet the high performance CADx requirements. In this chapter, methodological contributions to CADx in mammography and adjunct breast imaging modalities are reviewed, as they play a major role in early detection, diagnosis and clinical management of breast cancer. At first, basic terms and definitions are provided. Then, emphasis is given to lesion content derivation, both anatomical and functional, considering only quantitative image features of micro-calcification clusters and masses across modalities. Additionally, two CADx application examples are provided. The first example investigates the effect of segmentation accuracy on micro-calcification cluster morphology derivation in X-ray mammography. The second one demonstrates the efficiency of texture analysis in quantification of enhancement kinetics, related to vascular heterogeneity, for mass classification in dynamic contrast-enhanced magnetic resonance imaging.

  1. A Case of a Concurrent and Co-Located Invasive Carcinoma and a Fibroadenoma to Illustrate the Potential of Dual-Energy, Contrast-Enhanced Digital Mammography on the Diagnosis of Complex Breast Lesions

    PubMed Central

    Travieso Aja, Maria Del Mar; Munoz, Purificacion; Rodriguez Rodriguez, Mario; Vega Benitez, Victor; Luzardo, Octavio P.

    2016-01-01

    Up to 19% of breast malignancies may be missed by conventional imaging techniques, especially when they are concurrent or co-located with other benign lesions. However, more sensitive techniques, such as magnetic resonance imaging (MRI), are often too expensive for routine use in developing countries. Contrast-enhanced, dual-energy digital mammography (CESM) is a recently introduced imaging modality whose performance has been reported to be similar to that of MRI. Being much cheaper, CESM may constitute a good alternative for improving diagnostic sensitivity in these countries. In this paper, we present a challenging case of the concurrent and co-located presentation of a fibroadenoma and a triple negative invasive carcinoma of no special type (TNBC-NST). The malignancy was indistinguishable from the fibroadenoma by mammography. By ultrasound, a suspicious area was observed and biopsied, but the histopathology did not confirm a cancer diagnosis. As the suspicion was not confirmed, a second stage of the imaging diagnosis using CESM was recommended. This technique allowed clear visualization of the malignancy, which was finally excised by breast-conserving surgery. This case reveals the potential of CESM as an easy, rapid and inexpensive new technique for the diagnosis of malignancies that might easily remain occult to mammography plus breast ultrasound (BUS). PMID:27853496

  2. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.

    PubMed

    Cockmartin, L; Bosmans, H; Marshall, N W

    2013-08-01

    This work characterizes three candidate mammography phantoms with structured background in terms of power law analysis in the low frequency region of the power spectrum for 2D (planar) mammography and digital breast tomosynthesis (DBT). The study was performed using three phantoms (spheres in water, Voxmam, and BR3D CIRS phantoms) on two DBT systems from two different vendors (Siemens Inspiration and Hologic Selenia Dimensions). Power spectra (PS) were calculated for planar projection, DBT projection, and reconstructed images and curve fitted in the low frequency region from 0.2 to 0.7 mm(-1) with a power law function characterized by an exponent β and magnitude κ. The influence of acquisition dose and tube voltage on the power law parameters was first explored. Then power law parameters were calculated from images acquired with the same anode∕filter combination and tube voltage for the three test objects, and compared with each other. Finally, PS curves for automatic exposure controlled acquisitions (anode∕filter combination and tube voltages selected by the systems based on the breast equivalent thickness of the test objects) were compared against PS analysis performed on patient data (for Siemens 80 and for Hologic 48 mammograms and DBT series). Dosimetric aspects of the three test objects were also examined. The power law exponent (β) was found to be independent of acquisition dose for planar mammography but varied more for DBT projections of the sphere-phantom. Systematic increase of tube voltage did not affect β but decreased κ, both in planar and DBT projection phantom images. Power spectra of the BR3D phantom were closer to those of the patients than these of the Voxmam phantom; the Voxmam phantom gave high values of κ compared to the other phantoms and the patient series. The magnitude of the PS curves of the BR3D phantom was within the patient range but β was lower than the average patient value. Finally, PS magnitude for the sphere

  3. Screening Ultrasound as an Adjunct to Mammography in Women with Mammographically Dense Breasts

    PubMed Central

    Scheel, John R.; Lee, Janie M.; Sprague, Brian L.; Lee, Christoph I.; Lehman, Constance D.

    2015-01-01

    There is increasing interest in the potential benefits and harms of screening ultrasound to supplement mammographic screening of women with dense breast tissue. We review the current evidence regarding adjunctive screening breast ultrasound (US) and provide a summary for clinicians who counsel patients with dense breasts. We conducted a comprehensive literature review of published clinical trials and observational cohort studies assessing the efficacy of screening handheld US (HHUS) and automated breast US (ABUS) to supplement mammography among women with dense breasts. From a total of 189 peer-reviewed publications on the performance of screening US, 12 studies were relevant to our analysis. The reporting of breast cancer risk factors varied across studies; however, the study populations tended to be at greater than average risk for developing breast cancer. There is consistent evidence that adjunctive screening US detects more invasive cancers compared to mammography alone, but there is currently no evidence of associated long-term breast cancer mortality reduction. The studies also collectively found that US was associated with an additional 11.7–106.6 biopsies/1,000 examinations (Median 52.2), and detected an additional 0.3–7.7 cancers/1,000 examinations (Median 4.2). The associated number of unnecessary breast biopsies resulting from adjunct US screening exceeds that observed with screening mammography alone by approximately 5-fold. Adjunctive screening with ultrasound should also be considered in the context of screening mammography. It is important for clinicians to be aware that improvements in cancer detection in mammographically dense breasts have been achieved with the transition from film to digital mammography, reducing a limitation of film mammography. Clinicians should discuss breast density as one of several important breast cancer risk factors, consider the potential harms of adjunctive screening, and arrive at a shared decision consistent with

  4. Quality assurance and quality control in mammography: a review of available guidance worldwide.

    PubMed

    Reis, Cláudia; Pascoal, Ana; Sakellaris, Taxiarchis; Koutalonis, Manthos

    2013-10-01

    Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources. •An effective QA program should be practical to implement in a clinical setting. •QA should address the various stages of the imaging chain: acquisition, processing and display. •AEC system QC testing is simple to implement and provides information on equipment performance.

  5. Towards in vivo TLD dosimetry in mammography.

    PubMed

    Warren-Forward, H M; Duggan, L

    2004-05-01

    While phantoms are used for quality control assessment of the mammography unit, in vivo dose measurements are necessary to account for the variation in size and composition of the female breast. The use of thermoluminescent dosimeters (TLDs) in mammography has been limited due to TLD visibility. The aim of this current investigation was to access the suitability of a paper-thin LiF:Mg,Cu,P TLD (GR-200F) for in vivo dosimetric mammography measurements. The visibility of GR-200F has been directly compared with LiF:Mg,Cu,P TLDs (GR-200A) using a number of commercially available phantoms. The phantoms of thickness 2-5 cm were imaged over the range of tube potentials (24-28 kVp) used clinically. Both types of TLD were placed on the surface of the phantoms allowing assessment of visibility, entrance surface dose (ESD) and field homogeneity. In vivo assessment of ESD and visibility was also carried out on a volunteer undergoing a routine mammography examination. The positions of the GR-200F TLDs were not identified either on the image of the Leeds TOR(MAM) phantom or the patient mammograms. The average ESD for the Leeds phantom was 8.8 mGy, while the patient ESD was 13 mGy. It is now possible to perform in vivo measurements with the potential of increasing the accuracy of the doses measured for women that do not conform to a standard breast thickness or density.

  6. The mammography screening employee inreach program.

    PubMed

    Robinson, Joanne; Seltzer, Vicki; Lawrence, Loretta; Autz, George; Kostroff, Karen; Weiselberg, Lora; Colagiacomo, Maria

    2007-02-01

    To determine whether our health care employees were undergoing mammography screening according to American Cancer Society guidelines and to determine whether aggressive outreach, education and streamlining of mammography scheduling could improve compliance. All female employees at North Shore University Hospital (NSUH) and several other health system facilities (SF) were sent mailings to their homes that included breast health education and mammography screening guidelines, a questionnaire regarding their own mammography screening history and the opportunity to have their mammography screening scheduled by the Mammography Screening Employee Inreach Program (MSEIP) coordinator. Of the approximately 2,700 female employees aged 40 and over at NSUH and SF, 2,235 (82.7%) responded to the questionnaire, and 1,455 had a mammogram done via the MSEIP. Of the 1,455, 43% either were overdue for a mammogram or had never had one. During a second year of the MSEIP at NSUH and SF, an additional 1,706 mammograms were done. People employed in health care jobs do not necessarily avail themselves of appropriate health care screening. An aggressive program that utilized education, outreach and assistance with scheduling was effective in increasing compliance with mammography screening.

  7. Adding the power of iodinated contrast media to the credibility of mammography in breast cancer diagnosis

    PubMed Central

    Tsigginou, Alexandra; Chalazonitis, Athanasios; Feida, Eleni; Vlachos, Dimitrios Efthymios; Zagouri, Flora; Rellias, Ioannis; Dimitrakakis, Constantine

    2016-01-01

    Dual-energy contrast-enhanced spectral mammography (CESM) represents a relatively new diagnostic tool adjunct to mammography. The aim of this study was to strengthen the breast imaging-reporting and data system (BIRADS) classification score in order to improve early breast cancer diagnosis. For this reason, we propose a sum score, termed malignancy potential score (MPS), incorporating the standard BIRADS score and our proposed CESM score. From September 2014 to September 2015, 216 females (age range, 26–85 years; mean age 54.6 years) underwent CESM evaluation of mammographic findings that were primarily assessed as BIRADS 2–5. 10 of these patients had bilateral findings; a total of 226 lesions were examined. High-energy image evaluation was based on the intensity of contrast enhancement of the lesion compared with background enhancement, categorized as Type -1, 0, 1 or 2 enhancement. Histopathology reports were compared with imaging assessment. 98 of 226 lesions were malignant and 128 of 226 lesions were benign. The area under the curve was 0.843, 0.888 and 0.917 for mammographic BIRADS score, CESM score and MPS, respectively, with p-value < 0.05. The sensitivity, specificity and accuracy rates were 91.83, 80.47 and 85.40%, respectively, when a best MPS cut-off point of 4 was used. The malignancy potential score (MPS) has higher diagnostic performance than digital mammography or CESM alone. MPS empowers the credibility of the digital mammography BIRADS score and our proposed type of enhancement in dual-energy CESM and is a diagnostic tool that increases the accuracy rate in early breast cancer diagnosis. PMID:27452266

  8. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    PubMed Central

    Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J; Leonard, Morton H.; Brunder, Donald G.

    2009-01-01

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2=0.93) and %density (R2=0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies. PMID:17671343

  9. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer †

    PubMed Central

    Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-01

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  10. Assessment of disease extent on contrast-enhanced MRI in breast cancer detected at digital breast tomosynthesis versus digital mammography alone.

    PubMed

    Chudgar, A V; Conant, E F; Weinstein, S P; Keller, B M; Synnestvedt, M; Yamartino, P; McDonald, E S

    2017-07-01

    To compare the utility of breast magnetic resonance imaging (MRI) in determining the extent of disease in patients with newly diagnosed breast cancer detected on combination digital breast tomosynthesis (DBT) versus digital screening mammography (DM). Review of 24,563 DBT-screened patients and 10,751 DM-screened patients was performed. Two hundred and thirty-five DBT patients underwent subsequent MRI examinations; 82 to determine extent of disease after newly diagnosed breast cancer. Eighty-three DM patients underwent subsequent MRI examinations; 23 to determine extent of disease. MRI examinations performed to assess disease extent were considered true positives if additional disease was discovered in the contralateral breast or >2 cm away from the index malignancy. Differences in cancer subtypes and MRI outcomes between the DM and DBT cohorts were compared using chi-squared tests and post-hoc Bonferroni-adjusted tests for equal proportions. No differences in cancer subtype findings were observed between the two cohorts; however, MRI outcomes were found to differ between the DBT and DM cohorts (p=0.024). Specifically, the DBT cohort had significantly (p=0.013) fewer true-positive findings (7/82, 8.5%) than did the DM cohort (7/23; 30%), whereas the false-positive rate was similar between the cohorts (not statistically significant). When stratifying by breast density, this difference in true-positive rates was primarily observed when evaluating women with non-dense breasts (p=0.001). In both the DM- and DBT-screened populations with new cancer diagnoses, MRI is able to detect additional cancer; however, in those patients who have DBT screen-detected cancers the positive impact of preoperative MRI is diminished, particularly in those women with non-dense breasts. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  12. Performance of a fast digital integrator in on-field magnetic measurements for particle accelerators

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Bottura, L.; Fiscarelli, L.; Walckiers, L.

    2012-02-01

    The fast digital integrator has been conceived to face most demanding magnet test requirements with a resolution of 10 ppm, a signal-to-noise ratio of 105 dB at 20 kHz, a time resolution of 50 ns, an offset of 10 ppm, and on-line processing. In this paper, the on-field achievements of the fast digital integrator are assessed by a specific measurement campaign at the European Organization for Nuclear Research (CERN). At first, the architecture and the metrological specifications of the instrument are reported. Then, the recent on-field achievements of (i) ±10 ppm of uncertainty in the measurement of the main field for superconducting magnets characterization, (ii) ±0.02 % of field uncertainty in quality assessment of small-aperture permanent magnets, and (iii) ±0.15 % of drift, in an excitation current measurement of 600 s under cryogenic conditions, are presented and discussed.

  13. Design and validation of a mathematical breast phantom for contrast-enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Jong, Roberta A.; Yaffe, Martin J.

    2011-03-01

    In contrast-enhanced digital mammography (CEDM) an iodinated contrast agent is employed to increase lesion contrast and to provide tissue functional information. Here, we present the details of a software phantom that can be used as a tool for the simulation of CEDM images, and compare the degree of anatomic noise present in images simulated using the phantom to that associated with breast parenchyma in clinical CEDM images. Such a phantom could be useful for multiparametric investigations including characterization of CEDM imaging performance and system optimization. The phantom has a realistic mammographic appearance based on a clustered lumpy background and models contrast agent uptake according to breast tissue physiology. Fifty unique phantoms were generated and used to simulate regions of interest (ROI) of pre-contrast images and logarithmically subtracted CEDM images using monoenergetic ray tracing. Power law exponents, β, were used as a measure of anatomic noise and were determined using a linear least-squares fit to log-log plots of the square of the modulus of radially averaged image power spectra versus spatial frequency. The power spectra for ROI selected from regions of normal parenchyma in 10 pairs of clinical CEDM pre-contrast and subtracted images were also measured for comparison with the simulated images. There was good agreement between the measured β in the simulated CEDM images and the clinical images. The values of β were consistently lower for the logarithmically subtracted CEDM images compared to the pre-contrast images, indicating that the subtraction process reduced anatomical noise.

  14. An interactive dynamic analysis and decision support software for MR mammography.

    PubMed

    Ertaş, Gökhan; Gülçür, H Ozcan; Tunaci, Mehtap

    2008-06-01

    A fully automated software is introduced to facilitate MR mammography (MRM) examinations and overcome subjectiveness in diagnosis using normalized maximum intensity-time ratio (nMITR) maps. These maps inherently suppress enhancements due to normal parenchyma and blood vessels that surround lesions and have natural tolerance to small field inhomogeneities and motion artifacts. The classifier embedded within the software is trained with normalized complexity and maximum nMITR of 22 lesions and tested with the features of remaining 22 lesions. Achieved diagnostic performances are 92% sensitivity, 90% specificity, 91% accuracy, 92% positive predictive value and 90% negative predictive value. DynaMammoAnalyst shortens evaluation time considerably and reduces inter and intra-observer variability by providing decision support.

  15. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  16. Optimization of x-ray capillary optics for mammography

    NASA Astrophysics Data System (ADS)

    Ross, Richard E.; Bradford, Carla D.; Peppler, Walter W.

    2002-05-01

    The purpose of this study is to develop a full-field digital mammography system utilizing capillary optics. Specific aims are to identify optic properties that affect image quality and to optimize those properties in the design of a multi-element capillary array. It has been shown that polycapillary optics significantly improve mammographic image quality through increased resolution and reduced x-ray scatter. For practical clinical application much larger multi-element optics will be required. This study quantified the contributing factors to the multi-element optic MTF and investigated methods to determine optimal parameters for a practical design. Individual and a prototype multi-element array of linearly tapered optics with a common focal point were investigated. A conventional (MO/MO) mammography tube and computed radiography system were used. The system and optic MTF were measured using the angled slit method with a slit camera (10 micron slit). MTF measurements were performed with both stationary and scanned optics. Contributions to MTF included: distortion within individual optics, misalignment between optics, capillary channel size, and vibration. Measurement techniques used to identify and quantify the contributions to optic MTF included a phantom chosen specifically for polycapillary optics. This phantom provided a method for assessing the coherence among capillaries within an optic as well as the relative alignment of the optics within the array. In addition, modifications to the scanning procedure allowed for the isolation and quantification of several contributors to the system MTF. Specifically, measurements were made using a stationary optic, a scanning optic, and an optic placed at multiple locations within the imaged field of view. These techniques yielded the optic MTF, the degradation of MTF due to loss of coherence within the optic, and the degradation of MTF due to vibration of the scanning mechanism. Distortion within individual optics was

  17. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    PubMed

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pilot test of a peer-led small-group video intervention to promote mammography screening among Chinese American immigrants

    PubMed Central

    Maxwell, Annette E.; Wang, Judy H.; Young, Lucy; Crespi, Catherine M.; Mistry, Ritesh; Sudan, Madhuri; Bastani, Roshan

    2010-01-01

    This study evaluated the feasibility, acceptability and potential effect of a small-group video intervention led by trained Chinese American lay educators who recruited Chinese American women not up to date on mammography screening. Nine lay educators conducted 14 “breast health tea time workshops” in community settings and private homes that started with watching a culturally tailored video promoting screening followed by a question and answer session and distribution of print materials. Many group attendees did not have health insurance or a regular doctor, had low levels of income and were not proficient in English. Forty-four percent of the attendees reported receipt of a mammogram within 6 months after the small-group session with higher odds of screening among women who had lived in the U.S. less than 10% of their lifetime. Four of the educators were very interested in conducting another group session in the next 6 months. PMID:20720095

  19. Configuration of automatic exposure control on mammography units for computed radiography to match patient dose of screen film systems

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Ying Joseph; Huang, Weidong

    2009-02-01

    Computed radiography (CR) is considered a drop-in addition or replacement for traditional screen-film (SF) systems in digital mammography. Unlike other technologies, CR has the advantage of being compatible with existing mammography units. One of the challenges, however, is to properly configure the automatic exposure control (AEC) on existing mammography units for CR use. Unlike analogue systems, the capture and display of digital CR images is decoupled. The function of AEC is changed from ensuring proper and consistent optical density of the captured image on film to balancing image quality with patient dose needed for CR. One of the preferences when acquiring CR images under AEC is to use the same patient dose as SF systems. The challenge is whether the existing AEC design and calibration process-most of them proprietary from the X-ray systems manufacturers and tailored specifically for SF response properties-can be adapted for CR cassettes, in order to compensate for their response and attenuation differences. This paper describes the methods for configuring the AEC of three different mammography units models to match the patient dose used for CR with those that are used for a KODAK MIN-R 2000 SF System. Based on phantom test results, these methods provide the dose level under AEC for the CR systems to match with the dose of SF systems. These methods can be used in clinical environments that require the acquisition of CR images under AEC at the same dose levels as those used for SF systems.

  20. One more hurdle to increasing mammography screening: pubescent, adolescent, and prior mammography screening experiences.

    PubMed

    Thomas, Eileen; Usher, LaToya

    2009-01-01

    Approximately $8.1 billion dollars is spent each year in the United States alone on the treatment of breast cancer. Survival rates are dependent on access to, and utilization of, early detection services. The primary reason for disparity in breast cancer mortality is the delay in time to diagnosis, resulting in poor prognosis. Despite ongoing research to understand barriers to mammography screening, recent studies report a decrease in mammography screening among all racial groups. A qualitative approach was used to elicit information from 36 White non- Hispanic, African-American, Hispanic, and Native American women without a history of breast cancer. Women were invited to share written or audiotape-recorded narratives about experiences pertaining to their breasts and their mammography screening experiences. Major categories identified were: teasing, family norms and values, media/societal influence, body image, and mammography screening experiences. The resulting effects of these experiences left these women with feelings of shame and "conflict" regarding their breasts. The major theme identified was breast conflict. Findings suggest that breast conflict may persist throughout the lifespan and can have a negative influence on a woman's decision to participate in mammography screening. The authors hypothesize that experiences that occur during adolescence pertaining to young girls' breasts can influence a women's body image, which in turn can later in life affect health-seeking behaviors related to mammography screening. These findings have implications for public health practice in planning for breast cancer screening, education, and interventions for women from diverse racial/ethnics groups.

  1. Effects of a risk-based online mammography intervention on accuracy of perceived risk and mammography intentions.

    PubMed

    Seitz, Holli H; Gibson, Laura; Skubisz, Christine; Forquer, Heather; Mello, Susan; Schapira, Marilyn M; Armstrong, Katrina; Cappella, Joseph N

    2016-10-01

    This experiment tested the effects of an individualized risk-based online mammography decision intervention. The intervention employs exemplification theory and the Elaboration Likelihood Model of persuasion to improve the match between breast cancer risk and mammography intentions. 2918 women ages 35-49 were stratified into two levels of 10-year breast cancer risk (<1.5%; ≥1.5%) then randomly assigned to one of eight conditions: two comparison conditions and six risk-based intervention conditions that varied according to a 2 (amount of content: brief vs. extended) x 3 (format: expository vs. untailored exemplar [example case] vs. tailored exemplar) design. Outcomes included mammography intentions and accuracy of perceived breast cancer risk. Risk-based intervention conditions improved the match between objective risk estimates and perceived risk, especially for high-numeracy women with a 10-year breast cancer risk ≤1.5%. For women with a risk≤1.5%, exemplars improved accuracy of perceived risk and all risk-based interventions increased intentions to wait until age 50 to screen. A risk-based mammography intervention improved accuracy of perceived risk and the match between objective risk estimates and mammography intentions. Interventions could be applied in online or clinical settings to help women understand risk and make mammography decisions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of a Risk-based Online Mammography Intervention on Accuracy of Perceived Risk and Mammography Intentions

    PubMed Central

    Seitz, Holli H.; Gibson, Laura; Skubisz, Christine; Forquer, Heather; Mello, Susan; Schapira, Marilyn M.; Armstrong, Katrina; Cappella, Joseph N.

    2016-01-01

    Objective This experiment tested the effects of an individualized risk-based online mammography decision intervention. The intervention employs exemplification theory and the Elaboration Likelihood Model of persuasion to improve the match between breast cancer risk and mammography intentions. Methods 2,918 women ages 35-49 were stratified into two levels of 10-year breast cancer risk (< 1.5%; ≥ 1.5%) then randomly assigned to one of eight conditions: two comparison conditions and six risk-based intervention conditions that varied according to a 2 (amount of content: brief vs. extended) × 3 (format: expository vs. untailored exemplar [example case] vs. tailored exemplar) design. Outcomes included mammography intentions and accuracy of perceived breast cancer risk. Results Risk-based intervention conditions improved the match between objective risk estimates and perceived risk, especially for high-numeracy women with a 10-year breast cancer risk <1.5%. For women with a risk < 1.5%, exemplars improved accuracy of perceived risk and all risk-based interventions increased intentions to wait until age 50 to screen. Conclusion A risk-based mammography intervention improved accuracy of perceived risk and the match between objective risk estimates and mammography intentions. Practice Implications Interventions could be applied in online or clinical settings to help women understand risk and make mammography decisions. PMID:27178707

  3. Characterizing the Mammography Technologist Workforce in North Carolina.

    PubMed

    Henderson, Louise M; Marsh, Mary W; Benefield, Thad; Pearsall, Elizabeth; Durham, Danielle; Schroeder, Bruce F; Bowling, J Michael; Viglione, Cheryl A; Yankaskas, Bonnie C

    2015-12-01

    Mammography technologists' level of training, years of experience, and feedback on technique may play an important role in the breast-cancer screening process. However, information on the mammography technologist workforce is scant. In 2013, we conducted a survey mailed to 912 mammography technologists working in 224 facilities certified by the Mammography Quality Standards Act in North Carolina. Using standard survey methodology, we developed and implemented a questionnaire on the education and training, work experiences, and workplace interactions of mammography technologists. We aggregated responses using survey weights to account for nonresponse. We describe and compare lead (administrative responsibilities) and nonlead (supervised by another technologist) mammography technologist characteristics, testing for differences, using t-tests and χ(2) analysis. A total of 433 mammography technologists responded (survey response rate = 47.5%; 95% confidence interval [CI]: 44.2%-50.7%), including 128 lead and 305 nonlead technologists. Most mammography technologists were non-Hispanic, white women; their average age was 48 years. Approximately 93% of lead and nonlead technologists had mammography-specific training, but <4% had sonography certification, and 3% had MRI certification. Lead technologists reported more years of experience performing screening mammography (P = .02) and film mammography (P = .03), more administrative hours (P < .0001), and more workplace autonomy (P = .002) than nonlead technologists. Nonlead technologists were more likely to report performing diagnostic mammograms (P = .0004) or other breast imaging (P = .001), discuss image quality with a peer (P = .013), and have frequent face-to-face interaction with radiologists (P = .03). Our findings offer insights into mammography technologists' training and work experiences, highlighting variability in characteristics of lead versus nonlead technologists. Copyright © 2015 American College of

  4. Characterizing the mammography technologist workforce in North Carolina

    PubMed Central

    Henderson, Louise M.; Marsh, Mary W.; Benefield, Thad; Pearsall, Elizabeth; Durham, Danielle; Schroeder, Bruce F.; Bowling, J. Michael; Viglione, Cheryl A.; Yankaskas, Bonnie C.

    2016-01-01

    Background Mammography technologists’ level of training, years of experience, and feedback on technique may play an important role in the breast cancer screening process. However, very little information on the mammography technologist workforce exists. Methods In 2013, we conducted a mailed survey to 912 mammography technologists working in 224 Mammography Quality Standards Act accredited facilities in North Carolina. Using standard survey methodology we developed and implemented a questionnaire focused on the education and training, work experiences, and workplace interactions of mammography technologists. We aggregated responses using survey weights to account for non-response. We describe and compare lead (administrative responsibilities) and non-lead (supervised by another technologist) mammography technologist characteristics, testing for differences using t-tests and chi-square tests. Results A total of 433 mammography technologists responded (survey response rate=47.5%; 95% confidence interval:44.2%-50.7%), including 128 lead and 305 non-lead technologists. Most mammography technologists were non-Hispanic, white, females and the average age was 48 years. Approximately 93% of lead and non-lead technologists had mammography specific training but <4% had sonography certification and 3% had MRI certification. Lead technologists reported more years performing screening mammography (p-value=0.02) and film mammography (p-value=0.03), more administrative hours (p-value<0.0001), and more workplace autonomy (p-value=0.002) than non-lead technologists. Non-lead technologists were more likely to report performing diagnostic mammograms (p-value=0.0004) or other breast imaging (p-value=0.001), discuss image quality with a peer (p-value=0.013), and have frequent face-to-face interaction with radiologists (p-value=0.03). Conclusion Our findings offer insights into mammography technologists’ training and work experiences, highlighting variability in technologist

  5. Full-field acoustomammography using an acousto-optic sensor.

    PubMed

    Sandhu, J S; Schmidt, R A; La Rivière, P J

    2009-06-01

    In this Letter the authors introduce a wide-field transmission ultrasound approach to breast imaging based on the use of a large area acousto-optic (AO) sensor. Accompanied by a suitable acoustic source, such a detector could be mounted on a traditional mammography system and provide a mammographylike ultrasound projection image of the compressed breast in registration with the x-ray mammogram. The authors call the approach acoustography. The hope is that this additional information could improve the sensitivity and specificity of screening mammography. The AO sensor converts ultrasound directly into a visual image by virtue of the acousto-optic effect of the liquid crystal layer contained in the AO sensor. The image is captured with a digital video camera for processing, analysis, and storage. In this Letter, the authors perform a geometrical resolution analysis and also present images of a multimodality breast phantom imaged with both mammography and acoustography to demonstrate the feasibility of the approach. The geometric resolution analysis suggests that the technique could readily detect tumors of diameter of 3 mm using 8.5 MHz ultrasound, with smaller tumors detectable with higher frequency ultrasound, though depth penetration might then become a limiting factor. The preliminary phantom images show high contrast and compare favorably to digital mammograms of the same phantom. The authors have introduced and established, through phantom imaging, the feasibility of a full-field transmission ultrasound detector for breast imaging based on the use of a large area AO sensor. Of course variations in attenuation of connective, glandular, and fatty tissues will lead to images with more cluttered anatomical background than those of the phantom imaged here. Acoustic coupling to the mammographically compressed breast, particularly at the margins, will also have to be addressed.

