Science.gov

Sample records for sodium channel na

  1. Voltage-dependent sodium (NaV) channels in group IV sensory afferents

    PubMed Central

    Elmslie, Keith S

    2016-01-01

    Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex. PMID:27385723

  2. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    PubMed

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group. PMID:27584582

  3. Vinpocetine is a potent blocker of rat NaV1.8 tetrodotoxin-resistant sodium channels.

    PubMed

    Zhou, Xiaoping; Dong, Xiao-Wei; Crona, James; Maguire, Maureen; Priestley, Tony

    2003-08-01

    Vinpocetine is a clinically used synthetic vincamine derivative with a diverse pharmacological profile that includes action at several ion channels, principally "generic" populations of sodium channels that give rise to tetrodotoxin-sensitive conductances. A number of cell types are known to express tetrodotoxin-resistant (TTXr) sodium conductances, the molecular bases of which have remained elusive until recently. One such TTXr channel, termed NaV1.8, is of particular interest because of its prominent and selective expression in peripheral afferent nerves. The effects of vinpocetine on TTXr channels specifically, are unknown. We have assessed the effects of the drug on cloned rat NaV1.8 channels expressed in a dorsal root ganglion-derived cell line, ND7/23. Vinpocetine produced a concentration- and state-dependent inhibition of NaV1.8 sodium channel activity. Voltage-clamp experiments revealed an approximately 3-fold increase in vinpocetine potency when whole-cell NaV1.8 conductances were elicited from relatively depolarized potentials (-35 mV; IC50 = 3.5 microM) compared with hyperpolarized holding potentials (-90 mV; IC50 = 10.4 microM). Vinpocetine also produced an approximately 22 mV leftward shift in the voltage dependence of NaV1.8 channel inactivation but did not affect the voltage range of channel activation. These properties are reminiscent of several other known sodium channel blockers and suggested that vinpocetine may exhibit frequency-dependent block. Accordingly, tonic block of NaV1.8 channels by vinpocetine (3 microM) increased proportionally with increasing depolarizing commands over the frequency range 0.1 to 1Hz. In summary, the present data demonstrate that vinpocetine is capable of blocking NaV1.8 sodium channel activity and suggest a potential additional utility in various sensory abnormalities arising from abnormal peripheral nerve activity. PMID:12730276

  4. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel.

    PubMed Central

    Favre, I; Moczydlowski, E; Schild, L

    1996-01-01

    Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction. PMID:8968582

  5. Sodium channel Na(v)1.6 is expressed along nonmyelinated axons and it contributes to conduction.

    PubMed

    Black, Joel A; Renganathan, Muthukrishnan; Waxman, Stephen G

    2002-09-30

    Nodes of Ranvier in myelinated fibers exhibit a complex architecture in which specific molecules organize in distinct nodal, paranodal and juxtaparanodal domains to support saltatory conduction. The clustering of sodium channel Na(v)1.6 within the nodal membrane has led to its identification as the major nodal sodium channel in myelinated axons. In contrast, much less is known about the molecular architecture of nonmyelinated fibers. In the present study, Na(v)1.6 is shown to be a significant component of nonmyelinated PNS axons. In DRG C-fibers, Na(v)1.6 is distributed continuously from terminal receptor fields in the skin to the dorsal root entry zone in the spinal cord. Na(v)1.6 is also present in the nerve endings of corneal C-fibers. Analysis of compound action potential recordings from wildtype and med mice, which lack Na(v)1.6, indicates that Na(v)1.6 plays a functional role in nonmyelinated fibers where it contributes to action potential conduction. These observations indicate that Na(v)1.6 functions not only in saltatory conduction in myelinated axons but also in continuous conduction in nonmyelinated axons. PMID:12399104

  6. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents.

    PubMed

    Liu, Xiao-Ping; Wooltorton, Julian R A; Gaboyard-Niay, Sophie; Yang, Fu-Chia; Lysakowski, Anna; Eatock, Ruth Anne

    2016-05-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  7. Sodium Channel Inhibiting Marine Toxins

    NASA Astrophysics Data System (ADS)

    Llewellyn, Lyndon E.

    Saxitoxin (STX), tetrodotoxin (TTX) and their many chemical relatives are part of our daily lives. From killing people who eat seafood containing these toxins, to being valuable research tools unveiling the invisible structures of their pharmacological receptor, their global impact is beyond measure. The pharmacological receptor for these toxins is the voltage-gated sodium channel which transports Na ions between the exterior to the interior of cells. The two structurally divergent families of STX and TTX analogues bind at the same location on these Na channels to stop the flow of ions. This can affect nerves, muscles and biological senses of most animals. It is through these and other toxins that we have developed much of our fundamental understanding of the Na channel and its part in generating action potentials in excitable cells.

  8. Targeting Voltage Gated Sodium Channels NaV1.7, NaV1.8, and NaV1.9 for Treatment of Pathological Cough

    PubMed Central

    Muroi, Yukiko

    2015-01-01

    Recent advances in our understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that drugs capable of selective blockade of NaV subtypes may be a safe and effective strategy for the treatment of unwanted cough. Among the nine NaV subtypes (NaV1.1–NaV1.9), the afferent nerves involved in initiating cough, in common with nociceptive neurons in the somatosensory system, express mainly NaV1.7, NaV1.8, and NaV1.9. Although knowledge about the effect of selectively blocking these channels on the cough reflex is limited, their biophysical properties indicate that each may contribute to the hypertussive and allotussive state that typifies subacute and chronic nonproductive cough. PMID:24272479

  9. Distinct interactions of Na{sup +} and Ca{sup 2+} ions with the selectivity filter of the bacterial sodium channel Na{sub V}Ab

    SciTech Connect

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-25

    Highlights: ► Ca{sup 2+} translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na{sub V}Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca{sup 2+} ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na{sub V}Ab (Arcobacter butzleri) differentiates between Na{sup +} and Ca{sup 2+} ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S{sub CEN}) in the sodium channel selectivity filter.

  10. NaV1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons

    PubMed Central

    Frenz, Christopher T.; Hansen, Anne; Dupuis, Nicholas D.; Shultz, Nicole; Levinson, Simon R.; Finger, Thomas E.

    2014-01-01

    Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na+ channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na+ current. RT-PCR showed mRNAs for five of the nine different Na+ channel α-subunits in olfactory tissue; only one was tetrodotoxin resistant, the so-called cardiac subtype NaV1.5. Immunohistochemical analysis indicated that NaV1.5 is present in the apical knob of OSN dendrites but not in the axon. The NaV1.5 channels in OSNs exhibited two important features: 1) a half-inactivation potential near −100 mV, well below the resting potential, and 2) a window current centered near the resting potential. The negative half-inactivation potential renders most NaV1.5 channels in OSNs inactivated at the resting potential, while the window current indicates that the minor fraction of noninactivated NaV1.5 channels have a small probability of opening spontaneously at the resting potential. When the tetrodotoxin-sensitive Na+ channels were blocked by nanomolar tetrodotoxin at the resting potential, spontaneous firing was suppressed as expected. Furthermore, selectively blocking NaV1.5 channels with Zn2+ in the absence of tetrodotoxin also suppressed spontaneous firing, indicating that NaV1.5 channels are required for spontaneous activity despite resting inactivation. We propose that window currents produced by noninactivated NaV1.5 channels are one source of the generator potentials that trigger spontaneous firing, while the upstroke and propagation of action potentials in OSNs are borne by the tetrodotoxin-sensitive Na+ channel subtypes. PMID:24872539

  11. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Na{sub v}1.8 sodium channels expressed in Xenopus oocytes

    SciTech Connect

    Choi, J.-S.; Soderlund, David M. . E-mail: dms6@cornell.edu

    2006-03-15

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na{sub v}1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na{sub v}1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against

  12. Characterization of selectivity and pharmacophores of type 1 sea anemone toxins by screening seven Na(v) sodium channel isoforms.

    PubMed

    Zaharenko, André Junqueira; Schiavon, Emanuele; Ferreira, Wilson Alves; Lecchi, Marzia; de Freitas, José Carlos; Richardson, Michael; Wanke, Enzo

    2012-03-01

    During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, δ-AITX-Bcg1a and δ-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both δ-AITX-Bcg1a and δ-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5>1.6>1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and δ-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-S4 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than δ-AITX-Bcg1a and δ-AITX-Bcg1b. PMID:21802465

  13. Physiology and Pathophysiology of Sodium Channel Inactivation.

    PubMed

    Ghovanloo, M-R; Aimar, K; Ghadiry-Tavi, R; Yu, A; Ruben, P C

    2016-01-01

    Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications. PMID:27586293

  14. Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Na{sub v}1.6 sodium channels

    SciTech Connect

    Tan Jianguo; Soderlund, David M.

    2010-09-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}{sub 1} and {beta}{sub 2} auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 {mu}M), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were {approx} 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 {mu}M), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 {mu}M), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin {approx} 15-fold and that tefluthrin was {approx} 10-fold more potent than deltamethrin as a use-dependent modifier of Na{sub v}1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na{sub v}1.2 sodium channel coexpressed with the rat {beta}{sub 1} and {beta}{sub 2} subunits in oocytes showed that the Na{sub v}1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na{sub v}1.2 isoform. These results implicate sodium channels containing the Na{sub v}1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.

  15. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain

    PubMed Central

    Porreca, Frank; Lai, Josephine; Bian, Di; Wegert, Sandra; Ossipov, Michael H.; Eglen, Richard M.; Kassotakis, Laura; Novakovic, Sanja; Rabert, Douglas K.; Sangameswaran, Lakshmi; Hunter, John C.

    1999-01-01

    Alterations in sodium channel expression and function have been suggested as a key molecular event underlying the abnormal processing of pain after peripheral nerve or tissue injury. Although the relative contribution of individual sodium channel subtypes to this process is unclear, the biophysical properties of the tetrodotoxin-resistant current, mediated, at least in part, by the sodium channel PN3 (SNS), suggests that it may play a specialized, pathophysiological role in the sustained, repetitive firing of the peripheral neuron after injury. Moreover, this hypothesis is supported by evidence demonstrating that selective “knock-down” of PN3 protein in the dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury. In contrast, knock-down of NaN/SNS2 protein, a sodium channel that may be a second possible candidate for the tetrodotoxin-resistant current, appears to have no effect on nerve injury-induced behavioral responses. These data suggest that relief from chronic inflammatory or neuropathic pain might be achieved by selective blockade or inhibition of PN3 expression. In light of the restricted distribution of PN3 to sensory neurons, such an approach might offer effective pain relief without a significant side-effect liability. PMID:10393873

  16. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.

    PubMed

    Murray, Justin K; Ligutti, Joseph; Liu, Dong; Zou, Anruo; Poppe, Leszek; Li, Hongyan; Andrews, Kristin L; Moyer, Bryan D; McDonough, Stefan I; Favreau, Philippe; Stöcklin, Reto; Miranda, Les P

    2015-03-12

    NaV1.7 is a voltage-gated sodium ion channel implicated by human genetic evidence as a therapeutic target for the treatment of pain. Screening fractionated venom from the tarantula Grammostola porteri led to the identification of a 34-residue peptide, termed GpTx-1, with potent activity on NaV1.7 (IC50 = 10 nM) and promising selectivity against key NaV subtypes (20× and 1000× over NaV1.4 and NaV1.5, respectively). NMR structural analysis of the chemically synthesized three disulfide peptide was consistent with an inhibitory cystine knot motif. Alanine scanning of GpTx-1 revealed that residues Trp(29), Lys(31), and Phe(34) near the C-terminus are critical for potent NaV1.7 antagonist activity. Substitution of Ala for Phe at position 5 conferred 300-fold selectivity against NaV1.4. A structure-guided campaign afforded additive improvements in potency and NaV subtype selectivity, culminating in the design of [Ala5,Phe6,Leu26,Arg28]GpTx-1 with a NaV1.7 IC50 value of 1.6 nM and >1000× selectivity against NaV1.4 and NaV1.5. PMID:25658507

  17. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy.

    PubMed

    Yang, Linlin; Li, Quanmin; Liu, Xinming; Liu, Shiguang

    2016-01-01

    Diabetes mellitus (DM) is a common chronic medical problem worldwide; one of its complications is painful peripheral neuropathy, which can substantially erode quality of life and increase the cost of management. Despite its clinical importance, the pathogenesis of painful diabetic neuropathy (PDN) is complex and incompletely understood. Voltage-gated sodium channels (VGSCs) link many physiological processes to electrical activity by controlling action potentials in all types of excitable cells. Two isoforms of VGSCs, NaV1.3 and NaV1.7, which are encoded by the sodium voltage-gated channel alpha subunit 3 and 9 (Scn3A and Scn9A) genes, respectively, have been identified in both peripheral nociceptive neurons of dorsal root ganglion (DRG) and pancreatic islet cells. Recent advances in our understanding of tetrodotoxin-sensitive (TTX-S) sodium channels NaV1.3 and NaV1.7 lead to the rational doubt about the cause-effect relation between diabetes and painful neuropathy. In this review, we summarize the roles of NaV1.3 and NaV1.7 in islet cells and DRG neurons, discuss the link between DM and painful neuropathy, and present a model, which may provide a starting point for further studies aimed at identifying the mechanisms underlying diabetes and painful neuropathy. PMID:27608006

  18. Mice with an NaV1.4 sodium channel null allele have latent myasthenia, without susceptibility to periodic paralysis.

    PubMed

    Wu, Fenfen; Mi, Wentao; Fu, Yu; Struyk, Arie; Cannon, Stephen C

    2016-06-01

    Over 60 mutations of SCN4A encoding the NaV1.4 sodium channel of skeletal muscle have been identified in patients with myotonia, periodic paralysis, myasthenia, or congenital myopathy. Most mutations are missense with gain-of-function defects that cause susceptibility to myotonia or periodic paralysis. Loss-of-function from enhanced inactivation or null alleles is rare and has been associated with myasthenia and congenital myopathy, while a mix of loss and gain of function changes has an uncertain relation to hypokalaemic periodic paralysis. To better define the functional consequences for a loss-of-function, we generated NaV1.4 null mice by deletion of exon 12. Heterozygous null mice have latent myasthenia and a right shift of the force-stimulus relation, without evidence of periodic paralysis. Sodium current density was half that of wild-type muscle and no compensation by retained expression of the foetal NaV1.5 isoform was detected. Mice null for NaV1.4 did not survive beyond the second postnatal day. This mouse model shows remarkable preservation of muscle function and viability for haploinsufficiency of NaV1.4, as has been reported in humans, with a propensity for pseudo-myasthenia caused by a marginal Na(+) current density to support sustained high-frequency action potentials in muscle. PMID:27048647

  19. Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin.

    PubMed

    Reddy Chichili, Vishnu Priyanka; Xiao, Yucheng; Seetharaman, J; Cummins, Theodore R; Sivaraman, J

    2013-01-01

    The neuronal-voltage gated sodium channel (VGSC), Na(V)1.6, plays an important role in propagating action potentials along myelinated axons. Calmodulin (CaM) is known to modulate the inactivation kinetics of Na(V)1.6 by interacting with its IQ motif. Here we report the crystal structure of apo-CaM:Na(V)1.6IQ motif, along with functional studies. The IQ motif of Na(V)1.6 adopts an α-helical conformation in its interaction with the C-lobe of CaM. CaM uses different residues to interact with Na(V)1.6IQ motif depending on the presence or absence of Ca²⁺. Three residues from Na(V)1.6, Arg1902, Tyr1904 and Arg1905 were identified as the key common interacting residues in both the presence and absence of Ca²⁺. Substitution of Arg1902 and Tyr1904 with alanine showed a reduced rate of Na(V)1.6 inactivation in electrophysiological experiments in vivo. Compared with other CaM:Na(V) complexes, our results reveal a different mode of interaction for CaM:Na(V)1.6 and provides structural insight into the isoform-specific modulation of VGSCs. PMID:23942337

  20. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  1. Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8.

    PubMed

    Deuis, Jennifer R; Dekan, Zoltan; Inserra, Marco C; Lee, Tzong-Hsien; Aguilar, Marie-Isabel; Craik, David J; Lewis, Richard J; Alewood, Paul F; Mobli, Mehdi; Schroeder, Christina I; Henriques, Sónia Troeira; Vetter, Irina

    2016-05-27

    The μO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay. PMID:27026701

  2. Sustained inhibition of the NaV1.7 sodium channel by engineered dimers of the domain II binding peptide GpTx-1.

    PubMed

    Murray, Justin K; Biswas, Kaustav; Holder, J Ryan; Zou, Anruo; Ligutti, Joseph; Liu, Dong; Poppe, Leszek; Andrews, Kristin L; Lin, Fen-Fen; Meng, Shi-Yuan; Moyer, Bryan D; McDonough, Stefan I; Miranda, Les P

    2015-11-01

    Many efforts are underway to develop selective inhibitors of the voltage-gated sodium channel NaV1.7 as new analgesics. Thus far, however, in vitro selectivity has proved difficult for small molecules, and peptides generally lack appropriate pharmacokinetic properties. We previously identified the NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity via structure-guided analoging. To further understand GpTx-1 binding to NaV1.7, we have mapped the binding site to transmembrane segments 1-4 of the second pseudosubunit internal repeat (commonly referred to as Site 4) using NaV1.5/NaV1.7 chimeric protein constructs. We also report that select GpTx-1 amino acid residues apparently not contacting NaV1.7 can be derivatized with a hydrophilic polymer without adversely affecting peptide potency. Homodimerization of GpTx-1 with a bifunctional polyethylene glycol (PEG) linker resulted in a compound with increased potency and a significantly reduced off-rate, demonstrating the ability to modulate the function and properties of GpTx-1 by linking to additional molecules. PMID:26112439

  3. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  4. μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve

    PubMed Central

    Wilson, Michael J.; Yoshikami, Doju; Azam, Layla; Gajewiak, Joanna; Olivera, Baldomero M.; Bulaj, Grzegorz; Zhang, Min-Min

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are important for action potentials. There are seven major isoforms of the pore-forming and gate-bearing α-subunit (NaV1) of VGSCs in mammalian neurons, and a given neuron can express more than one isoform. Five of the neuronal isoforms, NaV1.1, 1.2, 1.3, 1.6, and 1.7, are exquisitely sensitive to tetrodotoxin (TTX), and a functional differentiation of these presents a serious challenge. Here, we examined a panel of 11 μ-conopeptides for their ability to block rodent NaV1.1 through 1.8 expressed in Xenopus oocytes. Although none blocked NaV1.8, a TTX-resistant isoform, the resulting “activity matrix” revealed that the panel could readily discriminate between the members of all pair-wise combinations of the tested isoforms. To examine the identities of endogenous VGSCs, a subset of the panel was tested on A- and C-compound action potentials recorded from isolated preparations of rat sciatic nerve. The results show that the major subtypes in the corresponding A- and C-fibers were NaV1.6 and 1.7, respectively. Ruled out as major players in both fiber types were NaV1.1, 1.2, and 1.3. These results are consistent with immunohistochemical findings of others. To our awareness this is the first report describing a qualitative pharmacological survey of TTX-sensitive NaV1 isoforms responsible for propagating action potentials in peripheral nerve. The panel of μ-conopeptides should be useful in identifying the functional contributions of NaV1 isoforms in other preparations. PMID:21652775

  5. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    SciTech Connect

    Hossain, Muhammad M.; Sonsalla, Patricia K.; Richardson, Jason R.

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  6. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.

    PubMed

    Du, Yu; Days, Emily; Romaine, Ian; Abney, Kris K; Kaufmann, Kristian; Sulikowski, Gary; Stauffer, Shaun; Lindsley, Craig W; Weaver, C David

    2015-06-17

    Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators. PMID:25879403

  7. Voltage gated sodium channels as drug discovery targets

    PubMed Central

    Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A

    2015-01-01

    Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477

  8. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain.

    PubMed

    Xie, W; Strong, J A; Zhang, J-M

    2015-04-16

    In the spinal nerve ligation (SNL) model of neuropathic pain, as in other pain models, abnormal spontaneous activity of myelinated sensory neurons occurs early and is essential for establishing pain behaviors and other pathologies. Sympathetic sprouting into the dorsal root ganglion (DRG) is observed after SNL, and sympathectomy reduces pain behavior. Sprouting and spontaneous activity may be mutually reinforcing: blocking neuronal activity reduces sympathetic sprouting, and sympathetic spouts functionally increase spontaneous activity in vitro. However, most studies in this field have used nonspecific methods to block spontaneous activity, methods that also block evoked and normal activity. In this study, we injected small inhibitory (si) RNA directed against the NaV1.6 sodium channel isoform into the DRG before SNL. This isoform can mediate high-frequency repetitive firing, like that seen in spontaneously active neurons. Local knockdown of NaV1.6 markedly reduced mechanical pain behaviors induced by SNL, reduced sympathetic sprouting into the ligated sensory ganglion, and blocked abnormal spontaneous activity and other measures of hyperexcitability in myelinated neurons in the ligated sensory ganglion. Immunohistochemical experiments showed that sympathetic sprouting preferentially targeted NaV1.6-positive neurons. Under these experimental conditions, NaV1.6 knockdown did not prevent or strongly alter single evoked action potentials, unlike previous less specific methods used to block spontaneous activity. NaV1.6 knockdown also reduced pain behaviors in another pain model, chronic constriction of the sciatic nerve, provided the model was modified so that the lesion site was relatively close to the siRNA-injected lumbar DRGs. The results highlight the relative importance of abnormal spontaneous activity in establishing both pain behaviors and sympathetic sprouting, and suggest that the NaV1.6 isoform may have value as a therapeutic target. PMID:25686526

  9. Functional Expression of Drosophila para Sodium Channels

    PubMed Central

    Warmke, Jeffrey W.; Reenan, Robert A.G.; Wang, Peiyi; Qian, Su; Arena, Joseph P.; Wang, Jixin; Wunderler, Denise; Liu, Ken; Kaczorowski, Gregory J.; Ploeg, Lex H.T. Van der; Ganetzky, Barry; Cohen, Charles J.

    1997-01-01

    The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. PMID:9236205

  10. Simulation analysis of intermodal sodium channel function

    NASA Astrophysics Data System (ADS)

    Zeng, Shangyou; Jung, Peter

    2008-12-01

    Although most sodium ion channels clustered in nodes of Ranvier provide the physiological basis for saltatory conduction, sodium ion channels cannot be excluded from internodal regions completely. The density of internodal sodium ion channels is of the order of 10/μm2 . The function of internodal sodium ion channels has been neglected for a long time; however, experimental and theoretical results show that internodal sodium ion channels play an important role in action potential propagation. In this paper, based on the compartment model, we investigate the function of internodal sodium ion channels. We find that internodal sodium ion channels can promote action potential propagation, enlarge the maximal internodal distance guaranteeing stable action potential propagation, and increase the propagation speed of action potentials. In this paper, we find an optimal conductance of internodal sodium ion channels (4-5mS/cm2) , which accords with the active internodal sodium ion conductance in a real myelinated axon. With the optimal conductance, the average sodium ion channel conductance of the axon is minimal, and the metabolic energy consumption due to ion channels is also minimal.

