Science.gov

Sample records for snake venom proteins

  1. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution. PMID:25448392

  2. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins.

    PubMed

    Yamazaki, Yasuo; Hyodo, Fumiko; Morita, Takashi

    2003-04-01

    Cysteine-rich secretory proteins (CRISPs) are found in epididymis and granules of mammals, and they are thought to function in sperm maturation and in the immune system. Recently, we isolated and obtained clones for novel snake venom proteins that are classified as CRISP family proteins. To elucidate the distribution of snake venom CRISP family proteins, we evaluated a wide range of venoms for immuno-cross-reactivity. Then we isolated, characterized, and cloned genes for three novel CRISP family proteins (piscivorin, ophanin, and catrin) from the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus), king cobra (Ophiophagus hannah), and western diamondback rattlesnake (Crotalus atrox). Our results show the wide distribution of snake venom CRISP family proteins among Viperidae and Elapidae from different continents, indicating that CRISP family proteins compose a new group of snake venom proteins. PMID:12646276

  3. Anticoagulant proteins from snake venoms: structure, function and mechanism

    PubMed Central

    Kini, R. Manjunatha

    2006-01-01

    Over the last several decades, research on snake venom toxins has provided not only new tools to decipher molecular details of various physiological processes, but also inspiration to design and develop a number of therapeutic agents. Blood circulation, particularly thrombosis and haemostasis, is one of the major targets of several snake venom proteins. Among them, anticoagulant proteins have contributed to our understanding of molecular mechanisms of blood coagulation and have provided potential new leads for the development of drugs to treat or to prevent unwanted clot formation. Some of these anticoagulants exhibit various enzymatic activities whereas others do not. They interfere in normal blood coagulation by different mechanisms. Although significant progress has been made in understanding the structure–function relationships and the mechanisms of some of these anticoagulants, there are still a number of questions to be answered as more new anticoagulants are being discovered. Such studies contribute to our fight against unwanted clot formation, which leads to death and debilitation in cardiac arrest and stroke in patients with cardiovascular and cerebrovascular diseases, arteriosclerosis and hypertension. This review describes the details of the structure, mechanism and structure–function relationships of anticoagulant proteins from snake venoms. PMID:16831131

  4. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.

    PubMed

    Hill, R E; Mackessy, S P

    2000-12-01

    R.E. Hill and S.P. Mackessy. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon XX, xx-yy, 2000. - Venomous colubrids, which include more than 700 snake species worldwide, represent a vast potential source of novel biological compounds. The present study characterized venom (Duvernoy's gland secretion) collected from twelve species of opisthoglyphous (rear-fanged) colubrid snakes, an extremely diverse assemblage of non-venomous to highly venomous snakes. Most venoms displayed proteolytic activity (casein), though activity levels varied considerably. Low phosphodiesterase activity was detected in several venoms (Amphiesma stolata, Diadophis punctatus, Heterodon nasicus kennerlyi, H. n. nasicus and Thamnophis elegans vagrans), and acetylcholinesterase was found in Boiga irregularis saliva and venom, but no venoms displayed hyaluronidase, thrombin-like or kallikrein-like activities. High phospholipase A(2) (PLA(2)) activity was found in Trimorphodon biscutatus lambda venom, and moderate levels were detected in Boiga dendrophila and D. p. regalis venoms as well as B. dendrophila and H. n. nasicus salivas. Non-reducing SDS-PAGE revealed 7-20 protein bands (3.5 to over 200 kD, depending on species) for all venoms analyzed, and electrophoretic profiles of venoms were typically quite distinct from saliva profiles. Components from A. stolata, Hydrodynastes gigas, Tantilla nigriceps and T. e. vagrans venoms showed protease activity when run on gelatin zymogram gels. N-terminal protein sequences for three 26 kD venom components of three species (H. gigas, H. torquata, T. biscutatus) and one 3.5 kD component (T. nigriceps) were also obtained, and the 3.5 kD peptide showed apparent sequence homology with human vascular endothelial growth factor; these data represent the first sequences of colubrid venom components. Protease, phosphodiesterase and PLA(2) activities are also common to elapid

  5. A family of cellular proteins related to snake venom disintegrins.

    PubMed Central

    Weskamp, G; Blobel, C P

    1994-01-01

    Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions. Images PMID:8146185

  6. Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43.

    PubMed

    Rocha, Surza L G; Neves-Ferreira, Ana G C; Trugilho, Monique R O; Chapeaurouge, Alex; León, Ileana R; Valente, Richard H; Domont, Gilberto B; Perales, Jonas

    2009-05-01

    Snake venoms are mixtures of proteins and peptides with different biological activities, many of which are very toxic. Several animals, including the opossum Didelphis aurita, are resistant to snake venoms due to the presence of neutralizing factors in their blood. An antihemorrhagic protein named DM43 was isolated from opossum serum. It inhibits snake venom metalloproteinases through noncovalent complex formation with these enzymes. In this study, we have used DM43 and proteomic techniques to explore snake venom subproteomes. Four crotalid venoms were chromatographed through an affinity column containing immobilized DM43. Bound fractions were analyzed by one- and two-dimensional gel electrophoresis, followed by identification by MALDI-TOF/TOF mass spectrometry. With this approach, we could easily visualize and compare the metalloproteinase compositions of Bothrops atrox, Bothrops jararaca, Bothrops insularis, and Crotalus atrox snake venoms. The important contribution of proteolytic processing to the complexity of this particular subproteome was demonstrated. Fractions not bound to DM43 column were similarly analyzed and were composed mainly of serine proteinases, C-type lectins, C-type lectin-like proteins, l-amino acid oxidases, nerve growth factor, cysteine-rich secretory protein, a few metalloproteinases (and their fragments), and some unidentified spots. Although very few toxin families were represented in the crotalid venoms analyzed, the number of protein spots detected was in the hundreds, indicating an important protein variability in these natural secretions. DM43 affinity chromatography and associated proteomic techniques proved to be useful tools to separate and identify proteins from snake venoms, contributing to a better comprehension of venom heterogeneity. PMID:19267469

  7. Snake venom toxins: toxicity and medicinal applications.

    PubMed

    Chan, Yau Sang; Cheung, Randy Chi Fai; Xia, Lixin; Wong, Jack Ho; Ng, Tzi Bun; Chan, Wai Yee

    2016-07-01

    Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed. PMID:27245678

  8. Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom.

    PubMed

    Peichoto, María E; Mackessy, Stephen P; Teibler, Pamela; Tavares, Flávio L; Burckhardt, Paula L; Breno, María C; Acosta, Ofelia; Santoro, Marcelo L

    2009-07-01

    Cysteine-rich secretory proteins (CRiSPs) are widespread in reptile venoms, but most have functions that remain unknown. In the present study we describe the purification and characterization of a CRiSP (patagonin) from the venom of the rear-fanged snake Philodryas patagoniensis, and demonstrate its biological activity. Patagonin is a single-chain protein, exhibiting a molecular mass of 24,858.6 Da, whose NH(2)-terminal and MS/MS-derived sequences are nearly identical to other snake venom CRiSPs. The purified protein hydrolyzed neither azocasein nor fibrinogen, and it could induce no edema, hemorrhage or inhibition of platelet adhesion and aggregation. In addition, patagonin did not inhibit contractions of rat aortic smooth muscle induced by high K(+). However, it caused muscular damage to murine gastrocnemius muscle, an action that has not been previously described for any snake venom CRiSPs. Thus, patagonin will be important for studies of the structure-function and evolutionary relationships of this family of proteins that are widely distributed among snake venoms. PMID:19285568

  9. Sympathetic outflow activates the venom gland of the snake Bothrops jararaca by regulating the activation of transcription factors and the synthesis of venom gland proteins.

    PubMed

    Luna, Milene S A; Hortencio, Thiago M A; Ferreira, Zulma S; Yamanouye, Norma

    2009-05-01

    The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NFkappaB and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NFkappaB and AP-1. Activation of NFkappaB and AP-1 depended on phospholipase C and protein kinase A. Activation of NFkappaB also depended on protein kinase C. Isoprenaline activated both NFkappaB and AP-1, and phenylephrine activated NFkappaB and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production. PMID:19411547

  10. Diagnostic uses of snake venom.

    PubMed

    Marsh, N A

    2001-01-01

    Snake venom toxins are invaluable for the assay of coagulation factors and for the study of haemostasis generally. Thrombin-like enzymes (SVTLE) are used for fibrinogen and fibrinogen breakdown product assays as well as detecting dysfibrinogenaemias. Since SVTLE are not inhibited by heparin, they can be used for assaying antithrombin III in samples containing heparin. Snake venom prothrombin activators are utilised in prothrombin assays, whilst Russell's viper venom (RVV) can be used to assay clotting factors V, VII, X and lupus anticoagulants (LA). Activators from the taipan, Australian brown snake and saw-scaled viper have also been used to assay LA. Protein C (PC) and activated PC (APC) resistance can be measured by means of RVV, Protac (from Southern copperhead snake venom) and STA-Staclot (from Crotalus viridis helleri) whilst von Willebrand factor can be studied with Botrocetin (Bothrops jararaca). Finally, snake venom C-type lectins and metalloproteinase disintegrins are being used to study platelet glycoprotein receptors and show great potential for use in the routine coagulation laboratory. PMID:11910187

  11. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation.

    PubMed

    Calvete, Juan J

    2014-06-01

    Venom research has been continuously enhanced by technological advances. High-throughput technologies are changing the classical paradigm of hypothesis-driven research to technology-driven approaches. However, the thesis advocated in this paper is that full proteome coverage at locus-specific resolution requires integrating the best of both worlds into a protocol that includes decomplexation of the venom proteome prior to liquid chromatography-tandem mass spectrometry matching against a species-specific transcriptome. This approach offers the possibility of proof-checking the species-specific contig database using proteomics data. Immunoaffinity chromatography constitutes the basis of an antivenomics workflow designed to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venom toxins. In the author's view, snake venomics and antivenomics form part of a biology-driven conceptual framework to unveil the genesis and natural history of venoms, and their within- and between-species toxicological and immunological divergences and similarities. Understanding evolutionary trends across venoms represents the Rosetta Stone for generating broad-ranging polyspecific antivenoms. PMID:24678852

  12. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein. PMID:7461607

  13. Venomics of the Australian eastern brown snake (Pseudonaja textilis): Detection of new venom proteins and splicing variants.

    PubMed

    Viala, Vincent Louis; Hildebrand, Diana; Trusch, Maria; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho; Arni, Raghuvir K; Schlüter, Hartmut; Betzel, Christian; Mirtschin, Peter; Dunstan, Nathan; Spencer, Patrick Jack

    2015-12-01

    The eastern brown snake is the predominant cause of snakebites in mainland Australia. Its venom induces defibrination coagulopathy, renal failure and microangiopathic hemolytic anemia. Cardiovascular collapse has been described as an early cause of death in patients, but, so far, the mechanisms involved have not been fully identified. In the present work, we analysed the venome of Pseudonaja textilis by combining high throughput proteomics and transcriptomics, aiming to further characterize the components of this venom. The combination of these techniques in the analysis and identification of toxins, venom proteins and putative toxins allowed the sequence description and the identification of the following: prothrombinase coagulation factors, neurotoxic textilotoxin phospholipase A2 (PLA2) subunits and "acidic PLA2", three-finger toxins (3FTx) and the Kunitz-type protease inhibitor textilinin, venom metalloproteinase, C-type lectins, cysteine rich secretory proteins, calreticulin, dipeptidase 2, as well as evidences of Heloderma lizard peptides. Deep data-mining analysis revealed the secretion of a new transcript variant of venom coagulation factor 5a and the existence of a splicing variant of PLA2 modifying the UTR and signal peptide from a same mature protein. The transcriptome revealed the diversity of transcripts and mutations, and also indicates that splicing variants can be an important source of toxin variation. PMID:26079951

  14. Isolation and characterization of biologically active venom protein from sea snake Enhydrina schistosa.

    PubMed

    Damotharan, Palani; Veeruraj, Anguchamy; Arumugam, Muthuvel; Balasubramanian, Thangavel

    2015-03-01

    The present study is designed to investigate the isolation and characterization of biological and biochemical active venom protein from sea snake, Enhydrina schistosa. The highest purification peaks in ion-exchange chromatography on DEAE-cellulose column were obtained for fraction numbers 39-49 when eluted with 0.35-0.45 M NaCl. Eighty per cent purity was obtained in the final stage of purification, and a single protein band of about 44 kDa was visualized in SDS-polyacrylamide gel under reducing condition. Purified venom protein expressed as haemolytic, cytotoxicity and proteolytic activities with lethal concentration (LC50 ) at 2.0 μg/mL. Venom protein exhibits enzymatic activity and hydrolyzed casein and gelatin. Gelatinolytic activity was optimal at pH 5-9. In conclusion, the present results suggested that the sea snake venom might be feasible sources for biologically active substances. Thus, this low molecular weight component of the venom protein could be used in potentially serve biological and pharmaceutical aspects. PMID:25504782

  15. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.

    PubMed

    Ramazanova, Anna S; Starkov, Vladislav G; Osipov, Alexey V; Ziganshin, Rustam H; Filkin, Sergey Yu; Tsetlin, Victor I; Utkin, Yuri N

    2009-01-01

    Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system. PMID:19041663

  16. Early significant ontogenetic changes in snake venoms.

    PubMed

    Wray, Kenneth P; Margres, Mark J; Seavy, Margaret; Rokyta, Darin R

    2015-03-01

    Snake venom plays a critical role in food acquisition, digestion, and defense. Venoms are known to change throughout the life of some snake species, but nothing is known about the venom composition of hatchling/neonate snakes prior to and just after their first shedding cycle, despite this being a critical time in the life of the snake. Using a cohort of Crotalus horridus and two cohorts of Crotalus adamanteus, we showed for the first time that snakes undergo significant changes in venom composition after the postnatal shedding event. The number of changes among cohorts ranged widely and there was wide variation in the direction of protein regulation, which appeared to be on a locus-specific level rather than protein-family level. These significant venom composition changes that take place in the first few weeks of life most likely play critical roles in venom economy and resource conservation and may partially explain the rare, post-birth maternal care found in some venomous species. PMID:25600640

  17. Recombinant snake venom prothrombin activators.

    PubMed

    Lövgren, Ann

    2013-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need for additional cofactors, but does not discriminate non-carboxylated prothrombin from biologically active γ-carboxylated prothrombin. Here we report that recombinant trocarin and oscutarin could not efficiently generate thrombin without additional protein co-factors. We confirm that both trocarin and oscutarin are similar to human coagulation Factor X (FX), explaining the need for additional cofactors. Sequencing of a genomic fragment containing 7 out of the 8 exons coding for oscutarin further confirmed the similarity to human FX. PMID:23111318

  18. A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides.

    PubMed Central

    Perry, A C; Jones, R; Barker, P J; Hall, L

    1992-01-01

    Following spermatogenesis in the testis, mammalian spermatozoa pass into the epididymis, where they undergo changes which confer on them forward motility and the ability to recognize and penetrate the egg. Many of these maturation events involve androgen-regulated epididymal proteins which become associated with the sperm membrane, and/or effect changes to integral sperm membrane proteins. Here we report the sequence of an 89 kDa androgen-regulated protein from rat (Rattus norvegicus) and monkey (Macaca fascicularis) epididymis that is synthesized exclusively in the caput region and is localized on the apical surface of its principal epithelial cells. This protein shows remarkable similarity to a variety of proteases and disintegrins found in snake venoms and is similar to, but distinct from, the guinea-pig sperm surface PH-30 alpha/beta complex recently implicated in sperm-egg recognition and fusion. Images Fig. 2. Fig. 3. PMID:1417724

  19. Snake oil and venoms for medical research

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  20. Population divergence in venom bioactivities of elapid snake Pseudonaja textilis: role of procoagulant proteins in rapid rodent prey incapacitation.

    PubMed

    Skejić, Jure; Hodgson, Wayne C

    2013-01-01

    This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD) venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality) and Queensland (Mackay locality) populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver. PMID:23691135

  1. Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii.

    PubMed

    Fernández, Julián; Gutiérrez, José María; Calvete, Juan J; Sanz, Libia; Lomonte, Bruno

    2016-06-01

    Snake venoms are composed mainly of a mixture of proteins and peptides. Notably, all snake venom toxins have been assigned to a small number of protein families. Proteomic studies on snake venoms have recently identified the presence of Kazal-type inhibitor-like proteins in the neotropical arboreal snakes Bothriechis schlegelii and Bothriechis supraciliaris. In the present study, a Kazal-type component from B. schlegelii, named Kazal-type inhibitor-like protein (KTIL), has been completely sequenced and characterized for the first time. This protein, which contains 54 amino acid residues, shows sequence similarity to the third domain of the ovomucoid from avian species, which is a Kazal-like domain. KTIL did not inhibit the enzymatic activity of various serine proteinases at pH = 7.2 or pH = 8.0, but partially inhibited the activity of trypsin at pH = 5.4, and the only toxic effect in mice observed after different in vivo tests was the induction of footpad edema. KTIL was not lethal when injected in mice or chickens. The presence of Kazal-type proteins and mRNA only in species of the genus Bothriechis suggests a genus recruitment event in the early-Middle Miocene, the estimated time of emergence of this clade. PMID:26973135

  2. Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy

    PubMed Central

    Calderon, Leonardo A.; Sobrinho, Juliana C.; Zaqueo, Kayena D.; de Moura, Andrea A.; Grabner, Amy N.; Mazzi, Maurício V.; Marcussi, Silvana; Fernandes, Carla F. C.; Zuliani, Juliana P.; Carvalho, Bruna M. A.; da Silva, Saulo L.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2014-01-01

    For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising utilization of these venoms or their components as antitumoral agents. Over the last few years, we have studied the effects of snake venoms and their isolated enzymes on tumor cell cultures. Some in vivo assays showed antineoplastic activity against induced tumors in mice. In human beings, both the crude venom and isolated enzymes revealed antitumor activities in preliminary assays, with measurable clinical responses in the advanced treatment phase. These enzymes include metalloproteases (MP), disintegrins, L-amino acid oxidases (LAAOs), C-type lectins, and phospholipases A2 (PLA2s). Their mechanisms of action include direct toxic action (PLA2s), free radical generation (LAAOs), apoptosis induction (PLA2s, MP, and LAAOs), and antiangiogenesis (disintegrins and lectins). Higher cytotoxic and cytostatic activities upon tumor cells than normal cells suggest the possibility for clinical applications. Further studies should be conducted to ensure the efficacy and safety of different snake venom compounds for cancer drug development. PMID:24683541

  3. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.

    PubMed

    Takeda, Soichi

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the "ADAM_CR" domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates. PMID:27196928

  4. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    PubMed Central

    Takeda, Soichi

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates. PMID:27196928

  5. Extremely low nerve growth facior (NGF) activity of sea snake (Hydrophiidae) venoms.

    PubMed

    Mariam, Khafizova; Tu, Anthony T

    2002-12-01

    Sea snake venoms contain less protein than those of land snakes (Toom et al., 1969). Sea snake venoms lack arginine ester hydrolyzing activity, whereas those of Crotalidae and Viperidae have such activity (Tu et al., 1966). Sea snakes live in salty water, and their venoms may be different from those of land snakes. Because of the difficulty in obtaining sea snake venoms, information about sea snake venoms is quite incomplete. NGF is commonly present in the venoms of land snakes such as Elapidae, Viperidae, and Crotalidae (Cohen and Levi-Montalcini, 1956; Lipps, 2002). It is therefore of interest to investigate the presence or absence of NGF in sea snake venoms. In order to investigate the presence or absence of NGF, five sea snake venoms were selected. Lapemis hardwickii (Hardwick's sea snake) and Acalyptophis peronii venom were obtained from the Gulf of Thailand. Hydrophis cyanocinctus (common sea snake) and Enhydrina schistosa (beaked sea snake) venom were obtained from the Strait of Malacca. Laticauda semifasciata (broad band blue sea snake) venom was also examined and the venom was obtained from Gato Island in the Philippines. PMID:12503884

  6. Species identification from dried snake venom.

    PubMed

    Singh, Chandra S; Gaur, Ajay; Sreenivas, Ara; Singh, Lalji

    2012-05-01

    Illegal trade in snake parts has increased enormously. In spite of strict protection under wildlife act, a large number of snakes are being killed ruthlessly in India for venom and skin. Here, an interesting case involving confiscation of crystallized dried snake venom and subsequent DNA-based species identification is reported. The analysis using the universal primers for cytochrome b region of the mitochondrial DNA revealed that the venom was extracted from an Indian cobra (Naja naja). On the basis of this report, the forwarding authority booked a case in the court of law against the accused for illegal hunting of an endangered venomous snake and smuggling of snake venom. This approach thus has immense potential for rapid identification of snake species facing endangerment because of illegal trade. This is also the first report of DNA isolation from dried snake venom for species identification. PMID:22268640

  7. Formulation and characterisation of antibody-conjugated soy protein nanoparticles--implications for neutralisation of snake venom with improved efficiency.

    PubMed

    Renu, Kadali; Gopi, Kadiyala; Jayaraman, Gurunathan

    2014-12-01

    The present study reports the formulation of soy protein nanoparticles and its conjugation to antivenom. The conditions for nanoparticle formation were optimised by considering particle size, count rate, stability and zeta potential. The smallest particle size of 70.9 ± 0.9 nm with a zeta potential of -28.0 ± 1.4 mV was obtained at pH 6.2, with NaOH 5.4 % and 28 μg/mg glutaraldehyde. The nanoparticle was conjugated with antisnake venom immunoglobulins (F(ab')2 fragments) using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide. TEM analysis indicated the increased size of particle to 600 nm after conjugation to antivenom. Further, in vitro studies indicated that conjugated antibodies inhibited the activity of protease, phospholipase and hyaluronidase enzymes of Bungarus caeruleus venom more efficiently than the free antivenom. This is the first report on the use of protein nanoparticles for conjugating snake venom antibodies and their implications for neutralising snake venom enzymes with increased efficiency. PMID:25185504

  8. Practical applications of snake venom toxins in haemostasis.

    PubMed

    Marsh, Neville; Williams, Vaughan

    2005-06-15

    Snake venom toxins affecting haemostasis have facilitated extensively the routine assays of haemostatic parameters in the coagulation laboratory. Snake venom thrombin-like enzymes (SVTLE) are used for fibrinogen/fibrinogen breakdown product assay and for the detection of fibrinogen dysfunction. SVTLE are not inhibited by heparin and can thus can be used for assaying antithrombin III and other haemostatic variables in heparin-containing samples. Snake venoms are a rich source of prothrombin activators and these are utilised in prothrombin assays, for studying dysprothrombinaemias and for preparing meizothrombin and non-enzymic forms of prothrombin. Russell's viper (Daboia russelli) venom (RVV) contains toxins which have been used to assay blood clotting factors V, VII, X, platelet factor 3 and, importantly, lupus anticoagulants (LA). Other prothrombin activators (from the taipan, Australian brown snake and saw-scaled viper) have now been used to assay LA. Protein C and activated protein C resistance can be measured by means of RVV and Protac, a fast acting inhibitor from Southern copperhead snake venom and von Willebrand factor can be studied with botrocetin from Bothrops jararaca venom. The disintegrins, a large family of Arg-Gly-Asp (RGD)-containing snake venom proteins, show potential for studying platelet glycoprotein receptors, notably, GPIIb/IIIa and Ib. Snake venom toxins affecting haemostasis are also used in the therapeutic setting: Ancrod (from the Malayan pit viper, Calloselasma rhodostoma), in particular, has been used as an anticoagulant to achieve 'therapeutic defibrination'. Other snake venom proteins show promise in the treatment of a range of haemostatic disorders. PMID:15922782

  9. Use of snake venom fractions in the coagulation laboratory.

    PubMed

    Marsh, N A

    1998-07-01

    Snake venom toxins are now regularly used in the coagulation laboratory for assaying haemostatic parameters and as coagulation reagents. Snake venom thrombin-like enzymes (SVTLE) are used for fibrinogen and fibrinogen breakdown product assay as well as detecting dysfibrinogenaemias. Significantly, because SVTLE are not inhibited by heparin, they can be used for defibrinating samples that contain the anticoagulant before assay of haemostatic variables. Prothrombin activators are found in many snake venoms and are used in prothrombin assays, for studying dysprothrombinaemias and preparing meizothrombin and non-enzymic prothrombin. Russell's viper (Daboia russelli) venom (RVV) contains a number of compounds useful in the assay of factors V, VII, X, platelet factor 3 and lupus anticoagulants. Activators from the taipan, Australian brown snake and saw-scaled viper have been used to assay lupus anticoagulants. Protein C and activated protein C resistance can be measured by means of RVV and Protac, a fast acting inhibitor from Southern copperhead snake venom and von Willebrand factor can be studied with Botrocetin from Bothrops jararaca venom. Finally, phospholipase A2 enzymes and the disintegrins, a family of Arg-Gly-Asp (RGD)-containing proteins found in snake venoms, show great potential for the study of haemostasis including, notably, platelet glycoprotein receptors GPIIb/IIIa and Ib. PMID:9712287

  10. Detection of calcium-binding proteins in venom and Duvernoy's glands of South American snakes and their secretions.

    PubMed

    Gonçalves, L R; Yamanouye, N; Nuñez-Burgos, G B; Furtado, M F; Britto, L R; Nicolau, J

    1997-10-01

    Calcium-binding proteins (CaBPs) have been described as involved in the stimulus-secretion coupling mechanisms in secretory glands. CaBPs were revealed with 45Ca, after electrophoresis in SDS-PAGE and transference to Zeta probe membranes, in Duvernoy's or venom gland homogenates from three families of South American snakes: Viperidae (Bothrops jararaca and Crotalus durissus terrificus); Elapidae (Micrurus corallinus), and Colubridae (Phylodrias patagoniensis and Oxyrhopus trigeminus). A band with an estimated molecular weight of 12 KDa was found in all glands studied. Bands with 17, 28, and 67 KDa were found in all glands, except in O. trigeminus Duvernoy's gland. A 18 KDa band was found in Viperidae and Elapidae venom glands, and a 88 KDa band was observed only in Viperidae venom gland homogenates. Some of these CaBPs were identified by Western blotting or by immunohistochemistry, as parvalbumin (12 KDa) and calbindin (28 KDa). When the secretion of these glands were analyzed, CaBPs were detected only in B. jararaca venom, with bands of 14, 35, 42, and 72 KDa. The profile of CaBPs was not modified at different phases of the secretory cycle of the glands, as well as after isoproterenol treatment. PMID:9440247

  11. [The threat of snake and scorpion venoms].