  6. Full-field acoustomammography using an acousto-optic sensor

    PubMed Central

    Sandhu, J. S.; Schmidt, R. A.; La Rivière, P. J.

    2009-01-01

    In this Letter the authors introduce a wide-field transmission ultrasound approach to breast imaging based on the use of a large area acousto-optic (AO) sensor. Accompanied by a suitable acoustic source, such a detector could be mounted on a traditional mammography system and provide a mammographylike ultrasound projection image of the compressed breast in registration with the x-ray mammogram. The authors call the approach acoustography. The hope is that this additional information could improve the sensitivity and specificity of screening mammography. The AO sensor converts ultrasound directly into a visual image by virtue of the acousto-optic effect of the liquid crystal layer contained in the AO sensor. The image is captured with a digital video camera for processing, analysis, and storage. In this Letter, the authors perform a geometrical resolution analysis and also present images of a multimodality breast phantom imaged with both mammography and acoustography to demonstrate the feasibility of the approach. The geometric resolution analysis suggests that the technique could readily detect tumors of diameter of 3 mm using 8.5 MHz ultrasound, with smaller tumors detectable with higher frequency ultrasound, though depth penetration might then become a limiting factor. The preliminary phantom images show high contrast and compare favorably to digital mammograms of the same phantom. The authors have introduced and established, through phantom imaging, the feasibility of a full-field transmission ultrasound detector for breast imaging based on the use of a large area AO sensor. Of course variations in attenuation of connective, glandular, and fatty tissues will lead to images with more cluttered anatomical background than those of the phantom imaged here. Acoustic coupling to the mammographically compressed breast, particularly at the margins, will also have to be addressed. PMID:19610321

  7. Breast percent density estimation from 3D reconstructed digital breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Bakic, Predrag R.; Kontos, Despina; Carton, Ann-Katherine; Maidment, Andrew D. A.

    2008-03-01

    Breast density is an independent factor of breast cancer risk. In mammograms breast density is quantitatively measured as percent density (PD), the percentage of dense (non-fatty) tissue. To date, clinical estimates of PD have varied significantly, in part due to the projective nature of mammography. Digital breast tomosynthesis (DBT) is a 3D imaging modality in which cross-sectional images are reconstructed from a small number of projections acquired at different x-ray tube angles. Preliminary studies suggest that DBT is superior to mammography in tissue visualization, since superimposed anatomical structures present in mammograms are filtered out. We hypothesize that DBT could also provide a more accurate breast density estimation. In this paper, we propose to estimate PD from reconstructed DBT images using a semi-automated thresholding technique. Preprocessing is performed to exclude the image background and the area of the pectoral muscle. Threshold values are selected manually from a small number of reconstructed slices; a combination of these thresholds is applied to each slice throughout the entire reconstructed DBT volume. The proposed method was validated using images of women with recently detected abnormalities or with biopsy-proven cancers; only contralateral breasts were analyzed. The Pearson correlation and kappa coefficients between the breast density estimates from DBT and the corresponding digital mammogram indicate moderate agreement between the two modalities, comparable with our previous results from 2D DBT projections. Percent density appears to be a robust measure for breast density assessment in both 2D and 3D x-ray breast imaging modalities using thresholding.

  8. Ultrasound as an Adjunct to Mammography for Breast Cancer Screening: A Health Technology Assessment

    PubMed Central

    Nikitovic-Jokic, Milica; Tu, Hong Anh; Palimaka, Stefan; Higgins, Caroline; Holubowich, Corinne

    2016-01-01

    . Conclusions We found no evidence that evaluated the comparative effectiveness or diagnostic accuracy of screening breast ultrasound as an adjunct to mammography among average-risk women aged 50 years and over. In women at high risk of developing breast cancer, there is low-quality evidence that screening with mammography and adjunct ultrasound detects additional cases of disease, with improved sensitivity compared to mammography alone. Screening with adjunct ultrasound also increases the number of false-positive findings and subsequent biopsy recommendations. It is unclear if the use of screening breast ultrasound as an adjunct to mammography will reduce breast cancer–related mortality among high-risk women. The annual cost burden of using adjunct ultrasound to screen high-risk women who cannot receive MRI in Ontario would be small. PMID:27468326

  9. The impact of digital imaging in the field of cytopathology.

    PubMed

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2009-03-06

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.

  10. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test

    NASA Astrophysics Data System (ADS)

    Cockmartin, Lesley; Marshall, Nicholas W.; Van Ongeval, Chantal; Aerts, Gwen; Stalmans, Davina; Zanca, Federica; Shaheen, Eman; De Keyzer, Frederik; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde

    2015-05-01

    This paper introduces a hybrid method for performing detection studies in projection image based modalities, based on image acquisitions of target objects and patients. The method was used to compare 2D mammography and digital breast tomosynthesis (DBT) in terms of the detection performance of spherical densities and microcalcifications. The method starts with the acquisition of spheres of different glandular equivalent densities and microcalcifications of different sizes immersed in a homogeneous breast tissue simulating medium. These target objects are then segmented and the subsequent templates are fused in projection images of patients and processed or reconstructed. This results in hybrid images with true mammographic anatomy and clinically relevant target objects, ready for use in observer studies. The detection study of spherical densities used 108 normal and 178 hybrid 2D and DBT images; 156 normal and 321 hybrid images were used for the microcalcifications. Seven observers scored the presence/absence of the spheres/microcalcifications in a square region via a 5-point confidence rating scale. Detection performance in 2D and DBT was compared via ROC analysis with sub-analyses for the density of the spheres, microcalcification size, breast thickness and z-position. The study was performed on a Siemens Inspiration tomosynthesis system using patient acquisitions with an average age of 58 years and an average breast thickness of 53 mm providing mean glandular doses of 1.06 mGy (2D) and 2.39 mGy (DBT). Study results showed that breast tomosynthesis (AUC = 0.973) outperformed 2D (AUC = 0.831) for the detection of spheres (p  <  0.0001) and this applied for all spherical densities and breast thicknesses. By way of contrast, DBT was worse than 2D for microcalcification detection (AUC2D = 0.974, AUCDBT = 0.838, p  <  0.0001), with significant differences found for all sizes (150-354 µm), for breast thicknesses above 40 mm and for heights

  11. Does Gender Discrimination Impact Regular Mammography Screening? Findings from the Race Differences in Screening Mammography Study

    PubMed Central

    DAILEY, AMY B.; KASL, STANISLAV V.; JONES, BETH A.

    2011-01-01

    Objective To determine if gender discrimination, conceptualized as a negative life stressor, is a deterrent to adherence to mammography screening guidelines. Methods African American and white women (1451) aged 40–79 years who obtained an index screening mammogram at one of five urban hospitals in Connecticut between October 1996 and January 1998 were enrolled in this study. This logistic regression analysis includes the 1229 women who completed telephone interviews at baseline and follow-up (average 29.4 months later) and for whom the study outcome, nonadherence to age-specific mammography screening guidelines, was determined. Gender discrimination was measured as lifetime experience in seven possible situations. Results Gender discrimination, reported by nearly 38% of the study population, was significantly associated with nonadherence to mammography guidelines in women with annual family incomes of ≥$50,000 (OR 1.99, 95% CI 1.33, 2.98) and did not differ across racial/ethnic group. Conclusions Our findings suggest that gender discrimination can adversely influence regular mammography screening in some women. With nearly half of women nonadherent to screening mammography guidelines in this study and with decreasing mammography rates nationwide, it is important to address the complexity of nonadherence across subgroups of women. Life stressors, such as experiences of gender discrimination, may have considerable consequences, potentially influencing health prevention prioritization in women. PMID:18321171

  12. Does gender discrimination impact regular mammography screening? Findings from the race differences in screening mammography study.

    PubMed

    Dailey, Amy B; Kasl, Stanislav V; Jones, Beth A

    2008-03-01

    ABSTRACT Objective: To determine if gender discrimination, conceptualized as a negative life stressor, is a deterrent to adherence to mammography screening guidelines. African American and white women (1451) aged 40-79 years who obtained an index screening mammogram at one of five urban hospitals in Connecticut between October 1996 and January 1998 were enrolled in this study. This logistic regression analysis includes the 1229 women who completed telephone interviews at baseline and follow-up (average 29.4 months later) and for whom the study outcome, nonadherence to age-specific mammography screening guidelines, was determined. Gender discrimination was measured as lifetime experience in seven possible situations. Gender discrimination, reported by nearly 38% of the study population, was significantly associated with nonadherence to mammography guidelines in women with annual family incomes of > or =$50,000 (OR 1.99, 95% CI 1.33, 2.98) and did not differ across racial/ethnic group. Our findings suggest that gender discrimination can adversely influence regular mammography screening in some women. With nearly half of women nonadherent to screening mammography guidelines in this study and with decreasing mammography rates nationwide, it is important to address the complexity of nonadherence across subgroups of women. Life stressors, such as experiences of gender discrimination, may have considerable consequences, potentially influencing health prevention prioritization in women.

  13. Family/Friend Recommendations and Mammography Intentions: The Roles of Perceived Mammography Norms and Support

    ERIC Educational Resources Information Center

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography…

  14. Field evaluations of digital radon detectors.

    PubMed

    Chen, Jing; Falcomer, Renato; Walker, Bill

    2007-11-01

    Recently, digital radon detectors were made available on the market for homeowners at a cost comparable to that charged by some service providers for a single radon test. Digital radon detectors provide an easy and less expensive way for homeowners to monitor radon levels in their homes. In order to answer a frequently asked question regarding the performance of such low-cost electronic radon detectors, field evaluations were conducted. Evaluation results are reported here.

  15. Staging of breast cancer and the advanced applications of digital mammogram: what the physician needs to know?

    PubMed

    Helal, Maha H; Mansour, Sahar M; Zaglol, Mai; Salaleldin, Lamia A; Nada, Omniya M; Haggag, Marwa A

    2017-03-01

    To study the role of advanced applications of digital mammogram, whether contrast-enhanced spectral mammography (CESM) or digital breast tomosynthesis (DBT), in the "T" staging of histologically proven breast cancer before planning for treatment management. In this prospective analysis, we evaluated 98 proved malignant breast masses regarding their size, multiplicity and the presence of associated clusters of microcalcifications. Evaluation methods included digital mammography (DM), 3D tomosynthesis and CESM. Traditional DM was first performed then in a period of 10-14-day interval; breast tomosynthesis and contrast-based mammography were performed for the involved breast only. Views at tomosynthesis were acquired in a "step-and-shoot" tube motion mode to produce multiple (11-15), low-dose images and in contrast-enhanced study, low-energy (22-33 kVp) and high-energy (44-49 kVp) exposures were taken after the i.v. injection of the contrast agent. Operative data were the gold standard reference. Breast tomosynthesis showed the highest accuracy in size assessment (n = 69, 70.4%) than contrast-enhanced (n = 49, 50%) and regular mammography (n = 59, 60.2%). Contrast-enhanced mammography presented the least performance in assessing calcifications, yet it was most sensitive in the detection of multiplicity (92.3%), followed by tomosynthesis (77%) and regular mammography (53.8%). The combined analysis of the three modalities provided an accuracy of 74% in the "T" staging of breast cancer. The combined application of tomosynthesis and contrast-enhanced digital mammogram enhanced the performance of the traditional DM and presented an informative method in the staging of breast cancer. Advances in knowledge: Staging and management planning of breast cancer can divert according to tumour size, multiplicity and the presence of microcalcifications. DBT shows sharp outlines of the tumour with no overlap tissue and spots microcalcifications. Contrast

  16. Staging of breast cancer and the advanced applications of digital mammogram: what the physician needs to know?

    PubMed Central

    Helal, Maha H; Zaglol, Mai; Salaleldin, Lamia A; Nada, Omniya M; Haggag, Marwa A

    2017-01-01

    Objective: To study the role of advanced applications of digital mammogram, whether contrast-enhanced spectral mammography (CESM) or digital breast tomosynthesis (DBT), in the “T” staging of histologically proven breast cancer before planning for treatment management. Methods: In this prospective analysis, we evaluated 98 proved malignant breast masses regarding their size, multiplicity and the presence of associated clusters of microcalcifications. Evaluation methods included digital mammography (DM), 3D tomosynthesis and CESM. Traditional DM was first performed then in a period of 10–14-day interval; breast tomosynthesis and contrast-based mammography were performed for the involved breast only. Views at tomosynthesis were acquired in a “step-and-shoot” tube motion mode to produce multiple (11–15), low-dose images and in contrast-enhanced study, low-energy (22–33 kVp) and high-energy (44–49 kVp) exposures were taken after the i.v. injection of the contrast agent. Operative data were the gold standard reference. Results: Breast tomosynthesis showed the highest accuracy in size assessment (n = 69, 70.4%) than contrast-enhanced (n = 49, 50%) and regular mammography (n = 59, 60.2%). Contrast-enhanced mammography presented the least performance in assessing calcifications, yet it was most sensitive in the detection of multiplicity (92.3%), followed by tomosynthesis (77%) and regular mammography (53.8%). The combined analysis of the three modalities provided an accuracy of 74% in the “T” staging of breast cancer. Conclusion: The combined application of tomosynthesis and contrast-enhanced digital mammogram enhanced the performance of the traditional DM and presented an informative method in the staging of breast cancer. Advances in knowledge: Staging and management planning of breast cancer can divert according to tumour size, multiplicity and the presence of microcalcifications. DBT shows sharp outlines of the tumour with no overlap

  17. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    NASA Astrophysics Data System (ADS)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj

    2003-01-01

    99mTc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM™) featuring a 12.8×12.8 cm 2 FOV and an array of 2×2×6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.

  18. Tailoring automatic exposure control toward constant detectability in digital mammography.

    PubMed

    Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W

    2015-07-01

    The automatic exposure control (AEC) modes of most full field digital mammography (FFDM) systems are set up to hold pixel value (PV) constant as breast thickness changes. This paper proposes an alternative AEC mode, set up to maintain some minimum detectability level, with the ultimate goal of improving object detectability at larger breast thicknesses. The default "opdose" AEC mode of a Siemens MAMMOMAT Inspiration FFDM system was assessed using poly(methyl methacrylate) (PMMA) of thickness 20, 30, 40, 50, 60, and 70 mm to find the tube voltage and anode/filter combination programmed for each thickness; these beam quality settings were used for the modified AEC mode. Detectability index (d'), in terms of a non-prewhitened model observer with eye filter, was then calculated as a function of tube current-time product (mAs) for each thickness. A modified AEC could then be designed in which detectability never fell below some minimum setting for any thickness in the operating range. In this study, the value was chosen such that the system met the achievable threshold gold thickness (Tt) in the European guidelines for the 0.1 mm diameter disc (i.e., Tt ≤ 1.10 μm gold). The default and modified AEC modes were compared in terms of contrast-detail performance (Tt), calculated detectability (d'), signal-difference-to-noise ratio (SDNR), and mean glandular dose (MGD). The influence of a structured background on object detectability for both AEC modes was examined using a CIRS BR3D phantom. Computer-based CDMAM reading was used for the homogeneous case, while the images with the BR3D background were scored by human observers. The default opdose AEC mode maintained PV constant as PMMA thickness increased, leading to a reduction in SDNR for the homogeneous background 39% and d' 37% in going from 20 to 70 mm; introduction of the structured BR3D plate changed these figures to 22% (SDNR) and 6% (d'), respectively. Threshold gold thickness (0.1 mm diameter disc) for the default

  19. Automatic transfer function generation for volume rendering of high-resolution x-ray 3D digital mammography images

    NASA Astrophysics Data System (ADS)

    Alyassin, Abdal M.

    2002-05-01

    3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.

  20. Outcomes of a Structured Education Intervention for Latinas Concerning Breast Cancer and Mammography

    ERIC Educational Resources Information Center

    Laughman, Anna Bawtinhimer; Boselli, Danielle; Love, Magbis; Steuerwald, Nury; Symanowski, James; Blackley, Kris; Wheeler, Mellisa; Arevalo, Gustavo; Carrizosa, Daniel; Raghavan, Derek

    2017-01-01

    Objective: This study examined the utility of living room and church-based small group educational sessions on breast cancer and mammography, for under-served Latinas in North Carolina, USA. Design: Non-randomised, single arm design. Setting: A total of 329 self-selected Latinas participated in 31 small group educational classes in church and home…

  1. Dual-energy contrast-enhanced mammography.

    PubMed

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  2. Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields

    NASA Astrophysics Data System (ADS)

    Rosen, Benjamin S.

    Radiotherapy treatments with small and nonstandard fields are increasing in use as collimation and targeting become more advanced, which spare normal tissues while increasing tumor dose. However, dosimetry of small and nonstandard fields is more difficult than that of conventional fields due to loss of lateral charged-particle equilibrium, tight measurement setup requirements, source occlusion, and the volume-averaging effect of conventional dosimeters. This work aims to create new small and nonstandard field dosimetry protocols using radiochromic film (RCF) in conjunction with novel readout and analysis methodologies. It also is the intent of this work to develop an improved understanding of RCF structure and mechanics for its quantitative use in general applications. Conventional digitization techniques employ white-light, flatbed document scanners or scanning-laser densitometers which are not optimized for RCF dosimetry. A point-by-point precision laser densitometry system (LDS) was developed for this work to overcome the film-scanning artifacts associated with the use of conventional digitizers, such as positional scan dependence, off-axis light scatter, glass bed interference, and low signal-to-noise ratios. The LDS was shown to be optically traceable to national standards and to provide highly reproducible density measurements. Use of the LDS resulted in increased agreement between RCF dose measurements and the single-hit detector model of film response, facilitating traceable RCF calibrations based on calibrated physical quantities. GafchromicRTM EBT3 energy response to a variety of reference x-ray and gamma-ray beam qualities was also investigated. Conventional Monte Carlo methods are not capable of predicting film intrinsic energy response to arbitrary particle spectra. Therefore, a microdosimetric model was developed to simulate the underlying physics of the radiochromic mechanism and was shown to correctly predict the intrinsic response relative to a

  3. Advanced Breast Cancer as Indicator of Quality Mammography

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is the more important screening tool for detecting early breast cancer. Screening mammography involves taking x-rays from two views from each breast, typically from above (cranial-caudal view, CC) and from an oblique or angled view (mediolateral-oblique, MLO). The purpose of this study was to carry out an exploratory survey of the issue of patients with advanced breast cancer who have had a screening mammography. A general result of the survey is that 22.5% of all patients (102) with advanced breast cancer that participated in the study had previous screening mammography. But we should consider that 10% of breast cancers are not detected by mammography. Only 70% of the family doctors prescribed a diagnostic mammography when the first symptoms were diagnosed.

  4. Cost-effectiveness of strategies to enhance mammography use.

    PubMed

    Fishman, P; Taplin, S; Meyer, D; Barlow, W

    2000-01-01

    To estimate the cost-effectiveness of three strategies to increase breast cancer screening with mammography (reminder postcard, reminder telephone call, and motivational telephone call). Cost accounting for each strategy followed by cost-effectiveness analysis. DATA SOURCE FOR EFFECTIVENESS: Randomized trial of three strategies conducted at Group Health Cooperative of Puget Sound (GHC). Women 50 to 79 years of age who were enrolled in GHC's breast cancer screening program who did not schedule screening mammography within 2 months after it was recommended by letter. Health plan. Marginal cost-effectiveness of each additional woman screened. Because of its high cost (about $26 per call) and intermediate effectiveness, the motivational call was the least cost-effective strategy. If it was assumed that 50% of the women who scheduled mammography after receiving the reminder postcard would have scheduled mammography within 10 months even without it, marginal cost-effectiveness for the postcard among all women was $22 per woman screened versus $92 for the reminder call. Among women with no previous mammography, the marginal cost-effectiveness for the postcard was $70 versus $100 for the reminder call. Among women with no previous mammography, the choice between the reminder postcard and the reminder call was sensitive to assumptions about the percentage of women expected to receive mammography in the absence of other promotional strategies. A simple reminder postcard is the most cost-effective way to increase mammography. Choices about how to promote mammography will ultimately depend on plan values and willingness to invest in promotional strategies that increase participation at higher unit costs.

  5. Estimation of mean glandular dose for contrast enhanced digital mammography: factors for use with the UK, European and IAEA breast dosimetry protocols

    NASA Astrophysics Data System (ADS)

    Dance, D. R.; Young, K. C.

    2014-05-01

    The UK, European and IAEA protocols for breast dosimetry in mammography use tabulations of conversion factors, which relate measurements of incident air kerma to the mean glandular dose to the breast. To supplement the existing tabulations, a Monte Carlo computer program has been used to calculate conversion factors for the high-energy spectra used for contrast enhanced digital mammography. The calculations were made for the x-ray spectra from a tungsten target (tube voltage range 40-50 kV) filtered by 0.28, 0.30 and 0.32 mm of copper, and from molybdenum and rhodium targets (tube voltage range 40-49 kV), each filtered by 0.30 mm of copper. The g-factors for all of these spectra were plotted for each breast thickness as a function of half value layer (HVL) and were found to lie on smooth curves within 0.3%. These reflect the fact that the characteristic x-rays present in the spectra from molybdenum and rhodium are heavily filtered and all the spectra are essentially Bremsstrahlung. As a consequence, the s-factor previously used in the dosimetry protocols to adjust for different target/filter combinations can be taken as unity for all of the spectra considered. Tables of g-factors and c-factors are provided for breast thicknesses in the range 20-110 mm and HVLs in the range 2.4-3.6 mm of aluminium. The tables of c-factors are given for breast glandularities in the range 0.1%-100% and for typical glandularities for women in the age bands 40-49 and 50-64 attending the UK national breast screening programme.

  6. Clinical Optimization of Current Digital Mammography Systems (Breast Cancer)

    DTIC Science & Technology

    1994-01-20

    Workshop: Quality Assurance and Radiation Protection. May 7-9, Mannheim. Schnetztor - Verlag; 1992: 90- 91. 2. Panizza P., Del Maschio A. Digital... Panizza P., Cattaneo M., Rodighiero M.G., et al. Course on Digital Radiology and PACS Technology - Clinical Application: Breast (L’Aquila) Scuola

  7. Training system for digital mammographic diagnoses of breast cancer

    NASA Astrophysics Data System (ADS)

    Thomaz, R. L.; Nirschl Crozara, M. G.; Patrocinio, A. C.

    2013-03-01

    As the technology evolves, the analog mammography systems are being replaced by digital systems. The digital system uses video monitors as the display of mammographic images instead of the previously used screen-film and negatoscope for analog images. The change in the way of visualizing mammographic images may require a different approach for training the health care professionals in diagnosing the breast cancer with digital mammography. Thus, this paper presents a computational approach to train the health care professionals providing a smooth transition between analog and digital technology also training to use the advantages of digital image processing tools to diagnose the breast cancer. This computational approach consists of a software where is possible to open, process and diagnose a full mammogram case from a database, which has the digital images of each of the mammographic views. The software communicates with a gold standard digital mammogram cases database. This database contains the digital images in Tagged Image File Format (TIFF) and the respective diagnoses according to BI-RADSTM, these files are read by software and shown to the user as needed. There are also some digital image processing tools that can be used to provide better visualization of each single image. The software was built based on a minimalist and a user-friendly interface concept that might help in the smooth transition. It also has an interface for inputting diagnoses from the professional being trained, providing a result feedback. This system has been already completed, but hasn't been applied to any professional training yet.

  8. Intentions to Maintain Adherence to Mammography

    PubMed Central

    Bowling, J. Michael; Brewer, Noel T.; Lipkus, Isaac M.; Skinner, Celette Sugg; Strigo, Tara S.; Rimer, Barbara K.

    2008-01-01

    Abstract Objective Recent attention has focused on moving women from having initial mammograms to maintaining adherence to regular mammography schedules. We examined behavioral intentions to maintain mammography adherence, which include the likelihood of performing a behavior, and implementation intentions, specific action plans to obtain mammograms. Potential predictors were Theory of Planned Behavior constructs, previous barriers, previous mammography maintenance, and age. Methods Respondents were 2062 currently adherent women due for their next mammograms in 3–4 months according to American Cancer Society recommendations for annual screening. Statistical models were used to examine predictors of behavioral and two implementation intentions, including having thought about where women would get their next mammograms and having thought about making appointments. Results With the exception of pros, cons, and subjective norms, all variables predicted behavioral intentions (p ≤ 0.05). Stronger perceived control, previous mammography maintenance, and one barrier (vs. none) predicted being more likely to have thought about where to get their next mammograms. Previous maintenance and no barriers (vs. two) predicted being more likely to have thought about making appointments. Conclusions Our findings suggest that among women currently adherent to mammography, volitional factors, such as barriers, may be better predictors of implementation intentions than motivational factors, such as attitudes. Implementation variables may be useful in understanding how women move from intentions to action. Future research should examine how such factors relate to mammography maintenance behaviors and can be integrated into behavior change interventions. PMID:18657041

  9. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  10. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2001-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  11. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2004-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  12. Evaluation of using digital gravity field models for zoning map creation

    NASA Astrophysics Data System (ADS)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  13. Trimodel Mammography with Perfect Coregistration

    DTIC Science & Technology

    2017-02-01

    background, the major confounding factor in reading mammography; the imaging characteristics suggest that this contrast mechanism would be preferable...image with enhanced edges and reduced anatomical background, the major confounding factor in reading mammography; the imaging characteristics suggest...subjects, vertebrate animals , biohazards, and/or select agents Describe significant deviations, unexpected outcomes, or changes in approved protocols

  14. Web-based mammography audit feedback.

    PubMed

    Geller, Berta M; Ichikawa, Laura; Miglioretti, Diana L; Eastman, David

    2012-06-01

    Interpreting screening mammography accurately is challenging and requires ongoing education to maintain and improve interpretative skills. Recognizing this, many countries with organized breast screening programs have developed audit and feedback systems using national performance data to help radiologists assess and improve their skills. We developed and tested an interactive Website to provide screening and diagnostic mammography audit feedback with comparisons to national and regional benchmarks. Radiologists who participate in three Breast Cancer Surveillance Consortium registries in the United States were invited during 2009 and 2010 to use a Website that provides tabular and graphical displays of mammography audit reports with comparisons to national and regional performance measures. We collected data about the use and perceptions of the Website. Thirty-five of 111 invited radiologists used the Website from one to five times in a year. The most popular measure was sensitivity for both screening and diagnostic mammography, whereas a table with all measures was the most visited page. Of the 13 radiologists who completed the postuse survey, all found the Website easy to use and navigate, 11 found the benchmarks useful, and nine reported that they intended to improve a specific outcome measure that year. An interactive Website to provide customized mammography audit feedback reports to radiologists has the potential to be a powerful tool in improving interpretive performance. The conceptual framework of customized audit feedback reports can also be generalized to other imaging tests.

  15. Audit of mammography requests in Abakaliki, South-East Nigeria.

    PubMed

    Eni, U E; Ekwedigwe, K C; Sunday-Adeoye, I; Daniyan, Abc; Isikhuemen, M E

    2017-03-07

    Breast cancer is the leading cancer in women in both developed and developing countries. Screening mammography detects breast cancer even before a lump can be palpated, with better prognosis. The introduction of mammographic technique for screening breast cancer, despite its importance, has been slow to adopt and virtually non-existent in many parts of Sub-Saharan Africa including Nigeria. For this reason, the indications of mammography have not been well defined in our setting. The aim of this study was to audit our mammography requests, with a view to improving its application in our setting. This is a descriptive study carried out on 69 female patients who had mammography at the National Obstetric Fistula Centre, Abakaliki, from January 2014 to December 2015. Findings on clinical examination were entered in a proforma. Mammography was performed in craniocaudal and mediolateral views using the Lorad M-IV (film-screen) mammography machine. Data was analysed using the Statistical Package for Social Sciences (SPSS) version 21. All 69 patients were females. Their mean age was 42.1 ± 11 years. Majority of the patients (69.6%) were between 30 and 49 years. The commonest indication for mammography was breast lump which was found in 46 patients (66.7%). Breast pain was present in 36 (52.2%) of patients. The different Breast Imaging Reporting and Data System (BIRADS) categories were BIRADS 0: 20 (28.99%), BIRADS 1: 8 (11.59%), BIRADS 2: 9 (13.04%), BIRADS 3: 4 (5.8%), BIRADS 4: 19 (27.54%) and BIRADS 5: 9 (13.04%). Diagnostic mammography remains the commonest indication for mammography in our setting. Public awareness, poverty reduction and ready availability of mammography facilities are required to improve screening mammography in our setting.

  16. Quality assurance and ergonomics in the mammography department.

    PubMed

    Reynolds, April

    2014-01-01

    Quality assurance (QA) in mammography is a system of checks that helps ensure the proper functioning of imaging equipment and processes. Ergonomics is a scientific approach to arranging the work environment to reduce the risk of work-related injuries while increasing staff productivity and job satisfaction. This article reviews both QA and ergonomics in mammography and explains how they work together to create a safe and healthy environment for radiologic technologists and their patients. QA and quality control requirements in mammography are discussed, along with ergonomic best practices in the mammography setting.