  11. Simulation analysis of intermodal sodium channel function.

    PubMed

    Zeng, Shangyou; Jung, Peter

    2008-12-01

    Although most sodium ion channels clustered in nodes of Ranvier provide the physiological basis for saltatory conduction, sodium ion channels cannot be excluded from internodal regions completely. The density of internodal sodium ion channels is of the order of 10/microm2. The function of internodal sodium ion channels has been neglected for a long time; however, experimental and theoretical results show that internodal sodium ion channels play an important role in action potential propagation. In this paper, based on the compartment model, we investigate the function of internodal sodium ion channels. We find that internodal sodium ion channels can promote action potential propagation, enlarge the maximal internodal distance guaranteeing stable action potential propagation, and increase the propagation speed of action potentials. In this paper, we find an optimal conductance of internodal sodium ion channels (4-5 mS/cm2), which accords with the active internodal sodium ion conductance in a real myelinated axon. With the optimal conductance, the average sodium ion channel conductance of the axon is minimal, and the metabolic energy consumption due to ion channels is also minimal. PMID:19256877

  12. Epithelial sodium channel modulates platelet collagen activation.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation. PMID:24679405

  13. Altered sodium channel-protein associations in critical illness myopathy

    PubMed Central

    2012-01-01

    Background During the acute phase of critical illness myopathy (CIM) there is inexcitability of skeletal muscle. In a rat model of CIM, muscle inexcitability is due to inactivation of sodium channels. A major contributor to this sodium channel inactivation is a hyperpolarized shift in the voltage dependence of sodium channel inactivation. The goal of the current study was to find a biochemical correlate of the hyperpolarized shift in sodium channel inactivation. Methods The rat model of CIM was generated by cutting the sciatic nerve and subsequent injections of dexamethasone for 7 days. Skeletal muscle membranes were prepared from gastrocnemius muscles, and purification and biochemical analyses carried out. Immunoprecipitations were performed with a pan-sodium channel antibody, and the resulting complexes probed in Western blots with various antibodies. Results We carried out analyses of sodium channel glycosylation, phosphorylation, and association with other proteins. Although there was some loss of channel glycosylation in the disease, as assessed by size analysis of glycosylated and de-glycosylated protein in control and CIM samples, previous work by other investigators suggest that such loss would most likely shift channel inactivation gating in a depolarizing direction; thus such loss was viewed as compensatory rather than causative of the disease. A phosphorylation site at serine 487 was identified on the NaV 1.4 sodium channel α subunit, but there was no clear evidence of altered phosphorylation in the disease. Co-immunoprecipitation experiments carried out with a pan-sodium channel antibody confirmed that the sodium channel was associated with proteins of the dystrophin associated protein complex (DAPC). This complex differed between control and CIM samples. Syntrophin, dystrophin, and plectin associated strongly with sodium channels in both control and disease conditions, while β-dystroglycan and neuronal nitric oxide synthase (nNOS) associated

  14. Sodium channels, inherited epilepsy, and antiepileptic drugs.

    PubMed

    Catterall, William A

    2014-01-01

    Voltage-gated sodium channels initiate action potentials in brain neurons, mutations in sodium channels cause inherited forms of epilepsy, and sodium channel blockers-along with other classes of drugs-are used in therapy of epilepsy. A mammalian voltage-gated sodium channel is a complex containing a large, pore-forming α subunit and one or two smaller β subunits. Extensive structure-function studies have revealed many aspects of the molecular basis for sodium channel structure, and X-ray crystallography of ancestral bacterial sodium channels has given insight into their three-dimensional structure. Mutations in sodium channel α and β subunits are responsible for genetic epilepsy syndromes with a wide range of severity, including generalized epilepsy with febrile seizures plus (GEFS+), Dravet syndrome, and benign familial neonatal-infantile seizures. These seizure syndromes are treated with antiepileptic drugs that offer differing degrees of success. The recent advances in understanding of disease mechanisms and sodium channel structure promise to yield improved therapeutic approaches. PMID:24392695

  15. Voltage-gated sodium channel Nav1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+/Ca2+ exchange

    PubMed Central

    Pappalardo, Laura W.; Samad, Omar A.; Black, Joel A.; Waxman, Stephen G.

    2014-01-01

    Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na+/Ca2+ exchanger (NCX), and by knockdown of Nav1.5 mRNA. We also show that astrocytes display a robust [Ca2+]i transient after mechanical injury and demonstrate that this [Ca2+]i response is also attenuated by TTX, KB-R7943, and Nav1.5 mRNA knockdown. Our results suggest that Nav1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca2+]i. PMID:24740847

  16. Sodium channels in astroglia and microglia.

    PubMed

    Pappalardo, Laura W; Black, Joel A; Waxman, Stephen G

    2016-10-01

    Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645. PMID:26919466

  17. Propranolol blocks cardiac and neuronal voltage-gated sodium channels.

    PubMed

    Wang, Dao W; Mistry, Akshitkumar M; Kahlig, Kristopher M; Kearney, Jennifer A; Xiang, Jizhou; George, Alfred L

    2010-01-01

    Propranolol is a widely used, non-selective β-adrenergic receptor antagonist with proven efficacy in treating cardiovascular disorders and in the prevention of migraine headaches. At plasma concentrations exceeding those required for β-adrenergic receptor inhibition, propranolol also exhibits anti-arrhythmic ("membrane stabilizing") effects that are not fully explained by β-blockade. Previous in vitro studies suggested that propranolol may have local anesthetic effects. We directly tested the effects of propranolol on heterologously expressed recombinant human cardiac (NaV1.5) and brain (NaV1.1, NaV1.2, NaV1.3) sodium channels using whole-cell patch-clamp recording. We found that block was not stereospecific as we observed approximately equal IC50 values for tonic and use-dependent block by R-(+) and S-(-) propranolol (tonic block: R: 21.4 μM vs S: 23.6 μM; use-dependent block: R: 2.7 μM vs S: 2.6 μM). Metoprolol and nadolol did not block NaV1.5 indicating that sodium channel block is not a class effect of β-blockers. The biophysical effects of R-(+)-propranolol on NaV1.5 and NaV1.1 resembled that of the prototypical local anesthetic lidocaine including the requirement for a critical phenylalanine residue (F1760 in NaV1.5) in the domain 4 S6 segment. Finally, we observed that brain sodium channels exhibited less sensitivity to R-(+)-propranolol than NaV1.5 channels. Our findings establish sodium channels as targets for propranolol and may help explain some beneficial effects of the drug in treating cardiac arrhythmias, and may explain certain adverse central nervous system effects. PMID:21833183

  18. Sodium channel Nax is a regulator in epithelial sodium homeostasis.

    PubMed

    Xu, Wei; Hong, Seok Jong; Zhong, Aimei; Xie, Ping; Jia, Shengxian; Xie, Zhong; Zeitchek, Michael; Niknam-Bienia, Solmaz; Zhao, Jingling; Porterfield, D Marshall; Surmeier, D James; Leung, Kai P; Galiano, Robert D; Mustoe, Thomas A

    2015-11-01

    The mechanisms by which the epidermis responds to disturbances in barrier function and restores homeostasis are unknown. With a perturbation of the epidermal barrier, water is lost, resulting in an increase in extracellular sodium concentration. We demonstrate that the sodium channel Nax functions as a sodium sensor. With increased extracellular sodium, Nax up-regulates prostasin, which results in activation of the sodium channel ENaC, resulting in increased sodium flux and increased downstream mRNA synthesis of inflammatory mediators. Nax is present in multiple epithelial tissues, and up-regulation of its downstream genes is found in hypertrophic scars. In animal models, blocking Nax expression results in improvement in scarring and atopic dermatitis-like symptoms, both of which are pathological conditions characterized by perturbations in barrier function. These findings support an important role for Nax in maintaining epithelial homeostasis. PMID:26537257

  19. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  20. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  1. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    SciTech Connect

    He, Bingjun; Soderlund, David M.

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293

  2. Modulation of voltage-gated K+ channels by the sodium channel β1 subunit

    PubMed Central

    Nguyen, Hai M.; Miyazaki, Haruko; Hoshi, Naoto; Smith, Brian J.; Nukina, Nobuyuki; Goldin, Alan L.; Chandy, K. George

    2012-01-01

    Voltage-gated sodium (NaV) and potassium (KV) channels are critical components of neuronal action potential generation and propagation. Here, we report that NaVβ1 encoded by SCN1b, an integral subunit of NaV channels, coassembles with and modulates the biophysical properties of KV1 and KV7 channels, but not KV3 channels, in an isoform-specific manner. Distinct domains of NaVβ1 are involved in modulation of the different KV channels. Studies with channel chimeras demonstrate that NaVβ1-mediated changes in activation kinetics and voltage dependence of activation require interaction of NaVβ1 with the channel’s voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel’s pore domain. A molecular model based on docking studies shows NaVβ1 lying in the crevice between the voltage-sensing and pore domains of KV channels, making significant contacts with the S1 and S5 segments. Cross-modulation of NaV and KV channels by NaVβ1 may promote diversity and flexibility in the overall control of cellular excitability and signaling. PMID:23090990

  3. Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel).

    PubMed Central

    Hruska-Hageman, Alesia M; Wemmie, John A; Price, Margaret P; Welsh, Michael J

    2002-01-01

    Neuronal members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family of cation channels include the mammalian brain Na(+) channel 1 (BNC1), acid-sensing ion channel (ASIC) and dorsal-root acid-sensing ion channel (DRASIC). Their response to acidic pH, their sequence similarity to nematode proteins involved in mechanotransduction and their modulation by neuropeptides suggest that they may function as receptors for a number of different stimuli. Using the yeast two-hybrid assay, we found that the PDZ domain-containing protein PICK1 (protein interacting with C kinase) interacts specifically with the C-termini of BNC1 and ASIC, but not DRASIC or the related alphaENaC or betaENaC. In both the yeast two-hybrid system and mammalian cells, deletion of the BNC1 and ASIC C-termini abolished the interaction with PICK1. Likewise, mutating the PDZ domain in PICK1 abolished its interaction with BNC1 and ASIC. In addition, in a heterologous expression system PICK1 altered the distribution of BNC1 channels; this effect was dependent on the PDZ domain of PICK1 and the C-terminus of BNC1. We found crude synaptosomal fractions of brain to be enriched in ASIC, suggesting a possible synaptic localization. Moreover, in transfected hippocampal neurons ASIC co-localized with PICK1 in a punctate pattern at synapses. These data suggest that PICK1 binds ASIC and BNC1 via its PDZ domain. This interaction may be important for the localization and/or function of these channels in both the central and peripheral nervous systems. PMID:11802773

  4. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.

    PubMed

    Henriques, Sónia Troeira; Deplazes, Evelyne; Lawrence, Nicole; Cheneval, Olivier; Chaousis, Stephanie; Inserra, Marco; Thongyoo, Panumart; King, Glenn F; Mark, Alan E; Vetter, Irina; Craik, David J; Schroeder, Christina I

    2016-08-12

    ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor. PMID:27311819

  5. Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels NaV1.2, 1.6 and 1.7

    PubMed Central

    Fiedler, Brian; Zhang, Min-Min; Buczek, Oga; Azam, Layla; Bulaj, Grzegorz; Norton, Raymond S; Olivera, Baldomero M; Yoshikami, Doju

    2009-01-01

    The excitotoxic conopeptide ι-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that ι-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel NaV1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent NaV1.1 through NaV1.7 co-expressed with the β1 subunit in Xenopus oocytes and NaV1.8 in dissociated mouse DRG neurons. The order of sensitivity to ι-RXIA was NaV1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of ι-RXIA-activity on NaV1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided kobs. The plot of kobs versus [ι-RXIA] was linear, consistent with a bimolecular reaction with a Kd of ~3 μM, close to the steady-state EC50 of ~2 μM. ι-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, ι-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than ι-RXIA on NaV1.6 and furthermore was inactive on NaV1.2. ι-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of NaV1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to ι-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands. PMID:18486102

  6. Cardiac Na Channels: Structure to Function.

    PubMed

    DeMarco, K R; Clancy, C E

    2016-01-01

    Heart rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. Opening of the primary cardiac voltage-gated sodium (NaV1.5) channel initiates cellular depolarization and the propagation of an electrical action potential that promotes coordinated contraction of the heart. The regularity of these contractile waves is critically important since it drives the primary function of the heart: to act as a pump that delivers blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. Perturbations to NaV1.5 may alter the structure, and hence the function, of the ion channel and are associated downstream with a wide variety of cardiac conduction pathologies, such as arrhythmias. PMID:27586288

  7. Alternative Splicing of an Insect Sodium Channel Gene Generates Pharmacologically Distinct Sodium Channels

    PubMed Central

    Tan, Jianguo; Liu, Zhiqi; Nomura, Yoshiko; Goldin, Alan L.; Dong, Ke

    2011-01-01

    Alternative splicing is a major mechanism by which potassium and calcium channels increase functional diversity in animals. Extensive alternative splicing of the para sodium channel gene and developmental regulation of alternative splicing have been reported in Drosophila species. Alternative splicing has also been observed for several mammalian voltage-gated sodium channel genes. However, the functional significance of alternative splicing of sodium channels has not been demonstrated. In this study, we identified three mutually exclusive alternative exons encoding part of segments 3 and 4 of domain III in the German cockroach sodium channel gene, paraCSMA. The splice site is conserved in the mouse, fish, and human Nav1.6 sodium channel genes, suggesting an ancient origin. One of the alternative exons possesses a stop codon, which would generate a truncated protein with only the first two domains. The splicing variant containing the stop codon is detected only in the PNS, whereas the other two full-size variants were detected in both the PNS and CNS. When expressed in Xenopus oocytes, the two splicing variants produced robust sodium currents, but with different gating properties, whereas the splicing variant with the stop codon did not produce any detectable sodium current. Furthermore, these two functional splicing variants exhibited a striking difference in sensitivity to a pyrethroid insecticide, deltamethrin. Exon swapping partially reversed the channel sensitivity to deltamethrin. Our results therefore provide the first evidence that alternative splicing of a sodium channel gene produces pharmacologically distinct channels. PMID:12097481

  8. Co-Localization of Sodium Channel Na[v]1.6 and the Sodium--Calcium Exchanger at Sites of Axonal Injury in the Spinal Cord in EAE

    ERIC Educational Resources Information Center

    Craner, Matthew J.; Hains, Bryan C.; Lo, Albert C.; Black, Joel A.; Waxman, Stephen G.

    2004-01-01

    Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for…

  9. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels.

    PubMed

    Vien, T N; DeCaen, P G

    2016-01-01

    This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features. PMID:27586280

  10. Molecular basis of ion permeability in a voltage-gated sodium channel.

    PubMed

    Naylor, Claire E; Bagnéris, Claire; DeCaen, Paul G; Sula, Altin; Scaglione, Antonella; Clapham, David E; Wallace, B A

    2016-04-15

    Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na(+) ≈ Li(+) ≫ K(+), Ca(2+), Mg(2+)) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones. PMID:26873592

  11. Mutant Sodium Channel for Tumor Therapy

    PubMed Central

    Tannous, Bakhos A; Christensen, Adam P; Pike, Lisa; Wurdinger, Thomas; Perry, Katherine F; Saydam, Okay; Jacobs, Andreas H; García-Añoveros, Jaime; Weissleder, Ralph; Sena-Esteves, Miguel; Corey, David P; Breakefield, Xandra O

    2009-01-01

    Viral vectors have been used to deliver a wide range of therapeutic genes to tumors. In this study, a novel tumor therapy was achieved by the delivery of a mammalian brain sodium channel, ASIC2a, carrying a mutation that renders it constitutively open. This channel was delivered to tumor cells using a herpes simplex virus-1/Epstein–Barr virus (HSV/EBV) hybrid amplicon vector in which gene expression was controlled by a tetracycline regulatory system (tet-on) with silencer elements. Upon infection and doxycycline induction of mutant channel expression in tumor cells, the open channel led to amiloride-sensitive sodium influx as assessed by patch clamp recording and sodium imaging in culture. Within hours, tumor cells swelled and died. In addition to cells expressing the mutant channel, adjacent, noninfected cells connected by gap junctions also died. Intratumoral injection of HSV/EBV amplicon vector encoding the mutant sodium channel and systemic administration of doxycycline led to regression of subcutaneous tumors in nude mice as assessed by in vivo bioluminescence imaging. The advantage of this direct mode of tumor therapy is that all types of tumor cells become susceptible and death is rapid with no time for the tumor cells to become resistant. PMID:19259066

  12. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel

    PubMed Central

    Carattino, Marcelo D.

    2013-01-01

    Purpose of review The epithelial sodium channel/degenerin family encompasses a group of cation-selective ion channels that are activated or modulated by a variety of extracellular stimuli. This review describes findings that provide new insights into the molecular mechanisms that control the function of these channels. Recent findings Epithelial sodium channels facilitate Na+ reabsorption in the distal nephron and hence have a role in fluid volume homeostasis and arterial blood pressure regulation. Acid-sensing ion channels are broadly distributed in the nervous system where they contribute to the sensory processes. The atomic structure of acid-sensing ion channel 1 illustrates the complex trimeric architecture of these proteins. Each subunit has two transmembrane spanning helices, a highly organized ectodomain and intracellular N-terminus and C-terminus. Recent findings have begun to elucidate the structural elements that allow these channels to sense and respond to extracellular factors. This review emphasizes the roles of the extracellular domain in sensing changes in the extracellular milieu and of the residues in the extracellular–transmembrane domains interface in coupling extracellular changes to the pore of the channel. Summary Epithelial sodium channels and acid-sensing ion channels have evolved to sense extracellular cues. Future research should be directed toward elucidating how changes triggered by extracellular factors translate into pore opening and closing events. PMID:21709553

  13. Effects of besipirdine at the voltage-dependent sodium channel.

    PubMed Central

    Tang, L.; Smith, C. P.; Huger, F. P.; Kongsamut, S.

    1995-01-01

    1. Besipirdine (HP 749) is a compound undergoing clinical trials for efficacy in treating Alzheimer's disease. Among other pharmacological effects, besipirdine inhibits voltage-dependent sodium and potassium channels. This paper presents a pharmacological study of the interaction of besipirdine with voltage-dependent sodium channels. 2. Besipirdine inhibited [3H]-batrachotoxin binding (IC50 = 5.5 +/- 0.2 microM) in a rat brain vesicular preparation and concentration-dependently inhibited veratridine (25 microM)-stimulated increases in intracellular free sodium ([Na+]i) and calcium ([Ca2+]i) in primary cultured cortical neurones of rat. 3. Besipirdine (30-100 microM) concentration-dependently inhibited (up to 100%) veratridine-stimulated release of [3H]-noradrenaline (NA) from rat cortical slices. 4. When examined in greater detail, besipirdine was found to inhibit [3H]-batrachotoxin binding in vesicular membranes competitively. However, when examined in rat brain synaptosomes, we found that the antagonism by besipirdine was not competitive; that is, the maximal stimulation of [Ca2+]i induced by veratridine decreased with increasing concentrations of besipirdine. 5. These results show that besipirdine is an inhibitor of voltage-sensitive sodium channels and appears to bind to a site close to the batrachotoxin/veratridine binding site. PMID:8581286

  14. Variations in epithelial Na(+) transport and epithelial sodium channel localisation in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, during the oestrous cycle.

    PubMed

    Alsop, T-A; McLeod, B J; Butt, A G

    2016-03-01

    The fluid in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, is copious at ovulation when it may be involved in sperm transport or maturation, but is rapidly reabsorbed following ovulation. We have used the Ussing short-circuit current (Isc) technique and measurements of transcript and protein expression of the epithelial Na(+) channel (ENaC) to determine if variations in electrogenic Na(+) transport are associated with this fluid absorption. Spontaneous Isc (<20µAcm(-2) during anoestrus, 60-80µAcm(-2) in cycling animals) was inhibited by serosal ouabain. Mucosal amiloride (10µmolL(-1)), an inhibitor of ENaC, had little effect on follicular Isc but reduced luteal Isc by ~35%. This amiloride-sensitive Isc was dependent on mucosal Na(+) and the half-maximal inhibitory concentration (IC50)-amiloride (0.95μmolL(-1)) was consistent with ENaC-mediated Na(+) absorption. Results from polymerase chain reaction with reverse transcription (RT-PCR) indicate that αENaC mRNA is expressed in anoestrous, follicular and luteal phases. However, in follicular animals αENaC immunoreactivity in epithelial cells was distributed throughout the cytoplasm, whereas immunoreactivity was restricted to the apical pole of cells from luteal animals. These data suggest that increased Na(+) absorption contributes to fluid absorption during the luteal phase and is regulated by insertion of ENaC into the apical membrane of cul-de-sac epithelial cells. PMID:25056576

  15. Slow inactivation of Na(+) channels.

    PubMed

    Silva, Jonathan

    2014-01-01

    Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation. PMID:24737231

  16. Marine Toxins That Target Voltage-gated Sodium Channels

    PubMed Central

    Al-Sabi, Ahmed; McArthur, Jeff; Ostroumov, Vitaly; French, Robert J.

    2006-01-01

    Eukaryotic, voltage-gated sodium (NaV) channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10–70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  17. Overview of the voltage-gated sodium channel family

    PubMed Central

    Yu, Frank H; Catterall, William A

    2003-01-01

    Selective permeation of sodium ions through voltage-dependent sodium channels is fundamental to the generation of action potentials in excitable cells such as neurons. These channels are large integral membrane proteins and are encoded by at least ten genes in mammals. The different sodium channels have remarkably similar functional properties, but small changes in sodium-channel function are biologically relevant, as underscored by mutations that cause several human diseases of hyperexcitability. PMID:12620097

  18. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer.