    PubMed

    Płusa, Tadeusz; Smędzik, Katarzyna

    2015-09-01

    Venoms of snakes and scorpions pose a significant threat to the health and life of humans. The speed and range of their actions causes damage of the organ responsible for the maintenance of vital signs. Venomous snake venoms cause blood clotting disorders, tissue necrosis and hemolysis, and the release of a number of proinflammatory cytokines and impair antibody synthesis. Availability of antitoxins is limited and in the most cases supportive treatment is recommended. In turn, the venom of scorpions beside intestinal symptoms cause significant impairment of neuromuscular conduction, causing severe respiratory disorders. Action venom poses a particular threat to sensitive patients. The degree of threat to life caused by the venom of snakes and scorpions authorizes the treatment of these substances as a potential biological weapon. PMID:26449581

  12. Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania

    PubMed Central

    Adade, Camila M.; Carvalho, Ana Lúcia O.; Tomaz, Marcelo A.; Costa, Tatiana F. R.; Godinho, Joseane L.; Melo, Paulo A.; Lima, Ana Paula C. A.; Rodrigues, Juliany C. F.; Zingali, Russolina B.; Souto-Padrón, Thaïs

    2014-01-01

    Background The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania. Methodology/Principal Findings Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells. Conclusions This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases. PMID:25330220

  13. Practical applications of snake venom toxins in haemostasis.

    PubMed

    Marsh, N A; Fyffe, T L

    1996-01-01

    Snake venom toxins have an established role in the coagulation laboratory for the assay of haemostatic parameters and a potential role for therapeutic treatment of thrombotic disorders. In the laboratory, snake venom thrombin-like enzymes (SVTLEs) are used for the assay of fibrinogen and detection of fibrinogen breakdown products and dysfibrinogenaemias. Importantly, because SVTLEs are not inhibited by heparin, they can be used for assaying antithrombin III and other parameters in samples which contain heparin. Prothrombin activators occur in many snake venoms and these have become established in the assay of prothrombin, in the study of dysprothrombinaemias and in the preparation of meizothrombin and non enzymic forms of prothrombin. Russell's viper (Daboia russelli) venom contains a number of useful compounds including toxins which can be used to assay blood clotting factors V, VII, X, platelet factor 3 and lupus anticoagulants (LA). More recently, activators from the taipan, Australian brown snake and saw-scaled viper have been used to assay LA. Proteins C and S can be measured by means of protac, a fast acting inhibitor from Southern copperhead snake venom and von Willebrand factor can be studied with botrocetin from Bothrops jararaca venom. The disintegrins, a large family of Arg-Gly-Asp (RGD)-containing proteins found in snake venoms, show great potential for the study of platelet glycoprotein receptors, notably, GPIIb/IIIa and Ib, and in the treatment of arterial thrombotic disease. Established SVTLEs used in clinical practice include ancrod and defibrase although success with these agents has been limited. A further group of enzymes under consideration as thrombolytic agents are the fibrinogenases. PMID:9425723

  14. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms.

    PubMed

    Casewell, Nicholas R; Wagstaff, Simon C; Wüster, Wolfgang; Cook, Darren A N; Bolton, Fiona M S; King, Sarah I; Pla, Davinia; Sanz, Libia; Calvete, Juan J; Harrison, Robert A

    2014-06-24

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite. PMID:24927555

  15. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms

    PubMed Central

    Casewell, Nicholas R.; Wagstaff, Simon C.; Wüster, Wolfgang; Cook, Darren A. N.; Bolton, Fiona M. S.; King, Sarah I.; Pla, Davinia; Sanz, Libia; Calvete, Juan J.; Harrison, Robert A.

    2014-01-01

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite. PMID:24927555

  16. Characterization of an apoptosis-inducing factor in Habu snake venom as a glycyrrhizin (GL)-binding protein potently inhibited by GL in vitro.

    PubMed

    Abe, Y; Shimoyama, Y; Munakata, H; Ito, J; Nagata, N; Ohtsuki, K

    1998-09-01

    By means of successive heparin-affinity and glycyrrhizin (GL)-affinity column chromatographies (HPLC), a 55 kDa GL-binding protein (gp55) was purified to apparent homogeneity from the Superdex P-I fraction of Habu snake venom. This gp55 was identified as an apoxin I-like protein, because (i) its 20 N-terminal amino acid residues (AHDRNPLEEYFRETDYEEFL) are 95% identical with the corresponding sequence of apoxin I (apoptosis-inducing factor, approx. 55 kDa) in the venom of the western diamondback rattlesnake; and (ii) L-amino acid oxidase (LAO) activity of gp55 is detected when incubated with L-leucine, but not with D-leucine. GL inhibited the LAO activity of gp55 in a dose-dependent manner, but had no effect on the activity of a 65 kDa LAO also purified from Habu snake venom. In addition, GL reduced the ability of gp55 to induce the hemolysis of sheep red blood cells. These results suggest that GL is a potent inhibitor of apoxin I-like proteins in harmful snake venoms. PMID:9781840

  17. ISOB: A Database of Indigenous Snake Species of Bangladesh with respective known venom composition

    PubMed Central

    Roly, Zahida Yesmin; Hakim, Md Abdul; Zahan, ASM Shahriar; Hossain, M Monzur; Reza, Md Abu

    2015-01-01

    At present there is no well structured database available for the venomous snakes and venom composition of snakes in the world although venom has immense importance in biomedical research. Searching for a specific venom component from NCBI, PDB or public databases is troublesome, because they contain huge amount of data entries. Therefore, we created a database named “ISOB” which is a web accessible unique secondary database that represents the first online available bioinformatics resource showing venom composition of snakes. This database provides a comprehensive overview of seventy-eight indigenous snake species covering description of snakes supplemented with structural information of the relevant individual available venom proteins. We strongly believe that this database will contribute significantly in the field of bioinformatics, environmental research, proteomics, drug development and rationale drug designing. Availability The database is freely available at http://www.snakebd.com/ PMID:25848172

  18. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    PubMed Central

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  19. A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom

    PubMed Central

    Ramos, Henrique Roman; Junqueira-de-Azevedo, Inácio de Loiola M.; Novo, Juliana Branco; Castro, Karen; Duarte, Clara Guerra; Machado-de-Ávila, Ricardo A.; Chavez-Olortegui, Carlos; Ho, Paulo Lee

    2016-01-01

    Background Envenoming by coral snakes (Elapidae: Micrurus), although not abundant, represent a serious health threat in the Americas, especially because antivenoms are scarce. The development of adequate amounts of antielapidic serum for the treatment of accidents caused by snakes like Micrurus corallinus is a challenging task due to characteristics such as low venom yield, fossorial habit, relatively small sizes and ophiophagous diet. These features make it difficult to capture and keep these snakes in captivity for venom collection. Furthermore, there are reports of antivenom scarcity in USA, leading to an increase in morbidity and mortality, with patients needing to be intubated and ventilated while the toxin wears off. The development of an alternative method for the production of an antielapidic serum, with no need for snake collection and maintenance in captivity, would be a plausible solution for the antielapidic serum shortage. Methods and Findings In this work we describe the mapping, by the SPOT-synthesis technique, of potential B-cell epitopes from five putative toxins from M. corallinus, which were used to design two multiepitope DNA strings for the genetic immunisation of female BALB/c mice. Results demonstrate that sera obtained from animals that were genetically immunised with these multiepitope constructs, followed by booster doses of recombinant proteins lead to a 60% survival in a lethal dose neutralisation assay. Conclusion Here we describe that the genetic immunisation with a synthetic multiepitope gene followed by booster doses with recombinant protein is a promising approach to develop an alternative antielapidic serum against M. corallinus venom without the need of collection and the very challenging maintenance of these snakes in captivity. PMID:26938217

  20. Natural Inhibitors of Snake Venom Metalloendopeptidases: History and Current Challenges.

    PubMed

    Bastos, Viviane A; Gomes-Neto, Francisco; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2016-01-01

    The research on natural snake venom metalloendopeptidase inhibitors (SVMPIs) began in the 18th century with the pioneering work of Fontana on the resistance that vipers exhibited to their own venom. During the past 40 years, SVMPIs have been isolated mainly from the sera of resistant animals, and characterized to different extents. They are acidic oligomeric glycoproteins that remain biologically active over a wide range of pH and temperature values. Based on primary structure determination, mammalian plasmatic SVMPIs are classified as members of the immunoglobulin (Ig) supergene protein family, while the one isolated from muscle belongs to the ficolin/opsonin P35 family. On the other hand, SVMPIs from snake plasma have been placed in the cystatin superfamily. These natural antitoxins constitute the first line of defense against snake venoms, inhibiting the catalytic activities of snake venom metalloendopeptidases through the establishment of high-affinity, non-covalent interactions. This review presents a historical account of the field of natural resistance, summarizing its main discoveries and current challenges, which are mostly related to the limitations that preclude three-dimensional structural determinations of these inhibitors using "gold-standard" methods; perspectives on how to circumvent such limitations are presented. Potential applications of these SVMPIs in medicine are also highlighted. PMID:27571103

  1. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    PubMed Central

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  2. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  3. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  4. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    PubMed Central

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  5. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    NASA Astrophysics Data System (ADS)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  6. Experimental ophitoxemia produced by the opisthoglyphous lora snake (Philodryas olfersii) venom.

    PubMed

    Rodríguez-Acosta, Alexis; Lemoine, Karel; Navarrete, Luis; Girón, María E; Aguilar, Irma

    2006-01-01

    Several colubrid snakes produce venomous oral secretions. In this work, the venom collected from Venezuelan opisthoglyphous (rear-fanged) Philodryas olfersii snake was studied. Different proteins were present in its venom and they were characterized by 20% SDS-PAGE protein electrophoresis. The secretion exhibited proteolytic (gelatinase) activity, which was partially purified on a chromatography ionic exchange mono Q2 column. Additionally, the haemorrhagic activity of Philodryas olfersii venom on chicken embryos, mouse skin and peritoneum was demonstrated. Neurotoxic symptoms were demonstrated in mice inoculated with Philodryas olfersii venom. In conclusion, Philodryas olfersii venom showed proteolytic, haemorrhagic, and neurotoxic activities, thus increasing the interest in the high toxic action of Philodryas venom. PMID:16699649

  7. Inhibition of Hemorragic Snake Venom Components: Old and New Approaches

    PubMed Central

    Panfoli, Isabella; Calzia, Daniela; Ravera, Silvia; Morelli, Alessandro

    2010-01-01

    Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedicine. Direct electric current from low voltage showed neutralizing properties against venom phospholipase A2 and metalloproteases. This mini-review summarizes new achievements in venom key component inhibition. A deeper knowledge of alternative ways to inhibit venom toxins may provide supplemental treatments to serum therapy. PMID:22069593

  8. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus.

    PubMed

    Wagstaff, Simon C; Sanz, Libia; Juárez, Paula; Harrison, Robert A; Calvete, Juan J

    2009-01-30

    Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large

  9. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation

    PubMed Central

    Moura-da-Silva, Ana M.; Almeida, Michelle T.; Portes-Junior, José A.; Nicolau, Carolina A.; Gomes-Neto, Francisco; Valente, Richard H.

    2016-01-01

    Snake venom metalloproteinases (SVMPs) are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins. PMID:27294958

  10. Biological activities of Peristrophe bivalvis extracts: promising potential for anti-snake venoms against Naja kaouthia and Trimeresurus albolabris venoms.

    PubMed

    Phaopongthai, Jatuporn; Noiphrom, Jureeporn; Phaopongthai, Supat; Pakmanee, Narumol; Sichaem, Jirapast

    2016-01-01

    This study evaluates the in vitro anti-snake venom potential of Peristrophe bivalvis (PB) extracts against Naja kaouthia (NK) and Trimeresurus albolabris (TA) venoms, including inhibition of cytotoxic effects and enzymatic activities, and the binding-precipitation of extracts and venom proteins analysis. In addition, the antioxidant, cytotoxic and in vivo acute oral toxic activities of PB extracts are also reported. The in vitro cytotoxic and enzymatic analysis reveals that the ethanol extracts of stems and leaves of PB showed good anti-snake venom activity against NK and TA venoms. In addition, the antioxidant result indicated that only the ethanol extract of leaves exhibited weak DPPH radical-scavenging activity. The ethanol whole-plant extract of PB also showed no cytotoxicity against four cell lines. Moreover, the in vivo acute oral toxicity result of the ethanol whole-plant extract showed that all treated rats did not exhibit abnormal toxic signs or deaths. PMID:25942501

  11. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms

    PubMed Central

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J.

    2016-01-01

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A2 (PLA2s; seven isoforms, 4.1% of the venom proteome), 1–3 Kunitz-type proteins (1.6%), and 1–2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA2-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA2 dichotomy may be widely distributed among Elapidae venoms. PMID:27338473

  12. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms.

    PubMed

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J

    2016-01-01

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%), and 1-2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA₂-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA₂ dichotomy may be widely distributed among Elapidae venoms. PMID:27338473

  13. Effects of gamma radiation on snake venoms

    NASA Astrophysics Data System (ADS)

    Nascimento, N.; Spencer, P. J.; Andrade, H. F.; Guarnieri, M. C.; Rogero, J. R.

    1998-06-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. Inn order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, susbequentely submitted to irradiaiton. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD 50 in mice. Native and irradiated crotoxin biodistribution ocured in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain).

  14. Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion

    PubMed Central

    Bottrall, Joshua L; Madaras, Frank; Biven, Christopher D; Venning, Michael G; Mirtschin, Peter J

    2010-01-01

    Testing whether venoms may aid in digestion of the prey, eleven snake venoms were compared for the presence of proteases and endopeptidases that function in alkaline pH conditions. In vitro experiments examined the relative protease and endopeptidase activity of the venoms, which involved combining bovine muscle and snake venom in a buffered solution, encased within dialysis tubing. This mixture was then incubated at room temperature (∼20°C) for 24hr, with constant shaking. Bicinchoninic acid (BCA) assay and ninhydrin assay were used to determine peptide and amino acid concentrations. Histological and immunohistochemical investigations using N. kaouthia venom confirmed in vitro findings. Results show that B. arietans venom generated the highest amount of protein/peptides and amino acids in the dialysates, while O. scutellatus, N. ater niger and P. textilis venom did not show any significant protein degradation under alkaline conditions. Histological examination revealed varying degrees of muscle cell damage for each of the venom investigated, and the immunohistochemical study on N. kaouthia venom showed that the venom penetrated the muscle tissue to a significant degree. In vitro assays and histological results indicate that particular venoms may possess the ability to enhance digestion of bovine muscle tissue. PMID:21544178

  15. Antibodies against Venom of the Snake Deinagkistrodon acutus

    PubMed Central

    Lee, Yu-Ching; Liang, Meng-Huei; Leu, Sy-Jye; Lin, Liang-Tzung; Chiang, Jen-Ron

    2015-01-01

    Snake venom protein from Deinagkistrodon acutus (DA protein), one of the major venomous species in Taiwan, causes hemorrhagic symptoms that can lead to death. Although horse-derived antivenin is a major treatment, relatively strong and detrimental side effects are seen occasionally. In our study, yolk immunoglobulin (IgY) was purified from eggs, and DA protein was recognized using Western blotting and an enzyme-linked immunosorbent assay (ELISA), similar to therapeutic horse antivenin. The ELISA also indicated that specific IgY antibodies were elicited after the fifth booster, plateaued, and lasted for at least 3 months. To generate monoclonal single-chain variable fragment (scFv) antibodies, we used phage display technology to construct two libraries with short or long linkers, containing 6.24 × 108 and 5.28 × 108 transformants, respectively. After four rounds of biopanning, the eluted phage titer increased, and the phage-based ELISA indicated that the specific clones were enriched. Nucleotide sequences of 30 individual clones expressing scFv were analyzed and classified into four groups that all specifically recognized the DA venom protein. Furthermore, based on mass spectrometry, the scFv-bound protein was deduced to be snake venom metalloproteinase proteins. Most importantly, both IgY and mixed scFv inhibited the lethal effect in mice injected with the minimum lethal dosage of the DA protein. We suggest that together, these antibodies could be applied to the development of diagnostic agents or treatments for snakebite envenomation in the future. PMID:26475102

  16. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  17. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    PubMed

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  18. Antibacterial properties of KwaZulu natal snake venoms.

    PubMed

    Blaylock, R S

    2000-11-01

    The objective was to ascertain whether local snake venoms have antibacterial properties. The venoms of the common night adder (Causus rhombeatus), gaboon adder (Bitis gabonica), puff adder (Bitis arietans), black mamba (Dendroaspis polylepis), eastern green mamba (Dendroaspis augusticeps), forest cobra (Naja melanoleuca), snouted cobra (Naja annulifera) and Mozambique spitting cobra (Naja mossambica) were collected and, by gel diffusion, tested against the bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeriginosa, Bacteriodes fragilis, Bacteroides intermedius, Clostridium sordellii and Clostridium perfringens. All snake venoms showed antibacterial activity, with the adders showing most activity against the aerobes while the cobras showed lesser, but equal activity against the aerobes and anaerobes. Black mamba venom only showed activity against C. perfringens. In conclusion, local snake venoms have antibacterial properties which are dependent on the venom and bacterial type; and in the Naja spp., for anaerobic bacteria, diminish in winter. There is liable to be more than one toxin component responsible. PMID:10775753

  19. Preferential antagonism of the interactions of the integrin alpha IIb beta 3 with immobilized glycoprotein ligands by snake-venom RGD (Arg-Gly-Asp) proteins. Evidence supporting a functional role for the amino acid residues flanking the tripeptide RGD in determining the inhibitory properties of snake-venom RGD proteins.

    PubMed Central

    Lu, X; Williams, J A; Deadman, J J; Salmon, G P; Kakkar, V V; Wilkinson, J M; Baruch, D; Authi, K S; Rahman, S

    1994-01-01

    The inhibitory properties of a panel of snake-venom-derived RGD (Arg-Gly-Asp) proteins, including the disintegrins kistrin, elegantin and albolabrin, and the neurotoxin homologue dendroaspin, were investigated in a platelet-adhesion assay using three immobilized ligands of the glycoprotein IIb-IIIa complex (alpha IIb beta 3), namely fibrinogen, fibronectin and von Willebrand factor (vWF). The snake-venom proteins preferentially inhibited the adhesion of ADP-treated platelets to one or more of the immobilized ligands. Kistrin and dendroaspin exhibited similar inhibitory characteristics, abrogating platelet adhesion to fibrinogen and vWF at nanomolar concentrations, but poorly inhibiting adhesion to fibronectin. Kistrin and dendroaspin share little overall amino-acid-sequence identity, but a considerable level of sequence similarity exists around the RGD tripeptide. Synthetic cyclic peptides corresponding to these regions of kistrin and dendroaspin inhibited platelet adhesion to both fibrinogen and fibronectin with approximately equal potency, but were 100-fold weaker antagonists of the interactions of the alpha IIb beta 3 complex with fibrinogen than their parent proteins. The disintegrins elegantin and albolabrin, which share approx. 60% overall amino-acid-sequence similarity with kistrin but have different residues around the RGD tripeptide, exhibited different antagonistic preferences. Elegantin inhibited platelet adhesion to immobilized vWF and fibronectin, but was significantly less effective at disrupting adhesion to fibrinogen. Albolabrin selectively inhibited platelet adhesion to immobilized vWF and was less effective with fibrinogen and fibronectin as adhesive ligands. In contrast with the behaviour of these venom proteins, the adhesion of ADP-treated platelets to immobilized fibrinogen, fibronectin and vWF was inhibited non-selectively by a range of monoclonal antibodies with specificity for the alpha IIb beta 3 complex. These observations, therefore

  20. Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina

    PubMed Central

    Gay, Carolina; Sanz, Libia; Calvete, Juan J.; Pla, Davinia

    2015-01-01

    Snake species within genus Bothrops are responsible for more than 80% of the snakebites occurring in South America. The species that cause most envenomings in Argentina, B. diporus, is widely distributed throughout the country, but principally found in the Northeast, the region with the highest rates of snakebites. The venom proteome of this medically relevant snake was unveiled using a venomic approach. It comprises toxins belonging to fourteen protein families, being dominated by PI- and PIII-SVMPs, PLA2 molecules, BPP-like peptides, L-amino acid oxidase and serine proteinases. This toxin profile largely explains the characteristic pathophysiological effects of bothropic snakebites observed in patients envenomed by B. diporus. Antivenomic analysis of the SAB antivenom (Instituto Vital Brazil) against the venom of B. diporus showed that this pentabothropic antivenom efficiently recognized all the venom proteins and exhibited poor affinity towards the small peptide (BPPs and tripeptide inhibitors of PIII-SVMPs) components of the venom. PMID:26712790

  1. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.

    PubMed

    Alape-Girón, Alberto; Sanz, Libia; Escolano, José; Flores-Díaz, Marietta; Madrigal, Marvin; Sasa, Mahmood; Calvete, Juan J

    2008-08-01

    We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in

  2. Neurological complications of venomous snake bites: a review.

    PubMed

    Del Brutto, O H; Del Brutto, V J

    2012-06-01

    Snake bite envenoming is a neglected tropical disease affecting millions of people living in the developing world. According to the offending snake species, the clinical picture may be dominated by swelling and soft tissue necrosis in the bitten limb, or by systemic or neurological manifestations. Serious neurological complications, including stroke and muscle paralysis, are related to the toxic effects of the venom, which contains a complex mixture of toxins affecting the coagulation cascade, the neuromuscular transmission, or both. Metalloproteinases, serine proteases, and C-type lentins (common in viper and colubrid venoms) have anticoagulant or procoagulant activity and may be either agonists or antagonists of platelet aggregation; as a result, ischemic or hemorrhagic strokes may occur. In contrast, the venom of elapids is rich in phospholipase A(2) and three-finger proteins, which are potent neurotoxins affecting the neuromuscular transmission at either presynaptic or post-synaptic levels. Presynaptic-acting neurotoxins (called β-neurotoxins) inhibit the release of acetylcholine, while post-synaptic-acting neurotoxins (called α-neurotoxins) cause a reversible blockage of acetylcholine receptors. Proper management of the envenomed patient, including prompt transport to the hospital, correction of the hemostatic disorder, ventilatory support, and administration of antivenom, significantly reduces the risk of neurological complications which, in turn, reduce the mortality and improve the functional outcome of survivors. PMID:21999367

  3. Nucleotidase and DNase activities in Brazilian snake venoms.

    PubMed

    Sales, Paulo Bruno Valadão; Santoro, Marcelo L

    2008-01-01

    Among the myriad of enzymes present in animal venoms, nucleotidases and nucleases are poorly investigated. Herein, we studied such enzymes in 28 crude venoms of animals found in Brazil. Higher levels of ATPase, 5'-nucleotidase, ADPase, phosphodiesterase and DNase activities were observed in snake venoms belonging to Bothrops, Crotalus and Lachesis genera than to Micrurus genus. The venom of Bothrops brazili snake showed the highest nucleotidase and DNase activities, whereas that of Micrurus frontalis snake the highest alkaline phosphatase activity. On the other hand, the venoms of the snake Philodryas olfersii and the spider Loxosceles gaucho were devoid of most nucleotidase and DNase activities. Species that exhibited similar nucleotidase activities by colorimetric assays showed different banding pattern by zymography, suggesting the occurrence of structural differences among them. Hydrolysis of nucleotides showed that 1 mol of ATP is cleaved in 1 mol of pyrophosphate and 1 mol of orthophosphate, whereas 1 mol of ADP is cleaved exclusively in 2 mol of orthophosphates. Pyrophosphate is barely hydrolyzed by snake venoms. Phosphodiesterase activity was better correlated with 5'-nucleotidase, ADPase and ATPase activities than with DNase activity, evidencing that phosphodiesterases are not the main agent of DNA hydrolysis in animal venoms. The omnipresence of nucleotidase and DNase activities in viperid venoms implies a role for them within the repertoire of enzymes involved in immobilization and death of preys. PMID:17904425

  4. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.

    PubMed

    Dhananjaya, B L; Sivashankari, P R

    2015-01-01

    Snake venom is a complex mixture of biologically and pharmacologically active components, comprising hydrolytic enzymes, non-enzymatic proteins/peptides, and small amounts of organic and inorganic molecules. The venom components are known to vary with geographic location, season, species and age of the snakes. The role of the venom in the snake is not primarily for self-defense, but in prey immobilization and its subsequent digestion. Hence, several digestive enzymes in venoms, in addition to their hydrolytic activity have evolved to interfere in diverse physiological processes that help in the immobilization of prey/victim. As snake components are capable of modulating the physiological response of envenomated prey/victim, they show promise as potential pharmacological tools, as drug leads and in diagnostic applications. This, in a practical sense to be a reality has to be linked to the advances in toxinology that provide investigators with an understanding of the pharmacodynamics of toxins together with improved understanding of the etiology of many human diseases and identification of potential sites for therapeutic intervention. This review aims at providing an overview on snake venom toxins and their derivatives that have potential anti-angiogenic effects for cancer treatment. Some of the anti-angiogenic components of snake venom like Snake venom metalloproteinases (SVMPs), Disintegrins, Phospholipases A2 (PLA2), CType Lectins (CLP), Vascular Apoptosis inducing Proteins (VAP) and L-Amino Acid Oxidases (LAAO) are discussed. This review aims at giving an overall view of these molecules and their mechanism of action as an effective antiangiogenic agent towards the treatment of cancer. PMID:25714377

  5. Interrogating the Venom of the Viperid Snake Sistrurus catenatus edwardsii by a Combined Approach of Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Chapeaurouge, Alex; Reza, Md Abu; Mackessy, Stephen P.; Carvalho, Paulo C.; Valente, Richard H.; Teixeira-Ferreira, André; Perales, Jonas; Lin, Qingsong; Kini, R. Manjunatha

    2015-01-01

    The complete sequence characterization of snake venom proteins by mass spectrometry is rather challenging due to the presence of multiple isoforms from different protein families. In the present study, we investigated the tryptic digest of the venom of the viperid snake Sistrurus catenatus edwardsii by a combined approach of liquid chromatography coupled to either electrospray (online) or MALDI (offline) mass spectrometry. These different ionization techniques proved to be complementary allowing the identification a great variety of isoforms of diverse snake venom protein families, as evidenced by the detection of the corresponding unique peptides. For example, ten out of eleven predicted isoforms of serine proteinases of the venom of S. c. edwardsii were distinguished using this approach. Moreover, snake venom protein families not encountered in a previous transcriptome study of the venom gland of this snake were identified. In essence, our results support the notion that complementary ionization techniques of mass spectrometry allow for the detection of even subtle sequence differences of snake venom proteins, which is fundamental for future structure-function relationship and possible drug design studies. PMID:25955844

  6. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes

    PubMed Central

    Pahari, Susanta; Bickford, David; Fry, Bryan G; Kini, R Manjunatha

    2007-01-01

    Background Snake venom composition varies widely both among closely related species and within the same species, based on ecological variables. In terrestrial snakes, such variation has been proposed to be due to snakes' diet. Land snakes target various prey species including insects (arthropods), lizards (reptiles), frogs and toads (amphibians), birds (aves), and rodents (mammals), whereas sea snakes target a single vertebrate class (fishes) and often specialize on specific types of fish. It is therefore interesting to examine the evolution of toxins in sea snake venoms compared to that of land snakes. Results Here we describe the expression of toxin genes in the venom glands of two sea snakes, Lapemis curtus (Spine-bellied Sea Snake) and Acalyptophis peronii (Horned Sea Snake), two members of a large adaptive radiation which occupy very different ecological niches. We constructed cDNA libraries from their venom glands and sequenced 214 and 192 clones, respectively. Our data show that despite their explosive evolutionary radiation, there is very little variability in the three-finger toxin (3FTx) as well as the phospholipase A2 (PLA2) enzymes, the two main constituents of Lapemis curtus and Acalyptophis peronii venom. To understand the evolutionary trends among land snakes, sea snakes and sea kraits, pairwise genetic distances (intraspecific and interspecific) of 3FTx and PLA2 sequences were calculated. Results show that these proteins appear to be highly conserved in sea snakes in contrast to land snakes or sea kraits, despite their extremely divergent and adaptive ecological radiation. Conclusion Based on these results, we suggest that streamlining in habitat and diet in sea snakes has possibly kept their toxin genes conserved, suggesting the idea that prey composition and diet breadth may contribute to the diversity and evolution of venom components. PMID:17900344

  7. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.

