Science.gov

Sample records for small-scale wind power

  1. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  2. Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty

    SciTech Connect

    Fleten, Stein-Erik; Maribu, Karl Magnus

    2004-11-28

    This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

  3. Small-scale modular wind turbine

    NASA Astrophysics Data System (ADS)

    Bressers, Scott; Vernier, Chris; Regan, Jess; Chappell, Stephen; Hotze, Mark; Luhman, Stephen; Avirovik, Dragan; Priya, Shashank

    2010-04-01

    This study reports the design, fabrication, and implementation of a horizontal-axis, small-scale modular wind turbine termed as "small-scale wind energy portable turbine (SWEPT)". Portability, efficient operation at low wind speeds, and cost-effectiveness were the primary goals of SWEPT. The fabrication and component design for SWEPT are provided along with the modifications that can provide improvement in performance. A comparative analysis is presented with the prototype reported in literature. The results show that current version of SWEPT leads to 150% increase in output power. It was found that SWEPT can generate 160 mW power at rated wind speed of 7 mph and 500mW power at wind speeds above 10 mph with a cut-in wind speed of 3.8 mph. Furthermore, the prototype was subjected to field testing in which the average output was measured to be 40 mW despite the average wind distribution being centered around 3 mph.

  4. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  5. Power management for small scale systems

    NASA Astrophysics Data System (ADS)

    Meyer, Christopher D.; Bedair, Sarah S.; Morgan, Brian C.; Lin, Xue; Bashirullah, Rizwan; Arnold, David P.; Kierzewski, Iain M.; Lazarus, Nathan S.

    2014-06-01

    Contemporary electronic systems often contain power circuits to support the unique power conversion or conditioning needs of each of the various subsystems. Each of these power circuits is generally implemented with discrete passive and active electronic components soldered next to the load devices on the printed circuit board. As greater levels of functionality are demanded within diminishing size and weight allowances, power management solutions will increasingly demand highly miniaturized power converters that are more tightly integrated into single-package solutions or even directly integrated onto the points of source and load. Experimental converters have demonstrated great potential in switching at very high frequencies (100+ MHz) to reduce the size of the requisite passive storage elements (inductors, transformers, and capacitors) to values that may be suitable for in-package or on-chip integration. However, integrating the passives into the same package as the active switching and control circuitry remains a significant fabrication challenge due to material incompatibility and inadequate performance of the passives. This paper discusses progress towards a fully integrated power converter module with a focus on microfabrication processes for both passive component development and wafer-level packaging. The passive components have been optimized for high performance at hundreds of MHz through the use of thick copper traces, intricate three-dimensional winding patterns. The capability of detaching the passives from the fabrication wafer produces a passives substrate that can serve directly as a routing platform for full integration of all components into a single-package solution.

  6. Dynamic properties of small-scale solar wind plasma fluctuations.

    PubMed

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. PMID:25848078

  7. Dynamic properties of small-scale solar wind plasma fluctuations

    PubMed Central

    Riazantseva, M. O.; Budaev, V. P.; Zelenyi, L. M.; Zastenker, G. N.; Pavlos, G. P.; Safrankova, J.; Nemecek, Z.; Prech, L.; Nemec, F.

    2015-01-01

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350 000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. PMID:25848078

  8. Numerical study on small scale vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  9. Small scale MHD wave processes in the solar atmosphere and solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1987-01-01

    Solar wind observations suggesting wave-particle interactions via ion-cyclotron resonances are reviewed. The required power at high frequencies is presumably supplied via a turbulent cascade. Tu's (1987) model, which considers a turbulent cascade explicitly, is outlined. In the solar atmosphere, resonance absorption is considered. The meanings of the cusp and Alfven resonances are discussed, and it is shown how energy gets pumped into small scales. It is shown that resonance absorption can heat the corona and spicules in a manner consistent with observations, if turbulence provides an eddy viscosity.

  10. Torque Characteristics Simulation on Small Scale Combined Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Feng, Fang; Li, Shengmao; Li, Yan; Xu, Dan

    The straight-bladed vertical axis wind turbine (SB-VAWT) receives more attentions recently for its goodness of simple design, low cost and good maintenance. However, its starting performance is poor. To increase its starting torque, Savonius rotor was combined on the SB-VAWT in this study because Savonius rotor has good starting torque coefficient. Based on the wind tunnel tests data, a small scaled combined type SB-VAWT (CSB-VAWT) which has 50W rated power output was designed. The starting torque coefficient, dynamic torque and power performance were analyzed. Both the starting and dynamic torque performance of the CSB-VAWT have been greatly improved according to the simulation results.

  11. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect

    Ashworth, R.A.; Keener, H.M.; Hall, A.W.

    1995-12-31

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  12. An experimental study of potential residential and commercial applications of small-scale hybrid power systems

    NASA Astrophysics Data System (ADS)

    Acosta, Michael Anthony

    The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.

  13. Using dark energy to suppress power at small scales

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Nesseris, Savvas; Sawicki, Ignacy

    2015-09-01

    The latest Planck results reconfirm the existence of a slight but chronic tension between the best-fit cosmic microwave background (CMB) and low-redshift observables: power seems to be consistently lacking in the late universe across a range of observables (e.g. weak lensing, cluster counts). We propose a two-parameter model for dark energy where the dark energy is sufficiently like dark matter at large scales to keep the CMB unchanged but where it does not cluster at small scales, preventing concordance collapse and erasing power. We thus exploit the generic scale-dependence of dark energy instead of the more usual time-dependence to address the tension in the data. The combination of CMB, distance and weak lensing data somewhat prefer our model to Λ CDM , at Δ χ2=2.4 . Moreover, this improved solution has σ8=0.79 ±0.02 , consistent with the value implied by cluster counts.

  14. Capital cost of small-scale tidal power plants

    SciTech Connect

    Fay, J.A.; Smachio, M.A.

    1983-11-01

    A generic methodology is devised for estimating the capital costs of small-scale tidal power plants (1-100 MW rated power). In addition to the general dimensions determining the size of the tidal pond resource (surface area and tidal range) two site-specific dimensions (depth and length of closure structure) are required for this estimate. Dimensionless parameters and variables describing the power plant performance are used in the cost analysis to specify the relative sizes of the power plant components (turbine-generator, power house, sluice gates, cofferdam, and barrage). The generic cost estimates are compared with those used in several site-specific studies. Unit total capital cost (cost per unit of average power produced) is calculated as a function of the size of the tidal pond resource, the latter being measured in terms of the ideal tidal pond power. A range of closure depths and lengths was used in these generic cost estimates. The minimum unit capital cost is shown to depend upon the size of the tidal pond as well as the site-specific dimensions. An optimum turbogenerator size can be determined to minimize the capital cost.

  15. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  16. Simulation of turbulent magnetic reconnection in the small-scale solar wind.

    NASA Astrophysics Data System (ADS)

    Wei, Fengsi; Qiang, Hu; Schwen, R.; Feng, Xueshang

    2000-06-01

    Some observational examples for the possible occurrence of the turbulent magnetic reconnection in the solar wind are found by analysing Hellos spacecraft's high resolution data. The phenomena of turbulent magnetic reconnections in small scale solar wind are simulated by introducing a third order accuracy upwind compact difference scheme to the compressible two-dimensional MHD flow. Numerical results verify that the turbulent magnetic reconnection process could occur in small scale interplanetary solar wind, which is a basic feature characterizing the magnetic reconnection in high-magnetic Reynolds number solar wind.

  17. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  18. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  19. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  20. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  1. Large- and small-scale constraints on power spectra in Omega = 1 universes

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.

    1993-01-01

    The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.

  2. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  3. The small scale power asymmetry in the cosmic microwave background

    SciTech Connect

    Flender, Samuel; Hotchkiss, Shaun E-mail: shaun.hotchkiss@helsinki.fi

    2013-09-01

    We investigate the hemispherical power asymmetry in the cosmic microwave background on small angular scales. We find an anomalously high asymmetry in the multipole range l = 601−2048, with a naive statistical significance of 6.5σ. However, we show that this extreme anomaly is simply a coincidence of three other effects, relativistic power modulation, edge effects from the mask applied, and inter-scale correlations. After correcting for all of these effects, the significance level drops to ∼ 1σ, i.e., there is no anomalous intrinsic asymmetry in the small angular scales. Using this null result, we derive a constraint on a potential dipolar modulation amplitude, A(k) < 0.0045 on the ∼ 10 Mpc-scale, at 95% C.L. This new constraint must be satisfied by any theoretical model attempting to explain the hemispherical asymmetry at large angular scales.

  4. Satellite measurements reveal persistent small-scale features in ocean winds.

    PubMed

    Chelton, Dudley B; Schlax, Michael G; Freilich, Michael H; Milliff, Ralph F

    2004-02-13

    Four-year averages of 25-kilometer-resolution measurements of near-surface wind speed and direction over the global ocean from the QuikSCAT satellite radar scatterometer reveal the existence of surprisingly persistent small-scale features in the dynamically and thermodynamically important curl and divergence of the wind stress. Air-sea interaction over sea surface temperature fronts throughout the world ocean is evident in both the curl and divergence fields, as are the influences of islands and coastal mountains. Ocean currents such as the Gulf Stream generate distinctive patterns in the curl field. These previously unresolved features have important implications for oceanographic and air-sea interaction research. PMID:14726595

  5. Detection of small-scale structures in the dissipation regime of solar-wind turbulence.

    PubMed

    Perri, S; Goldstein, M L; Dorelli, J C; Sahraoui, F

    2012-11-01

    Recent observations of the solar wind have pointed out the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ(p) down to the electron Larmor radius ρ(e) scale. In this Letter we study the spatial properties of magnetic field fluctuations in the solar wind and find that at small scales the magnetic field does not resemble a sea of homogeneous fluctuations, but rather a two-dimensional plane containing thin current sheets and discontinuities with spatial sizes ranging from l >/~ ρ(p) down to ρ(e) and below. These isolated structures may be manifestations of intermittency that localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection, and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas. PMID:23215371

  6. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  7. Properties of small scale fluctuations in turbulent flow of solar wind and magnetosheath

    NASA Astrophysics Data System (ADS)

    Riazantseva, Maria; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Prech, Lubomir; Budaev, Vyacheslav; Liudmila, Rakhmanova; Pavlos, George

    Magnetosphere of the Earth is formed under the influence of turbulent solar wind flow. Amplitudes of turbulent fluctuations of particle flux and magnetic field are considerably increased in the Earth's magnetosheath. We present the latest results of the studies of properties of small scale fluctuations in turbulent flow of solar wind and magnetosheath using extremely high resolution (up to 0.03 s) of BMSW device operating on SPECTR-R mission. The spectra of plasma fluctuations on the scales 0.03-100 s scales are systematically analyzed. The existence of the break frequency in spectra of fluctuations of the solar wind and magnetosheath plasma parameters is demonstrated. Variations of spectra slopes before and after break, and of the frequency of the break are analyzed for different solar wind conditions. The differences of the parameters of the spectra of ion flux value and direction are discussed. The properties of non Gaussian probability distribution functions (PDF) of fluctuations of plasma parameters on scales less than 10 s are observed. The characteristics of structure functions and their scaling are determined. It’s shown that the filament structures in the turbulent solar wind flows observed as a rule. The possibility to describe PDF’s by Tsalis statistics is discussed. All statistical results demonstrate the high level of intermittency on discussed scales.