  17. Performance characteristics of digital vs film screen mammography in community practice.

    PubMed

    Dabbous, Firas; Dolecek, Therese A; Friedewald, Sarah M; Tossas-Milligan, Katherine Y; Macarol, Tere; Summerfelt, Wm Thomas; Rauscher, Garth H

    2018-05-01

    We compared the performance characteristics of 297 629 full field digital (FFDM) and 416 791 screen film mammograms (SFM). Sensitivity increased with age, decreased with breast density, and was lower for more aggressive and lobular tumors. While sensitivity did not differ significantly by modality, specificity was generally 1%-2% points higher for FFDM than for SFM across age and breast density categories. The lower recall rate for FFDM vs SFM in our study may partially explain performance differences by modality. In this large health care organization, modest gains in performance were achieved with the introduction of FFDM as a replacement for SFM. © 2017 Wiley Periodicals, Inc.

  18. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.

    PubMed

    Treiber, O; Wanninger, F; Führ, H; Panzer, W; Regulla, D; Winkler, G

    2003-02-21

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing. a dose reduction by 25% has no serious influence on the detection results. whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  19. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  20. Mammography screening: A major issue in medicine.

    PubMed

    Autier, Philippe; Boniol, Mathieu

    2018-02-01

    change the criteria for the evaluation of cancer screening effectiveness, giving precedence to incidence-based mortality (IBM) and case-control studies. But practically all IBM studies on mammography screening have a strong ecological component in their design. The two IBM studies done in Norway that meet all methodological requirements do not document significant reductions in breast cancer mortality associated with mammography screening. Because of their propensity to exaggerate the health benefits of screening, case-control studies may demonstrate that mammography screening could reduce the risk of death from diseases other than breast cancer. Numerous statistical model approaches have been conducted for estimating the contributions of screening and of patient management to reductions in breast cancer mortality. Unverified assumptions are needed for running these models. For instance, many models assume that if screening had not occurred, the majority of screen-detected asymptomatic cancers would have progressed to symptomatic advanced cancers. This assumption is not grounded in evidence because a large proportion of screen-detected breast cancers represent overdiagnosis and hence non-progressing tumours. The accumulation of population data in well-screened populations diminishes the relevance of model approaches. The comparison of the performance of different screening modalities - e.g. mammography, digital mammography, ultrasonography, magnetic resonance imaging (MRI), three-dimensional tomosynthesis (TDT) - concentrates on detection rates, which is the ability of a technique to detect more cancers than other techniques. However, a greater detection rate tells little about the capacity to prevent interval and advanced cancers and could just reflect additional overdiagnosis. Studies based on the incidence of advanced cancers and on the evaluation of overdiagnosis should be conducted before marketing new breast-imaging technologies. Women at high risk of breast

  1. Latin American dose survey results in mammography studies under IAEA programme: radiological protection of patients in medical exposures (TSA3).

    PubMed

    Mora, Patricia; Blanco, Susana; Khoury, Helen; Leyton, Fernando; Cárdenas, Juan; Defaz, María Yolanda; Garay, Fernando; Telón, Flaviano; Aguilar, Juan Garcia; Roas, Norma; Gamarra, Mirtha; Blanco, Daniel; Quintero, Ana Rosa; Nader, Alejandro

    2015-03-01

    Latin American countries (Argentina, Brazil, Chile, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Mexico, Nicaragua, Paraguay, Uruguay and Venezuela) working under the International Atomic Energy Agency (IAEA) Technical Cooperation Programme: TSA3 Radiological Protection of Patients in Medical Exposures have joined efforts in the optimisation of radiation protection in mammography practice. Through surveys of patient doses, the region has a unique database of diagnostic reference levels for analogue and digital equipment that will direct future optimisation activities towards the early detection of breast cancer among asymptomatic women. During RLA9/057 (2007-09) 24 institutions participated with analogue equipment in a dose survey. Regional training on methodology and measurement equipment was addressed in May 2007. The mean glandular dose (DG) was estimated using the incident kerma in air and relevant conversion coefficients for both projections craneo caudal and mediolateral oblique (CC and MLO). For Phase 2, RLA9/067 (2010-11), it was decided to include also digital systems in order to see their impact in future dose optimisation activities. Any new country that joined the project received training in the activities through IAEA expert missions. Twenty-nine new institutions participated (9 analogue and 20 digital equipment). A total of 2262 patient doses were collected during this study and from them D(G) (mGy) for both projections were estimated for each institution and country. Regional results (75 percentile in mGy) show for CC and MLO views, respectively: RLA9/057 (analogue) 2.63 and 3.17; RLA/067: 2.57 and 3.15 (analogue) and 2.69 and 2.90 (digital). Regarding only digital equipment for CC and MLO, respectively, computed radiography systems showed 2.59 and 2.78 and direct digital radiography (DDR) systems 2.78 and 3.04. Based on the IAEA Basic Safety Standard (BSS) reference dose (3 mGy), it can be observed that there is enough room to start

  2. Cost-effectiveness of annual versus biennial screening mammography for women with high mammographic breast density.

    PubMed

    Pataky, Reka; Ismail, Zahra; Coldman, Andrew J; Elwood, Mark; Gelmon, Karen; Hedden, Lindsay; Hislop, Greg; Kan, Lisa; McCoy, Bonnie; Olivotto, Ivo A; Peacock, Stuart

    2014-12-01

    The sensitivity of screening mammography is much lower among women who have dense breast tissue, compared with women who have largely fatty breasts, and they are also at much higher risk of developing the disease. Increasing mammography screening frequency from biennially to annually has been suggested as a policy option to address the elevated risk in this population. The purpose of this study was to assess the cost-effectiveness of annual versus biennial screening mammography among women aged 50-79 with dense breast tissue. A Markov model was constructed based on screening, diagnostic, and treatment pathways for the population-based screening and cancer care programme in British Columbia, Canada. Model probabilities and screening costs were calculated from screening programme data. Costs for breast cancer treatment were calculated from treatment data, and utility values were obtained from the literature. Incremental cost-effectiveness was expressed as cost per quality adjusted life year (QALY), and probabilistic sensitivity analysis was conducted. Compared with biennial screening, annual screening generated an additional 0.0014 QALYs (95% CI: -0.0480-0.0359) at a cost of $819 ($ = Canadian dollars) per patient (95% CI: 506-1185), resulting in an incremental cost effectiveness ratio of $565,912/QALY. Annual screening had a 37.5% probability of being cost-effective at a willingness-to-pay threshold of $100,000/QALY. There is considerable uncertainty about the incremental cost-effectiveness of annual mammography. Further research on the comparative effectiveness of screening strategies for women with high mammographic breast density is warranted, particularly as digital mammography and density measurement become more widespread, before cost-effectiveness can be reevaluated. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Towards Standardization of X-ray Beam Filters in Digital Mammography and Digital Breast Tomosynthesis: Monte Carlo simulations and analytical modelling

    PubMed Central

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-01-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50μm Rh; 50μm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700μm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700μm) and HVL matched by increasing the kV over [0,4] range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over [700,880]μm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness. These

  4. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    PubMed

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  5. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  6. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  7. Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method

    DOE PAGES

    Miao, C.; Sundaram, B. M.; Huang, L.; ...

    2016-08-09

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less

  8. Small format digital photogrammetry for applications in the earth sciences

    NASA Astrophysics Data System (ADS)

    Rieke-Zapp, Dirk

    2010-05-01

    Small format digital photogrammetry for applications in the earth sciences Photogrammetry is often considered one of the most precise and versatile surveying techniques. The same camera and analysis software can be used for measurements from sub-millimetre to kilometre scale. Such a measurement device is well suited for application by earth scientists working in the field. In this case a small toolset and a straight forward setup best fit the needs of the operator. While a digital camera is typically already part of the field equipment of an earth scientist the main focus of the field work is often not surveying. Lack in photogrammetric training at the same time requires an easy to learn, straight forward surveying technique. A photogrammetric method was developed aimed primarily at earth scientists for taking accurate measurements in the field minimizing extra bulk and weight of the required equipment. The work included several challenges. A) Definition of an upright coordinate system without heavy and bulky tools like a total station or GNS-Sensor. B) Optimization of image acquisition and geometric stability of the image block. C) Identification of a small camera suitable for precise measurements in the field. D) Optimization of the workflow from image acquisition to preparation of images for stereo measurements. E) Introduction of students and non-photogrammetrists to the workflow. Wooden spheres were used as target points in the field. They were more rugged and available in different sizes than ping pong balls used in a previous setup. Distances between three spheres were introduced as scale information in a photogrammetric adjustment. The distances were measured with a laser distance meter accurate to 1 mm (1 sigma). The vertical angle between the spheres was measured with the same laser distance meter. The precision of the measurement was 0.3° (1 sigma) which is sufficient, i.e. better than inclination measurements with a geological compass. The upright

  9. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis

    PubMed Central

    Mazurowski, Maciej A; Lo, Joseph Y; Harrawood, Brian P; Tourassi, Georgia D

    2011-01-01

    Development of a computational decision aid for a new medical imaging modality typically is a long and complicated process. It consists of collecting data in the form of images and annotations, development of image processing and pattern recognition algorithms for analysis of the new images and finally testing of the resulting system. Since new imaging modalities are developed more rapidly than ever before, any effort for decreasing the time and cost of this development process could result in maximizing the benefit of the new imaging modality to patients by making the computer aids quickly available to radiologists that interpret the images. In this paper, we make a step in this direction and investigate the possibility of translating the knowledge about the detection problem from one imaging modality to another. Specifically, we present a computer-aided detection (CAD) system for mammographic masses that uses a mutual information-based template matching scheme with intelligently selected templates. We presented principles of template matching with mutual information for mammography before. In this paper, we present an implementation of those principles in a complete computer-aided detection system. The proposed system, through an automatic optimization process, chooses the most useful templates (mammographic regions of interest) using a large database of previously collected and annotated mammograms. Through this process, the knowledge about the task of detecting masses in mammograms is incorporated in the system. Then we evaluate whether our system developed for screen-film mammograms can be successfully applied not only to other mammograms but also to digital breast tomosynthesis (DBT) reconstructed slices without adding any DBT cases for training. Our rationale is that since mutual information is known to be a robust intermodality image similarity measure, it has high potential of transferring knowledge between modalities in the context of the mass detection

  10. Use of a remote computer terminal during field checking of Landsat digital maps

    USGS Publications Warehouse

    Robinove, Charles J.; Hutchinson, C.F.

    1978-01-01

    Field checking of small-scale land classification maps made digitally from Landsat data is facilitated by use of a remote portable teletypewriter terminal linked by teleplume to the IDIMS (Interactive Digital Image Manipulation System) at the EDC (EROS Data Center), Sioux Falls, S. Dak. When field checking of maps 20 miles northeast of Baker, Calif., during the day showed that changes in classification were needed, the terminal was used at night to combine image statistical files, remap portions of images, and produce new alphanumeric maps for field checking during the next day. The alphanumeric maps can be used without serious difficulty in location in the field even though the scale is distorted, and statistical files created during the field check can be used for full image classification and map output at the EDC. This process makes field checking faster than normal, provides interaction with the statistical data while in the field, and reduces to a minimum the number of trips needed to work interactively with the IDIMS at the EDC, thus saving significant amounts of time and money. The only significant problem is using telephone lines which at times create spurious characters in the printout or prevent the line feed (paper advance) signal from reaching the terminal, thus overprinting lines which should be sequential. We recommend that maps for field checking be made with more spectral classes than are expected because in the field it is much easier to group classes than to reclassify or separate classes when only the remote terminal is available for display.

  11. [New mammography technologies and their impact on radiation dose].

    PubMed

    Chevalier del Rio, M

    2013-12-01

    This article reviews new mammography technologies resulting from advances in digital detectors and processing techniques. Most are just starting to be commercialized or are in the clinical trial phase. The results of clinical trials with the new 2D techniques (contrast-enhanced techniques or stereotactic techniques) show they are useful for diagnosing cancer. However, the greater complexity of the image acquisition process suggests that their use will be limited to particular cases such as inconclusive lesions or women with high risk for developing breast cancer. Among the 3D technologies (breast tomography and breast tomosynthesis), only breast tomosynthesis has been implemented in clinical practice, so it is the only technique for which it is possible to know the sensitivity, specificity, and radiation dose delivered. This article describes the principles underlying the way breast tomosynthesis works and the techniques used for image acquisition and reconstruction. It also summarizes the main results obtained in clinical studies, which generally show that breast tomosynthesis increases the breast cancer detection rate while decreasing the recall rate and number of biopsies taken. The protocol for breast tomosynthesis approved by the Food and Drug Administration (USA) consists of two conventional mammography projections for each breast and two tomosynthesis projections for each breast. This means multiplying the risks of inducing cancer and death associated with 2D mammography by a factor between 2 and 3 (2.6-3.3 and 0.7-0.9 per 100,000 women exposed when 50 years old, respectively). The protocol for breast tomosynthesis examinations is one of the aspects that is essential to determine when including tomosynthesis in screening programs and routine breast imaging. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  12. A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women.

    PubMed

    Shen, S; Zhou, Y; Xu, Y; Zhang, B; Duan, X; Huang, R; Li, B; Shi, Y; Shao, Z; Liao, H; Jiang, J; Shen, N; Zhang, J; Yu, C; Jiang, H; Li, S; Han, S; Ma, J; Sun, Q

    2015-03-17

    Chinese women tend to have small and dense breasts and ultrasound is a common method for breast cancer screening in China. However, its efficacy and cost comparing with mammography has not been evaluated in randomised trials. At 14 breast centres across China during 2008-2010, 13 339 high-risk women aged 30-65 years were randomised to be screened by mammography alone, ultrasound alone, or by both methods at enrollment and 1-year follow-up. A total of 12 519 and 8692 women underwent the initial and second screenings, respectively. Among the 30 cancers (of which 15 were stage 0/I) detected, 5 (0.72/1000) were in the mammography group, 11 (1.51/1000) in the ultrasound group, and 14 (2.02/1000) in the combined group (P=0.12). In the combined group, ultrasound detected all the 14 cancers, whereas mammography detected 8, making ultrasound more sensitive (100 vs 57.1%, P=0.04) with a better diagnostic accuracy (0.999 vs 0.766, P=0.01). There was no difference between mammography and ultrasound in specificity (100 vs 99.9%, P=0.51) and positive predictive value (72.7 vs 70.0%; P=0.87). To detect one cancer, the costs of ultrasound, mammography, and combined modality were $7876, $45 253, and $21 599, respectively. Ultrasound is superior to mammography for breast cancer screening in high-risk Chinese women.

  13. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    PubMed Central

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    Objective The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. Materials and Methods The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an "iodine" image which outlined contrast up-take in the breast. Results MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). Conclusion CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography. PMID:25469079

  14. Contrast-enhanced spectral mammography: comparison with conventional mammography and histopathology in 152 women.

    PubMed

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an "iodine" image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography.

  15. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  16. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation.

    PubMed

    Fallenberg, Eva M; Schmitzberger, Florian F; Amer, Heba; Ingold-Heppner, Barbara; Balleyguier, Corinne; Diekmann, Felix; Engelken, Florian; Mann, Ritse M; Renz, Diane M; Bick, Ulrich; Hamm, Bernd; Dromain, Clarisse

    2017-07-01

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. • CESM has comparable diagnostic performance (ROC-AUC) to MRI for breast cancer diagnostics. • CESM in combination with MG does not improve diagnostic performance. • CESM has lower sensitivity but higher specificity than MRI. • Sensitivity differences are more pronounced in dense and not significant in non-dense breasts. • CESM and MRI are significantly superior to MG, particularly in dense breasts.

  17. Eight years of quality control in Bulgaria: impact on mammography practice.

    PubMed

    Avramova-Cholakova, S; Lilkov, G; Kaneva, M; Terziev, K; Nakov, I; Mutkurov, N; Kovacheva, D; Ivanova, M; Vasilev, D

    2015-07-01

    The requirements for quality control (QC) in diagnostic radiology were introduced in Bulgarian legislation in 2005. Hospital medical physicists and several private medical physics groups provide QC services to radiology departments. The aim of this study was to analyse data from QC tests in mammography and to investigate the impact of QC introduction on mammography practice in the country. The study was coordinated by the National Centre of Radiobiology and Radiation Protection. All medical physics services were requested to fill in standardised forms with information about most important parameters routinely measured during QC. All QC service providers responded. Results demonstrated significant improvement of practice since the introduction of QC, with reduction of established deviations from 65 % during the first year to 7 % in the last year. The systems that do not meet the acceptability criteria were suspended from use. Performance of automatic exposure control and digital detectors are not regularly tested because of the absence of requirements in the legislation. The need of updated guidance and training of medical physicists to reflect the change in technology was demonstrated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.

    PubMed

    James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K

    2017-02-01

    We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.

  19. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    PubMed

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  20. Mammography screening services: market segments and messages.

    PubMed

    Scammon, D L; Smith, J A; Beard, T

    1991-01-01

    Mammography has become a vital tool for the early detection of breast cancer. Although many organizations and health care facilities are working to educate and motivate women to take advantage of the life saving opportunity that is offered through screening mammography, only twenty percent of women who should be screened actually have the procedure performed. In order to reach women who have not been screened, it is important to learn which factors most strongly motivate those women who do choose to have a mammogram. Depth interviews with 18 women attending a mobile mammography unit were conducted to explore the decision making process of women obtaining mammography screening services and to develop a profile of prevalent emotions, attitudes, and feelings associated with receiving breast cancer screening services. Analysis of the interview transcripts revealed several important themes to which health care professionals can direct marketing and health promotion strategies.

  1. Fixed-facility workplace screening mammography.

    PubMed

    Reynolds, H E; Larkin, G N; Jackson, V P; Hawes, D R

    1997-02-01

    Potential barriers to compliance with screening mammography guidelines include the cost and inconvenience involved with undergoing the procedure. Workplace screening with mobile mammography is one possible approach to the convenience barrier. However, fixed-facility workplace screening is a viable alternative for any company with a large workforce in one location. This paper describes our initial experience with one such fixed facility. The facility was a cooperative venture by a large pharmaceutical company and an academic radiology department to provide convenient, no-cost (to the patient) screening mammography to employees, dependents, and retirees more than 40 years old. The pharmaceutical company built the facility within its corporate headquarters and the academic radiology department provided the equipment and personnel. The company was billed a fixed cost per examination. In the first 22 months of operation, 4210 (of 4559 scheduled) screening mammograms were obtained. The mean age of the population was 53 years old. Ninety percent of the screening mammograms were interpreted as negative or benign; 10% required additional workup. Of the screened population, 62 biopsies were recommended and 60 were performed. Of these, 42 were benign and 18 malignant. The cancer detection rate was 4.3 per 1000 (0.43%). At the time of diagnosis, six patients were stage 0, 10 patients were stage I, one patient was stage II, and one patient was stage III. Eleven of the 18 patients had minimal cancers. Of the patients who completed a satisfaction survey, 97% percent expressed a high degree of satisfaction with the screening process and stated they would use the facility in the future. A fixed facility for workplace screening mammography is a viable way to provide nearly barrier-free access to high-quality mammography. Patient acceptance is high.

  2. Clinical evaluation of JPEG2000 compression for digital mammography

    NASA Astrophysics Data System (ADS)

    Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik

    2002-06-01

    Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.

  3. Beliefs of Turkish female teaching staff regarding mammography scanning.

    PubMed

    Temel, Ayla Bayik; Ardahan, Melek; Sesli, Esra

    2010-01-01

    To our knowledge, there has hitherto been no research to determine the beliefs of female teaching staff, who are highly educated and form a special risk group regarding breast cancer, towards mammography scanning in Turkey. Definitive research was planned to determine the beliefs of the female teaching staff working in a university. Data were collected by researchers via face-to-face interview using a sociodemographic questionnaire and " Health Belief Model ". The point average of the teaching staff in the mammography benefits sub-scale is 19.6 ± 3.87, their average item score is 3.91. The point average of the teaching staff in the mammography obstacles sub-scale is 21.17 ± 6.87, their average item score is 1.92. They agree on the benefits of the mammography, but they do not agree on the obstacles to mammography.

  4. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  5. Beyond Mammography: New Frontiers in Breast Cancer Screening

    PubMed Central

    Drukteinis, Jennifer S.; Mooney, Blaise P.; Flowers, Chris I.; Gatenby, Robert A

    2014-01-01

    Breast cancer screening remains a subject of intense and, at times, passionate debate. Mammography has long been the mainstay of breast cancer detection and is the only screening test proven to reduce mortality. Although it remains the gold standard of breast cancer screening, there is increasing awareness of subpopulations of women for whom mammography has reduced sensitivity. Mammography has also undergone increased scrutiny for false positives and excessive biopsies, which increase radiation dose, cost and patient anxiety. In response to these challenges, new technologies for breast cancer screening have been developed, including; low dose mammography; contrast enhanced mammography, tomosynthesis, automated whole breast ultrasound, molecular imaging and MRI. Here we examine some of the current controversies and promising new technologies that may improve detection of breast cancer both in the general population and in high-risk groups, such as women with dense breasts. We propose that optimal breast cancer screening will ultimately require a personalized approach based on metrics of cancer risk with selective application of specific screening technologies best suited to the individual’s age, risk, and breast density. PMID:23561631

  6. Prospective study aiming to compare 2D mammography and tomosynthesis + synthesized mammography in terms of cancer detection and recall. From double reading of 2D mammography to single reading of tomosynthesis.

    PubMed

    Romero Martín, Sara; Raya Povedano, Jose Luis; Cara García, María; Santos Romero, Ana Luz; Pedrosa Garriguet, Margarita; Álvarez Benito, Marina

    2018-06-01

    To evaluate tomosynthesis compared with 2D-mammography in cancer detection and recalls in a screening-programme, and assess performing synthesized instead of 2D, and compare double reading of 2D with single reading of tomosynthesis. Women (age 50-69 years) participating in the screening-programme were included. 2D-mammography and tomosynthesis were performed. There were four reading models: 2D-mammography (first); 2D-mammography (second); tomosynthesis + synthesized (third); tomosynthesis + synthesized + 2D (fourth reading). Paired double reading of 2D (first+second) and tomosynthesis (third+fourth) were analysed. In 16,067 participants, there were 98 cancers and 1,196 recalls. Comparing double reading of 2D with single reading of tomosynthesis, there was an increase of 12.6 % in cancer detection with the third reading (p= 0.043) and 6.9 % with the fourth reading (p=0.210), and a decrease in recalls of 40.5 % (p<0.001) and 44.4 % (p<0.001), respectively. With double reading of both techniques, there was an increase in cancer detection of 17.4 % (p = 0.004) and a decrease in recalls of 12.5 % (p = 0.001) with tomosynthesis. Single reading of tomosynthesis plus synthesized increased cancer detection and decreased recalls compared with double reading 2D. 2D did not improve results when added to tomosynthesis. • Tomosynthesis increases cancer detection and decreases recall rates versus 2D mammography. • Synthesized-mammography avoids performing 2D, showing higher cancer detection. • Single reading of tomosynthesis + synthesized is feasible as a new practice.

  7. Digital tomosynthesis in breast cancer: A systematic review.

    PubMed

    García-León, F J; Llanos-Méndez, A; Isabel-Gómez, R

    2015-01-01

    To estimate and compare the diagnostic validity of tomosynthesis and digital mammography for screening and diagnosing breast cancer. We systematically searched MedLine, EMBASE, and Web of Science for the terms breast cancer, screening, tomosynthesis, mammography, sensitivity, and specificity in publications in the period comprising June 2010 through February 2013. We included studies on diagnostic tests and systematic reviews. Two reviewers selected and evaluated the articles. We used QUADAS 2 to evaluate the risk of bias and the NICE criteria to determine the level of evidence. We compiled a narrative synthesis. Of the 151 original studies identified, we selected 11 that included a total of 2475 women. The overall quality was low, with a risk of bias and follow-up and limitations regarding the applicability of the results. The level of evidence was not greater than level II. The sensitivity of tomosynthesis ranged from 69% to 100% and the specificity ranged from 54% to 100%. The negative likelihood ratio was good, and this makes tomosynthesis useful as a test to confirm a diagnosis. One-view tomosynthesis was no better than two-view digital mammography, and the evidence for the superiority of two-view tomosynthesis was inconclusive. The results for the diagnostic validity of tomosynthesis in the diagnosis of breast cancer were inconclusive and there were no results for its use in screening. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  8. Surveillance of Women with the BRCA1 or BRCA2 Mutation by Using Biannual Automated Breast US, MR Imaging, and Mammography.

    PubMed

    van Zelst, Jan C M; Mus, Roel D M; Woldringh, Gwendolyn; Rutten, Matthieu J C M; Bult, Peter; Vreemann, Suzan; de Jong, Mathijn; Karssemeijer, Nico; Hoogerbrugge, Nicoline; Mann, Ritse M

    2017-11-01

    Purpose To evaluate a multimodal surveillance regimen including yearly full-field digital (FFD) mammography, dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging, and biannual automated breast (AB) ultrasonography (US) in women with BRCA1 and BRCA2 mutations. Materials and Methods This prospective multicenter trial enrolled 296 carriers of the BRCA mutation (153 BRCA1 and 128 BRCA2 carriers, and 15 women with first-degree untested relatives) between September 2010 and November 2012, with follow-up until November 2015. Participants underwent 2 years of intensified surveillance including biannual AB US, and routine yearly DCE MR imaging and FFD mammography. The surveillance performance for each modality and possible combinations were determined. Results Breast cancer was screening-detected in 16 women (age range, 33-58 years). Three interval cancers were detected by self-examination, all in carriers of the BRCA1 mutation under age 43 years. One cancer was detected in a carrier of the BRCA1 mutation with a palpable abnormality in the contralateral breast. One incidental breast cancer was detected in a prophylactic mastectomy specimen. Respectively, sensitivity of DCE MR imaging, FFD mammography, and AB US was 68.1% (14 of 21; 95% confidence interval [CI]: 42.9%, 85.8%), 37.2% (eight of 21; 95% CI: 19.8%, 58.7%), and 32.1% (seven of 21; 95% CI: 16.1%, 53.8%); specificity was 95.0% (643 of 682; 95% CI: 92.7%, 96.5%), 98.1% (638 of 652; 95% CI: 96.7%, 98.9%), and 95.1% (1030 of 1088; 95% CI: 93.5%, 96.3%); cancer detection rate was 2.0% (14 of 702), 1.2% (eight of 671), and 1.0% (seven of 711) per 100 women-years; and positive predictive value was 25.2% (14 of 54), 33.7% (nine of 23), and 9.5% (seven of 68). DCE MR imaging and FFD mammography combined yielded the highest sensitivity of 76.3% (16 of 21; 95% CI: 53.8%, 89.9%) and specificity of 93.6% (643 of 691; 95% CI: 91.3%, 95.3%). AB US did not depict additional cancers. FFD mammography yielded no

  9. Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology

    PubMed Central

    Bu, Qirong; Liu, Feihong; Zhang, Min; Ren, Yu; Lv, Yi

    2018-01-01

    Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist's mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and quantified by mathematical methods. The framework can be seen as an effective trade-off between bottom-up sensation and top-down recognition methods. This is a new exploratory method for the automatic detection of lesions. The experiments are performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data sets. The sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our framework has achieved a better performance compared with other algorithms. PMID:29854359

  10. Digital Breast Tomosynthesis: Cost-Effectiveness of Using Private and Medicare Insurance in Community-Based Health Care Facilities.

    PubMed

    Hunter, Sara A; Morris, Colleen; Nelson, Karl; Snyder, Brandon J; Poulton, Thomas B

    2017-05-01

    The purpose of this study was to determine whether digital breast tomosynthesis (DBT) is a cost-effective alternative to full-field digital mammography (FFDM) for both Medicare and privately insured patients undergoing screening mammography. A retrospective data analysis was performed between July 15, 2013, and July 14, 2014, with data on women presenting for screening mammography that included any additional radiologic workup (n = 6319). Patients chose to undergo DBT or FFDM on the basis of personal preference, physician suggestion, and cost difference. The summation of findings over the 1-year period were used to calculate recall rates, cancer detection rates, and billing costs for a regional private insurer and Medicare. Data from the 6319 patients who participated were divided: 3655 patients underwent DBT, and 2664 underwent FFDM during the year of screening. Private insurance billing cost $2.9 million, and Medicare cost $1.2 million for screening, follow-up imaging, and radiologic procedures. Per-person costs were approximately $40 higher for the DBT group using both forms of insurance. However, cost per cancer detected was lower in the DBT group for both private and governmental insurance, leading to potentially $3.7 million and $899,000 saved per 100 cancers found. After standardization of the difference in cancer detection rates between the two groups, DBT was a cost-equivalent alternative to FFDM for private insurance billing but was a cost-inefficient alternative with respect to Medicare costs. In a community-based setting, DBT is a cost-equivalent or potentially cost-effective alternative to FFDM and has the capacity for improving cancer detection and recall rates.