    PubMed

    Bradshaw, Michael J; Saviola, Anthony J; Fesler, Elizabeth; Mackessy, Stephen P

    2014-11-19

    Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development. PMID:25407733

  8. The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)

    PubMed Central

    Pahari, Susanta; Mackessy, Stephen P; Kini, R Manjunatha

    2007-01-01

    Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among

  9. Anti-necrosis potential of polyphenols against snake venoms.

    PubMed

    Leanpolchareanchai, Jiraporn; Pithayanukul, Pimolpan; Bavovada, Rapepol

    2009-01-01

    Polyphenols from the extracts of Areca catechu L. and Quercus infectoria Oliv. inhibited phospholipase A(2), proteases, hyaluronidase and L-amino acid oxidase of Naja naja kaouthia Lesson (NK) and Calloselasma rhodostoma Kuhl (CR) venoms by in vitro tests. Both extracts inhibited the hemorrhagic activity of CR venom and the dermonecrotic activity of NK venom by in vivo tests. The inhibitory activity of plant polyphenols against local tissue necrosis induced by snake venoms may be caused by inhibition of inflammatory reactions, hemorrhage, and necrosis. The result implies the therapeutic potential of plant polyphenols against necrosis in snakebite victims. PMID:19874222

  10. Partial Purification and Characterization of Anticoagulant Factor from the Snake (Echis Carinatus) Venom

    PubMed Central

    Amrollahi Byoki, Elham; Zare Mirakabadi, Abbas

    2013-01-01

    Objective(s): Snake venoms contain complex mixture of proteins with biological activities. Some of these proteins affect blood coagulation and platelet function in different ways. Snake venom toxin may serve as a starting material for drug design to combat several pathophysiological problems such as cardiovascular disorders. In the present study, purification of anticoagulation factor from venom of snake (Echis carinatus) was studied. Materials and Methods: Anticoagulation activity of crude venom, fractions and purified peptide were determined by using prothrombin time (PT) and thrombin time (TT). Three fractions were partially purified from the venom of E. Carinatus by gel filtration on sephadex G-75 and final purification was performed by high-performance liquid chromatography (HPLC) with C18 column. A purified anticoagulant factor was derived which showed a single protein band in SDS-PAGE electrophoresis under reducing condition. Results: Results of PT and TT tests for purified peptide (EC217) were found to be 102±4.242 and < 5 min. respectively. Determination of molecular weight revealed that the active purified peptide (EC217) was about 30 KD. Conclusion: The present study showed that the venom of E. carinatus contains at least one anticoagulant factor. PMID:24494065

  11. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials.

    PubMed

    Voss, Robert S; Jansa, Sharon A

    2012-11-01

    Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A(2) myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research. PMID:22404916

  12. Venomous snakebite in Thailand. I: Medically important snakes.

    PubMed

    Chanhome, L; Cox, M J; Wilde, H; Jintakoon, P; Chaiyabutr, N; Sitprija, V

    1998-05-01

    Thailand has an abundance of venomous snakes. Among the neurotoxic family Elapidae, there are three species of the genus Naja (cobras), three of the genus Bungarus (kraits), and the king cobra of the genus Ophiophagus. Other Elapidae snakes in Thailand include sea snakes and Asian coral snakes of the genus Calliophis. They have potent venoms but rarely bite humans. Tissue and hemotoxic snakes are represented by family Viperidae, subfamilies Viperinae and Crotalinae. They remain an occupational hazard for farmers and rubber tappers, causing serious morbidity but only rare deaths, since competent treatment is now widely available throughout Thailand. Purified equine antivenin is manufactured locally for the monocled and Siamese spitting cobras (Naja kaouthia and N. siamensis), king cobra (Ophiophagus hannah), banded krait (Bungarus fasciatus), most green pit vipers (Trimeresurus sp.), Malayan pit viper (Calloselasma rhodostoma), and the Siamese Russell's viper (Daboia russelli siamensis). PMID:9597848

  13. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.

    PubMed

    Laustsen, Andreas H; Gutiérrez, José María; Lohse, Brian; Rasmussen, Arne R; Fernández, Julián; Milbo, Christina; Lomonte, Bruno

    2015-06-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cytotoxins and 53.2% neurotoxins) and phospholipases A2 (13.5%). It also contains lower proportions of components belonging to nerve growth factor, ohanin/vespryn, cysteine-rich secretory protein, C-type lectin/lectin-like, nucleotidase, phosphodiesterase, metalloproteinase, l-amino acid oxidase, cobra venom factor, and cytidyltransferase protein families. Small amounts of three nucleosides were also evidenced: adenosine, guanosine, and inosine. The most relevant lethal components, categorized by means of a 'toxicity score', were α-neurotoxins, followed by cytotoxins/cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening. PMID:25771242

  14. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review. PMID:23270323

  15. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis.

    PubMed

    Carreiro da Costa, Roberta S; Prudêncio, Luiz; Ferrari, Erika Fonseca; Souza, Gustavo H M F; de Mello, Sueli Moreira; Prianti Júnior, Antonio Carlos Guimarães; Ribeiro, Wellington; Zamunér, Stella Regina; Hyslop, Stephen; Cogo, José Carlos

    2008-07-01

    Snakes of the opisthoglyphous genus Philodryas are widespread in South America and cause most bites by colubrids in this region. In this study, we examined the neurotoxic and myotoxic effects of venom from Philodryas patagoniensis in biventer cervicis and phrenic nerve-diaphragm preparations and we compared the biochemical activities of venoms from P. patagoniensis and Philodryas olfersii. Philodryas patagoniensis venom (40 microg/mL) had no effect on mouse phrenic nerve-diaphragm preparations but caused time-dependent neuromuscular blockade of chick biventer cervicis preparations. This blockade was not reversed by washing. The highest concentration of venom tested (40 microg/mL) significantly reduced (p<0.05) the contractures to exogenous acetylcholine (55 microM and 110 microM) and K(+) (13.4 mM) after 120 min; lower concentrations of venom had no consistent or significant effect on these responses. Venom caused a concentration- and time-dependent release of creatine kinase (CK) from biventer cervicis preparations. Histological analysis showed contracted muscle fibers at low venom concentrations and myonecrosis at high concentrations. Philodryas venoms had low esterase and phospholipase A(2) but high proteolytic activities compared to the pitviper Bothrops jararaca. SDS-PAGE showed that the Philodryas venoms had similar electrophoretic profiles, with most proteins having a molecular mass of 25-80 kDa. Both of the Philodryas venoms cross-reacted with bothropic antivenom in ELISA, indicating the presence of proteins immunologically related to Bothrops venoms. RP-HPLC of P. patagoniensis venom yielded four major peaks, each of which contained several proteins, as shown by SDS-PAGE. These results indicate that P. patagoniensis venom has neurotoxic and myotoxic components that may contribute to the effects of envenoming by this species. PMID:18455482

  16. Detection of Snake Venom in Post-Antivenom Samples by Dissociation Treatment Followed by Enzyme Immunoassay.

    PubMed

    Maduwage, Kalana P; O'Leary, Margaret A; Silva, Anjana; Isbister, Geoffrey K

    2016-01-01

    Venom detection is crucial for confirmation of envenomation and snake type in snake-bite patients. Enzyme immunoassay (EIA) is used to detect venom, but antivenom in samples prevents venom detection. We aimed to detect snake venom in post-antivenom samples after dissociating venom-antivenom complexes with glycine-HCl (pH 2.2) and heating for 30 min at 950 °C. Serum samples underwent dissociation treatment and then Russell's viper venom or Australian elapid venom measured by EIA. In confirmed Russell's viper bites with venom detected pre-antivenom (positive controls), no venom was detected in untreated post-antivenom samples, but was after dissociation treatment. In 104 non-envenomed patients (negative controls), no venom was detected after dissociation treatment. In suspected Russell's viper bites, ten patients with no pre-antivenom samples had venom detected in post-antivenom samples after dissociation treatment. In 20 patients with no venom detected pre-antivenom, 13 had venom detected post-antivenom after dissociation treatment. In another 85 suspected Russell's viper bites with no venom detected pre-antivenom, 50 had venom detected after dissociation treatment. Dissociation treatment was also successful for Australian snake envenomation including taipan, mulga, tiger snake and brown snake. Snake venom can be detected by EIA in post-antivenom samples after dissociation treatment allowing confirmation of diagnosis of envenomation post-antivenom. PMID:27136587

  17. Detection of Snake Venom in Post-Antivenom Samples by Dissociation Treatment Followed by Enzyme Immunoassay

    PubMed Central

    Maduwage, Kalana P.; O’Leary, Margaret A.; Silva, Anjana; Isbister, Geoffrey K.

    2016-01-01

    Venom detection is crucial for confirmation of envenomation and snake type in snake-bite patients. Enzyme immunoassay (EIA) is used to detect venom, but antivenom in samples prevents venom detection. We aimed to detect snake venom in post-antivenom samples after dissociating venom-antivenom complexes with glycine-HCl (pH 2.2) and heating for 30 min at 950 °C. Serum samples underwent dissociation treatment and then Russell’s viper venom or Australian elapid venom measured by EIA. In confirmed Russell’s viper bites with venom detected pre-antivenom (positive controls), no venom was detected in untreated post-antivenom samples, but was after dissociation treatment. In 104 non-envenomed patients (negative controls), no venom was detected after dissociation treatment. In suspected Russell’s viper bites, ten patients with no pre-antivenom samples had venom detected in post-antivenom samples after dissociation treatment. In 20 patients with no venom detected pre-antivenom, 13 had venom detected post-antivenom after dissociation treatment. In another 85 suspected Russell’s viper bites with no venom detected pre-antivenom, 50 had venom detected after dissociation treatment. Dissociation treatment was also successful for Australian snake envenomation including taipan, mulga, tiger snake and brown snake. Snake venom can be detected by EIA in post-antivenom samples after dissociation treatment allowing confirmation of diagnosis of envenomation post-antivenom. PMID:27136587

  18. Animal experimentation in snake venom research and in vitro alternatives.

    PubMed

    Sells, Paula G

    2003-08-01

    Current experimental techniques used in snake venom research (with and without the use of animals) are reviewed. The emphasis is on the reduction of the use of animals in the development of antivenoms for the clinical treatment of snakebite. Diagnostic and research techniques for the major pathologies of envenoming are described and those using animals are contrasted with non-sentient methods where possible. In particular, LD50 and ED50 assays using animals (in vivo) and fertilised eggs (in vivo, non-sentient) are compared as well as in vitro procedures (ELISA and haemolytic test) for ED50 estimations. The social context of antivenom production, supply and demand is outlined together with the consequent tension between the benefits derived and the increase in opposition to experiments on animals. Stringent regulations governing the use of animals, limited research funds and public pressure all focus the need for progress towards non-animal, or non-sentient, research methods. Some achievements are noted but success is hampered by lack of detailed knowledge of the many constituents of venom which have to be assessed as a whole rather than individually. The only way to evaluate the net pathological effect of venom is to use a living system, usually a rodent, and similarly, the efficacy of antivenoms is also measured in vivo. The pre-clinical testing of antivenoms in animals is therefore a legal requirement in many countries and is strictly monitored by government authorities. New technologies applied to the characterisation of individual venom proteins should enable novel in vitro assays to be designed thus reducing the number of animals required. In the meantime, the principles of Reduce, Refine and Replace relating to animals in research are increasingly endorsed by those working in the field and the many agencies regulating ethical and research policy. PMID:12906883

  19. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  20. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism.

    PubMed

    Kumar, Ashish; Gupta, Chitra; Nair, Deepak T; Salunke, Dinakar M

    2016-05-20

    Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism. PMID:26987900

  1. Why myotoxin-containing snake venoms possess powerful nucleotidases?

    PubMed

    Caccin, Paola; Pellegatti, Patrizia; Fernandez, Julián; Vono, Maria; Cintra-Francischinelli, Mariana; Lomonte, Bruno; Gutiérrez, José María; Di Virgilio, Francesco; Montecucco, Cesare

    2013-01-25

    The venom of the snake Bothrops asper causes muscle necrosis, pain and inflammation. This venom contains myotoxins which cause an increase in intracellular Ca(2+) concentration and release of K(+) and ATP from myotubes. ATP is a key danger molecule that triggers a variety of reactions, including activation of the innate immune response. Here, using ATP-luciferase bioluminescence imaging technique, we show for the first time in vivo, that the purified myotoxins induce rapid release of ATP, whilst the complete venom of B. asper does at a very small extent. This apparent contradiction is explained by the finding that the venom contains powerful nucleotidases that in vivo convert ATP into ADP, AMP and Adenosine. These findings indicate that high concentrations of adenosine are generated by the double action of the venom and provide the experimental basis to the suggestion that in situ generated adenosine plays an important role in envenomation via its hypotensive, paralyzing and anti-coagulant activities. PMID:23261426

  2. Snake venomics: from the inventory of toxins to biology.

    PubMed

    Calvete, Juan J

    2013-12-01

    A deep understanding of the composition of venoms and of the principles governing the evolution of venomous systems is of applied importance for exploring the enormous potential of venoms as sources of chemical and pharmacological novelty but also to fight the dire consequences of snakebite envenomings. This goal is now within the reach of "omic" technologies. A central thesis developed in this essay is the view that making sense of the huge inventory of data gathered through "omic" approaches requires the integration of this information across the biological system. Key to this is the identification of evolutionary and ecological trends; without the evolutionary link, systems venomics is relegated to a set of miscellaneous facts. The interplay between chance and adaptation plays a central role in the evolution of biological systems (Monod, 1970). However, the evolution of venomous species and their venoms do not always follow the same course, and the identification of structural and functional convergences and divergences among venoms is often unpredictable by a phylogenetic hypothesis. Toxins sharing a structural fold present in venoms from phylogenetically distant snakes often share antigenic determinants. The deficit of antivenom supply in certain regions of the world can be mitigated in part through the optimized use of existing antivenoms, and through the design of novel broad-range polyspecific antivenoms. Proteomics-guided identification of evolutionary and immunoreactivity trends among homologous and heterologous venoms may aid in the replacement of the traditional geographic- and phylogenetic-driven hypotheses for antivenom production strategies by a more rationale approach based on a hypothesis-driven systems venomics approach. Selected applications of venomics and antivenomics for exploring the chemical space and immunological profile of venoms will illustrate the author's views on the impact these proteomics tools may have in the field of toxinology

  3. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms

    PubMed Central

    Rokyta, Darin R.; Margres, Mark J.; Calvin, Kate

    2015-01-01

    Protein expression is a major link in the genotype–phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms. PMID:26358130

  4. Acute kidney injury caused by bothrops snake venom.

    PubMed

    Rodrigues Sgrignolli, Lívia; Florido Mendes, Glória Elisa; Carlos, Carla Patricia; Burdmann, Emmanuel A

    2011-01-01

    Medically important venomous snakes in Latin America belong to the genus Bothrops, Crotalus, Lachesis and Micrurus. The Bothrops genus is responsible for the majority of accidents. The WHO globally estimates 2,500,000 poisonous snakebites and 125,000 deaths annually. In its last report in 2001, the Brazilian Ministry of Health accounted 359 deaths due to snakebites, of which the Bothrops genus was responsible for 185. Snake venoms cause local and systemic damage, including acute kidney injury, which is the most important cause of death among patients surviving the early effects of envenoming by the Crotalus and Bothrops genuses. Venom-induced acute kidney injury is a frequent complication of Bothrops snakebite, carrying relevant morbidity and mortality. PMID:21757950

  5. Comparative analysis of the venom proteome of four important Malaysian snake species

    PubMed Central

    2014-01-01

    Background Naja kaouthia, Ophiophagus hannah, Bungarus fasciatus and Calloselasma rhodostoma are four venomous snakes indigenous to Malaysia. In the present study, their proteomic profile by two-dimensional gel electrophoresis (2-DE) have been separated and compared. Results The 2-DE of venoms of the four species snake demonstrated complexity and obvious interspecies differences in proteome profiles. A total of 63 proteins were identified in the four species: C. rhodostoma – 26, N. kaouthia – 16, O. hannah – 15 and B. fasciatus – 6. Conclusions Despite the identifications of major proteins in the four snake species, a large number of protein spots from the 2-DE were unidentified even though the spots displayed high-quality MALDI-TOF-MS spectra. Those identified included phospholipase A2 proteins in all four venoms, long neurotoxins in both cobra species and the C. rhodostoma venom found with the most varied types of peptidases, i.e. metalloproteinase kistomin, halystase and L-amino acid oxidase. PMID:24593956

  6. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite.

    PubMed

    Peichoto, María E; Tavares, Flávio L; Dekrey, Gregory; Mackessy, Stephen P

    2011-07-01

    Leishmania parasites of several species cause cutaneous and visceral disease to millions of people worldwide, and treatment for this vector-borne protozoan parasite typically involves administration of highly toxic antimonial drugs. Snake venoms are one of the most concentrated enzyme sources in nature, displaying a broad range of biological effects, and several drugs now used in humans were derived from venoms. In this study, we compared the effects of the venoms of the South American rear-fanged snakes Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV), and the North American rear-fanged snakes Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV), on the growth of Leishmania major, a causative agent of cutaneous leishmaniasis. Different concentrations of each venom were incubated with the log-phase promastigote stage of L. major. TblV showed significant anti-leishmanial activity (IC₅₀ of 108.6 μg/mL) at its highest concentrations; however, it induced parasite proliferation at intermediate concentrations. PpV was not very active in decreasing the parasitic growth, and a high final concentration (1.7 mg/mL) was necessary to inhibit proliferation by only 51.5% ± 3.6%. PbV, PooV and HttV, at final concentrations of 562, 524 and 438 μg/mL respectively, had no significant effect on L. major growth. The phospholipase A₂ of TblV (trimorphin) was isolated and assayed as for crude venom, and it also exhibited dose-dependent biphasic effects on the parasite culture, with potent cytotoxicity at higher concentrations (IC₅₀ of 0.25 μM; 3.6 μg/mL) and stimulation of proliferation at very low concentrations. Anti-leishmanial activity of TblV appears to be solely due to the action of trimorphin. This is the first report of anti-leishmanial activity of rear-fanged snake venoms, and these results suggest novel possibilities for discovering new protein-based drugs that might be used as possible agents

  7. Snake venom galactoside-binding lectins: a structural and functional overview.

    PubMed

    Sartim, Marco A; Sampaio, Suely V

    2015-01-01

    Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications. PMID:26413085

  8. Snake venom toxin from Vipera lebetina turanica sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins.

    PubMed

    Park, Mi Hee; Jo, Miran; Won, Dohee; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2012-12-01

    We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals. PMID:23007278

  9. Disintegrins from Snake Venoms and their Applications in Cancer 
Research and Therapy

    PubMed Central

    Macêdo, Jéssica Kele Arruda; Fox, Jay W.; Castro, Mariana de Souza

    2015-01-01

    Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability. PMID:26031306

  10. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom.

    PubMed

    Gutiérrez, José María; Escalante, Teresa; Rucavado, Alexandra

    2009-12-01

    Moderate and severe envenomations by the snake Bothrops asper provoke systemic alterations, such as systemic bleeding, coagulopathy, hypovolemia, hemodynamic instability and shock, and acute renal failure. Systemic hemorrhage is a typical finding of these envenomations, and is primarily caused by the action of P-III snake venom metalloproteinases (SVMPs). This venom also contains a thrombin-like serine proteinase and a prothrombin-activating P-III SVMP, both of which cause defibrin(ogen)ation. Thrombocytopenia, predominantly induced by a C-type lectin-like protein, and platelet hypoaggregation, caused by the two defibrin(ogen)ating enzymes, also contribute to hemostatic disturbances, which potentiate the systemic bleeding induced by hemorrhagic SVMPs. Cardiovascular disturbances leading to shock are due to the combined effects of hemorrhagic toxins, other venom components that increase vascular permeability, the action of hypotensive agents in the venom and of endogenous mediators, and the potential cardiotoxic effect of some toxins. Renal alterations are likely to be caused by direct cytotoxicity of venom components in the kidney, and by renal ischemia resultant from hypovolemia and hypoperfusion. Lethality induced by B. asper venom is the consequence of several combined effects among which the action of P-III SVMPs is especially relevant. PMID:19303034

  11. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species. PMID:25313278

  12. [Cytotoxicity induced by Peruvian snake venom on fibroblasts of mice].

    PubMed

    Goñi, M; Vaisberg, A; Zavaleta, A

    1992-04-01

    The cytotoxic effect of venoms from six crotalinae Peruvian snakes (Bothrops atrox; B. brazili; B. pictus; B. barnetti; Lachesis m. muta y Crotalus durissus terrificus) was studied in an in vitro system of BALB/c 3T3 fibroblasts grown in Dulbecco modified minimal essential medium at 37 degrees C in a humidified atmosphere of 5% CO2-95% air. The viability of the cells was evaluated 24 hours after the treatment with the different venoms, using the method of exclusion of trypan blue. The six venoms produced cytotoxic effects at 24 hours on the 3T3 fibroblasts. The venom from B. atrox was the most potent (DE50 = 162 ng/ml) and that from B. barnetti the least (DE50 = 7182 ng/ml). PMID:1297169

  13. Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper.

    PubMed

    Angulo, Yamileth; Lomonte, Bruno

    2009-12-01

    The isolation and study of individual snake venom components paves the way for a deeper understanding of the pathophysiology of envenomings--thus potentially contributing to improved therapeutic modalities in the clinical setting--and also opens possibilities for the discovery of novel toxins that might be useful as tools for dissecting cellular and molecular processes of biomedical importance. This review provides a summary of the different toxins that have been isolated and characterized from the venom of Bothrops asper, the snake species causing the majority of human envenomings in Central America. This venom contains proteins belonging to at least eight families: metalloproteinase, serine proteinase, C-type lectin-like, L-amino acid oxidase, disintegrin, DC-fragment, cystein-rich secretory protein, and phospholipase A(2). Some 25 venom proteins within these families have been isolated and characterized. Their main biochemical properties and toxic actions are described, including, in some cases, their possible relationships to the pathologic effects induced by B. asper venom. PMID:19111755

  14. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches.

    PubMed

    Gutiérrez, José María; Sanz, Libia; Flores-Díaz, Marietta; Figueroa, Lucía; Madrigal, Marvin; Herrera, María; Villalta, Mauren; León, Guillermo; Estrada, Ricardo; Borges, Adolfo; Alape-Girón, Alberto; Calvete, Juan J

    2010-01-01

    Intraspecific snake venom variations have implications in the preparation of venom pools for the generation of antivenoms. The impact of such variation in the cross-reactivity of antivenoms against Bothrops asper venom was assessed by comparing two commercial and four experimental antivenoms. All antivenoms showed similar immunorecognition pattern toward the venoms from adult and neonate specimens. They completely immunodepleted most P-III snake venom metalloproteinases (SVMPs), l-amino acid oxidases, serine proteinases, DC fragments, cysteine-rich secretory proteins (CRISPs), and C-type lectin-like proteins, and partially immunodepleted medium-sized disintegrins, phospholipases A(2) (PLA(2)s), some serine proteinases, and P-I SVMPs. Although all antivenoms abrogated the lethal, hemorrhagic, coagulant, proteinase, and PLA(2) venoms activities, monospecific experimental antivenoms were more effective than the polyspecific experimental antivenom. In addition, the commercial antivenoms, produced in horses subjected to repeated immunization cycles, showed higher neutralization than experimental polyspecific antivenom, produced by a single round of immunization. Overall, a conspicuous pattern of cross-neutralization was evident for all effects by all antivenoms, and monospecific antivenoms raised against venom from the Caribbean population were effective against venom from the Pacific population, indicating that geographic variations in venom proteomes of B. asper from Costa Rica do not result in overt variations in immunological cross-reactivity between antivenoms. PMID:19911849

  15. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).

    PubMed

    Urra, Félix A; Pulgar, Rodrigo; Gutiérrez, Ricardo; Hodar, Christian; Cambiazo, Verónica; Labra, Antonieta

    2015-12-15

    Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis. PMID:26410112

  16. Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.

    PubMed

    Weinstein, Scott A

    2015-09-01

    The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition. PMID:26166305

  17. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Nunes, E. S.; Souza, M. A. A.; Vaz, A. F. M.; Coelho, L. C. B. B.; Aguiar, J. S.; Silva, T. G.; Guarnieri, M. C.; Melo, A. M. M. A.; Oliva, M. L. V.; Correia, M. T. S.

    2012-04-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action.

  18. Reversible posterior leukoencephalopathy in a venomous snake (Bothrops asper) bite victim.

    PubMed

    Delgado, Miguel E; Del Brutto, Oscar H

    2012-03-01

    An 18-year-old man developed posterior reversible leukoencephalopaty after being bitten by a venomous snake (Bothrops asper). It is possible that this previously unrecognized neurological complication of snake bite envenoming occurred as the result of endothelial dysfunction induced by the venom of the offending snake. This pathogenetic mechanism has also been implicated as the cause of cerebral infarctions in snake bite victims. Alternatively, the leukoencephalopathy might have been a complication of antivenom therapy. PMID:22403325

  19. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  20. Screening of Bothrops snake venoms for L-amino acid oxidase activity.

    PubMed

    Pessatti, M; Fontana, J D; Furtado, M F; Guimãraes, M F; Zanette, L R; Costa, W T; Baron, M

    1995-01-01

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use of biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom. PMID:7668847

  1. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry

    PubMed Central

    Izidoro, Luiz Fernando M.; Sobrinho, Juliana C.; Mendes, Mirian M.; Costa, Tássia R.; Grabner, Amy N.; Rodrigues, Veridiana M.; da Silva, Saulo L.; Zanchi, Fernando B.; Zuliani, Juliana P.; Fernandes, Carla F. C.; Calderon, Leonardo A.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2014-01-01

    L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far. PMID:24738050

  2. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    PubMed

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts. PMID:23506358

  3. Novel apigenin based small molecule that targets snake venom metalloproteases.

    PubMed

    Srinivasa, Venkatachalaiah; Sundaram, Mahalingam S; Anusha, Sebastian; Hemshekhar, Mahadevappa; Chandra Nayaka, Siddaiah; Kemparaju, Kempaiah; Basappa; Girish, Kesturu S; Rangappa, Kanchugarakoppal S

    2014-01-01

    The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management. PMID:25184206

  4. Novel Apigenin Based Small Molecule that Targets Snake Venom Metalloproteases

    PubMed Central

    Anusha, Sebastian; Hemshekhar, Mahadevappa; Chandra Nayaka, Siddaiah; Kemparaju, Kempaiah; Basappa; Girish, Kesturu S.; Rangappa, Kanchugarakoppal S.

    2014-01-01

    The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management. PMID:25184206

  5. Neutralization of two North American coral snake venoms with United States and Mexican antivenoms.

    PubMed

    Sánchez, Elda E; Lopez-Johnston, Juan C; Rodríguez-Acosta, Alexis; Pérez, John C

    2008-02-01

    Elapid snakes throughout the world are considered very lethal, containing neurotoxic venoms that affect the nervous system. When humans are envenomated it is considered a serious medical emergency, and antivenom is the main form of treatment considered, in spite of the fact that some patients may only survive under intensive therapy treatment such as respiratory support. Coral snakes are part of the family Elapidae and envenomations by these snakes are very low (<2% of total snakebites) in most countries from southeastern United States to Argentina. In the United States, there are only two species of coral snakes of medical importance that belong to the Micrurus genera: Micrurus fulvius fulvius (Eastern coral snake) and Micrurus tener tener (Texas coral snake). In 2006, Wyeth pharmaceutical notified customers that the production of the North American coral snake antivenin (NACSA) in the US was discontinued and adequate supplies were available to meet historical needs through the end of October 2008; and therefore, it is of utmost important to consider other antivenoms as alternatives for the treatment of coral snake envenoming. One logical alternative is the coral snake antivenom, Coralmyn, produced by the Mexican company, Bioclon. In order to compare neutralization between NACSA and Coralmyn antivenoms with the North American coral snake venoms, the venom lethal doses (LD(50)) and antivenom effective doses (ED(50)) were determined in 18-20 g, female, BALB/c mice. Additionally, venom comparisons were determined through a non-reduced SDS-PAGE for M.f.fulvius, M.t.tener and the Mexican coral snake venom, Micrurus nigrocinctus nigrocinctus. Coralmyn antivenom was able to effectively neutralize three LD(50) doses of all venom from both M.t.tener and M.f.fulvius, while Wyeth antivenom only neutralized M.f.fulvius venom and was not effective in neutralizing three LD(50) doses of M.t.tener venom. Coralmyn is effective in the neutralization of both clinically important

  6. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    PubMed

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-01

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification. PMID:27297130

  7. Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells.