  8. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  9. Small scale hydroelectric power potential in Nevada: a preliminary reconnaissance survey

    SciTech Connect

    Cochran, G.F.; Fordham, J.W.; Richard, K.; Loux, R.

    1981-04-01

    This preliminary reconnaissance survey is intended to: develop a first estimate as to the potential number, location and characteristics of small-scale (50 kW to 15 MW) hydroelectric sites in Nevada; provide a compilation of various Federal and state laws and regulations, including tax and financing regulations, that affect small-scale hydroelectric development and provide information on sources of small-scale hydroelectric generation hardware and consultants/ contractors who do small scale hydroelectric work. The entire survey has been conducted in the office working with various available data bases. The site survey and site evaluation methods used are described, and data are tabulated on the flow, power potential, predicted capital expenditures required, etc. for 61 potential sites with measured flows and for 77 sites with derived flows. A map showing potential site locations is included. (LCL)

  10. Small-scale structures in common-volume meteor wind measurements

    NASA Astrophysics Data System (ADS)

    Fraser, G. J.; Marsh, S. H.; Baggaley, W. J.; Bennett, R. G. T.; Lawrence, B. N.; McDonald, A. J.; Plank, G. E.

    2006-02-01

    Observational differences occur when different techniques are used for measuring mesospheric winds because the different instruments observe different physical quantities to infer the wind velocity, and have differing time and space resolution. The AMOR meteor wind radar near Christchurch, New Zealand [Marsh et al., 2000. Journal of Atmospheric and Solar-Terrestrial Physics 62,1129 1133.] has good resolution in time (˜0.1 s) and height (˜1 km) and a narrow beam centred in the geographic N S meridian. The meteor echoes randomly sample the atmosphere in a region extending over several hundred kilometres to the South of the radar. The volume of data obtained from the one instrument has made it possible to use correlations between measurements made from individual meteor trails to identify the contribution of atmospheric variability to the observational differences. Measurements of the meridional wind component made from May July 1997 inclusive show that a large part (20 30 m/s r.m.s.) of the atmospheric variation is due to inhomogeneities with small scales, of the order of 10 km and 1 h. There is also a component which has a random time phase over the observation interval but a spatial scale which is coherent over several hundred kilometres, consistent with the behaviour of gravity waves.

  11. Damage assessment of small-scale wind turbine blade using piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Rim, Mi-Sun; Kim, Sang-Woo; Kim, Eun-Ho; Lee, In

    2012-04-01

    Real-time structural health monitoring (SHM) systems are applied many fields. Recently, the interest about wind energy was increased by the demand of clean energy in the world and many researches were actively performed for applying SHM technology to wind turbine systems. Piezoelectric sensor is one kind of sensor which is widely used for SHM system to assess damage creation. In this paper, the small scale wind turbine blade was fabricated and health monitoring of the blade was performed using the piezoelectric sensor. The quasi-static bending test of the blade was carried out and the PVDF (Polyvinylidene fluoride) sensors, which are polymer type piezoelectric materials, were used for health monitoring. Two-cycle test was performed; the load was applied during 350 sec and removed at the first cycle, and load was applied again until the blade was broken completely at the second cycle. The voltage of PVDF sensors were measured during the quasi-static bending test in order to find out the moment when the damage occurrence started. The voltage of the sensor critically changed at the moment of damage occurred.

  12. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  13. A Wind Tunnel Investigation of a Small Scale Tiltrotor Model in Descending Flight

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Long, Kurtis R.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    A small-scale tiltrotor model was tested in the 7-by 10-foot Wind Tunnel at NASA Ames Research Center, with the goal of better understanding Vortex Ring State (VRS) effects on tiltrotor aircraft. Test objectives were to obtain performance data of a tiltrotor model over a wide range of descent conditions, to explore the effects of sideslip at these descent conditions, and to investigate the validity of using a single-rotor with a physical image plane to simulate dual rotor performance characteristics. The model consisted of a pair of 2-bladed teetering rotors with untwisted, 11.125-inch diameter, rectangular planform blades. Model configuration variations included a dual-rotor, an isolated-rotor, and a single-rotor with a physical image plane. Rotor performance data were obtained for the dual-rotor configuration operating over a wide range of descent and sideslip conditions. Isolated-rotor and single-rotor with image plane configurations were tested over an abbreviated range of descent conditions. Results of this investigation are presented and show mean thrust reductions in the region of VRS for each model configuration. In comparison with the dual-rotor configuration, the isolated-rotor and single-rotor with image plane configurations produced thrust results similar in trend but different in magnitude.

  14. Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Madjarska, M. S.; Doyle, J. G.

    2010-06-01

    Aims: We aim to further explore the small-scale evolution of coronal hole boundaries using X-ray high-resolution and high-cadence images. We intend to determine the fine structure and dynamics of the events causing changes of coronal hole boundaries and to explore the possibility that these events are the source of the slow solar wind. Methods: We developed an automated procedure for the identification of transient brightenings in images from the X-ray telescope on-board Hinode taken with an Al Poly filter in the equatorial coronal holes, polar coronal holes, and the quiet Sun with and without transient coronal holes. Results: We found that in comparison to the quiet Sun, the boundaries of coronal holes are abundant with brightening events including areas inside the coronal holes where closed magnetic field structures are present. The visual analysis of these brightenings revealed that around 70% of them in equatorial, polar and transient coronal holes and their boundaries show expanding loop structures and/or collimated outflows. In the quiet Sun only 30% of the brightenings show flows with most of them appearing to be contained in the solar corona by closed magnetic field lines. This strongly suggests that magnetic reconnection of co-spatial open and closed magnetic field lines creates the necessary conditions for plasma outflows to large distances. The ejected plasma always originates from pre-existing or newly emerging (at X-ray temperatures) bright points. Conclusions: The present study confirms our findings that the evolution of loop structures known as coronal bright points is associated with the small-scale changes of coronal hole boundaries. The loop structures show an expansion and eruption with the trapped plasma consequently escaping along the “quasi” open magnetic field lines. These ejections appear to be triggered by magnetic reconnection, e.g. the so-called interchange reconnection between the closed magnetic field lines (BPs) and the open

  15. Small scale aspects of warm dark matter: Power spectra and acoustic oscillations

    SciTech Connect

    Boyanovsky, Daniel; Wu Jun

    2011-02-15

    We provide a semianalytic derivation of approximate evolution equations for density perturbations of warm dark matter candidates that decoupled while relativistic with arbitrary distribution functions, their solutions at small scales, and a simple numerical implementation that yields their transfer functions and power spectra. Density perturbations evolve through three stages: radiation domination when the particle is relativistic and nonrelativistic and matter domination. An early integrated Sachs-Wolfe effect during the first stage leads to an enhancement of density perturbations and a plateau in the transfer function for k < or approx. k{sub fs}, the free-streaming wave vector. An effective fluid description emerges at small scales which includes the effects of free streaming in initial conditions and inhomogeneities. The transfer function features warm dark matter acoustic oscillations at scales k > or approx. 2k{sub fs}. A simple analytic interpolation of the power spectra between large and small scales and a numerical implementation valid for arbitrary distribution functions is provided. As an application we study the power spectra for two models of sterile neutrinos with m{approx}keV produced nonresonantly and compare our results to those obtained from Boltzmann codes.

  16. Global scale-invariance of small-scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER

    NASA Astrophysics Data System (ADS)

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Dunlop, M. W.; Sahraoui, F.

    2009-12-01

    Spacecraft measurements of magnetic fluctuations of collisionless plasma turbulence in the solar wind typically show an ‘inertial range’ of MHD turbulence with a power-law power spectra. At higher frequencies a spectral break is seen around the ion-gyroscale with a subsequent steeper power-law, indicating a cross-over to spatial-temporal scales where kinetic effects become important. Theories for this second scaling range, also known as the “dissipation/dispersion” range focus on the spectral slope and the associated scaling exponents. We will present some results from very high-frequency magnetic field data from the four Cluster II spacecraft in intervals where the spacecraft were in quasi-stationary ambient solar wind and where the instruments were operating in burst mode. The magnetic field data are from the fluxgate and search-coil magnetometers from the Cluster FGM experiment (~67Hz), and the STAFF experiment (~450 Hz). These data sets provide observations of this dissipation/dispersion range over approximately two decades in frequency. This high cadence allows a better determination of the statistics at these small scales; especially the estimation of scaling exponents. We present a robust multiscale statistical analysis focusing on power spectra, PDFs of field fluctuations and higher-order statistics to quantify the scaling of fluctuations; as well as describing the degree of anisotropy in the fluctuations parallel and perpendicular to the average magnetic field. Both neutral fluid and MHD turbulence share a ‘‘classic’’ statistical signature - namely an intermittent multifractal scaling seen in the higher-order statistics. We test the statistical properties of the dissipation range and find in contrast monoscaling behavior, i.e., a global scale invariance. This provides a strong discriminator for the physics and phenomenology of the dissipation range in collisionless plasmas. Reference article: K. H. Kiyani, S. C. Chapman, Yu. V. Khotyaintsev

  17. Legal obstacles and incentives to the development of small scale hydroelectric power in Kentucky

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are examined. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by the FERC. Additional sections cover acquisition; liability; Department for Natural Resources and Environmental Protection; energy utilities; local regulations; incidental impacts; financial considerations; and sources of information. In Kentucky, many of the impacts have not been implemented with regard to small-scale hydroelectric energy, since in Kentucky most electricity is coal-generated and any hydroelectric power that does exist, is derived from TVA or the Army Corp of Engineer projects.

  18. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect

    Yao Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  19. Legal obstacles and incentives to the development of small scale hydroelectric power in New Jersey

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in New Jersey are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is discussed. New Jersey follows the riparian theory of water law. Following an extensive discussion of the New Jersey water law, New Jersey regulatory law and financial considerations regarding hydroelectric power development are discussed.