  11. Energy, angular and spatial distributions of primary electrons inside photoconducting materials for digital mammography: Monte Carlo simulation studies.

    PubMed

    Sakellaris, T; Spyrou, G; Tzanakos, G; Panayiotakis, G

    2007-11-07

    Materials such as a-Se, a-As(2)Se(3), GaSe, GaAs, Ge, CdTe, CdZnTe, Cd(0.8)Zn(0.2)Te, ZnTe, PbO, TlBr, PbI(2) and HgI(2) are potential candidates as photoconductors in direct detectors for digital mammography. The x-ray induced primary electrons inside a photoconductor's bulk comprise the initial signal that propagates and forms the final signal (image) on the detector's electrodes. An already developed model for a-Se has been properly extended to simulate the primary electron production in the materials mentioned. Primary electron characteristics, such as their energy, angular and spatial distributions that strongly influence the characteristics of the final image, were studied for both monoenergetic and polyenergetic x-ray spectra in the mammographic energy range. The characteristic feature in the electron energy distributions for PbI(2) and HgI(2) is the atomic deexcitation peaks, whereas for the rest of the materials their shape can also be influenced by the electrons produced from primary photons. The electrons have a small tendency to be forward ejected whereas they prefer to be ejected perpendicular (theta = pi/2) to the incident beam's axis and at two lobes around phi = 0 and phi = pi. At practical mammographic energies (15-40 keV) a-Se, a-As(2)Se(3) and Ge have the minimum azimuthal uniformity whereas CdZnTe, Cd(0.8)Zn(0.2)Te and CdTe the maximum one. The spatial distributions for a-Se, a-As(2)Se(3), GaSe, GaAs, Ge, PbO and TlBr are almost independent of the polyenergetic spectrum, while those for CdTe, CdZnTe, Cd(0.8)Zn(0.2)Te, ZnTe, PbI(2) and HgI(2) have a spectrum dependence. In the practical mammographic energy range and at this primitive stage of primary electron production, a-Se has the best inherent spatial resolution as compared to the rest of the photoconductors. PbO has the minimum bulk space in which electrons can be produced whereas CdTe has the maximum one.

  12. Barriers to Mammography among Inadequately Screened Women

    ERIC Educational Resources Information Center

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  13. Signal uniformity of mammography systems and its impact on test results from contrast detail phantoms

    NASA Astrophysics Data System (ADS)

    Kaar, M.; Semturs, F.; Hummel, J.; Hoffmann, R.; Figl, M.

    2015-03-01

    Technical quality assurance (TQA) procedures for mammography systems usually include tests with a contrast-detail phantom. These phantoms contain multiple objects of varying dimensions arranged on a flat body. Exposures of the phantom are then evaluated by an observer, either human or software. One well-known issue of this method is that dose distribution is not uniform across the image area of any mammography system, mainly due to the heel effect. The purpose of this work is to investigate to what extent image quality differs across the detector plane. We analyze a total of 320 homogeneous mammography exposures from 32 radiology institutes. Systems of different models and manufacturers, both computed radiography (CR) and direct radiography (DR) are included. All images were taken from field installations operated within the nationwide Austrian mammography screening program, which includes mandatory continuous TQA. We calculate signal-to-noise ratios (SNR) for 15 regions of interest arranged to cover the area of the phantom. We define the 'signal range' of an image and compare this value categorized by technologies. We found the deviations of SNR greater in anterior-posterior than in lateral direction. SNR ranges are significantly higher for CR systems than for DR systems.

  14. Mammography screening among Arab American women in metropolitan Detroit.

    PubMed

    Schwartz, Kendra; Fakhouri, Monty; Bartoces, Monina; Monsur, Joseph; Younis, Amani

    2008-12-01

    Mammography screening behavior has not been well studied among Middle Eastern immigrant women. We conducted a telephone survey of 365 Arab American women residing in metropolitan Detroit, home to one of the largest populations of Middle Eastern immigrants in the US, to determine prevalence of factors associated with mammography, and attitudes and beliefs regarding mammography screening. Of 365 participants, only five were born in the US. Mean age was 53.2 years (SD 10.8). Two hundred twelve (58.1%) reported having mammogram every 1-2 years; 70% ever had mammogram. Age 50-64 years, having health insurance, married status, being in the US over 10 years, and being Lebanese were associated with mammography every 1-2 years. After adjusting for demographic factors, perceived seriousness of disease, general health motivation, and having fewer barriers were associated with more frequent screening. Appropriate mammography screening is decreased in this group. Targeted outreach regarding screening is appropriate for this population; however, lack of insurance may prevent adequate follow-up.

  15. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis.

    PubMed

    Cheung, Yun-Chung; Lin, Yu-Ching; Wan, Yung-Liang; Yeow, Kee-Min; Huang, Pei-Chin; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chang, Chee-Jen

    2014-10-01

    To analyse the accuracy of dual-energy contrast-enhanced spectral mammography in dense breasts in comparison with contrast-enhanced subtracted mammography (CESM) and conventional mammography (Mx). CESM cases of dense breasts with histological proof were evaluated in the present study. Four radiologists with varying experience in mammography interpretation blindly read Mx first, followed by CESM. The diagnostic profiles, consistency and learning curve were analysed statistically. One hundred lesions (28 benign and 72 breast malignancies) in 89 females were analysed. Use of CESM improved the cancer diagnosis by 21.2 % in sensitivity (71.5 % to 92.7 %), by 16.1 % in specificity (51.8 % to 67.9 %) and by 19.8 % in accuracy (65.9 % to 85.8 %) compared with Mx. The interobserver diagnostic consistency was markedly higher using CESM than using Mx alone (0.6235 vs. 0.3869 using the kappa ratio). The probability of a correct prediction was elevated from 80 % to 90 % after 75 consecutive case readings. CESM provided additional information with consistent improvement of the cancer diagnosis in dense breasts compared to Mx alone. The prediction of the diagnosis could be improved by the interpretation of a significant number of cases in the presence of 6 % benign contrast enhancement in this study. • DE-CESM improves the cancer diagnosis in dense breasts compared with mammography. • DE-CESM shows greater consistency than mammography alone by interobserver blind reading. • Diagnostic improvement of DE-CESM is independent of the mammographic reading experience.

  16. Comparison of two methods of digital imaging technology for small diameter K-file length determination.

    PubMed

    Maryam, Ehsani; Farida, Abesi; Farhad, Akbarzade; Soraya, Khafri

    2013-11-01

    Obtaining the proper working length in endodontic treatment is essential. The aim of this study was to compare the working length (WL) assessment of small diameter K-files using the two different digital imaging methods. The samples for this in-vitro experimental study consisted of 40 extracted single-rooted premolars. After access cavity preparation, the ISO files no. 6, 8, and 10 stainless steel K-files were inserted in the canals in the three different lengths to evaluate the results in a blinded manner: At the level of apical foramen(actual)1 mm short of apical foramen2 mm short of apical foramen A digital caliper was used to measure the length of the files which was considered as the Gold Standard. Five observers (two oral and maxillofacial radiologists and three endodontists) observed the digital radiographs which were obtained using PSP and CCD digital imaging sensors. The collected data were analyzed by SPSS 17 and Repeated Measures Paired T-test. In WL assessment of small diameter K-files, a significant statistical relationship was seen among the observers of two digital imaging techniques (P<0.001). However, no significant difference was observed between the two digital techniques in WL assessment of small diameter K-files (P<0.05). PSP and CCD digital imaging techniques were similar in WL assessment of canals using no. 6, 8, and 10 K-files.

  17. Correlates of mammography utilization among working Muslim Iranian women.

    PubMed

    Hatefnia, Effat; Niknami, Shamsaddin; Bazargan, Mohsen; Mahmoodi, Mahmood; Lamyianm, Minoor; Alavi, Nasrien

    2010-06-01

    Most countries in Middle East have been successful in establishing and furthering basic facilities for screening, diagnosis, and treatment of breast cancer. The rate of compliance with mammography screening, however, remains well below North American and Western European countries. We utilized the Health Belief Model (HBM) to explore factors associated with mammography screening behavior among a sample of 320 Muslim women aged > or = 35. Carrying out this cross-sectional study, we found that screening behavior was associated with older age, higher perceived benefit of breast cancer screening, and lower perceived barrier. Additionally, we demonstrate the importance of religious beliefs in influencing mammography screening behavior and explaining the link between religious involvement and mammography behavior.

  18. Influence of advertisement on women's attitudes toward mammography screening.

    PubMed

    Collins, C; Davis, L S; Rentz, K; Vannoy, D

    1997-01-01

    This project represents an effort to incorporate a feminist perspective into research on mammography screening. The purpose of this study was to assess women's attitudes toward four advertisements designed to encourage mammography screening. The goal was to create awareness about women's attitudes toward mammography advertisements in order to encourage the development of more effective and responsive motivational materials. The results indicated that each ad communicated different messages about the seriousness of breast cancer and the efficacy of mammography in detecting early breast cancer. Each ad also affected women differently regarding their feelings of control over breast cancer, their perceived loss of sex appeal resulting from a breast cancer diagnosis, and their general fear of breast cancer.

  19. Hough transform for clustered microcalcifications detection in full-field digital mammograms

    NASA Astrophysics Data System (ADS)

    Fanizzi, A.; Basile, T. M. A.; Losurdo, L.; Amoroso, N.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; Tamborra, P.; Tangaro, S.; La Forgia, D.

    2017-09-01

    Many screening programs use mammography as principal diagnostic tool for detecting breast cancer at a very early stage. Despite the efficacy of the mammograms in highlighting breast diseases, the detection of some lesions is still doubtless for radiologists. In particular, the extremely minute and elongated salt-like particles of microcalcifications are sometimes no larger than 0.1 mm and represent approximately half of all cancer detected by means of mammograms. Hence the need for automatic tools able to support radiologists in their work. Here, we propose a computer assisted diagnostic tool to support radiologists in identifying microcalcifications in full (native) digital mammographic images. The proposed CAD system consists of a pre-processing step, that improves contrast and reduces noise by applying Sobel edge detection algorithm and Gaussian filter, followed by a microcalcification detection step performed by exploiting the circular Hough transform. The procedure performance was tested on 200 images coming from the Breast Cancer Digital Repository (BCDR), a publicly available database. The automatically detected clusters of microcalcifications were evaluated by skilled radiologists which asses the validity of the correctly identified regions of interest as well as the system error in case of missed clustered microcalcifications. The system performance was evaluated in terms of Sensitivity and False Positives per images (FPi) rate resulting comparable to the state-of-art approaches. The proposed model was able to accurately predict the microcalcification clusters obtaining performances (sensibility = 91.78% and FPi rate = 3.99) which favorably compare to other state-of-the-art approaches.

  20. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    PubMed

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  1. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition

  2. Assessment of automatic exposure control performance in digital mammography using a no-reference anisotropic quality index

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.

  3. A review of screening mammography participation and utilization in Canada.

    PubMed

    Doyle, G P; Major, D; Chu, C; Stankiewicz, A; Harrison, M L; Pogany, L; Mai, V M; Onysko, J

    2011-09-01

    Participation rate is an important indicator for a screening program's effectiveness; however, the current approach to measuring participation rate in Canada is not comparable with other countries. The objective of this study is to review the measurement of screening mammography participation in Canada, make international comparisons, and propose alternative methods. Canadian breast cancer screening program data for women aged 50 to 69 years screened between 2004 and 2006 were extracted from the Canadian Breast Cancer Screening Database (CBCSD). The fee-for-services (FSS) mammography data (opportunistic screening mammography) were obtained from the provincial ministries of health. Both screening mammography program participation and utilization were examined over 24 and 30 months. Canada's screening participation rate increases from 39.4% for a 24-month cut-off to 43.6% for a 30-month cut-off. The 24-month mammography utilization rate is 63.1% in Canada, and the 30-month utilization rate is 70.4%. Due to the differences in health service delivery among Canadian provinces, both programmatic participation and overall utilization of mammography at 24 months and 30 months should be monitored.

  4. Design of a laser scanner for a digital mammography system.

    PubMed

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  5. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.

    2007-09-01

    Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 µGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm-1 for a target DAK of 100 µGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 µGy when compared to DQE data acquired at 100 µGy. For the CsI based systems, DQE at 1 mm-1 fell from 0

  6. Digital Audio Radio Field Tests

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1997-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).

  7. Is Mammography Useful in Older Women

    DTIC Science & Technology

    1999-06-01

    mammography in women age 70 and older . Using the Linked Medicare-SEER Tumor Registry Database, created by the National Cancer Institute and the Health Care... Health Interview Survey) have documented that mammography use decreases with advancing age (11,21,22). In 1993, only 25% of women age 65 and older ...related health services research. The linked database contains cancer information on patients 65 years of age and older from NCI’s SEER Program and

  8. Understanding women's mammography intentions: a theory-based investigation.

    PubMed

    Naito, Mikako; O'Callaghan, Frances V; Morrissey, Shirley

    2009-01-01

    The present study compared the utility of two models (the Theory of Planned Behavior and Protection Motivation Theory) in identifying factors associated with intentions to undertake screening mammography, before and after an intervention. The comparison was made between the unique components of the two models. The effect of including implementation intentions was also investigated. Two hundred and fifty-one women aged 37 to 69 years completed questionnaires at baseline and following the delivery of a standard (control) or a protection motivation theory-based informational intervention. Hierarchical multiple regressions indicated that theory of planned behavior variables were associated with mammography intentions. Results also showed that inclusion of implementation intention in the model significantly increased the association with mammography intentions. The findings suggest that future interventions aiming to increase screening mammography participation should focus on the theory of planned behavior variables and that implementation intention should also be targeted.

  9. Improving mammography screening among the medically underserved.

    PubMed

    Davis, Terry C; Rademaker, Alfred; Bennett, Charles L; Wolf, Michael S; Carias, Edson; Reynolds, Cristalyn; Liu, Dachao; Arnold, Connie L

    2014-04-01

    We evaluated the effectiveness and cost-effectiveness of alternative interventions designed to promote mammography in safety-net settings. A three-arm, quasi-experimental evaluation was conducted among eight federally qualified health clinics in predominately rural Louisiana. Mammography screening efforts included: 1) enhanced care, 2) health literacy-informed education of patients, and 3) education plus nurse support. Outcomes included mammography screening completion within 6 months and incremental cost-effectiveness. Overall, 1,181 female patients ages 40 and over who were eligible for routine mammography were recruited. Baseline screening rates were < 10%. Post intervention screening rates were 55.7% with enhanced care, 51.8% with health literacy-informed education and 65.8% with education and nurse support. After adjusting for race, marital status, self-efficacy and literacy, patients receiving health-literacy informed education were not more likely to complete mammographic screening than those receiving enhanced care; those additionally receiving nurse support were 1.37-fold more likely to complete mammographic screening than those receiving the brief education (95% Confidence Interval 1.08-1.74, p = 0.01). The incremental cost per additional women screened was $2,457 for literacy-informed education with nurse support over literacy-informed education alone. Mammography rates were increased substantially over existing baseline rates in all three arms with the educational initiative, with nurse support and follow-up being the most effective option. However, it is not likely to be cost-effective or affordable in resource-limited clinics.

  10. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code.

    PubMed

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-10-01

    X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. We studied some different X-ray sources and exposure factors that affect the MGD. "Midi-future" digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD.

  11. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code

    PubMed Central

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-01-01

    Background X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. Objectives The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. Materials and Methods We studied some different X-ray sources and exposure factors that affect the MGD. “Midi-future” digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. Results MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. Conclusion By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD. PMID:27895876

  12. The Influence of Breast Self-Examination on Subsequent Mammography Participation

    PubMed Central

    Jelinski, Susan E.; Maxwell, Colleen J.; Onysko, Jay; Bancej, Christina M.

    2005-01-01

    Objectives. We evaluated whether breast self-examination (BSE) influences subsequent mammography participation. Methods. We evaluated associations between BSE and subsequent mammography participation, adjusting for baseline screening behaviors and sociodemographic, health, and lifestyle characteristics, among women aged 40 years and older using data from the longitudinal Canadian National Population Health Survey. Results. Regular performance of BSE at baseline was not associated with receipt of a recent mammogram at follow-up among all women (adjusted odds ratio [OR]=1.01; 95% confidence interval [CI]= 0.75, 1.35) or with mammography uptake among the subgroup of women reporting never use at baseline (adjusted OR=0.78; 95% CI=0.50, 1.22). Conclusions. The lack of association between performance of BSE and subsequent mammography participation suggests that not recommending BSE is unlikely to influence mammography participation. PMID:15727985

  13. A Monte Carlo study of primary electron production inside photoconductors for digital mammography and indications of material suitability

    NASA Astrophysics Data System (ADS)

    Sakellaris, T.; Spyrou, G.; Panayiotakis, G.; Tzanakos, G.

    2010-08-01

    Materials like a-Se, a-As2Se3, GaSe, GaAs, Ge, CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbO, TlBr, PbI2 and HgI2 are possible photoconductors for direct conversion digital mammography detectors. The physical characteristics of primary electrons, such as their number, energies, direction angles and spatial distributions, strongly affect the characteristics of the final signal and hence image quality. In previous work, a Monte Carlo model has been developed that simulates the generation of primary electrons inside these materials for x-ray spectra in the mammographic energy range. Using this model the energy, angular and spatial distributions of primary electrons have been studied. For the case of CdTe, CdZnTe, Cd0.8Zn0.2Te and ZnTe, an investigation was also made concerning the dependence of the primary electron production on the incident x-ray energy. In this paper, this investigation has been extended to include the rest of the photoconducting materials. The investigation is realized studying the number of primary electrons produced along with the escaping of photons (both incident and fluorescent) and the number of fluorescent photons emitted for 39 monoenergetic x-ray spectra with energies between 2 and 40 keV. The information obtained from the overall investigation of the primary signal in the various photoconductors gives some good indications of the suitability of PbI2 and HgI2.

  14. Fracture Systems - Digital Field Data Capture

    NASA Astrophysics Data System (ADS)

    Haslam, Richard

    2017-04-01

    Fracture systems play a key role in subsurface resources and developments including groundwater and nuclear waste repositories. There is increasing recognition that there is a need to record and quantify fracture systems to better understand the potential risks and opportunities. With the advent of smart phones and digital field geology there have been numerous systems designed for field data collection. Digital field data collection allows for rapid data collection and interpretations. However, many of the current systems have principally been designed to cover the full range of field mapping and data needs, making them large and complex, plus many do not offer the tools necessary for the collection of fracture specific data. A new multiplatform data recording app has been developed for the collection of field data on faults and joint/fracture systems and a relational database designed for storage and retrieval. The app has been developed to collect fault data and joint/fracture data based on an open source platform. Data is captured in a form-based approach including validity checks to ensure data is collected systematically. In addition to typical structural data collection, the International Society of Rock Mechanics' (ISRM) "Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses" is included allowing for industry standards to be followed and opening up the tools to industry as well as research. All data is uploaded automatically to a secure server and users can view their data and open access data as required. Users can decide if the data they produce should remain private or be open access. A series of automatic reports can be produced and/or the data downloaded. The database will hold a national archive and data retrieval will be made through a web interface.

  15. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    NASA Astrophysics Data System (ADS)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  16. Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Chezar, H.

    2007-12-01

    Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.

  17. Mammography Patient Information at Hospital Websites: Most Neither Comprehensible Nor Guideline Supported.

    PubMed

    Sadigh, Gelareh; Singh, Kush; Gilbert, Kirven; Khan, Ramsha; Duszak, Abigail M; Duszak, Richard

    2016-11-01

    Ongoing controversy regarding screening mammography guidelines has created confusion for many patients. Given recommendations that patient educational material be prepared at or below the 7th grade reading level of average Americans, the purpose of this study was to assess the readability of online mammography information offered by hospitals nationwide. During 2015, online mammography patient educational materials were identified for all Medicare-recognized hospitals nationwide for which screening mammography metrics were publicly available. Patient educational materials were assessed using six validated readability score algorithms. All references to official screening guidelines were captured. Of 4105 hospitals nationwide, 3252 had websites and confirmable screening mammography services. Of those, 1753 (54%) offered mammography information material online. Only 919 (28%) referenced any professional society guidelines. After excluding information not formatted in HTML and shorter than 100 words (to improve algorithm reliability), 1524 hospital mammography webpages were assessed for grade level scores. Nationally, the mean of each readability score for all hospitals varied between the 10th and 14th grade levels, all higher than the recommended 7th grade level (p < 0.001). At the individual hospital level, only 14 hospitals (0.4%) had mean scores at or below the 7th grade level. Of U.S. hospitals that offer screening mammography and have websites, only 54% provide online mammography educational material. Of those, only 0.4% present information at a reading level comprehensible to average Americans, and only 28% offer specific information to help patients reconcile conflicting guidelines. Health systems offering mammography should strive to better meet women's health information and literacy needs.

  18. Technetium-99m sestamibi scintimammography complements mammography in the detection of breast cancer.

    PubMed

    Krishnaiah, Gayathri; Sher-Ahmed, Arifa; Ugwu-Dike, Martins; Regan, Patricia; Singer, John; Totoonchie, Adil; Spiegler, Ethan; Sardi, Armando

    2003-01-01

    Mammography remains the technique of choice for the detection of early breast cancer. The sensitivity of mammography is 85%, but is decreased in patients with dense breasts. Sestamibi scintimammography (SCM) has been suggested as an adjunctive modality to improve the detection of breast cancer. We conducted a study to determine the impact of SCM in patient management. A prospective study was conducted in 95 patients presenting with palpable masses and/or abnormal mammography scheduled for biopsy. Injection of 20-30 mCi of technetium-99m (Tc-99m) sestamibi into a pedal vein was performed. Ten-minute images of the breast and axilla were obtained in multiple projections. The mammography and SCM were correlated with pathology and clinical findings. The median age was 44 years (range 28-86 years). The total number of lesions was 104, as eight patients had bilateral lesions and one patient had two lesions in the same breast. Fifty-nine patients presented with palpable lesions and 45 patients with nonpalpable lesions (42 with abnormal mammography only and 3 with nipple discharge). A comparison of sensitivity, specificity, positive and negative predictive values, and overall accuracy of SCM and mammography were performed. The sensitivity and specificity for SCM were 83% and 83%, respectively, and for mammography were 65%, and 72%, respectively. The sensitivity and specificity for combined SCM and mammography were 87% and 94%, respectively. The p-value for mammography versus combined SCM and mammography was 0.0003 and that for SCM versus SCM and mammography was 0.0098. There were 80 (77%) benign and 24 (23%) malignant lesions. Of the 24 malignancies, SCM missed six (25%), versus eight (33%) by mammography. In two patients (9%) SCM detected malignancy in the breast that was not visualized by mammography or found on clinical examination. Sestamibi SCM improves the sensitivity of mammography and it detects up to 9% of malignancies not detected by mammography or clinical

  19. Automatic breast tissue density estimation scheme in digital mammography images

    NASA Astrophysics Data System (ADS)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  20. Quantification of breast lesion compositions using low-dose spectral mammography: A feasibility study

    PubMed Central

    Ding, Huanjun; Sennung, David; Cho, Hyo-Min; Molloi, Sabee

    2016-01-01

    Purpose: The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. Methods: Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. Results: The thickness of measured and known water contents was

  1. Mammography facilities are accessible, so why is utilization so low?

    PubMed

    Mobley, Lee R; Kuo, Tzy-Mey May; Clayton, Laurel J; Evans, W Douglas

    2009-08-01

    This study examines new socio-ecological variables reflecting community context as predictors of mammography use. The conceptual model is a hybrid of traditional health-behavioral and socio-ecological constructs with an emphasis on spatial interaction among women and their environments, differentiating between several levels of influence for community context. Multilevel probability models of mammography use are estimated. The study sample includes 70,129 women with traditional Medicare fee-for-service coverage for inpatient and outpatient services, drawn from the SEER-Medicare linked data. The study population lives in heterogeneous California, where mammography facilities are dense but utilization rates are low. Several contextual effects have large significant impacts on the probability of mammography use. Women living in areas with higher proportions of elderly in poverty are 33% less likely to use mammography. However, dually eligible women living in these poor areas are 2% more likely to use mammography than those without extra assistance living in these areas. Living in areas with higher commuter intensity, higher violent crime rates, greater land use mix (urbanicity), or more segregated Hispanic communities exhibit -14%, -1%, -6%, and -3% (lower) probability of use, respectively. Women living in segregated American Indian communities or in communities where more elderly women live alone exhibit 16% and 12% (higher) probability of use, respectively. Minority women living in more segregated communities by their minority are more likely to use mammography, suggesting social support, but this is significant for Native Americans only. Women with disability as their original reason for entitlement are found 40% more likely to use mammography when they reside in communities with high commuter intensity, suggesting greater ease of transportation for them in these environments. Socio-ecological variables reflecting community context are important predictors of

  2. Development of a volumetric projection technique for the digital evaluation of field of view.

    PubMed

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  3. Incremental cancer detection of locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound in women with newly-diagnosed breast cancer

    PubMed Central

    Candelaria, Rosalind P.; Huang, Monica L.; Adrada, Beatriz E.; Bassett, Roland; Hunt, Kelly K.; Kuerer, Henry M.; Smith, Benjamin D.; Chavez-MacGregor, Mariana; Yang, Wei Tse

    2016-01-01

    RATIONALE AND OBJECTIVES To determine if locoregional restaging with diagnostic mammography and ultrasound of the whole breast and regional nodes performed for quality assurance in women with newly-diagnosed breast cancer referred to a tertiary care center yields incremental cancer detection. MATERIALS AND METHODS An institutional review board-approved retrospective, single institution database review was performed on the first 1000 women referred to our center in 2010 with a provisional breast cancer diagnosis. Locoregional restaging consisted of diagnostic full-field digital mammography combined with ultrasound of the whole breast and regional nodal basins. Bilateral whole breast ultrasound was performed in women with contralateral mammographic abnormality or had heterogeneously or extremely dense parenchyma. Demographic, clinical and pathologic factors were analyzed. RESULTS Final analyses included 401 women. 34% (138/401) of women did not have their outside images available for review upon referral. Median age was 54 years, range 21–92; median tumor size was 2.9 cm, range 0.6–18, for women whose disease was upstaged and 2.2 cm, range 0.4–15, for women whose disease was not upstaged. Incremental cancer detection rates were 15.5% (62/401) in the ipsilateral breast and 3.9% (6/154) in the contralateral breast (p<0.0001). Total upstage rate was 25% (100/401). Surgical management changed from segmentectomy to mastectomy in 12% (50/401). Re-excision rate after segmentectomy was 19% (35/189). CONCLUSION Locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound that is performed for standardization of the imaging workup for newly-diagnosed breast cancer patients can reduce underestimation of disease burden and impact therapeutic planning. PMID:27955877

  4. Mammography image quality and evidence based practice: Analysis of the demonstration of the inframammary angle in the digital setting.

    PubMed

    Spuur, Kelly; Webb, Jodi; Poulos, Ann; Nielsen, Sharon; Robinson, Wayne

    2018-03-01

    The aim of this study is to determine the clinical rates of the demonstration of the inframammary angle (IMA) on the mediolateral oblique (MLO) view of the breast on digital mammograms and to compare the outcomes with current accreditation standards for compliance. Relationships between the IMA, age, the posterior nipple line (PNL) and compressed breast thickness will be identified and the study outcomes validated using appropriate analyses of inter-reader and inter-rater reliability and variability. Differences in left versus right data were also investigated. A quantitative retrospective study of 2270 randomly selected paired digital mammograms performed by BreastScreen NSW was undertaken. Data was collected by direct measurement and visual analysis. Intra-class correlation analyses were used to evaluate inter- and intra-rater reliability. The IMA was demonstrated on 52.4% of individual and 42.6% of paired mammograms. A linear relationship was found between the posterior nipple line (PNL) and age (p-value <0.001). The PNL was predicted to increase by 0.48 mm for every one year increment in age. The odds of demonstrating the IMA reduced by 2% for every one year increase in age (p-value = 0.001); are 0.4% higher for every 1 mm increase in PNL (p-value = 0.001) and 1.6% lower for every 1 mm increase in compressed breast thickness, (p-value<0.001). There was high inter- and intra-rater reliability for the PNL while there was 100% agreement for the demonstration of the IMA. Analysis of the demonstration of the IMA indicates clinically achievable rates (42.6%) well below that required for compliance (50%-75%) to known worldwide accreditation standards for screening mammography. These standards should be aligned to the reported evidence base. Visualisation of the IMA is impacted negatively by increasing age and compressed breast thickness but positively by breast size (PNL). Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Response costs of mammography adherence: Iranian women's perceptions.