    PubMed

    Araki, S; Ishida, T; Yamamoto, T; Kaji, K; Hayashi, H

    1993-01-15

    Vascular degeneration appears to play crucial roles in producing many vascular malfunctions (1-3). In order to identify specific inducers of programmed death in vascular endothelial cells (VEC), examinations were made of the effects of substances that are known to affect the vascular system by using VEC in culture (4,5). We found that hemorrhagic snake venoms induced apoptotic cell death or programmed cell death of VEC. By contrast, neurotoxic snake venoms did not induce programmed cell death but caused necrosis at much higher doses of the venoms. No effect of hemorrhagic venom was observed with many types of cultured cells other than VEC. Thus, hemorrhagic snake venom appears to be a useful tool for studies of the molecular mechanisms of vascular apoptosis. The results also suggest a possible mechanism of action of hemorrhagic snake venom on the vascular system. PMID:8422240

  8. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi

    PubMed Central

    Campos, Pollyanna Fernandes; Andrade-Silva, Débora; Zelanis, André; Paes Leme, Adriana Franco; Rocha, Marisa Maria Teixeira; Menezes, Milene Cristina; Serrano, Solange M.T.; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2016-01-01

    Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution. PMID:27412610

  9. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi.

    PubMed

    Campos, Pollyanna Fernandes; Andrade-Silva, Débora; Zelanis, André; Paes Leme, Adriana Franco; Rocha, Marisa Maria Teixeira; Menezes, Milene Cristina; Serrano, Solange M T; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2016-01-01

    Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution. PMID:27412610

  10. Purification and functional characterization of a new metalloproteinase (BleucMP) from Bothrops leucurus snake venom.

    PubMed

    Gomes, Mário Sérgio R; de Queiroz, Mayara R; Mamede, Carla C N; Mendes, Mirian M; Hamaguchi, Amélia; Homsi-Brandeburgo, Maria I; Sousa, Marcelo V; Aquino, Elaine Nascimento; Castro, Mariana S; de Oliveira, Fábio; Rodrigues, Veridiana M

    2011-04-01

    A fibrino(geno)lytic nonhemorrhagic metalloproteinase (BleucMP) was purified from Bothrops leucurus snake venom by two chromatographic steps procedure on DEAE-Sephadex A-25 followed by CM-Sepharose Fast Flow column. BleucMP represented 1.75% (w/w) of the crude venom and was homogeneous on SDS-PAGE. BleucMP analyzed by MALDI TOF/TOF, showed a molecular mass of 23,057.54Da and when alkylated and reduced, the mass is 23,830.40Da. Their peptides analyzed in MS (MALDI TOF\\TOF) showed significant score when compared with those of other proteins by NCBI-BLAST2 alignment display. As regards their proteolytic activities, BleucMP efficiently acted on fibrinogen, fibrin, and was inhibited by EDTA and 1.10-phenanthroline. This enzyme was also able to decrease significantly the plasma fibrinogen level provoking blood incoagulability, however was devoid of hemorrhagic activity when tested in the mice skin and did not induce relevant biochemical, hematological and histopathological alterations in mice. The aspects addressed in this paper provide data on the effect of BleucMP in envenomation from B. leucurus snakes in order to better understand the effects caused by snake venom metalloproteinase. PMID:21130897

  11. Osteopontin, a chemotactic protein with cytokine-like properties, is up-regulated in muscle injury caused by Bothrops lanceolatus (fer-de-lance) snake venom.

    PubMed

    Barbosa-Souza, Valéria; Contin, Daniel Kiss; Filho, Waldemar Bonventi; de Araújo, Albetiza Lôbo; Irazusta, Silvia Pierre; da Cruz-Höfling, Maria Alice

    2011-10-01

    Osteopontin (OPN) is a chemotactic, adhesive protein whose receptors include some integrins and matrix proteins known to have role in inflammatory and repair processes. We examined the time course of OPN expression at acute and chronic stages after intramuscular injection of Bothrops lanceolatus venom in rats. Additionally, we examined the expression of CD68 (a marker for phagocytic macrophages) and the myogenic factors, myoD and myogenin. There was a biphasic upregulation of OPN (6-48 h and 3-14 days post-venom), i.e., during acute inflammation and myogenic cell proliferation and differentiation phases. OPN was detected in CD68 + macrophages, fibroblasts, normal and damaged myofibers, myoblasts and myotubes. Myogenin was expressed in the cytoplasm (atypical pattern) and nucleus of myoblasts and myotubes from 18 h to 7 days, after which it was expressed only in nuclei. Macrophage numbers, OPN and myogenin expression were still elevated at 7, 14 and 7 days. At 3 days, when OPN achieved the peak, some clusters of myoblasts were within regions of intense collagen deposition. Fibrosis may represent limitation for repairing processes and may explain the small diameter of regenerated fibers at 21 days post-venom. The expression of OPN in the course of venom-induced damage and regeneration suggests stages-specific mediation role along the whole process. PMID:21839764

  12. The integrin alpha IIb beta 3 contains distinct and interacting binding sites for snake-venom RGD (Arg-Gly-Asp) proteins. Evidence that the receptor-binding characteristics of snake-venom RGD proteins are related to the amino acid environment flanking the sequence RGD.

    PubMed Central

    Rahman, S; Lu, X; Kakkar, V V; Authi, K S

    1995-01-01

    We have previously demonstrated [Lu, Williams, Deadman, Salmon, Kakkar, Wilkinson, Baruch, Authi and Rahman (1994) Biochem. J. 304, 929-936] the preferential antagonism of the interactions of the integrin alpha IIb beta 3 on activated platelets with three immobilized glycoprotein ligands (fibrinogen, fibronectin and von Willebrand factor) by a selected panel of snake-venom RGD (Arg-Gly-Asp)-containing proteins including the disintegrins kistrin and elegantin, and the neurotoxin variant dendroaspin. Kistrin and dendroaspin, although structurally unrelated, contain similar amino acids flanking the tripeptide RGD and behaved as identical antagonists preferentially inhibiting platelet adhesion to immobilized fibrinogen as opposed to fibronectin. In contrast, elegantin, which shares extensive sequence similarity with kistrin but has different amino acids around the tripeptide RGD, preferentially inhibited platelet adhesion to immobilized fibronectin as opposed to fibrinogen. To develop further insights into the mechanisms underlying the preferential antagonism shown by the venom proteins in the adhesion studies, we, in the present study, sought to determine the binding properties of kistrin, elegantin and dendroaspin to the alpha IIb beta 3 complex by radioligand kinetic and competition studies. In direct binding experiments, both kistrin and dendroaspin were observed to bind to a single class of binding site on ADP-activated platelets with apparent equilibrium dissociation constant (Kdapp) values of 42 +/- 2 nM and 21 +/- 6 nM respectively. In competition studies, dendroaspin blocked the binding of 125I-labelled kistrin to ADP-activated platelets in a simple competitive manner, with an apparent equilibrium inhibition constant (Kiapp) of 143 +/- 14 nM, from which an indirect Kdapp = 22 nM for dendroaspin was determined. This result suggests that kistrin and dendroaspin bind to the same site on the integrin alpha IIb beta 3 consistent with their similar inhibitory

  13. Diversification rates and phenotypic evolution in venomous snakes (Elapidae).

    PubMed

    Lee, Michael S Y; Sanders, Kate L; King, Benedict; Palci, Alessandro

    2016-01-01

    The relationship between rates of diversification and of body size change (a common proxy for phenotypic evolution) was investigated across Elapidae, the largest radiation of highly venomous snakes. Time-calibrated phylogenetic trees for 175 species of elapids (more than 50% of known taxa) were constructed using seven mitochondrial and nuclear genes. Analyses using these trees revealed no evidence for a link between speciation rates and changes in body size. Two clades (Hydrophis, Micrurus) show anomalously high rates of diversification within Elapidae, yet exhibit rates of body size evolution almost identical to the general elapid 'background' rate. Although correlations between speciation rates and rates of body size change exist in certain groups (e.g. ray-finned fishes, passerine birds), the two processes appear to be uncoupled in elapid snakes. There is also no detectable shift in diversification dynamics associated with the colonization of Australasia, which is surprising given that elapids appear to be the first clade of venomous snakes to reach the continent. PMID:26909162

  14. Diversification rates and phenotypic evolution in venomous snakes (Elapidae)

    PubMed Central

    Lee, Michael S. Y.; Sanders, Kate L.; King, Benedict; Palci, Alessandro

    2016-01-01

    The relationship between rates of diversification and of body size change (a common proxy for phenotypic evolution) was investigated across Elapidae, the largest radiation of highly venomous snakes. Time-calibrated phylogenetic trees for 175 species of elapids (more than 50% of known taxa) were constructed using seven mitochondrial and nuclear genes. Analyses using these trees revealed no evidence for a link between speciation rates and changes in body size. Two clades (Hydrophis, Micrurus) show anomalously high rates of diversification within Elapidae, yet exhibit rates of body size evolution almost identical to the general elapid ‘background’ rate. Although correlations between speciation rates and rates of body size change exist in certain groups (e.g. ray-finned fishes, passerine birds), the two processes appear to be uncoupled in elapid snakes. There is also no detectable shift in diversification dynamics associated with the colonization of Australasia, which is surprising given that elapids appear to be the first clade of venomous snakes to reach the continent. PMID:26909162

  15. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  16. Venom-Related Transcripts from Bothrops jararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom

    PubMed Central

    Junqueira-de-Azevedo, Inácio L.M.; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R.

    2015-01-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  17. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli.

    PubMed

    Jia, Ying; Pérez, John C

    2009-07-01

    Parvalbumins (PV) are small, acidic, water soluble and calcium-binding proteins generally present in muscular and nervous tissues. In the present study, we identified and characterized a cDNA clone encoding PV, named AplPV, from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. AplPV belongs to EF-hand proteins with six alpha-helices constituting three EF-hand domains. The deduced amino acid sequence of AplPV is 91% and 68% identical to the previously characterized PVs of Boa constrictor and Cyprinus carpio, respectively. The full-length cDNA was subcloned into the expression vector pGEX and transformed into Escherichia coli (E.coli) to produce recombinant protein. The bacterially expressed GST-AplPV fusion protein was highly expressed, and effectively purified by Glutathione-Sepharose affinity chromatography. A high concentration of thrombin protease specifically cleaved and removed the GST tag from fusion protein, and further purified by Benzamidine column for removal of thrombin protease. As a result, the 12 kDa AplPV recombinant protein alone was purified. To investigate the tissue-specific biological occurrence of AplPV, a polyclonal antibody (anti-AplPV-antibody) was raised against GST-AplPV fusion protein in rabbit. Western blot analysis revealed that immunoreactive bands were exhibited in both recombinant protein and samples of venom glands, but not in any crude venom. This specific occurrence indicates a specialized function of AplPV in snake venom glands. PMID:19275943

  18. Synthetic RGD peptides derived from the adhesive domains of snake-venom proteins: evaluation as inhibitors of platelet aggregation.

    PubMed Central

    Lu, X; Deadman, J J; Williams, J A; Kakkar, V V; Rahman, S

    1993-01-01

    Synthetic peptides based on the RGD domains of the potent platelet aggregation inhibitors kistrin and dendroaspin were generated. The 13-amino-acid peptides were synthesized as dicysteinyl linear and disulphide cyclic forms. In platelet-aggregation studies, the cyclic peptides showed 3-fold better inhibition than their linear equivalents and approx. 100-fold greater potency than synthetic linear RGDS peptides derived from fibronectin. An amino acid substitution, Asp10-->Ala, in the kistrin-based peptide gave a 4-fold decrease in potency in the linear peptide, but produced a 2-fold elevation in the inhibitory activity of the cyclic form, generating a peptide of potency comparable with that of the parent protein. PMID:8250845

  19. Bioactive proteins from stonefish venom.

    PubMed

    Khoo, Hoon Eng

    2002-09-01

    1. Of all the venomous fish known, the stonefish is one of the most commonly encountered by man. Studies on its venom started in the 1950s, but little work was performed after that until several groups revived interest in the venom in the 1980s after easier accessibility to the fish. 2. Stonefish venom is a mixture of proteins, containing several enzymes, including hyaluronidase of high specific activity. A purified stonefish hyaluronidase has been characterized. 3. Several of the effects of the crude venom have been isolated to a protein lethal factor that has cytolytic, neurotoxic and hypotensive activity. This protein is stonustoxin from Synanceja horrida, trachynilysin from Synanceja trachynis and verrucotoxin from Synanceja verrucosa. 4. The biochemical properties and activities of these protein lethal factors are reviewed. PMID:12165046

  20. Partial in vitro analysis of toxic and antigenic activities of eleven Peruvian pitviper snake venoms.

    PubMed

    Guerra-Duarte, C; Lopes-Peixoto, J; Fonseca-de-Souza, B R; Stransky, S; Oliveira, D; Schneider, F S; Lopes-de-Souza, L; Bonilla, C; Silva, W; Tintaya, B; Yarleque, A; Chávez-Olórtegui, C

    2015-12-15

    This work used eleven Peruvian snake venoms (Bothrops andianus, Bothrops atrox, Bothrops barnetti, Bothrops castelnaudi, Bothriopsis chloromelas, Bothrocophias microphthalmus, Bothrops neuwiedi, Bothriopsis oligolepis, Bothriopsis peruviana, Bothrops pictus and Bothriopsis taeniata) to perform in vitro experimentation and determine its main characteristics. Hyaluronidase (HYAL), phospholipase A2 (PLA2), snake venom metalloproteinase (SVMP), snake venom serine protease (SVSP) and L-amino acid oxidase (LAAO) activities; toxicity by cell viability assays using MGSO3, VERO and HeLa cell lineages; and crossed immunoreactivity with Peruvian (PAV) and Brazilian (BAV) antibothropic polyvalent antivenoms, through ELISA and Western Blotting assays, were determined. Results show that the activities tested in this study were not similar amongst the venoms and each species present their own peculiarities, highlighting the diversity within Bothrops complex. All venoms were capable of reducing cell viability of all tested lineages. It was also demonstrated the crossed recognition of all tested venoms by both antivenoms. PMID:26365916

  1. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    PubMed

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation. PMID:22817464

  2. Tissue Levels of Substance P Associated with Experimental Snake Venom Poisoning

    PubMed Central

    Tiru-Chelvam, R.

    1973-01-01

    This investigation was suggested by gross similarities between the pathophysiological features of Substance P (SP) administration and snake venom poisoning in mammals. Using standard procedures for the extraction, purification and bioassay of SP, levels of SP were measured both in vivo and in vitro before and after treatment of the preparations with venom. There was a consistent depletion of SP in the tissues studied following snake envenomation. The significance of this finding is discussed in the context of the mechanisms of action of snake venom. PMID:4758382

  3. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution

    PubMed Central

    Barlow, Axel; Pook, Catharine E.; Harrison, Robert A.; Wüster, Wolfgang

    2009-01-01

    The processes that drive the evolution of snake venom variability, particularly the role of diet, have been a topic of intense recent research interest. Here, we test whether extensive variation in venom composition in the medically important viper genus Echis is associated with shifts in diet. Examination of stomach and hindgut contents revealed extreme variation between the major clades of Echis in the proportion of arthropod prey consumed. The toxicity (median lethal dose, LD50) of representative Echis venoms to a natural scorpion prey species was found to be strongly associated with the degree of arthropod feeding. Mapping the results onto a novel Echis phylogeny generated from nuclear and mitochondrial sequence data revealed two independent instances of coevolution of venom toxicity and diet. Unlike venom LD50, the speed with which venoms incapacitated and killed scorpions was not associated with the degree of arthropod feeding. The prey-specific venom toxicity of arthropod-feeding Echis may thus be adaptive primarily by reducing venom expenditure. Overall, our results provide strong evidence that variation in snake venom composition results from adaptive evolution driven by natural selection for different diets, and underscores the need for a multi-faceted, integrative approach to the study of the causes of venom evolution. PMID:19364745

  4. Distribution of low molecular weight platelet aggregation inhibitors from snake venoms.

    PubMed

    Oyama, Etsuko; Takahashi, Hidenobu

    2007-03-01

    An assay of platelet aggregation inhibitors measured by the turbidimeter using Aggregometer PAM 8C (Mebanix) was performed after each crude snake venom (57 species) was subjected to ultrafiltration using MILLIPORE UFP 1 LGC. The snake venoms of Viperidae (three species), Elapidae (11 species), and Hydrophiidae (two species) inhibited ADP-induced rabbit platelet aggregation. In particular, six venoms of Bitis gabonica, Pseudocerastes persicus, Dendroaspis angusticeps, D. polylepis, Ophiophagus hannah, and N. nigricollis crawshawii strongly inhibited platelet aggregation. Furthermore, adenosine was identified from Bitis gabonica venom using HPLC and FAB/MS analysis. PMID:17141819

  5. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    PubMed Central

    2011-01-01

    Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus

  6. Increased infectivity of Staphylococcus aureus in an experimental model of snake venom-induced tissue damage.

    PubMed

    Saravia-Otten, Patricia; Gutierrez, Jose Maria; Arvidson, Staffan; Thelestam, Monica; Flock, Jan-Ingmar

    2007-09-01

    Soft-tissue infection is commonly found in patients bitten by Latin American Bothrops snakes. Staphylococcus aureus, which is not present in the mouth of the snake, is frequently isolated from these infections. The effects of B. asper venom on infection with S. aureus were analyzed in a model of infection in envenomated mouse gastrocnemius muscle. Inoculation of 50 colony-forming units (cfu) of S. aureus was enough to cause infection in envenomated muscle, compared with >5x104 cfu without venom. This effect was also achieved by injection of venom myotoxin III (an A(2) phospholipase). A sarA mutant strain in which production of extracellular toxins and enzymes is up-regulated and binding of fibronectin, fibrinogen, and other host proteins is down-regulated was much less virulent than the corresponding parental strain, indicating that the ability of S. aureus to mask itself with host molecules might be more important than the effects of secreted toxins and enzymes in this kind of infection. PMID:17674318

  7. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    PubMed Central

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  8. Snake venom toxins. The amino-acid sequence of a short-neurotoxin homologue from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-06-01

    The third most abundant component of black mamba venom, named FS2, was sequenced with the aid of sequenator studies and peptides derived by tryptic and chymotryptic digestion. Cyanogen bromide digests provided extra information to support the proposed structure. This protein is a homologue of the short neurotoxins of snake venom, but is much less toxic. Its structure is quite different from both neurotoxins and the other mamba proteins, called angusticeps types (neurotoxin homologues). Comparison of the known angusticeps-type toxins from mamba venom with mamba neurotoxins and each other leads to proposals that these proteins of low toxicity are inventions of the group of mambas and that three different, as yet unknown, functions will be associated with the three subgroups that are discernable. PMID:880951

  9. Presynaptic Proteins as Markers of the Neurotoxic Activity of BmjeTX-I and BmjeTX-II Toxins from Bothrops marajoensis (Marajó Lancehead) Snake Venom

    PubMed Central

    Lisboa, Antonio; Melaré, Rodolfo; Franco, Junia R. B.; Bis, Carolina V.; Gracia, Marta; Ponce-Soto, Luis A.; Marangoni, Sérgio; Rodrigues-Simioni, Léa; da Cruz-Höfling, Maria Alice

    2016-01-01

    Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.

  10. Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapids.

    PubMed

    Fernández, Julián; Vargas-Vargas, Nancy; Pla, Davinia; Sasa, Mahmood; Rey-Suárez, Paola; Sanz, Libia; Gutiérrez, José María; Calvete, Juan J; Lomonte, Bruno

    2015-12-01

    Protein composition, toxicity, and neutralization of the venoms of Micrurus alleni and Micrurus mosquitensis, two sympatric monadal coral snakes found in humid environments of the Caribbean region of Costa Rica, were studied. Proteomic profiling revealed that these venoms display highly divergent compositions: the former dominated by three-finger toxins (3FTx) and the latter by phospholipases A2 (PLA2). Protein family abundances correlated with enzymatic and toxic characteristics of the venoms. Selective inhibition experiments showed that PLA2s play only a marginal role in the lethal effect of M. alleni venom, but have a major role in M. mosquitensis venom. Proteomic data gathered from other Micrurus species evidenced that the two divergent venom phenotypes are recurrent, and may constitute a general trend across New World elapids. Further, M. mosquitensis, but not M. alleni, venom contains PLA2-like/Kunitz-type inhibitor complex(es) that resemble the ASIC1a/2-activating MitTx heterodimeric toxin isolated from Micrurus tener venom. The evolutionary origin and adaptive relevance of the puzzling phenotypic variability of Micrurus venoms remain to be understood. An antivenom against the PLA2-predominant Micrurus nigrocinctus venom strongly cross-recognized and neutralized M. mosquitensis venom, but only weakly M. alleni venom. PMID:26325292

  11. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  12. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    PubMed Central

    Jansa, Sharon A.; Voss, Robert S.

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role. PMID:21731638

  13. A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules.

    PubMed

    Samy, Ramar Perumal; Sethi, Gautam; Lim, Lina H K

    2016-09-01

    Infectious diseases remain a significant cause of morbidity and mortality worldwide. A wide range of diverse, novel classes of natural antibiotics have been isolated from different snake species in the recent past. Snake venoms contain diverse groups of proteins with potent antibacterial activity against a wide range of human pathogens. Some snake venom molecules are pharmacologically attractive, as they possess promising broad-spectrum antibacterial activities. Furthermore, snake venom proteins (SVPs)/peptides also bind to integrins with high affinity, thereby inhibiting cell adhesion and accelerating wound healing in animal models. Thus, SVPs are a potential alternative to chemical antibiotics. The mode of action for many antibacterial peptides involves pore formation and disruption of the plasma membrane. This activity often includes modulation of nuclear factor kappa B (NF-κB) activation during skin wound healing. The NF-κB pathway negatively regulates the transforming growth factor (TGF)-β1/Smad pathway by inducing the expression of Smad7 and eventually reducing in vivo collagen production at the wound sites. In this context, SVPs that regulate the NF-κB signaling pathway may serve as potential targets for drug development. PMID:26975619

  14. Natural phospholipase A(2) myotoxin inhibitor proteins from snakes, mammals and plants.

    PubMed

    Lizano, Sergio; Domont, Gilberto; Perales, Jonas

    2003-12-15

    A renewed interest in the phenomenon of inter- and intra-species resistance towards the toxicity of snake venoms, coupled with the search for new strategies for treatment of snake envenomations, has prompted the discovery of proteins which neutralize the major toxic components of these venoms. Among these emerging groups of proteins are inhibitors of toxic phospholipases A2 (PLA2s), many of which exhibit a wide range of toxic effects including muscle-tissue damage, neurotoxicity, and inflammation. These proteins have been isolated from both venomous and non-venomous snakes, mammals, and most recently from medicinal plant extracts. The snake blood-derived inhibitors have been grouped into three major classes, alpha, beta, and gamma, based on common structural motifs found in other proteins with diverse physiological properties. In mammals, DM64, an anti-myotoxic protein isolated from opossum serum, belongs to the immunoglobulin super gene family and is homologous to human alpha1B-glycoprotein and DM43, a metalloproteinase inhibitor from the same organism. In plants, a short note is made of WSG, a newly described anti-toxic-PLA2 glycoprotein isolated from Withania somnifera (Ashwaganda), a medicinal plant whose aqueous extracts neutralize the PLA2 activity of the Naja naja venom. The implications of these new groups of PLA2 toxin inhibitors in the context of our current understanding of snake biology as well as in the development of novel therapeutic reagents in the treatment of snake envenomations worldwide are discussed. PMID:15019494

  15. Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains*

    PubMed Central

    Brust, Andreas; Sunagar, Kartik; Undheim, Eivind A.B.; Vetter, Irina; Yang, Daryl C.; Casewell, Nicholas R.; Jackson, Timothy N. W.; Koludarov, Ivan; Alewood, Paul F.; Hodgson, Wayne C.; Lewis, Richard J.; King, Glenn F.; Antunes, Agostinho; Hendrikx, Iwan; Fry, Bryan G.

    2013-01-01

    Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands. PMID:23242553

  16. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome.

    PubMed

    Ching, Ana T C; Rocha, Marisa M T; Paes Leme, Adriana F; Pimenta, Daniel C; de Fátima D Furtado, Maria; Serrano, Solange M T; Ho, Paulo L; Junqueira-de-Azevedo, Inácio L M

    2006-08-01

    We investigated the putative toxins of Philodryas olfersii (Colubridae), a representative of a family of snakes neglected in venom studies despite their growing medical importance. Transcriptomic data of the venom gland complemented by proteomic analysis of the gland secretion revealed the presence of major toxin classes from the Viperidae family, including serine proteases, metalloproteases, C-type lectins, Crisps, and a C-type natriuretic peptide (CNP). Interestingly, the phylogenetic analysis of the CNP precursor showed it as a linker between two related precursors found in Viperidae and Elapidae snakes. We suggest that these precursors constitute a monophyletic group derived from the vertebrate CNPs. PMID:16857193

  17. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom.

    PubMed

    Gomes, Mário Sérgio R; Naves de Souza, Dayane L; Guimarães, Denise O; Lopes, Daiana S; Mamede, Carla C N; Gimenes, Sarah Natalie C; Achê, David C; Rodrigues, Renata S; Yoneyama, Kelly A G; Borges, Márcia H; de Oliveira, Fábio; Rodrigues, Veridiana M

    2015-03-01

    We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6-9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemostatic disorders and tumour metastasis. PMID:25261583

  18. High-level expression, purification, characterization and structural prediction of a snake venom metalloproteinase inhibitor in Pichia pastoris.

    PubMed

    Shi, Yi; Ji, Ming-Kai; Xu, Jian-Wen; Lin, Xu; Lin, Jian-Yin

    2012-03-01

    Snake venom metalloproteinase inhibitor BJ46a is from the serum of the venomous snake Bothrops jararaca. It has been proven to possess the capacity to inhibit matrix metalloproteinases (MMPs), likely based on its structural similarity to MMPs. This report describes the successful expression, purification, and characterization of the recombinant protein BJ46a in Pichia pastoris. Purified recombinant protein BJ46a was found to inhibit MMPs. Structural modeling was completed and should provide the foundation for further functional research. To our knowledge, this is the first report on the large scale expression of BJ46a, and it provides promise as a method for generation of BJ46a and investigation of its potential use as a new drug for treatment of antitumor invasion and metastasis. PMID:22307654

  19. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    PubMed

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms. PMID:20677373

  20. Isolation and cloning of a metalloproteinase from king cobra snake venom.

    PubMed

    Guo, Xiao-Xi; Zeng, Lin; Lee, Wen-Hui; Zhang, Yun; Jin, Yang

    2007-06-01

    A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs. PMID:17337026

  1. Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance

    PubMed Central

    Gasanov, Sardar E; Dagda, Ruben K; Rael, Eppie D

    2014-01-01

    Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some snake venom toxins, however, have great potential as drugs for treating human diseases. In this review, we discuss the biochemistry, structure/function, and pathology induced by snake venom toxins on human tissue. We provide a broad overview of cobra venom cytotoxins, catalytically active and inactive phospholipase A2s (PLA2s), and Zn2+-dependent metalloproteinases. We also propose biomedical applications whereby snake venom toxins can be employed for treating human diseases. Cobra venom cytotoxins, for example, may be utilized as anti-cancer agents since they are efficient at destroying certain types of cancer cells including leukemia. Additionally, increasing our understanding of the molecular mechanism(s) by which snake venom PLA2s promote hydrolysis of cell membrane phospholipids can give insight into the underlying biomedical implications for treating autoimmune disorders that are caused by dysregulated endogenous PLA2 activity. Lastly, we provide an exhaustive overview of snake venom Zn2+-dependent metalloproteinases and suggest ways by which these enzymes can be engineered for treating deep vein thrombosis and neurodegenerative disorders. PMID:24949227

  2. Sphero-echinocytosis of human red blood cells caused by snake, red-back spider, bee and blue-ringed octopus venoms and its inhibition by snake sera.