  20. Small scale solar wind turbulence due to nonlinear Alfvén waves

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Sharma, R. P.; Moon, Y. J.

    2015-12-01

    In the work presented here, we study the evolution of wave localization and magnetic power spectrum using kinetic Alfven wave (AW) and fast AW in the solar wind plasma. We derived the dynamical equations for these wave modes using two-fluid model and then solved numerically to analyze power spectra as well as wave localization at different instants of time. The ponderomotive force associated with the pump is responsible for the wave localization and these localized structures become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) mentioned here, saturates. We observe steepening of the spectra as we go from inertial range to the dispersion range i.e. nearly k-1.67 to k-3.0. The steepening of spectra may be described as the transfer of energy from longer scale to the smaller scale. The formation of complex magnetic filaments and change in the spectral index may be responsible for the charged particles acceleration in the solar wind plasma.

  1. Small-scale Solar Wind Turbulence Due to Nonlinear Alfven Waves

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Sharma, R. P.; Moon, Y.-J.

    2015-10-01

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k‑1.67) to the dispersion range (k‑3.0). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.

  2. Small-scale AFBC-hot air gas turbine power cycle

    SciTech Connect

    Ashworth, R.C.; Keener, H.M.; Hall, A.W.

    1995-02-01

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  3. Scale-invariance and Anisotropy of small-scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER

    NASA Astrophysics Data System (ADS)

    Hnat, B.; Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Dunlop, M. W.; Sahraoui, F.

    2009-12-01

    In-situ observations of fluctuations in the solar wind typically show an ‘inertial range’ of MHD turbulence, and at higher frequencies, a cross-over to spatial temporal scales where kinetic effects become important. In-situ monitors such as WIND and ACE have provided observations over a decade of this dissipation/dispersion range that have motivated theoretical studies that in turn predict the nature of the scaling in this region. We will present some results from very high-frequency magnetic field data from the four Cluster II spacecraft in intervals where the spacecraft were in quasi-stationary ambient solar wind and where the instruments were operating in burst mode. The magnetic field data are from the fluxgate and search-coil magnetometers from the Cluster FGM experiment (~67Hz), and the STAFF experiment (~450 Hz). These data sets provide observations of this dissipation/dispersion range over approximately two decades in frequency. This high cadence allows a more precise determination of the statistics at these small scales; especially the estimation of scaling exponents. Theories centred around the dispersion of MHD waves and their associated damping and particle heating have been proposed to account for this scaling range. Since the spacecraft data shows a clean break from the scaling in the inertial range, followed by a different power-law spanning over approximately two decades, these theories centre around predictions of the spectral slope and the associated scaling exponents. Motivated by the need to distinguish these theoretical predictions, we perform a robust multiscale statistical analysis focusing on power spectra, PDFs of field fluctuations, higher-order statistics to quantify the scaling of fluctuations; as well as describing the degree of anisotropy in the fluctuations parallel and perpendicular to the average magnetic field. We use these results to infer the nature of the physical processes as we pass through the crossover from inertial

  4. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  5. An investigation of rotor harmonic noise by the use of small scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaffer, E. G.

    1982-01-01

    Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.

  6. Validation of a power-law noise model for simulating small-scale breast tissue

    PubMed Central

    Reiser, I.; Edwards, A.; Nishikawa, R. M.

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially-averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. PMID:23938858

  7. Validation of a power-law noise model for simulating small-scale breast tissue

    NASA Astrophysics Data System (ADS)

    Reiser, I.; Edwards, A.; Nishikawa, R. M.

    2013-09-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided.

  8. Legal obstacles and incentives to the development of small scale hydroelectric power in West Virginia

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric in West Virginia at the state level are described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by FERC. The development of small-scale hydroelectric energy depends on the selection of a site which will produce sufficient water power capacity to make the project economically attractive to a developer. In West Virginia, the right to use the flowing waters of a stream, creek, or river is appurtenant to the ownership of the lands bordering the watercourse. The lands are known as riparian lands. The water rights are known as riparian rights. Thus, the first obstacle a developer faces involves the acquisition of riparian lands and the subsequent right to the use of the water. The water law in West Virginia is discussed in detail followed by discussions on direct and indirect regulations; continuing obligations; financial considerations; and interstate organizations.

  9. Legal obstacles and incentives to the development of small scale hydroelectric power in New York

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step the small scale hydroelectric developer must take is that of acquiring title to the real property comprising the development site. The real estate parcel must include the requisite interest in the land adjacent to the watercourse, access to the underlying streambed and where needed, the land necessary for an upstream impoundment area. Land acquisition may be effectuated by purchase, lease, or grant by the state. In addition to these methods, New York permits the use of the eminent domain power of the state for public utilities under certain circumstances.

  10. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated

  11. Legal obstacles and incentives to the development of small scale hydroelectric power in Connecticut

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric power in Connecticut are discussed. The Federal government also exercises extensive regulatory authority in the area and this dual system is examined from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. Connecticut follows the riparian theory of water law. Under this theory of the water law, private rights in rivers and streams are confined to the use of flowing water. A riparian proprietor does not own the water that flows by his estate. Licensing, permitting, and review procedures are discussed followed by discussion on public utilities regulation and indirect considerations.

  12. Legal obstacles and incentives to the development of small scale hydroelectric power in Ohio

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by the FERC. A developer must obtain title or interest to a streambed from the proper riparian owners. Ohio provides assistance to an electric company in this undertaking by providing it with the power of eminent domain in the event it is unable to reach a purchase agreement with the riparian proprietors. The Ohio Water Law is discussed in detail, followed by discussions: Licensing, Permitting, and Review Procedures; Indirect Considerations; Ohio Public Utilities Commission; Ohio Department of Energy; Incidental Provision; and Financial Considerations.

  13. Customer adoption of small-scale on-site power generation

    SciTech Connect

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  14. Studying Large and Small Scale Wind Asymmetries with Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    St-Louis, N.

    In this paper, I review observational evidence from spectroscopy and polarimetry for the presence of small and large scale structure in the winds of Wolf-Rayet (WR) stars. Clumping is known to be ubiquitous in the winds of these stars and many of its characteristics can be deduced from spectroscopic time-series and polarisation lightcurves. Conversely, a much smaller fraction of WR stars have been shown to harbour larger scale structures in their wind (˜ 1/5) while they are thought to be present is the winds of most of their O-star ancestors. The reason for this difference is still unknown.

  15. Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Waites, W. L.; Chin, Y. T.

    1974-01-01

    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.

  16. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  17. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    SciTech Connect

    Cao, H.V.; Wentz, W.H. Jr.

    1987-07-01

    Wind tunnel tests of three 20-inch diameter, zero-twist, zero-pitch wind turbine rotor models have been conducted in the WSU 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64/sub 3/-621 airfoil sections. Aerodynamic braking characteristics of a 38 percent span, 30 percent chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64/sub 3/-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64/sub 3/-621 rotor. These trends agree with analytical predictions. Results of the aileron tests show that this aileron, when deflected, produces a braking torque at all tip-speed ratios. In free-wheeling coastdowns the rotor blade stopped, then rotated backward at a tip-speed ratio of -0.6. Results of the tuft studies indicate that substantial spanwise flow develops as blade stall occurs at low tip-speed ratios.

  18. Shannon entropy method of small-scale self-focusing assessment in high-power laser systems.

    PubMed

    Liu, Rende; Hu, Dongxia; Deng, Xuewei; Zhao, Junpu; Wang, Wenyi; Dai, Wanjun; Zhou, Wei; Huang, Xiaoxia; Li, Min; Yang, Sheng

    2016-02-01

    Through analysis of near-field beam profiles, we propose a method using Shannon entropy to assess the development of small-scale self-focusing during laser propagation and amplification in high-power laser systems. In this method, the entropy curve that corresponds to increasing B integral displays an evident turning point at which small-scale self-focusing starts to rapidly develop. In contrast to classical methods using contrast, modulation, or power spectral density, the proposed method provides the B integral criterion more clearly and objectively. This approach is an optimization method that can be utilized in the design and operation of high-power laser systems. PMID:26906805

  19. Detection of small-scale folds at a solar wind reconnection exhaust

    NASA Astrophysics Data System (ADS)

    Mistry, R.; Eastwood, J. P.; Hietala, H.

    2015-01-01

    of reconnection in the solar wind over the last few years appear to indicate that the majority of large-scale reconnecting current sheets are roughly planar, and that reconnection itself is quasi-steady. Most studies of solar wind exhausts have used spacecraft with large separations and relatively low time cadence ion measurements. Here we present multipoint Cluster observations of a reconnection exhaust and the associated current sheet at ACE and Wind, enabling it to be studied on multiple length scales and at high time resolution. While analysis shows that on large scales the current sheet is planar, detailed measurements using the four closely spaced Cluster spacecraft show that the trailing edge of the reconnection jet is nonplanar with folds orthogonal to the reconnection plane, with length scales of approximately 230 ion inertial lengths. Our findings thus suggest that while solar wind current sheets undergoing reconnection may be planar on large scales, they may also exhibit complex smaller-scale structure. Such structure is difficult to observe and has rarely been detected because exhausts are rapidly convected past the spacecraft in a single cut; there is therefore a limited set of spacecraft trajectories through the exhaust which would allow the nonplanar features to be intercepted. We consider how such nonplanar reconnection current sheets can form and the processes which may have generated the 3-D structure that was observed.

  20. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  1. Homemade Electricity: An Introduction to Small-Scale Wind, Hydro, and Photovoltaic Systems.

    ERIC Educational Resources Information Center

    Smith, Diane

    This report consists of three parts. The first part provides advice (in the form of questions and answers) to prospective individual power producers who are considering investing in electricity-producing systems and in generating their own power. A list of Public Utilities Regulatory Policies Act (PURPA) regulations is included. This legislation…

  2. Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system

    NASA Astrophysics Data System (ADS)

    Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-10-01

    The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio

  3. Harvesting wind energy from the sea breeze in peri-urban coastal areas by means of small scale wind turbines - Case study: Viladecans, Llobregat Delta, northeast of Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rojas, Jose I.; Cabrera, Barbara; Mazon, Jordi

    2016-04-01

    Wind speed data recorded during 18 years (1993-2010) in the Llobregat Delta (15 km south of Barcelona city; northeast of the Iberian Peninsula) were used to assess the wind energy generated by off-grid small scale wind turbines (the IT-PE-100 and the HP-600W) for the whole year and for the sea breeze period. The computations were made using QBlade, FAST and AeroDyn simulation tools and manufacturer power curves. Using manufacturer data, the HP-600W with hub-height 8 m would deliver 157 kWh during the whole year (78 kWh during the sea breeze period), with an average power of 18 W (37 W). In this work, the results of the simulations are compared with power and energy production data measured in an HP-600W turbine installed in situ from December 2014 to April 2016. Also, the measured power is compared to the power obtained by applying the measured wind in the period 2014-2016 to the manufacturer power curve and the power curve obtained with the simulations. The results of the computations agree with the experimental data, thus validating the proposed approach for wind resource estimation. The feasibility of using a vertical axis wind turbine for obtaining wind energy from the local, thermal wind regimes is also studied. This research confirms that the sea-breeze is an interesting wind energy resource for micro-generation in peri-urban coastal areas where large-scale wind farms cannot be implemented.