    PubMed

    Khodayarian, Mahsa; Mazloomi-Mahmoodabad, Seyed Saied; Lamyian, Minoor; Morowatisharifabad, Mohammad Ali; Tavangar, Hossein

    2016-01-01

    Mammography as the most common secondary prevention method has known to be helpful in detecting breast cancer at the early stages. Low level of participation among women toward mammography uptake due to cultural beliefs is a great concern. This study aimed at exploring the perceptions of women about response costs of mammography adherence (MA) in Yazd, Iran. A qualitative study using semi-structured interviews was performed. Fourteen women,one oncology nurse, and a breast cancer survivor were purposefully interviewed. Interviews were transcribed verbatim and analyzed by directed content analysis method based on protection motivation theory (PMT). One main theme was emerged from the analysis namely called "response costs".Two main categories were also emerged from the data; (1) psychological barriers with six subcategories including "embarrassment," "worry about being diagnosed with cancer," "preoccupation with underlying disease," "misconception about mammography," "need for an accompanying person," and "internalizing the experiences of the others," and (2) maladaptive coping modes which encompassed three subcategories: "religious faith," "fatalism," and"avoidance and denial." Useful information was provided about the response costs of mammography utilization based on the perceptions of women. Cognitive barriers may be decreased by conducting modifications in women's awareness and attitude toward MA as well as changing the national health system infrastructures. Incorporating religious and cultural belief systems into MA educational programs through motivational messages is recommended.

  6. Differential Effects of Social Networks on Mammography Use by Poverty Status.

    PubMed

    Yeo, Younsook

    2016-01-01

    This study examines whether social networks have differential effects on mammography use depending on poverty status. Data were analyzed on US women (40+), employing logistic regression and simple slope analyses for a post hoc probing of moderating effects. Among women not in poverty, living with a spouse/partner and attending church, regardless of frequency, were positively associated with mammography use; family size was negatively associated. Among women living in poverty, mammography showed a positive association only with weekly church attendance. Mammography was negatively associated with health-related social interactions occurring through the Internet. Post hoc probing showed significant moderating effects of poverty on the relationship between online health-related interactions and mammography use. To make the Internet a meaningful health empowerment tool for women in poverty, future research should identify how health-related interactions that occur online affect women in poverty's psychological and behavioral reactions that will contribute to our understanding of why they are discouraged from having mammograms. The mechanisms behind the differential effects of church attendance and poverty status on mammography also need further clarification.

  7. Mammography screening: how important is cost as a barrier to use?

    PubMed Central

    Urban, N; Anderson, G L; Peacock, S

    1994-01-01

    OBJECTIVES. Recent legislation will improve insurance coverage for screening mammography and effectively lower its cost to many women. Although cost has been cited as a barrier to use, evidence of the magnitude of its effect on use is limited. METHODS. Mammography use in the past 2 years among women aged 50 to 75 residing in four suburban or rural counties in Washington State was estimated from 1989 survey data. Logistic regression analysis was used to estimate the odds ratio of mammography use as a function of economic and other variables. Within a residential area, averages were used to measure the market price of mammography and the time cost to obtain a mammogram. RESULTS. Use was lower among women who faced a higher net price or who preferred to obtain a mammogram during weekend or evening hours and higher among women with higher incomes. Visiting no doctor regularly and smoking were predictors of failure to use mammography. CONCLUSION. The effects of economic variables on mammography use are important and stable across subsets of the population, but they are modest in size. PMID:8279611

  8. Mammography screening: how important is cost as a barrier to use?

    PubMed

    Urban, N; Anderson, G L; Peacock, S

    1994-01-01

    Recent legislation will improve insurance coverage for screening mammography and effectively lower its cost to many women. Although cost has been cited as a barrier to use, evidence of the magnitude of its effect on use is limited. Mammography use in the past 2 years among women aged 50 to 75 residing in four suburban or rural counties in Washington State was estimated from 1989 survey data. Logistic regression analysis was used to estimate the odds ratio of mammography use as a function of economic and other variables. Within a residential area, averages were used to measure the market price of mammography and the time cost to obtain a mammogram. Use was lower among women who faced a higher net price or who preferred to obtain a mammogram during weekend or evening hours and higher among women with higher incomes. Visiting no doctor regularly and smoking were predictors of failure to use mammography. The effects of economic variables on mammography use are important and stable across subsets of the population, but they are modest in size.

  9. Socio-Cognitive Determinants of the Mammography Screening Uptake among Iranian Women

    PubMed

    Mirzaei-Alavijeh, Mehdi; Ghorbani, Parvaneh; Jalilian, Farzad

    2018-05-26

    Background: Mammography screening uptake is the most effective method in breast cancer screening. The aim of this study was to determine the determinants related to mammography screening uptake among Iranian women based on the theory of planned behavior. Materials and Methods: This cross-sectional study was conducted among 408 women who referred to health centers in Kermanshah city, the western of Iran, during 2016. Participants filled out a self-administered questionnaire. Data were analyzed by SPSS version 21 using Pearson correlation, linear and logistic regression statistical tests at 95% significant level. Results: The mean age of participants was 39.61 years [SD: 8.28], ranged from 30 to 60 years. Almost 13% of the participants had already mammography screening uptake at least once. Perceived behavioral control (OR=1.229) and behavioral intention (OR=1.283) were the more influential predictors on mammography screening uptake. Conclusions: Based on result, it seems increase perceived behavior control toward mammography screening uptake may be usefulness in promotion of mammography screening uptake among Iranian women. Creative Commons Attribution License

  10. Mammography and Other Screening Tests for Breast Problems

    MedlinePlus

    ... in eight women will develop breast cancer by age 75 years. Regular breast screening can help find cancer at an early and more curable stage. Screening also can find problems in the breasts that are not cancer. What is mammography? Mammography is the primary tool used to screen for breast cancer and ...

  11. The relationship between breast cancer anxiety and mammography: experiential avoidance as a moderator.

    PubMed

    Miller, Sarah J; O'Hea, Erin L; Lerner, Jennifer Block; Moon, Simon; Foran-Tuller, Kelly A

    2011-10-01

    Although mammography can aid in the early detection and prevention of breast cancer, many women do not receive annual mammograms. It remains unclear whether anxiety about breast cancer inhibits or promotes mammography rates. The way in which women regulate their anxiety (ie, level of experiential avoidance) may play a role in predicting mammography adherence. A community sample of women (N = 84) completed a questionnaire which assessed mammography rates, experiential avoidance, and breast cancer anxiety. The results suggest that, while controlling for breast cancer anxiety, experiential avoidance (β = .31, p < .01) significantly predicted mammography rates. When examining experiential avoidance as a moderator, a multiple regression analysis approached significance (R2 Δ = .04, p = .07), suggesting that a woman's level of experiential avoidance influences the relationship between anxiety and mammography. These findings will help enable health care practitioners to better identify women at risk of non-adherence to mammography recommendations.

  12. Shielding requirements for mammography.

    PubMed

    Simpkin, D J

    1987-09-01

    Shielding requirements for mammography installations have been investigated. To apply the methodologies of NCRP Report No. 49, the scatter-to-incident ratio of a typical mammography beam was measured, and the broad beam transmission was calculated for several representative beam spectra. These calculations were found to compare favorably with published low kVp tungsten-targeted x-ray transmission through a variety of shielding materials. Radiation shielding tables were developed from the calculated transmissions through Pb, concrete, gypsum, steel, plate glass, and water, using a technique which eliminates the "add one HVL" rule. It is concluded that Mo-targeted x-ray beams operated at 35 kVp require half the shielding of W-targeted beams operated at 50 kVp, and that adequate, cost-effective shielding calculations will consider alternatives to Pb.

  13. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    DTIC Science & Technology

    2008-06-01

    the suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the - 8 - summed slab of 5 slices (5 mm) were extracted...region hotelling observer, digital tomosynthesis, multi-slice CAD algorithms, biopsy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...developing computer-aided detection ( CAD ) tools for mammography. Although these tools have shown promise in identifying calcifications, detecting

  14. Psychosocial Determinants of Mammography Follow-up after Receipt of Abnormal Mammography Results in Medically Underserved Women

    PubMed Central

    Fair, Alecia Malin; Wujcik, Debra; Lin, Jin-Mann Sally; Zheng, Wei; Egan, Kathleen M.; Grau, Ana M.; Champion, Victoria L.; Wallston, Kenneth A.

    2010-01-01

    This article targets the relationship between psychosocial determinants and abnormal screening mammography follow-up in a medically underserved population. Health belief scales were modified to refer to diagnostic follow-up versus annual screening. A retrospective cohort study design was used. Statistical analyses were performed examining relationships among sociodemographic factors, psychosocial determinants, and abnormal mammography follow-up. Women with lower mean internal health locus of control scores (3.14) were two times more likely than women with higher mean internal health locus of control scores (3.98) to have inadequate follow-up (OR = 2.53, 95% CI = 1.12–5.36). Women with less than a high school education had lower cancer fatalism scores than women who had completed high school (47.5 vs. 55.2, p-value = .02) and lower mean external health locus of control scores (3.0 vs. 5.3) (p-value<.01). These constructs have implications for understanding mammography follow-up among minority and medically underserved women. Further comprehensive study of these concepts is warranted. PMID:20173286

  15. Psychosocial determinants of mammography follow-up after receipt of abnormal mammography results in medically underserved women.

    PubMed

    Fair, Alecia Malin; Wujcik, Debra; Lin, Jin-Mann Sally; Zheng, Wei; Egan, Kathleen M; Grau, Ana M; Champion, Victoria L; Wallston, Kenneth A

    2010-02-01

    This article targets the relationship between psychosocial determinants and abnormal screening mammography follow-up in a medically underserved population. Health belief scales were modified to refer to diagnostic follow-up versus annual screening. A retrospective cohort study design was used. Statistical analyses were performed examining relationships among sociodemographic factors, psychosocial determinants, and abnormal mammography follow-up. Women with lower mean internal health locus of control scores (3.14) were two times more likely than women with higher mean internal health locus of control scores (3.98) to have inadequate follow-up (OR=2.53, 95% CI=1.12-5.36). Women with less than a high school education had lower cancer fatalism scores than women who had completed high school (47.5 vs. 55.2, p-value=.02) and lower mean external health locus of control scores (3.0 vs. 5.3) (p-value<.01). These constructs have implications for understanding mammography follow-up among minority and medically underserved women. Further comprehensive study of these concepts is warranted.

  16. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  17. Application of the Minkowski-functionals for automated pattern classification of breast parenchyma depicted by digital mammography

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Fischer, Tanja; Riosk, Dororthea; Britsch, Stefanie; Reiser, Maximilian

    2008-03-01

    With an estimated life-time-risk of about 10%, breast cancer is the most common cancer among women in western societies. Extensive mammography-screening programs have been implemented for diagnosis of the disease at an early stage. Several algorithms for computer-aided detection (CAD) have been proposed to help radiologists manage the increasing number of mammographic image-data and identify new cases of cancer. However, a major issue with most CAD-solutions is the fact that performance strongly depends on the structure and density of the breast tissue. Prior information about the global tissue quality in a patient would be helpful for selecting the most effective CAD-approach in order to increase the sensitivity of lesion-detection. In our study, we propose an automated method for textural evaluation of digital mammograms using the Minkowski Functionals in 2D. 80 mammograms are consensus-classified by two experienced readers as fibrosis, involution/atrophy, or normal. For each case, the topology of graylevel distribution is evaluated within a retromamillary image-section of 512 x 512 pixels. In addition, we obtain parameters from the graylevel-histogram (20th percentile, median and mean graylevel intensity). As a result, correct classification of the mammograms based on the densitometic parameters is achieved in between 38 and 48%, whereas topological analysis increases the rate to 83%. The findings demonstrate the effectiveness of the proposed algorithm. Compared to features obtained from graylevel histograms and comparable studies, we draw the conclusion that the presented method performs equally good or better. Our future work will be focused on the characterization of the mammographic tissue according to the Breast Imaging Reporting and Data System (BI-RADS). Moreover, other databases will be tested for an in-depth evaluation of the efficiency of our proposal.

  18. The relationship of social support concept and repeat mammography among Iranian women.

    PubMed

    Farhadifar, Fariba; Taymoori, Parvaneh; Bahrami, Mitra; Zarea, Shamsy

    2015-10-24

    Breast cancer ranks as the first most common cancer among the Iranian women. The regular repeat of mammography with 1-2 year intervals leads to the increased efficiency of early detection of breast cancer. The present study examined the predictors of repeat mammography. It was hypothesized that higher social support is connected with mammography repeat. A cross-sectional study was carried out among 400 women 50 years and older in Sanandaj, Iran. Data was collected by the questionnaire including information on socio demographical variables and measuring social support level. Data was analyzed by SPSS16 software. Multiple logistic regression was used to determine the predictive power of demographic variables and dimensions of social support for repeat mammography. Women aged 50-55 years had three times odds of repeat mammography compared to women aged 56-60 years) OR, 3.02). Married women had greater odds of repeat mammography compared to single women (P < 0.006). The probability of repeat mammography in women with higher social support was 0.93 times greater than the women with lower social support (OR, 0.93; 95 % CI, 0.91-0.95; P < 0.0001). Iranian women are less likely repeat mammography than other Asian women. Identifying the associations between perceived social support and repeat mammography may offer detailed information to allow for future study and guide the development of interventions not only for Iranian women but also for similar cultural that received pay too little attention to date in the breast cancer literature.

  19. European radiographers' challenges from mammography education and clinical practice - an integrative review.

    PubMed

    Metsälä, Eija; Richli Meystre, Nicole; Pires Jorge, José; Henner, Anja; Kukkes, Tiina; Sá Dos Reis, Cláudia

    2017-06-01

    This study aims to identify European radiographers' challenges in clinical performance in mammography and the main areas of mammography that require more and better training. An extensive search was performed to identify relevant studies focused on clinical practice, education and training in mammography published between January 2010 and December 2015 in the English language. The data were analysed by using deductive thematic analysis. A total of 27 full text articles were read, evaluating their quality. Sixteen articles out of 27 were finally selected for this integrative review. The main challenges of radiographers' mammography education/training can be divided into three groups: training needs, challenges related to radiographers, and challenges related to the organization of education. The most common challenges of clinical performance in mammography among European radiographers involved technical performance, the quality of practices, and patient-centeredness. The introduction of harmonized mammography guidelines across Europe may serve as an evidence-based tool to be implemented in practice and education. However, the variability in human and material resources as well as the different cultural contexts should be considered during this process. • Radiographers' awareness of their professional identity and enhancing multiprofessional cooperation in mammography. • Radiographers' responsibilities regarding image quality (IQ) and optimal breast imaging performance. • Patient-centred mammography services focusing on the psychosocial needs of the patient. • Challenges: positioning, QC-testing, IQ-assessment, optimization of breast compression, communication, teamwork, and patient-centred care. • Introduction of evidence-based guidelines in Europe to harmonize mammography practice and education.

  20. Measuring preparedness for mammography in women with intellectual disabilities: a validation study of the Mammography Preparedness Measure.

    PubMed

    Wang, Claire Tienwey; Greenwood, Nechama; White, Laura F; Wilkinson, Joanne

    2015-05-01

    Women with intellectual disabilities have similar breast cancer rates as the general population, but lower rates of regular mammography and higher breast cancer mortality rates. Although prior qualitative work demonstrates that women with intellectual disabilities face unique, disability-specific barriers to mammography, the present authors lack standardized, validated instruments for measuring knowledge of breast cancer screening in this population. In addition, much research related to adults with intellectual disabilities focuses on family or carer perspectives, rather than involving women with intellectual disabilities, themselves. The present authors first pilot tested a general population instrument measuring breast cancer knowledge, and found that it did not perform adequately in women with intellectual disabilities. In response, the present authors developed the Mammography Preparedness Measure (MPM), a direct short interview tool to measure knowledge and preparedness in women with intellectual disabilities, themselves, rather than relying on caregiver or other reports, and using inclusive methodology. The present authors validated the MPM by assessing test-retest reliability. Average test-retest per cent agreement of 84%, ranging from 74 to 91% agreement per item, with an overall kappa of 0.59. The MPM appears to be a valid instrument appropriate for measuring mammography preparedness in women with intellectual disabilities. The success of this innovative tool suggests that direct, rather than informant-directed tools can be developed to measure health knowledge and cancer screening readiness in adults with intellectual disabilities, an important measure in studying and reducing disparities. © 2014 John Wiley & Sons Ltd.

  1. Comparison of the time taken for localised breast surgery pre- and post-introduction of intra-operative digital specimen mammography.

    PubMed

    Carraro do Nascimento, Vinicius; Bourke, Anita G

    2018-02-01

    More than half of the patients with an impalpable malignant breast lesion have a mammographically detected and imaged-guided localisation, which can be technically challenging for the breast surgeon. Specimen imaging is used to confirm successful excision of the localised index lesion and has improved the operating list efficiency resulting in a higher number of excisions per surgical list. The aim of this study was to evaluate whether introducing IDSM (intra-operative digital specimen mammography) saved operation time for localised breast surgery. A single-centre retrospective review was undertaken to compare the operation time (from incision to wound closure) taken for excision of 114 consecutive image-guided localised impalpable breast lesions, performed using departmental specimen radiography (DSR), 6 months prior to the introduction of IDSM (Hologic, Trident ® ) in March 2013, with the theatre time taken for excision of 121 consecutive image-guided localised impalpable breast lesions in the 6 months following introduction of IDSM. There was no significant difference in mean surgical time, which were 47.8 (±27.3) minutes in the CSR group and 48.8 (±25.7) minutes in the IDSM group. We were expecting to confirm a reduction in theatre time with the introduction of IDSM. Surprisingly, no difference in operating times was demonstrated. Factors that influenced the impact of IDSM included the proximity of the imaging department to the operating theatre. © 2017 The Royal Australian and New Zealand College of Radiologists.

  2. Decision making and counseling around mammography screening for women aged 80 or older.

    PubMed

    Schonberg, Mara A; Ramanan, Radhika A; McCarthy, Ellen P; Marcantonio, Edward R

    2006-09-01

    Despite uncertain benefit, many women over age 80 (oldest-old) receive screening mammography. To explore decision-making and physician counseling of oldest-old women around mammography screening. Qualitative research using in-depth semi-structured interviews. Twenty-three women aged 80 or older who received care at a large academic primary care practice (13 had undergone mammography screening in the past 2 years) and 16 physicians at the same center. We asked patients and physicians to describe factors influencing mammography screening decisions of oldest-old women. We asked physicians to describe their counseling about screening to the oldest-old. Patients and/or physicians identified the importance of physician influence, patient preferences, system factors, and social influences on screening decisions. Although physicians felt that patient's health affected screening decisions, few patients felt that health mattered. Three types of elderly patients were identified: (1) women enthusiastic about screening mammography; (2) women opposed to screening mammography; and (3) women without a preference who followed their physician's recommendation. However, physician counseling about mammography screening to elderly women varies; some individualize discussions; others encourage screening; few discourage screening. Physicians report that discussions about stopping screening can be uncomfortable and time consuming. Physicians suggest that more data could facilitate these discussions. Some oldest-old women have strong opinions about screening mammography while others are influenced by physicians. Discussions about stopping screening are challenging for physicians. More data about the benefits and risks of mammography screening for women aged 80 or older could inform patients and improve provider counseling to lead to more rational use of mammography.

  3. Does telephone scheduling assistance increase mammography screening adherence?

    PubMed

    Payton, Colleen A; Sarfaty, Mona; Beckett, Shirley; Campos, Carmen; Hilbert, Kathleen

    2015-11-01

    The 2 objectives were: 1) describe the use of a patient navigation process utilized to promote adherence to mammography screening within a primary care practice, and 2) determine the result of the navigation process and estimate the time required to increase mammography screening with this approach in a commercially insured patient population enrolled in a health maintenance organization. An evaluation of a nonrandomized practice improvement intervention. Women eligible for mammography (n = 298) who did not respond to 2 reminder letters were contacted via telephone by a navigator who offered scheduling assistance for mammography screening. The patient navigator scheduled appointments, documented the number of calls, and confirmed completed mammograms in the electronic health record, as well as estimated the time for calls and chart review. Of the 188 participants reached by phone, 112 (59%) scheduled appointments using the patient navigator, 35 (19%) scheduled their own appointments independently prior to the call, and 41 (22%) declined. As a result of the telephone intervention, 78 of the 188 women reached (41%) received a mammogram; also, all 35 women who had independently scheduled a mammogram received one. Chart documentation confirmed that 113 (38%) of the cohort of 298 women completed a mammogram. The estimated time burden for the entire project was 55 hours and 33 minutes, including calling patients, scheduling appointments, and chart review. A patient navigator can increase mammography adherence in a previously nonadherent population by making the screening appointment while the patient is on the phone.

  4. Measurement of breast density with digital breast tomosynthesis—a systematic review

    PubMed Central

    McEntee, M F

    2014-01-01

    Digital breast tomosynthesis (DBT) has gained acceptance as an adjunct to digital mammography in screening. Now that breast density reporting is mandated in several states in the USA, it is increasingly important that the methods of breast density measurement be robust, reliable and consistent. Breast density assessment with DBT needs some consideration since quantitative methods are modelled for two-dimensional (2D) mammography. A review of methods used for breast density assessment with DBT was performed. Existing evidence shows Cumulus has better reproducibility than that of the breast imaging reporting and data system (BI-RADS®) but still suffers from subjective variability; MedDensity is limited by image noise, whilst Volpara and Quantra are robust and consistent. The reported BI-RADs inter-reader breast density agreement (k) ranged from 0.65 to 0.91, with inter-reader correlation (r) ranging from 0.70 to 0.93. The correlation (r) between BI-RADS and Cumulus ranged from 0.54–0.94, whilst that of BI-RADs and MedDensity ranged from 0.48–0.78. The reported agreement (k) between BI-RADs and Volpara is 0.953. Breast density correlation between DBT and 2D mammography ranged from 0.73 to 0.97, with agreement (k) ranging from 0.56 to 0.96. To avoid variability and provide more reliable breast density information for clinicians, automated volumetric methods are preferred. PMID:25146640

  5. At what age should screening mammography be recommended for Asian women?

    PubMed

    Tsuchida, Junko; Nagahashi, Masayuki; Rashid, Omar M; Takabe, Kazuaki; Wakai, Toshifumi

    2015-07-01

    Although regular screening mammography has been suggested to be associated with improvements in the relative survival of breast cancer in recent years, the appropriate age to start screening mammography remains controversial. In November 2009, the United States Preventive Service Task Force published updated guidelines for breast cancer, which no longer support routine screening mammography for women aged 40-49 years, but instead, defer the choice of screening in that age group to the patient and physician. The age to begin screening differs between guidelines, including those from the Task Force, the American Cancer Society and the World Health Organization. It remains unclear how this discrepancy impacts patient survival, especially among certain subpopulations. Although the biological characteristics of breast cancer and peak age of incidence differ among different ethnic populations, there have been few reports that evaluate the starting age for screening mammography based on ethnicity. Here, we discuss the benefits and harm of screening mammography in the fifth decade, and re-evaluate the starting age for screening mammography taking ethnicity into account, focusing on the Asian population. Breast cancer incidence peaked in the fifth decade in Asian women, which has been thought to be due to a combination of biological and environmental factors. Previous reports suggest that Asian women in their 40s may receive more benefit and less harm from screening mammography than the age-matched non-Asian US population. Therefore, starting screening mammography at age 40 may be beneficial for women of Asian ethnicity in well-resourced countries, such as Japanese women who reside in Japan. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  7. Time for a re-evaluation of mammography in the young? Results of an audit of mammography in women younger than 40 in a resource restricted environment.

    PubMed

    Taylor, Liezel; Basro, Sarinah; Apffelstaedt, Justus P; Baatjes, Karin

    2011-08-01

    Mammography in younger women is considered to be of limited value. In a resource restricted environment without access to magnetic resonance imaging (MRI) and with a high incidence of breast cancer in the young, mammography remains an important diagnostic tool. Recent technical advances and better regulation of mammography make a reassessment of its value in these conditions necessary. Data of all the mammograms performed at a tertiary hospital and private breast clinic between January 2003 and July 2009 in women less than 40 years of age were collected. Indications were the presence of a mass, follow-up after primary cancer therapy, and screening for patients perceived at high risk due to a family history or the presence of atypical hyperplasia. Data acquired were as follows: Demographics, prior breast surgery, indication for mammography, outcome of mammography, diagnostic procedures, and their results. Of 2,167 mammograms, 393 were performed for a palpable mass, diagnostic mammography. In these, the overall cancer detection rate was 40%. If the mammography was reported as breast imaging reporting and data system (BIRADS(®)) 5 versus BIRADS(®) 3 and 4 versus BIRADS(®) 1 and 2, a final diagnosis of malignancy was established in 96, 48, and 5%, respectively. Of 367 mammograms done for the follow-up after primary treatment of breast cancer, seven cancers were diagnosed for a detection rate of 1.9%. Of 1,312 mammograms performed for screening, the recall rate was 4%; the biopsy rate 2%, and the cancer diagnosis rate 3/1,000 examinations. In contrast to past series, this series has shown that recent advances in mammography have made it a useful tool in the management of breast problems in young women, notably in a resource-restricted environment. Women for screening should be selected carefully.

  8. The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, William Herbert; Casas, Joseph

    2015-01-01

    This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.

  9. Digital Field Mapping with the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field

  10. Factors influencing elderly women's mammography screening decisions: implications for counseling.

    PubMed

    Schonberg, Mara A; McCarthy, Ellen P; York, Meghan; Davis, Roger B; Marcantonio, Edward R

    2007-11-16

    Although guidelines recommend that clinicians consider life expectancy before screening older women for breast cancer, many older women with limited life expectancies are screened. We aimed to identify factors important to mammography screening decisions among women aged 80 and older compared to women aged 65-79. Telephone surveys of 107 women aged 80+ and 93 women aged 65-79 randomly selected from one academic primary care practice who were able to communicate in English (60% response rate). The survey addressed the following factors in regards to older women's mammography screening decisions: perceived importance of a history of breast disease, family history of breast cancer, doctor's recommendations, habit, reassurance, previous experience, mailed reminder cards, family/friend's recommendations or experience with breast cancer, age, health, and media. The survey also assessed older women's preferred role in decision making around mammography screening. Of the 200 women, 65.5% were non-Hispanic white and 82.8% were in good to excellent health. Most (81.3%) had undergone mammography in the past 2 years. Regardless of age, older women ranked doctor's recommendations as the most important factor influencing their decision to get screened. Habit and reassurance were the next two highly ranked factors influencing older women to get screened. Among women who did not get screened, women aged 80 and older ranked age and doctor's counseling as the most influential factors and women aged 65-79 ranked a previous negative experience with mammography as the most important factor. There were no significant differences in preferred role in decision-making around mammography screening by age, however, most women in both age groups preferred to make the final decision on their own (46.6% of women aged 80+ and 50.5% of women aged 65-79). While a doctor's recommendation is the most important factor influencing elderly women's mammography screening decisions, habit and reassurance

  11. [Comparison of the image quality of conventional and digital radiography in lizards. Mammography technique versus digital detector system].

    PubMed

    Bochmann, Monika; Ludewig, E; Pees, M

    2011-01-01

    A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems

  12. Rayleigh imaging in spectral mammography

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  13. Dual-energy contrast-enhanced spectral mammography (CESM).

    PubMed

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  14. Value of Additional Digital Breast Tomosynthesis for Preoperative Staging of Breast Cancer in Dense Breasts.

    PubMed

    Krammer, Julia; Stepniewski, Kathrin; Kaiser, Clemens G; Brade, Joachim; Riffel, Philipp; Schoenberg, Stefan O; Wasser, Klaus

    2017-09-01

    This retrospective study was initiated to determine the diagnostic value of additional preoperative breast tomosynthesis (DBT) for breast cancer staging in dense breasts. Sixty-six patients (69 breasts) with findings of American College of Radiology category 3 or 4 with Breast Imaging Reporting and Data System 5, 6 or 0 were included. All patients underwent digital mammography and additional DBT. A total of 40/69 (58%) cancers were detected on both mammography and DBT, 23 (33.3%) were only seen on DBT (p=0.0001); 6/69 (8.7%) carcinomas were not detected by either method, of which three were invasive lobular carcinomas. Sensitivity for multifocal/multicentric disease was significantly higher on DBT (12/19, 63.2%) compared to mammography (4/19, 21.1%) (p=0.02), specificity was comparable (96.0% vs. 90.0%). Multifocal/multicentric disease was not detected on mammography nor DBT in 7/19 (36.8%) patients, including three invasive lobular carcinomas. DBT may significantly improve preoperative breast cancer staging in patients with dense breasts compared to conventional mammography alone. Nevertheless, limitations have to be expected in the case of invasive lobular carcinoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Promoting mammography screening among Chinese American women using a message-framing intervention.