    PubMed

    Flachsenberger, W; Leigh, C M; Mirtschin, P J

    1995-06-01

    It was found that bee (Apis mellifera) venom, red-back spider (Latrodectus mactans) venom, blue-ringed octopus (Hapalochlaena maculosa) venom, ten different snake venoms, phospholipase A2 and four snake toxins caused sphero-echinocytosis of human red blood cells at 200 ng/ml. Most venoms and toxins lost the ability to deform human red blood cells when their components of less than mol. wt 10,000 were applied. In a number of cases the sphero-echinocytotic effect was also inhibited by blood sera of Notechis scutatus and Pseudonaja textilis. PMID:7676470

  3. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom

    PubMed Central

    Torres, F. S.; Rates, B.; Gomes, M. T. R.; Salas, C. E.; Pimenta, A. M. C.; Oliveira, F.; Santoro, M. M.; de Lima, M. E.

    2012-01-01

    A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (Vmax = 0.4596 Uh−1nmol−1 ± 0.1031 and Km = 14.59 mg/mL ± 4.610). PMID:23762636

  4. Contrasting modes and tempos of venom expression evolution in two snake species.

    PubMed

    Margres, Mark J; McGivern, James J; Seavy, Margaret; Wray, Kenneth P; Facente, Jack; Rokyta, Darin R

    2015-01-01

    Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species. PMID:25387465

  5. Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species

    PubMed Central

    Margres, Mark J.; McGivern, James J.; Seavy, Margaret; Wray, Kenneth P.; Facente, Jack; Rokyta, Darin R.

    2015-01-01

    Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species. PMID:25387465

  6. Interaction of three-finger proteins from snake venoms and from mammalian brain with the cys-loop receptors and their models.

    PubMed

    Faure, G; Shelukhina, I V; Porowinska, D; Shulepko, M A; Lyukmanova, E N; Dolgikh, D A; Spirova, E N; Kasheverov, I E; Utkin, Yu N; Corringer, J-P; Tsetlin, V I

    2016-05-01

    With the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, K D = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (K D = 1.3 μM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC. PMID:27417718

  7. Non-venomous snake bite and snake bite without envenoming in a Brazilian teaching hospital. Analysis of 91 cases.

    PubMed

    Silveria, P V; Nishioka, S de A

    1992-01-01

    A retrospective survey of 473 cases of snake bite admitted to a Brazilian teaching hospital from 1984 to 1990 revealed 91 cases of bite without envenoming and/or caused by non-venomous snakes. In 17 of these cases the snake was identified, and one patient was bitten by a snake-like reptile (Amphisbaena mertensii). In 43 cases diagnosis was made on clinical grounds (fang marks in the absence of signs of envenoming). The other 30 cases were of patients who complained of being bitten but who did not show any sign of envenoming or fang mark. Most cases occurred in men (66;73%), in the 10-19 years age group (26;29%), in the lower limbs (51/74;69%), between 6 A. M. and 2 P.M. (49;61%) and in the month of April (16;18%). One patient bitten by Philodryas olfersii developed severe local pain, swelling and redness at the site of the bite, with normal clotting time. The patient bitten by Drymarcon corais was misdiagnosed as being bitten by a snake of the genus Bothrops, was given the specific antivenom, and developed anaphylaxis. One patient bitten by Sibynomorphus mikanii presented prolonged clotting time, and was also given antivenom as a case of Bothrops bite. Correct identification of venomous snakes by physicians is necessary to provide correct treatment to victims of snake bite, avoiding unnecessary distress to the patient, and overprescription of antivenom, which may eventually cause severe untoward effects. PMID:1342117

  8. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu)

    PubMed Central

    2010-01-01

    Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland contains the major toxin

  9. Venomics of the beaked sea snake, Hydrophis schistosus: A minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms.

    PubMed

    Tan, Choo Hock; Tan, Kae Yi; Lim, Sin Ee; Tan, Nget Hong

    2015-08-01

    The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of <0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy. PMID:26047715

  10. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom.

    PubMed

    Moreira, Vanessa; Teixeira, Catarina; Borges da Silva, Henrique; D'Império Lima, Maria Regina; Dos-Santos, Maria Cristina

    2016-08-01

    Envenomation by snakes of the species Bothrops atrox induces local and systemic effects. Local effects include drastic tissue damage and a marked inflammatory response as a result of the synthesis and release of a variety of protein and lipid mediators. Toll-like receptor (TLR) signaling pathways can play an important role in this response, leading to synthesis of these inflammatory mediators. This study investigated the influence of TLR2 on the acute inflammatory response induced by Bothrops atrox venom. Wild-type C57BL/6 mice (WT) and TLR2 gene knockout mice (TLR2(-/-)) were injected with Bothrops atrox venom (BaV), and the following responses to the venom were assessed in peritoneal exudate: leukocyte accumulation; release of mediators, including CCL-2, IL-10, IL-1β, IL-6 and LTB4; protein expression of COX-1 and COX-2; and quantification of their products PGE2 and TXA2. After injection with BaV, the TLR2(-/-) mice (TLR2(-/-)BaV) had higher levels of IL-6 and CCL-2 than WT animals kept under the same conditions (WTBaV), together with an accumulation of polymorphonuclear leukocytes (PMNs), inhibition of IL-1β and LTB4 and reduced mononuclear leukocyte influx. However, no significant differences in COX-2 protein expression or PGE2, TXA2 and IL-10 production between the TLR2(-/-)BaV and WTBav animals were observed. Together, these results indicate that the signaling pathway activated by TLR2 acts by modulating the induced inflammatory response to BaV through the direct action of venom-associated molecular patterns (VAMPs) or indirectly by forming damage-associated molecular patterns (DAMPs) and that this may have important therapeutic implications. PMID:27109323

  11. Assessment of the Antimicrobial Activity of Few Saudi Arabian Snake Venoms

    PubMed Central

    Al-Asmari, Abdulrahman K.; Abbasmanthiri, Rajamohamed; Abdo Osman, Nasreddien M.; Siddiqui, Yunus; Al-Bannah, Faisal Ahmed; Al-Rawi, Abdulgadir M.; Al-Asmari, Sarah A.

    2015-01-01

    Background Venoms of two cobras, four vipers, a standard antibiotic and an antimycotic, were evaluated comparatively, as antimicrobials. Methods: Six venom concentrations and three of the standard antibiotic and the antimycotic were run in micro-dilution and diffusion plates against the microorganisms. RESULTS: Echis pyramidum, Echis coloratus and Cerastes cerastes gasperettii highest venom concentrations gave significant growth inhibition zones (GIZ) with respect to a negative control, except Bitis arietans, whose concentrations were significant. The cobra Walterinnesia aegyptia had significant venom concentrations more than Naja haje arabica. The Staphylococcus aureus Methicillin Resistant (MRSA) bacterium was the most susceptible, with a highly (P < 0.001) significant GIZ mean difference followed by the Gram positive Staphylococcus aureus, (P < 0.001), Escherichia coli (P < 0.001), Enterococcus faecalis (P < 0.001) and Pseudomonas aeruginosa which, had the least significance (P < 0.05). The fungus Candida albicans was resistant to both viper and cobra venoms (P > 0.05). The antibiotic Vancomycin was more effective than snake venoms though, they were more efficient in inhibiting growth of the resistant Pseudomonas aeruginosa. This antibiotic was also inactive against the fungus, whilst its specific antifungal Fungizone was highly efficient with no antibacterial activity. Conclusions: These findings showed that snake venoms had antibacterial activity comparable to antibiotics, with a directly proportional relationship of venom concentration and GIZ, though, they were more efficient in combatting resistant types of bacteria. Both venoms and the standard antibiotic, showed no antifungal benefits. PMID:26668657

  12. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis.

    PubMed

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-03-01

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms-that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes. PMID:24590383

  13. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    PubMed Central

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen; San Feliciano, Arturo; Oshima-Franco, Yoko

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  14. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo.

    PubMed

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; Dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen; San Feliciano, Arturo; Oshima-Franco, Yoko

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  15. Nano gold conjugation, anti-arthritic potential and toxicity studies of snake Naja kaouthia (Lesson, 1831) venom protein toxin NKCT1 in male albino rats and mice.

    PubMed

    Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony

    2014-08-01

    Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1. PMID:25141538

  16. Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom

    PubMed Central

    Zaqueo, Kayena D.; Kayano, Anderson M.; Simões-Silva, Rodrigo; Moreira-Dill, Leandro S.; Fernandes, Carla F. C.; Fuly, André L.; Maltarollo, Vinícius G.; Honório, Kathia M.; da Silva, Saulo L.; Acosta, Gerardo; Caballol, Maria Antonia O.; de Oliveira, Eliandre; Albericio, Fernando; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.

    2014-01-01

    This paper presents a novel serine protease (SP) isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies). The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da). The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF). Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238) while Cu2+ significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom. PMID:24719874

  17. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

    PubMed

    Fry, Bryan G; Roelants, Kim; Champagne, Donald E; Scheib, Holger; Tyndall, Joel D A; King, Glenn F; Nevalainen, Timo J; Norman, Janette A; Lewis, Richard J; Norton, Raymond S; Renjifo, Camila; de la Vega, Ricardo C Rodríguez

    2009-01-01

    Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition. PMID:19640225

  18. Inhibitory Effect of Plant Manilkara subsericea against Biological Activities of Lachesis muta Snake Venom

    PubMed Central

    De Oliveira, Eduardo Coriolano; Fernandes, Caio Pinho; Sanchez, Eladio Flores; Fuly, André Lopes

    2014-01-01

    Snake venom is composed of a mixture of substances that caused in victims a variety of pathophysiological effects. Besides antivenom, literature has described plants able to inhibit injuries and lethal activities induced by snake venoms. This work describes the inhibitory potential of ethanol, hexane, ethyl acetate, or dichloromethane extracts and fractions from stem and leaves of Manilkara subsericea against in vivo (hemorrhagic and edema) and in vitro (clotting, hemolysis, and proteolysis) activities caused by Lachesis muta venom. All the tested activities were totally or at least partially reduced by M. subsericea. However, when L. muta venom was injected into mice 15 min first or after the materials, hemorrhage and edema were not inhibited. Thus, M. subsericea could be used as antivenom in snakebites of L. muta. And, this work also highlights Brazilian flora as a rich source of molecules with antivenom properties. PMID:24511532

  19. Inhibitory effect of plant Manilkara subsericea against biological activities of Lachesis muta snake venom.

    PubMed

    De Oliveira, Eduardo Coriolano; Fernandes, Caio Pinho; Sanchez, Eladio Flores; Rocha, Leandro; Fuly, André Lopes

    2014-01-01

    Snake venom is composed of a mixture of substances that caused in victims a variety of pathophysiological effects. Besides antivenom, literature has described plants able to inhibit injuries and lethal activities induced by snake venoms. This work describes the inhibitory potential of ethanol, hexane, ethyl acetate, or dichloromethane extracts and fractions from stem and leaves of Manilkara subsericea against in vivo (hemorrhagic and edema) and in vitro (clotting, hemolysis, and proteolysis) activities caused by Lachesis muta venom. All the tested activities were totally or at least partially reduced by M. subsericea. However, when L. muta venom was injected into mice 15 min first or after the materials, hemorrhage and edema were not inhibited. Thus, M. subsericea could be used as antivenom in snakebites of L. muta. And, this work also highlights Brazilian flora as a rich source of molecules with antivenom properties. PMID:24511532

  20. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    PubMed Central

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Hildebrand, Diana; Kwiatkowski, Marcel; Behnken, Henning; Harder, Sönke; Arni, Raghuvir; Spencer, Patrick; Schlüter, Hartmut; Betzel, Christian

    2014-01-01

    Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes. PMID:24590383

  1. Comparative Studies of Structural and Functional Properties of Snake Venom Metalloproteinases.

    PubMed

    Pinyachat, Anuwat

    2016-01-01

    Snake venom metalloproteinases (SVMPs) induces local and systemic effects on patients suffering from snakebite, degrading extracellular matrix (ECM) proteins such as collagen, gelatin, elastin, laminin, fibronectin, nidogen (entactin), and thrombospondin that cause local hemorrhage and tissue damage. They cleave or activate coagulation factors such as fibrinogen, fibrin, prothrombin, factor V, factor IX, factor X and protein C that bring about systemic coagulopathy. SVMPs and their truncated forms cleave or interfere with platelet adhesive proteins such as vWF, fibrinogen and collagen, and cleave or interfere with platelet receptors such as GPVI, alpha2beta1, GPIb, GPIX, and GPIIbIIIa that result in platelet aggregation defect. SVMPs induce cancer cell line to form morphological changes and apoptosis in vitro concordant with skin necrosis after snakebite in some cases. These local effects caused by SVMPs have no certain treatments, even with commercial anti-venom. SVMPs researches are focusing on their inhibitors, measurement and replacement of blood coagulation factor defects, or anti-cancer drug. PMID:26817242

  2. Colubrid Venom Composition: An -Omics Perspective

    PubMed Central

    Junqueira-de-Azevedo, Inácio L. M.; Campos, Pollyanna F.; Ching, Ana T. C.; Mackessy, Stephen P.

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  3. Colubrid Venom Composition: An -Omics Perspective.

    PubMed

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  4. Cytotoxic Effect of Iranian Vipera lebetina Snake Venom on HUVEC Cells

    PubMed Central

    Kakanj, Maryam; Ghazi-Khansari, Mahmoud; Zare Mirakabadi, Abbas; Daraei, Bahram; Vatanpour, Hossein

    2015-01-01

    Objective: Envenomation by heamotoxic snakes constituted a critical health occurrence in the world. Bleeding is the most sever consequence following snake bite with viperid and crothalid snakes. It is believed that the degradation of vascular membrane caused hemorrhage; in contrast, some suggested that direct cytotoxicity has role in endothelial cell disturbances. This study was carried out to evaluate the direct toxicity effect of V. lebetina crude venom on Human Umbilical Vein Endothelial Cells (HUVECs). Methods: The effect of V. lebetina snake venom on HUVECs growth inhibition was determined by MTT assay and neutral red uptake assay. The integrity of cell membrane through LDH release was measured with the Cytotoxicity Detection Kit. Morphological changes of endothelial cells were also evaluated using a phase contrast microscope. Result: In MTT assay, crude venom showed a cytotoxic effect on endothelial cells which was confirmed by the effect observed with neutral red assay. Also, crude venom caused changes in the integrity of cell membrane by LDH release. The morphological alterations enhanced in high concentration results in total cells number reduced. Conclusion: V. lebetina venom showed potential direct cytotoxic effects on human endothelial cells in a manner of concentration- dependent inhibition. PMID:26185512

  5. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes

    PubMed Central

    Santoro, Marcelo Larami; do Carmo, Thaís; Cunha, Bruna Heloísa Lopes; Alves, André Fonseca; Zelanis, André; Serrano, Solange Maria de Toledo; Grego, Kathleen Fernandes; Sant’Anna, Savio Stefanini; Barbaro, Katia Cristina; Fernandes, Wilson

    2015-01-01

    Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life. PMID:26714190

  6. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes.

    PubMed

    Santoro, Marcelo Larami; do Carmo, Thaís; Cunha, Bruna Heloísa Lopes; Alves, André Fonseca; Zelanis, André; Serrano, Solange Maria de Toledo; Grego, Kathleen Fernandes; Sant'Anna, Savio Stefanini; Barbaro, Katia Cristina; Fernandes, Wilson

    2015-01-01

    Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life. PMID:26714190

  7. Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules

    PubMed Central

    Carvalho, B. M. A.; Santos, J. D. L.; Xavier, B. M.; Almeida, J. R.; Resende, L. M.; Martins, W.; Marcussi, S.; Marangoni, S.; Stábeli, R. G.; Calderon, L. A.; Soares, A. M.; Da Silva, S. L.; Marchi-Salvador, D. P.

    2013-01-01

    Ophidian envenomation is an important health problem in Brazil and other South American countries. In folk medicine, especially in developing countries, several vegetal species are employed for the treatment of snakebites in communities that lack prompt access to serum therapy. However, the identification and characterization of the effects of several new plants or their isolated compounds, which are able to inhibit the activities of snake venom, are extremely important and such studies are imperative. Snake venom contains several organic and inorganic compounds; phospholipases A2 (PLA2s) are one of the principal toxic components of venom. PLA2s display a wide variety of pharmacological activities, such as neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant, hemorrhagic, and edema-inducing effects. PLA2 inhibition is of pharmacological and therapeutic interests as these enzymes are involved in several inflammatory diseases. This review describes the results of several studies of plant extracts and their isolated active principles, when used against crude snake venoms or their toxic fractions. Isolated inhibitors, such as steroids, terpenoids, and phenolic compounds, are able to inhibit PLA2s from different snake venoms. The design of specific inhibitors of PLA2s might help in the development of new pharmaceutical drugs, more specific antivenom, or even as alternative approaches for treating snakebites. PMID:24171158

  8. Evolution of venom antigenaemia and antivenom concentration in patients bitten by snakes in Uruguay.

    PubMed

    Morais, Victor; Negrín, Alba; Tortorella, María Noel; Massaldi, Hugo

    2012-11-01

    In this work we describe the first study carried out in Uruguay of venom antigenaemia and antivenom concentration in patients bitten by snakes. Between 50 and 70 snake bite accidents per year are caused in Uruguay by 2 species: Rhinocerophis alternatus and Bothropoides pubescens. The patients are treated with a specific polyvalent antivenom. Gaining insight on the evolution of venom antigenaemia and antivenom concentration in patients is important to improve treatment protocols. Blood samples of 29 patients were analysed to determine venom and antivenom concentrations at different times. Venom was detected in 18 of 19 samples before antivenom administration, with a mean concentration of 57 ng/mL. Most of the patients received 4 or 8 vials to neutralize the venom effects. Only one patient needed a total of 16 vials. He showed a severe envenomation and needed supplementary amounts of antivenom after the fifth day of the snake bite accident to reach normal clotting parameters. Antivenom concentrations were determined at 12 h, 24 h and 15 days after antivenom administration. It was found a faster antivenom decrease between 12 and 24 h than to 24 h to 15 days. This was explained by a different clearance mechanism in each period. In the first phase, the cause would be the neutralization of venom present in the blood whereas in the second phase it would be due to unbound antivenom elimination. PMID:22819686

  9. Neurotoxins from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides.

    PubMed Central

    Tamiya, N; Maeda, N; Cogger, H G

    1983-01-01

    The main neurotoxic components, toxins Hydrophis ornatus a and Hydrophis lapemoides a, were isolated from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides respectively. The amino acid sequence of toxin Hydrophis ornatus a was deduced to be identical with that of toxin Astrotia stokesii a [Maeda & Tamiya (1978) Biochem. J. 175, 507-517] on the basis of identity of the tryptic peptide 'map' and the amino acid composition of each peptide. The amino acid sequence of toxin Hydrophis lapemoides a was determined mainly on the basis of identity of the amino acid compositions, mobilities on paper electrophoresis and migration positions on paper chromatography of the tryptic peptides with those of other sea-snake toxins whose sequences are known. Both toxins Hydrophis ornatus a and Hydrophis lapemoides a consisted of 60 amino acid residues and there were six amino acid replacements between them. The taxonomy of sea snakes in the Hydrophis ornatus complex has long been confused, and the above snakes were originally assigned to taxa that proved to be inconsistent with the relationships indicated by the neurotoxin amino acid sequences obtained. A subsequent re-examination of the specimens revealed an error in the original identifications and demonstrated the value of the protein amino acid sequences in systematic and phylogenetic studies. The isolation procedure and results of amino acid analysis of the tryptic peptides have been deposited as Supplementary Publication SUP 50121 (8 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1983) 209, 5. PMID:6615431

  10. Facilitation of transmitter release by neurotoxins from snake venoms.

    PubMed

    Harvey, A L; Anderson, A J; Karlsson, E

    1984-01-01

    Toxins C13S1C3 and C13S2C3 from green mamba venom (Dendroaspis angusticeps) acted like dendrotoxin to increase acetylcholine release in response to nerve stimulation in the chick biventer cervicis preparation. Proteins B and E from black mamba venom (Dendroaspis polylepis) had no prejunctional facilitatory activity. All four proteins are trypsin inhibitor homologues. Binding of a prejunctional facilitatory toxin (Polylepis toxin I) to motor nerves was rapid and did not require the presence of Ca2+ or nerve stimulation. Binding was not prevented by protease inhibitors that lacked facilitatory actions. Prejunctional facilitatory toxins also augmented transmitter release in the chick oesophagus and the mouse vas deferens preparations. The effects were rapid in onset and could wane spontaneously. 125I-labelled dendrotoxin bound specifically to rat brain synaptosomes with a KD of about 3 nM. Binding was prevented by native dendrotoxin but not by beta-bungarotoxin or atropine. It is concluded that prejunctional facilitatory toxins affect transmitter release at many types of nerve endings in addition to motor nerve terminals. From consideration of the structures of active and inactive molecules, it is thought that binding of the active toxins may involve several exposed lysine residues. PMID:6152291

  11. Effect of diterpenes isolated of the marine alga Canistrocarpus cervicornis against some toxic effects of the venom of the bothrops jararaca snake.

    PubMed

    Domingos, Thaisa Francielle Souza; Vallim, Magui Aparecida; Cavalcanti, Diana Negrão; Sanchez, Eládio Flores; Teixeira, Valéria Laneuville; Fuly, André Lopes

    2015-01-01

    Snake venoms are composed of a complex mixture of active proteins and peptides which induce a wide range of toxic effects. Envenomation by Bothrops jararaca venom results in hemorrhage, edema, pain, tissue necrosis and hemolysis. In this work, the effect of a mixture of two secodolastane diterpenes (linearol/isolinearol), previously isolated from the Brazilian marine brown alga, Canistrocarpus cervicornis, was evaluated against some of the toxic effects induced by B. jararaca venom. The mixture of diterpenes was dissolved in dimethylsulfoxide and incubated with venom for 30 min at room temperature, and then several in vivo (hemorrhage, edema and lethality) and in vitro (hemolysis, plasma clotting and proteolysis) assays were performed. The diterpenes inhibited hemolysis, proteolysis and hemorrhage, but failed to inhibit clotting and edema induced by B. jararaca venom. Moreover, diterpenes partially protected mice from lethality caused by B. jararaca venom. The search for natural inhibitors of B. jararaca venom in C. cervicornis algae is a relevant subject, since seaweeds are a rich and powerful source of active molecules which are as yet but poorly explored. Our results suggest that these diterpenes have the potential to be used against Bothropic envenomation accidents or to improve traditional treatments for snake bites. PMID:25699595

  12. [Fibrinogen/fibrin-specific enzymes from copperhead (Agkistrodon halys halys) and cobra (Naja oxiana eichwald) snake venoms].

    PubMed

    Yunusova, E S; Sadykov, E S; Sultanalieva, N M; Shkinev, A V

    2016-03-01

    Ability of fractions of cobra's (Naja oxiana Eichwald) and copperhead snake's (Agkistrodon halys halys) venoms to hydrolyze fibrinogen/fibrin was studied. In cobra's snake a component with molecular mass of nearly 60 kDa was found to hydrolyze a-chain of fibrinogen but failed to hydrolyze casein/azocasein and fibrin. A fibrinogen-specific metalloproteinase, the enzyme was inhibited by EDTA. Cobra's venom reduced the mass of donor's fresh blood clots. The copperhead snake's venom and the fractions obtained by gel-filtration (HW-50) and ion exchange chromatography (DEAE-650) were found to hydrolyze casein/azocasein, a- and b-chains of fibrinogen/fibrin and donor's blood clots. The results from the study of the venom and proteolytically active fractions are the evidence for a thrombolytic potential in a copperhead snake's venom. PMID:27420616

  13. [Toxicity and neutralization of venoms from Peruvian snakes of the genera Bothrops and Lachesis (Serpentes: Viperidae)].

    PubMed

    Incio Ruiz, R; Incio Ruiz, L; Martínez-Vargas, A Z; Salas Arruz, M; Gutiérrez, J M

    1993-12-01

    The lethal potencies (Median Lethal Dose) of the venoms of Peruvian snakes (Bothrops atrox, Bothrops barnetti, Bothrops pictus and Lachesis muta muta) were determined in mice by using intravenous and intraperitoneal routes of injection. In addition, the neutralizing ability of three antivenoms (bothropic polyvalent, bothropic bivalent and lachetic) was studied by preincubation-type experiments. B. pictus venom had the highest lethality by the intraperitoneal route whereas B. atrox venom had the highest lethality when tested by the intravenous route. The three antivenoms were effective in neutralizing lethality of the homologous venoms. Bivalent antivenom was more effective than polyvalent antivenom in the neutralization of B. pictus venom. On the basis of these findings, the use of bivalent bothropic antivenom is recommended in the Pacific coastal regions of Perú, whereas polyvalent bothropic antivenom is recommended in the oriental jungle regions of the country. PMID:7701074

  14. Fractionation and proteomic analysis of the Walterinnesia aegyptia snake venom using OFFGEL and MALDI-TOF-MS techniques.

    PubMed

    Abd El Aziz, Tarek Mohamed; Bourgoin-Voillard, Sandrine; Combemale, Stéphanie; Beroud, Rémy; Fadl, Mahmoud; Seve, Michel; De Waard, Michel

    2015-10-01

    Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined. PMID:26178575

  15. Proteomics of wound exudate in snake venom-induced pathology: search for biomarkers to assess tissue damage and therapeutic success.

    PubMed

    Rucavado, Alexandra; Escalante, Teresa; Shannon, John; Gutiérrez, José María; Fox, Jay W

    2011-04-01

    Tissue damage analysis by traditional laboratory techniques is problematic. Proteomic analysis of exudates collected from affected tissue constitutes a powerful approach to assess tissue alterations, since biomarkers associated with pathologies can be identified in very low concentrations. In this study we proteomically explore the pathological effects induced by the venom of the viperid snake Bothrops asper in the gastrocnemius muscle of mice. Predominant proteins identified in the exudates included intracellular proteins, plasma proteins, extracellular matrix proteins and cell membrane-associated proteins. The presence of such proteins indicates cytotoxicity, plasma exudation, extracellular matrix degradation and shedding of membrane proteins. Some of these proteins may represent useful biomarkers for myonecrosis and microvascular damage. The effect of fucoidan, an inhibitor of myotoxic phospholipases A(2), and batimastat, an inhibitor of metalloproteinases, on the pathological effects induced by B. asper venom were also investigated. Fucoidan reduced the presence of intracellular proteins in exudates, whereas batimastat reduced the amount of relevant extracellular matrix proteins. The combination of these inhibitors resulted in the abrogation of the most relevant pathological effects of this venom. Thus, proteomic analysis of exudates represents a valuable approach to assess the characteristics of tissue damage in pathological models and the success of therapeutic interventions. PMID:21306181

  16. Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom.