  4. Small-Scale Power Spectrum and Correlations in Lambda + Cold Dark Matter Models

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Primack, Joel; Holtzman, Jon

    1996-07-01

    Cosmological models with a positive cosmological constant ({LAMBDA} > 0) and {OMEGA}_0_ < 1 have a number of attractive features. A larger Hubble constant H_0_, which can be compatible with the recent Hubble Space Telescope (HST) estimate, and a large fraction of baryon density in galaxy clusters make them current favorites. Early galaxy formation also is considered as a welcome feature of these models. But early galaxy formation implies that fluctuations on scales of a few megaparsecs spent more time in the nonlinear regime, as compared With standard cold dark matter (CDM) or cold + hot dark matter (CHDM) models. As has been known for a long time, this results in excessive clustering on small scales. We show that a typical {LAMBDA}CDM model with H_0_ = 70 km s^-1^ Mpc^-1^, {OMEGA}_0_ = 0.3, and cosmological constant {LAMBDA} such that {OMEGA}LAMBDA_ = {LAMBDA}/(3H_0_^2^) = 1 - {OMEGA}_0_, normalized to COBE on large scales and compatible with the number density of galaxy clusters, predicts a power spectrum of galaxy clustering in real space which is too high: at least twice larger than CfA estimates and 3 times larger than estimates for the APM Galaxy Survey for wavenumbers k = (0.4- 1)h Mpc^-1^. This conclusion holds if we assume either that galaxies trace the dark matter (σ_8_ ~ 1.1 for this model) or just that a region with higher density produces more galaxies than a region with lower density. The only way to reconcile the model with the observed power spectrum P(k) is to assume that regions with high dark matter density produce fewer galaxies than regions with low density. Theoretically this is possible, but it seems very unlikely: X-ray emission from groups and clusters indicates that places with a large density of dark matter produce a large number of galaxies. Since it follows that the low-{OMEGA} {LAMBDA}CDM models are in serious trouble, we discuss which ACDM models have the best hope of surviving the confrontation with all available observational data.

  5. Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1982-01-01

    Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.

  6. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY MIRROR-MODE WAVES IN THE SOLAR WIND

    SciTech Connect

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-10-20

    Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B{sub 0} . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B{sub 0} quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θ{sub xB} between the GSE-x and B{sub 0} , we notice that at θ{sub xB} = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P{sub th} and the magnetic pressure P{sub B}, as well as that between the proton density N{sub p} and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T{sub ∥}. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector B{sub N} . We also study the time variation of the cross-helicity σ{sub c} and the compressibility C{sub p} and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T{sub ∥}, proton β ≅ 1, both pairs of P{sub th}-P{sub B} and N{sub p}-B showing anti-correlation, and σ{sub c} ≈ 0 with C{sub p} > 0. Although the examination of σ{sub c} and C{sub p} is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, B{sub N} is found to be highly oblique to B{sub 0} . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.

  7. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect

    Clark, Thomas M; Erlach, Celeste

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  8. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  9. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    SciTech Connect

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  10. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2005-11-01

    ER-2 MMS and MTP wind and temperature measurements during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at aircraft's flight level. For a given flight segment, the S-transform was used to search for and identify small horizontal scale GW events, and to estimate the apparent horizontal wavelengths of the events. The horizontal propagation directions of the events were determined using the Stokes parameters method combined with the cross S-transform analysis. The MTP temperature gradient method was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100 GW events were identified. They were generally short horizontal scale and high frequency waves with λz of ~5 km and λh generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength (<10 km), very high intrinsic frequency (ω/N≥0.8), and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. The averaged magnitude of vertical flux of horizontal momentum was ~0.026 kg m-1 s-2, and the maximum magnitude was ~0.13 kg m-1 s-2. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream to the events. Finally, a probability density function of GW cooling rates was obtained in this study, which may be used in cirrus cloud models.

  11. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  12. Design and performance of a small-scale wind turbine exploiting an electret-based electrostatic conversion

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Reboud, J. L.

    2015-10-01

    This paper reports on a cm-scale wind turbine coupled to an electret-based electrostatic energy converter for airflows energy harvesting. The device we propose is made of a typical axial turbine to convert the wind energy into a mechanical energy of rotation and of a patterned electret-based electrostatic converter to turn this mechanical energy into electricity. This is actually the first time that the mechanical power extracted by a turbine is turned into electricity with an electret-based electrostatic converter. Several prototypes have been tested on a wind tunnel from 0 to 10 m/s; a power of 200 μW has been extracted on a 4 cm-diameter device at 10 m/s.

  13. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  14. Legal obstacles and incentives to the development of small scale hydroelectric power in Pennsylvania

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. In Pennsylvania, there are 3 methods by which rights in water may be acquired: riparian ownership, prescription, and condemnation. These are discussed.

  15. Legal obstacles and incentives to the development of small-scale hydroelectric power in Rhode Island

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. In Rhode Island, any private rights in the flowing waters of a river or stream depend upon ownership of the abutting land. It appears Rhode Island follows the reasonable use theory of riparian law. The Department of Environmental Management is the most significant administrative agency with regard to dam construction, alteration, and operation in the state of Rhode Island.

  16. Legal obstacles and incentives to the development of small scale hydroelectric power in Indiana

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy in Indiana are examined. The Federal government also exercises extensive regulatory authority in the area. An examination is made of the Federal-state relationships with the aim of creating a more orderly understanding of the vagaries of the system. The introductory chapter examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by the FERC. The Indiana water law; direct and indirect regulations; the Public Service Commission of Indiana; and financial considerations are examined.

  17. Legal obstacles and incentives to the development of small scale hydroelectric power in Vermont

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Vermont are discussed. The dual regulatory system involving state and Federal governments is discussed followed by discussions on property interests; direct regulation by the Public Service Board; indirect regulation; and financial considerations. An initial step required of any developer is that of real property acquisition. Ordinarily this involves acquiring the stream bed, land along the stream banks, and land needed for the impoundment reservoir. Ownership of land along the stream banks places the developer in the position of a riparian owner. This status is important in that only riparian owners are entitled to a reasonable use of the flowing water. In addition to acquisition by sale, lease, or gift, Vermont law allows certain developers to acquire property via eminent domain. Some general rules which have evolved as riparian law and applied in Vermont are discussed.

  18. Toward new institutional relationships in the development of small scale hydroelectric power

    SciTech Connect

    Brown, P.W.

    1980-12-01

    This paper will briefly discuss three principle subjects. These subjects are recent changes in hydroelectric licensing, provisions of the Public Utility Regulatory Policies Act of 1978 (PURPA) and the regulations promulgated pursuant to the Act by the Federal Energy Regulatory Commission (FERC) and Sections 221 and 222 (e), and Section 242 of the Crude Oil Windfall Profit Tax Act of 1980. The FERC has recently reformed its licensing and permit regulations and Congress has enacted Section 408 of the Energy Security Act to exempt certain projects from the FERC licensing. PURPA and the FERC regulations promulgated pursuant thereto guarantee markets for the output of small scale hydroelectric (SSH) plants and the provisions of the Windfall Profit Tax Act measurably assist in the raising of capital for the construction of SSH facilities. All three incentives are significant given the electric utility markets confronted by SSH developers and the capital intensive nature of SSH projects.

  19. Small-Scale Hydroelectric Power Demonstration Project. Pennsylvania Hydroelectric Development Corporation Flat Rock Dam: Project summary report

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  20. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  1. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  2. Wind power today

    SciTech Connect

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  3. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  4. Legal obstacles and incentives to the development of small scale hydroelectric power in Delaware

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. In Delaware, a watercourse is not to be confused with surface water. Each gives rise to certain riparian rights, but the law makes certain distinctions between the two. The presence of both surface waters and watercourses give rise to private and public rights related to the presence of the water. Some of these rights are vested in riparian owners. Recent Delaware case law has described the riparian owner as one who owns land on the bank of a river, or who is owner of land along, bordering upon, bounded by, fronting upon, abutting, or adjacent and contiguous to and in contact with a river. But, ownership of the bank does not give the riparian ownership of the water. Some law cases are cited to discuss the laws in Delaware.

  5. Legal obstacles and incentives to the development of small-scale hydroelectric power in Virginia

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy in Virginia are described. The state regulatory system does not comprise final authority; the Federal government also exercises extensive regulatory authority in the area. This dual system is a function of the federalist nature of our government. The introductory section examines the dual system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and inquires into the practical use of the doctrine by the FERC. The use of a natural-surface watercourse in Virginia is governed generally by the doctrine of riparian rights. Riparian rights is a system of water rights based on ownership of land bordering on a natural stream or watercourse. For land to be considered riparian to a stream, that land must be located on the watershed of that portion of the stream. The theory of riparian rights followed in Virginia is one of reasonable use. Under the reasonable-use doctrine, each riparian owner has an equal right to the reasonable use of the water running naturally through or by his land for any useful purpose. The water must continue to run after such use without material diminution or alteration and without pollution.

  6. Legal obstacles and incentives to the development of small scale hydroelectric power in New Hampshire

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are described. The Federal government also exercises extensive regulatory authority in the area and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step any developer must take is that of acquiring the real estate parcel. The step involves acquisition in some manner of both river banks, the river bed, and where necessary the land needed for the upstream impoundment area. The developer must acquire the river banks to be considered a riparian owner. Classification as a riparian is important for only a use of water by a riparian owner is deemed a reasonable use and hence legal. Apart from acquisition by sale, lease, or gift, New Hampshire law permits a number of other methods. In part use of these methods will depend on whether the developer is the state, a municipality, a private corporation, or a public utility. Provided the developer avails himself of the five (5) megawatts exemption, his main regulatory agency will be the Water Resources Board. However, the state is not free from the problems of legal uncertainty inherent in determinations of reasonableness.