    PubMed

    Yang, Ming; Kozminski, David J; Wold, Lindsey A; Modak, Rohan; Calhoun, Jeffrey D; Isom, Lori L; Brackenbury, William J

    2012-07-01

    Voltage-gated Na(+) channels (VGSCs) are heteromeric membrane protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in excitable cells, including neurons and muscle cells, where they mediate action potential firing, neurite outgrowth, pathfinding, and migration. VGSCs are also expressed in metastatic cells from a number of cancers. The Na(v)1.5 α subunit (encoded by SCN5A) is expressed in breast cancer (BCa) cell lines, where it enhances migration and invasion. We studied the expression of SCN5A in BCa array data, and tested the effect of the VGSC-blocking anticonvulsant phenytoin (5,5-diphenylhydantoin) on Na(+) current, migration, and invasion in BCa cells. SCN5A was up-regulated in BCa samples in several datasets, and was more highly expressed in samples from patients who had a recurrence, metastasis, or died within 5 years. SCN5A was also overexpressed as an outlier in a subset of samples, and associated with increased odds of developing metastasis. Phenytoin inhibited transient and persistent Na(+) current recorded from strongly metastatic MDA-MB-231 cells, and this effect was more potent at depolarized holding voltages. It may thus be an effective VGSC-blocking drug in cancer cells, which typically have depolarized membrane potentials. At a concentration within the therapeutic range used to treat epilepsy, phenytoin significantly inhibited the migration and invasion of MDA-MB-231 cells, but had no effect on weakly metastatic MCF-7 cells, which do not express Na(+) currents. We conclude that phenytoin suppresses Na(+) current in VGSC-expressing metastatic BCa cells, thus inhibiting VGSC-dependent migration and invasion. Together, our data support the hypothesis that SCN5A is up-regulated in BCa, favoring an invasive/metastatic phenotype. We therefore propose that repurposing existing VGSC-blocking therapeutic drugs should be further investigated as a potential new strategy to improve

  19. Understanding Sodium Channel Function and Modulation Using Atomistic Simulations of Bacterial Channel Structures.

    PubMed

    Boiteux, C; Allen, T W

    2016-01-01

    Sodium channels are chief proteins involved in electrical signaling in the nervous system, enabling critical functions like heartbeat and brain activity. New high-resolution X-ray structures for bacterial sodium channels have created an opportunity to see how these proteins operate at the molecular level. An important challenge to overcome is establishing relationships between the structures and functions of mammalian and bacterial channels. Bacterial sodium channels are known to exhibit the main structural features of their mammalian counterparts, as well as several key functional characteristics, including selective ion conduction, voltage-dependent gating, pore-based inactivation and modulation by local anesthetic, antiarrhythmic and antiepileptic drugs. Simulations have begun to shed light on each of these features in the past few years. Despite deviations in selectivity signatures for bacterial and mammalian channels, simulations have uncovered the nature of the multiion conduction mechanism associated with Na(+) binding to a high-field strength site established by charged glutamate side chains. Simulations demonstrated a surprising level of flexibility of the protein, showing that these side chains are active participants in the permeation process. They have also uncovered changes in protein structure, leading to asymmetrical collapses of the activation gate that have been proposed to correspond to inactivated structures. These observations offer the potential to examine the mechanisms of state-dependent drug activity, focusing on pore-blocking and pore-based slow inactivation in bacterial channels, without the complexities of inactivation on multiple timescales seen in eukaryotic channels. Simulations have provided molecular views of the interactions of drugs, consistent with sites predicted in mammalian channels, as well as a wealth of other sites as potential new drug targets. In this chapter, we survey the new insights into sodium channel function that

  20. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  1. Voltage-gated sodium channels and cancer: is excitability their primary role?

    PubMed Central

    Roger, Sébastien; Gillet, Ludovic; Le Guennec, Jean-Yves; Besson, Pierre

    2015-01-01

    Voltage-gated sodium channels (NaV) are molecular characteristics of excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons and muscle cells. Sodium currents were discovered by Hodgkin and Huxley using the voltage clamp technique and reported in their landmark series of papers in 1952. It was only in the 1980's that sodium channel proteins from excitable membranes were molecularly characterized by Catterall and his collaborators. Non-excitable cells can also express NaV channels in physiological conditions as well as in pathological conditions. These NaV channels can sustain biological roles that are not related to the generation of action potentials. Interestingly, it is likely that the abnormal expression of NaV in pathological tissues can reflect the re-expression of a fetal phenotype. This is especially true in epithelial cancer cells for which these channels have been identified and sodium currents recorded, while it was not the case for cells from the cognate normal tissues. In cancers, the functional activity of NaV appeared to be involved in regulating the proliferative, migrative, and invasive properties of cells. This review is aimed at addressing the non-excitable roles of NaV channels with a specific emphasis in the regulation of cancer cell biology. PMID:26283962

  2. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    PubMed Central

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  3. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    PubMed Central

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  4. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel.

    PubMed

    Nagel, G; Szellas, T; Riordan, J R; Friedrich, T; Hartung, K

    2001-03-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of (22)Na(+) through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage- and patch-clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of (22)Na(+) uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  5. Role of Sodium Channels in Epilepsy.

    PubMed

    Kaplan, David I; Isom, Lori L; Petrou, Steven

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are fundamentally important for the generation and coordinated transmission of action potentials throughout the nervous system. It is, therefore, unsurprising that they have been shown to play a central role in the genesis and alleviation of epilepsy. Genetic studies on patients with epilepsy have identified more than 700 mutations among the genes that encode for VGSCs attesting to their role in pathogenesis. Further, many common antiepileptic drugs act on VGSCs to suppress seizure activity. Here, we present an account of the role of VGSCs in epilepsy, both through their pathogenic dysfunction and as targets for pharmacotherapy. PMID:27143702

  6. Changed distribution of sodium channels along demyelinated axons.

    PubMed

    England, J D; Gamboni, F; Levinson, S R; Finger, T E

    1990-09-01

    Voltage-gated sodium channels are largely localized to the nodes of Ranvier in myelinated axons, providing a physiological basis for saltatory conduction. What happens to these channels in demyelinated axons is not known with certainty. Experimentally demyelinated axons were examined by using a well-characterized, polyclonal antibody directed against sodium channels. Immunocytochemical and radioimmunoassay data were consistent with the distribution of an increased number of sodium channels along segments of previously internodal axon. These findings affirm the plasticity of sodium channels in demyelinated axolemma and may be relevant to understanding how axons recover conduction after demyelination. PMID:2168559

  7. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides

    SciTech Connect

    Silver, Kristopher S.; Soderlund, David M. . E-mail: dms6@cornell.edu

    2006-07-15

    Pyrazoline-type insecticides are potent inhibitors of insect and mammalian voltage-sensitive sodium channels. In mammals, there are nine sodium channel {alpha} subunit isoforms that have unique distributions and pharmacological properties, but no published data exist that compare the relative sensitivity of these different mammalian sodium channel isoforms to inhibition by pyrazoline-type insecticides. This study employed the Xenopus oocyte expression system to examine the relative sensitivity of rat Na{sub v}1.2a, Na{sub v}1.4, Na{sub v}1.5, and Na{sub v}1.8 sodium channel {alpha} subunit isoforms to the pyrazoline-type insecticides indoxacarb, DCJW, and RH 3421. Additionally, we assessed the effect of coexpression with the rat {beta}1 auxiliary subunit on the sensitivity of the Na{sub v}1.2a and Na{sub v}1.4 isoforms to these compounds. The relative sensitivity of the four sodium channel {alpha} subunits differed for each of the three compounds we examined. With DCJW, the order of sensitivity was Na{sub v}1.4 > Na{sub v}1.2a > Na{sub v}1.5 > Na{sub v}1.8. In contrast, the relative sensitivity of these isoforms to indoxacarb differed from that to DCJW: the Na{sub v}1.8 isoform was most sensitive, the Na{sub v}1.4 isoform was completely insensitive, and the sensitivities of the Na{sub v}1.5 and Na{sub v}1.2a isoforms were intermediate between these two extremes. Moreover, the pattern of sensitivity to RH 3421 among these four isoforms was different from that for either indoxacarb or DCJW: the Na{sub v}1.4 isoform was most sensitive to RH 3421, whereas the sensitivities of the remaining three isoforms were substantially less than that of the Na{sub v}1.4 isoform and were approximately equivalent. The only statistically significant effect of coexpression of either the Na{sub v}1.2a or Na{sub v}1.4 isoforms with the {beta}1 subunit was the modest reduction in the sensitivity of the Na{sub v}1.2a isoform to RH 3421. These results demonstrate that mammalian sodium

  8. Regulation of Epithelial Sodium Channel Trafficking by Ubiquitination

    PubMed Central

    Eaton, Douglas C.; Malik, Bela; Bao, Hui-Fang; Yu, Ling; Jain, Lucky

    2010-01-01

    Amiloride-sensitive epithelial sodium (Na+) channels (ENaC) play a crucial role in Na+ transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na+ transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, α, β, and γ. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the β and γ subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2–mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination. PMID:20160149

  9. Prostasin: An Epithelial Sodium Channel Regulator.

    PubMed

    Aggarwal, Shakti; Dabla, Pradeep K; Arora, Sarika

    2013-01-01

    Prostasin is a glycophosphatidylinositol-anchored protein which is found in prostate gland, kidney, bronchi, colon, liver, lung, pancreas, and salivary glands. It is a serine protease with trypsin-like substrate specificity which was first purified from seminal fluid in 1994. In the last decade, its diverse roles in various biological and physiological processes have been elucidated. Many studies done to date suggest that prostasin is one of several membrane peptidases regulating epithelial sodium channels in mammals. A comprehensive literature search was conducted from the websites of Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature and the National Library of Medicine. The data was also assessed from journals and books that published relevant articles in this field. Understanding the mechanism by which prostasin and its inhibitors regulate sodium channels has provided a new insight into the treatment of hypertension and some other diseases like cystic fibrosis. Prostasin plays an important role in epidermal growth factor receptor (EGFR) signal modulation. Extracellular proteases have been implicated in tumor metastasis and local tissue invasion because of their ability to degrade extracellular matrices. PMID:26317012

  10. DDESC: Dragon database for exploration of sodium channels in human

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Dawe, Adam; Seshadri, Sundararajan Vijayaraghava; Christoffels, Alan; Schaefer, Ulf; Radovanovic, Aleksandar; Bajic, Vladimir B

    2008-01-01

    Background Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information. Results We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC), which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses. Conclusion DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web . PMID:19099596

  11. Neurological perspectives on voltage-gated sodium channels

    PubMed Central

    Linley, John E.; Baker, Mark D.; Minett, Michael S.; Cregg, Roman; Werdehausen, Robert; Rugiero, François

    2012-01-01

    The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors. PMID:22961543

  12. Expression of 5-HT3 receptors and TTX resistant sodium channels (NaV1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders

    PubMed Central

    2014-01-01

    Background Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls. Methods Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels. Results A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly

  13. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.

    PubMed

    He, Bingjun; Soderlund, David M

    2016-01-15

    We expressed rat Nav1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. PMID:26708501

  14. The role of sodium channels in cell adhesion.

    PubMed

    Isom, Lori L

    2002-01-01

    Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel alpha subunits form a gene subfamily with at least eleven members. Mutations in sodium channel alpha subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel beta subunits with at least one alternative splice product. Unlike the pore-forming alpha subunits, the sodium channel beta subunits are not structurally related to beta subunits of calcium and potassium channels. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that beta subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS+1 epilepsy in human families. We propose that the sodium channel signaling complex at nodes of Ranvier involves beta subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPbeta, and extracellular matrix molecules such as tenascin. Finally, we explore other subunits of voltage-gated ion channels as potential CAM candidates. PMID:11779698

  15. Sodium channel slow inactivation interferes with open channel block

    PubMed Central

    Hampl, Martin; Eberhardt, Esther; O’Reilly, Andrias O.; Lampert, Angelika

    2016-01-01

    Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block. PMID:27174182

  16. THE ROLE OF SODIUM CHANNELS IN CHRONIC PAIN

    PubMed Central

    Levinson, Simon R.; Luo, Songjiang; Henry, Michael A.

    2012-01-01

    Here we review recent research into the mechanisms of chronic pain that has focused on neuronal sodium channels, a target of classic analgesic agents. We first discuss evidence that specific sodium channel isoforms are essential for the detection and conduction of normal acutely painful stimuli from nociceptors. We then review findings that show changes in sodium channel expression and localization in chronic inflammation and nerve injury in animal and human tissues. We conclude by discussing the role that myelination plays in organizing and maintaining sodium channel clusters at nodes of Ranvier in normal development and how inflammatory processes or nerve injury alter the characteristics of such clusters. Based on these findings, we suggest that chronic pain may in part result from partial demyelination of axons during chronic injury, which creates aberrant sodium channel clusters that serve as sites of ectopic sensitivity or spontaneous activity. PMID:22806363

  17. Functional Expression of an Arachnid Sodium Channel Reveals Residues Responsible for Tetrodotoxin Resistance in Invertebrate Sodium Channels*

    PubMed Central

    Du, Yuzhe; Nomura, Yoshiko; Liu, Zhiqi; Huang, Zachary Y.; Dong, Ke

    2009-01-01

    Tetrodotoxin (TTX) is a potent blocker of voltage-gated sodium channels, but not all sodium channels are equally sensitive to inhibition by TTX. The molecular basis of differential TTX sensitivity of mammalian sodium channels has been largely elucidated. In contrast, our knowledge about the sensitivity of invertebrate sodium channels to TTX remains poor, in part because of limited success in functional expression of these channels. In this study, we report the functional characterization in Xenopus oocytes of the first non-insect, invertebrate voltage-gated sodium channel from the varroa mite (Varroa destructor), an ecto-parasite of the honeybee. This arachnid sodium channel activates and inactivates rapidly with half-maximal activation at −18 mV and half-maximal fast inactivation at −29 mV. Interestingly, this arachnid channel showed surprising TTX resistance. TTX blocked this channel with an IC50 of 1 μm. Subsequent site-directed mutagenesis revealed two residues, Thr-1674 and Ser-1967, in the pore-forming region of domains III and IV, respectively, which were responsible for the observed resistance to inhibition by TTX. Furthermore, sequence comparison and additional amino acid substitutions suggested that sequence polymorphisms at these two positions could be a widespread mechanism for modulating TTX sensitivity of sodium channels in diverse invertebrates. PMID:19828457

  18. Functional expression of an arachnid sodium channel reveals residues responsible for tetrodotoxin resistance in invertebrate sodium channels.

    PubMed

    Du, Yuzhe; Nomura, Yoshiko; Liu, Zhiqi; Huang, Zachary Y; Dong, Ke

    2009-12-01

    Tetrodotoxin (TTX) is a potent blocker of voltage-gated sodium channels, but not all sodium channels are equally sensitive to inhibition by TTX. The molecular basis of differential TTX sensitivity of mammalian sodium channels has been largely elucidated. In contrast, our knowledge about the sensitivity of invertebrate sodium channels to TTX remains poor, in part because of limited success in functional expression of these channels. In this study, we report the functional characterization in Xenopus oocytes of the first non-insect, invertebrate voltage-gated sodium channel from the varroa mite (Varroa destructor), an ecto-parasite of the honeybee. This arachnid sodium channel activates and inactivates rapidly with half-maximal activation at -18 mV and half-maximal fast inactivation at -29 mV. Interestingly, this arachnid channel showed surprising TTX resistance. TTX blocked this channel with an IC(50) of 1 microM. Subsequent site-directed mutagenesis revealed two residues, Thr-1674 and Ser-1967, in the pore-forming region of domains III and IV, respectively, which were responsible for the observed resistance to inhibition by TTX. Furthermore, sequence comparison and additional amino acid substitutions suggested that sequence polymorphisms at these two positions could be a widespread mechanism for modulating TTX sensitivity of sodium channels in diverse invertebrates. PMID:19828457

  19. Voltage-gated sodium channels in neurological disorders.

    PubMed

    Chahine, Mohamed; Chatelier, Aurélien; Babich, Olga; Krupp, Johannes J

    2008-04-01

    Voltage-gated sodium channels play an essential biophysical role in many excitable cells such as neurons. They transmit electrical signals through action potential (AP) generation and propagation in the peripheral (PNS) and central nervous systems (CNS). Each sodium channel is formed by one alpha-subunit and one or more beta-subunits. There is growing evidence indicating that mutations, changes in expression, or inappropriate modulation of these channels can lead to electrical instability of the cell membrane and inappropriate spontaneous activity observed during pathological states. This review describes the biochemical, biophysical and pharmacological properties of neuronal voltage-gated sodium channels (VGSC) and their implication in several neurological disorders. PMID:18537643

  20. Developmentally-regulated sodium channel subunits are differentially sensitive to {alpha}-cyano containing pyrethroids

    SciTech Connect

    Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.; Shafer, Timothy J.

    2008-09-15

    Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) and {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These

  1. Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres

    PubMed Central

    Carbonara, Roberta; Carocci, Alessia; Roussel, Julien; Crescenzo, Giuseppe; Buonavoglia, Canio; Franchini, Carlo; Lentini, Giovanni; Camerino, Diana Conte; Desaphy, Jean-François

    2015-01-01

    Voltage-gated sodium channels are known to play a pivotal role in perception and transmission of pain sensations. Gain-of-function mutations in the genes encoding the peripheral neuronal sodium channels, hNav1.7–1.9, cause human painful diseases. Thus while treatment of chronic pain remains an unmet clinical need, sodium channel blockers are considered as promising druggable targets. In a previous study, we evaluated the analgesic activity of sumatriptan, an agonist of serotonin 5HT1B/D receptors, and some new chiral bioisosteres, using the hot plate test in the mouse. Interestingly, we observed that the analgesic effectiveness was not necessarily correlated to serotonin agonism. In this study, we evaluated whether sumatriptan and its congeners may inhibit heterologously expressed hNav1.7 sodium channels using the patch-clamp method. We show that sumatriptan blocks hNav1.7 channels only at very high, supratherapeutic concentrations. In contrast, its three analogs, namely 20b, (R)-31b, and (S)-22b, exert a dose and use-dependent sodium channel block. At 0.1 and 10 Hz stimulation frequencies, the most potent compound, (S)-22b, was 4.4 and 1.7 fold more potent than the well-known sodium channel blocker mexiletine. The compound induces a negative shift of voltage dependence of fast inactivation, suggesting higher affinity to the inactivated channel. Accordingly, we show that (S)-22b likely binds the conserved local anesthetic receptor within voltage-gated sodium channels. Combining these results with the previous ones, we hypothesize that use-dependent sodium channel blockade contributes to the analgesic activity of (R)-31b and (S)-22b. These later compounds represent promising lead compounds for the development of efficient analgesics, the mechanism of action of which may include a dual action on sodium channels and 5HT1D receptors. PMID:26257653

  2. The Drosophila Sodium Channel 1 (DSC1): The founding member of a new family of voltage-gated cation channels.

    PubMed

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Wang, Lingxin; Xu, Peng

    2015-05-01

    It has been nearly three decades since the identification of the Drosophila Sodium Channel 1 (DSC1) gene from Drosophila melanogaster. The orthologs of the DSC1 gene have now been identified in other insect species including BSC1 from Blattella germanica. Functional analyses of DSC1/BSC1 channels in Xenopus oocytes reveal that DSC1 and BSC1 encode voltage-gated cation channels that are more permeable to Ca(2+) than to Na(+). Genetic and electrophysiological analyses show that knockout of the DSC1 gene in D. melanogaster causes behavioral and neurological modifications. In this review, we summarize major findings from recent studies and highlight a unique role of the DSC1 channel, distinct from that of the sodium channel, in regulating membrane excitability and modulating toxicity of pyrethroid insecticides. PMID:25987218

  3. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons.

    PubMed Central

    Dargent, B; Couraud, F

    1990-01-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, we investigated the effect of Na(+)-channel activators (scorpion alpha toxin, batrachotoxin, and veratridine) on the density of Na+ channels in fetal rat brain neurons in vitro. A partial but rapid (t1/2, 15 min) disappearance of surface Na+ channels was observed as measured by a decrease in the specific binding of [3H]saxitoxin and 125I-labeled scorpion beta toxin and a decrease in specific 22Na+ uptake. Moreover, the increase in the number of Na+ channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na+ channels was abolished by tetrodotoxin, was found to be dependent on the external Na+ concentration, and was prevented when either choline (a nonpermeant ion) or Li+ (a permeant ion) was substituted for Na+. Amphotericin B, a Na+ ionophore, and monensin were able to mimick the effect of Na(+)-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na(+)-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na+ concentration, whether elicited by Na(+)-channel activators or mediated by a Na+ ionophore, can induce a decrease in surface Na+ channels and therefore is involved in down-regulation of Na(+)-channel density in fetal rat brain neurons in vitro. PMID:2165609

  4. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    SciTech Connect

    Dargent, B.; Couraud, F. )

    1990-08-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na{sup +}-channel activators (scorpion {alpha} toxin, batrachotoxin, and veratridine) on the density of Na{sup +} channels in fetal rat brain neurons in vitro. A partial but rapid (t{sub 1/2}, 15 min) disappearance of surface Na{sup +} channels was observed as measured by a decrease in the specific binding of ({sup 3}H)saxitoxin and {sup 125}I-labeled scorpion {beta} toxin and a decrease in specific {sup 22}Na{sup +} uptake. Moreover, the increase in the number of Na{sup +} channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na{sup +} channels was abolished by tetrodotoxin, was found to be dependent on the external Na{sup +} concentration, and was prevented when either choline (a nonpermeant ion) or Li{sup +} (a permeant ion) was substituted for Na{sup +}. Amphotericin B, a Na{sup +} ionophore, and monensin were able to mimick the effect of Na{sup +}-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na{sup +}-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na{sup +} concentration, whether elicited by Na{sup +}-channel activators or mediated by a Na{sup +} ionophore, can induce a decrease in surface Na{sup +} channels and therefore is involved in down-regulation of Na{sup +}-channel density in fetal rat brain neurons in vitro.

  5. Metaflumizone is a novel sodium channel blocker insecticide.

    PubMed

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide. PMID:17959312

  6. Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability.

    PubMed

    Böhm, J; Scherzer, S; Shabala, S; Krol, E; Neher, E; Mueller, T D; Hedrich, R

    2016-03-01

    The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. PMID:26455461

  7. Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability

    PubMed Central

    Böhm, J.; Scherzer, S.; Shabala, S.; Krol, E.; Neher, E.; Mueller, T.D.; Hedrich, R.

    2016-01-01

    The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na+- and K+-permeable mutants function as ion channels rather than K+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. PMID:26455461

  8. The Voltage-Gated Sodium Channel Nav1.8 Is Expressed in Human Sperm

    PubMed Central

    Cejudo-Roman, Antonio; Pinto, Francisco M.; Subirán, Nerea; Ravina, Cristina G.; Fernández-Sánchez, Manuel; Pérez-Hernández, Natalia; Pérez, Ricardo; Pacheco, Alberto; Irazusta, Jon; Candenas, Luz

    2013-01-01

    The role of Na+ fluxes through voltage-gated sodium channels in the regulation of sperm cell function remains poorly understood. Previously, we reported that several genes encoding voltage-gated Na+ channels were expressed in human testis and mature spermatozoa. In this study, we analyzed the presence and function of the TTX-resistant VGSC α subunit Nav1.8 in human capacitated sperm cells. Using an RT-PCR assay, we found that the mRNA of the gene SCN10A, that encode Na v1.8, was abundantly and specifically expressed in human testis and ejaculated spermatozoa. The Na v1.8 protein was detected in capacitated sperm cells using three different specific antibodies against this channel. Positive immunoreactivity was mainly located in the neck and the principal piece of the flagellum. The presence of Na v1.8 in sperm cells was confirmed by Western blot. Functional studies demonstrated that the increases in progressive motility produced by veratridine, a voltage-gated sodium channel activator, were reduced in sperm cells preincubated with TTX (10 μM), the Na v1.8 antagonist A-803467, or a specific Na v1.8 antibody. Veratridine elicited similar percentage increases in progressive motility in sperm cells maintained in Ca2+-containing or Ca2+-free solution and did not induce hyperactivation or the acrosome reaction. Veratridine caused a rise in sperm intracellular Na+, [Na+]i, and the sustained phase of the response was inhibited in the presence of A-803467. These results verify that the Na+ channel Na v1.8 is present in human sperm cells and demonstrate that this channel participates in the regulation of sperm function. PMID:24086692

  9. Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.