    PubMed

    Joubert, F J; Taljaard, N

    1980-05-01

    Toxins C13S1C3 and C13S2C3 from D. angusticeps venom were purified by gel filtration and ion exchange chromatography. Whereas C13S1C3 contains 57 amino acids, C13S2C3 contains 59 but each include six half-cystine residues. The complete primary structure of the low toxicity proteins have been elucidated. The sequences and the invariant residues of toxins C13S1C3 and C13S2C3 from D. angusticeps venom resemble, respectively, those of the proteinase inhibitor homologues K and I from D. polylepis polylepis venom and they are also homologous to the active proteinase inhibitors from various sources. In C13S1C3 and K the active site lysyl residue of active bovine pancreatic proteinase inhibitor is conserved but the site residue alanine, is replaced by lysine. In C13S2C3 and I the active site residue is replaced by tyrosine. PMID:7429422

  17. PO41, a snake venom metalloproteinase inhibitor isolated from Philander opossum serum.

    PubMed

    Jurgilas, Patrícia B; Neves-Ferreira, Ana G C; Domont, Gilberto B; Perales, Jonas

    2003-11-01

    PO41 was isolated from Philander opossum serum by DEAE-Sephacel, Phenyl Superose and Superdex 200 chromatographies and showed a molecular mass of 41,330 Da by MALDI-TOF MS. Molecular masses of 81.5 and 84.5 kDa were obtained by size exclusion chromatography and dynamic laser light scattering, respectively, suggesting that PO41 is dimeric. Its isoelectric point was estimated to be lower than 3.5. PO41 presented similar amino terminal sequence to those of DM40 and DM43, two antihaemorrhagins previously isolated from Didelphis marsupialis serum and was recognized by polyclonal antibodies raised against D. marsupialis antibothropic fraction. To study the inhibitory properties of this protein, the metalloproteinases bothrolysin and jararhagin were isolated from Bothrops jararaca venom by chromatographies on Superdex 200 and Phenyl Superose. Jararhagin was further submitted to a Mono Q column. The proteolytic and haemorrhagic effects of these haemorrhagins were neutralized by PO41. Both snake venom metalloproteinases formed stable complexes with PO41. The stoichiometry of the complex PO41-jararhagin was one inhibitor subunit to one molecule of the enzyme. These results show that PO41 has physicochemical, structural, immunoreactive and biological properties similar to other metalloproteinase inhibitors belonging to the supergene family of immunoglobulins. PMID:14602117

  18. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles.

    PubMed

    Peichoto, María E; Tavares, Flávio L; Santoro, Marcelo L; Mackessy, Stephen P

    2012-12-01

    Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat. PMID:22974712

  19. Studies on sea-snake venoms. Crystallization of erabutoxins a and b from Laticauda semifasciata venom

    PubMed Central

    Tamiya, N.; Arai, Hiroko

    1966-01-01

    1. The toxic principles in the venom of the sea-snake Laticauda semifasciata were separated into two components by CM-cellulose chromatography and obtained in crystalline forms. They were named `erabutoxins a and b'. 2. The homogeneity of each toxin was shown by rechromatography, by disk electrophoresis, by ultracentrifuging, by toxicity measurements before and after repeated crystallizations and by N-terminal analysis. 3. They had molecular weights of about 7000. Both of them contained 61 (or 62) amino acid residues/molecule. The only difference between erabutoxins a and b was that one of the aspartic acid (or asparagine) residues in erabutoxin a was replaced by a histidine residue in erabutoxin b. 4. Both of the toxins had LD50 values of 0·15μg./g. body wt. for mice and 0·07μg./g. for rats. It was shown with frog-muscle preparations that they acted on postsynaptic membrane to block neuromuscular transmission. ImagesFig. 2.Fig. 3.Fig. 4.Fig. 5. PMID:5964959

  20. Muscarinic toxins from the venom of Dendroaspis snakes with agonist-like actions.

    PubMed

    Jerusalinsky, D; Kornisiuk, E; Bernabeu, R; Izquierdo, I; Cerveñansky, C

    1995-04-01

    The venom of some Dendroaspis snakes contains small proteins (7500 mol. wt) that inhibit the binding of radiolabelled muscarinic antagonist to brain synaptomal membranes. There were no peptides described among muscarinic ligands until Adem et al. (Biochim. biophys. Acta 968, 340-345, 1988) reported that muscarinic toxins (MTxs), MTx1 and 2 were able to inhibit 3H-QNB binding to rat brain membranes. Since MTxs inhibit around half of specific binding of 3H-quinuclidinyl benzilate (3H-QNB) and 3H-N-methyl-scopolamine (3H-NMS), which do not discriminate between subtypes of muscarinic receptors, it has been proposed that MTxs might selectively bind to some subtype. MTx1 and 2 from Dendroaspis angusticeps almost completely inhibit the binding of 3H-pirenzepine (3H-PZ), a preferential M1 muscarinic receptor subtype ligand to cerebral cortex synaptosomal membranes. A much higher concentration was needed to inhibit partially 3H-PZ binding to atrial muscarinic receptors. These results support the hypothesis that MTx1 and 2 may be M1 selective muscarinic ligands. Similar activities have been found in Dendroaspis polylepis and D. viridis venoms, but with lower affinities. The Ki obtained from inhibition curves of the binding of 3H-PZ showed that MTx1 has higher affinity for the putative M1 muscarinic receptor subtype, followed by MTx2. DpMTx has lower affinity, while DvMTx seems to have the lowest affinity. All these peptides are devoid of anticholinesterase activity. Dendrotoxin and fasciculin from D. angusticeps venom do not inhibit the binding of muscarinic radioligands to cerebral cortex membranes. The injection of MTxs into dorsal hippocampus of rats immediately after training in an inhibitory avoidance task improves memory consolidation, as does oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7570625

  1. Humoral immune responses to venom and antivenom of patients bitten by Bothrops snakes.

    PubMed

    Morais, Víctor; Berasain, Patricia; Ifrán, Silvana; Carreira, Santiago; Tortorella, María Noel; Negrín, Alba; Massaldi, Hugo

    2012-02-01

    Snake envenomation and its treatment cause the entry of two kind of foreign antigens into the human body: snake toxins and antivenom from animal origin. Samples of patients bitten by snakes in Uruguay were assayed to determine levels of human antibodies against venom and antivenom. The ELISA results showed that most of the patients presented an important increase of IgG and IgM antibodies against antivenom at day 15 post accident. Antibodies were reactive against both equine immunoglobulin chains by western blot assay. In the case of the response against the venom, increase in titre at day 15 was of a minor degree as compared with the antivenom by ELISA. Only one of the patients showed an important increase of IgG and IgM levels against Bothropoides pubescens and only of IgG level against Rhinocerophis alternatus. This patient also showed an extensive reactivity against B. pubescens by western blot. PMID:22206812

  2. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases.

    PubMed

    Baraldi, Patrícia T; Magro, Angelo J; Matioli, Fábio F; Marcussi, Silvana; Lemke, Ney; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Correa, Arlene G; Fontes, Marcos R M

    2016-02-01

    Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms. PMID:26700145

  3. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom.

    PubMed

    Gutiérrez, José María; Sanz, Libia; Escolano, José; Fernández, Julián; Lomonte, Bruno; Angulo, Yamileth; Rucavado, Alexandra; Warrell, David A; Calvete, Juan J

    2008-10-01

    The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase

  4. Biological activities of Leptodeira annulata (banded cat-eyed snake) venom on vertebrate neuromuscular preparations.

    PubMed

    Torres-Bonilla, Kristian A; Schezaro-Ramos, Raphael; Floriano, Rafael Stuani; Rodrigues-Simioni, Léa; Bernal-Bautista, Manuel H; Alice da Cruz-Höfling, Maria

    2016-09-01

    The physiological properties of colubrid snake venoms are largely unknown and less frequently investigated. In this study, we assessed the enzymatic properties and biological activities of Leptodeira annulata (banded cat-eyed snake) venom, an opistoglyphous snake from Colombia. The proteolytic, phospholipase A2 and amidolytic activities are assessed using colorimetric assays and the biological activities were analyzed in avian and mammalian neuromuscular preparations. L. annulata venom caused neuromuscular blockade in chick biventer cervicis (BC) preparations (40± 15% and 50± 3% of twitch reduction for 30 and 100 μg/ml, respectively; p < 0.05) following 120 incubation; 10 μg/ml of venom did not induce blockade. There was a mild reduction in contracture response to exogenous acetylcholine (110 μM) in BC preparations exposed to 10 and 30 μg of venom/ml (∼4% and ∼32% of reduction, respectively, p > 0.05, n = 4) compared to basal values whereas the highest concentration (100 μg/ml) abolished it after 120 min. The venom caused a significant reduction in contracture response elicited by KCl (∼58 and ∼90 of reduction for 30 and 100 μg/ml, respectively, p < 0.05, n = 4). In mouse phrenic nerve-diaphragm (PND) preparations, L. annulata venom induced a progressive muscle membrane depolarization [from -85.9 ± 1.6 mV (t0) to -72.2 ± 2.9 mV (t120), p < 0.05, n = 4); the postsynaptic receptors remained functional as shown by carbachol-induced depolarization. The morphological analyses showed a concentration-dependent number of pathological states in muscle fibers from both BC and PND preparations pre-exposed to venom. The venom showed high proteolytic activity and low phospholipase A2 activity; there was no evidence for serine protease activity. These results indicate that the neuromuscular effect induced by L. annulata venom resulted from damaged muscle fibers that lead to the blockade of twitches response. The findings suggest

  5. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin.

    PubMed

    Lomonte, Bruno; Sasa, Mahmood; Rey-Suárez, Paola; Bryan, Wendy; Gutiérrez, José María

    2016-01-01

    Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a 'venomics' approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A₂ (PLA₂; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, 'intermediate' type within the dichotomy between 3FTx- and PLA₂-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA₂ venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema. PMID:27164141

  6. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations.

    PubMed

    Mamede, Carla Cristine Neves; de Sousa, Bruna Barbosa; Pereira, Déborah Fernanda da Cunha; Matias, Mariana Santos; de Queiroz, Mayara Ribeiro; de Morais, Nadia Cristina Gomes; Vieira, Sâmela Alves Pereira Batista; Stanziola, Leonilda; de Oliveira, Fábio

    2016-07-01

    Bothropic envenomation is characterised by severe local damage caused by the toxic action of venom components and aggravated by induced inflammation. In this comparative study, the local inflammatory effects caused by the venoms of Bothrops alternatus and Bothrops moojeni, two snakes of epidemiological importance in Brazil, were investigated. The toxic action of venom components induced by bothropic venom was also characterised. Herein, the oedema, hyperalgesia and myotoxicity induced by bothropic venom were monitored for various lengths of time after venom injection in experimental animals. The intensity of the local effects caused by B. moojeni venom is considerably more potent than B. alternatus venom. Our results also indicate that metalloproteases and phospholipases A2 have a central role in the local damage induced by bothropic venoms, but serine proteases also contribute to the effects of these venoms. Furthermore, we observed that specific anti-inflammatory drugs were able to considerably reduce the oedema, the pain and the muscle damage caused by both venoms. The inflammatory reaction induced by B. moojeni venom is mediated by eicosanoid action, histamine and nitric oxide, with significant participation of bradykinin on the hyperalgesic and myotoxic effects of this venom. These mediators also participate to inflammation caused by B. alternatus venom. However, the inefficient anti-inflammatory effects of some local modulation suggest that histamine, leukotrienes and nitric oxide have little role in the oedema or myotoxicity caused by B. alternatus venom. PMID:26975252

  7. Purification and cloning of cysteine-rich proteins from Trimeresurus jerdonii and Naja atra venoms.

    PubMed

    Jin, Yang; Lu, Qiumin; Zhou, Xingding; Zhu, Shaowen; Li, Rui; Wang, Wanyu; Xiong, Yuliang

    2003-10-01

    Three 26 kDa proteins, named as TJ-CRVP, NA-CRVP1 and NA-CRVP2, were isolated from the venoms of Trimeresurus jerdonii and Naja atra, respectively. The N-terminal sequences of TJ-CRVP and NA-CRVPs were determined. These components were devoid of the enzymatic activities tested, such as phospholipase A(2), arginine esterase, proteolysis, L-amino acid oxidase, 5'nucleotidase, acetylcholinesterase. Furthermore, these three components did not have the following biological activities: coagulant and anticoagulant activities, lethal activity, myotoxicity, hemorrhagic activity, platelet aggregation and platelet aggregation-inhibiting activities. These proteins are named as cysteine-rich venom protein (CRVP) because their sequences showed high level of similarity with mammalian cysteine-rich secretory protein (CRISP) family. Recently, some CRISP-like proteins were also isolated from several different snake venoms, including Agkistrodon blomhoffi, Trimeresurus flavoviridis, Lanticauda semifascita and king cobra. We presumed that CRVP might be a common component in snake venoms. Of particular interest, phylogenetic analysis and sequence alignment showed that NA-CRVP1 and ophanin, both from elapid snakes, share higher similarity with CRVPs from Viperidae snakes. PMID:14529736

  8. Coagulant effects of black snake (Pseudechis spp.) venoms and in vitro efficacy of commercial antivenom.

    PubMed

    Lane, J; O'Leary, M A; Isbister, G K

    2011-09-01

    The coagulant effects of Australasian black snakes (Pseudechis spp.) are poorly understood and differ to the procoagulant venoms of most dangerous snakes in Australia. This study aimed to investigate in vitro coagulant effects of Pseudechis venoms and the efficacy of commercial black snake antivenom (BlSAV), tiger snake antivenom (TSAV) and specific rabbit anti-snake IgG to neutralise these effects. Using a turbidimetric assay, all six Pseudechis venoms had anticoagulant activity, as well as phospholipase A(2) (PLA(2)) activity. Inhibition of PLA(2) activity removed anticoagulant effects of the venoms. Pseudechis porphyriacus was unique and had procoagulant activity independent of PLA2 activity. Both BlSAV and TSAV completely inhibited the coagulant and PLA2 activity of all Pseudechis venoms. PLA2 activity was also inhibited completely by p-Bromophenacyl bromide (pBPB) and partially by specific anti-N. scutatus IgG antibodies. Anti-N. scutatus IgG also completely inhibited anticoagulant activity of Pseudechis venom. All Pseudechis venoms showed immunological cross reactivity with specific anti-snake IgG antibodies to P. porphyriacus, Pseudechis australis and Notechis scutatus. Pseudechis venoms have in vitro anticoagulant activity that appears to be attributable to PLA(2) activity. Both antivenoms inhibited anticoagulant and PLA(2) activity at concentrations below those occurring in patients treated with one vial of antivenom. There was cross-neutralisation of Pseudechis venoms and N. scutatus antibodies that might be attributable to immunological similarities between the venoms. PMID:21723878

  9. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes*

    PubMed Central

    Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.

    2012-01-01

    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed

  10. The anti-snake venom properties of Tamarindus indica (leguminosae) seed extract.

    PubMed

    Ushanandini, S; Nagaraju, S; Harish Kumar, K; Vedavathi, M; Machiah, D K; Kemparaju, K; Vishwanath, B S; Gowda, T V; Girish, K S

    2006-10-01

    In Indian traditional medicine, various plants have been used widely as a remedy for treating snake bites. The aim of this study was to evaluate the effect of Tamarindus indica seed extract on the pharmacological as well as the enzymatic effects induced by V. russelli venom. Tamarind seed extract inhibited the PLA(2), protease, hyaluronidase, l-amino acid oxidase and 5'-nucleotidase enzyme activities of venom in a dose-dependent manner. These are the major hydrolytic enzymes responsible for the early effects of envenomation, such as local tissue damage, inflammation and hypotension. Furthermore, the extract neutralized the degradation of the Bbeta chain of human fibrinogen and indirect hemolysis caused by venom. It was also observed that the extract exerted a moderate effect on the clotting time, prolonging it only to a small extent. Edema, hemorrhage and myotoxic effects including lethality, induced by venom were neutralized significantly when different doses of the extract were preincubated with venom before the assays. On the other hand, animals that received extract 10 min after the injection of venom were protected from venom induced toxicity. Since it inhibits hydrolytic enzymes and pharmacological effects, it may be used as an alternative treatment to serum therapy and, in addition, as a rich source of potential inhibitors of PLA(2), metalloproteinases, serine proteases, hyaluronidases and 5 cent-nucleotidases, the enzymes involved in several physiopathological human and animal diseases. PMID:16847999

  11. Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom.

    PubMed

    Corasolla Carregari, Victor; Stuani Floriano, Rafael; Rodrigues-Simioni, Lea; Winck, Flavia V; Baldasso, Paulo Aparecido; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2013-01-01

    Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25-37°C. Maximum PLA2 activity required Ca(2+) and in the presence of Cd(2+), Zn(2+), Mn(2+), and Mg(2+) it was reduced in the presence or absence of Ca(2+). Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12). The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena. PMID:23509754

  12. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    PubMed Central

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  13. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons

    PubMed Central

    Logan, Rhiannon A. E.; Leung, Kam-Yin D.; Newberry, Fiona J.; Rowley, Paul D.; Dunbar, John P.; Wagstaff, Simon C.; Casewell, Nicholas R.; Harrison, Robert A.

    2016-01-01

    Background Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications. Methodology/Principal Findings Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4–37°C) for a range of durations (0–48 hours), followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4–19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98–99% identity) to those found in the venom gland. Conclusions/Significance The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons

  14. Evaluation of the lethal potency of scorpion and snake venoms and comparison between intraperitoneal and intravenous injection routes.

    PubMed

    Oukkache, Naoual; El Jaoudi, Rachid; Ghalim, Noreddine; Chgoury, Fatima; Bouhaouala, Balkiss; Mdaghri, Naima El; Sabatier, Jean-Marc

    2014-06-01

    Scorpion stings and snake bites are major health hazards that lead to suffering of victims and high mortality. Thousands of injuries associated with such stings and bites of venomous animals occur every year worldwide. In North Africa, more than 100,000 scorpion stings and snake bites are reported annually. An appropriate determination of the 50% lethal doses (LD₅₀) of scorpion and snake venoms appears to be an important step to assess (and compare) venom toxic activity. Such LD₅₀ values are also commonly used to evaluate the neutralizing capacity of specific anti-venom batches. In the present work, we determined experimentally the LD₅₀ values of reference scorpion and snake venoms in Swiss mice, and evaluated the influence of two main venom injection routes (i.e., intraperitoneal (IP) versus intravenous (IV)). The analysis of experimental LD₅₀ values obtained with three collected scorpion venoms indicates that Androctonus mauretanicus (Am) is intrinsically more toxic than Androctonus australis hector (Aah) species, whereas the latter is more toxic than Buthus occitanus (Bo). Similar analysis of three representative snake venoms of the Viperidae family shows that Cerastes cerastes (Cc) is more toxic than either Bitis arietans (Ba) or Macrovipera lebetina (Ml) species. Interestingly, the venom of Elapidae cobra snake Naja haje (Nh) is far more toxic than viper venoms Cc, Ml and Ba, in agreement with the known severity of cobra-related envenomation. Also, our data showed that viper venoms are about three-times less toxic when injected IP as compared to IV, distinct from cobra venom Nh which exhibited a similar toxicity when injected IP or IV. Overall, this study clearly highlights the usefulness of procedure standardization, especially regarding the administration route, for evaluating the relative toxicity of individual animal venoms. It also evidenced a marked difference in lethal activity between venoms of cobra and vipers, which, apart from the

  15. Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes

    PubMed Central

    Oukkache, Naoual; Jaoudi, Rachid El; Ghalim, Noreddine; Chgoury, Fatima; Bouhaouala, Balkiss; Mdaghri, Naima El; Sabatier, Jean-Marc

    2014-01-01

    Scorpion stings and snake bites are major health hazards that lead to suffering of victims and high mortality. Thousands of injuries associated with such stings and bites of venomous animals occur every year worldwide. In North Africa, more than 100,000 scorpion stings and snake bites are reported annually. An appropriate determination of the 50% lethal doses (LD50) of scorpion and snake venoms appears to be an important step to assess (and compare) venom toxic activity. Such LD50 values are also commonly used to evaluate the neutralizing capacity of specific anti-venom batches. In the present work, we determined experimentally the LD50 values of reference scorpion and snake venoms in Swiss mice, and evaluated the influence of two main venom injection routes (i.e., intraperitoneal (IP) versus intravenous (IV)). The analysis of experimental LD50 values obtained with three collected scorpion venoms indicates that Androctonus mauretanicus (Am) is intrinsically more toxic than Androctonus australis hector (Aah) species, whereas the latter is more toxic than Buthus occitanus (Bo). Similar analysis of three representative snake venoms of the Viperidae family shows that Cerastes cerastes (Cc) is more toxic than either Bitis arietans (Ba) or Macrovipera lebetina (Ml) species. Interestingly, the venom of Elapidae cobra snake Naja haje (Nh) is far more toxic than viper venoms Cc, Ml and Ba, in agreement with the known severity of cobra-related envenomation. Also, our data showed that viper venoms are about three-times less toxic when injected IP as compared to IV, distinct from cobra venom Nh which exhibited a similar toxicity when injected IP or IV. Overall, this study clearly highlights the usefulness of procedure standardization, especially regarding the administration route, for evaluating the relative toxicity of individual animal venoms. It also evidenced a marked difference in lethal activity between venoms of cobra and vipers, which, apart from the nature of toxins

  16. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators.

    PubMed

    Howes, J-M; Theakston, R D G; Laing, G D

    2007-04-01

    Envenoming by the West African saw-scaled viper, Echis ocellatus resembles that of most vipers, in that it results in local blistering, necrosis and sometimes life-threatening systemic haemorrhage. While effective against systemic envenoming, current antivenoms have little or no effect against local tissue damage. The major mediators of local venom pathology are the zinc-dependant snake venom metalloproteinases (SVMPs). The high degree of structural and functional homology between SVMPs and their mammalian relatives the matrix metalloproteinases (MMPs) suggests that substrate/inhibitor interactions between these subfamilies are likely to be analogous. In this study, four recently developed MMP inhibitors (MMPIs) (Marimastat, AG-3340, CGS-270 23A and Bay-12 9566) are evaluated in addition to three metal ion chelators (EDTA, TPEN and BAPTA) for their ability to inhibit the haemorrhagic activities of the medically important E. ocellatus venom and one of its haemorrhagic SVMPs, EoVMP2. As expected, the metal ion chelators significantly inhibited the haemorrhagic activities of both whole E. ocellatus venom and EoVMP2, while the synthetic MMPIs show more variation in their efficacies. These variations suggest that individual MMPIs show specificity towards SVMPs and that their application to the neutralization of local haemorrhage may require a synthetic MMPI mixture, ensuring that a close structural component for each SVMP is represented. PMID:17196631

  17. Purification and characterization of patagonfibrase, a metalloproteinase showing alpha-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom.

    PubMed

    Peichoto, M E; Teibler, P; Mackessy, S P; Leiva, L; Acosta, O; Gonçalves, L R C; Tanaka-Azevedo, A M; Santoro, M L

    2007-05-01

    Venoms of Colubridae snakes are a rich source of novel compounds, which may have applications in medicine and biochemistry. In the present study, we describe the purification and characterization of a metalloproteinase (patagonfibrase), the first protein to be isolated from Philodryas patagoniensis (Colubridae) snake venom. Patagonfibrase is a single-chain protein, showing a molecular mass of 53,224 Da and an acidic isoelectric point (5.8). It hydrolyzed selectively the Aalpha-chain of fibrinogen and when incubated with fibrinogen or plasma, the thrombin clotting time was prolonged. Prominent hemorrhage developed in mouse skin after intradermal injection of patagonfibrase. When administered into mouse gastrocnemius muscle, it induced local hemorrhage and necrosis, and systemic bleeding in lungs. Patagonfibrase showed proteolytic activity toward azocasein, which was enhanced by Ca(2+) and inhibited by Zn(2+), cysteine, dithiothreitol and Na(2)EDTA. Patagonfibrase impaired platelet aggregation induced by collagen and ADP. Thus, patagonfibrase may play a key role in the pathogenesis of disturbances that occur in P. patagoniensis envenomation, and may be used as a biological tool to explore many facets of hemostasis. PMID:17306461

  18. Snake venomics of Macrovipera mauritanica from Morocco, and assessment of the para-specific immunoreactivity of an experimental monospecific and a commercial antivenoms.

    PubMed

    Makran, Bouchra; Fahmi, Laila; Pla, Davinia; Sanz, Libia; Oukkache, Naoual; Lkhider, Mustapha; Ghalim, Noreddine; Calvete, Juan J

    2012-04-18

    Proteomic analysis of the venom of the medically relevant snake Macrovipera mauritanica from Morocco revealed a complex proteome composed of at least 45 toxins from 9 protein families targeting the hemostatic system of the prey or victim. The toxin profile of Moroccan M. mauritanica displays great similarity, but also worth noting departures, with the previously reported venom proteome of M. lebetina from Tunisia. Despite fine compositional differences between these Macrovipera taxa, their overall venom phenotypes explain the clinical picture observed in M. mauritanica and M. lebetina envenomings. However, M. mauritanica venom also contains significant amounts of orphan molecules whose presence in the venom seems to be difficult to rationalize in the context of a predator-prey arms race. The paraspecific immunoreactivity of an experimental monospecific (M. mauritanica) antivenom and a commercial bivalent antivenom, anti-C. cerastes and anti-M. lebetina, against the venoms of Moroccan M. mauritanica and Tunisian M. lebetina, was also investigated through an affinity chromatography-based antivenomics approach. Both antivenoms very efficiently immunodepleted homologous venom toxins and displayed a high degree of paraspecificity, suggesting the clinical utility of the two antivenoms for treating bites of both M. mauritanica or M. lebetina. PMID:22387317

  19. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin

    PubMed Central

    Lomonte, Bruno; Sasa, Mahmood; Rey-Suárez, Paola; Bryan, Wendy; Gutiérrez, José María

    2016-01-01

    Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a ‘venomics’ approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A2 (PLA2; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, ‘intermediate’ type within the dichotomy between 3FTx- and PLA2-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA2 venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema. PMID:27164141

  20. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake) venom

    PubMed Central

    Leão, Luciana I; Ho, Paulo L; Junqueira-de-Azevedo, Inacio de LM

    2009-01-01

    Background Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. Results A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A2 (PLA2s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA2) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. Conclusion Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a

  1. Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum.