  7. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  8. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: Bull Run, Portland, Oregon

    SciTech Connect

    1980-05-01

    The National Conference of State Legislatures' Small-Scale Hydroelectric Policy Project is designed to assist selected state legislatures in looking at the benefits that a state can derive from the development of small-scale hydro, and in carrying out a review of state laws and regulations that affect the development of the state's small-scale hydro resources. The successful completion of the project should help establish state statutes and regulations that are consistent with the efficient development of small-scale hydro. As part of the project's work with state legislatures, seven case studies of small-scale hydro sites were conducted to provide a general analysis and overview of the significant problems and opportunities for the development of this energy resource. The case study approach was selected to expose the actual difficulties and advantages involved in developing a specific site. Such an examination of real development efforts will clearly reveal the important aspects about small-scale hydro development which could be improved by statutory or regulatory revision. Moreover, the case study format enables the formulation of generalized opportunities for promoting small-scale hydro based on specific development experiences. The case study for small-scale hydro power development at the City of Portland's water reserve in the Bull Run Forest is presented with information included on the Bull Run hydro power potential, current water usage, hydro power regulations and plant licensing, technical and economic aspects of Bull Run project, and the environmental impact. (LCL)

  9. Wind Power Career Chat

    SciTech Connect

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  10. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  11. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  12. Wind power in Jamaica

    SciTech Connect

    Chen, A.A.; Daniel, A.R.; Daniel, S.T. ); Gray, C.R. )

    1990-01-01

    Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing wind directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.

  13. Effect of operating and sampling conditions on the exhaust gas composition of small-scale power generators.

    PubMed

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  14. Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    PubMed Central

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  15. Electricity's Future: The Shift to Efficiency and Small-Scale Power. Worldwatch Paper 61.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Electricity, which has largely supplanted oil as the most controversial energy issue of the 1980s, is at the center of some of the world's bitterest economic and environmental controversies. Soaring costs, high interest rates, and environmental damage caused by large power plants have wreaked havoc on the once booming electricity industry.…

  16. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    S. D. Vora

    2008-02-01

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  17. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    S.D. Vora

    2003-02-28

    Tasks carried out during the first six months of the program are summarized. Development of seal-less cells with increased power density at lower operating temperature (800 C) was started. This required a new cell design and investigation of new cell materials. Conceptual design of the generator and balance of plant (BOP) for a residential system was initiated. Attachment 1 describes the progress in cell development and Attachments 2 and 3 deal with status of the generator and BOP design. Overall progress during the first six months and plans for future work are summarized in Attachment 4.

  18. Tension between the power spectrum of density perturbations measured on large and small scales

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Charnock, Tom; Moss, Adam

    2015-05-01

    There is a tension between measurements of the amplitude of the power spectrum of density perturbations inferred using the cosmic microwave background (CMB) and directly measured by large-scale structure (LSS) on smaller scales. We show that this tension exists, and is robust, for a range of LSS indicators including clusters, lensing and redshift space distortions and using CMB data from either Planck or WMAP +SPT /ACT . One obvious way to try to reconcile this is the inclusion of a massive neutrino which could be either active or sterile. Using Planck and a combination of all the LSS data we find that (i) for an active neutrino ∑mν=(0.357 ±0.099 ) eV and (ii) for a sterile neutrino msterileeff=(0.67 ±0.18 ) eV and Δ Neff=0.32 ±0.20 . This is, however, at the expense of a degraded fit to Planck temperature data, and we quantify the residual tension at 2.5 σ and 1.6 σ for massive and sterile neutrinos, respectively. We also consider alternative explanations including a lower redshift for reionization that would be in conflict with polarization measurements made by WMAP and ad hoc modifications to the primordial power spectrum.

  19. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  20. Wind powering America - Texas

    SciTech Connect

    O'Dell, K.

    2000-04-13

    This fact sheet contains a description of the wind energy resources in the state of Texas and the state's efforts to develop wind energy production, green power, and net metering programs. The fact sheet also includes a list of contacts for those interested in obtaining more information.

  1. Sweden considers wind power

    SciTech Connect

    Baurrau, P.

    1989-09-01

    During 1988, Sweden increased its number of wind generating facilities from 13 to 22, reflecting a new attitude toward wind power developing in the country. Last fall, a 750 kW wind turbine installed in the archipelago of Gothenburg was connected to the grid. The turbine is the biggest in use in Sweden, operated and maintained by the local energy authority of Gothenburg. Most turbines being manufactured have a capacity of 20 to 200 kW. The Maglarp turbine in the south of Sweden has a capacity of 3,000 kW, and the Naesudden turbine on an island in the Baltic Sea has 2,000 kW. The two projects are considered experimental by the owner, Vattenfall, the State Power Board. On the basis of energy production, Maglarp may be the largest in the world. Its highest production, 4,400 MWh, was achieved in 1988. In January 1989, the production was 900 MWh, the third highest monthly production so far since September 1983. The State Power Board, the members of the Swedish Power Association, Sydkraft, together with a number of municipal power companies and stations, have formed the Swedish Energy Development Corporation, SWEDCO. One goal for the new corporation is to include wind power in the Swedish energy system. SWEDCO will provide economic and operation data to pursue wind technology.

  2. Development of a small-scale power system with meso-scale vortex combustor and thermo-electric device

    NASA Astrophysics Data System (ADS)

    Shimokuri, D.; Hara, T.; Matsumoto, R.

    2015-10-01

    A small-scale vortex combustion power system has been developed using a thermo-electric device (TED). The system consisted of a heat medium, TED, and cooling plates. A vortex combustion chamber (7 mm inner diameter and 27 mm long) was fabricated inside the heat medium (40  ×  40  ×  20 mm and 52 g of duralumin). It was found that a stable propane/air flame could be established in the narrow 7 mm channel even for the large heat input conditions of 213 ~ 355 W. With a couple of TEDs, the maximum of 8.1 W (9.8 V  ×  0.83 A) could be successfully obtained for 355 W heat input, which corresponded to the energy conversion rate of 2.4%. The results of the gas and the combustor wall temperature measurements showed that the heat transfer from the burned gas to combustor wall was significantly enhanced by the vortex flow, which contributed to the relatively high efficiency energy conversion on the vortex combustion power system.

  3. Comparison of properties of small-scale ion flux fluctuations in the flank magnetosheath and in the solar wind

    NASA Astrophysics Data System (ADS)

    Riazantseva, M. O.; Budaev, V. P.; Rakhmanova, L. S.; Zastenker, G. N.; Šafránková, J.; Němeček, Z.; Přech, L.

    2016-07-01

    We present a comparison of spectral and statistical properties of ion flux fluctuations in the turbulent solar wind and in the flank Earth's magnetosheath. We use the data of the BMSW device operating in frame of the SPECTR-R mission with an extremely high-time resolution (up to ∼30 ms). Fourier spectra of ion flux fluctuations are systematically analyzed both in the solar wind and in the magnetosheath on the inertial scale and on a transition to the dissipation scale in the range of 0.01-10 Hz. We show that ion flux fluctuation spectra in the flank magnetosheath are similar to those observed in the solar wind and we demonstrate the presence of the break at frequencies of ∼1-2 Hz. Spectra are slightly steeper in the flank magnetosheath but the break frequency is near twice less in a comparison to the solar wind. The magnetosheath ion flux turbulent flow is intermittent as it was shown earlier for the solar wind. We discuss the level of intermittency of ion flux fluctuations in both regions and we determine the characteristics of structure functions. Finally, we demonstrate extended self-similarity in the magnetosheath.

  4. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Mondal, Rajesh; Das, Subinoy; Sethi, Shiv. K.; Bharadwaj, Somnath; Marsh, David J. E.

    2016-04-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc‑1. Assuming a fiducial model where a neutral hydrogen fraction bar xHI = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation zf > 4 × 105 (for LFDM) and the axion mass ma > 2.6 × 10‑23 eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: zf > 2 × 105 and ma > 10‑23 eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.

  5. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  6. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  7. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  8. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  9. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ˜0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  10. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    NASA Astrophysics Data System (ADS)

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  11. Wind power freshens water

    SciTech Connect

    Pavlor, V.; Sidorov, V.

    1981-01-01

    A wind-powered lighthouse water-freshening installation was installed at lighthouse locations along the Caspian Sea's coast and at one of the collective farms in the Moldavian SSR. From sea water containing up to 36 grams of salts per liter, fresh water with up to 1 gram per liter was produced. Output was 60 liters per hour.

  12. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  13. Philippines: Small-scale renewable energy update

    SciTech Connect

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  14. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  15. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-02-01

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. Wind Power for Municipal Utilities

    SciTech Connect

    Not Available

    2002-10-01

    Wind Power for Municipal Utilities is a trifold brochure that strives to educate municipal utility owners and operators about the benefits of investing in wind power development. It provides examples of municipal utilities that have successful wind energy projects and supportive statements from industry members.

  18. Wind-Tunnel Investigation of a Small-Scale Sweptback-Wing Jet-Transport Model Equipped with an External-Flow Jet-Augmented Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.

    1959-01-01

    A wind-tunnel investigation at low speeds has been made to study the aerodynamic characteristics of a small-scale sweptback-wing Jet-transport model equipped with an external-flow jet-augmented double slotted flap. Included in the investigation were tests of the wing alone to study the effects of varying the spanwise extent of blowing on the full-span flap. The results indicated that the double-slotted-flap arrangement of the present investigation was more efficient in terms of lift and drag than were the external-flow single-slotted-flap arrangements previously tested and gave a substantial reduction In the thrust-weight ratio required for a given lift coefficient under trimmed drag conditions. An increase in the spanwise extent of blowing on the full-span flap was also found to increase the efficiency of the model in terms of the lift and drag but, as would be expected on a sweptback-wing configuration, was accompanied by significant increases in negative pitching moment.

  19. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  20. Wind power outlook 2006

    SciTech Connect

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  1. Power from the Wind

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  2. Site insolation and wind power characteristics. Summary report

    SciTech Connect

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  3. Small Scale Industries.

    ERIC Educational Resources Information Center

    Rural Development Detwork Bulletin, 1977

    1977-01-01

    Innovative programs for the promotion of small-scale enterprise are being conducted by a variety of organizations, including universities, government agencies, international research institutes, and voluntary assistance agencies. Their activities encompass basic extension services, management of cooperatives, community action programs, and…

  4. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  5. Wind and solar powered turbine

    NASA Technical Reports Server (NTRS)

    Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)

    1984-01-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  6. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  7. Starting to Explore Wind Power

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2008-01-01

    Described is a simple, cheap and versatile homemade windmill and electrical generator suitable for a school class to use to explore many aspects and practicalities of using wind to generate electrical power. (Contains 8 figures.)