    PubMed

    Wallner, M; Weigl, L; Meera, P; Lotan, I

    1993-12-28

    Co-expression of cloned sodium channel beta 1-subunit with the rat skeletal muscle-subunit (alpha microI) accelerated the macroscopic current decay, enhanced the current amplitude, shifted the steady state inactivation curve to more negative potentials and decreased the time required for complete recovery from inactivation. Sodium channels expressed from skeletal muscle mRNA showed a similar behaviour to that observed from alpha microI/beta 1, indicating that beta 1 restores 'physiological' behaviour. Northern blot analysis revealed that the Na+ channel beta 1-subunit is present in high abundance (about 0.1%) in rat heart, brain and skeletal muscle, and the hybridization with untranslated region of the 'brain' beta 1 cDNA to skeletal muscle and heart mRNA indicated that the different Na+ channel alpha-subunits in brain, skeletal muscle and heart may share a common beta 1-subunit. PMID:8282123

  10. Sodium channels in the cytoplasm of Schwann cells.

    PubMed Central

    Ritchie, J M; Black, J A; Waxman, S G; Angelides, K J

    1990-01-01

    Immunoblotting, ultrastructural immunocytochemistry, and tritiated saxitoxin ([3H]STX) binding experiments were used to study sodium channel localization in Schwann cells. Polyclonal antibody 7493, which is directed against purified sodium channels from rat brain, specifically recognizes a 260-kDa protein corresponding to the alpha subunit of the sodium channel in immunoblots of crude glycoproteins from rat sciatic nerve. Electron microscopic localization of sodium channel immunoreactivity within adult rat sciatic nerves reveals heavy staining of the axon membrane at the node of Ranvier, in contrast to the internodal axon membrane, which does not stain. Schwann cells including perinodal processes also exhibit antibody 7493 immunoreactivity, localized within both the cytoplasm and the plasmalemma of the Schwann cell. To examine further the possibility that sodium channels are localized within Schwann cell cytoplasm, [3H]STX binding was studied in cultured rabbit Schwann cells, both intact and after homogenization. Saturable binding of STX was significantly higher in homogenized Schwann cells (410 +/- 37 fmol/mg of protein) than in intact Schwann cells (214 +/- 21 fmol/mg of protein). Moreover, the equilibrium dissociation constant was higher for homogenized preparations (1.77 +/- 0.37 nM) than for intact Schwann cells (1.06 +/- 0.29 nM). These data suggest the presence of an intracellular pool of sodium channels or channel precursors in Schwann cells. Images PMID:2174558

  11. Sodium channels in the cytoplasm of Schwann cells

    SciTech Connect

    Ritchie, J.M. ); Black, J.A.; Waxman, S.G. Veterans Affairs Medical Center, West Haven, CT ); Angelides, K.J. )

    1990-12-01

    Immunoblotting, ultrastructural immunocytochemistry, and tritiated saxitoxin (({sup 3}H)STX) binding experiments were used to study sodium channel localization in Schwann cells. Polyclonal antibody 7493, which is directed against purifed sodium channels from rat brain, specifically recognized a 260-kDa protein corresponding to the {alpha} subunit of the sodium channel in immunoblots of crude glycoproteins from rat sciatic nerve. Electron microscopic localization of sodium channel immunoreactivity within adult rat sciatic nerves reveals heavy staining of the axon membrane at the node of Ranvier, in contrast to the internodal axon membrane, which does not stain. Schwann cells including perinodal processes also exhibit antibody 7493 immunoreactivity, localized within both the cytoplasm and the plasmalemma of the Schwann cell. To examine further the possibility that sodium channels are localized within Schwann cell cytoplasm, ({sup 3}H)STX binding was studied in cultured rabbit Schwann cells, both intact and after homogenization. Saturable binding of STX was singificantly higher in homogenized Schwann cells than in intact Schwann cells. Moreover, the equilibrium dissociation constant was higher for homogenized preparations (1.77 {plus minus} 0.37 nM) than for intact Schwann cells (1.06 {plus minus} 0.29 nM). These data suggest the presence of an intracellular pool of sodium channels or channel presursors in Schwann cells.

  12. Genomic organization of the human skeletal muscle sodium channel gene

    SciTech Connect

    George, A.L. Jr.; Iyer, G.S.; Kleinfield, R.; Kallen, R.G.; Barchi, R.L. )

    1993-03-01

    Voltage-dependent sodium channels are essential for normal membrane excitability and contractility in adult skeletal muscle. The gene encoding the principal sodium channel [alpha]-subunit isoform in human skeletal muscle (SCN4A) has recently been shown to harbor point mutations in certain hereditary forms of periodic paralysis. The authors have carried out an analysis of the detailed structure of this gene including delination of intron-exon boundaries by genomic DNA cloning and sequence analysis. The complete coding region of SCN4A is found in 32.5 kb of genomic DNA and consists of 24 exons (54 to >2.2 kb) and 23 introns (97 bp-4.85 kb). The exon organization of the gene shows no relationship to the predicted functional domains of the channel protein and splice junctions interrupt many of the transmembrane segments. The genomic organization of sodium channels may have been partially conserved during evolution as evidenced by the observation that 10 of the 24 splice junctions in SCN4A are positioned in homologous locations in a putative sodium channel gene in Drosophila (para). The information presented here should be extremely useful both for further identifying sodium channel mutations and for gaining a better understanding of sodium channel evolution. 39 refs., 5 figs., 2 tabs.

  13. Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2012-01-01

    Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Cav), and sodium (Nav) channels, which underlie impulse conduction in nerve and muscle. Not all members of this family are opened by changes in voltage, however. NALCN (NA+ leak channel nonselective) channels, which encode a voltage-insensitive “sodium leak” channel, have garnered a growing interest. This study examines the phylogenetic relationship among Nav/Cav voltage-gated and voltage-insensitive channels in the eukaryotic group Opisthokonta, which includes animals, fungi, and their unicellular relatives. We show that NALCN channels diverged from voltage-gated channels before the divergence of fungi and animals and that the closest relatives of NALCN channels are fungal calcium channels, which they functionally resemble. PMID:22821012

  14. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    PubMed Central

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics. PMID:27403419

  15. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development.

    PubMed

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na(+)) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics. PMID:27403419

  16. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    NASA Astrophysics Data System (ADS)

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-03-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.

  17. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells.

    PubMed

    Weaver, Erika M; Zamora, Francis J; Puplampu-Dove, Yvonne A; Kiessu, Ezechielle; Hearne, Jennifer L; Martin-Caraballo, Miguel

    2015-02-15

    Several cellular mechanisms contribute to the neuroendocrine differentiation of prostate cancer cells, including exposure to sodium butyrate (NaBu), a naturally occurring salt of the short chain fatty acid n-butyric acid. NaBu belongs to a class of histone deacetylase inhibitors with potential anticancer function. T-type calcium channel expression constitutes an important route for calcium influx in tumor cells that may trigger changes in cell proliferation and differentiation. In this work we investigated the role NaBu on the differentiation of lymph node carcinoma of the prostate (LNCaP) cells and its effect on T-type Ca(2+) channel expression. NaBu stimulates the morphological and molecular differentiation of LNCaP cells. Stimulation of LNCaP cells with NaBu evokes a significant increase in the expression of the Cav3.2 T-type channel subunits. Furthermore, the increased Cav3.2 expression promotes membrane insertion of T-type Ca(2+) channels capable of generating fast inactivating Ca(2+) currents, sensitive to 100μM Ni(2+) ions. Inhibition of T-type Ca(2+) channel function reduces the outgrowth of neurite-like processes in LNCaP cells. NaBu-evoked expression of T-type Ca(2+) channels is also involved in the regulation of cell viability. Inhibition of T-type Ca(2+) channels causes a significant reduction in the viability of LNCaP cells treated with 1mM NaBu, suggesting that Ca(2+) influx via T-type channels can promote cell proliferation. However, increased expression of T-type Ca(2+) channels enhanced the cytotoxic effect of thapsigargin and paclitaxel on cell proliferation. These findings demonstrate that NaBu stimulates T-type Ca(2+) channel expression, thereby regulating both the morphological differentiation and growth of prostate cancer cells. PMID:25557765

  18. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability.

    PubMed

    Barela, Arthur J; Waddy, Salina P; Lickfett, Jay G; Hunter, Jessica; Anido, Aimee; Helmers, Sandra L; Goldin, Alan L; Escayg, Andrew

    2006-03-01

    Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel alpha subunit. This residue is conserved in mammalian sodium channels as well as in sodium channels from lower organisms. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared with the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations, which have changes predicted to increase neuronal firing. PMID:16525050

  19. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel

    PubMed Central

    Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron

    2013-01-01

    Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038

  20. Regulation of the epithelial sodium channel by accessory proteins.

    PubMed Central

    Gormley, Kelly; Dong, Yanbin; Sagnella, Giuseppe A

    2003-01-01

    The epithelial sodium channel (ENaC) is of fundamental importance in the control of sodium fluxes in epithelial cells. Modulation of sodium reabsorption through the distal nephron ENaC is an important component in the overall control of sodium balance, blood volume and thereby of blood pressure. This is clearly demonstrated by rare genetic disorders of sodium-channel activity (Liddle's syndrome and pseudohypoaldosteronism type 1), associated with contrasting effects on blood pressure. The mineralocorticoid aldosterone is a well-established modulator of sodium-channel activity. Considerable insight has now been gained into the intracellular signalling pathways linking aldosterone-mediated changes in gene transcription with changes in ion transport. Activating pathways include aldosterone-induced proteins and especially the serum- and glucocorticoid-inducible kinase (SGK) and the small G-protein, K-Ras 2A. Targeting of the ENaC for endocytosis and degradation is now emerging as a major mechanism for the down-regulation of channel activity. Several proteins acting in concert are an intrinsic part of this process but Nedd4 (neural precursor cell expressed developmentally down-regulated 4) is of central importance. Other mechanisms known to interact with ENaC and affect sodium transport include channel-activating protease 1 (CAP-1), a membrane-anchored protein, and the cystic fibrosis transmembrane regulator. The implications of research on accessory factors controlling ENaC activity are wide-ranging. Understanding cellular mechanisms controlling ENaC activity may provide a more detailed insight not only of ion-channel abnormalities in cystic fibrosis but also of the link between abnormal renal sodium transport and essential hypertension. PMID:12460120

  1. Sodium Channels in Pain and Cancer: New Therapeutic Opportunities.

    PubMed

    Luiz, Ana Paula; Wood, John N

    2016-01-01

    Voltage-gated sodium channels (VGSCs) underpin electrical activity in the nervous system through action potential propagation. First predicted by the modeling studies of Hodgkin and Huxley, they were subsequently identified at the molecular level by groups led by Catterall and Numa. VGSC dysfunction has long been linked to neuronal and cardiac disorders with some nonselective sodium channel blockers in current use in the clinic. The lack of selectivity means that side effect issues are a major impediment to the use of broad spectrum sodium channel blockers. Nine different sodium channels are known to exist, and selective blockers are now being developed. The potential utility of these drugs to target diseases ranging from migraine, multiple sclerosis, muscle, and immune system disorders, to cancer and pain is being explored. Four channels are potential targets for pain disorders. This conclusion comes from mouse knockout studies and human mutations that prove the involvement of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in the development and maintenance of acute and chronic pain. In this chapter, we present a short overview of the possible role of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in human pain and the emerging and unexpected role of sodium channels in cancer pathogenesis. PMID:26920012

  2. Sodium channel haploinsufficiency and structural change in ventricular arrhythmogenesis.

    PubMed

    Jeevaratnam, K; Guzadhur, L; Goh, Y M; Grace, A A; Huang, C L-H

    2016-02-01

    Normal cardiac excitation involves orderly conduction of electrical activation and recovery dependent upon surface membrane, voltage-gated, sodium (Na(+) ) channel α-subunits (Nav 1.5). We summarize experimental studies of physiological and clinical consequences of loss-of-function Na(+) channel mutations. Of these conditions, Brugada syndrome (BrS) and progressive cardiac conduction defect (PCCD) are associated with sudden, often fatal, ventricular tachycardia (VT) or fibrillation. Mouse Scn5a(+/-) hearts replicate important clinical phenotypes modelling these human conditions. The arrhythmic phenotype is associated not only with the primary biophysical change but also with additional, anatomical abnormalities, in turn dependent upon age and sex, each themselves exerting arrhythmic effects. Available evidence suggests a unified binary scheme for the development of arrhythmia in both BrS and PCCD. Previous biophysical studies suggested that Nav 1.5 deficiency produces a background electrophysiological defect compromising conduction, thereby producing an arrhythmic substrate unmasked by flecainide or ajmaline challenge. More recent reports further suggest a progressive decline in conduction velocity and increase in its dispersion particularly in ageing male Nav 1.5 haploinsufficient compared to WT hearts. This appears to involve a selective appearance of slow conduction at the expense of rapidly conducting pathways with changes in their frequency distributions. These changes were related to increased cardiac fibrosis. It is thus the combination of the structural and biophysical changes both accentuating arrhythmic substrate that may produce arrhythmic tendency. This binary scheme explains the combined requirement for separate, biophysical and structural changes, particularly occurring in ageing Nav 1.5 haploinsufficient males in producing clinical arrhythmia. PMID:26284956

  3. Epithelial Na(+) channels are regulated by flow.

    PubMed

    Satlin, L M; Sheng, S; Woda, C B; Kleyman, T R

    2001-06-01

    Na(+) absorption in the renal cortical collecting duct (CCD) is mediated by apical epithelial Na(+) channels (ENaCs). The CCD is subject to continuous variations in intraluminal flow rate that we speculate alters hydrostatic pressure, membrane stretch, and shear stress. Although ENaCs share limited sequence homology with putative mechanosensitive ion channels in Caenorhabditis elegans, controversy exists as to whether ENaCs are regulated by biomechanical forces. We examined the effect of varying the rate of fluid flow on whole cell Na(+) currents (I(Na)) in oocytes expressing mouse alpha,beta,gamma-ENaC (mENaC) and on net Na(+) absorption in microperfused rabbit CCDs. Oocytes injected with mENaC but not water responded to the initiation of superfusate flow (to 4-6 ml/min) with a reversible threefold stimulation of I(Na) without a change in reversal potential. The increase in I(Na) was variable among oocytes. CCDs responded to a threefold increase in rate of luminal flow with a twofold increase in the rate of net Na(+) absorption. An increase in luminal viscosity achieved by addition of 5% dextran to the luminal perfusate did not alter the rate of net Na(+) absorption, suggesting that shear stress does not influence Na(+) transport in the CCD. In sum, our data suggest that flow stimulation of ENaC activity and Na(+) absorption is mediated by an increase in hydrostatic pressure and/or membrane stretch. We propose that intraluminal flow rate may be an important regulator of channel activity in the CCD. PMID:11352841

  4. Proton-dependent inhibition of the cardiac sodium channel Nav1.5 by ranolazine

    PubMed Central

    Sokolov, S.; Peters, C. H.; Rajamani, S.; Ruben, P. C.

    2013-01-01

    Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic, and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine's interaction with the cardiac sodium channel, Nav1.5. We performed whole-cell path clamp experiments at extracellular pH 7.4 and 6.0 on Nav1.5 transiently expressed in HEK293 cell line. Consistent with previous studies, we found that ranolazine induced a stable conformational state in the cardiac sodium channel with onset/recovery kinetics and voltage-dependence resembling intrinsic slow inactivation. This interaction diminished the availability of the channels in a voltage- and use-dependent manner. Low extracellular pH impaired inactivation states leading to an increase in late Na+ currents. Ranolazine interaction with the channel was also slowed 4–5 fold. However, ranolazine restored the voltage-dependent steady-state availability profile, thereby reducing window/persistent currents at pH 6.0 in a manner comparable to pH 7.4. These results suggest that ranolazine is effective at therapeutically relevant concentrations (10 μM), in acidic extracellular pH, where it compensates for impaired native slow inactivation. PMID:23801963

  5. Convergent Evolution of Tetrodotoxin-Resistant Sodium Channels in Predators and Prey.

    PubMed

    Toledo, G; Hanifin, C; Geffeney, S; Brodie, E D

    2016-01-01

    Convergent evolution of similar adaptive traits may arise from either common or disparate molecular and physiological mechanisms. The forces that determine the degree of underlying mechanistic similarities across convergent phenotypes are highly debated and poorly understood. Some garter snakes are able to consume newts that possess the channel blocking compound tetrodotoxin (TTX). Despite belonging to unrelated lineages, both the predators and prey have independently evolved remarkably similar physiological mechanisms of resistance to TTX that involve chemical and structural changes in voltage-gated sodium channels (NaV). The evolution of TTX resistance in this predator-prey pair constitutes a natural experiment that allows us to explore the causes of molecular convergence. Here, we review broad patterns of convergence at the level of amino acid changes in NaV channels of animals that evolved TTX resistance and make comparisons to known TTX-resistant channels that did not evolve under the selective pressures imposed by TTX. We conclude that convergence likely stems from the interplay of the target specificity of TTX and functional constraints of NaV that are shared among taxa. These and other factors can limit channel evolution to favor a few functionally permissible paths of adaptation, which can explain the observed predictability of changes to channel structure. By studying the functional causes of convergence in NaV channels, we can further our understanding of the role of these important channel proteins at the center of the evolution of the nervous system. PMID:27586282

  6. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency

    PubMed Central

    Chen, Zaixing; Zhao, Runzhen; Zhao, Meimi; Liang, Xinrong; Bhattarai, Deepa; Dhiman, Rohan; Shetty, Sreerama; Idell, Steven

    2014-01-01

    Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na+ flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na+-K+-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA−/− mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na+-K+-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function. PMID:25172911

  7. The Epithelial Sodium Channel and the Processes of Wound Healing

    PubMed Central

    2016-01-01

    The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation. PMID:27493961

  8. The Epithelial Sodium Channel and the Processes of Wound Healing.

    PubMed

    Chifflet, Silvia; Hernandez, Julio A

    2016-01-01

    The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation. PMID:27493961

  9. Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy

    PubMed Central

    Finol-Urdaneta, Rocio K.; Wang, Yibo; Al-Sabi, Ahmed; Zhao, Chunfeng

    2014-01-01

    Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore

  10. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  11. Block of sodium channels by internal mono- and divalent guanidinium analogues. Modulation by sodium ion concentration.

    PubMed Central

    Danko, M; Smith-Maxwell, C; McKinney, L; Begenisich, T

    1986-01-01

    We have investigated the block of squid axon sodium channels by mono- and divalent guanidinium analogues. The action of these compounds on steady state sodium currents was independent of the presence or absence of the normal inactivation process. Block by both mono- and divalent analogues was voltage-dependent, but was a steeper function of potential for divalent molecules. The voltage-dependence could not, in general, be reproduced by a simple model based on Boltzmann's equation. Inhibition of steady state currents by guanidinium ions with 50 mM internal sodium was reasonably well described by a 1:1 drug/channel binding function. Increasing the internal sodium ion concentration increased both the degree and voltage-dependence of current inhibition. This is in sharp contrast to the decrease in inactivation caused by internal sodium. Changes in the external sodium concentration had very little effect on drug block. These results are consistent with a model of the sodium channel as a multi-ion pore. Only a small increase in block can be produced by increased internal sodium in a three-barrier two-site model, but a four-barrier three-site model can reproduce these experimental findings. The implications of these results for physical models of inactivation are discussed. PMID:2420382

  12. Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels.

    PubMed

    Ing, C; Pomès, R

    2016-01-01

    Voltage-gated ion channels are responsible for the generation and propagation of action potentials in electrically excitable cells. Molecular dynamics simulations have become a useful tool to study the molecular basis of ion transport in atomistic models of voltage-gated ion channels. The elucidation of several three-dimensional structures of bacterial voltage-gated sodium channels (Nav) in 2011 and 2012 opened the way to detailed computational investigations of this important class of membrane proteins. Here we review the numerous simulation studies of Na(+) permeation and selectivity in bacterial Nav channels published in the past 5years. These studies use a variety of simulation methodologies differing in force field parameters, molecular models, sampling algorithms, and simulation times. Although results disagree on the details of ion permeation mechanisms, they concur in the presence of two primary Na(+) binding sites in the selectivity filter and support a loosely coupled knock-on mechanism of Na(+) permeation. Comparative studies of Na(+), K(+), and Ca(2+) permeation reveal sites within Nav channels that are Na(+) selective, yet a consensus model of selectivity has not been established. We discuss the agreement between simulation and experimental results and propose strategies that may be used to resolve discrepancies between simulation studies in order to improve future computational studies of permeation and selectivity in ion channels. PMID:27586286

  13. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel

    PubMed Central

    Ulmschneider, Martin B.; Bagnéris, Claire; McCusker, Emily C.; DeCaen, Paul G.; Delling, Markus; Clapham, David E.; Ulmschneider, Jakob P.; Wallace, B. A.

    2013-01-01

    The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate. PMID:23542377

  14. Filamin Interacts with Epithelial Sodium Channel and Inhibits Its Channel Function*

    PubMed Central

    Wang, Qian; Dai, Xiao-Qing; Li, Qiang; Tuli, Jagdeep; Liang, Gengqing; Li, Shayla S.; Chen, Xing-Zhen

    2013-01-01

    Epithelial sodium channel (ENaC) in the kidneys is critical for Na+ balance, extracellular volume, and blood pressure. Altered ENaC function is associated with respiratory disorders, pseudohypoaldosteronism type 1, and Liddle syndrome. ENaC is known to interact with components of the cytoskeleton, but the functional roles remain largely unclear. Here, we examined the interaction between ENaC and filamins, important actin filament components. We first discovered by yeast two-hybrid screening that the C termini of ENaC α and β subunits bind filamin A, B, and C, and we then confirmed the binding by in vitro biochemical assays. We demonstrated by co-immunoprecipitation that ENaC, either overexpressed in HEK, HeLa, and melanoma A7 cells or natively expressed in LLC-PK1 and IMCD cells, is in the same complex with native filamin. Furthermore, the biotinylation and co-immunoprecipitation combined assays showed the ENaC-filamin interaction on the cell surface. Using Xenopus oocyte expression and two-electrode voltage clamp electrophysiology, we found that co-expression of an ENaC-binding domain of filamin substantially reduces ENaC channel function. Western blot and immunohistochemistry experiments revealed that the filamin A C terminus (FLNAC) modestly reduces the expression of the ENaC α subunit in oocytes and A7 cells. After normalizing the current by plasma membrane expression, we found that FLNAC results in ∼50% reduction in the ENaC channel activity. The inhibitory effect of FLNAC was confirmed by lipid bilayer electrophysiology experiments using purified ENaC and FLNAC proteins, which showed that FLNAC substantially reduces ENaC single channel open probability. Taken together, our study demonstrated that filamin reduces ENaC channel function through direct interaction on the cell surface. PMID:23161538

  15. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  16. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls. PMID:24329301

  17. Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition

    PubMed Central

    Munasinghe, Nehan R.; Christie, MacDonald J.