    PubMed

    Sun, Yiyuan; Sarma, Elizabeth A; Moyer, Anne; Messina, Catherine R

    2015-07-01

    This study examined the role of women's perceptions about the relative pros versus cons (decisional balance) of mammography in moderating Chinese American women's responses to gain- and loss-framed messages that promote mammography. One hundred and forty-three Chinese American women who were currently nonadherent to guidelines for receiving annual screening mammograms were randomly assigned to read either a gain- or loss-framed culturally appropriate print brochure about mammography screening. Mammography screening was self-reported at a 2-month follow-up. Although there was not a main effect for message frame, the hypothesized interaction between message frame and decisional balance was significant, indicating that women who received a framed message that matched their decisional balance were significantly more likely to have obtained a mammogram by the follow-up than women who received a mismatched message. Results suggest that decisional balance, and more generally, perceptions about mammography, may be an important moderator of framing effects for mammography among Chinese American women. The match between message frame and decisional balance should be considered when attempting to encourage Chinese American women to receive mammography screening, as a match between the two may be most persuasive. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Determinants of the number of mammography units in 31 countries with significant mammography screening

    PubMed Central

    Autier, P; Ouakrim, D A

    2008-01-01

    In the 2000s, most of the female population of industrialised countries had access to mammography breast cancer screening, but with variable modalities among the countries. We assessed the number of mammography units (MUs) in 31 European, North American and Asian countries where significant mammography activity has existed for over 10 years, collecting data on the number of such units and of radiologists by contacting institutions in each country likely to provide the relevant information. Around 2004, there were 32 324 MU in 31 countries, the number per million women ranging from less than 25 in Turkey, Denmark, the Netherlands, the United Kingdom, Norway, Poland and Hungary to more than 80 in Cyprus, Italy, France, the United States and Austria. In a multivariate analysis, the number of MUs was positively associated with the number of radiologists (P=0.0081), the number of women (P=0.0023) and somewhat with the country surface area (P=0.077). There is considerable variation in the density of MU across countries and the number of MUs in service are often well above what would be necessary according to local screening recommendations. High number of MUs in some countries may have undesirable consequences, such as unnecessarily high screening frequency and decreased age at which screening is started. PMID:18781176

  17. Magnetic resonance mammography in comparison with mammography in the discovery of multifocal, multicentric and bilateral lesions of breast cancer.

    PubMed

    Bakhtavar, Khadijeh; Saran, Maryam; Behzadifar, Masoud; Farsi, Maryam

    2017-08-01

    Breast cancer is one of the health system problems and important diseases that is rising in developing and advanced countries. This study aimed to determine the difference of Magnetic Resonance Mammography (MRM) findings versus mammography in detecting multifocal, multi-centric and malignant bilateral lesions in patients with known breast cancer in Tehran. This cross-sectional study was conducted in Iran and Tehran among breast cancer patients between January 2015 and February 2016. Patients were included in the study prior to surgery, at the request of a surgeon with the aim of detecting multifocal, multi-centric and bilateral lesions. Demographic information was also collected from patients. The results for quantitative variables were expressed as mean and standard deviations, and for qualitative variables, were expressed as relative and absolute frequency. Chi-square test was used to compare the two methods. SPSS Ver.24 (IBM) software was used to analyze the data. Thirty-nine patients were enrolled in the study. The mean age of patients in this study was 48.46±6.836. In mammography, 13 (33.3%) had Composition C and 26 (66.7%) had Composition D according to the type of Composition. In total, 25 patients (89.3%) had one lesion and 3 patients (10.7%) had more than two lesions. In MRM, all lesions observed were mass (54 masses). The number of lesions found in MRM was 27 patients with one lesion (58.9%), 6 patients with two lesions (20.5%) and 5 patients with three lesions (20.6%). MRM detected more lesions compared to mammography (p<0.0001). The value of Chi-square test with a degree of freedom and error level of 0.05 was 3.71 and p<0.0001 that showed a significant relationship between the number of MRM findings in comparison with mammography. The results of our study showed that two or more lesions and bilateral lesions in MRM were more than mammography in women with B Breast Composition C, D; the findings showed that MRM has a better ability to detect breast

  18. Impact of the Addition of Digital Breast Tomosynthesis (DBT) to Standard 2D Digital Screening Mammography on the Rates of Patient Recall, Cancer Detection, and Recommendations for Short-term Follow-up.

    PubMed

    Powell, Jaclynn L; Hawley, Jeffrey R; Lipari, Adele M; Yildiz, Vedat O; Erdal, B Selnur; Carkaci, Selin

    2017-03-01

    The addition of digital breast tomosynthesis (DBT) to digital screening mammography (DM) has been shown to decrease recall rates and improve cancer detection rates, but there is a lack of data regarding the impact of DBT on rates of short-term follow-up. We assessed possible changes in performance measures with the introduction of DBT at our facility. In our observational study, databases were used to compare rates of recall, short-term follow-up, biopsy, and cancer detection between women undergoing DM without (n = 10,477) and women undergoing DM with (n = 2304) the addition of DBT. Regression analysis was performed to determine associations with patient age, breast density, and availability of comparison examinations. The addition of DBT resulted in significantly lower recall rates (16%-14%, P = .017), higher rates of biopsy (12.7%-19.1%, P < .01), and increased detection of ductal carcinoma in situ, with a difference of 2.3 cases per 1000 screens (P = .044). A 33% increase in cancer detection rates was observed with DBT, which did not reach statistical significance. Short-term follow-up of probably benign findings was 80% higher in the DBT group (odds ratio = 1.80, 95% confidence interval = 1.38-2.36, P < .001). To our knowledge, we are the first to study the impact of DBT on rates of short-term follow-up, and observed an 80% increase over the DM group. Further research is needed to determine the malignancy rate of Breast Imaging Reporting and Data System 3 lesions detected with DBT, and establish appropriate follow-up to maximize cancer detection while minimizing expense and patient anxiety. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Self-Report Versus Medical Record for Mammography Screening Among Minority Women.

    PubMed

    Nandy, Karabi; Menon, Usha; Szalacha, Laura A; Park, HanJong; Lee, Jongwon; Lee, Eunice E

    2016-12-01

    Self-report is the most common means of obtaining mammography screening data. The purpose of this study was to assess the accuracy of minority women's self-reported mammography by comparing their self-reported dates of mammograms with those in their medical records from a community-based randomized control trial. We found that out of 192 women, 116 signed the Health Information Portability and Accountability Act form and, among these, 97 had medical records that could be verified (97 / 116 = 83.6%). Ninety-two records matched where both sources confirmed a mammogram; 48 of 92 (52.2%) matched perfectly on self-reported date of mammogram. Complexities in the verification process warrant caution when verifying self-reported mammography screening in minority populations. In spite of some limitations, our findings support the usage of self-reported data on mammography as a validated tool for other researchers investigating mammography screening among minority women who continue to have low screening rates. © The Author(s) 2016.

  20. Cultural views, language ability, and mammography use in Chinese American women.

    PubMed

    Liang, Wenchi; Wang, Judy; Chen, Mei-Yuh; Feng, Shibao; Yi, Bin; Mandelblatt, Jeanne S

    2009-12-01

    Mammography screening rates among Chinese American women have been reported to be low. This study examines whether and how culture views and language ability influence mammography adherence in this mostly immigrant population. Asymptomatic Chinese American women (n = 466) aged 50 and older, recruited from the Washington, D.C. area, completed a telephone interview. Regular mammography was defined as having two mammograms at age-appropriate recommended intervals. Cultural views were assessed by 30 items, and language ability measured women's ability in reading, writing, speaking, and listening to English. After controlling for risk perception, worry, physician recommendation, family encouragement, and access barriers, women holding a more Chinese/Eastern cultural view were significantly less likely to have had regular mammograms than those having a Western cultural view. English ability was positively associated with mammography adherence. The authors' results imply that culturally sensitive and language-appropriate educational interventions are likely to improve mammography adherence in this population.

  1. Cultural Views, Language Ability, and Mammography Use in Chinese American Women

    PubMed Central

    Liang, Wenchi; Wang, Judy; Chen, Mei-Yuh; Feng, Shibao; Yi, Bin; Mandelblatt, Jeanne S.

    2013-01-01

    Mammography screening rates among Chinese American women have been reported to be low. This study examines whether and how culture views and language ability influence mammography adherence in this mostly immigrant population. Asymptomatic Chinese American women (n = 466) aged 50 and older, recruited from the Washington, D.C. area, completed a telephone interview. Regular mammography was defined as having two mammograms at age-appropriate recommended intervals. Cultural views were assessed by 30 items, and language ability measured women’s ability in reading, writing, speaking, and listening to English. After controlling for risk perception, worry, physician recommendation, family encouragement, and access barriers, women holding a more Chinese/Eastern cultural view were significantly less likely to have had regular mammograms than those having a Western cultural view. English ability was positively associated with mammography adherence. The authors’ results imply that culturally sensitive and language-appropriate educational interventions are likely to improve mammography adherence in this population. PMID:19233947

  2. Patterns and determinants of mammography screening in Lebanese women.

    PubMed

    Elias, Nadia; Bou-Orm, Ibrahim R; Adib, Salim M

    2017-03-01

    The associations of ever using and/or repeating a mammography test with psychosocial and socio-demographic factors were surveyed in 2014 among Lebanese women ≥ 40. A sample of 2400 women was selected across Lebanon. Variables with significant bivariate associations with various types of behaviors were entered in multivariate analysis. Of the total, 105 women (4·4%) had never heard of mammography as a tool for early breast cancer detection. Among the remaining 2295, 45% had ever used it, of whom 10% had obtained it for the first time within the 12 months preceding the survey. Repeaters were 67% of 926 women who had the time opportunity to do so (median lifetime frequency: 2). Older age, higher socio-economic status (SES) and living within the Greater Beirut (GB) area were significantly associated with ever-use. Within GB, psychosocial factors such as perceived susceptibility and benefits were most strongly associated with ever-use. Outside GB, socio-economic advantage seemed to mostly affect ever-use. Only 4% reported opposition from husbands to their mammography, and husband's support was significant for adherence to mammography guidelines mostly outside GB. Higher education emerged also as a significant socio-demographic determinant for ever-repeating in all regions. Perceived comfort of the previous test strongly affected the likelihood of repeating it. Providing mammography free-of-charge may alleviate some obstacles among women with socio-economic disadvantage. Stressing that good results one year do not make the cancer less likely or repeating the test less important, as well as improving the comfort of mammography testing could ensure test repeating.

  3. Mammography Use Among Medicare Beneficiaries After Elimination of Cost Sharing.

    PubMed

    Sabatino, Susan A; Thompson, Trevor D; Guy, Gery P; de Moor, Janet S; Tangka, Florence K

    2016-04-01

    We examined mammography use before and after Medicare eliminated cost sharing for screening mammography in January 2011. Using National Health Interview Survey data, we examined changes in mammography use between 2010 and 2013 among Medicare beneficiaries aged 65-74 years. Logistic regression and predictive margins were used to examine changes in use after adjusting for covariates. In 2013, 74.7% of women reported a mammogram within 2 years, a 3.5 percentage point increase (95% confidence interval, -0.3, 7.2) compared with 2010. Increases occurred among women aged 65-69 years, unmarried women, and women with usual sources of care and 2-5 physician visits in the prior year. After adjustment, mammography use increased in 2013 versus 2010 (74.8% vs. 71.3%, P=0.039). Interactions between year and income, insurance, race, or ethnicity were not significant. There was a modest increase in mammography use from 2010 to 2013 among Medicare beneficiaries aged 65-74 years, possibly consistent with an effect of eliminating Medicare cost sharing during this time. Findings suggest that eliminating cost sharing might increase use of recommended screening services.

  4. Digital Image Processing Technique for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  5. Incremental Cancer Detection of Locoregional Restaging with Diagnostic Mammography Combined with Whole-Breast and Regional Nodal Ultrasound in Women with Newly Diagnosed Breast Cancer.

    PubMed

    Candelaria, Rosalind P; Huang, Monica L; Adrada, Beatriz E; Bassett, Roland; Hunt, Kelly K; Kuerer, Henry M; Smith, Benjamin D; Chavez-MacGregor, Mariana; Yang, Wei Tse

    2017-02-01

    This study aims to determine if locoregional restaging with diagnostic mammography and ultrasound (US) of the whole breast and regional nodes performed for quality assurance in women with newly diagnosed breast cancer who were referred to a tertiary care center yields incremental cancer detection. An institutional review board-approved retrospective, single-institution database review was performed on the first 1000 women referred to our center in 2010 with a provisional breast cancer diagnosis. Locoregional restaging consisted of diagnostic full-field digital mammography combined with US of the whole breast and regional nodal basins. Bilateral whole-breast US was performed in women with contralateral mammographic abnormality or had heterogeneously or extremely dense parenchyma. Demographic, clinical, and pathologic factors were analyzed. Final analyses included 401 women. Of the 401 women, 138 (34%) did not have their outside images available for review upon referral. The median age was 54 years (range 21-92); the median tumor size was 2.9 cm (range 0.6-18.0) for women whose disease was upstaged and 2.2 cm (range 0.4-15.0) for women whose disease was not upstaged. Incremental cancer detection rates were 15.5% (62 of 401) in the ipsilateral breast and 3.9% (6 of 154) in the contralateral breast (P < 0.0001). The total upstage rate was 25% (100 of 401). Surgical management changed from segmentectomy to mastectomy in 12% (50 of 401). The re-excision rate after segmentectomy was 19% (35 of 189). Locoregional restaging with diagnostic mammography combined with whole-breast and regional nodal US that is performed for standardization of the imaging workup for newly diagnosed breast cancer patients can reduce underestimation of disease burden and impact therapeutic planning. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. REPEAT MAMMOGRAPHY SCREENING AMONG UNMARRIED WOMEN WITH AND WITHOUT A DISABILITY

    PubMed Central

    Clark, Melissa A.; Rogers, Michelle L.; Wen, Xiaozhong; Wilcox, Victoria; McCarthy-Barnett, Kate; Panarace, Jeanne; Manning, Carol; Allen, Susan; Rakowski, William

    2009-01-01

    Objectives Unmarried women with disabilities may be a particularly vulnerable group for underutilization of repeat mammography screening. Our goal was to compare the breast cancer screening experiences of unmarried women with disabilities (WWD) versus women with no disabilities (WND), and determine whether these experiences are associated with adherence to repeat screening. Methods We conducted a matched cohort study of 93 WWD and 93 WND to compare mammography experiences by disability status, examine rates of repeat mammography by disability status, and identify factors that are associated with repeat mammography. Results WWD were less likely to be on-schedule than WND in univariable (54.8% vs. 71.0%; relative risk = 0.77, 95% CL = 0.61, 0.97), but not multivariable, analyses. In multivariable analyses, there was a significant interaction between disability status and positive experiences as the reasons for returning to the same mammography facility. Among WND, repeat screening ranged from 59% to 86%, depending on the number of positive experiences endorsed (range=1–5). In contrast, among WWD, screening rates were only 37% among those who did not report any positive experiences and increased to a maximum of 60% regardless of whether women endorsed one to four or all five positive experiences. Severity and type of disability were not associated with repeat screening. Conclusions WWD may be less likely than WND to remain on-schedule for mammography. WWD who do not report any positive experiences as reasons for returning to a mammography facility may be at particularly high risk of underutilization of screening. PMID:19775912

  7. An iPad and Android-based Application for Digitally Recording Geologic Field Data

    NASA Astrophysics Data System (ADS)

    Malinconico, L. L.; Sunderlin, D.; Liew, C.; Ho, A. S.; Bekele, K. A.

    2011-12-01

    Field experience is a significant component in most geology courses, especially sed/strat and structural geology. Increasingly, the spatial presentation, analysis and interpretation of geologic data is done using digital methodologies (GIS, Google Earth, stereonet and spreadsheet programs). However, students and professionals continue to collect field data manually on paper maps and in the traditional "orange field notebooks". Upon returning from the field, data are then manually transferred into digital formats for processing, mapping and interpretation. The transfer process is both cumbersome and prone to transcription error. In conjunction with the computer science department, we are in the process of developing an application (App) for iOS (the iPad) and Android platforms that can be used to digitally record data measured in the field. This is not a mapping program, but rather a way of bypassing the field book step to acquire digital data directly that can then be used in various analysis and display programs. Currently, the application allows the user to select from five different structural data situations: contact, bedding, fault, joints and "other". The user can define a folder for the collection and separation of data for each project. Observations are stored as individual records of field measurements in each folder. The exact information gathered depends on the nature of the observation, but common to all pages is the ability to log date, time, and lat/long directly from the tablet. Information like strike and dip are entered using scroll wheels and formation names are also entered using scroll wheels that access easy-to-modify lists of the area's stratigraphic units. This insures uniformity in the creation of the digital records from day-to-day and across field teams. Pictures can also be taken using the tablet's camera that are linked to each record. Once the field collection is complete the data (including images) can be easily exported to a .csv file

  8. Development of a trans-admittance mammography (TAM) using 60×60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Liu, Qin; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun

    2010-04-01

    We have developed a trans-admittance mammography (TAM) system as a supplementary or alternative method of the X-ray mammography to diagnose the breast cancer. Mechanical structure of the system is similar to the X-ray mammography with the breast placed between two plates. The pair of plates is movable to accommodate breasts with different sizes and rotatable to provide multiple images with different projection angles. Without using ionizing radiation, it acquires a projection image of tissue admittivity values. One plate is a flat solid electrode where we apply a constant sinusoidal voltage with a variable frequency. The other is equipped with 60×60 array of current-sensing electrodes, of which potentials are kept at the signal reference level. The electrode array is connected to six switching modules and each module routes current signals from 600 electrodes to two ammeter modules. Each ammeter module includes six channels of ammeters and each one of them comprises an independent current-to-voltage converter, voltage amplifier, ADC and digital phase-sensitive demodulator. Each ammeter sequentially measures exit currents from 50 electrodes chosen by the corresponding switching module. An FPGA controls six ammeters to collect real- and imaginary-parts of trans-admittance data from 300 electrodes. A separate FPGA arbitrates data and command exchanges between a DSP-based main controller and ammeter modules. It also generates a sinusoidal voltage signal to be applied to the breast. All the 3600 complex current data from 12 ammeter modules are transferred to the main controller, which is interfaced to a PC through an isolated USB. The system is provided with a program to display real- and imaginary-parts of measured trans-admittance maps. The measured maps at multiple frequencies are incorporated into a frequency-difference anomaly detection algorithm. In this paper, we describe the design and construction of the system.

  9. The Efficacy of Mammography Boot Camp to Improve the Performance of Radiologists

    PubMed Central

    Lee, Eun Hye; Jung, Seung Eun; Kim, You Me; Choi, Nami

    2014-01-01

    Objective To evaluate the efficacy of a mammography boot camp (MBC) to improve radiologists' performance in interpreting mammograms in the National Cancer Screening Program (NCSP) in Korea. Materials and Methods Between January and July of 2013, 141 radiologists were invited to a 3-day educational program composed of lectures and group practice readings using 250 digital mammography cases. The radiologists' performance in interpreting mammograms were evaluated using a pre- and post-camp test set of 25 cases validated prior to the camp by experienced breast radiologists. Factors affecting the radiologists' performance, including age, type of attending institution, and type of test set cases, were analyzed. Results The average scores of the pre- and post-camp tests were 56.0 ± 12.2 and 78.3 ± 9.2, respectively (p < 0.001). The post-camp test scores were higher than the pre-camp test scores for all age groups and all types of attending institutions (p < 0.001). The rate of incorrect answers in the post-camp test decreased compared to the pre-camp test for all suspicious cases, but not for negative cases (p > 0.05). Conclusion The MBC improves radiologists' performance in interpreting mammograms irrespective of age and type of attending institution. Improved interpretation is observed for suspicious cases, but not for negative cases. PMID:25246818

  10. [Mammography screening of breast cancer in Tunisia. Results of first experience].

    PubMed

    Kribi, Lilia; Sellami, Dorra; el Amri, Aïda; Mnif, Nejla; Ellouze, Thouraya; Chebbi, Ali; Ben Romdhane, Khaled; Hamza, Radhi

    2003-01-01

    This article reports the results of a mammography screening program of breast cancer, realized in the department of Radiology, Charles Nicolle hospital. A free screening mammography with two incidences was offered to women aged from 40 to 70 years old. 2200 mammographies were realized from May 1995 till July 1997. Women having a positive test benefited of a diagnostic explorations in the same unity. The positive test rate was 24%. Predictive positive value was 31%. This program allowed to detect 10 subclinical cancers, corresponding to a rate of detection of 4.5 cancers for 1000 women. This program is a first experience which demonstrated the feasibility of the mammography screening to wide scale and allowed the medical and paramedical team to acquire an experience.

  11. As mammography use increases, are some providers omitting clinical breast examination?

    PubMed

    Burns, R B; Freund, K M; Ash, A S; Shwartz, M; Antab, L; Hall, R

    1996-04-08

    To explore use of clinical breast examination (CBE) among women receiving mammography. A retrospective cohort analysis of 100 women aged 50 years or older with at least one bilateral mammogram. Chart review documented demographic information, severity of illness, and performance of CBE (from 1 year prior to 18 months after the mammogram). The mean age of the 100 women was 63 years. They were predominantly unmarried (60%), nonwhite (58%), and not currently employed (57%). Three quarters (76%) had mammography and CBE (comprehensive screening), while the remaining 24% had mammography only. Sociodemographic factors did not differ for women with and without comprehensive screening (P>.1). However, patients of female providers were more likely to receive comprehensive screening than patients of male providers. Specifically, 95% of women seen by female attending physicians or fellows had comprehensive screening vs 67% for male attending physicians or fellows and 61% for residents (P=.008). Mammography may be replacing CBE especially among patients of male providers. Interventions targeted to these providers could help improve the use of CBE and mammography.

  12. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme.

    PubMed

    Lobbes, Marc B I; Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C; Nelemans, Patty J; van Roozendaal, Lori; Smidt, Marjolein L; Heuts, Esther; Wildberger, Joachim E

    2014-07-01

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0% (+3.1%), specificity to 87.7% (+45.7%), PPV to 76.2% (+36.5%) and NPV to 100.0% (+2.9%) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p < 0.0001). A similar trend was observed in the ROC curve. For conventional mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p < 0.0001). In addition, good agreement between tumour diameters measured using CESM, breast MRI and histopathology was observed. CESM increases diagnostic performance of conventional mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. • CESM is feasible in the workflow of referrals from routine breast screening. • CESM is superior to mammography, even in low disease prevalence populations. • CESM has an extremely high negative predictive value for breast cancer. • CESM is comparable to MRI in assessment of breast cancer extent. • CESM is comparable to histopathology in assessment of breast cancer extent.

  13. Digital breast tomosynthesis (DBT): recommendations from the Italian College of Breast Radiologists (ICBR) by the Italian Society of Medical Radiology (SIRM) and the Italian Group for Mammography Screening (GISMa).

    PubMed

    Bernardi, Daniela; Belli, Paolo; Benelli, Eva; Brancato, Beniamino; Bucchi, Lauro; Calabrese, Massimo; Carbonaro, Luca A; Caumo, Francesca; Cavallo-Marincola, Beatrice; Clauser, Paola; Fedato, Chiara; Frigerio, Alfonso; Galli, Vania; Giordano, Livia; Giorgi Rossi, Paolo; Golinelli, Paola; Morrone, Doralba; Mariscotti, Giovanna; Martincich, Laura; Montemezzi, Stefania; Naldoni, Carlo; Paduos, Adriana; Panizza, Pietro; Pediconi, Federica; Querci, Fiammetta; Rizzo, Antonio; Saguatti, Gianni; Tagliafico, Alberto; Trimboli, Rubina M; Zappa, Marco; Zuiani, Chiara; Sardanelli, Francesco

    2017-10-01

    This position paper, issued by ICBR/SIRM and GISMa, summarizes the evidence on DBT and provides recommendations for its use. In the screening setting, DBT in adjunct to digital mammography (DM) increased detection rate by 0.5-2.7‰ and decreased false positives by 0.8-3.6% compared to DM alone in observational and double-testing experimental studies. The reduction in recall rate could be less prominent in those screening programs which already have low recall rates with DM. The increase in radiation exposure associated with DM/DBT protocols has been solved by the introduction of synthetic mammograms (sDM) reconstructed from DBT datasets. Thus, whenever possible, sDM/DBT should be preferred to DM/DBT. However, before introducing DBT as a routine screening tool for average-risk women, we should wait for the results of randomized controlled trials and for a statistically significant and clinically relevant reduction in the interval cancer rate, hopefully associated with a reduction in the advanced cancer rate. Otherwise, a potential for overdiagnosis and overtreatment cannot be excluded. Studies exploring this issue are ongoing. Screening of women at intermediate risk should follow the same recommendations, with particular protocols for women with previous BC history. In high-risk women, if mammography is performed as an adjunct to MRI or in the case of MRI contraindications, sDM/DBT protocols are suggested. Evidence exists in favor of DBT usage in women with clinical symptoms/signs and asymptomatic women with screen-detected findings recalled for work-up. The possibility to perform needle biopsy or localization under DBT guidance should be offered when DBT-only findings need characterization or surgery.

  14. MO-AB-207-04: ACR Update in Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  15. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study

    PubMed Central

    Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano

    2017-01-01

    Objective To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). Materials and methods In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. Results The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). Conclusion CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent. PMID:28894329

  16. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study.

    PubMed

    Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano

    2017-01-01

    To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.

  17. Screening mammography--early detection or over-diagnosis? Contribution from Australian data.

    PubMed

    Bell, R J

    2014-12-01

    The aim of this review was to examine the benefits and harms of organized screening mammography, with particular reference to data from Australia. Published literature was examined relating to the impact of screening mammography on breast cancer-specific mortality, the trends in use of adjuvant treatments for breast cancer, the effectiveness of adjuvant treatment in terms of breast cancer-specific mortality, the impact of breast cancer treatment on non-breast cancer mortality and the magnitude of the issue of over-diagnosis. Most of the recent reduction in breast cancer-specific mortality is explained by use of adjuvant therapy rather than screening mammography. The impact of screening mammography in countries where women present with early disease and have access to adjuvant treatment is modest. There is a wide range of estimates for the magnitude of over-diagnosis. All-cause mortality (rather than breast cancer-specific mortality) should be used when assessing the impact of mammographic screening as otherwise the harm of breast cancer treatment in women who are over-diagnosed will be missed. The benefits and harms of screening mammography are finely balanced. The impact of screening mammography is at best neutral but may result in overall harm. Women should be informed of the issue of over-diagnosis. It is time to review whether organized mammographic screening programs should continue.

  18. Determination of the anxiety level of women who present for mammography.

    PubMed

    Bölükbaş, Nurgül; Erbil, Nülüfer; Kahraman, Azize Nuran

    2010-01-01

    This paper was to examine the role of anxiety in mammography screening. Breast cancer screening with mammography has been shown to be effective for preventing breast cancer death. However mammography screening can be harmful to women. One of the major problems is anxiety or lack of peace of mind in mammography screening. This study was conducted between November 3, 2007, and December 30, 2007, in Ordu Maternity and Childbirth Hospital. 93 women participated in the study. A 23-item questionnaire and the 20-item State Anxiety Inventory, developed by Spielberger et al. were completed by the participants. All numerical values were given as average ± standard deviation; p<0.05 was accepted for level of significance. The average age of the participants was 47.83 ± 7.50, the average age at marriage was 20.03 ± 4.18, the average birth number 2.91 ± 1.21, and the average age at menopause was 46.10 ± 4.70. The average anxiety level was found to be 46.20 ± 4.9. Significant differences (p<0.05) were found between education level, age at marriage, status of doing breast self examination, status of having a mammography for a breast-related complaint, and the number of mammograms done. It was determined that women who had mammography had a moderate level of anxiety.

  19. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  20. Effectiveness of a Mobile Mammography Program.

    PubMed

    Stanley, Elizabeth; Lewis, Madelene C; Irshad, Abid; Ackerman, Susan; Collins, Heather; Pavic, Dag; Leddy, Rebecca J

    2017-12-01

    Mobile mammography units have increasingly been used to address patient health care disparities; however, there are limited data comparing mobile units to stationary sites. This study aims to evaluate the characteristics of women who underwent mammography screening in a mobile unit versus those who underwent mammography screening at a cancer center. In this retrospective study, we analyzed all screening mammography examinations performed in a mobile unit in 2014 (n = 1433 examinations). For comparison, we randomized and reviewed an equivalent number of screening mammography examinations performed at our cancer center in 2014 (n = 1434 examinations). BI-RADS assessment, adherence to follow-up, biopsies performed, cancer detection rate, and sociodemographic variables were recorded. An independent-samples t test was conducted to identify potential differences in age between cancer center patients and mobile unit patients. Chi-square analyses were used to test for associations between location and factors such as health insurance, race, marital status, geographic area, adherence to screening guidelines, recall rate, adherence to follow-up, and cancer detection rates. Patients visiting our cancer center (mean = 57.74 years; SD = 10.55) were significantly older than those visiting the mobile unit (mean = 52.58 years; SD = 8.19; p < 0.001). There was a significant association between location and health insurance status (χ 2 = 610.92; p < 0.001) with more uninsured patients undergoing screening in the mobile van (cancer center = 3.70%, mobile unit = 38.73%). There was a significant association between screening location and patient race (χ 2 = 118.75, p < 0.001), with more white patients being screened at the cancer center (cancer center = 47.28%, mobile unit = 33.30%), more black patients being screened in the mobile van (cancer center = 49.30%, mobile unit = 54.15%), and more Hispanic patients being screened in the mobile van (cancer center = 1.05%, mobile unit = 6

  1. Obesity, Gynecological Factors, and Abnormal Mammography Follow-Up in Minority and Medically Underserved Women

    PubMed Central

    Wujcik, Debra; Lin, Jin-Mann S.; Grau, Ana; Wilson, Veronica; Champion, Victoria; Zheng, Wei; Egan, Kathleen M.