  8. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  9. Optimizing modes of a small-scale combined-cycle power plant with atmospheric-pressure gasifier

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Marinchenko, A. Yu.; Kler, A. M.; Ryzhkov, A. F.

    2015-09-01

    The scheme of an integrated coal gasification combined-cycle power plant with small capacity is proposed. Using the built mathematical model a feasibility study of this unit was performed, taking into account the kinetics of physical and chemical transformations in the fuel bed. The estimates of technical and economic efficiency of the plant have been obtained and compared with the alternative options.

  10. Small-Scale Hydroelectric Power Demonstration Project: reactivation of the Elk Rapids Hydroelectric Facility. Final technical and construction cost report

    SciTech Connect

    Not Available

    1985-05-01

    The Elk Rapids powerhouse dam is located on the Elk River channel in the Village of Elk Rapids, Michigan. Together with a small spillway structure located approximately 500 ft south of the dam, it constitutes the outlet to Lake Michigan for Elk Lake, Skegemog Lake, Torch Lake, Lake Bellaire, Clam Lake, and several smaller lakes. Power has been generated at the Elk Rapids site since the late nineteenth century, but the history of the present facility goes back to 1916 with the construction of the existing powerhouse dam by the Elk Rapids Iron Works Company. The facility was designed to contain four vertical-shaft generating units; however, only a single 270 hp Leffel type K unit was installed in 1916. In 1929, two additional Leffel units, rated 525 hp, were installed, and in 1930 a third 525 hp Leffel unit was added completely utilizing the capacity of the powerhouse and bringing the combined turbine capacity to 1845 hp.

  11. Frequency correlation of probe waves backscattered from small scale ionospheric irregularities generated by high power HF radio waves

    NASA Astrophysics Data System (ADS)

    Puchkov, V. A.

    2016-09-01

    Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.

  12. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  13. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  14. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  15. Wind turbine sound power measurements.

    PubMed

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides experimental validation of the sound power level data obtained from manufacturers for the ten wind turbine models examined in Health Canada's Community Noise and Health Study (CNHS). Within measurement uncertainty, the wind turbine sound power levels measured using IEC 61400-11 [(2002). (International Electrotechnical Commission, Geneva)] were consistent with the sound power level data provided by manufacturers. Based on measurements, the sound power level data were also extended to 16 Hz for calculation of C-weighted levels. The C-weighted levels were 11.5 dB higher than the A-weighted levels (standard deviation 1.7 dB). The simple relationship between A- and C- weighted levels suggests that there is unlikely to be any statistically significant difference between analysis based on either C- or A-weighted data. PMID:27036281

  16. Wind for Schools: A Wind Powering America Project

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  17. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  18. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  19. Primer on Wind Power for Utility Applications

    SciTech Connect

    Wan, Y.

    2005-12-01

    The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

  20. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  1. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  2. Wind for Schools: A Wind Powering America Project

    SciTech Connect

    Not Available

    2007-12-01

    This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

  3. Success Stories (Postcard), Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-02-01

    Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

  4. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  5. Small-scale strength

    SciTech Connect

    Anderson, J.L.

    1995-11-01

    In the world of power project development there is a market for smaller scale cogeneration projects in the range of 1MW to 10MW. In the European Union alone, this range will account for about $25 Billion in value over the next 10 years. By adding the potential that exists in Eastern Europe, the numbers are even more impressive. In Europe, only about 7 percent of needed electrical power is currently produced through cogeneration installations; this is expected to change to around 15 percent by the year 2000. Less than one year ago, two equipment manufacturers formed Dutch Power Partners (DPP) to focus on the market for industrial cogeneration throughout Europe.

  6. Final Environmental Assessment and Finding of No Significant Impact: Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM

    SciTech Connect

    N /A

    2002-08-27

    The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost-effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the economics, performance, and operational characteristics of small-scale geothermal electric power plants in different regions. and (2) determine their ability to provide distributed power in order to facilitate their increased use in the western United States. Through the Geothermal Energy Program, DOE is considering providing financial assistance to Exergy, Inc., of Hayward, California, for the development and field verification of a small-scale, approximately 1 megawatt (MVV), geothermal power plant. The proposed power plant would be located upstream of an existing geothermally-heated fish hatchery owned by AmeriCulture, Inc., of Cotton City, NM. DOE is also considering partially funding AmeriCulture, Inc., for a direct-use geothermal application using fluid discharged from the proposed power plant to heat water for the hatchery. The EA addresses the construction and operation of the small-scale, geothermal power plant and the direct use of geothermal fluid exhausted from the geothermal power plant as a heating source for the hatchery. Two system concepts were investigated. The preferred concept involves cascading the spent geothermal fluid from the proposed geothermal power plant to various thermal processes used for fish production. In the second concept, the proposed power plant would not be built, and the fluid from the existing geothermal well would be used for all direct-use operations associated with the project. DOE

  7. Blowing in the Wind: A Review of Wind Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  8. A Study of the Effects of Large Scale Gust Generation in a Small Scale Atmospheric Wind Tunnel: Application to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason; Mohseni, Kamran

    2009-11-01

    Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.

  9. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  10. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  11. Dynamical downscaling of wind fields for wind power applications

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Huneke, S.; Geyer, J.

    2010-09-01

    Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used

  12. U.S. Wind Power Development

    SciTech Connect

    2007-11-15

    The report provides an overview of domestic wind power development which provides an understanding of where the industry stands today, how it got there, and where it is going. The advent of state renewable portfolio standards and the 3-year renewal of the production tax credit have driven wind power to record levels. A key objective of the report is to provide a comprehensive view of what is behind these developments, so that industry participants can take advantage of the opportunity offered by wind power. Topics covered include: overview of U.S. wind power including its history, current status, and future prospects; business drivers of the U.S. wind power market; barriers to the growth of the U.S. wind power market; keys to successful wind power project development; economics of U.S. wind power, including cost, revenue, and government subsidy components; analysis of key state markets for wind power development; and, profiles of major U.S. wind power project developers.

  13. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  14. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  15. A survey on wind power ramp forecasting.

    SciTech Connect

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  16. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

    NASA Astrophysics Data System (ADS)

    Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.

    2015-01-01

    A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

  17. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  18. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  19. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  20. Wind for Schools Project Power System Brief

    SciTech Connect

    Not Available

    2007-08-01

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  1. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  2. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  3. Tapping the wind's power over water

    SciTech Connect

    Greenberger, L.S.

    1992-03-15

    This article describes a new wind power concept. Tethered wind turbines are flown at a height of one to three kilometers above the Massachusetts coast, where they would tap the strong coastal winds and deliver 17 MW of power each to substations on the shore. The cost is about 6.3 cents per kw, but the load factor of 57% justifies the higher cost.

  4. Value of Wind Power Forecasting

    SciTech Connect

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  5. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    PubMed

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown. PMID:23409117

  6. Optimizing Wind Power Generation while Minimizing Wildlife Impacts in an Urban Area

    PubMed Central

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L.; Curtis, Peter S.

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown. PMID:23409117

  7. An estimate of the relative magnitude of small-scale tracer fluxes

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Schoeberl, Mark R.; Loewenstein, Max; Podolske, Jim R.; Strahan, Susan E.; Chan, K. R.

    1992-01-01

    The wind and constituent measurements from the polar aircraft data are used to compute the flux spectra. Although there is variation from flight to flight, the flux spectra generally fit a -2 to -1.5 power law as expected theoretically. This result suggests that tracer fluxes from small scale features do not substantially contribute to the overall tracer budget relative to the fluxes from the larger scales.

  8. PowerJet Wind Turbine Project

    SciTech Connect

    Bartlett, Raymond J.

    2008-11-30

    The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy's objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds.

  9. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  10. Wind Power America Final Report

    SciTech Connect

    Spangler, Brian; Montgomery, Kathi; Cartwright, Paul

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources

  11. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  12. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more “grid friendly” in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  13. Probabilistic Evaluation of Wind Power Generation

    NASA Astrophysics Data System (ADS)

    Muhamad Razali, N. M.; Misbah, Muizzuddin

    2013-06-01

    The power supplied by wind turbine generators (WTG) is widely random following the stochastic nature of weather conditions. For planning and decision making purposes, understanding and evaluation of the behaviour and distribution of WTG's output power are crucial. Monte Carlo simulation enables the realization of artificial futures by generating a huge number of sample paths of outcomes to perform this analysis. The paper presents an algorithm developed for a random wind speed generator governed by the probability density function of Weibull distribution and evaluates the WTG's output by using the power curve of wind turbines. The method may facilitate assessment of suitable turbine site as well as generator selection and sizing.

  14. Wind power finding its competitive edge

    SciTech Connect

    Kaplan, D.

    1993-08-18

    When interviewing the head of the windpower association, one expects to hear a barrage of global warming, acid rain and other pollution horror stories, followed by a call for an expensive federal effort to replace fossil fuels with wind power. But not from Randy Swisher, president of the American Wind Energy Association. This article describes the technological advances made in wind energy during the last decade, and its cost competitiveness with conventional fossil fuels.

  15. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  16. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect

    Milligan, M R; Artig, R

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  17. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  18. Wind power parks: 1983 survey

    SciTech Connect

    Dickson, E.M.; Loperena, G.A.

    1984-08-01

    The purpose of this project was to survey the status of wind parks owned by non-utility organizations which generate electricity for sale to electric utilities under the provisions of the Public Utility Regulatory Policies Act. Both technical (including wind turbine descriptions) and business-related information were gathered from over 100 wind park developers who were interviewed by telephone or in person. Following the survey, the wind parks were screened so that only those already on-line or with very good possibilities of coming on-line by mid-1984 were included. This screening, although subject to judgment, was based primarily on the status of several of the critical milestones necessary for project completion. This document includes descriptions of 85 wind parks established by over 60 developers. Of these, 73 are located in California. This concentration in California is the result of the confluence of tax advantages, financial, institutional, and resource factors currently most favorably found in that state. For the wind parks described in this document, installed generating capacity (based on nameplate ratings) is 87 MW as of July 1983, with plans calling for aggregate installation of some 730 MW by mid-1984. Continued expansion in wind turbine installations over the next several years will require that wind turbines demonstrate high equipment availability with acceptable operating and maintenance costs. If these can be achieved, if the cost effectiveness of the equipment improves by 20%, and if borrowing terms improve, then wind parks could remain economically viable businesses for non-utility owners even after the current tax advantages expire.

  19. Wind powering America: South Dakota

    SciTech Connect

    NREL

    2000-04-11

    This fact sheet contains a description of South Dakota's wind energy resources, and the state's financial incentives that support the installation of renewable energy systems. The fact sheet includes a list of contacts for those interested in obtaining more information.