    2015-01-01

    Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many sufferers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has emerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential. PMID:26690478

  18. Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition.

    PubMed

    Munasinghe, Nehan R; Christie, MacDonald J

    2015-12-01

    Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many suffers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has immerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential. PMID:26690478

  19. Neurotoxin-sensitive sodium channels in neurons developing in vivo and in vitro.

    PubMed

    Couraud, F; Martin-Moutot, N; Koulakoff, A; Berwald-Netter, Y

    1986-01-01

    Fetal mouse brain cells were investigated by 22Na+ flux assays with the aim to determine the ontogenetic time course of appearance of functional voltage-sensitive sodium channels. Their pharmacological properties were assessed by measurement of the response to known neurotoxins, acting at site 1, 2, or 3 of the Na+ channel. Brain cell suspensions, prepared at 11-19 d of prenatal development in vivo, and fetal brain neurons in culture were explored. In vivo neurotoxin-sensitive Na+ influx becomes detectable at 12 d of gestation, in concordance with the time of appearance of saturable binding sites for alpha-scorpion toxin (alpha-ScTx) and saxitoxin. Progression in fetal age or in time in vitro is accompanied by an increase in the initial rate and in the amplitude of Na+ uptake stimulated by batrachotoxin or veratridine. The general pharmacological properties of developing Na+ channels are very similar to the known properties of voltage-dependent Na+ channels in adult nerve: Batrachotoxin acts as a full channel agonist and veratridine as a partial agonist. Their respective apparent affinities are increased in presence of alpha-ScTx, in agreement with the known positive cooperativity of toxins acting at sites 2 and 3 of the Na+ channel. alpha-ScTx alone induces a small increase in Na+ permeability; its effect is greatly amplified in the presence of batrachotoxin or veratridine. The apparent affinity of alpha-ScTx is reduced by cell depolarization. Tetrodotoxin and saxitoxin block the increase in Na+ permeability induced by batrachotoxin, veratridine, and alpha-ScTx.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2418173

  20. Voltage-Gated Sodium Channels: Mechanistic Insights From Atomistic Molecular Dynamics Simulations.

    PubMed

    Oakes, V; Furini, S; Domene, C

    2016-01-01

    The permeation of ions and other molecules across biological membranes is an inherent requirement of all cellular organisms. Ion channels, in particular, are responsible for the conduction of charged species, hence modulating the propagation of electrical signals. Despite the universal physiological implications of this property, the molecular functioning of ion channels remains ambiguous. The combination of atomistic structural data with computational methodologies, such as molecular dynamics (MD) simulations, is now considered routine to investigate structure-function relationships in biological systems. A fuller understanding of conduction, selectivity, and gating, therefore, is steadily emerging due to the applicability of these techniques to ion channels. However, because their structure is known at atomic resolution, studies have consistently been biased toward K(+) channels, thus the molecular determinants of ionic selectivity, activation, and drug blockage in Na(+) channels are often overlooked. The recent increase of available crystallographic data has eminently encouraged the investigation of voltage-gated sodium (NaV) channels via computational methods. Here, we present an overview of simulation studies that have contributed to our understanding of key principles that underlie ionic conduction and selectivity in Na(+) channels, in comparison to the K(+) channel analogs. PMID:27586285

  1. Clustered voltage-gated Na+ channels in Aplysia axons.

    PubMed

    Johnston, W L; Dyer, J R; Castellucci, V F; Dunn, R J

    1996-03-01

    Clustering of voltage-gated Na+ channels is critical for the fast saltatory conduction of action potentials in vertebrate myelinated axons. However, the mechanisms responsible for the generation and maintenance of Na+ channel clustering are not well understood. In this study we have raised an antibody against the cloned SCAP-1 voltage-gated Na+ channel of the marine invertebrate Aplysia californica and used it to examine Na+ channel localization in Aplysia ganglia and in cultured Aplysia sensory neurons. Our results show that there is a large cytoplasmic pool of Na+ channels in the soma of Aplysia neurons. Furthermore, we show that Na+ channels in Aplysia axons are not homogeneously distributed but, rather, are present in distinct clusters. Theoretical considerations indicate that Na+ channel clustering may enhance action potential conduction. We propose that clustered Na+ channels may be a fundamental property of many axons, and perhaps of many membranes that conduct Na(+)-dependent action potentials. PMID:8774441

  2. Pharmacological insights and quirks of bacterial sodium channels.

    PubMed

    Corry, Ben; Lee, Sora; Ahern, Christopher A

    2014-01-01

    The pedigree of voltage-gated sodium channels spans the millennia from eukaryotic members that initiate the action potential firing in excitable tissues to primordial ancestors that act as enviro-protective complexes in bacterial extremophiles. Eukaryotic sodium channels (eNavs) are central to electrical signaling throughout the cardiovascular and nervous systems in animals and are established clinical targets for the therapeutic management of epilepsy, cardiac arrhythmia, and painful syndromes as they are inhibited by local anesthetic compounds. Alternatively, bacterial voltage-gated sodium channels (bNavs) likely regulate the survival response against extreme pH conditions, electrophiles, and hypo-osmotic shock and may represent a founder of the voltage-gated cation channel family. Despite apparent differences between eNav and bNav channel physiology, gating, and gene structure, the discovery that bNavs are amenable to crystallographic study opens the door for the possibility of structure-guided rational design of the next generation of therapeutics that target eNavs. Here we summarize the gating behavior of these disparate channel members and discuss mechanisms of local anesthetic inhibition in light of the growing number of bNav structures. PMID:24737240

  3. Comparative Study of the Gating Motif and C-type Inactivation in Prokaryotic Voltage-gated Sodium Channels*

    PubMed Central

    Irie, Katsumasa; Kitagawa, Kazuya; Nagura, Hitoshi; Imai, Tomoya; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2010-01-01

    Prokaryotic voltage-gated sodium channels (NaVs) are homotetramers and are thought to inactivate through a single mechanism, named C-type inactivation. Here we report the voltage dependence and inactivation rate of the NaChBac channel from Bacillus halodurans, the first identified prokaryotic NaV, as well as of three new homologues cloned from Bacillus licheniformis (NaVBacL), Shewanella putrefaciens (NaVSheP), and Roseobacter denitrificans (NaVRosD). We found that, although activated by a lower membrane potential, NaVBacL inactivates as slowly as NaChBac. NaVSheP and NaVRosD inactivate faster than NaChBac. Mutational analysis of helix S6 showed that residues corresponding to the “glycine hinge” and “PXP motif” in voltage-gated potassium channels are not obligatory for channel gating in these prokaryotic NaVs, but mutations in the regions changed the inactivation rates. Mutation of the region corresponding to the glycine hinge in NaVBacL (A214G), NaVSheP (A216G), and NaChBac (G219A) accelerated inactivation in these channels, whereas mutation of glycine to alanine in the lower part of helix S6 in NaChBac (G229A), NaVBacL (G224A), and NaVRosD (G217A) reduced the inactivation rate. These results imply that activation gating in prokaryotic NaVs does not require gating motifs and that the residues of helix S6 affect C-type inactivation rates in these channels. PMID:19959480

  4. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri

    PubMed Central

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-01-01

    Background and Purpose Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Experimental Approach Organ bath studies were employed to assess the pharmacological effects of Na2S in uterine strips by exposing them to Na2S with or without Cl− channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K+ channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca2+ channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Key Results Na2S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2S compared with uteri in 15 mM KCl. Na2S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3−, suggesting the involvement of chloride ion channels. Na2S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. Conclusions and Implications The relaxant effects of Na2S in rat uteri are mediated mainly via a DIDS-sensitive Cl−-pathway. Components of the relaxation are redox- and Ca2+-dependent. PMID:25857480

  5. Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms.

    PubMed

    Wanke, Enzo; Zaharenko, André Junqueira; Redaelli, Elisa; Schiavon, Emanuele

    2009-12-15

    most of the structural and electrophysiological studies were performed on type 1 sea anemone sodium channel toxins, we will present a comprehensive and updated review on the current understanding of the physiological actions of these Na channel modifiers. PMID:19393679

  6. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism

    PubMed Central

    Bagnéris, Claire; DeCaen, Paul G.; Naylor, Claire E.; Pryde, David C.; Nobeli, Irene; Clapham, David E.; Wallace, B. A.

    2014-01-01

    Voltage-gated sodium channels are important targets for the development of pharmaceutical drugs, because mutations in different human sodium channel isoforms have causal relationships with a range of neurological and cardiovascular diseases. In this study, functional electrophysiological studies show that the prokaryotic sodium channel from Magnetococcus marinus (NavMs) binds and is inhibited by eukaryotic sodium channel blockers in a manner similar to the human Nav1.1 channel, despite millions of years of divergent evolution between the two types of channels. Crystal complexes of the NavMs pore with several brominated blocker compounds depict a common antagonist binding site in the cavity, adjacent to lipid-facing fenestrations proposed to be the portals for drug entry. In silico docking studies indicate the full extent of the blocker binding site, and electrophysiology studies of NavMs channels with mutations at adjacent residues validate the location. These results suggest that the NavMs channel can be a valuable tool for screening and rational design of human drugs. PMID:24850863

  7. Sodium-dependent inhibition of the epithelial sodium channel by an arginyl-specific reagent

    SciTech Connect

    Garty, H.; Yeger, O.; Asher, C.

    1988-04-25

    Effects of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO) on the epithelial Na+ channel were evaluated by measuring the amiloride-blockable /sup 22/Na+ fluxes in membrane vesicles derived from the toad bladder epithelium. Incubating whole cells or isolated membranes with PGO readily and irreversibly blocked the channel-mediated tracer flux. Na+ ions present during the interaction of membranes with PGO could protect channels from inactivation by PGO. This effect required the presence of Na+ at the luminal side of the membrane and was characterized by an IC50 of 79 mM Na+. Amiloride, too, could desensitize channels to PGO, but its effect was significant only when whole cells were interacted with the protein-modifying reagent. The data are compatible with a model in which the conductive path of the channel contains a functional arginine, possibly forming a salt bridge with a carboxylic group, which is involved in Na+ translocation and amiloride binding. It was also shown that the augmentation of transport induced by incubating whole cells in Ca2+-free solution involves the activation or recruitment of channels that are not vulnerable to PGO prior to incubation.

  8. Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus.

    PubMed

    DeCaen, Paul G; Takahashi, Yuka; Krulwich, Terry A; Ito, Masahiro; Clapham, David E

    2014-01-01

    Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na(+) to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na(+) channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na(+), Ca(2+) and K(+) ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na(+) or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels. PMID:25385530

  9. Two tarantula venom peptides as potent and differential Na(V) channels blockers.

    PubMed

    Cherki, Ronit S; Kolb, Ela; Langut, Yael; Tsveyer, Lior; Bajayo, Nissim; Meir, Alon

    2014-01-01

    Voltage dependent sodium (Na(V)) channels are large membrane spanning proteins which lie in the basis of action potential generation and propagation in excitable cells and hence are essential mediators of neuronal signaling. Inhibition of Na(V) channel activity is one of the core mechanisms to treat conditions related to neuronal hyperexcitability, such as epilepsy in the clinic. Na(V) channel blockers are also extensively used to locally inhibit action potential generation and related pain perceptions in the form of local anesthetics. Here we describe the isolation, biochemical characterization, synthesis and in vitro characterization of two potent Na(V) channel blockers from the venom of the Paraphysa scrofa (Phrixotrichus auratus) tarantula spider. Both Voltage sensor toxin 3 (VSTx-3, κ-theraphotoxin-Gr4a) and GTx1-15 (Toxin Gtx1-15), were originally isolated from the venom of the related tarantula Grammostola rosea and described as K(V) and Ca(V) channel blockers, respectively. In our hands, GTx1-15 was shown to be a potent inhibitor of tetrodotoxin (TTX)-sensitive channels (IC₅₀ 0.007 μM for hNa(V)1.7 and 0.12 μM for hNa(V)1.3 channels), with very little effect on TTX-resistant (Na(V)1.5 and NaV1.8) channels. VSTx-3 was demonstrated to be a potent, TTX-sensitive sodium channel blocker and especially, potent blocker of Na(V)1.8 channels (IC₅₀ 0.19 μM for hNa(V)1.3, 0.43 μM for hNa(V)1.7 and 0.77 μM for hNa(V)1.8 channels). Such potent inhibitors with differential selectivity among Na(V) channel isoforms may be used as tools to study the roles of the different channels in processes related to hyperexcitability and as lead compounds to treat pathological pain conditions. PMID:24211312

  10. Phyla- and Subtype-Selectivity of CgNa, a Na+ Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea

    PubMed Central

    Billen, Bert; Debaveye, Sarah; Béress, Lászlo; Tytgat, Jan

    2010-01-01

    Because of their prominent role in electro-excitability, voltage-gated sodium (NaV) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related NaV subtypes, making them powerful tools to study NaV channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of the Giant Caribbean Sea Anemone Condylactis gigantea. Previous studies showed that this toxin slows the fast inactivation of tetrodotoxin-sensitive NaV currents in rat dorsal root ganglion neurons. To illuminate the underlying NaV subtype-selectivity pattern, we have assayed the effects of CgNa on a broad range of mammalian isoforms (NaV1.2–NaV1.8) expressed in Xenopus oocytes. This study demonstrates that CgNa selectively slows the fast inactivation of rNaV1.3/β1, mNaV1.6/β1 and, to a lesser extent, hNaV1.5/β1, while the other mammalian isoforms remain unaffected. Importantly, CgNa was also examined on the insect sodium channel DmNaV1/tipE, revealing a clear phyla-selectivity in the efficacious actions of the toxin. CgNa strongly inhibits the inactivation of the insect NaV channel, resulting in a dramatic increase in peak current amplitude and complete removal of fast and steady-state inactivation. Together with the previously determined solution structure, the subtype-selective effects revealed in this study make of CgNa an interesting pharmacological probe to investigate the functional role of specific NaV channel subtypes. Moreover, further structural studies could provide important information on the molecular mechanism of NaV channel inactivation. PMID:21833172

  11. Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating

    SciTech Connect

    Bean, B.P.

    1981-09-01

    Experiments on sodium channel inactivation kinetics were performed on voltage-clamped crayfish giant axons. The primary goals was to investigate whether channels must open before activating. Voltage-clamp artifacts were minimized by the use of low-sodium solutions and full series resistance compensation, and the spatial uniformity of the currents was checked with a closely spaced pair of electrodes used to measure local current densities. For membrane potentials between -40 and +40 mV, sodium currents decay to zero with a single exponential time-course. The time constant for decay is a steep function of membrane potential. The time-course of inactivation measured with the double-pulse method is very similar to the decay of current at the same potential. Steady-state inactivation curves measured with different test pulses are identical. The time-course of doubling pulse inactivation shows a lag that roughly correlates with the opening of sodium channels, but it is not strictly necessary for channels to open before inactivating. Measurements of the potential dependence of the integral of sodium conductance are also inconsistent with the simplest cases of models in which channels must open before activating.

  12. Clustering and mobility of voltage-dependent sodium channels during myelination.

    PubMed

    Joe, E H; Angelides, K J

    1993-07-01

    In myelinated axons, voltage-dependent sodium channels are segregated at high density at nodes of Ranvier (Rosenbluth, 1976; Waxman and Quick, 1978; Black et al., 1990; Elmer et al., 1990), a distribution that is critical for the saltatory conduction of action potentials (Huxley and Stampfli, 1949). The factors that specifically control the organization and immobilization of sodium channels at nodes are unknown. Recently we have reported that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to maintain sodium channel distribution during differentiation of myelinated nerve (Joe and Angelides, 1992). The specific recruitment of sodium channels at these early stages of myelination and the conspicuous absence of other axon membrane components suggest that the factors governing sodium channel cluster formation show molecular specificity. However, it is not clear whether these clustered sodium channels originate from a redistribution of preexisting diffusely distributed sodium channels. To determine how Schwann cells might regulate sodium channel distribution during myelination we have examined the lateral mobility of fluorescently labeled sodium channels at defined stages of myelination by fluorescence photobleach recovery using tetramethylrhodamine (TmRhd)-labeled Tityus gamma, a sodium channel-specific fluorescent toxin. First, to test whether Schwann cells, in addition to modulating sodium channel distribution, affect the mobility of sodium channels, we cultured dorsal root ganglion neurons in the presence or absence of Schwann cells and monitored sodium channel mobility on cell bodies, axon hillocks, and axons. Even in the absence of Schwann cells, approximately 80% of the sodium channels were immobile on the time scale of the fluorescence photobleach recovery measurement (DL < or equal to 10(-12) cm2/sec), although the remaining fraction of channels are

  13. An important role of a pyrethroid-sensing residue F1519 in the action of the N-alkylamide insecticide BTG 502 on the cockroach sodium channel

    PubMed Central

    Du, Yuzhe; Khambay, Bhupinder

    2011-01-01

    Deltamethrin, a pyrethroid insecticide, and BTG 502, an alkylamide insecticide, target voltage-gated sodium channels. Deltamethrin binds to a unique receptor site and causes prolonged opening of sodium channels by inhibiting deactivation and inactivation. Previous 22Na+ influx and receptor binding assays using mouse brain synaptoneurosomes showed that BTG 502 antagonized the binding and action of batrachotoxin (BTX), a site 2 sodium channel neurotoxin. However, the effect of BTG 502 has not been examined directly on sodium channels expressed in Xenopus oocytes. In this study, we examined the effect of BTG 502 on wild-type and mutant cockroach sodium channels expressed in Xenopus oocytes. Toxin competition experiments confirmed that BTG 502 antagonizes the action of BTX and possibly shares a common receptor site with BTX. However, unlike BTX which causes persistent activation of sodium channels, BTG 502 reduces the amplitude of peak sodium current. A previous study showed that BTG 502 was more toxic to pyrethroid-resistant house flies possessing a super-kdr (knockdown resistance) mechanism than to pyrethroid-susceptible house flies. However, we found that the cockroach sodium channels carrying the equivalent super-kdr mutations (M918T and L1014F) were not more sensitive to BTG 502 than the wild-type channel. Instead, a kdr mutation, F1519I, which reduces pyrethroid binding, abolished the action of BTG 502. These results provide evidence the actions of alkylamide and pyrethroid insecticides require a common sodium channel residue. PMID:21426938

  14. MotX, the channel component of the sodium-type flagellar motor.

    PubMed Central

    McCarter, L L

    1994-01-01

    Thrust for propulsion of flagellated bacteria is generated by rotation of a propeller, the flagellum. The power to drive the polar flagellar rotary motor of Vibrio parahaemolyticus is derived from the transmembrane potential of sodium ions. Force is generated by the motor on coupling of the movement of ions across the membrane to rotation of the flagellum. A gene, motX, encoding one component of the torque generator has been cloned and sequenced. The deduced protein sequence is 212 amino acids in length. MotX was localized to the membrane and shown to interact with MotY, which is the presumed stationary component of the motor. Overproduction of MotX, but not that of a nonfunctional mutant MotX, was lethal to Escherichia coli. The rate of lysis caused by induction of motX was proportional to the sodium ion concentration. Li+ and K+ substituted for Na+ to promote lysis, while Ca2+ did not enhance lysis. Protection from the lethal effects of induction of motX was afforded by the sodium channel blocker amiloride. The data suggest that MotX forms a sodium channel. The deduced protein sequence for MotX shows no homology to its ion-conducting counterpart in the proton-driven motor; however, in possessing only one hydrophobic domain, it resembles other channels formed by small proteins with single membrane-spanning domains. Images PMID:7928960

  15. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGESBeta

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  16. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  17. Recent progress in sodium channel modulators for pain.

    PubMed

    Bagal, Sharan K; Chapman, Mark L; Marron, Brian E; Prime, Rebecca; Storer, R Ian; Swain, Nigel A

    2014-08-15

    Voltage-gated sodium channels (Navs) are an important family of transmembrane ion channel proteins and Nav drug discovery is an exciting field. Pharmaceutical investment in Navs for pain therapeutics has expanded exponentially due to genetic data such as SCN10A mutations and an improved ability to establish an effective screen sequence for example IonWorks Barracuda®, Synchropatch® and Qube®. Moreover, emerging clinical data (AZD-3161, XEN402, CNV1014802, PF-05089771, PF-04531083) combined with recent breakthroughs in Nav structural biology pave the way for a future of fruitful prospective Nav drug discovery. PMID:25060923

  18. An epilepsy mutation in the beta1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin.

    PubMed

    Lucas, Paul T; Meadows, Laurence S; Nicholls, Jane; Ragsdale, David S

    2005-05-01

    The antiepileptic drug phenytoin inhibits voltage-gated sodium channels. Phenytoin block is enhanced at depolarized membrane potentials and during high frequency channel activation. These properties, which are important for the clinical efficacy of the drug, depend on voltage-dependent channel gating. In this study, we examined the action of phenytoin on sodium channels, comprising a mutant auxiliary beta1 subunit (mutation C121Wbeta1), which causes the inherited epilepsy syndrome, generalized epilepsy with febrile seizures plus (GEFS+). Whole cell sodium currents in Chinese hamster ovary (CHO) cells coexpressing human Na(v)1.3 sodium channels and C121Wbeta1 exhibited altered gating properties, compared to currents in cells coexpressing Na(v)1.3 and wild type beta1. In addition mutant channels were less sensitive to inhibition by phenytoin, showing reduced tonic block at -70mV (EC(50)=26microM for C121Wbeta1 versus 11microM for wild type beta1) and less frequency-dependent inhibition in response to a 20Hz pulse train ( approximately 40% inhibition for C121Wbeta1 versus approximately 70% inhibition for wild type beta1, with 50microM phenytoin). Mutant and wild type channels did not differ in inactivated state affinity for phenytoin, suggesting that their pharmacological differences were secondary to their differences in voltage-dependent gating, rather than being caused by direct effects of the mutation on the drug receptor. Together, these data show that a sodium channel mutation responsible for epilepsy can also alter channel response to antiepileptic drugs. PMID:15922564

  19. Voltage-dependent sodium channels in an invertebrate striated muscle.

    PubMed

    Schwartz, L M; Stühmer, W

    1984-08-01

    Striated skeletal muscles from the planktonic arrowworm Sagitta elegans (phylum Chaetognatha) were voltage-clamped. The muscles displayed classical voltage-dependent sodium channels that (i) showed peak transient currents when the membrane was depolarized 90 millivolts from rest, (ii) opened rapidly with peak currents flowing within 0.4 milliseconds at 4 degrees C, (iii) showed voltage-dependent inactivation with 50 percent inactivation at +25 millivolts from rest, and (iv) were blocked by 500 nanomolar tetrodotoxin. PMID:6330898

  20. Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies

    PubMed Central

    Savio-Galimberti, Eleonora; Gollob, Michael H.; Darbar, Dawood

    2012-01-01

    Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”.  This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field. PMID:22798951

  1. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity

    PubMed Central

    Green, Brad R; Bulaj, Grzegorz; Norton, Raymond S

    2015-01-01

    μ-Conotoxins block voltage-gated sodium channels (VGSCs) and compete with tetrodotoxin for binding to the sodium conductance pore. Early efforts identified μ-conotoxins that preferentially blocked the skeletal muscle subtype (NaV1.4). However, the last decade witnessed a significant increase in the number of μ-conotoxins and the range of VGSC subtypes inhibited (NaV1.2, NaV1.3 or NaV1.7). Twenty μ-conotoxin sequences have been identified to date and structure–activity relationship studies of several of these identified key residues responsible for interactions with VGSC subtypes. Efforts to engineer-in subtype specificity are driven by in vivo analgesic and neuromuscular blocking activities. This review summarizes structural and pharmacological studies of μ-conotoxins, which show promise for development of selective blockers of NaV1.2, and perhaps also NaV1.1,1.3 or 1.7. PMID:25406007

  2. Na Channel β Subunits: Overachievers of the Ion Channel Family.

    PubMed

    Brackenbury, William J; Isom, Lori L

    2011-01-01

    Voltage-gated Na(+) channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na(+) current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington's disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  3. Role of Epithelium Sodium Channel in Bone Formation

    PubMed Central

    Wang, Ruo-Yu; Yang, Shu-Hua; Xu, Wei-Hua

    2016-01-01

    Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference. PMID:26904995

  4. The hitchhiker's guide to the voltage-gated sodium channel galaxy.

    PubMed

    Ahern, Christopher A; Payandeh, Jian; Bosmans, Frank; Chanda, Baron

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure-function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na(+) selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  5. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    PubMed Central

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  6. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  7. Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability.