    PubMed

    Neves-Ferreira, Ana G C; Perales, Jonas; Fox, Jay W; Shannon, John D; Makino, Débora L; Garratt, Richard C; Domont, Gilberto B

    2002-04-12

    DM43, an opossum serum protein inhibitor of snake venom metalloproteinases, has been completely sequenced, and its disulfide bond pattern has been experimentally determined. It shows homology to human alpha(1)B-glycoprotein, a plasma protein of unknown function and a member of the immunoglobulin supergene family. Size exclusion and dynamic laser light scattering data indicated that two monomers of DM43, each composed of three immunoglobulin-like domains, associated to form a homodimer in solution. Analysis of its glycan moiety showed the presence of N-acetylglucosamine, mannose, galactose, and sialic acid, most probably forming four biantennary N-linked chains. DM43 inhibited the fibrinogenolytic activities of bothrolysin and jararhagin and formed 1:1 stoichiometric stable complexes with both metalloproteinases. DM43 was ineffective against atrolysin C or A. No complex formation was detected between DM43 and jararhagin C, indicating the essential role of the metalloproteinase domain for interaction. Homology modeling based on the crystal structure of a killer cell inhibitory receptor suggested the existence of an I-type Ig fold, a hydrophobic dimerization surface and six surface loops potentially forming the metalloproteinase-binding surface on DM43. PMID:11815628

  2. Micrurus snake species: Venom immunogenicity, antiserum cross-reactivity and neutralization potential.

    PubMed

    Tanaka, Gabriela D; Sant'Anna, Osvaldo Augusto; Marcelino, José Roberto; Lustoza da Luz, Ana Cristina; Teixeira da Rocha, Marisa Maria; Tambourgi, Denise V

    2016-07-01

    Micrurus snakebites can cause death by muscle paralysis and respiratory arrest a few hours after envenomation. The specific treatment for these snake envenomations is the intravenous application of heterologous antivenom. In Brazil, this antivenom is produced from horses that are immunized with a mixture of Micrurus corallinus and Micrurus frontalis venoms, which are snakes that inhabit the south and southeastern regions of the country. Previously, we demonstrated that the coral antivenom, which is used in human therapy, was not able to neutralize several of the toxic venom effects from some Micrurus species that inhabit the country, as measured by in vitro and in vivo assays. The present study aimed to investigate the immunogenic properties of Micrurus spp. venoms, as well as the cross-reactivity and neutralization potential of experimental monovalent and polyvalent sera that were produced in different animal species. The present data showed that Micrurus venoms exhibited the same immunogenicity pattern in the three utilized animal species and that the specific antisera presented a large cross-reactivity when analyzed with ELISA and Western blot assays. Nonetheless, these positive results were not well correlated with the neutralizing potential of the antisera. Thus, the establishment of a new antigenic mixture to produce novel more efficient therapeutic Micrurus antivenom is not a simple task. Further studies, particularly with the Micrurus lemniscatus, Micrurus altirostris and Micrurus surinamensis venoms, are necessary to establish new strategies for the production of antivenoms with broad neutralizing activity for the treatment of accidents involving coral snakes throughout the country. PMID:27045363

  3. A retrospective study of use of polyvalent anti-snake venom and risk factors for mortality from snake bite in a tertiary care setting

    PubMed Central

    Pore, Shraddha M.; Ramanand, Sunita J.; Patil, Praveenkumar T.; Gore, Alka D.; Pawar, Mayur P.; Gaidhankar, Smita L.; Ghanghas, Ravi R.

    2015-01-01

    Aims: Envenomation with poisonous snakes is associated with considerable morbidity and mortality. The present study was undertaken with the objectives of assessing anti-snake venom (ASV) use, early adverse reactions to ASV, premedication and clinical outcomes in snake bite patients. Association of various risk factors (age, gender, dose of ASV, time gap between snake bite and ASV administration, use of mechanical ventilation and type of snake bite) with mortality was also assessed. Settings and Design: This retrospective study was conducted at two Tertiary Care Teaching Hospitals. Subjects and Methods: The medical records of 176 patients of snake bite with documented use of ASV were retrospectively analyzed to retrieve relevant data. Statistical Analysis: Descriptive statistics was used to express results about ASV use, early adverse reactions to ASV, premedication and clinical outcomes. Univariate and multivariate analysis was performed to find out significant risk factors associated with mortality. Results: The main indication for ASV was vasculotoxic snake bite (75%) followed by neurotoxic snake bite (16%). Mean dose of ASV was 18.63 ± 14.52 vials. Prophylactic premedication with corticosteroids alone or in combination with antihistaminic was used in more than 70% patients. Early adverse reactions to ASV were seen in 4% patients. Neurotoxic snake bite was a significant risk factor associated with mortality in multivariate analysis. Conclusions: Neurotoxic snake bite is an independent predictor of mortality in snake bite patients. Currently used polyvalent ASV may be less effective in treating neurotoxic snake bite. PMID:26069363

  4. Purification and characterization of a hemorrhagic metalloproteinase from Bothrops lanceolatus (Fer-de-lance) snake venom.

    PubMed

    Stroka, Alessandra; Donato, José L; Bon, Cassian; Hyslop, Stephen; de Araújo, Albetiza Lôbo

    2005-03-15

    Bothrops snake venoms contain metalloproteinases that contribute to the local effects seen after envenoming. In this work, a hemorrhagic metalloproteinase (BlaH1) was purified from the venom of the snake Bothrops lanceolatus by a combination of gel filtration, affinity (metal chelating) and hydrophobic interaction chromatographies. The hemorrhagin was homogeneous by SDS-PAGE and had a molecular mass of 28 kDa that was unaltered by treatment with beta-mercaptoethanol. BlaH1 gave a single band in immunoelectrophoresis and immunoblotting using commercial bothropic antivenom. BlaH1 had hemorrhagic, caseinolytic, fibrinogenolytic, collagenolytic and elastinolytic activities, but no phospholipase A(2) activity. The hemorrhagic and caseinolytic activities were inhibited by EDTA, indicating that they were metal ion-dependent. In contrast, aprotinin, benzamidine and PMSF did not affect these activities. The caseinolytic activity of BlaH1 had a pH optimum of 8.0 and was stable in solution at up to 40 degrees C; activity was completely lost at > or =70 degrees C. The hemorrhagic activity was neutralized by commercial bothropic antivenom. These properties suggest that this new hemorrhagin belongs to class P-I snake venom metalloproteinases. PMID:15733562

  5. Antigenic cross-reactivity and species-specific identification of Pseudocerastes persicus fieldi snake venom.

    PubMed

    Ibrahim, Nihal M; El-Kady, Ebtsam M

    2016-09-01

    In the present study, we recognized progressively high immunological cross-reactivity between Pseudocerastes persicus fieldi (Pf) venom and six other medically important Egyptian snake venoms belonging to families Viperidae and Elapidae. Antibodies with a range of bonding strengths were shown to be involved in such cross-reactivity. Two strategies have been tried to access specificity; (i) using affinity purified species-specific anti-Pf antivenom antibodies, (ii) conducting the assay in the presence of ammonium thiocyanate (NH4SCN). The discrimination power of the prepared species-specific antivenom was demonstrated by its ability to detect Pf venom over a range of Pf concentrations (2.5 ng-2.5 μg) in a variety of body fluids. The assay could distinguish circulating Pf antigens from other viper antigens in the whole blood of experimentally envenomed mice. What seems promising in our work is the use of the chaotrope, NH4SCN, which renders the reaction medium more favorable for the specific homologous antigen-antibody interactions, primarily via preventing lower avid antibodies to share and, to a bit lesser extent, by decreasing non-specific absorbance signals frequently encountered with ELISA assays. The ELISA described herein may be useful for clinicians for identification of snake bites inflicted by Pf snake species. Balancing between specificity and sensitivity has to be considered for best results. PMID:27319296

  6. Diversity of metalloproteinases in Bothrops neuwiedi snake venom transcripts: evidences for recombination between different classes of SVMPs

    PubMed Central

    2011-01-01

    Background Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post-translational modifications. Results Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5' ends, suggesting post-transcription events for interclass recombination. In addition, catalytic domain of P-IIx sequences segregated with non-hemorrhagic class P-III SVMPs while their disintegrin domain grouped with other class P-II disintegrin domains suggesting independent evolution of catalytic and disintegrin domains. Complementary regions within cDNA sequences were noted and may participate in recombination either at DNA or RNA levels. Proteins predicted by these cDNAs show the main features of the correspondent classes of SVMP, but P-IIb and P-IIx included two additional cysteines cysteines at the C-termini of the disintegrin domains in positions not yet described. Conclusions In B. neuwiedi venom gland

  7. Antivenom Cross-Neutralization of the Venoms of Hydrophis schistosus and Hydrophis curtus, Two Common Sea Snakes in Malaysian Waters

    PubMed Central

    Tan, Choo Hock; Tan, Nget Hong; Tan, Kae Yi; Kwong, Kok Onn

    2015-01-01

    Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays. PMID:25690691

  8. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters.

    PubMed

    Tan, Choo Hock; Tan, Nget Hong; Tan, Kae Yi; Kwong, Kok Onn

    2015-02-01

    Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays. PMID:25690691

  9. Effects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation

    PubMed Central

    Mora, Javier; Mora, Rodrigo; Lomonte, Bruno; Gutiérrez, José María

    2008-01-01

    Background Envenomations by the snake Bothrops asper represent a serious medical problem in Central America and parts of South America. These envenomations concur with drastic local tissue pathology, including a prominent edema. Since lymph flow plays a role in the maintenance of tissue fluid balance, the effect of B. asper venom on collecting lymphatic vessels was studied. Methodology/Principal Findings B. asper venom was applied to mouse mesentery, and the effects were studied using an intravital microscopy methodology coupled with an image analysis program. B. asper venom induced a dose-dependent contraction of collecting lymphatic vessels, resulting in a reduction of their lumen and in a halting of lymph flow. The effect was reproduced by a myotoxic phospholipase A2 (PLA2) homologue isolated from this venom, but not by a hemorrhagic metalloproteinase or a coagulant thrombin-like serine proteinase. In agreement with this, treatment of the venom with fucoidan, a myotoxin inhibitor, abrogated the effect, whereas no inhibition was observed after incubation with the peptidomimetic metalloproteinase inhibitor Batimastat. Moreover, fucoidan significantly reduced venom-induced footpad edema. The myotoxic PLA2 homologue, known to induce skeletal muscle necrosis, was able to induce cytotoxicity in smooth muscle cells in culture and to promote an increment in the permeability to propidium iodide in these cells. Conclusions/Significance Our observations indicate that B. asper venom affects collecting lymphatic vessels through the action of myotoxic PLA2s on the smooth muscle of these vessels, inducing cell contraction and irreversible cell damage. This activity may play an important role in the pathogenesis of the pronounced local edema characteristic of viperid snakebite envenomation, as well as in the systemic biodistribution of the venom, thus representing a potential therapeutical target in these envenomations. PMID:18923712

  10. Aqueous Leaf Extract of Jatropha gossypiifolia L. (Euphorbiaceae) Inhibits Enzymatic and Biological Actions of Bothrops jararaca Snake Venom

    PubMed Central

    Félix-Silva, Juliana; Souza, Thiago; Menezes, Yamara A. S.; Cabral, Bárbara; Câmara, Rafael B. G.; Silva-Junior, Arnóbio A.; Rocha, Hugo A. O.; Rebecchi, Ivanise M. M.; Zucolotto, Silvana M.; Fernandes-Pedrosa, Matheus F.

    2014-01-01

    Snakebites are a serious public health problem due their high morbi-mortality. The main available specific treatment is the antivenom serum therapy, which has some disadvantages, such as poor neutralization of local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies is relevant. Therefore, the aim of this study was to evaluate the antiophidic properties of Jatropha gossypiifolia, a medicinal plant used in folk medicine to treat snakebites. The aqueous leaf extract of the plant was prepared by decoction and phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins. The extract was able to inhibit enzymatic and biologic activities induced by Bothrops jararaca snake venom in vitro and in vivo. The blood incoagulability was efficiently inhibited by the extract by oral route. The hemorrhagic and edematogenic local effects were also inhibited, the former by up to 56% and the latter by 100%, in animals treated with extract by oral and intraperitoneal routes, respectively. The inhibition of myotoxic action of B. jararaca reached almost 100%. According to enzymatic tests performed, it is possible to suggest that the antiophidic activity may be due an inhibitory action upon snake venom metalloproteinases (SVMPs) and/or serine proteinases (SVSPs), including fibrinogenolytic enzymes, clotting factors activators and thrombin like enzymes (SVTLEs), as well upon catalytically inactive phospholipases A2 (Lys49 PLA2). Anti-inflammatory activity, at least partially, could also be related to the inhibition of local effects. Additionally, protein precipitating and antioxidant activities may also be important features contributing to the activity presented. In conclusion, the results demonstrate the potential antiophidic activity of J. gossypiifolia extract, including its significant action upon local effects, suggesting that

  11. Action of two phospholipases A2 purified from Bothrops alternatus snake venom on macrophages.

    PubMed

    Setúbal, S S; Pontes, A S; Furtado, J L; Xavier, C V; Silva, F L; Kayano, A M; Izidoro, L F M; Soares, A M; Calderon, L A; Stábeli, R G; Zuliani, J P

    2013-02-01

    The in vitro effects of BaltTX-I, a catalytically inactive Lys49 variant of phospholipase A2 (PLA2), and BaltTX-II, an Asp49 catalytically active PLA2 isolated from Bothrops alternatus snake venom, on thioglycollate-elicited macrophages (TG-macrophages) were investigated. At non-cytotoxic concentrations, the secretory PLA2 BaltTX-I but not BaltTX-II stimulated complement receptor-mediated phagocytosis. Pharmacological treatment of TG-macrophages with staurosporine, a protein kinase C (PKC) inhibitor, showed that this kinase is involved in the increase of serum-opsonized zymosan phagocytosis induced by BaltTX-I but not BaltTX-II secretory PLA2, suggesting that PKC may be involved in the stimulatory effect of this toxin in serum-opsonized zymosan phagocytosis. Moreover, BaltTX-I and -II induced superoxide production by TG-macrophages. This superoxide production stimulated by both PLA2s was abolished after treatment of cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Our experiments showed that, at non-cytotoxic concentrations, BaltTX-I may upregulate phagocytosis via complement receptors, and that both toxins upregulated the respiratory burst in TG-macrophages. PMID:23581990

  12. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  13. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells.

    PubMed

    Hammouda, Manel B; Montenegro, María F; Sánchez-Del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  14. Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin.

    PubMed

    Corrêa, Mário César; Maria, Durvanei A; Moura-da-Silva, Ana M; Pizzocaro, Kazumi F; Ruiz, Itamar R G

    2002-06-01

    Skmel-28 human melanoma cells were treated with jararhagin (Jara), a metalloproteinase disintegrin isolated from Bothrops jararaca snake venom, and Jari (Jara with the catalytic domain inactivated). Following treatments, monolayer cells lost cytoplasmic expansions acquiring round shapes, detached and formed cell clusters in suspension. Cytotoxicity effect of Jari was dramatically increased at concentrations higher than 0.4 microM, whereas cell adhesion responses did not differ significantly between similar concentrations of Jara and Jari. Treated cells were significantly inhibited to adhere to non-coated wells, as to ECM proteins-coated plates. Migration and invasion were also significantly inhibited in vitro. A decreased proliferation rate was observed in toxin-treated cells. Immunofluorescence staining showed a wide distribution of Jari across the cells. Jara treated cells (67.5%) steady bound anti-jara antibodies after 90 min, while Jari treated cells steady bound only after 6h (57.3%), as determined by FACS. Skmel-28 melanoma cells tumorigenicity was evaluated 180 days after s.c. injections in AIRmin mice. A statistically significant decrease in the ability of Jara and Jari treated cells to promote lung metastasis was observed. These results point to the potential use of this toxin as a tool for applied researches in the clinical field. PMID:12175610

  15. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography.

    PubMed

    Brgles, Marija; Kurtović, Tihana; Kovačič, Lidija; Križaj, Igor; Barut, Miloš; Lang Balija, Maja; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time. PMID:24217948

  16. Systemic pathological alterations caused by Philodryas patagoniensis colubrid snake venom in rats.

    PubMed

    Peichoto, María Elisa; Teibler, Pamela; Ruíz, Raquel; Leiva, Laura; Acosta, Ofelia

    2006-10-01

    Very little is known about the systemic effects caused by Philodryas patagoniensis colubrid snake venom. In this work, this venom was tested for its ability to induce histopathological changes in rats after its intramuscular, subcutaneous or intravenous administration, by light microscopic examination of some organs (cerebellum, cerebrum, lung, liver, kidney and heart). Four rats were used for each dose of 0.23, 0.45 and 0.90 mg of venom in 0.3 ml of phosphate-buffered saline solution (pH 7.4). Aliquots of blood were withdrawn at different time intervals for enzymatic determination of alanine aminotransferase, aspartate aminotransferase and creatine kinase levels. After 2h the animals were killed by an overdose of anesthetic, and samples of kidney, heart, liver, lung, cerebrum and cerebellum were taken to microscopic examination (hematoxylin and eosin stain). Histologically, no abnormality was observed in heart tissue, in none of the administration routes of the venom used. However, histological observations showed multifocal hemorrhage in cerebellum, cerebrum and lung sections, severe peritubular capillary congestion in kidney sections and hydropic degeneration in liver sections, when venom was administrated intravenously. The subcutaneous route showed similar results to the previous one, with the exception of cerebellar hemorrhage. Intramuscularly, neither cerebral nor cerebellar hemorrhage was observed. Plasma alanine aminotransferase and aspartate aminotransferase increased levels were demonstrated, mainly when venom was administered intravenously or subcutaneously. Our results suggest that P. patagoniensis venom induces moderate histopathological changes in vital organs of rats. These changes are initiated at early stages of the envenomation and may be associated with a behavioral or functional abnormality of those organs during envenoming. PMID:16911815

  17. Uncovering intense protein diversification in a cone snail venom gland using an integrative venomics approach.

    PubMed

    Biass, Daniel; Violette, Aude; Hulo, Nicolas; Lisacek, Frédérique; Favreau, Philippe; Stöcklin, Reto

    2015-02-01

    Marine cone snail venoms are highly complex mixtures of peptides and proteins. They have been studied in-depth over the past 3 decades, but the modus operandi of the venomous apparatus still remains unclear. Using the fish-hunting Conus consors as a model, we present an integrative venomics approach, based on new proteomic results from the venom gland and data previously obtained from the transcriptome and the injectable venom. We describe here the complete peptide content of the dissected venom by the identification of numerous new peptides using nanospray tandem mass spectrometry in combination with transcriptomic data. Results reveal extensive mature peptide diversification mechanisms at work in the venom gland. In addition, by integrating data from three different venom stages, transcriptome, dissected, and injectable venoms, from a single species, we obtain a global overview of the venom processing that occurs from the venom gland tissue to the venom delivery step. In the light of the successive steps in this venom production system, we demonstrate that each venom compartment is highly specific in terms of peptide and protein content. Moreover, the integrated investigative approach discussed here could become an essential part of pharmaceutical development, as it provides new potential drug candidates and opens the door to numerous analogues generated by the very mechanisms used by nature to diversify its peptide and protein arsenal. PMID:25536169

  18. Neurological effects of venomous bites and stings: snakes, spiders, and scorpions.

    PubMed

    Del Brutto, Oscar H

    2013-01-01

    Snake and spider bites, as well as scorpion sting envenoming, are neglected diseases affecting millions of people all over the world. Neurological complications vary according to the offending animal, and are often directly related to toxic effects of the venom, affecting the central nervous system, the neuromuscular transmission, the cardiovascular system, or the coagulation cascade. Snake bite envenoming may result in stroke or muscle paralysis. Metalloproteinases and other substances (common in vipers and colubrids) have anticoagulant or procoagulant activity, and may induce ischemic or hemorrhagic strokes. The venom of elapids is rich in neurotoxins affecting the neuromuscular transmission at either presynaptic or postsynaptic levels. The clinical picture of scorpion sting envenoming is dominated by muscle weakness associated with arterial hypertension, cardiac arrythmias, myocarditis, or pulmonary edema. These manifestations occur as the result of release of catecholamines into the bloodstream or due to direct cardiac toxicity of the venom. Cerebrovascular complications have been reported after the sting of the Indian red scorpion. Intracranial hemorrhages occur in the setting of acute increases in arterial blood pressure related to sympathetic overstimulation, and cerebral infarctions are related to either cerebral hypoperfusion, consumption coagulopathy, vasculitis, or cardiogenic brain embolism. Three main syndromes result from spider bite envenoming: latrodectism, loxoscelism, and funnel-web spider envenoming. Latrodectism is related to neurotoxins present in the venom of widow spiders. Most cases present with headache, lethargy, irritability, myalgia, tremor, fasciculation, or ataxia. Loxoscelism is caused by envenoming by spiders of the family Sicariidae. It may present with a stroke due to a severe coagulopathy. The venom of funnel-web spiders also has neurotoxins that stimulate neurotransmitter release, resulting in sensory disturbances and muscle

  19. Presynaptic and postsynaptic effects of the venom of the Australian tiger snake at the neuromuscular junction

    PubMed Central

    Datyner, M. E.; Gage, P. W.

    1973-01-01

    1. Crude venom (TSV) from the Australian tiger snake (Notechis scutatus scutatus) has both presynaptic and postsynaptic effects at the neuromuscular junctions of toads. 2. TSV (50 μg/ml) rapidly blocked indirectly elicited muscle twitches without affecting the compound action potential in the sciatic nerve or twitches elicited by direct stimulation. 3. Low concentrations of the venom (1-10 μg/ml) reduced the amplitude of miniature endplate potentials (m.e.p.ps) and inhibited the depolarization of muscle fibres normally caused by carbachol. It was concluded that a fraction of the venom binds to acetylcholine receptors. 4. The frequency of m.e.p.ps was at first increased by TSV at a concentration of 1 μg/ml. Occasional, high frequency `bursts' of m.e.p.ps were recorded in some preparations. The mean frequency of m.e.p.ps appeared to fall after several hours in the venom. 5. The quantal content of endplate potentials (e.p.ps) was reduced by the venom. With low concentrations (1 μg/ml), an initial increase in quantal content was often seen. When the quantal content was markedly depressed there was no parallel reduction in the amplitude of nerve terminal spikes recorded extracellularly, though a later fall in size and slowing of time course was often seen. 6. There was evidence that TSV eventually changed the normal Poisson characteristics of the spontaneous release of quanta and this may be correlated with electronmicroscopic changes in nerve terminals. 7. Tiger snake antivenene counteracted the postsynaptic, but not the presynaptic effects of TSV when they had developed. PMID:4367126

  20. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice.

    PubMed

    Pung, Yuh Fen; Wong, Peter T H; Kumar, Prakash P; Hodgson, Wayne C; Kini, R Manjunatha

    2005-04-01

    We have identified, purified, and determined the complete amino acid sequence of a novel protein, ohanin from Ophiophagus hannah (king cobra) venom. It is a small protein containing 107 amino acid residues with a molecular mass of 11951.47 +/- 0.67 Da as assessed by electrospray ionization-mass spectrometry. It does not show similarity to any known families of snake venom proteins and hence is the first member of a new family of snake venom proteins. It shows similarity to PRY and SPRY domain proteins. It is nontoxic up to 10 mg/kg when injected intraperitoneally in mice. Ohanin produced statistically significant and dose-dependent hypolocomotion in mice. In a pain threshold assay, it showed dose-dependent hyperalgesic effect. The ability of the protein to elicit a response at greatly reduced doses when injected intracerebroventricularly as compared with intraperitoneal administration in both the locomotion and hot plate experiments strongly suggests that ohanin acts on the central nervous system. Since the natural abundance of the protein in the venom is low (approximately 1 mg/g), a synthetic gene was constructed and expressed. The recombinant protein, which was obtained in the insoluble fraction in Escherichia coli, was purified under denaturing condition and was refolded. Recombinant ohanin is structurally and functionally similar to native protein as determined by circular dichroism and hot plate assay, suggesting that it will be useful in future structure-function relationship studies. PMID:15668253

  1. Biochemical characterization of a factor X activator protein purified from Walterinnesia aegyptia venom.

    PubMed

    Khan, Sami U; Al-Saleh, Saad S

    2015-10-01

    Factor X of blood coagulation cascade can be activated by both intrinsic and extrinsic activating complex, trypsin and some kind of snake venom. A factor X activator protein is reported in Elapidae snake venom. The aim of this study was to evaluate biochemical properties of factor X activator protein because of its prospective application in biochemical research and therapeutics. Crude venom was fractionated on a HPLC system Gold 126/1667 using a combination of Protein PAK 125 and Protein PAK 60 Columns. Molecular weight was determined using SDS-PAGE. Walterinnesia aegyptia venom was fractionated into several protein peaks, but procoagulant and factor X activation activity coexisted into peak no.6. It appeared as single band on native PAGE and molecular weight was 60,000 ± 3. Purified up to 37-fold over crude venom. It shortened recalcification time, effect was dose-dependent and strictly Ca(2++)-dependent. Factor X activator seems to be able to activate factor X specifically because it showed no activation activity on human prothrombin, plasminogen, or protein C. It did not hydrolyze factor Xa substrate S-2222, thrombin substrate S-2238, plasmin substrate S-2251 or S-2302 and kalikrein substrate S-2266. It did not hydrolyze synthetic ester benzoyl arginine ethyl ester. Procoagulant activity was completely inhibited by irreversible serine protease inhibitors phenylmethylsulphonyl fluoride and N-p-tosylphenylalanine chloromethyl ketone. This study illustrates that factor X activator from W. aegyptia is though different in many aspects from factor X activators of Viperidae and Crotalidae venoms, but shows several properties identical to factor X activators from Elapidae venoms. PMID:26407136

  2. Functional Variability of Snake Venom Metalloproteinases: Adaptive Advantages in Targeting Different Prey and Implications for Human Envenomation

    PubMed Central

    Bernardoni, Juliana L.; Sousa, Leijiane F.; Wermelinger, Luciana S.; Lopes, Aline S.; Prezoto, Benedito C.; Serrano, Solange M. T.; Zingali, Russolina B.; Moura-da-Silva, Ana M.

    2014-01-01

    Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms. PMID:25313513

  3. Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites.

    PubMed

    Drabeck, Danielle H; Dean, Antony M; Jansa, Sharon A

    2015-06-01

    Honey badgers (Mellivora capensis) prey upon and survive bites from venomous snakes (Family: Elapidae), but the molecular basis of their venom resistance is unknown. The muscular nicotinic cholinergic receptor (nAChR), targeted by snake α-neurotoxins, has evolved in some venom-resistant mammals to no longer bind these toxins. Through phylogenetic analysis of mammalian nAChR sequences, we show that honey badgers, hedgehogs, and pigs have independently acquired functionally equivalent amino acid replacements in the toxin-binding site of this receptor. These convergent amino acid changes impede toxin binding by introducing a positively charged amino acid in place of an uncharged aromatic residue. In venom-resistant mongooses, different replacements at these same sites are glycosylated, which is thought to disrupt binding through steric effects. Thus, it appears that resistance to snake venom α-neurotoxin has evolved at least four times among mammals through two distinct biochemical mechanisms operating at the same sites on the same receptor. PMID:25796346

  4. Are ticks venomous animals?

    PubMed Central

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. Conclusions Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary

  5. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding.