  20. Wind powered generator with cyclic airfoil latching

    SciTech Connect

    Bair, P.

    1981-12-01

    A wind powered generator rotatable about a vertical axis is described. A plurality of vertically disposed airfoils are provided, the airfoils being rotatable about a vertical axis parallel to the axis of the generator. The airfoils are selectively latched to be disposed perpendicularly of the wind direction during one phase of their revolution about the generator axis and are selectively unlatched to be permitted to rotate into a position generally parallel to the wind direction during other phases of their revolution. The latching and unlatching of the airfoils is determined by the wind direction and is effected by electronic means which determine the point of latching and unlatching as a function of the wind direction measured by a wind vane. The airfoils may comprise sails composed of a flexible material stretched into a predetermined shape on a frame.

  1. Wind Powering America FY06 Activities Summary

    SciTech Connect

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  2. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  3. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  4. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  5. 77 FR 31839 - Wind and Water Power Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy... Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market... and Water Power Program's wind technology development and market acceleration and deployment...

  6. Observations of How Magnetofluid Turbulence Dissipates at Small Scales

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Sahraoui, Fouad

    2012-01-01

    The solar wind is a turbulent magneto fluid that can be studied intensively at multiple scales. Investigations using single spacecraft have revealed much about the properties of the solar wind throughout the heliosphere (from 0.3 AU to 100 AU). More recently, data from multiple spacecraft have provided further details of both the statistical properties of the turbulence and its small-scale structure. In particular, high time resolution magnetic field measurements from the four Cluster spacecrafl have led to the conclusion that at spatial scales of order the proton inertial length and smaller, the turbulence becomes strongly anisotropic and the power in fluctuations that are perpendicular to the (local) magnetic field is measured to be much larger than that in fluctuations that are parallel to the magnetic field. As the spatial scales approach the electron inertial length, the power is almost completely dissipated. Various analysis techniques and theoretical ideas have been put forward to account for the properties of those measurements. The talk will describe the current state of observations, theory and simulations.

  7. Wind power: The new energy policy 1

    NASA Astrophysics Data System (ADS)

    1991-10-01

    Increasing use of renewable energy sources is an important aspect of the new energy policy of the State government of Schleswig-Holstein. Technical and industrial innovation are involved. By expanding and developing these regionally available inexhaustible energy sources to generate electricity and heat, we are contributing to environmental protection and helping to reduce adverse affects on the climate. We are also taking our limited resources into account and expanding energy generation in a logical manner. Wind energy is the most attractive renewable energy source for Schleswig-Holstein because our State is well known for its strong winds and constant fresh breeze. For this reason the State government has made expansion of wind energy one of its primary areas of emphasis. The goals of our promotion measures includes ongoing technical and engineering development of wind energy facilities, increasing the level of use of the wind, and increasing the percentage of wind energy used for power generation. This brochure is intended to demonstrate the significance and possibilities of wind energy for our State, to outline the legal requirements for erecting wind energy facilities, and to explain the many promotion measures. It represents a favorable breeze for wind.

  8. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  9. Wind Powering America FY07 Activities Summary

    SciTech Connect

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  10. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  11. Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate.

    PubMed

    de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G

    2016-07-01

    Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was

  12. Large-scale wind power farms as power plants

    NASA Astrophysics Data System (ADS)

    Gjengedal, Terje

    2005-07-01

    The integration of large-scale wind power into weak power systems raises several issues that must be clarified. Typically these include the practical connection to the network, integration with the network system, system stability, system operation, necessary installations and extensions of the network, etc. At the same time, careful attention must be paid to the functional requirements such wind farms should meet in order to enhance system responses. Different wind power technologies have different characteristics and control possibilities. In this article, three technologies have been studied with respect to their dynamic performance, and a transient stability study has been performed in order to illustrate the differences in the three technologies. The results clearly show that there are differences in behaviour and in control possibilities. Hence there are also differences in how well they can meet functional requirements. When discussing to what degree strict requirements should be imposed on wind power, it should be kept in mind that some requirements can be met with small or moderate costs, while others may be expensive or difficult to meet. Some requirements may also mean a reduction in generation and hence in revenues. Rather than imposing strict requirements on wind turbines as such, ancillary services should be met in the most suitable way. It is not obvious that the same requirements should apply to wind power in hydro power-dominated systems compared with, for instance, systems with a large share of nuclear or thermal power. It may well be cheaper to incorporate primary power control and system-stabilizing equipment in other power plants or grid points than in many small wind turbine generators. General conclusions cannot be made on this, but the issue should be the focal point of system operators everywhere. Copyright

  13. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect

    Choi, Woo-Young; Lai, Jih-Sheng

    2010-04-15

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  14. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  15. Powerful Winds in Extreme RBS quasars (POWER)

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico

    2013-10-01

    This proposal aims at studying powerful outflows in ultra-luminous (log Lx >45) Radio-Quiet Quasars (RQQ). We propose to observe four objects extracted from a luminosity limited sample in the ROSAT Bright Survey for a full orbit (130 ks) each. Both models and observations suggest that the efficiency of driving energetic outflows increases with the AGN luminosity. Therefore, our targets are potentially the best objects to hunt for very powerful outflows expected in the AGN/galaxy feedback scenario. Our observations represent the first attempt ever to obtain deep, high-resolution-driven spectroscopy of a representative sample of RQQ in this high-luminosity regime.

  16. Small-scale universality in fluid turbulence

    PubMed Central

    Schumacher, Jörg; Scheel, Janet D.; Krasnov, Dmitry; Donzis, Diego A.; Yakhot, Victor; Sreenivasan, Katepalli R.

    2014-01-01

    Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re ∼ 102 the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range. PMID:25024175

  17. A small scale honey dehydrator.

    PubMed

    Gill, R S; Hans, V S; Singh, Sukhmeet; Pal Singh, Parm; Dhaliwal, S S

    2015-10-01

    A small scale honey dehydrator has been designed, developed, and tested to reduce moisture content of honey below 17 %. Experiments have been conducted for honey dehydration by using drying air at ambient temperature, 30 and 40 °C and water at 35, 40 and 45 °C. In this dehydrator, hot water has been circulated in a water jacket around the honey container to heat honey. The heated honey has been pumped through a sieve to form honey streams through which drying air passes for moisture removal. The honey streams help in increasing the exposed surface area of honey in contact with drying air, thus resulting in faster dehydration of honey. The maximum drying rate per square meter area of honey exposed to drying air was found to be 197.0 g/h-m(2) corresponding to the drying air and water temperature of 40 and 45 °C respectively whereas it was found to be minimum (74.8 g/h-m(2)) corresponding to the drying air at ambient temperature (8-17 °C) and water at 35 °C. The energy cost of honey moisture content reduction from 25.2 to 16.4 % was Rs. 6.20 to Rs. 17.36 (US $ 0.10 to US $ 0.28 (One US $ = 62.00 Indian Rupee on February, 2014) per kilogram of honey. PMID:26396418

  18. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: South Columbia Basin Irrigation District, Pasco, Washington

    SciTech Connect

    Schwartz, L.

    1980-05-01

    The case study concerns two modern human uses of the Columbia River - irrigation aimed at agricultural land reclamation and hydroelectric power. The Grand Coulee Dam has become synonomous with large-scale generation of hydroelectric power providing the Pacific Northwest with some of the least-expensive electricity in the United States. The Columbia Basin Project has created a half-million acres of farmland in Washington out of a spectacular and vast desert. The South Columbia River Basin Irrigation District is seeking to harness the energy present in the water which already runs through its canals, drains, and wasteways. The South District's development strategy is aimed toward reducing the costs its farmers pay for irrigation and raising the capital required to serve the remaining 550,000 acres originally planned as part of the Columbia Basin Project. The economic, institutional, and regulatory problems of harnessing the energy at site PEC 22.7, one of six sites proposed for development, are examined in this case study.

  19. Economics of wind-farm power generation in India

    SciTech Connect

    Sinha, C.S.; Kandpal, T.C. . Centre of Energy Studies)

    1990-01-01

    The financial aspects of wind power generation in India are examined. The cost estimate scaling function for horizontal axis wind turbines (HAWT) is empirically obtained. Other cost components have also been examined and effort is made to generate a cost function for wind farms with grid connected HAWT wind energy conversion systems. The cost function is then used to compute the cost of wind generated electricity from the wind farms in India and the results are compared with the reported cost of generation from the wind farms. The potential of wind-farm power generation is discussed in the light of the cost of power generation by selected conventional technologies in India.

  20. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  1. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  2. Autonomous Aerial Sensors for Wind Power Meteorology

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; La Cour-Harbo, Anders; Thomsen, Carsten; Bange, Jens; Buschmann, Marco

    2010-05-01

    This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test

  3. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  4. U.S. Wind Power Project Database

    SciTech Connect

    2007-12-15

    The database represents an inventory of wind power projects under development in the U.S. The database is designed to provide a concise overview of the current status of domestic projects (200 as of 1 Dec 2007). The database contains key project data on wind power plants currently being evaluated, developed, or constructed. It is of value to anyone interested in tracking wind power development including utilities, power project developers, equipment manufacturers, transporters and other vendors, investment banks, regulators, consultants, and analysts. The database is a Microsoft Excel spreadsheet which enables users to easily and quickly search for projects of interest by developer, technology, location, size, cost, status, or other characteristics. The database is updated as project specifics change to ensure that information is kept timely. Updates are provided via email on a monthly basis as part of an annual subscription. Database fields include: developer, owner, project name and description, location, technology, capacity, investment cost, proposed in-service date, status, air quality permit, and CPCN/siting approval.

  5. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  6. Small-scale Anisotropies of Cosmic Rays from Relative Diffusion

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  7. 77 FR 5002 - Wind and Water Power Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy..., request for comment. SUMMARY: The Wind and Water Power Program (WWPP) within the U.S. Department of Energy...: Michael Hahn, Wind and Water Power Program, 1617 Cole Blvd. Golden, CO 80401. Please submit one...

  8. 77 FR 38277 - Wind and Water Power Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy... Department of Energy (DOE) Wind and Water Power Program is planning a coordination workshop to exchange... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager,...

  9. Spectrum Analysis of the Wind Farm Power based on the Spatial Structures of Wind

    NASA Astrophysics Data System (ADS)

    Kawamoto, Teru; Yamashita, Masaru

    Spectrum analysis has been carried out based on the spatial structure model of wind. Power fluctuation from nine wind turbines arranged in 3 × 3 manner is less than that from a single turbine, regardless of wind direction. The increased distance between two turbines slightly reduces power fluctuation. In case of an inline arrangement, power fluctuation caused by the wind perpendicular to the turbine line is lower than that by the wind parallel to the turbine line, because the coherence of wind perpendicular to the wind direction decays sharply. For double line arrangement, fluctuation will be almost the same for the 3 × 3 arrangement.