    PubMed

    Althaus, Mike; Bogdan, Roman; Clauss, Wolfgang G; Fronius, Martin

    2007-08-01

    Epithelial cells are exposed to a variety of mechanical forces, but little is known about the impact of these forces on epithelial ion channels. Here we show that mechanical activation of epithelial sodium channels (ENaCs), which are essential for electrolyte and water balance, occurs via an increased ion channel open probability. ENaC activity of heterologously expressed rat (rENaC) and Xenopus (xENaC) orthologs was measured by whole-cell as well as single-channel recordings. Laminar shear stress (LSS), producing shear forces in physiologically relevant ranges, was used to mechanically stimulate ENaCs and was able to activate ENaC currents in whole-cell recordings. Preceding pharmacological activation of rENaC with Zn2+ and xENaC with gadolinium and glibenclamide largely prevented LSS-activated currents. In contrast, proteolytic cleavage with trypsin potentiated the LSS effect on rENaC whereas the LSS effect on xENaC was reversed (inhibition of xENaC current). Further, we found that exposure of excised outside-out patches to LSS led to an increased ion channel open probability without affecting the number of active channels. We suggest that mechano-sensitivity of ENaC may represent a ubiquitous feature for the physiology of epithelia, providing a putative mechanism for coupling transepithelial Na+ reabsorption to luminal transport. PMID:17426066

  8. Generalized epilepsy with febrile seizures plus-associated sodium channel beta1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function.

    PubMed

    Xu, R; Thomas, E A; Gazina, E V; Richards, K L; Quick, M; Wallace, R H; Harkin, L A; Heron, S E; Berkovic, S F; Scheffer, I E; Mulley, J C; Petrou, S

    2007-08-10

    Two novel mutations (R85C and R85H) on the extracellular immunoglobulin-like domain of the sodium channel beta1 subunit have been identified in individuals from two families with generalized epilepsy with febrile seizures plus (GEFS+). The functional consequences of these two mutations were determined by co-expression of the human brain NaV1.2 alpha subunit with wild type or mutant beta1 subunits in human embryonic kidney (HEK)-293T cells. Patch clamp studies confirmed the regulatory role of beta1 in that relative to NaV1.2 alone the NaV1.2+beta1 currents had right-shifted voltage dependence of activation, fast and slow inactivation and reduced use dependence. In addition, the NaV1.2+beta1 current entered fast inactivation slightly faster than NaV1.2 channels alone. The beta1(R85C) subunit appears to be a complete loss of function in that none of the modulating effects of the wild type beta1 were observed when it was co-expressed with NaV1.2. Interestingly, the beta1(R85H) subunit also failed to modulate fast kinetics, however, it shifted the voltage dependence of steady state slow inactivation in the same way as the wild type beta1 subunit. Immunohistochemical studies revealed cell surface expression of the wild type beta1 subunit and undetectable levels of cell surface expression for both mutants. The functional studies suggest association of the beta1(R85H) subunit with the alpha subunit where its influence is limited to modulating steady state slow inactivation. In summary, the mutant beta1 subunits essentially fail to modulate alpha subunits which could increase neuronal excitability and underlie GEFS+ pathogenesis. PMID:17629415

  9. A new look at sodium channel β subunits

    PubMed Central

    Namadurai, Sivakumar; Yereddi, Nikitha R.; Cusdin, Fiona S.; Huang, Christopher L.-H.; Chirgadze, Dimitri Y.; Jackson, Antony P.

    2015-01-01

    Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits. PMID:25567098

  10. A new look at sodium channel β subunits.

    PubMed

    Namadurai, Sivakumar; Yereddi, Nikitha R; Cusdin, Fiona S; Huang, Christopher L H; Chirgadze, Dimitri Y; Jackson, Antony P

    2015-01-01

    Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits. PMID:25567098

  11. Immunocytochemical investigations of sodium channels along nodal and internodal portions of demyelinated axons.

    PubMed

    England, J D; Levinson, S R; Shrager, P

    1996-08-01

    Voltage-gated sodium channels are largely localized to the nodes of Ranvier in myelinated axons, providing the physiological basis for saltatory conduction. Studies using antisodium channel antibodies have shown that along demyelinated axons sodium channels form new distributions. The nature of this changed distribution appears to vary with the time course and mechanism of demyelination. In chronic demyelination, sodium channels increase in number and redistribute along previously internodal axon segments. In chronic demyelination produced by doxorubicin, the increase in sodium channels appeared independently of Schwann cells, suggesting increased neuronal synthesis. In acute demyelination produced by lysolecithin new clusters of sodium channels developed but only in association with the edges of remyelinating Schwann cells, which appeared to control the distribution and mobility of the channels. These findings affirm the plasticity of sodium channels in demyelinated axons and are relevant to understanding how these axons recover conduction. PMID:8837020

  12. Rat epileptic seizures evoked by BmK {alpha}IV and its possible mechanisms involved in sodium channels

    SciTech Connect

    Chai Zhifang; Bai Zhantao; Zhang Xuying; Liu Tong; Pang Xueyan; Ji Yonghua . E-mail: yhji@server.shcnc.ac.cn

    2007-05-01

    This study showed that rat unilateral intracerebroventricular injection of BmK {alpha}IV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK {alpha}IV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK {alpha}IV on intrasynaptosomal free calcium concentration [Ca{sup 2+}]{sub i} and sodium concentration [Na{sup +}]{sub i} revealed that BmK {alpha}IV-evoked glutamate release from synaptosomes was associated with an increase in Ca{sup 2+} and Na{sup +} influx. Moreover, BmK {alpha}IV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin, a blocker of sodium channel. Together, these results suggest that the induction of BmK {alpha}IV-evoked epileptic seizures may be involved in the modulation of BmK {alpha}IV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca{sup 2+} influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK {alpha}IV in the central nervous system for understanding epileptogenesis involved in sodium channels.

  13. Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels

    PubMed Central

    Lapied, Bruno; Grolleau, Françoise; Sattelle, David B

    2001-01-01

    Decarbomethoxyllated JW062 (DCJW), the active component of a new oxadiazine insecticide DPX-JW062 (Indoxacarb), was tested on action potentials and the inward sodium current recorded from short-term cultured dorsal unpaired median neurones of the cockroach Periplaneta americana.Under whole-cell current-clamp conditions, 100 nM DCJW reduced the amplitude of action potentials and induced a large hyperpolarization of the resting membrane potential associated with a 41% increase in input resistance.In voltage-clamp, DCJW resulted in a dose-dependent inhibition (IC50 28 nM) of the peak sodium current. Based on IC50 values, the effect of DCJW was about 10 fold less potent than tetrodotoxin (TTX) but 1000 fold more potent than the local anaesthetic lidocaine. DCJW (100 nM) was without effect on activation properties of the sodium current, reversal potential, voltage dependence of sodium conductance and on both fast and slow steady-state inactivations.TTX (2 nM) resulted in 48% inhibition of the peak inward sodium current. Co-application of TTX (2 nM) with various concentrations of DCJW produced an additional inhibition of the peak inward current, indicating that the blocking actions of DCJW and TTX were distinct. Co-application of lidocaine (IC50 30 μM) with various concentrations of DCJW produced a reduction of the apparent potency of DCJW, suggesting that DCJW and lidocaine acted at the same site.DCJW (100 nM) did not affect inward calcium or outward potassium currents.This study describes, for the first time, the action on insect neuronal voltage-dependent sodium channels of Indoxacarb, a new class of insecticides. PMID:11159709

  14. Sodium and calcium channels in bovine chromaffin cells.

    PubMed

    Fenwick, E M; Marty, A; Neher, E

    1982-10-01

    1. Inward currents in chromaffin cells were studied with the patch-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). The intracellular solution contained 120 mM-Cs(+) and 20 mM-tetraethylammonium (TEA(+)). Na(+) currents were studied after blockade of Ca(2+) channels with 1 mM-Co(2+) applied externally. Ca(2+) currents were recorded after eliminating Na(+) currents with tetrodotoxin (TTX). The current recordings were obtained in cell-attached, outside-out and whole-cell recording configurations (Hamill et al. 1981).2. Single channel measurements gave an elementary current amplitude of 1 pA at -10 mV for Na(+) channels. This amplitude increased with hyperpolarization between -10 and -40 mV, but did not vary significantly between -40 and -70 mV.3. The mean Na(+) channel open time was 1 ms at -30 mV. This open time decreased both with depolarization and hyperpolarization. Its value was close to the time constant of inactivation, tau(h), above -20 mV.4. Ensemble fluctuation analysis of Na(+) currents gave results consistent with those of single channel measurements. Noise power spectra obtained between -35 mV and 0 mV could be fitted with a single Lorentzian. A range of Na(+) channel densities of 1.5-10 channels per mum(2) was calculated.5. Cell-attached single Ca(2+) channel recordings were obtained in isotonic BaCl(2) solution. The single channel amplitude was 0.9 pA at -5 mV, and it became smaller for positive potential values.6. At -5 mV, single Ba(2+) currents appeared as bursts of 1.9 ms mean duration containing on the average 0.6 short gaps. The burst duration was larger at positive potentials.7. Ensemble fluctuation analysis of Ca(2+) channels was performed on whole-cell recordings in external solutions containing isotonic BaCl(2) or external Ca(2+) (Ca(o)) concentrations of 1 and 5 mM. The unit amplitude calculated in the former case was similar to that obtained in single channel measurements.8. Noise power spectra of Ca(2+) or Ba(2+) currents

  15. Sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition

    SciTech Connect

    Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.

    1985-09-25

    Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.

  16. The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    PubMed

    Uchiyama, Minoru; Maejima, Sho; Yoshie, Sumio; Kubo, Yoshihiro; Konno, Norifumi; Joss, Jean M P

    2012-12-01

    Epithelial sodium channel (ENaC) is a Na(+)-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na(+) absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin-angiotensin-aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates. PMID:23055064

  17. Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties.

    PubMed

    Herold, Karl F; Sanford, R Lea; Lee, William; Schultz, Margaret F; Ingólfsson, Helgi I; Andersen, Olaf S; Hemmings, Hugh C

    2014-12-01

    Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v)). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Na(v) function and lipid bilayer properties. We examined the effects of these agents on Na(v) in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Na(v) and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Na(v) function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia. PMID:25385786

  18. Voltage-gated sodium channels in the mammalian heart

    PubMed Central

    Zimmer, Thomas; Haufe, Volker; Blechschmidt, Steve

    2014-01-01

    Mammalian species express nine functional voltage-gated Na+ channels. Three of them, the cardiac-specific isoform Nav1.5 and the neuronal isoforms Nav1.8 and Nav1.9, are relatively resistant to the neurotoxin tetrodotoxin (TTX; IC50 ≥ 1 μM). The other six isoforms are highly sensitive to TTX with IC50 values in the nanomolar range. These isoforms are expressed in the central nervous system (Nav1.1, Nav1.2, Nav1.3, Nav1.6), in the skeletal muscle (Nav1.4), and in the peripheral nervous system (Nav1.6, Nav1.7). The isoform Nav1.5, encoded by the SCN5A gene, is responsible for the upstroke of the action potential in the heart. Mutations in SCN5A are associated with a variety of life-threatening arrhythmias, like long QT syndrome type 3 (LQT3), Brugada syndrome (BrS) or cardiac conduction disease (CCD). Previous immunohistochemical and electrophysiological assays demonstrated the cardiac expression of neuronal and skeletal muscle Na+ channels in the heart of various mammals, which led to far-reaching speculations on their function. However, when comparing the Na+ channel mRNA patterns in the heart of various mammalian species, only minute quantities of transcripts for TTX-sensitive Na+ channels were detectable in whole pig and human hearts, suggesting that these channels are not involved in cardiac excitation phenomena in higher mammals. This conclusion is strongly supported by the fact that mutations in TTX-sensitive Na+ channels were associated with epilepsy or skeletal muscle diseases, rather than with a pathological cardiac phenotype. Moreover, previous data from TTX-intoxicated animals and from cases of human tetrodotoxication showed that low TTX dosages caused at most little alterations of both the cardiac output and the electrocardiogram. Recently, genome-wide association studies identified SCN10A, the gene encoding Nav1.8, as a determinant of cardiac conduction parameters, and mutations in SCN10A have been associated with BrS. These novel findings opened a

  19. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine. PMID:26185330

  20. Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action.

    PubMed

    Fischer, H; Clauss, W

    1990-04-01

    Sodium transport across isolated lung tissue of the frog Xenopus laevis was measured in Ussing chambers under voltage-clamp conditions. Perfusing the lungs with NaCl-Ringer's solutions on both sides, a basal distinct amiloride-blockable Na+ current was present. Incubating the lungs with 1 mumol/l aldosterone from the pleural side raised the short circuit current after a 1-h latent period. Maximal values were reached after 4-5 h of aldosterone treatment, at which time the transepithelial Na+ current was more than doubled compared to the control. The stimulatory effect was totally inhibited when the aldosterone treatment was preceded by incubation of the lung tissues with spironolactone in 2000-fold excess. In the presence of amiloride (0.5-8 mumol/l) in the alveolar compartment, a Lorentzian noise component appeared in the power spectrum of the fluctuations in the short circuit current. This enabled the calculation of single Na+ channel current and Na+ channel density under both experimental conditions. Aldosterone stimulation did not change single Na+ channel current. On the other hand, the number of conducting Na+ channels increased in parallel with the transepithelial Na+ transport. This suggests that the alveolar epithelium may be a physiological target tissue for aldosterone. Since fluid absorption in the lung is secondary to active Na+ transport, aldosterone may be a potent regulator for maintaining the relatively fluid-free state of the lumen of the lung in some cases of fluid accumulation. PMID:2162035

  1. Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon.

    PubMed Central

    Vandenberg, C A; Bezanilla, F

    1991-01-01

    Single-channel, macroscopic ionic, and macroscopic gating currents were recorded from the voltage-dependent sodium channel using patch-clamp techniques on the cut-open squid giant axon. To obtain a complete set of physiological measurements of sodium channel gating under identical conditions, and to facilitate comparison with previous work, comparison was made between currents recorded in the absence of extracellular divalent cations and in the presence of physiological concentrations of extracellular Ca2+ (10 mM) and Mg2+ (50 mM). The single-channel currents were well resolved when divalent cations were not included in the extracellular solution, but were decreased in amplitude in the presence of Ca2+ and Mg2+ ions. The instantaneous current-voltage relationship obtained from macroscopic tail current measurements similarly was depressed by divalents, and showed a negative slope-conductance region for inward current at negative potentials. Voltage dependent parameters of channel gating were shifted 9-13 mV towards depolarized potentials by external divalent cations, including the peak fraction of channels open versus voltage, the time constant of tail current decline, the prepulse inactivation versus voltage relationship, and the charge-voltage relationship for gating currents. The effects of divalent cations are consistent with open channel block by Ca2+ and Mg2+ together with divalent screening of membrane charges. PMID:1663795

  2. Cardiac sodium channel mutations: why so many phenotypes?

    PubMed Central

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  3. Sodium channel β subunits: emerging targets in channelopathies.

    PubMed

    O'Malley, Heather A; Isom, Lori L

    2015-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  4. Sodium channel β subunits: emerging targets in channelopathies

    PubMed Central

    O’Malley, Heather A.; Isom, Lori L.

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Originally called “auxiliary,” we now know that β subunit proteins are multifunctional signaling molecules that play roles in both excitable and non-excitable cell types, and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. While VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  5. Sodium channels in membrane vesicles from cultured toad bladder cells

    SciTech Connect

    Asher, C.; Moran, A.; Rossier, B.C.; Garty, H. Ben Gurion Univ., Beer-Sheva Institut de Pharmacologie de l'Universite de Lausanne )

    1988-04-01

    Electrical potential-driven {sup 22}Na{sup +} fluxes were measured in membrane vesicles prepared from TBM-18(cl23) cells (a clone of the established cell line TB-M). Fifty to seventy percent of the tracer uptake in vesicles derived from cells that were cultivated on a porous support were blocked by the diuretic amiloride. The amiloride inhibition constant was <0.1 {mu}M, indicating that this flux is mediated by the apical Na{sup +}-specific channels. Vesicles prepared from cells that were not grown on a porous support exhibited much smaller amiloride-sensitive fluxes. Two Ca{sup 2+}-dependent processes that down-regulated the channel conductance and were previously identified in native epithelia were found in the cultured cells as well. Vesicles isolated from cells that were preincubated with 5 {times} 10{sup {minus}7} M aldosterone for 16-20 h exhibited higher amiloride-sensitive conductance than vesicles derived from control, steroid-depleted cells. Thus membrane derived from TBM-18(cl23) cells can be used to characterize the epithelial Na{sup +} channel and its hormonal regulation.

  6. Unveiling the sodium intercalation properties in Na1.86□0.14Fe3(PO4)3

    NASA Astrophysics Data System (ADS)

    Essehli, R.; Ben Yahia, H.; Maher, K.; Sougrati, M. T.; Abouimrane, A.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-08-01

    The new compound Na1.86□0.14Fe3(PO4)3 was successfully synthesized via hydrothermal synthesis and its crystal structure was determined using powder X-ray diffraction data. Na1.86Fe3(PO4)3 was also characterized by operando XRD and Mössbauer spectroscopy, cyclic voltammetry, and galvanostatic cycling. Na1.86Fe3(PO4)3 crystallizes with the alluaudite-type structure with the eight coordinated Na1 and Na2 sodium atoms located within the channels. The combination of the Rietveld- and Mössbauer-analyses confirms that the sodium vacancies in the Na1 site are linked to a partial oxidation of Fe2+ during synthesis. The electrochemical tests indicated that Na1.86Fe3(PO4)3 is a 3 V sodium intercalating cathode. At the current densities of 5, 10, and 20 mA g-1, the material delivers the specific capacities of 109, 97, and 80 mA h g-1, respectively. After 100 charge and discharge cycles, Na1.86Fe3(PO4)3 exhibited good sodium removal and uptake behavior although no optimizations of particle size, morphology, and carbon coating were performed.

  7. Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact.

    PubMed

    Joe, E H; Angelides, K

    1992-03-26

    In myelinated nerves, segregation of voltage-dependent sodium channels to nodes of Ranvier is crucial for saltatory conduction along axons. As sodium channels associate and colocalize with ankyrin at nodes of Ranvier, one possibility is that sodium channels are recruited and immobilized at axonal sites which are specified by the subaxolemmal cytoskeleton, independent of glial cell contact. Alternatively, segregation of channels at distinct sites along the axon may depend on glial cell contact. To resolve this question, we have examined the distribution of sodium channels, ankyrin and spectrin in myelination-competent cocultures of sensory neurons and Schwann cells by immunofluorescence, using sodium channel-, ankyrin- and spectrin-specific antibodies. In the absence of Schwann cells, sodium channels, ankyrin and spectrin are homogeneously distributed on sensory axons. When Schwann cells are introduced into these cultures, the distribution of sodium channels dramatically changes so that channel clusters on axons are abundant, but ankyrin and spectrin remain homogeneously distributed. Addition of latex beads or Schwann cell membranes does not induce channel clustering. Our results suggest that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to organize and maintain channel distribution during differentiation of myelinated axons. PMID:1312680

  8. Evidence for gene duplication in the voltage-gated sodium channel gene of Aedes aegypti

    PubMed Central

    Martins, Ademir Jesus; Brito, Luiz Paulo; Linss, Jutta Gerlinde Birggitt; Rivas, Gustavo Bueno da Silva; Machado, Ricardo; Bruno, Rafaela Vieira; Lima, José Bento Pereira; Valle, Denise; Peixoto, Alexandre Afranio

    2013-01-01

    Background and objectives: Mutations in the voltage-gated sodium channel gene (NaV), known as kdr mutations, are associated with pyrethroid and DDT insecticide resistance in a number of species. In the mosquito dengue vector Aedes aegypti, besides kdr, other polymorphisms allowed grouping AaNaV sequences as type ‘A’ or ‘B’. Here, we point a series of evidences that these polymorphisms are actually involved in a gene duplication event. Methodology: Four series of methods were employed: (i) genotypying, with allele-specific PCR (AS-PCR), of two AaNaV sites that can harbor kdr mutations (Ile1011Met and Val1016Ile), (ii) cloning and sequencing of part of the AaNaV gene, (iii) crosses with specific lineages and analysis of the offspring genotypes and (iv) copy number variation assays, with TaqMan quantitative real-time PCR. Results: kdr mutations in 1011 and 1016 sites were present only in type ‘A’ sequences, but never in the same haplotype. In addition, although the 1011Met-mutant allele is widely disseminated, no homozygous (1011Met/Met) was detected. Sequencing revealed three distinct haplotypes in some individuals, raising the hypothesis of gene duplication, which was supported by the genotype frequencies in the offspring of specific crosses. Furthermore, it was estimated that a laboratory strain selected for insecticide resistance had 5-fold more copies of the sodium channel gene compared with a susceptible reference strain. Conclusions and implications: The AaNaV duplication here found might be a recent adaptive response to the intense use of insecticides, maintaining together wild-type and mutant alleles in the same organism, conferring resistance and reducing some of its deleterious effects. PMID:24481195

  9. Controlling epithelial sodium channels with light using photoswitchable amilorides.

    PubMed

    Schönberger, Matthias; Althaus, Mike; Fronius, Martin; Clauss, Wolfgang; Trauner, Dirk

    2014-08-01

    Amiloride is a widely used diuretic that blocks epithelial sodium channels (ENaCs). These heterotrimeric transmembrane proteins, assembled from β, γ and α or δ subunits, effectively control water transport across epithelia and sodium influx into non-epithelial cells. The functional role of δβγENaC in various organs, including the human brain, is still poorly understood and no pharmacological tools are available for the functional differentiation between α- and δ-containing ENaCs. Here we report several photoswitchable versions of amiloride. One compound, termed PA1, enables the optical control of ENaC channels, in particular the δβγ isoform, by switching between blue and green light, or by turning on and off blue light. PA1 was used to modify functionally δβγENaC in amphibian and mammalian cells. We also show that PA1 can be used to differentiate between δβγENaC and αβγENaC in a model for the human lung epithelium. PMID:25054942

  10. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    PubMed Central

    2011-01-01

    Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV) channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa) channels, which suggests that ion channel regulatory partners have evolved distinct lineage-specific characteristics

  11. Cardiac Sodium Channel Mutations: Why so Many Phenotypes?

    PubMed

    Liu, M; Yang, K-C; Dudley, S C

    2016-01-01

    The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies. PMID:27586294

  12. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    PubMed Central

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  13. Sodium Chloride, NaCl/ϵ: New Force Field.