    2009-01-01

    Abstract Background The relationship between obesity and screening mammography adherence has been examined previously, yet few studies have investigated obesity as a potential mediator of timely follow-up of abnormal (Breast Imaging Reporting and Data System [BIRADS-0]) mammography results in minority and medically underserved patients. Methods We conducted a retrospective cohort study of 35 women who did not return for follow-up >6 months from index abnormal mammography and 41 who returned for follow-up ≤6 months in Nashville, Tennessee. Patients with a BIRADS-0 mammography event in 2003–2004 were identified by chart review. Breast cancer risk factors were collected by telephone interview. Multivariate logistic regression was performed on selected factors with return for diagnostic follow-up. Results Obesity and gynecological history were significant predictors of abnormal mammography resolution. A significantly higher frequency of obese women delayed return for mammography resolution compared with nonobese women (64.7% vs. 35.3%). A greater number of hysterectomized women returned for diagnostic follow-up compared with their counterparts without a hysterectomy (77.8% vs. 22.2%). Obese patients were more likely to delay follow-up >6 months (adjusted OR 4.09, p = 0.02). Conversely, hysterectomized women were significantly more likely to return for timely mammography follow-up ≤6 months (adjusted OR 7.95, p = 0.007). Conclusions Study results suggest that weight status and gynecological history influence patients' decisions to participate in mammography follow-up studies. Strategies are necessary to reduce weight-related barriers to mammography follow-up in the healthcare system including provider training related to mammography screening of obese women. PMID:19558307

  2. Mammography: MedlinePlus Health Topic

    MedlinePlus

    ... National Center for Health Statistics) MQSA National Statistics (Food and Drug Administration) Women with Disabilities and Breast Cancer Screening (Centers for Disease Control and Prevention) Clinical Trials ClinicalTrials.gov: Mammography (National Institutes of ...

  3. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  4. Wavelet Compression of Satellite-Transmitted Digital Mammograms

    NASA Technical Reports Server (NTRS)

    Zheng, Yuan F.

    2001-01-01

    Breast cancer is one of the major causes of cancer death in women in the United States. The most effective way to treat breast cancer is to detect it at an early stage by screening patients periodically. Conventional film-screening mammography uses X-ray films which are effective in detecting early abnormalities of the breast. Direct digital mammography has the potential to improve the image quality and to take advantages of convenient storage, efficient transmission, and powerful computer-aided diagnosis, etc. One effective alternative to direct digital imaging is secondary digitization of X-ray films. This technique may not provide as high an image quality as the direct digital approach, but definitely have other advantages inherent to digital images. One of them is the usage of satellite-transmission technique for transferring digital mammograms between a remote image-acquisition site and a central image-reading site. This technique can benefit a large population of women who reside in remote areas where major screening and diagnosing facilities are not available. The NASA-Lewis Research Center (LeRC), in collaboration with the Cleveland Clinic Foundation (CCF), has begun a pilot study to investigate the application of the Advanced Communications Technology Satellite (ACTS) network to telemammography. The bandwidth of the T1 transmission is limited (1.544 Mbps) while the size of a mammographic image is huge. It takes a long time to transmit a single mammogram. For example, a mammogram of 4k by 4k pixels with 16 bits per pixel needs more than 4 minutes to transmit. Four images for a typical screening exam would take more than 16 minutes. This is too long a time period for a convenient screening. Consequently, compression is necessary for making satellite-transmission of mammographic images practically possible. The Wavelet Research Group of the Department of Electrical Engineering at The Ohio State University (OSU) participated in the LeRC-CCF collaboration by

  5. [Hierarchy structuring for mammography technique by interpretive structural modeling method].

    PubMed

    Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2009-10-20

    Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.

  6. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    NASA Astrophysics Data System (ADS)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  7. Three-dimensional reconstruction of clustered microcalcifications from two digitized mammograms

    NASA Astrophysics Data System (ADS)

    Stotzka, Rainer; Mueller, Tim O.; Epper, Wolfgang; Gemmeke, Hartmut

    1998-06-01

    X-ray mammography is one of the most significant diagnosis methods in early detection of breast cancer. Usually two X- ray images from different angles are taken from each mamma to make even overlapping structures visible. X-ray mammography has a very high spatial resolution and can show microcalcifications of 50 - 200 micron in size. Clusters of microcalcifications are one of the most important and often the only indicator for malignant tumors. These calcifications are in some cases extremely difficult to detect. Computer assisted diagnosis of digitized mammograms may improve detection and interpretation of microcalcifications and cause more reliable diagnostic findings. We build a low-cost mammography workstation to detect and classify clusters of microcalcifications and tissue densities automatically. New in this approach is the estimation of the 3D formation of segmented microcalcifications and its visualization which will put additional diagnostic information at the radiologists disposal. The real problem using only two or three projections for reconstruction is the big loss of volume information. Therefore the arrangement of a cluster is estimated using only the positions of segmented microcalcifications. The arrangement of microcalcifications is visualized to the physician by rotating.

  8. [Programs of early detection of breast cancer and access of mammography in Spain].

    PubMed

    Luengo, S; Azcona, B; Lázaro, P; Madero, R

    1997-05-24

    We studied availability to mammography among Spanish women aged 40 to 70 years, variation in use of the mammography by autonomous community, and the situation and importance of breast cancer screening programs among other factors, in the access to mammography. A cross-sectional population survey was conducted in 1994 in a sample of 3,218 women. A questionnaire was used to collect data on the variable access (receipt of at least one mammogram in the last 2 years) as well as different access-related variables. Information on breast cancer screening programs was collected by contacting the responsible institutions. We considered that a program had total coverage if it included all the municipalities in the province and partial if it did not include all municipalities. Twenty-eight percent of women had performed a mammogram. This proportion varied among autonomous communities (AACC) from 11.5 to 73.8%. Breast cancer screening programs existed in 8 AACC. The multivariant analysis revealed an association between access to mammography and the existence of a screening program, especially when the later had total coverage (OR = 7.64; 95% CI = 5.24-11.10). An association was also found between access to mammography and physician-related factors, place of residence and attitudes of women toward mammography. Less than one third of women aged 40-70 have performed a mammography in the last 2 years, and this proportion varies among AACC. Gynecologist visits and the existence of breast cancer screening programs are fundamental factors in the access to mammography in Spain.

  9. Cost effectiveness of mammography screening for Chinese women.

    PubMed

    Wong, Irene O L; Kuntz, Karen M; Cowling, Benjamin J; Lam, Cindy L K; Leung, Gabriel M

    2007-08-15

    Although the cost effectiveness of screening mammography in most western developed populations has been accepted, it may not apply to Chinese women, who have a much lower breast cancer incidence. The authors estimated the cost effectiveness of biennial mammography in Hong Kong Chinese women to inform evidence-based screening policies. For the current study, a state-transition Markov model was developed to simulate mammography screening, breast cancer diagnosis, and treatment in a hypothetical cohort of Chinese women. The benefit of mammography was modeled by assuming a stage shift, in which cancers in screened women were more likely to be diagnosed at an earlier disease stage. The authors compared costs, quality-adjusted life years (QALYs) saved, and life years saved (LYS) for 5 screening strategies. Biennial screening resulted in a gain in life expectancy ranging from 4.3 days to 9.4 days compared with no screening at an incremental cost of from US $1,166 to US $2,425 per woman. The least costly, nondominated screening option was screening from ages 40 years to 69 years, with an incremental cost-effectiveness ratio (ICER) of US $61,600 per QALY saved or US $64,400 per LYS compared with no screening. In probabilistic sensitivity analyses, the probability of the ICER being below a threshold of US $50,000 per QALY (LYS) was 15.3% (14.6%). The current results suggested that mammography for Hong Kong Chinese women currently may not be cost effective based on the arbitrary threshold of US $50,000 per QALY. However, clinicians must remain vigilant and periodically should revisit the question of population screening: Disease rates in China have been increasing because of westernization and socioeconomic development.

  10. Mammography screening in six diverse communities in Chicago--a population study.

    PubMed

    Whitman, Steve; Shah, Ami M; Silva, Abigail; Ansell, David

    2007-01-01

    Despite the fact that recent studies suggest a narrowing in access to mammography, Black women are much more likely to die from breast cancer than White women. Data at the community level regarding mammography screening can help explain health disparities and inform plans for improved screening efforts. In 2002-2003, a comprehensive household health survey in English or Spanish was conducted in six community areas with 1700 households. The module on mammography was based on a state-based nationwide health survey and included questions on frequency of mammography, repeat screenings, and several demographic variables. The proportion of women >or=40 years (n=482) who received a mammogram in the past 2 years ranged from 74% to 90% across the six communities. The community with the highest screening proportion was predominantly Mexican and included recent immigrants. The screening proportion in the poorest community area, which was all Black, was 77%. Women with health insurance, higher income, and more education were more likely to receive a mammogram. Proportions for women >or=50 years (n=286) were slightly higher but similar. Repeat screening, which is recommended, occurred at lower levels. Access to and utilization of mammography have grown in recent years so that even these vulnerable communities had screening proportions at or even higher than the national average and the Healthy People Year 2010 objective. Nonetheless, repeat screening sequences were lower and may require attention if mammography screening efforts are to have a greater impact on female breast cancer mortality.

  11. Breast imaging using an amorphous silicon-based full-field digital mammographic system: stability of a clinical prototype.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S; D'Orsi, C J; Hendrick, R E

    2000-11-01

    An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured CsI:TI scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, detector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion.

  12. Biologic Profiles of Invasive Breast Cancers Detected Only With Digital Breast Tomosynthesis.

    PubMed

    Kim, Jin You; Kang, Hyun Jung; Shin, Jong Ki; Lee, Nam Kyung; Song, You Seon; Nam, Kyung Jin; Choo, Ki Seok

    2017-12-01

    The purpose of this study was to analyze the clinicopathologic and immunohistochemical features of invasive breast cancers detected only with digital breast tomosynthesis (DBT), compared with those of cancers detected with both DBT and full-field digital mammography (FFDM). The medical records of 261 women (108 without and 153 with symptoms) with invasive breast cancers who underwent FFDM and DBT between April 2015 and June 2016 were retrospectively reviewed. To assess detectability, all DBT and FFDM images were reviewed independently by three radiologists blinded to clinicopathologic information. The reference standard was established by an unblinded consensus review of all images. Clinicopathologic and immunohistochemical features were analyzed according to the detectability status. Of the 261 cancers, 223 (85.4%) were detected with both DBT and FFDM (both-detected group). Twenty-four cancers (9.2%) not detected with FFDM (DBT-only group) were classified by DBT as a mass (58.3%), architectural distortion (33.3%), or asymmetry (8.3%). The remaining 14 cancers (5.4%) were not detected with either DBT or FFDM (both-occult group). On multivariate analysis, a dense breast parenchyma (p = 0.007), small tumor size (≤ 2 cm; p = 0.027), and luminal A-like subtype (estrogen receptor positive or progesterone receptor positive or both, human epidermal growth factor receptor 2 negative, and Ki-67 expression < 14%; p = 0.008) were significantly associated with the DBT-only group. For 108 screening-detected cancers, a dense breast parenchyma (p = 0.007) and luminal A-like subtype (p = 0.008) also maintained significance. The addition of DBT to FFDM in screening would aid in the detection of less-aggressive subtypes of invasive breast cancers in women with dense breasts.

  13. A single issue program in an isolated area: mammography screening in Darwin, NT.

    PubMed

    McLean, M J; Condon, J R

    1999-08-01

    A process evaluation of the Northern Territory (NT) mammography program, NT Breast Screen (NTBS), during its initial 18 months of operation. The study was undertaken in Darwin, NT, from December 1994 to May 1996. Clinical outcomes were obtained by reviewing computerised and manual program records to determine waiting times for results, recall rates and cancer detection rates. Client satisfaction was assessed by a questionnaire sent to all women with normal results over a 12-week period. General practitioner satisfaction was assessed by a questionnaire sent to all general practitioners in the region who had one or more clients who had attended the service. During this time, 2,882 screening mammograms were performed; 98 women were recalled for assessment (3.4%). Breast cancer was detected in 10 women (3.5 per 1000 women screened). The program was well accepted by clients and general practitioners. Performance criteria were not met for waiting times for results. NTBS faced challenges because of its small and dispersed population, a lack of local radiologists with mammographic experience and the conflict with other pressing health issues, particularly in Aboriginal health. Despite these challenges, the program functioned effectively during its initial 18 months. Mammography screening programs in isolated areas can function effectively. The constraints encountered by NTBS are likely to apply to similar programs. Issues identified requiring further research are the psychological consequences of long waiting times for results, and the prioritisation of mammography for Aboriginal women.

  14. A database for assessment of effect of lossy compression on digital mammograms

    NASA Astrophysics Data System (ADS)

    Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2018-03-01

    With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.

  15. Analysis of percent density estimates from digital breast tomosynthesis projection images

    NASA Astrophysics Data System (ADS)

    Bakic, Predrag R.; Kontos, Despina; Zhang, Cuiping; Yaffe, Martin J.; Maidment, Andrew D. A.

    2007-03-01

    Women with dense breasts have an increased risk of breast cancer. Breast density is typically measured as the percent density (PD), the percentage of non-fatty (i.e., dense) tissue in breast images. Mammographic PD estimates vary, in part, due to the projective nature of mammograms. Digital breast tomosynthesis (DBT) is a novel radiographic method in which 3D images of the breast are reconstructed from a small number of projection (source) images, acquired at different positions of the x-ray focus. DBT provides superior visualization of breast tissue and has improved sensitivity and specificity as compared to mammography. Our long-term goal is to test the hypothesis that PD obtained from DBT is superior in estimating cancer risk compared with other modalities. As a first step, we have analyzed the PD estimates from DBT source projections since the results would be independent of the reconstruction method. We estimated PD from MLO mammograms (PD M) and from individual DBT projections (PD T). We observed good agreement between PD M and PD T from the central projection images of 40 women. This suggests that variations in breast positioning, dose, and scatter between mammography and DBT do not negatively affect PD estimation. The PD T estimated from individual DBT projections of nine women varied with the angle between the projections. This variation is caused by the 3D arrangement of the breast dense tissue and the acquisition geometry.

  16. Screening Mammography Utilization in Tennessee Women: The Association with Residence

    ERIC Educational Resources Information Center

    Brown, Kathleen C.; Fitzhugh, Eugene C.; Neutens, James J.; Klein, Diane A.

    2009-01-01

    Context: Approximately 70% of US women over age 40 report mammography screening within 2 years. However, rates are likely to vary by age, income, educational level, and residence. Purpose: To describe the prevalence of screening mammography and associated factors in women living in rural and urban areas of Tennessee. Methods: Using pooled data…

  17. Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV

    NASA Astrophysics Data System (ADS)

    Khatiwada, Bikalpa; Budge, Scott E.

    2017-05-01

    Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.

  18. The influence of social support relationships on mammography screening in African-American women.

    PubMed

    Fowler, Barbara Ann

    2007-07-01

    Evidence indicates that mammography screenings have increased in African-American women who are 50 years of age or older; however, they continue to experience later-stage discovery and poorer survival rates from breast cancer compared to White women. Although research has consistently found that social support relationships affects mammography screening in African-American women, little is known about the preventive health behaviors of individuals in these relationships that may be associated with mammography screening. This study examined that association and found that social support relationships, defined as blood-relatives and extended kinship networks, stressed personal responsibility and accountability for preventive health; therefore, supporting mammography screening. Of perhaps the greatest importance, the relationships emphasized positive strengths of African-American culture and invoked the necessity to confront prior negative experiences in health-care systems. These relationships also negated the fears or fatalistic beliefs about breast cancer that had been perpetuated by myths through informal communication and "deliberate silence" from significant others who had previously discouraged or de-emphasized the importance of mammography screening. Further research is needed to determine if the emphasis on cultural heritage was the only motivator that encouraged personal responsibility for mammography screening.

  19. Artificial neural networks in mammography interpretation and diagnostic decision making.

    PubMed

    Ayer, Turgay; Chen, Qiushi; Burnside, Elizabeth S

    2013-01-01

    Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs), in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions.

  20. Value of mammography and breast ultrasound in male patients with nipple discharge.

    PubMed

    Muñoz Carrasco, Rafaela; Álvarez Benito, Marina; Rivin del Campo, Eleonor

    2013-03-01

    To assess the contribution of mammography and ultrasound in men with nipple discharge. All men with nipple discharge who underwent mammography and/or ultrasound between 1993 and 2011 in our hospital were retrospectively evaluated. Radiological findings were classified according to BI-RADS lexicon. The final diagnosis was made based on histopathological results or clinical-radiological follow-up. The diagnostic performance of physical examination, mammography and ultrasound was calculated and compared. 26 men with 21 mammograms and 19 ultrasounds were reviewed. The final diagnoses were: 6 carcinomas (23.1%), 10 gynaecomastias, 2 pseudogynaecomastias and 8 normal breast tissues. Mammograms and ultrasounds performed on all five patients with infiltrating carcinoma showed a mass (categories 4 and 5). In all these patients except one, a breast mass was also noted and the physical examination was positive or suspected malignancy. In the patient with carcinoma in situ, the only conspicuous clinical sign was bloody nipple discharge and the mammography showed calcifications (category 4) that were not visible on ultrasound. Radiological findings of all patients without malignancy were classified as categories 1 and 2. The diagnostic performance of physical examination was lower than mammography and ultrasound (P>0.05). Mammography was more sensitive than ultrasound (100% vs. 83.3%). Both techniques showed the same specificity (100%). Men with nipple discharge have a high incidence of breast carcinoma. Nipple discharge may be the only clinical sign of carcinoma in situ. Mammography and ultrasound are useful in the evaluation of men with nipple discharge, diagnosing carcinoma in initial stages, avoiding unnecessary biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Digital tomosynthesis mammography: intra- and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Chan, Heang-Ping; Sahiner, Berkman; Zhang, Yiheng; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan

    2007-03-01

    We are developing a computerized technique to reduce intra- and interplane ghosting artifacts caused by high-contrast objects such as dense microcalcifications (MCs) or metal markers on the reconstructed slices of digital tomosynthesis mammography (DTM). In this study, we designed a constrained iterative artifact reduction method based on a priori 3D information of individual MCs. We first segmented individual MCs on projection views (PVs) using an automated MC detection system. The centroid and the contrast profile of the individual MCs in the 3D breast volume were estimated from the backprojection of the segmented individual MCs on high-resolution (0.1 mm isotropic voxel size) reconstructed DTM slices. An isolated volume of interest (VOI) containing one or a few MCs is then modeled as a high-contrast object embedded in a local homogeneous background. A shift-variant 3D impulse response matrix (IRM) of the projection-reconstruction (PR) system for the extracted VOI was calculated using the DTM geometry and the reconstruction algorithm. The PR system for this VOI is characterized by a system of linear equations. A constrained iterative method was used to solve these equations for the effective linear attenuation coefficients (eLACs) within the isolated VOI. Spatial constraint and positivity constraint were used in this method. Finally, the intra- and interplane artifacts on the whole breast volume resulting from the MC were calculated using the corresponding impulse responses and subsequently subtracted from the original reconstructed slices. The performance of our artifact-reduction method was evaluated using a computer-simulated MC phantom, as well as phantom images and patient DTMs obtained with IRB approval. A GE prototype DTM system that acquires 21 PVs in 3º increments over a +/-30º range was used for image acquisition in this study. For the computer-simulated MC phantom, the eLACs can be estimated accurately, thus the interplane artifacts were

  2. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  3. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    PubMed

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  4. First breast cancer mammography screening program in Mexico: initial results 2005-2006.

    PubMed

    Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Labastida-Almendaro, Sonia

    2009-01-01

    Breast cancer is the most frequent malignant neoplasia worldwide. In emergent countries as Mexico, an increase has been shown in frequency and mortality, unfortunately, most cases in advanced loco-regional stages developed in young women. The success of breast screening in mortality reduction has been observed since 1995 in Western Europe and the United States, where as many as 40% mortality reduction has been achieved. Most countries guidelines recommends an annual or biannual mammography for all women >40 years of age. In 2005, FUCAM, a nonlucrative civil foundation in Mexico join with Mexico City government, initiated the first voluntary mammography screening program for women >40 years of age residing in Mexico City's Federal District. Mammographies were carried out with analogical mammographs in specially designed mobile units and were performed in the area of women's domiciles. This report includes data from the first 96,828 mammographies performed between March 2005 and December 2006. There were 1% of mammographies in Breast Imaging Reporting and Data System 0, 4, or 5 and 208 out of 949 women with abnormal mammographies (27.7%) had breast cancer, a rate of 2.1 per thousand, most of them in situ or stage I (29.4%) or stage II (42.2%) nevertheless 21% of those women with abnormal mammography did not present for further clinical and radiologic evaluation despite being personally notified at their home addresses. The breast cancer rate of Mexican women submitted to screening mammography is lower than in European or North American women. Family history of breast cancer, nulliparity, absence of breast feeding, and increasing age are factors that increase the risk of breast cancer. Most cancers were diagnosed in women's age below 60 years (68.5%) with a mean age of 53.55 corroborating previous data published. It is mandatory to sensitize and educate our population with regard to accepting to visit the Specialized Breast Centers.

  5. [Comparative study between film mammography and xeromammography; including specimen radiography].

    PubMed

    Maeda, M; Hayakawa, K; Okuno, Y; Torizuka, T; Mitsumori, M; Soga, T; Misaki, T; Dokou, S; Ito, K

    1990-10-01

    We retrospectively evaluated preoperative film- and xeromammography of 23 cases with breast cancers, and compared with postoperative specimen radiography to assess tumor delineation and microcalcification detectability. In tumor detection and margin delineation, film mammography was superior to xeromammography, and in microcalcification, film mammography was equal to xeromammography. These results had a effect on the diagnosis of breast cancers.

  6. Mammography use and its demographic correlates among women in South Korea.

    PubMed

    Suh, Eunyoung E; Park, Sunhee

    2009-06-01

    This study aimed to investigate the mammography rate and its demographic correlates among Korean women in order to provide basic understanding of factors related to the performance of mammography as a method of breast cancer screening. A descriptive secondary analysis was conducted using a national data set from the Korean National Health and Nutrition Examination Survey (KNHNES III) in South Korea. A total number of 2,602 women over 40 years of age were chosen for the analysis. Main research variables included the use of mammography, monthly income, residential area, age, marriage, education, insurance, smoking habits, drinking habits, job type, current health status, and other cancer screening results. Only 30.59% of women adhered to the national guidelines. Monthly income, age, education, insurance, and smoking habits had statistically significant effects on breast cancer screening performance. The demographic correlates of the performance of mammography highlight the fact that not all Korean women, at this stage, are in a socioeconomic or societal position to undergo biannual mammography screening. Targeted and tailored nursing intervention should be implemented in middle- and senior-aged women who lack the ability to access medical resources in South Korea. This will make it possible for marginalized women to utilize cancer screening tests and in turn promote their health.

  7. Postmortem validation of breast density using dual-energy mammography

    PubMed Central

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548

  8. Postmortem validation of breast density using dual-energy mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less

  9. Turkish translation and adaptation of Champion's Health Belief Model Scales for breast cancer mammography screening.

    PubMed

    Yilmaz, Meryem; Sayin, Yazile Yazici

    2014-07-01

    To examine the translation and adaptation process from English to Turkish and the validity and reliability of the Champion's Health Belief Model Scales for Mammography Screening. Its aim (1) is to provide data about and (2) to assess Turkish women's attitudes and behaviours towards mammography. The proportion of women who have mammography is lower in Turkey. The Champion's Health Belief Model Scales for Mammography Screening-Turkish version can be helpful to determine Turkish women's health beliefs, particularly about mammography. Cross-sectional design was used to collect survey data from Turkish women: classical measurement method. The Champion's Health Belief Model Scales for Mammography Screening was translated from English to Turkish. Again, it was back translated into English. Later, the meaning and clarity of the scale items were evaluated by a bilingual group representing the culture of the target population. Finally, the tool was evaluated by two bilingual professional researchers in terms of content validity, translation validity and psychometric estimates of the validity and reliability. The analysis included a total of 209 Turkish women. The validity of the scale was confirmed by confirmatory factor analysis and criterion-related validity testing. The Champion's Health Belief Model Scales for Mammography Screening aligned to four factors that were coherent and relatively independent of each other. There was a statistically significant relationship among all of the subscale items: the positive and high correlation of the total item test score and high Cronbach's α. The scale has a strong stability over time: the Champion's Health Belief Model Scales for Mammography Screening demonstrated acceptable preliminary values of reliability and validity. The Champion's Health Belief Model Scales for Mammography Screening is both a reliable and valid instrument that can be useful in measuring the health beliefs of Turkish women. It can be used to provide data

  10. Comparative effectiveness of mailed reminder letters on mammography screening compliance.

    PubMed

    Romaire, Melissa A; Bowles, Erin J Aiello; Anderson, Melissa L; Buist, Diana S M

    2012-08-01

    Reminder letters are effective at prompting women to schedule mammograms. Less well studied are reminders addressing multiple preventive service recommendations. We compared the effectiveness of a mammogram-specific reminder sent when a woman was due for a mammogram to a reminder letter addressing multiple preventive services and sent on a woman's birthday on mammography receipt. The study included 48,583 women 52-74 years enrolled in Group Health Cooperative, a health plan in Washington State. From 2005 to 2009, women were mailed 88,605 mammogram-specific or birthday letters. In this one group pretest-posttest study, we modeled the odds of obtaining a screening mammogram after receiving a letter by reminder type using logistic regression, controlling for demographic and healthcare use characteristics and stratifying by whether women were overdue or up-to-date with mammography at the mailing. Among women up-to-date with screening, birthday letters were negatively associated with mammography receipt compared to mammogram-specific letters (birthday letters with 1-2 recommendations: OR=0.73; 95% CI:0.68-0.79; 3 recommendations: OR=0.74; 95% CI:0.69-0.78; 4-8 recommendations: OR=0.62 95% CI:0.55-0.68) after. Among overdue women, birthday letters with 4-8 recommendations were negatively associated with mammography receipt. Transitioning from mammogram-specific reminder letters to multiple preventive service birthday letters was associated with decreased mammography receipt. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging.

    PubMed

    Hooley, Regina J; Andrejeva, Liva; Scoutt, Leslie M

    2011-03-01

    Although mammography is the mainstay of early breast cancer detection, it has known limitations, particularly in women with dense breasts. As a result, additional imaging modalities, including ultrasound and contrast-enhanced magnetic resonance imaging, are also being used to supplement mammography in the early detection of occult breast cancer. This article reviews the indications and efficacy of mammography, ultrasound, and magnetic resonance imaging as both screening and diagnostic tools.

  12. [Controversial attitude to mammography screening in asymptomatic women between 40 and 50 years of age].

    PubMed

    Frischbier, H J

    1994-01-01

    The results of screening studies conducted in the United States and in Europe in females between the ages of 40 and 50 are analysed. It is shown, that the results of this study on mortality reduction are less favourable, the poorer the technique of mammography (foregoing of general two-view mammography) and the longer the time interval between two mammography screenings. Arguments are presented, that are brought forward when declining to perform general mammography screening in this age group. The author's own results, obtained in the Hamburg mammography screening study, which included from 1971 to 1986 also premenopausal women, show, that the survival rates of patients below 50 years of age with mammographically detected carcinomas of the breast do not differ from those in patients older than 50 years, according to a relevant age group classification. The advances in the technique of mammography in recent years are analysed on the basis of the author's own patient material. It is evident, that the positive predictive value has been doubled, especially in the age group between 40 and 50. An analysis of the distribution of diagnosed noninvasive carcinomas compared with the invasive carcinomas reveals, that particularly this age group has the highest percentage of identification of prognostically favourable carcinoma stages. Further analyses show, why the randomised European mammography studies could not yield a significant mortality rate improvement. A prerequisite for the inclusion of mammography screening in the legally prescribed early detection of carcinoma examinations, however, are the quality controls, whose realisation, in our health system, will have to be confirmed by the German mammography study.

  13. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography.