    PubMed

    Gutiérrez, José María; Escalante, Teresa; Rucavado, Alexandra; Herrera, Cristina

    2016-04-01

    The historical development of discoveries and conceptual frames for understanding the hemorrhagic activity induced by viperid snake venoms and by hemorrhagic metalloproteinases (SVMPs) present in these venoms is reviewed. Histological and ultrastructural tools allowed the identification of the capillary network as the main site of action of SVMPs. After years of debate, biochemical developments demonstrated that all hemorrhagic toxins in viperid venoms are zinc-dependent metalloproteinases. Hemorrhagic SVMPs act by initially hydrolyzing key substrates at the basement membrane (BM) of capillaries. This degradation results in the weakening of the mechanical stability of the capillary wall, which becomes distended owing of the action of the hemodynamic biophysical forces operating in the circulation. As a consequence, the capillary wall is disrupted and extravasation occurs. SVMPs do not induce rapid toxicity to endothelial cells, and the pathological effects described in these cells in vivo result from the mechanical action of these hemodynamic forces. Experimental evidence suggests that degradation of type IV collagen, and perhaps also perlecan, is the key event in the onset of microvessel damage. It is necessary to study this phenomenon from a holistic, systemic perspective in which the action of other venom components is also taken into consideration. PMID:27023608

  6. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding †

    PubMed Central

    Gutiérrez, José María; Escalante, Teresa; Rucavado, Alexandra; Herrera, Cristina

    2016-01-01

    The historical development of discoveries and conceptual frames for understanding the hemorrhagic activity induced by viperid snake venoms and by hemorrhagic metalloproteinases (SVMPs) present in these venoms is reviewed. Histological and ultrastructural tools allowed the identification of the capillary network as the main site of action of SVMPs. After years of debate, biochemical developments demonstrated that all hemorrhagic toxins in viperid venoms are zinc-dependent metalloproteinases. Hemorrhagic SVMPs act by initially hydrolyzing key substrates at the basement membrane (BM) of capillaries. This degradation results in the weakening of the mechanical stability of the capillary wall, which becomes distended owing of the action of the hemodynamic biophysical forces operating in the circulation. As a consequence, the capillary wall is disrupted and extravasation occurs. SVMPs do not induce rapid toxicity to endothelial cells, and the pathological effects described in these cells in vivo result from the mechanical action of these hemodynamic forces. Experimental evidence suggests that degradation of type IV collagen, and perhaps also perlecan, is the key event in the onset of microvessel damage. It is necessary to study this phenomenon from a holistic, systemic perspective in which the action of other venom components is also taken into consideration. PMID:27023608

  7. Correlation between annual activity patterns of venomous snakes and rural people in the Niger Delta, southern Nigeria

    PubMed Central

    2013-01-01

    Background Venomous snakes are among the most serious health hazards for rural people in tropical regions of the world. Herein we compare the monthly activity patterns of eight venomous snake species (Elapidae and Viperidae) with those of rural people in the Niger Delta area of southern Nigeria, in order to identify the periods of highest potential risk for persons, and the human group actually at greater risk of snakebite. Results We documented that above-ground activity of all venomous snakes peaked in the wet season, and that high snake activity and high human activity were most highly correlated between April and August. In addition, we documented that women and teenagers were at relatively higher risk of encountering a venomous snake than adult males, despite they are less often in the field than men. Conclusions Our results suggest that future programs devoted to mitigate the social and health effects of snakebites in the Niger Delta region should involve especially women and teenagers, with ad-hoc education projects if appropriate. We urge that international organizations working on social and health problems in the developing world, such as IRD, DFID, UNDP, should provide advice through specific programs targeted at especially these categories which have been highlighted in comparatively potential higher threat from snakebites than adult men. PMID:23849681

  8. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational Peptide design.

    PubMed

    Villalta-Romero, Fabián; Gortat, Anna; Herrera, Andrés E; Arguedas, Rebeca; Quesada, Javier; de Melo, Robson Lopes; Calvete, Juan J; Montero, Mavis; Murillo, Renato; Rucavado, Alexandra; Gutiérrez, José María; Pérez-Payá, Enrique

    2012-07-12

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  9. Identification of New Snake Venom Metalloproteinase Inhibitors Using Compound Screening and Rational Peptide Design

    PubMed Central

    2012-01-01

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  10. Purification and Biochemical Characterization of Three Myotoxins from Bothrops mattogrossensis Snake Venom with Toxicity against Leishmania and Tumor Cells

    PubMed Central

    de Moura, Andréa A.; Kayano, Anderson M.; Oliveira, George A.; Setúbal, Sulamita S.; Ribeiro, João G.; Barros, Neuza B.; Nicolete, Roberto; Moura, Laura A.; Fuly, Andre L.; Nomizo, Auro; da Silva, Saulo L.; Fernandes, Carla F. C.; Zuliani, Juliana P.; Stábeli, Rodrigo G.; Soares, Andreimar M.; Calderon, Leonardo A.

    2014-01-01

    Bothrops mattogrossensis snake is widely distributed throughout eastern South America and is responsible for snakebites in this region. This paper reports the purification and biochemical characterization of three new phospholipases A2 (PLA2s), one of which is presumably an enzymatically active Asp49 and two are very likely enzymatically inactive Lys49 PLA2 homologues. The purification was obtained after two chromatographic steps on ion exchange and reverse phase column. The 2D SDS-PAGE analysis revealed that the proteins have pI values around 10, are each made of a single chain, and have molecular masses near 13 kDa, which was confirmed by MALDI-TOF mass spectrometry. The N-terminal similarity analysis of the sequences showed that the proteins are highly homologous with other Lys49 and Asp49 PLA2s from Bothrops species. The PLA2s isolated were named BmatTX-I (Lys49 PLA2-like), BmatTX-II (Lys49 PLA2-like), and BmatTX-III (Asp49 PLA2). The PLA2s induced cytokine release from mouse neutrophils and showed cytotoxicity towards JURKAT (leukemia T) and SK-BR-3 (breast adenocarcinoma) cell lines and promastigote forms of Leishmania amazonensis. The structural and functional elucidation of snake venoms components may contribute to a better understanding of the mechanism of action of these proteins during envenomation and their potential pharmacological and therapeutic applications. PMID:24724078

  11. Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focussed in vitro studies.

    PubMed

    Maduwage, Kalana; Silva, Anjana; O'Leary, Margaret A; Hodgson, Wayne C; Isbister, Geoffrey K

    2016-01-01

    In vitro antivenom efficacy studies were compared to rodent lethality studies to test two Indian snake antivenoms (VINS and BHARAT) against four Sri Lankan snakes. In vitro efficacy was tested at venom concentrations consistent with human envenoming. Efficacy was compared statistically for one batch from each manufacturer where multiple vials were available. In binding studies EC50 for all VINS antivenoms were less than BHARAT for D. russelii [553 μg/mL vs. 1371 μg/mL;p = 0.016), but were greater for VINS antivenoms compared to BHARAT for N. naja [336 μg/mL vs. 70 μg/mL;p < 0.0001]. EC50 of both antivenoms was only slighty different for E. carinatus and B. caeruleus. For procoagulant activity neutralisation, the EC50 was lower for VINS compared to BHARAT - 60 μg/mL vs. 176 μg/mL (p < 0.0001) for Russell's viper and 357 μg/mL vs. 6906μg/mL (p < 0.0001) for Saw-scaled viper. Only VINS antivenom neutralized in vitro neurotoxicity of krait venom. Both antivenoms partially neutralized cobra and didn't neutralize Russell's viper neurotoxicity. Lethality studies found no statistically significant difference in ED50 values between VINS and BHARAT antivenoms. VINS antivenoms appeared superior to BHARAT at concentrations equivalent to administering 10 vials antivenom, based on binding and neutralisation studies. Lethality studies were inconsistent suggesting rodent death may not measure relevant efficacy outcomes in humans. PMID:27231196

  12. Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focussed in vitro studies

    PubMed Central

    Maduwage, Kalana; Silva, Anjana; O’Leary, Margaret A.; Hodgson, Wayne C.; Isbister, Geoffrey K.

    2016-01-01

    In vitro antivenom efficacy studies were compared to rodent lethality studies to test two Indian snake antivenoms (VINS and BHARAT) against four Sri Lankan snakes. In vitro efficacy was tested at venom concentrations consistent with human envenoming. Efficacy was compared statistically for one batch from each manufacturer where multiple vials were available. In binding studies EC50 for all VINS antivenoms were less than BHARAT for D. russelii [553 μg/mL vs. 1371 μg/mL;p = 0.016), but were greater for VINS antivenoms compared to BHARAT for N. naja [336 μg/mL vs. 70 μg/mL;p < 0.0001]. EC50 of both antivenoms was only slighty different for E. carinatus and B. caeruleus. For procoagulant activity neutralisation, the EC50 was lower for VINS compared to BHARAT - 60 μg/mL vs. 176 μg/mL (p < 0.0001) for Russell’s viper and 357 μg/mL vs. 6906μg/mL (p < 0.0001) for Saw-scaled viper. Only VINS antivenom neutralized in vitro neurotoxicity of krait venom. Both antivenoms partially neutralized cobra and didn’t neutralize Russell’s viper neurotoxicity. Lethality studies found no statistically significant difference in ED50 values between VINS and BHARAT antivenoms. VINS antivenoms appeared superior to BHARAT at concentrations equivalent to administering 10 vials antivenom, based on binding and neutralisation studies. Lethality studies were inconsistent suggesting rodent death may not measure relevant efficacy outcomes in humans. PMID:27231196

  13. Fatal presumed tiger snake (Notechis scutatus) envenomation in a cat with measurement of venom and antivenom concentration.

    PubMed

    Padula, Andrew M; Winkel, Kenneth D

    2016-04-01

    A fatal outcome of a presumed tiger snake (Notechis scutatus) envenomation in a cat is described. Detectable venom components and antivenom concentrations in serum from clotted and centrifuged whole blood and urine were measured using a sensitive and specific ELISA. The cat presented in a paralysed state with a markedly elevated serum CK but with normal clotting times. The cat was treated with intravenous fluids and received two vials of equine whole IgG bivalent (tiger and brown snake) antivenom. Despite treatment the cat's condition did not improve and it died 36 h post-presentation. Serum concentration of detectable tiger snake venom components at initial presentation was 311 ng/mL and urine 832 ng/mL, this declined to non-detectable levels in serum 15-min after intravenous antivenom. Urine concentration of detectable tiger snake venom components declined to 22 ng/mL at post-mortem. Measurement of equine anti-tiger snake venom specific antibody demonstrated a concentration of 7.2 Units/mL in serum at post-mortem which had declined from an initial high of 13 Units/mL at 15-min post-antivenom. The ELISA data demonstrated the complete clearance of detectable venom components from serum with no recurrence in the post-mortem samples. Antivenom concentrations in serum at initial presentation were at least 100-fold higher than theoretically required to neutralise the circulating concentrations of venom. Despite the fatal outcome in this case it was concluded that this was unlikely that is was due to insufficient antivenom. PMID:26836396

  14. Biochemical and monolayer characterization of Tunisian snake venom phospholipases.

    PubMed

    Baîram, Douja; Aissa, Imen; Louati, Hanen; Othman, Houcemeddine; Abdelkafi-Koubaa, Zaineb; Krayem, Najeh; El Ayeb, Mohamed; Srairi-Abid, Najet; Marrakchi, Naziha; Gargouri, Youssef

    2016-08-01

    The present study investigated the kinetic and interfacial properties of two secreted phospholipases isolated from Tunisian vipers'venoms: Cerastes cerastes (CC-PLA2) and Macrovipera lebetina transmediterranea (MVL-PLA2). Results show that these enzymes have great different abilities to bind and hydrolyse phospholipids. Using egg-yolk emulsions as substrate at pH 8, we found that MVL-PLA2 has a specific activity of 1473U/mg at 37°C in presence of 1mM CaCl2. Furthermore the interfacial kinetic and binding data indicate that MVL-PLA2 has a preference to the zwitterionic phosphatidylcholine monolayers (PC). Conversely, CC-PLA2 was found to be able to hydrolyse preferentially negatively charged head group phospholipids (PG and PS) and exhibits a specific activity 9 times more important (13333U/mg at 60°C in presence of 3mM CaCl2). Molecular models of both CC-PLA2 and MVL-PLA2 3D structures have been built and their electrostatic potentials surfaces have been calculated. A marked anisotropy of the overall electrostatic charge distribution leads to a significantly difference in the dipole moment intensity between the two enzymes explaining the great differences in catalytic and binding properties, which seems to be governed by the electrostatic and hydrophobic forces operative at the surface of the two phospholipases. PMID:27164498

  15. Snake venom toxins. Purification and properties of low-molecular-weight polypeptides of Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1976-10-01

    Twelve low-molecular-weight proteins, of which eleven have subcutaneous LD50 values of less than 40 mug/g mouse, were purified from Dendroaspis polylepis polylepis venom. Ion-exchange chromatography on Amberlite CG-50 and ion-exchange chromatography on carboxymethyl-cellulose and/or phosphocellulose was used for the purification. The amino-terminal sequences of these proteins were determined and used to indicate that five groups of low-molecular-weight polypeptides are to be found in black mamba venom. Proteins from two of these groups which have low toxicity individually, when used together show synergism, in that their toxicity in combination is greater than the sum of their individual toxicities. PMID:991854

  16. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox

    PubMed Central

    Guércio, Rafael AP; Shevchenko, Anna; Shevchenko, Andrej; López-Lozano, Jorge L; Paba, Jaime; Sousa, Marcelo V; Ricart, Carlos AO

    2006-01-01

    Background Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Previous studies have demonstrated that the biological and pharmacological activities of B. atrox venom alter with the age of the animal. Here, we present a comparative proteome analysis of B. atrox venom collected from specimens of three different stages of maturation: juveniles, sub-adults and adults. Results Optimized conditions for two-dimensional gel electrophoresis (2-DE) of pooled venom samples were achieved using immobilized pH gradient (IPG) gels of non-linear 3–10 pH range during the isoelectric focusing step and 10–20% gradient polyacrylamide gels in the second dimension. Software-assisted analysis of the 2-DE gels images demonstrated differences in the number and intensity of spots in juvenile, sub-adult and adult venoms. Although peptide mass fingerprinting (PMF) failed to identify even a minor fraction of spots, it allowed us to group spots that displayed similar peptide maps. The spots were subjected to a combination of tandem mass spectrometry and Mascot and MS BLAST database searches that identified several classes of proteins, including metalloproteinases, serine proteinases, lectins, phospholipases A2, L-amino oxidases, nerve growth factors, vascular endothelial growth factors and cysteine-rich secretory proteins. Conclusion The analysis of B. atrox samples from specimens of different ages by 2-DE and mass spectrometry suggested that venom proteome alters upon ontogenetic development. We identified stage specific and differentially expressed polypeptides that may be responsible for the activities of the venom in each developmental stage. The results provide insight into the molecular basis of the relation between symptomatology of snakebite accidents in humans and the venom composition. Our findings underscore the importance of the use of venoms from individual specimen at various stages of maturation for the production of

  17. Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors.

    PubMed

    Asega, Amanda F; Oliveira, Ana K; Menezes, Milene C; Neves-Ferreira, Ana Gisele C; Serrano, Solange M T

    2014-03-01

    Snake venom metalloproteinases (SVMPs) play important roles in the local and systemic hemorrhage observed upon envenomation. In a previous study on the structural elements important for the activities of HF3 (highly hemorrhagic, P-III-SVMP), bothropasin (hemorrhagic, P-III-SVMP) and BJ-PI (non-hemorrhagic, P-I-SVMP), from Bothrops jararaca, it was demonstrated that they differ in their proteolysis profile of plasma and extracellular matrix proteins. In this study, we evaluated the ability of proteins DM43 and α2-macroglobulin to interfere with the proteolytic activity of these SVMPs on fibrinogen and collagen VI and with their ability to induce hemorrhage. DM43 inhibited the proteolytic activity of bothropasin and BJ-PI but not that of HF3, and was not cleaved the three proteinases. On the other hand, α2-macroglobulin did not inhibit any of the proteinases and was rather cleaved by them. In agreement with these findings, binding analysis showed interaction of bothropasin and BJ-PI but not HF3 to DM43 while none of the proteinases bound to α2-macroglobulin. Moreover, DM43 promoted partial inhibition of the hemorrhagic activity of bothropasin but not that of HF3. Our results demonstrate that metalloproteinases of B. jararaca venom showing different domain composition, glycosylation level and hemorrhagic potency show variable susceptibilities to protein inhibitors. PMID:24433992

  18. Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model.

    PubMed

    Jiménez, Natalia; Escalante, Teresa; Gutiérrez, José María; Rucavado, Alexandra

    2008-10-01

    Viperid snakebite envenomation induces blistering and dermonecrosis. The pathological alterations induced by a snake venom metalloproteinase in the skin were investigated in a mouse ear model. Metalloproteinase BaP1, from Bothrops asper, induced rapid edema, hemorrhage, and blistering; the latter two effects were abrogated by preincubation with the metalloproteinase inhibitor batimastat. Neutrophils did not play a role in the pathology, as depletion of these cells resulted in a similar histological picture. Blisters are likely to result from the direct proteolytic activity of BaP1 of proteins at the dermal-epidermal junction, probably at the lamina lucida, as revealed by immunostaining for type IV collagen and laminin. Widespread apoptosis of keratinocytes was detected by the TUNEL assay, whereas no apoptosis of capillary endothelial cells was observed. BaP1 induced a drastic reduction in the microvessel density, revealed by immunostaining for the endothelial marker vascular endothelial growth factor receptor-2. This was followed by a rapid angiogenic response, leading to a partial revascularization. Skin damage was followed by inflammation and granulation tissue formation. Then, a successful re-epithelization process occurred, and the skin of the ear regained its normal structure by 2 weeks. Venom metalloproteinase-induced skin damage reproduces the pathological changes described in snakebitten patients. PMID:18449209

  19. BbMP-1, a new metalloproteinase isolated from Bothrops brazili snake venom with in vitro antiplasmodial properties.

    PubMed

    Kayano, Anderson M; Simões-Silva, Rodrigo; Medeiros, Patrícia S M; Maltarollo, Vinícius G; Honorio, Kathia M; Oliveira, Eliandre; Albericio, Fernando; da Silva, Saulo L; Aguiar, Anna Caroline C; Krettli, Antoniana U; Fernandes, Carla F C; Zuliani, Juliana P; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M

    2015-11-01

    This study describes the biochemical and functional characterization of a new metalloproteinase named BbMP-1, isolated from Bothrops brazili venom. BbMP-1 was homogeneous on SDS-PAGE, presented molecular mass of 22,933Da and pI 6.4. The primary structure was partially elucidated with high identity with others metalloproteinases from Viperidae venoms. The enzymatic activity on azocasein was evaluated in different experimental conditions (pH, temperature). A significant reduction in enzyme activity after exposure to chelators of divalent cations (EDTA), reducing agents (DTT), pH less than 5.0 or temperatures higher than 45 °C was observed. BbMP-1 showed activity on fibrinogen degrading Aα chain quickly and to a lesser extent the Bβ chain. Also demostrated to be weakly hemorrhagic, presenting however, significant myotoxic and edematogenic activity. The in vitro activity of BbMP-1 against Plasmodium falciparum showed an IC50 of 3.2 ± 2.0 μg/mL. This study may help to understand the pathophysiological effects induced by this group of toxin and their participation in the symptoms observed in cases of snake envenomation. Moreover, this result is representative for this group of proteins and shows the biotechnological potential of BbMP-1 by the demonstration of its antiplasmodial activity. PMID:26363289

  20. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    PubMed

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. PMID:21130107

  1. The electric fence for preventing invasion of Trimeresurus flavoviridis, Habu, the venomous snake.

    PubMed

    Hayashi, Y; Tanaka, H; Wada, Y; Mishima, S

    1983-06-01

    For the purpose of preventing invasion of Trimeresurus flavoviridis, Habu, the venomous snake, the effect of an electric fence made of hollow tile blocks or polyethylene net was examined in 3 villages on Amamioshima and Tokunoshima islands in the southernmost area of Japan. The electric pulses were supplied by a pulse maker at 0.75 sec. intervals with 480 mA, 0.13 m coulombs at a load of 500 ohms and estimated peak of 8 to 10 kV. The anode from a pulse maker was connected to a stainless steel plate or a metal string woven in a vinyl rope on the fence and the cathode was grounded. The power to the pulse maker was generated by silicon solar cells, stored in a car battery and regulated by an electric eye switch to activate it at night. The necessary height of the fence to prevent Habu from slithering over the fence was experimentally determined to be 60 cm. In 3 villages, 6.75 ha were enclosed with 1000 m fence, 13.7 ha with 2100 m and 23.8 ha with 2500 m, respectively. The effect of the electric fence was remarkable as determined by the annual monitoring of the number of snakes sighted by people and the captivity rate in box traps inside the fence. The number of snakes found annually in Tean Village was 10 before construction and 5, 4, 5 after construction; 119 before construction 55, 20, 20 after construction at Tete; and 109 and 82 before construction and 15 and 11 after construction at Todoroki. The snakes were observed to aggregate outside the fence. The net barrier could be constructed at any topographical conditions with less expense. The effect was further pronounced when snakes were removed by box trap and other methods from inside the fenced area. PMID:6663807

  2. Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica.

    PubMed

    Laines, Johana; Segura, Álvaro; Villalta, Mauren; Herrera, María; Vargas, Mariángela; Alvarez, Gladys; Gutiérrez, José María; León, Guillermo

    2014-09-01

    The toxicological profile of the venoms of the snakes Bothrops asper and Bothrops atrox from Ecuador was investigated, together with the venom of a population of B. asper formerly classified as 'Bothrops xanthogrammus'. The three venoms exerted lethal, hemorrhagic, myotoxic, coagulant and defibrinogenating effects, in agreement with the characteristic toxicological profile of Bothrops sp venoms. A polyspecific antivenom (bothropic-crotalic-lachesic) manufactured in Costa Rica was assessed for its preclinical efficacy against the toxic activities of these Ecuadorian venoms. Antivenom was effective in the neutralization of the five activities tested in the three venoms. These observations are in agreement with previous reports on the extensive cross-reactivity and paraspecific neutralization of antivenoms manufactured in Latin America against the venoms of Bothrops sp snakes. PMID:24950051

  3. Respiratory Effects of Sarafotoxins from the Venom of Different Atractaspis Genus Snake Species

    PubMed Central

    Malaquin, Stéphanie; Bayat, Sam; Abou Arab, Osama; Mourier, Gilles; Lorne, Emmanuel; Kamel, Saïd; Dupont, Hervé; Ducancel, Frédéric; Mahjoub, Yazine

    2016-01-01

    Sarafotoxins (SRTX) are endothelin-like peptides extracted from the venom of snakes belonging to the Atractaspididae family. A recent in vivo study on anesthetized and ventilated animals showed that sarafotoxin-b (SRTX-b), extracted from the venom of Atractaspis engaddensis, decreases cardiac output by inducing left ventricular dysfunction while sarafotoxin-m (SRTX-m), extracted from the venom of Atractaspis microlepidota microlepidota, induces right ventricular dysfunction with increased airway pressure. The aim of the present experimental study was to compare the respiratory effects of SRTX-m and SRTX-b. Male Wistar rats were anesthetized, tracheotomized and mechanically ventilated. They received either a 1 LD50 IV bolus of SRTX-b (n = 5) or 1 LD50 of SRTX-m (n = 5). The low-frequency forced oscillation technique was used to measure respiratory impedance. Airway resistance (Raw), parenchymal damping (G) and elastance (H) were determined from impedance data, before and 5 min after SRTX injection. SRTX-m and SRTX-b injections induced acute hypoxia and metabolic acidosis with an increased anion gap. Both toxins markedly increased Raw, G and H, but with a much greater effect of SRTX-b on H, which may have been due to pulmonary edema in addition to bronchoconstriction. Therefore, despite their structural analogy, these two toxins exert different effects on respiratory function. These results emphasize the role of the C-terminal extension in the in vivo effect of these toxins. PMID:27409637

  4. Nomenclatural instability in the venomous snakes of the Bothrops complex: Implications in toxinology and public health.

    PubMed

    Carrasco, Paola Andrea; Venegas, Pablo Javier; Chaparro, Juan Carlos; Scrocchi, Gustavo José

    2016-09-01

    Since nomenclature is intended to reflect the evolutionary history of organisms, advances in our understanding of historical relationships may lead to changes in classification, and thus potentially in taxonomic instability. An unstable nomenclature for medically important animals like venomous snakes is of concern, and its implications in venom/antivenom research and snakebite treatment have been extensively discussed since the 90´s. The taxonomy of the pitvipers of the Bothrops complex has been historically problematic and different genus-level rearrangements were proposed to rectify the long-standing paraphyly of the group. Here we review the toxinological literature on the Bothrops complex to estimate the impact of recent proposals of classification in non-systematic research. This assessment revealed moderate levels of nomenclatural instability in the last five years, and the recurrence of some practices discussed in previous studies regarding the use of classifications and the information provided about the origin of venom samples. We briefly comment on a few examples and the implications of different proposals of classifications for the Bothrops complex. The aim of this review is to contribute to the reduction of adverse effects of current taxonomic instability in a group of medical importance in the Americas. PMID:27242040

  5. Respiratory Effects of Sarafotoxins from the Venom of Different Atractaspis Genus Snake Species.

    PubMed

    Malaquin, Stéphanie; Bayat, Sam; Abou Arab, Osama; Mourier, Gilles; Lorne, Emmanuel; Kamel, Saïd; Dupont, Hervé; Ducancel, Frédéric; Mahjoub, Yazine

    2016-01-01

    Sarafotoxins (SRTX) are endothelin-like peptides extracted from the venom of snakes belonging to the Atractaspididae family. A recent in vivo study on anesthetized and ventilated animals showed that sarafotoxin-b (SRTX-b), extracted from the venom of Atractaspis engaddensis, decreases cardiac output by inducing left ventricular dysfunction while sarafotoxin-m (SRTX-m), extracted from the venom of Atractaspis microlepidota microlepidota, induces right ventricular dysfunction with increased airway pressure. The aim of the present experimental study was to compare the respiratory effects of SRTX-m and SRTX-b. Male Wistar rats were anesthetized, tracheotomized and mechanically ventilated. They received either a 1 LD50 IV bolus of SRTX-b (n = 5) or 1 LD50 of SRTX-m (n = 5). The low-frequency forced oscillation technique was used to measure respiratory impedance. Airway resistance (Raw), parenchymal damping (G) and elastance (H) were determined from impedance data, before and 5 min after SRTX injection. SRTX-m and SRTX-b injections induced acute hypoxia and metabolic acidosis with an increased anion gap. Both toxins markedly increased Raw, G and H, but with a much greater effect of SRTX-b on H, which may have been due to pulmonary edema in addition to bronchoconstriction. Therefore, despite their structural analogy, these two toxins exert different effects on respiratory function. These results emphasize the role of the C-terminal extension in the in vivo effect of these toxins. PMID:27409637

  6. Unmasking venom gland transcriptomes in reptile venoms.

    PubMed

    Chen, Tianbao; Bjourson, Anthony J; Orr, David F; Kwok, HangFai; Rao, Pingfan; Ivanyi, Craig; Shaw, Chris

    2002-12-15

    While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna. PMID:12470674

  7. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    PubMed Central

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  8. Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: biochemical and toxicological characterization.

    PubMed

    Fernández, Julián; Gutiérrez, José María; Angulo, Yamileth; Sanz, Libia; Juárez, Paula; Calvete, Juan J; Lomonte, Bruno

    2010-03-01

    Phospholipases A(2) (PLA(2)) are major components of snake venoms, exerting a variety of relevant toxic actions such as neurotoxicity and myotoxicity, among others. Since the majority of toxic PLA(2)s are basic proteins, acidic isoforms and their possible roles in venoms are less understood. In this study, an acidic enzyme (BaspPLA(2)-II) was isolated from the venom of Bothrops asper (Pacific region of Costa Rica) and characterized. BaspPLA(2)-II is monomeric, with a mass of 14,212 +/- 6 Da and a pI of 4.9. Its complete sequence of 124 amino acids was deduced through cDNA and protein sequencing, showing that it belongs to the Asp49 group of catalytically active enzymes. In vivo and in vitro assays demonstrated that BaspPLA(2)-II, in contrast to the basic Asp49 counterparts present in the same venom, lacks myotoxic, cytotoxic, and anticoagulant activities. BaspPLA(2)-II also differed from other acidic PLA(2)s described in Bothrops spp. venoms, as it did not show hypotensive and anti-platelet aggregation activities. Furthermore, this enzyme was not lethal to mice at intravenous doses up to 100 microg (5.9 microg/g), indicating its lack of neurotoxic activity. The only toxic effect recorded in vivo was a moderate induction of local edema. Therefore, the toxicological characteristics of BaspPLA(2)-II suggest that it does not play a key role in the pathophysiology of envenomings by B. asper, and that its purpose might be restricted to digestive functions. Immunochemical analyses using antibodies raised against BaspPLA(2)-II revealed that acidic and basic PLA(2)s form two different antigenic groups in B. asper venom. PMID:20026168

  9. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    PubMed

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N W; Casewell, Nicholas R; Undheim, Eivind A B; Vidal, Nicolas; Ali, Syed A; King, Glenn F; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363

  10. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

    PubMed Central

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N. W.; Casewell, Nicholas R.; Undheim, Eivind A. B.; Vidal, Nicolas; Ali, Syed A.; King, Glenn F.; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363