    PubMed

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C

    2016-03-10

    A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321

  14. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans.

    PubMed

    Chatzigeorgiou, Marios; Bang, Sangsu; Hwang, Sun Wook; Schafer, William R

    2013-02-01

    Transmembrane channel-like (TMC) genes encode a broadly conserved family of multipass integral membrane proteins in animals. Human TMC1 and TMC2 genes are linked to human deafness and required for hair-cell mechanotransduction; however, the molecular functions of these and other TMC proteins have not been determined. Here we show that the Caenorhabditis elegans tmc-1 gene encodes a sodium sensor that functions specifically in salt taste chemosensation. tmc-1 is expressed in the ASH polymodal avoidance neurons, where it is required for salt-evoked neuronal activity and behavioural avoidance of high concentrations of NaCl. However, tmc-1 has no effect on responses to other stimuli sensed by the ASH neurons including high osmolarity and chemical repellents, indicating a specific role in salt sensation. When expressed in mammalian cell culture, C. elegans TMC-1 generates a predominantly cationic conductance activated by high extracellular sodium but not by other cations or uncharged small molecules. Thus, TMC-1 is both necessary for salt sensation in vivo and sufficient to generate a sodium-sensitive channel in vitro, identifying it as a probable ionotropic sensory receptor. PMID:23364694

  15. Sodium channels as gateable non-photonic sensors for membrane-delimited reactive species

    PubMed Central

    Ojha, Navin K.; Nematian-Ardestani, Ehsan; Neugebauer, Sophie; Borowski, Benjamin; El-Hussein, Ahmed; Hoshi, Toshinori; Leipold, Enrico; Heinemann, Stefan H.

    2014-01-01

    Reactive oxygen species (ROS) and reactive oxygen intermediates (ROI) play crucial roles in physiological processes. While excessive ROS damages cells, small fluctuations in ROS levels represent physiological signals important for vital functions. Despite the physiological importance of ROS, many fundamental questions remain unanswered, such as which types of ROS occur in cells, how they distribute inside cells, and how long they remain in an active form. The current study presents a ratiometric sensor of intracellular ROS levels based on genetically engineered voltage-gated sodium channels (roNaV). roNaV can be used for detecting oxidative modification that occurs near the plasma membrane with a sensitivity similar to existing fluorescence-based ROS sensors. Moreover, roNaV has several advantages over traditional sensors because it does not need excitation light for sensing, and thus, can be used to detect phototoxic cellular modifications. In addition, the ROS dynamic range of roNaV is easily manipulated in real time by means of the endogenous channel inactivation mechanism. Measurements on ROS liberated from intracellular Lucifer Yellow and genetically encoded KillerRed has revealed an assessment of ROS lifetime in individual mammalian cells. Flashlight-induced ROS concentration decayed with two major time constants of about 10 and 1000 ms. PMID:24513256

  16. Sodium channels as gateable non-photonic sensors for membrane-delimited reactive species.

    PubMed

    Ojha, Navin K; Nematian-Ardestani, Ehsan; Neugebauer, Sophie; Borowski, Benjamin; El-Hussein, Ahmed; Hoshi, Toshinori; Leipold, Enrico; Heinemann, Stefan H

    2014-05-01

    Reactive oxygen species (ROS) and reactive oxygen intermediates (ROI) play crucial roles in physiological processes. While excessive ROS damages cells, small fluctuations in ROS levels represent physiological signals important for vital functions. Despite the physiological importance of ROS, many fundamental questions remain unanswered, such as which types of ROS occur in cells, how they distribute inside cells, and how long they remain in an active form. The current study presents a ratiometric sensor of intracellular ROS levels based on genetically engineered voltage-gated sodium channels (roNaV). roNaV can be used for detecting oxidative modification that occurs near the plasma membrane with a sensitivity similar to existing fluorescence-based ROS sensors. Moreover, roNaV has several advantages over traditional sensors because it does not need excitation light for sensing, and thus, can be used to detect phototoxic cellular modifications. In addition, the ROS dynamic range of roNaV is easily manipulated in real time by means of the endogenous channel inactivation mechanism. Measurements on ROS liberated from intracellular Lucifer Yellow and genetically encoded KillerRed have revealed an assessment of ROS lifetime in individual mammalian cells. Flashlight-induced ROS concentration decayed with two major time constants of about 10 and 1000 ms. PMID:24513256

  17. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  18. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  19. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  20. SCN4B-Encoded Sodium Channel β4 Subunit in Congenital Long-QT Syndrome

    PubMed Central

    Medeiros-Domingo, Argelia; Kaku, Toshihiko; Tester, David J.; Iturralde-Torres, Pedro; Itty, Ajit; Ye, Bin; Valdivia, Carmen; Ueda, Kazuo; Canizales-Quinteros, Samuel; Tusié-Luna, Maria Teresa; Makielski, Jonathan C.; Ackerman, Michael J.

    2012-01-01

    Background Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming α-subunit associated with 1 or more auxiliary β-subunits. Four different β-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. Methods and Results We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Navβ-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel α-subunit (hNaV1.5). Compared with the wild-type, L179F-β4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-β4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. Conclusions We provide the seminal report of SCN4B-encoded Navβ4 as a novel LQT3-susceptibility gene. PMID:17592081

  1. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels

    PubMed Central

    Wagner, Stefan; Dybkova, Nataliya; Rasenack, Eva C.L.; Jacobshagen, Claudius; Fabritz, Larissa; Kirchhof, Paulus; Maier, Sebastian K.G.; Zhang, Tong; Hasenfuss, Gerd; Brown, Joan Heller; Bers, Donald M.; Maier, Lars S.

    2006-01-01

    In heart failure (HF), Ca2+/calmodulin kinase II (CaMKII) expression is increased. Altered Na+ channel gating is linked to and may promote ventricular tachyarrhythmias (VTs) in HF. Calmodulin regulates Na+ channel gating, in part perhaps via CaMKII. We investigated effects of adenovirus-mediated (acute) and Tg (chronic) overexpression of cytosolic CaMKIIδC on Na+ current (INa) in rabbit and mouse ventricular myocytes, respectively (in whole-cell patch clamp). Both acute and chronic CaMKIIδC overexpression shifted voltage dependence of Na+ channel availability by –6 mV (P < 0.05), and the shift was Ca2+ dependent. CaMKII also enhanced intermediate inactivation and slowed recovery from inactivation (prevented by CaMKII inhibitors autocamtide 2–related inhibitory peptide [AIP] or KN93). CaMKIIδC markedly increased persistent (late) inward INa and intracellular Na+ concentration (as measured by the Na+ indicator sodium-binding benzofuran isophthalate [SBFI]), which was prevented by CaMKII inhibition in the case of acute CaMKIIδC overexpression. CaMKII coimmunoprecipitates with and phosphorylates Na+ channels. In vivo, transgenic CaMKIIδC overexpression prolonged QRS duration and repolarization (QT intervals), decreased effective refractory periods, and increased the propensity to develop VT. We conclude that CaMKII associates with and phosphorylates cardiac Na+ channels. This alters INa gating to reduce availability at high heart rate, while enhancing late INa (which could prolong action potential duration). In mice, enhanced CaMKIIδC activity predisposed to VT. Thus, CaMKII-dependent regulation of Na+ channel function may contribute to arrhythmogenesis in HF. PMID:17124532

  2. Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.

    PubMed

    Ford, Christopher P; Wong, Kenneth V; Lu, Van B; Posse de Chaves, Elena; Smith, Peter A

    2008-03-01

    Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. PMID:18216230

  3. Tetrodotoxin binding sites in human heart and human brain sodium channels. Final report, 28 June 1991-27 June 1994

    SciTech Connect

    Brown, A.M.; Hartmann, H.A.

    1994-07-28

    Tetrodotoxin (TTX) and saxitoxin (STX) are potent and lethal threats to exposed soldiers. The development of an antidote or site-specific antibodies for low affinity TTX/STX cardiac sodium channels and high affinity TTX/STX brain and peripheral nerve sodium channels requires a data base not only of the primary structure of the toxin receptor site(s) but also insight into the secondary structures of these site(s). Five goals or tasks were attempted and the first three were completed. Full-length human cardiac and brain sodium channel cDNAs have been cloned and expressed as functional proteins in Xenopus oocytes. Silent restriction sites have been introduced around the pore or P-region of the Na+ channel repeats. Site-directed mutagenesis has identified critical residues in the pore from the primary structure involved in sensitivity to TTX and STX and other pore properties. Chemical modification of cysteine mutants of these initial residues by methanethiosulfonate compounds produces an expanded data base of the secondary structure of the toxins` receptors. Specific peptides which mimic these receptors will be made to compete with the natural receptor for the toxins. We have successfully cloned the cDNAs for both human heart and brain sodium channels and expressed functional proteins. The initial chemical modification data suggests file receptor sites for TTX/STX are not interchangeable and are not the same site.

  4. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation.

    PubMed

    Pei, Zifan; Xiao, Yucheng; Meng, Jingwei; Hudmon, Andy; Cummins, Theodore R

    2016-01-01

    Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias. PMID:27337590

  5. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation

    PubMed Central

    Pei, Zifan; Xiao, Yucheng; Meng, Jingwei; Hudmon, Andy; Cummins, Theodore R.

    2016-01-01

    Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias. PMID:27337590

  6. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons

    PubMed Central

    Rush, Anthony M; Cummins, Theodore R; Waxman, Stephen G

    2007-01-01

    Dorsal root ganglion neurons express an array of sodium channel isoforms allowing precise control of excitability. An increasing body of literature indicates that regulation of firing behaviour in these cells is linked to their patterns of expression of specific sodium channel isoforms, which have been discovered to possess distinct biophysical characteristics. The pattern of expression of sodium channels differs in different subclasses of DRG neurons and is not fixed but, on the contrary, changes in response to a variety of disease insults. Moreover, modulation of channels by their environment has been found to play an important role in the response of these neurons to stimuli. In this review we illustrate how excitability can be finely tuned to provide contrasting firing templates in different subclasses of DRG neurons by selective deployment of various sodium channel isoforms, by plasticity of expression of these proteins, and by interactions of these sodium channel isoforms with each other and with other modulatory molecules. PMID:17158175

  7. Shellfish Toxins Targeting Voltage-Gated Sodium Channels

    PubMed Central

    Zhang, Fan; Xu, Xunxun; Li, Tingting; Liu, Zhonghua

    2013-01-01

    Voltage-gated sodium channels (VGSCs) play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryotic cyanobacteria and eukaryotic dinoflagellates in both marine and fresh water systems, which can accumulate in marine animals via the food chain. Consumption of shellfish toxin-contaminated seafood may result in potentially fatal human shellfish poisoning. This article provides an overview of the structure, bioactivity, and pharmacology of shellfish toxins that act on VGSCs, along with a brief discussion on their pharmaceutical potential for pain management. PMID:24287955

  8. Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics.

    PubMed

    González-Montelongo, Rafaela; Barros, Francisco; Alvarez de la Rosa, Diego; Giraldez, Teresa

    2016-05-01

    The epithelial sodium channel (ENaC) constitutes the rate-limiting step for Na(+) transport across electrically tight epithelia. Regulation of ENaC activity is critical for electrolyte and extracellular volume homeostasis, as well as for lung liquid clearance and colon Na(+) handling. ENaC activity is tightly controlled by a combination of mechanisms involving changes in open probability and plasma membrane abundance. The latter reflects a combination in channel biosynthesis and trafficking to and from the membrane. Studying ENaC trafficking with different techniques in a variety of expression systems has yielded inconsistent results, indicating either fast or slow rates of insertion and retrieval, which range from the order of minutes to several hours. Here, we use Xenopus oocytes as ENaC expression system to study channel insertion rate in the membrane using two different techniques under comparable conditions: (1) confocal microscopy coupled to fluorescence recovery after photobleaching (FRAP) measurements; and (2) fluorescent bungarotoxin (BTX) binding to ENaC subunits modified to include BTX binding sites (BBSs) in their extracellular domain, a technique that has not been previously used to study ENaC trafficking. Our confocal-FRAP data indicate a fast rate of ENaC incorporation to the membrane in a process conditioned by channel subunit composition. On the other hand, BTX binding experiments indicate much slower channel insertion rates, with matching slow ENaC retrieval rates. The data support a model that includes fast recycling of endocytosed ENaC with parallel incorporation of newly synthesized channels at a slower rate. PMID:26876388

  9. Resurgent current of voltage-gated Na+ channels

    PubMed Central

    Lewis, Amanda H; Raman, Indira M

    2014-01-01

    Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941

  10. Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels

    PubMed Central

    Swanson, Teresa M.

    2015-01-01

    Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular processes. Drugs that block sodium channels are used in local anesthesia and the treatment of epilepsy, bipolar disorder, chronic pain, and cardiac arrhythmia. Drugs that block calcium channels are used in the treatment of epilepsy, chronic pain, and cardiovascular disorders, including hypertension, angina pectoris, and cardiac arrhythmia. The principal pore-forming subunits of voltage-gated sodium and calcium channels are structurally related and likely to have evolved from ancestral voltage-gated sodium channels that are widely expressed in prokaryotes. Determination of the structure of a bacterial ancestor of voltage-gated sodium and calcium channels at high resolution now provides a three-dimensional view of the binding sites for drugs acting on sodium and calcium channels. In this minireview, we outline the different classes of sodium and calcium channel drugs, review studies that have identified amino acid residues that are required for their binding and therapeutic actions, and illustrate how the analogs of those key amino acid residues may form drug-binding sites in three-dimensional models derived from bacterial channels. PMID:25848093

  11. Structure and function of voltage-gated sodium channels at atomic resolution.

    PubMed

    Catterall, William A

    2014-01-01

    Voltage-gated sodium channels initiate action potentials in nerve, muscle and other excitable cells. Early physiological studies described sodium selectivity, voltage-dependent activation and fast inactivation, and developed conceptual models for sodium channel function. This review article follows the topics of my 2013 Sharpey-Schafer Prize Lecture and gives an overview of research using a combination of biochemical, molecular biological, physiological and structural biological approaches that have elucidated the structure and function of sodium channels at the atomic level. Structural models for voltage-dependent activation, sodium selectivity and conductance, drug block and both fast and slow inactivation are discussed. A perspective for the future envisions new advances in understanding the structural basis for sodium channel function and the opportunity for structure-based discovery of novel therapeutics. PMID:24097157

  12. Use dependence of tetrodotoxin block of sodium channels: a revival of the trapped-ion mechanism.

    PubMed Central

    Conti, F; Gheri, A; Pusch, M; Moran, O

    1996-01-01

    The use-dependent block of sodium channels by tetrodotoxin (TTX) has been studied in cRNA-injected Xenopus oocytes expressing the alpha-subunit of rat brain IIA channels. The kinetics of stimulus-induced extra block are consistent with an underlying relaxation process involving only three states. Cumulative extra block induced by repetitive stimulations increases with hyperpolarization, with TTX concentration, and with extracellular Ca2+ concentration. We have developed a theoretical model based on the suggestion by Salgado et al. that TTX blocks the extracellular mouth of the ion pore less tightly when the latter has its external side occupied by a cation, and that channel opening favors a tighter binding by allowing the escape of the trapped ion. The model provides an excellent fit of the data, which are consistent with Ca2+ being more efficient than Na+ in weakening TTX binding and with bound Ca2+ stabilizing the closed state of the channel, as suggested by Armstrong and Cota. Reports arguing against the trapped-ion mechanism are critically discussed. PMID:8874004

  13. Na channel gene mutations in epilepsy--the functional consequences.

    PubMed

    Yamakawa, Kazuhiro

    2006-08-01

    Mutations of voltage-gated sodium channel genes SCN1A, SCN2A, and SCN1B have been identified in several types of epilepsies including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). In both SCN1A and SCN2A, missense mutations tend to result in benign idiopathic epilepsy, whereas truncation mutations lead to severe and intractable epilepsy. However, the results obtained by the biophysical analyses using cultured cell systems still remain elusive. Now studies in animal models harboring sodium channel gene mutations should be eagerly pursued. PMID:16806834

  14. Extracellular Protons Inhibit Charge Immobilization in the Cardiac Voltage-Gated Sodium Channel

    PubMed Central

    Jones, D.K.; Claydon, T.W.; Ruben, P.C.

    2013-01-01

    Low pH depolarizes the voltage-dependence of cardiac voltage-gated sodium (NaV1.5) channel activation and fast inactivation and destabilizes the fast-inactivated state. The molecular basis for these changes in protein behavior has not been reported. We hypothesized that changes in the kinetics of voltage sensor movement may destabilize the fast-inactivated state in NaV1.5. To test this idea, we recorded NaV1.5 gating currents in Xenopus oocytes using a cut-open voltage-clamp with extracellular solution titrated to either pH 7.4 or pH 6.0. Reducing extracellular pH significantly depolarized the voltage-dependence of both the QON/V and QOFF/V curves, and reduced the total charge immobilized during depolarization. We conclude that destabilized fast-inactivation and reduced charge immobilization in NaV1.5 at low pH are functionally related effects. PMID:23823228

  15. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1.

    PubMed

    Xu, Ningyong; Cioffi, Donna L; Alexeyev, Mikhail; Rich, Thomas C; Stevens, Troy

    2015-02-15

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  16. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1

    PubMed Central

    Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.

    2014-01-01

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  17. Clustering of neuronal sodium channels requires contact with myelinating Schwann cells.

    PubMed

    Ching, W; Zanazzi, G; Levinson, S R; Salzer, J L

    1999-01-01

    Efficient and rapid conduction of action potentials by saltatory conduction requires the clustering of voltage-gated sodium channels at nodes of Ranvier. This clustering results from interactions between neurons and myelinating glia, although it has not been established whether this glial signal is contact-dependent or soluble. To investigate the nature of this signal, we examined sodium channel clustering in co-cultures of embryonic rat dorsal root ganglion neurons and Schwann cells. Cultures maintained under conditions promoting or preventing myelination were immunostained with antibodies against the alpha subunit of the sodium channel and against ankyrin(G), a cytoskeletal protein associated with these channels. Consistent with previous in vivo studies (Vabnick et al., 1996), sodium channels and ankyrin G cluster at the onset of myelination. These clusters form adjacent to the ends of the myelinating Schwann cells and appear to fuse to form mature nodes. In contrast, sodium channels and ankyrin G do not cluster in neurons grown alone or in co-cultures where myelination is precluded by growing cells in defined media. Conditioned media from myelinating co-cultures also failed to induce sodium channel or ankyrin G clusters in cultures of neurons alone. Finally, no clusters develop in the amyelinated portions of suspended fascicles of dorsal root ganglia explants despite being in close proximity to myelinated segments in other areas of the dish. These results indicate that clustering of sodium channels requires contact with myelinating Schwann cells. PMID:10739572

  18. Intracellular Na(+) inhibits volume-regulated anion channel in rat cortical astrocytes.

    PubMed

    Minieri, Laura; Pivonkova, Helena; Harantova, Lenka; Anderova, Miroslava; Ferroni, Stefano

    2015-02-01

    Accumulating evidence indicates that increased intracellular Na(+) concentration ([Na(+) ]i ) in astroglial cells is associated with the development of brain edema under ischemic conditions, but the underlying mechanisms are still elusive. Here, we report that in primary cultured rat cortical astrocytes, elevations of [Na(+) ]i reflecting those achieved during ischemia cause a marked decrease in hypotonicity-evoked current mediated by volume-regulated anion channel (VRAC). Pharmacological manipulations revealed that VRAC inhibition was not due to the reverse mode of the plasma membrane sodium/calcium exchanger. The negative modulation of VRAC was also observed in an astrocytic cell line lacking the predominant astrocyte water channel aquaporin 4, indicating that [Na(+) ]i effect was not mediated by the regulation of aquaporin 4 activity. The inward rectifier Cl(-) current, which is also expressed by cultured astrocytes, was not affected by [Na(+) ]i increase. VRAC depression by high [Na(+) ]i was confirmed in adult astrocytes, suggesting that it was not developmentally regulated. Altogether, these results provide the first evidence that intracellular Na(+) dynamics can modulate astrocytic membrane conductance that controls functional processes linked to cell volume regulation and add further support to the concept that limiting astrocyte intracellular Na(+) accumulation might be a favorable strategy to counteract the development of brain edema. PMID:25279950

  19. Molecular identity of dendritic voltage-gated sodium channels.

    PubMed

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability. PMID:20466935

  20. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  1. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels.

    PubMed Central

    Wang, D W; George, A L; Bennett, P B

    1996-01-01

    In this study we have expressed and characterized recombinant cardiac and skeletal muscle sodium channel alpha subunits in tsA-201 cells under identical experimental conditions. Unlike the Xenopus oocyte expression system, in tsA-201 cells (transformed human embryonic kidney) both channels seem to gate rapidly, as in native tissue. In general, hSkM1 gating seemed faster than hH1 both in terms of rate of inactivation and rate of recovery from inactivation as well as time to peak current. The midpoint of the steady-state inactivation curve was approximately 25 mV more negative for hH1 compared with hSkM1. In both isoforms, the steady-state channel availability relationships ("inactivation curves") shifted toward more negative membrane potentials with time. The cardiac isoform showed a minimal shift in the activation curve as a function of time after whole-cell dialysis, whereas hSkM1 showed a continued and marked negative shift in the activation voltage dependence of channel gating. This observation suggests that the mechanism underlying the shift in inactivation voltage dependence may be similar to the one that is causing the shift in the activation voltage dependence in hSkM1 but that this is uncoupled in the cardiac isoform. These results demonstrate the utility and limitations of measuring cardiac and skeletal muscle recombinant Na+ channels in tsA-201 cells. This baseline characterization will be useful for future investigations on channel mutants and pharmacology. PMID:8770201

  2. Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.

    PubMed Central

    Asai, Y; Kojima, S; Kato, H; Nishioka, N; Kawagishi, I; Homma, M

    1997-01-01

    The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation. PMID:9260952

  3. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    SciTech Connect

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M. )

    1990-08-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.

  4. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    PubMed

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  5. Sodium Channel Inhibitors Reduce DMPK mRNA and Protein.