    PubMed

    Häberle, Lothar; Fasching, Peter A; Brehm, Barbara; Heusinger, Katharina; Jud, Sebastian M; Loehberg, Christian R; Hack, Carolin C; Preuss, Caroline; Lux, Michael P; Hartmann, Arndt; Vachon, Celine M; Meier-Meitinger, Martina; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger

    2016-11-01

    Although mammography screening programs do not include ultrasound examinations, some diagnostic units do provide women with both mammography and ultrasonography. This article is concerned with estimating the risk of a breast cancer patient diagnosed in a hospital-based mammography unit having a tumor that is visible on ultrasound but not on mammography. A total of 1,399 women with invasive breast cancer from a hospital-based diagnostic mammography unit were included in this retrospective study. For inclusion, mammograms from the time of the primary diagnosis had to be available for computer-assisted assessment of percentage mammographic density (PMD), as well as Breast Imaging Reporting and Data System (BIRADS) assessment of mammography. In addition, ultrasound findings were available for the complete cohort as part of routine diagnostic procedures, regardless of any patient or imaging characteristics. Logistic regression analyses were conducted to identify predictors of mammography failure, defined as BIRADS assessment 1 or 2. The probability that the visibility of a tumor might be masked at diagnosis was estimated using a regression model with the identified predictors. Tumors were only visible on ultrasound in 107 cases (7.6%). PMD was the strongest predictor for mammography failure, but age, body mass index and previous breast surgery also influenced the risk, independently of the PMD. Risk probabilities ranged from 1% for a defined low-risk group up to 40% for a high-risk group. These findings might help identify women who should be offered ultrasound examinations in addition to mammography. © 2016 UICC.

  14. Small field electron beam dosimetry using MOSFET detector

    PubMed Central

    Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.

    2010-01-01

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr

  15. Small field electron beam dosimetry using MOSFET detector.

    PubMed

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  16. Implications of Overdiagnosis: Impact on Screening Mammography Practices

    PubMed Central

    Morris, Elizabeth; Feig, Stephen A.; Drexler, Madeline

    2015-01-01

    Abstract This review article explores the issue of overdiagnosis in screening mammography. Overdiagnosis is the screen detection of a breast cancer, histologically confirmed, that might not otherwise become clinically apparent during the lifetime of the patient. While screening mammography is an imperfect tool, it remains the best tool we have to diagnose breast cancer early, before a patient is symptomatic and at a time when chances of survival and options for treatment are most favorable. In 2015, an estimated 231,840 new cases of breast cancer (excluding ductal carcinoma in situ) will be diagnosed in the United States, and some 40,290 women will die. Despite these data, screening mammography for women ages 40–69 has contributed to a substantial reduction in breast cancer mortality, and organized screening programs have led to a shift from late-stage diagnosis to early-stage detection. Current estimates of overdiagnosis in screening mammography vary widely, from 0% to upwards of 30% of diagnosed cancers. This range reflects the fact that measuring overdiagnosis is not a straightforward calculation, but usually one based on different sets of assumptions and often biased by methodological flaws. The recent development of tomosynthesis, which creates high-resolution, three-dimensional images, has increased breast cancer detection while reducing false recalls. Because the greatest harm of overdiagnosis is overtreatment, the key goal should not be less diagnosis but better treatment decision tools. (Population Health Management 2015;18:S3–S11) PMID:26414384

  17. The interaction of perceived risk and benefits and its relationship to predicting mammography adherence in African-American women

    PubMed Central

    Fair, Alecia Malin; Monahan, Patrick O.; Russell, Kathleen; Zhao, Qianqian; Champion, Victoria L.

    2013-01-01

    PURPOSE/OBJECTIVES To test the interaction of perceived risk and benefits on stage of mammography readiness and adherence. DESIGN Cross-sectional study SETTING Community gathering places and health care clinics across a Midwestern state. SAMPLE 299 African-American women who had not had a mammogram in ≥ 18 months. METHODS In-person interviews were used to collect data on sociodemographics, health belief variables and stage of readiness to undertake mammography screening. Four categories were created to measure the combined magnitude of high/low levels of perceived risk and benefit with health belief variables linked to modifying mammography screening behavior. MAIN RESEARCH VARIABLES Perceived risks and benefits, stage of readiness, mammography adherence. FINDINGS The lowest rate of mammography adherence was in women with a high perceived risk and low benefit towards mammography adherence (25.6) compared to women with a high perceived benefit and low risk towards mammography adherence (46.0). Differences in mammography adherence were statistically significant between these groups p=(0.009). CONCLUSIONS The interaction of high perceived risk and low benefits additively effected readiness to undertake screening mammography. IMPLICATIONS FOR NURSING Reducing disparities in breast cancer diagnosis and survival requires timely and efficient mammography adherence. Minority, medically underserved women with perceived high risk and low benefits exhibit immobilization to move forward with mammography adherence when they experience higher perceived risk. Further interventions to increase the perception of benefit of mammography are recommended to reduce breast cancer mortality. PMID:22201655

  18. Evolution of digital angiography systems.

    PubMed

    Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale

    2003-01-01

    The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.

  19. Quality assurance in mammography: artifact analysis.

    PubMed

    Hogge, J P; Palmer, C H; Muller, C C; Little, S T; Smith, D C; Fatouros, P P; de Paredes, E S

    1999-01-01

    Evaluation of mammograms for artifacts is essential for mammographic quality assurance. A variety of mammographic artifacts (i.e., variations in mammographic density not caused by true attenuation differences) can occur and can create pseudolesions or mask true abnormalities. Many artifacts are readily identified, whereas others present a true diagnostic challenge. Factors that create artifacts may be related to the processor (eg, static, dirt or excessive developer buildup on the rollers, excessive roller pressure, damp film, scrapes and scratches, incomplete fixing, power failure, contaminated developer), the technologist (eg, improper film handling and loading, improper use of the mammography unit and related equipment, positioning and darkroom errors), the mammography unit (eg, failure of the collimation mirror to rotate, grid inhomogeneity, failure of the reciprocating grid to move, material in the tube housing, compression failure, improper alignment of the compression paddle with the Bucky tray, defective compression paddle), or the patient (e.g., motion, superimposed objects or substances [jewelry, body parts, clothing, hair, implanted medical devices, foreign bodies, substances on the skin]). Familiarity with the broad range of artifacts and the measures required to eliminate them is vital. Careful attention to darkroom cleanliness, care in film handling, regularly scheduled processor maintenance and chemical replenishment, daily quality assurance activities, and careful attention to detail during patient positioning and mammography can reduce or eliminate most mammographic artifacts.

  20. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  1. Mammographic findings of women recalled for diagnostic work-up in digital versus screen-film mammography in a population-based screening program.

    PubMed

    Lipasti, Seppo; Anttila, Ahti; Pamilo, Martti

    2010-06-01

    Limited information is available concerning differences in the radiological findings of women recalled for diagnostic work-up in digital mammography (DM) versus screen-film mammography (SFM) screening. To compare the radiological findings, their positive predictive values (PPVs) for cancer and other process indicators of DM screening performed by computed radiography (CR) technology and SFM screening in a population-based program. The material consisted of women, 50-59 years of age, who were invited for screening: 30 153 women with DM in 2007-2008 and 32 939 women with SFM in 1999-2000. The attendance rate was 77.7% (23 440) in the DM arm and 83.8% (27 593) in the SFM arm. In the DM arm, 1.71% of those screened (401) and in the SFM arm 1.59% (438) were recalled for further work-up. The images resulting in the recall were classified as: 1) tumor-like mass, 2) parenchymal distortion/asymmetry, 3) calcifications, and 4) combination of mass and calcifications. The distributions of the various radiological findings and their PPVs for cancer were compared in both study groups. The recall rates, cancer detection rates, test specificities, and PPVs of the DM and SFM groups were also compared. Women were recalled for diagnostic work-up most often due to tumor-like mass. It was more common in SFM (1.08% per woman screened) than in DM (0.93%). The second most common finding was parenchymal distortion and asymmetry, more often in DM (0.58%) than in SFM (0.37%). Calcifications were the third most common finding. DM exposed calcifications more often (0.49%) than SFM (0.26%). The PPVs for cancer of the recalls were higher in DM than in SFM in all subgroups of radiological findings. The test specificities were similar (DM 98.9%, SFM 98.8%). Significantly more cancers were detected by DM (cancer detection rate 0.623% per woman screened, n=146) than by SFM (cancer detection rate 0.406% per woman screened, n=112). The PPVs for cancer of all recalls for diagnostic work-up were

  2. Knowledge, attitude and practice of mammography among women users of public health services.

    PubMed

    Marinho, Luiz Alberto Barcelos; Cecatti, José Guilherme; Osis, Maria José Duarte; Gurgel, Maria Salete Costa

    2008-04-01

    To evaluate knowledge, attitude and practice related to mammography among women users of local health services, identifying barriers to its performance. A total of 663 women were interviewed at 13 local health centers in a city of Southeastern Brazil, in 2001. Interviewees were randomly selected at each center and they were representative from different socioeconomic conditions. The number of interviewees at each center was proportional to monthly mean appointments. For data analysis, answers were described as knowledge, attitude, practice and their respective adequacies and then they were correlated with control variables through the chi-square test. Only 7.4% of the interviewees had adequate knowledge on mammography, while 97.1% of women had an adequate attitude. The same was seen for the practice of mammography that was adequate in 35.7% of the cases. The main barrier to mammography was lack of referral by physicians working at the health center (81.8%). There was an association between adequacy of attitude and five years or more of education and being married. There was also an association between adequacy of mammography practice and being employed and family income up to four minimum wages. Women users of local health services had no adequate knowledge and practice related to mammography despite having an adequate attitude about this exam.

  3. The interaction of perceived risk and benefits and the relationship to predicting mammography adherence in African American women.

    PubMed

    Fair, Alecia Malin; Monahan, Patrick O; Russell, Kathleen; Zhao, Qianqian; Champion, Victoria L

    2012-01-01

    To test the interaction of perceived risk and benefits and how they impact stage of mammography readiness and adherence. Cross-sectional study. Community gathering centers and healthcare clinics across Indiana. 299 African American women who had not had a mammogram in more than 18 months. In-person interviews were used to collect data on sociodemographics, health belief variables, and stage of readiness to undertake mammography screening. Four categories were created to measure the combined magnitude of high or low levels of perceived risk and benefit, with health belief variables linked to modified mammography screening behavior. Perceived risks and benefits, stage of readiness, and mammography adherence. The lowest rate of mammography adherence was in women with a high perceived risk and low perceived benefit toward mammography adherence (26%). The highest rate of adherence was in women with a high perceived benefit and low perceived risk (46%). Differences in mammography adherence were statistically significant between the groups (p = 0.009). The interaction of high perceived risk and low perceived benefits impacted readiness to undergo screening mammography. Reducing disparities in breast cancer diagnosis and survival requires timely and efficient mammography adherence. African American medically underserved women with high perceived risk and low perceived benefits exhibited a reluctance to move forward with mammography adherence. Interventions are needed to increase the perception of mammography benefit and to subsequently reduce breast cancer mortality rates in that population.

  4. Digital Technology Snapshot of the Literacy and Essential Skills Field 2013. Summary Report

    ERIC Educational Resources Information Center

    Trottier, Vicki

    2013-01-01

    From January to March 2013, "Canadian Literacy and Learning Network" (CLLN) conducted a snapshot to provide information about how digital technology tools are being used in the Literacy and Essential Skills (L/ES) field. The snapshot focused primarily on digital tools and activities that meet the organizational needs of provincial and…

  5. The utility of breast cone-beam computed tomography, ultrasound, and digital mammography for detecting malignant breast tumors: A prospective study with 212 patients.

    PubMed

    He, Ni; Wu, Yao-Pan; Kong, Yanan; Lv, Ning; Huang, Zhi-Mei; Li, Sheng; Wang, Yue; Geng, Zhi-Jun; Wu, Pei-Hong; Wei, Wei-Dong

    2016-02-01

    Breast cone-beam computed tomography (BCBCT) is a flat-panel detector (FPD)-based X-ray imaging system that provides high-quality images of the breast. The purpose of this study was to investigate the ability to detect breast abnormalities using non-contrast BCBCT and contrast-enhanced BCBCT (BCBCT and CE-BCBCT) compared to ultrasound (US) and digital mammography (MG). A prospective study was performed from May 2012 to August 2014. Ninety-two patients (172 lesions) underwent BCBCT alone, and 120 patients (270 lesions) underwent BCBCT and CE-BCBCT, all the patients underwent US and MG. Cancer diagnosis was confirmed pathologically in 102 patients (110 lesions). BCBCT identified 97 of 110 malignant lesions, whereas 93 malignant lesions were identified using MG and US. The areas under the receiver operating curves (AUCs) for breast cancer diagnosis were 0.861 (BCBCT), 0.856 (US), and 0.829 (MG). CE-BCBCT improved cancer diagnostic sensitivity by 20.3% (78.4-98.7%). The AUC values were 0.869 (CE-BCBCT), 0.846 (BCBCT), 0.834 (US), and 0.782 (MG). In this preliminary study, BCBCT was found to accurately identify malignant breast lesions in a diagnostic setting. CE-BCBCT provided additional information and improved cancer diagnosis in style c or d breasts compared to the use of BCBCT, US, or MG alone. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Computer-aided diagnostics of screening mammography using content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Soiron, Michael; de Oliveira, Júlia E. E.; de A. Araújo, Arnaldo

    2012-03-01

    Breast cancer is one of the main causes of death among women in occidental countries. In the last years, screening mammography has been established worldwide for early detection of breast cancer, and computer-aided diagnostics (CAD) is being developed to assist physicians reading mammograms. A promising method for CAD is content-based image retrieval (CBIR). Recently, we have developed a classification scheme of suspicious tissue pattern based on the support vector machine (SVM). In this paper, we continue moving towards automatic CAD of screening mammography. The experiments are based on in total 10,509 radiographs that have been collected from different sources. From this, 3,375 images are provided with one and 430 radiographs with more than one chain code annotation of cancerous regions. In different experiments, this data is divided into 12 and 20 classes, distinguishing between four categories of tissue density, three categories of pathology and in the 20 class problem two categories of different types of lesions. Balancing the number of images in each class yields 233 and 45 images remaining in each of the 12 and 20 classes, respectively. Using a two-dimensional principal component analysis, features are extracted from small patches of 128 x 128 pixels and classified by means of a SVM. Overall, the accuracy of the raw classification was 61.6 % and 52.1 % for the 12 and the 20 class problem, respectively. The confusion matrices are assessed for detailed analysis. Furthermore, an implementation of a SVM-based CBIR system for CADx in screening mammography is presented. In conclusion, with a smarter patch extraction, the CBIR approach might reach precision rates that are helpful for the physicians. This, however, needs more comprehensive evaluation on clinical data.

  7. Effectiveness of Computer-Aided Detection in Community Mammography Practice

    PubMed Central

    Abraham, Linn; Taplin, Stephen H.; Geller, Berta M.; Carney, Patricia A.; D’Orsi, Carl; Elmore, Joann G.; Barlow, William E.

    2011-01-01

    Background Computer-aided detection (CAD) is applied during screening mammography for millions of US women annually, although it is uncertain whether CAD improves breast cancer detection when used by community radiologists. Methods We investigated the association between CAD use during film-screen screening mammography and specificity, sensitivity, positive predictive value, cancer detection rates, and prognostic characteristics of breast cancers (stage, size, and node involvement). Records from 684 956 women who received more than 1.6 million film-screen mammograms at Breast Cancer Surveillance Consortium facilities in seven states in the United States from 1998 to 2006 were analyzed. We used random-effects logistic regression to estimate associations between CAD and specificity (true-negative examinations among women without breast cancer), sensitivity (true-positive examinations among women with breast cancer diagnosed within 1 year of mammography), and positive predictive value (breast cancer diagnosed after positive mammograms) while adjusting for mammography registry, patient age, time since previous mammography, breast density, use of hormone replacement therapy, and year of examination (1998–2002 vs 2003–2006). All statistical tests were two-sided. Results Of 90 total facilities, 25 (27.8%) adopted CAD and used it for an average of 27.5 study months. In adjusted analyses, CAD use was associated with statistically significantly lower specificity (OR = 0.87, 95% confidence interval [CI] = 0.85 to 0.89, P < .001) and positive predictive value (OR = 0.89, 95% CI = 0.80 to 0.99, P = .03). A non-statistically significant increase in overall sensitivity with CAD (OR = 1.06, 95% CI = 0.84 to 1.33, P = .62) was attributed to increased sensitivity for ductal carcinoma in situ (OR = 1.55, 95% CI = 0.83 to 2.91; P = .17), although sensitivity for invasive cancer was similar with or without CAD (OR = 0.96, 95% CI = 0.75 to 1.24; P = .77). CAD was not associated with

  8. Computed-aided diagnosis (CAD) in the detection of breast cancer.

    PubMed

    Dromain, C; Boyer, B; Ferré, R; Canale, S; Delaloge, S; Balleyguier, C

    2013-03-01

    Computer-aided detection (CAD) systems have been developed for interpretation to improve mammographic detection of breast cancer at screening by reducing the number of false-negative interpretation that can be caused by subtle findings, radiologist distraction and complex architecture. They use a digitized mammographic image that can be obtained from both screen-film mammography and full field digital mammography. Its performance in breast cancer detection is dependent on the performance of the CAD itself, the population to which it is applied and the radiologists who use it. There is a clear benefit to the use of CAD in less experienced radiologist and in detecting breast carcinomas presenting as microcalcifications. This review gives a detailed description CAD systems used in mammography and their performance in assistance of reading in screening mammography and as an alternative to double reading. Other CAD systems developed for MRI and ultrasound are also presented and discussed. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. The Assessment of the Likelihood of Mammography Usage with Relevant Factors among Women with Disabilities

    ERIC Educational Resources Information Center

    Kung, Pei-Tseng; Tsai, Wen-Chen; Chiou, Shang-Jyh

    2012-01-01

    Research that identifies the determinants of low mammography use among disabled people is scant. This study examines the determining factors related to the low usage of mammography among women with disabilities. To identify the barriers that prevent women with disabilities from participating in mammography screening can help authorities conceive…

  10. The effectiveness of using standardized patients to improve community physician skills in mammography counseling and clinical breast exam.

    PubMed

    Costanza, M E; Luckmann, R; Quirk, M E; Clemow, L; White, M J; Stoddard, A M

    1999-10-01

    Traditional didactic continuing education is relatively ineffective in improving physicians' clinical skills. We hypothesized that a centralized course including small group workshops utilizing standardized patients could improve clinical skills for a reasonable cost. We designed a 5-h course aimed at improving physicians' counseling skills (re: screening mammography) and clinical breast exam (CBE) skills. The course included lectures, demonstrations, and small group skills sessions utilizing standardized patients and was offered to 156 typical community-based primary care physicians. Pre- and postcourse evaluation included in-office assessments of physician CBE and counseling performance by standardized patients and a written test of knowledge and attitudes. A total of 54.5% of eligible physicians participated. They improved modestly in only one of three areas of counseling skills measured (providing counseling appropriate to the patient's readiness to accept mammography, P = 0.01). The overall CBE score increased substantially from 24.8 to 34.7 (P < 0.0001). Knowledge in all areas measured and confidence in counseling patients also increased. The basic course cost $202 per physician trained. Most community-based primary care physicians may find small group training and in-office evaluation involving standardized patients acceptable. Such training may be more effective in improving physical exam skills than complex communication skills.

  11. Cultural Views, Language Ability, and Mammography Use in Chinese American Women

    ERIC Educational Resources Information Center

    Liang, Wenchi; Wang, Judy; Chen, Mei-Yuh; Feng, Shibao; Yi, Bin; Mandelblatt, Jeanne S.

    2009-01-01

    Mammography screening rates among Chinese American women have been reported to be low. This study examines whether and how culture views and language ability influence mammography adherence in this mostly immigrant population. Asymptomatic Chinese American women (n = 466) aged 50 and older, recruited from the Washington, D.C. area, completed a…

  12. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    PubMed

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Predictors of mammography screening among ethnically diverse low-income women.

    PubMed

    Cronan, Terry A; Villalta, Ian; Gottfried, Emily; Vaden, Yavette; Ribas, Mabel; Conway, Terry L

    2008-05-01

    Breast cancer is the second leading cause of cancer deaths among women in the United States. Minority women are less likely to be screened and more likely to die from breast cancer than are Caucasian women. Although some studies have examined ethnic disparities in mammography screening, no study has examined whether there are ethnic disparities among low-income, ethnically diverse women. The present study was designed to determine whether there are ethnic disparities in mammography screening and predictors of screening among low-income African American, Mexican American, and Caucasian women, and to determine whether the disparities and predictors vary across ethnic groups. The participants were 146 low-income women who were Mexican American (32%), African American (31%), or Caucasian (37%). Statistical analyses were performed to assess the relationships between mammography screening during the past 2 years and potential predictors of screening, both within ethnic groups and for the combined sample. The results varied depending on whether analyses combined ethnic groups or were performed within each of the three ethnic groups. It is, therefore, important to examine within-group differences when examining ethnic disparities in predictors of mammography.

  14. [Prevalence in the performance of mammographies in Spain: Analysis by Communities 2006-2014 and influencing factors].

    PubMed

    Carmona-Torres, Juan Manuel; Cobo-Cuenca, Ana Isabel; Martín-Espinosa, Noelia María; Piriz-Campos, Rosa María; Laredo-Aguilera, José Alberto; Rodríguez-Borrego, María Aurora

    2018-04-01

    To determine the frequency of the performance of mammography with preventive purpose of the screening of breast cancer in Spanish women, the evolution between the years 2006-2014, the sociodemographic profile of the women who undergo the mammography and to analyze the factors that influence in their adhesion. Transversal study. Spain. A total of 53.628 women over 15 years old that are surveyed in the National Health Survey in Spain 2006 and 2011/12 and the European Health Survey in Spain 2009 and 2014. The following variables were used: mammography, frequency of mammography performance and the reason for the realization, as well as sociodemographic variables. Social class was obtained from the last occupation of the main family supporter. A logistic regression analysis was performed with sociodemographic variables. The prevalence of mammography has been increasing from 2006 to 2014, and also for the reason that the participants had received a letter, they were telephoned or offered in their Health Center to undergo this test. There are significant differences in the performance of mammography in the different autonomous communities. Performing mammography has increased significantly from 2006 to 2014, although there are still differences between autonomous communities, with Ceuta and Melilla being the least percentage of performed mammography. The factors that are related to greater performed mammography are: higher educational level, higher social class, married civil status, Spanish nationality and age. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  15. Vorticity field measurement using digital inline holography

    NASA Astrophysics Data System (ADS)

    Mallery, Kevin; Hong, Jiarong

    2017-11-01

    We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.

  16. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

    PubMed

    Kooi, Thijs; van Ginneken, Bram; Karssemeijer, Nico; den Heeten, Ard

    2017-03-01

    It is estimated that 7% of women in the western world will develop palpable breast cysts in their lifetime. Even though cysts have been correlated with risk of developing breast cancer, many of them are benign and do not require follow-up. We develop a method to discriminate benign solitary cysts from malignant masses in digital mammography. We think a system like this can have merit in the clinic as a decision aid or complementary to specialized modalities. We employ a deep convolutional neural network (CNN) to classify cyst and mass patches. Deep CNNs have been shown to be powerful classifiers, but need a large amount of training data for which medical problems are often difficult to come by. The key contribution of this paper is that we show good performance can be obtained on a small dataset by pretraining the network on a large dataset of a related task. We subsequently investigate the following: (a) when a mammographic exam is performed, two different views of the same breast are recorded. We investigate the merit of combining the output of the classifier from these two views. (b) We evaluate the importance of the resolution of the patches fed to the network. (c) A method dubbed tissue augmentation is subsequently employed, where we extract normal tissue from normal patches and superimpose this onto the actual samples aiming for a classifier invariant to occluding tissue. (d) We combine the representation extracted using the deep CNN with our previously developed features. We show that using the proposed deep learning method, an area under the ROC curve (AUC) value of 0.80 can be obtained on a set of benign solitary cysts and malignant mass findings recalled in screening. We find that it works significantly better than our previously developed approach by comparing the AUC of the ROC using bootstrapping. By combining views, the results can be further improved, though this difference was not found to be significant. We find no significant difference between

  17. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing.

    PubMed

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.

  18. Short-Term Outcomes of Screening Mammography Using Computer-Aided Detection

    PubMed Central

    Fenton, Joshua J.; Xing, Guibo; Elmore, Joann G.; Bang, Heejung; Chen, Steven L.; Lindfors, Karen K.; Baldwin, Laura-Mae

    2013-01-01

    Background Computer-aided detection (CAD) has rapidly diffused into screening mammography practice despite limited and conflicting data on its clinical effect. Objective To determine associations between CAD use during screening mammography and the incidence of ductal carcinoma in situ (DCIS) and invasive breast cancer, invasive cancer stage, and diagnostic testing. Design Retrospective cohort study. Setting Medicare program. Participants Women aged 67 to 89 years having screening mammography between 2001 and 2006 in U.S. SEER (Surveillance, Epidemiology and End Results) regions (409 459 mammograms from 163 099 women). Measurements Incident DCIS and invasive breast cancer within 1 year after mammography, invasive cancer stage, and diagnostic testing within 90 days after screening among women without breast cancer. Results From 2001 to 2006, CAD prevalence increased from 3.6% to 60.5%. Use of CAD was associated with greater DCIS incidence (adjusted odds ratio [OR], 1.17 [95% CI, 1.11 to 1.23]) but no difference in invasive breast cancer incidence (adjusted OR, 1.00 [CI, 0.97 to 1.03]). Among women with invasive cancer, CAD was associated with greater likelihood of stage I to II versus III to IV cancer (adjusted OR, 1.27 [CI, 1.14 to 1.41]). In women without breast cancer, CAD was associated with increased odds of diagnostic mammography (adjusted OR, 1.28 [CI, 1.27 to 1.29]), breast ultrasonography (adjusted OR, 1.07 [CI, 1.06 to 1.09]), and breast biopsy (adjusted OR, 1.10 [CI, 1.08 to 1.12]). Limitation Short follow-up for cancer stage, potential unmeasured confounding, and uncertain generalizability to younger women. Conclusion Use of CAD during screening mammography among Medicare enrollees is associated with increased DCIS incidence, the diagnosis of invasive breast cancer at earlier stages, and increased diagnostic testing among women without breast cancer. Primary Funding Source Center for Healthcare Policy and Research, University of California, Davis. PMID

  19. Shield fields: Concentrations of small volcanic edifices on Venus

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    Pre-Magellan analysis of the Venera 15/16 data indicated the existence of abundant small volcanic edifices, each less than or equal to 20 km diameter, interpreted to be predominantly shield volcanoes and occurring throughout the plains terrain, most common in equidimensional clusters. With the analysis of Magellan data, these clusters of greater than average concentration of small volcanic edifices have been called 'shield fields'. Although individual small shields can and do occur almost everywhere on the plains terrain of Venus, they most commonly occur in fields that are well-defined, predominantly equant, clusters of edifices. Major questions include why the edifices are concentrated in this way, how they relate to the source of the eruptive material, and what the possible relationship of shield fields to plains terrain is. There are three possible models for the origin of fields and small shields: (1) a field represents an 'island' of higher topography subsequently surrounded by later plains material; and (2) a field represents the area of magma reservoir.

  20. Mapping 3D breast lesions from full-field digital mammograms using subject-specific finite element models

    NASA Astrophysics Data System (ADS)

    García, E.; Oliver, A.; Diaz, O.; Diez, Y.; Gubern-Mérida, A.; Martí, R.; Martí, J.

    2017-03-01

    Patient-specific finite element (FE) models of the breast have received increasing attention due to the potential capability of fusing images from different modalities. During the Magnetic Resonance Imaging (MRI) to X-ray mammography registration procedure, the FE model is compressed mimicking the mammographic acquisition. Subsequently, suspicious lesions in the MRI volume can be projected into the 2D mammographic space. However, most registration algorithms do not provide the reverse information, avoiding to obtain the 3D geometrical information from the lesions localized in the mammograms. In this work we introduce a fast method to localize the 3D position of the lesion within the MRI, using both cranio-caudal (CC) and medio-lateral oblique (MLO) mammographic projections, indexing the tetrahedral elements of the biomechanical model by means of an uniform grid. For each marked lesion in the Full-Field Digital Mammogram (FFDM), the X-ray path from source to the marker is calculated. Barycentric coordinates are computed in the tetrahedrons traversed by the ray. The list of elements and coordinates allows to localize two curves within the MRI and the closest point between both curves is taken as the 3D position of the lesion. The registration errors obtained in the mammographic space are 9.89 +/- 3.72 mm in CC- and 8.04 +/- 4.68 mm in MLO-projection and the error in the 3D MRI space is equal to 10.29 +/- 3.99 mm. Regarding the uniform grid, it is computed spending between 0.1 and 0.7 seconds. The average time spent to compute the 3D location of a lesion is about 8 ms.