  10. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  11. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  12. Wind Power on Native American Lands: Process and Progress (Poster)

    SciTech Connect

    Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

    2005-05-01

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

  13. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  14. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  15. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  16. Validation of Power Output for the WIND Toolkit

    SciTech Connect

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  17. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  18. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  19. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. PMID:24726970

  20. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  1. Fundamental economic issues in the development of small scale hydro

    SciTech Connect

    Not Available

    1980-05-01

    Some basic economic issues involved in the development of small-scale hydroelectric power are addressed. The discussion represents an economist's view of the investment process in this resource. Very little investment has been made in small-scale hydro development and an attempt is made to show that the reason for this may not be that the expected present worth of the returns of the project do not exceed the construction cost by a sufficient amount. Rather, a set of factors in combination impose costs on the project not normally incurred in small businesses. The discussion covers costs, supply, demand, and profitability.

  2. Kinks and small-scale structure on cosmic strings

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.

    2009-12-15

    We discuss some hitherto puzzling features of the small-scale structure of cosmic strings. We argue that kinks play a key role, and that an important quantity to study is their sharpness distribution. In particular we suggest that for very small scales the two-point correlation function of the string tangent vector varies linearly with the separation and not as a fractional power, as proposed by Polchinski and Rocha [Phys. Rev. D 74, 083504 (2006)]. However, our results are consistent with theirs, because the range of scales to which this linearity applies shrinks as evolution proceeds.

  3. Introducing Wind Power: Essentials for Bringing It into the Classroom

    ERIC Educational Resources Information Center

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…

  4. Wind Power: A Turning Point. Worldwatch Paper 45.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Recent studies have shown wind power to be an eminently practical and potentially substantial source of electricity and direct mechanical power. Wind machines range from simple water-pumping devices made of wood and cloth to large electricity producing turbines with fiberglass blades nearly 300 feet long. Wind is in effect a form of solar…

  5. How supernova explosions power galactic winds

    NASA Astrophysics Data System (ADS)

    Creasey, Peter; Theuns, Tom; Bower, Richard G.

    2013-03-01

    Feedback from supernovae is an essential aspect of galaxy formation. In order to improve subgrid models of feedback, we perform a series of numerical experiments to investigate how supernova explosions shape the interstellar medium (ISM) in a disc galaxy and power a galactic wind. We use the FLASH hydrodynamic code to model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 104 K and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disc, we obtain subparsec resolution allowing us to resolve individual supernova events. The hot interiors of supernova explosions combine into larger bubbles that sweep-up the initially hydrostatic ISM into a dense, warm cloudy medium, enveloped by a much hotter and tenuous medium, all phases in near pressure equilibrium. The unbound hot phase develops into an outflow with wind speed increasing with distance as it accelerates from the disc. We follow the launch region of the galactic wind, where hot gas entrains and ablates warm ISM clouds leading to significantly increased mass loading of the flow, although we do not follow this material as it interacts with the galactic halo. We run a large grid of simulations in which we vary gas surface density, gas fraction and star formation rate in order to investigate the dependencies of the mass loading, β equiv dot{M}_wind/dot{M}_star. In the cases with the most effective outflows, we observe β = 4; however, in other cases we find β ≪ 1. We find that outflows are more efficient in discs with lower surface densities or gas fractions. A simple model in which the warm cloudy medium is the barrier that limits the expansion of the blast wave reproduces the scaling of outflow properties with disc parameters at high star formation rates. We extend the scaling relations derived from an ISM patch to infer an effective mass loading for a galaxy with an exponential disc, finding that the

  6. Method and system for small scale pumping

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  7. Small scale bipolar nickel-hydrogen testing

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1988-01-01

    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value.

  8. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  9. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  10. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving. PMID:14727304

  11. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  12. Small scale structure on cosmic strings

    SciTech Connect

    Albrecht, A.

    1989-10-30

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs.

  13. Slip Dynamics in Small Scale Crystals

    NASA Astrophysics Data System (ADS)

    Maass, Robert; Derlet, Peter; Greer, Julia; Volkert, Cynthia

    2015-03-01

    Classical work showed that dislocation velocities are strongly dependent on applied stress. Numerous experiments have validated this for individual or groups of dislocations in macroscopic crystals by using imaging techniques combined with either mechanical data or time resolved topological data. Developments in small scale mechanical testing allow to correlate the intermittency of collective dislocation motion with the mechanical response. Discrete forward surges in displacement can be related to dislocation avalanches, which are triggered by the evolving dislocation sub-structure. We study the spatiotemporal characteristics of intermittent plastic flow in quasi-statically sheared single crystalline Au crystals with diameters between 300 nm and 10000 nm, whose displacement bursts were recorded at several kHz (Scripta Mater. 2013, 69, 586; Small, available online). Both the crystallographic slip magnitude, as well as the velocity of the slip events are exhibiting power-law scaling as. The obtained slip velocity distribution has a cubic decay at high values, and a saturated flat shoulder at lower velocities. No correlation between the slip velocity and the applied stress or plastic strain is found. Further, we present DD-simulations that are supportive of our experimental findings. The simulations suggest that the dynamics of the internal stress fields dominate the evolving dislocation structure leading to velocities that are insensitive to the applied stress - a regime indicative of microplasticity.

  14. Cooperative Extension Service & Wind Powering America Collaborate to Provide Wind Energy Information to Rural Stakeholders (Poster)

    SciTech Connect

    Jimenez, A.; Flower, L.; Hamlen, S.

    2009-05-01

    Cooperative Extension's presence blankets much of the United States and has been a trusted information source to rural Americans. By working together, Cooperative Extension, Wind Powering America, and the wind industry can better educate the public and rural stakeholders about wind energy and maximize the benefits of wind energy to local communities. This poster provides an overview of Cooperative Extension, wind energy issues addressed by the organization, and related activities.

  15. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  16. Financing of private small scale hydroelectric projects: a summary guide

    SciTech Connect

    Not Available

    1981-05-01

    Small-scale hydroelectric (SSH) projects are increasingly being supported financially by private developers. Increases in fossil fuel prices, difficulties in the siting of large power plants, streamlining of the federal licensing process, changes in the marketing of power, and the extension of tax credits-all contribute to expectations of profitability in SSH projects. This document provides an overview of private financing for SSH projects.

  17. Use of wind power forecasting in operational decisions.

    SciTech Connect

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  18. The capacity credit of wind power - A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Haslett, J.; Diesendorf, M.

    1981-01-01

    The development of a probabilistic model of capacity credit for wind power in an electricity grid is discussed, and two concepts are studied: (1) the equivalent conventional capacity, and (2) the equivalent firm capacity. The model is developed by introducing a more realistic probability distribution of wind power output than the normal distribution, and by calculating the loss of load probability. The main findings indicate that the use of simple models of the variation of load, wind power and plant availability allows comparisons to be made between various alternative measures of capacity credit. For small penetrations of wind power into the grid, the capacity credit is approximately equal to the average wind power output, while for large penetrations the credit tends to a limit which is determined by the probability of zero wind power and the conventional plant characteristics.

  19. 76 FR 66284 - Wind and Water Power Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy... Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's portfolio of conventional hydropower and marine and hydrokinetic research and development and projects. The 2011 Water...

  20. KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP

    SciTech Connect

    HAMMARLUND, RAY

    2010-10-27

    The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, the Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.

  1. Scientists Track Collision of Powerful Stellar Winds

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these

  2. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  3. Transient Stability of the Grid with a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2009-03-15

    This paper reports on an investigation of the impact of wind power plant penetration on the transient stability of the grid. Transient stability for different faults is investigated via simulation. A wind power plant with 22 turbines operated in variable speed mode will be used as the subject of the study. As a comparison, we replace the wind power plant with a conventional wind power plant (synchronous generator) and compare the results for the same faults. We also consider the effect of different locations.

  4. Wind Power Finance and Investment Workshop 2004

    SciTech Connect

    anon.

    2004-11-01

    The workshop had 33 presentations by the leading industry experts in the wind finance and investment area. The workshop presented wind industry opportunities and advice to the financial community. The program also included two concurrent sessions, Wind 100, which offered wind energy novices a comprehensive introduction to wind energy fundamentals, and Transmission Policy and Regulations. Other workshop topics included: Bringing environmental and other issues into perspective; Policy impacts on wind financing; Technical/wind issues; Monetizing green attributes (Sale of green tags); Contractual issues; Debt issues; and Equity issues. There were approximately 230 attendees.

  5. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    ERIC Educational Resources Information Center

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  6. Evaluation of a wind turbine electric power generator

    NASA Technical Reports Server (NTRS)

    Swim, W. B.

    1981-01-01

    A technical assessment of the aerodynamic performance of the wind wheel turbine (WWT) is reported. The potential of the WWT in utilizing wind as an alternate power source was evaluated. Scaling parameters were developed to predict the aerodynamic performance of WWT prototype sized to produce 3, 9, 30, and 100 kw outputs in a 6.7 m/sec wind.

  7. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  8. A new analytical model for wind farm power prediction

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Porte-Agel, Fernando

    2015-04-01

    In this study, a new analytical approach is presented and validated to predict wind farm power production. The new model assumes a Gaussian distribution for the velocity deficit in the wake which has been recently proposed by Bastankhah and Porté-Agel (2014). To estimate the velocity deficit in the wake, this model needs the local wake growth rate parameter which is calculated based on the local turbulence intensity in the wind farm. The interaction of the wakes is modeled by use of the velocity deficit superposition principle. Finally, the power curve is used to estimate the power production from the wind turbines. The wind farm model is compared to large-eddy simulation (LES) data of Horns Rev wind farm for a wide range of wind directions. Reasonable agreement between the proposed analytical model and LES data is obtained. This prediction is substantially better than the one obtained with common wind farm softwares such as WAsP.

  9. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, D. R.

    1983-01-01

    Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.

  10. Speed tolerant alternator system for wind or hydraulic power generation

    SciTech Connect

    Jallen, G.A.

    1984-07-24

    A wind electric generator employs a freewheeling clutch and an induction generator having several synchronous speeds. By selecting the synchronous speed as a function of the ambient wind speed, the generator can be made to operate more efficiently and without overloading. The freewheeling clutch which connects the generator to the wind turbine prevents the generator from acting as a motor when connected to a power grid, and wasting energy in turning the wind turbine.