    PubMed

    Witherspoon, Luke; O'Reilly, Sean; Hadwen, Jeremiah; Tasnim, Nafisa; MacKenzie, Alex; Farooq, Faraz

    2015-08-01

    Myotonic dystrophy type 1 (DM1) is caused by an expanded trinucleotide (CTG)n tract in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene. This results in the aggregation of an expanded mRNA forming toxic intranuclear foci which sequester splicing factors. We believe down-regulation of DMPK mRNA represents a potential, and as yet unexplored, DM1 therapeutic avenue. Consequently, a computational screen for agents which down-regulate DMPK mRNA was undertaken, unexpectedly identifying the sodium channel blockers mexiletine, prilocaine, procainamide, and sparteine as effective suppressors of DMPK mRNA. Analysis of DMPK mRNA in C2C12 myoblasts following treatment with these agents revealed a reduction in the mRNA levels. In vivo analysis of CD1 mice also showed DMPK mRNA and protein down-regulation. The role of DMPK mRNA suppression in the documented efficacy of this class of compounds in DM1 is worthy of further investigation. PMID:26011798

  6. Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia.

    PubMed

    Milstein, Michelle L; Musa, Hassan; Balbuena, Daniela Ponce; Anumonwo, Justus M B; Auerbach, David S; Furspan, Philip B; Hou, Luqia; Hu, Bin; Schumacher, Sarah M; Vaidyanathan, Ravi; Martens, Jeffrey R; Jalife, José

    2012-07-31

    The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances. PMID:22509027

  7. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    PubMed

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. PMID:27586287

  8. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    PubMed

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue. PMID:27032955

  9. Cadmium trapping in an epithelial sodium channel pore mutant.

    PubMed

    Takeda, Armelle-Natsuo; Gautschi, Ivan; van Bemmelen, Miguel X; Schild, Laurent

    2007-11-01

    The putative selectivity filter of the epithelial sodium channel (ENaC) comprises a three-residue sequence G/SXS, but it remains uncertain whether the backbone atoms of this sequence or whether their side chains are lining the pore. It has been reported that the S589C mutation in the selectivity filter of alphaENaC renders the channel sensitive to block by externally applied Cd2+; this was interpreted as evidence for Cd2+ coordination with the thiol group of the side chain of alpha589C, pointing toward the pore lumen. Because the alphaS589C mutation alters the monovalent to divalent cation selectivity ratio of ENaC and because internally applied Cd2+ blocks wild-type ENaC with high affinity, we hypothesized that the inhibition of alphaS589C ENaC by Cd2+ results rather from the coordination of this cation with native cysteine residues located in the internal pore of ENaC. We show here that Cd2+ inhibits not only ENaC alphaS589C and alphaS589D but also alphaS589N mutants and that Ca2+ weakly interacts with the S589D mutant. The block of alphaS589C, -D, and -N mutants is characterized by a slow on-rate, is nearly irreversible, is voltage-dependent, and can be prevented by amiloride. The C546S mutation in the second transmembrane helix of gamma subunit in the background of the ENaC alphaS589C, -D, or -N mutants reduces the sensitivity to block by Cd2+ and renders the block rapidly reversible. We conclude therefore that the block by Cd2+ of the alphaS589C, -D, and -N mutants results from the trapping of Cd2+ ions in the internal pore of the channel and involves Cys-546 in the second transmembrane helix of the gammaENaC subunit. PMID:17804416

  10. Parkinson's disease-like forelimb akinesia induced by BmK I, a sodium channel modulator.

    PubMed

    Zhu, Hongyan; Wang, Ziyi; Jin, Jiahui; Pei, Xiao; Zhao, Yuxiao; Wu, Hao; Lin, Weide; Tao, Jie; Ji, Yonghua

    2016-07-15

    Parkinson's disease (PD) is a neurodegenerative disorder and characterized by motor disabilities which are mostly linked with high levels of synchronous oscillations in the basal ganglia neurons. Voltage-gated sodium channels (VGSCs) play a vital role in the abnormal electrical activity of neurons in the globus pallidus (GP) and the subthalamic nucleus (STN) in PD. BmK I, a α-like toxin purified from the Chinese scorpion Buthus martensi Karsch, has been identified a site-3-specific modulator of VGSCs. The present study shows that forelimb akinesia can be induced by the injection of BmK I into the globus pallidus (GP) in rats. In addition, BmK I cannot produce neuronal damage in vivo and in vitro at 24h after treatment, indicating that the forelimb akinesia does not result from neuronal damage. Electrophysiological studies further revealed that the inactivated Na(+) currents were showed to be more vulnerably modulated by BmK I than the activated Na(+) currents in human neuron-like SHSY5Y cells. Furthermore, the modulation of BmK I on inactivation was preferentially attributed to fast inactivation rather than slow inactivation. Therefore, the PD-like forelimb akinesia may result from the modulation of sodium channels in neuron by BmK I. These findings not only suggest that BmK I may be an effective and novel molecule for the study of pathogenesis in PD but also support the idea that VGSCs play a crucial role in the motor disabilities in PD. PMID:27108049

  11. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  12. State-Dependent Modification of Voltage-Gated Sodium Channels by Pyrethroids

    PubMed Central

    Soderlund, David M.

    2009-01-01

    Pyrethroids disrupt nerve function by altering the rapid kinetic transitions between conducting and nonconducting states of voltage-gated sodium channels that underlie the generation of nerve action potentials. Recent studies of pyrethroid action on cloned insect and mammalian sodium channel isoforms expressed in Xenopus laevis oocytes show that in some cases pyrethroid modification is either absolutely dependent on or significantly enhanced by repeated channel activation. These use-dependent effects have been interpreted as evidence of preferential binding of at least some pyrethroids to the open, rather than resting, state of the sodium channel. This paper reviews the evidence for state-dependent modification of insect and mammalian sodium channels expressed in oocytes by pyrethroids and considers the implications of state-dependent effects for understanding the molecular mechanism of pyrethroid action and the development and testing of models of the pyrethroid receptor. PMID:20652092

  13. Multimodal action of single Na+ channels in myocardial mouse cells.

    PubMed Central

    Böhle, T; Benndorf, K

    1995-01-01

    Unitary Na+ currents of myocardial mouse cells were studied at room temperature in 10 cell-attached patches, each containing one and only one channel. Small-pore patch pipettes (resistance 10-97 M omega when filled with 200% Tyrode's solution) with exceptionally thick walls were used. Observed were both rapidly inactivating (6 patches) and slowly inactivating (3 patches) Na+ currents. In one patch, a slow transition from rather fast to slow inactivation was detected over a time of 0.5 h. A short and a long component of the open-channel life time were recorded at the beginning, but only a short one at the end of the experiment. Concomitantly, the first latency was slowed. Amplitude histograms showed that the electrochemical driving force across the pore of the channel did not change during this time. In three patches, a fast and repetitive switching between different modes of Na+ channel action could be clearly identified by plotting the long-time course of the averaged current per trace. The ensemble-averaged current formed in each mode was different in kinetics and amplitude. Each mode had a characteristic mean open-channel life time and distribution of first latency, but the predominant single-channel current amplitude was unaffected by mode switches. It is concluded that two types of changes in kinetics may happen in a single Na+ channel: fast and reversible switches between different modes, and a slow loss of inactivation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 7 PMID:7711232

  14. Consequence analysis of a postulated NaOH release from the 2727-W sodium storage facility

    SciTech Connect

    Himes, D.A.

    1996-09-27

    Toxicological and radiological consequences were calculated for a maximum sodium fire in the 2727-W Sodium Storage Facility. The sodium is solid and cannot leak out of the tanks. The maximum fire therefore corresponded to the maximum cross-sectional area of one tank. It was shown that release of the entire facility inventory of 22 Na is insufficient to produce an appreciable effect.

  15. Colonic Hypersensitivity and Sensitization of Voltage-gated Sodium Channels in Primary Sensory Neurons in Rats with Diabetes

    PubMed Central

    Hu, Ji; Song, Zhen-Yuan; Zhang, Hong-Hong; Qin, Xin; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2016-01-01

    Background/Aims Patients with long-standing diabetes often demonstrate intestinal dysfunction and abdominal pain. However, the pathophysiology of abdominal pain in diabetic patients remains elusive. The purpose of study was to determine roles of voltage-gated sodium channels in dorsal root ganglion (DRG) in colonic hypersensitivity of rats with diabetes. Methods Diabetic models were induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in adult female rats, while the control rats received citrate buffer only. Behavioral responses to colorectal distention were used to determine colonic sensitivity in rats. Colon projection DRG neurons labeled with DiI were acutely dissociated for measuring excitability and sodium channel currents by whole-cell patch clamp recordings. Western blot analysis was employed to measure the expression of NaV1.7 and NaV1.8 of colon DRGs. Results STZ injection produced a significantly lower distention threshold than control rats in responding to colorectal distention. STZ injection also depolarized the resting membrane potentials, hyperpolarized action potential threshold, decreased rheobase and increased frequency of action potentials evoked by 2 and 3 times rheobase and ramp current stimulation. Furthermore, STZ injection enhanced neuronal sodium current densities of DRG neurons innervating the colon. STZ injection also led to a significant upregulation of NaV1.7 and NaV1.8 expression in colon DRGs compared with age and sex-matched control rats. Conclusions Our results suggest that enhanced neuronal excitability following STZ injection, which may be mediated by upregulation of NaV1.7 and NaV1.8 expression in DRGs, may play an important role in colonic hypersensitivity in rats with diabetes. PMID:26459453

  16. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    PubMed

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  17. A double-tuned 1H/23Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Tabbert, Martin; Junge, Sven; Gallagher, Lindsay; Mhairi Macrae, I.; Fagan, Andrew J.

    2010-12-01

    A method for quantifying the tissue sodium concentration (TSC) in the rat brain from 23Na-MR images was developed. TSC is known to change in a variety of common human diseases and holds considerable potential to contribute to their study; however, its accurate measurement in small laboratory animals has been hindered by the extremely low signal to noise ratio (SNR) in 23Na images. To address this, the design, construction and characterization of a double-tuned 1H/23Na dual resonator system for 1H-guided quantitative 23Na-MRI are described. This system comprises an SNR-optimized surface detector coil for 23Na image acquisition, and a volume resonator producing a highly homogeneous B1 field (<5% inhomogeneity) for the Na channel across the rat head. The resonators incorporated channel-independent balanced matching and tuning capabilities with active decoupling circuitry at the 23Na resonance frequency. A quantification accuracy of TSC of <10 mM was achieved in Na-images with 1.2 µl voxel resolution acquired in 10 min. The potential of the quantification technique was demonstrated in an in vivo experiment of a rat model of cerebral stroke, where the evolution of the TSC was successfully monitored for 8 h after the stroke was induced.

  18. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes.

    PubMed

    Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min

    2010-10-01

    This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. PMID:20472040

  19. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.

    PubMed

    Sottas, Valentin; Abriel, Hugues

    2016-07-01

    During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Nav1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Nav1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26907222

  20. Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus.

    PubMed

    Spampanato, Jay; Aradi, Ildiko; Soltesz, Ivan; Goldin, Alan L

    2004-05-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial syndrome with a complex seizure phenotype. It is caused by mutations in one of 3 voltage-gated sodium channel subunit genes (SCN1B, SCN1A, and SCN2A) and the GABA(A) receptor gamma2 subunit gene (GBRG2). The biophysical characterization of 3 mutations (T875M, W1204R, and R1648H) in SCN1A, the gene encoding the CNS voltage-gated sodium channel alpha subunit Na(v)1.1, demonstrated a variety of functional effects. The T875M mutation enhanced slow inactivation, the W1204R mutation shifted the voltage dependency of activation and inactivation in the negative direction, and the R1648H mutation accelerated recovery from inactivation. To determine how these changes affect neuronal firing, we used the NEURON simulation software to design a computational model based on the experimentally determined properties of each GEFS+ mutant sodium channel and a delayed rectifier potassium channel. The model predicted that W1204R decreased the threshold, T875M increased the threshold, and R1648H did not affect the threshold for firing a single action potential. Despite the different effects on the threshold for firing a single action potential, all of the mutations resulted in an increased propensity to fire repetitive action potentials. In addition, each mutation was capable of driving repetitive firing in a mixed population of mutant and wild-type channels, consistent with the dominant nature of these mutations. These results suggest a common physiological mechanism for epileptogenesis resulting from sodium channel mutations that cause GEFS+. PMID:14702334

  1. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  2. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  3. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  4. Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine.

    PubMed

    Koltun, Dmitry O; Parkhill, Eric Q; Elzein, Elfatih; Kobayashi, Tetsuya; Notte, Gregory T; Kalla, Rao; Jiang, Robert H; Li, Xiaofen; Perry, Thao D; Avila, Belem; Wang, Wei-Qun; Smith-Maxwell, Catherine; Dhalla, Arvinder K; Rajamani, Sridharan; Stafford, Brian; Tang, Jennifer; Mollova, Nevena; Belardinelli, Luiz; Zablocki, Jeff A

    2016-07-01

    We started with a medium throughput screen of heterocyclic compounds without basic amine groups to avoid hERG and β-blocker activity and identified [1,2,4]triazolo[4,3-a]pyridine as an early lead. Optimization of substituents for Late INa current inhibition and lack of Peak INa inhibition led to the discovery of 4h (GS-458967) with improved anti-arrhythmic activity relative to ranolazine. Unfortunately, 4h demonstrated use dependent block across the sodium isoforms including the central and peripheral nervous system isoforms that is consistent with its low therapeutic index (approximately 5-fold in rat, 3-fold in dog). Compound 4h represents our initial foray into a 2nd generation Late INa inhibitor program and is an important proof-of-concept compound. We will provide additional reports on addressing the CNS challenge in a follow-up communication. PMID:27080178

  5. Role of calcium and calpain in the downregulation of voltage-gated sodium channel expression by the pyrethroid pesticide deltamethrin.

    PubMed

    Magby, Jason P; Richardson, Jason R

    2015-03-01

    Voltage-gated sodium channels (Na(v)) are essential for initiation and propagation of action potentials. Previous in vitro studies reported that exposure to the Na(v) toxins veratridine and α scorpion toxin cause persistent downregulation of Na(v) mRNA in vitro. However the mechanism of this downregulation is not well characterized. Here, we report that the type-II pyrethroid deltamethrin, which has a similar mechanism as these toxins, elicited an approximate 25% reduction in Na(v) 1.2 and Na(v) 1.3 mRNA in SK-N-AS cells. Deltamethrin-induced decreases of Na(v) mRNA were blocked with the Na(v) antagonist tetrodotoxin, demonstrating a primary role for interaction with Na(v). Pre-treatment with the intracellular calcium chelator BAPTA-AM and the calpain inhibitor PD-150606 also prevented these decreases, identifying a role for intracellular calcium and calpain activation. Because alterations in Na(v) expression and function can result in neurotoxicity, additional studies are warranted to determine whether or not such effects occur in vivo. PMID:25358543

  6. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides

    SciTech Connect

    Du Yuzhe; Nomura, Yoshiko; Luo Ningguang; Liu Zhiqi; Lee, Jung-Eun; Khambay, Bhupinder; Dong Ke

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an {alpha}-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G{sup 1111} and two positively charged lysines immediately downstream of G{sup 1111} in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G{sup 1111}, a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G{sup 1111} had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.

  7. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides.

    PubMed

    Du, Yuzhe; Nomura, Yoshiko; Luo, Ningguang; Liu, Zhiqi; Lee, Jung-Eun; Khambay, Bhupinder; Dong, Ke

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an alpha-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G(1111) and two positively charged lysines immediately downstream of G(1111) in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G(1111), a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G(1111) had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level. PMID:19022275

  8. Dosage Effects of a Drosophila Sodium Channel Gene on Behavior and Axonal Excitability

    PubMed Central

    Stern, M.; Kreber, R.; Ganetzky, B.

    1990-01-01

    The effects of para mutations on behavior and axonal excitability in Drosophila suggested that para specifically affects sodium channels. This hypothesis was confirmed by molecular analysis of the para locus, which demonstrates that the encoded para product is a sodium channel polypeptide. Here we characterize the effects of altered para(+) dosage on behavior and axonal excitability, both in an otherwise wild-type background and in combination with two other mutations: nap(ts), which also affects sodium channels, and Sh(KS133), which specifically affects potassium channels. Whereas it was previously shown that decreased dosage of para(+) is unconditionally lethal in a .nap(ts) background, we find that increased dosage of para(+) suppresses nap(ts). Similarly, we find that para hypomorphs or decreased dosage of para(+) suppresses Sh(KS133), whereas increased dosage of para(+) enhances Sh(KS133). The electrophysiological basis for these effects is investigated. Other genes in Drosophila that have sequence homology to sodium channels do not show such dosage effects, which suggests that the para(+) product has a function distinct from that of other putative Drosophila sodium channel genes. We conclude that the number of sodium channels present in at least some Drosophila neurons can be affected by changes in para(+) gene dosage, and that the level of para(+) expression can strongly influence neuronal excitability. PMID:2155153

  9. Hapalindoles from the cyanobacterium fischerella: potential sodium channel modulators.

    PubMed

    Cagide, Eva; Becher, Paul G; Louzao, M Carmen; Espiña, Begoña; Vieytes, Mercedes R; Jüttner, Friedrich; Botana, Luis M

    2014-10-20

    Hapalindoles make up a large group of bioactive metabolites of the cyanobacterial order Stigonematales. 12-epi-Hapalindole E isonitrile, 12-epi-hapalindole C isonitrile, 12-epi-hapalindole J isonitrile, and hapalindole L from Fischerella are acutely toxic for insect larvae; however, the biochemical targets responsible for the biological activities of hapalindoles are not understood. We describe here the electron impact mass spectra of these four hapalindole congeners; their structures were confirmed by nuclear magnetic resonance spectroscopy. In combination with the presented mass spectra of (15)N-labeled species and their retention times on a gas chromatography capillary column, a rapid and reliable determination should be possible in future research. The bioactivity of these hapalindoles was tested on mammalian cells focusing on their effects in the BE(2)-M17 excitable human neuroblastoma cell line. The fluorescent dye Alamar Blue was applied to monitor cytotoxicity, fura-2 to evaluate changes in the cytosolic calcium concentrations, and bis-oxonol to detect effects on membrane potential. Data showed that the hapalindoles did not affect cell viability of the neuroblastoma cells, even when they were incubated for 72 h. Neither depolarization nor initiation of calcium influx was observed in the cells upon hapalindole treatment. However, the data provide evidence that hapalindoles are sodium channel-modulating neurotoxins. They inhibited veratridine-induced depolarization in a manner similar to that of neosaxitoxin. Our data suggest hapalindoles should be added to the growing number of neurotoxic secondary metabolites, such as saxitoxins and anatoxins, already known in freshwater cyanobacteria. As stable congeners, hapalindoles may be a risk in freshwater ecosystems or agricultural water usage and should therefore be considered in water quality assessment. PMID:25285689

  10. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  11. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction.

    PubMed

    Freeman, Sean A; Desmazières, Anne; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2016-02-01

    The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts. PMID:26514731

  12. Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Dong, Ke

    2013-01-01

    Pyrethroid insecticides target voltage-gated sodium channels, which are critical for electrical signaling in the nervous system. The intensive use of pyrethroids in controlling arthropod pests and disease vectors has led to many instances of pyrethroid resistance around the globe. In the past two decades, studies have identified a large number of sodium channel mutations that are associated with resistance to pyrethroids. The purpose of this review is to summarize both common and unique sodium channel mutations that have been identified in arthropod pests of importance to agriculture or human health. Identification of these mutations provides valuable molecular markers for resistance monitoring in the field and helped the discovery of the elusive pyrethroid receptor site(s) on the sodium channel. PMID:24019556

  13. The roles of sodium channels in nociception: implications for mechanisms of pain

    PubMed Central

    Cummins, Theodore R; Sheets, Patrick L; Waxman, Stephen G

    2007-01-01

    Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms are predominantly expressed in peripheral sensory neurons associated with pain sensation, and that the expression and functional properties of voltage-gated sodium channels in peripheral sensory neurons can be dynamically regulated following axonal injury or peripheral inflammation. These data suggest that specific voltage-gated sodium channels may play crucial roles in nociception. Experiments with transgenic mice lines have clearly implicated Nav1.7, Nav1.8 and Nav1.9 in inflammatory, and possibly neuropathic, pain. However the most convincing and perhaps most exciting results regarding the role of voltage-gated sodium channels has come out recently from studies on human inherited disorders of nociception. Point mutations in Nav1.7 have been identified in patients with two distinct autosomal dominant severe chronic pain syndromes. Electrophysiological experiments indicate that these pain-associated mutations cause small yet significant changes in the gating properties of voltage-gated sodium channels that are likely to contribute substantially to the development of chronic pain. Equally exciting, a recent study has indicated that recessive mutations in Nav1.7 that eliminate functional current can result in an apparent complete, and possibly specific, indifference to pain in humans, suggesting that isoform specific blockers could be very effective in treating pain. In this review we will examine what is known about the roles of voltage-gated sodium channels in nociception. PMID:17766042

  14. The Role of Epithelial Sodium Channel ENaC and the Apical Cl-/HCO3- Exchanger Pendrin in Compensatory Salt Reabsorption in the Setting of Na-Cl Cotransporter (NCC) Inactivation

    PubMed Central

    Patel-Chamberlin, Mina; Varasteh Kia, Mujan; Xu, Jie; Barone, Sharon; Zahedi, Kamyar; Soleimani, Manoocher

    2016-01-01

    Background The absence of NCC does not cause significant salt wasting in NCC deficient mice under basal conditions. We hypothesized that ENaC and pendrin play important roles in compensatory salt absorption in the setting of NCC inactivation, and their inhibition and/or downregulation can cause significant salt wasting in NCC KO mice. Methods WT and NCC KO mice were treated with a daily injection of either amiloride, an inhibitor of ENaC, or acetazolamide (ACTZ), a blocker of salt and bicarbonate reabsorption in the proximal tubule and an inhibitor of carbonic anhydrases in proximal tubule and intercalated cells, or a combination of acetazolamide plus amiloride for defined durations. Animals were subjected to daily balance studies. At the end of treatment, kidneys were harvested and examined. Blood samples were collected for electrolytes and acid base analysis. Results Amiloride injection significantly increased the urine output (UO) in NCC KO mice (from 1.3 ml/day before to 2.5 ml/day after amiloride, p<0.03, n = 4) but caused only a slight change in UO in WT mice (p>0.05). The increase in UO in NCC KO mice was associated with a significant increase in sodium excretion (from 0.25 mmol/24 hrs at baseline to 0.35 mmol/24 hrs after amiloride injection, p<0.05, n = 4). Daily treatment with ACTZ for 6 days resulted in >80% reduction of kidney pendrin expression in both WT and NCC KO mice. However, ACTZ treatment noticeably increased urine output and salt excretion only in NCC KO mice (with urine output increasing from a baseline of 1.1 ml/day to 2.3 ml/day and sodium excretion increasing from 0.22 mmole/day before to 0.31 mmole/day after ACTZ) in NCC KO mice; both parameters were significantly higher than in WT mice. Western blot analysis demonstrated significant enhancement in ENaC expression in medulla and cortex of NCC KO and WT mice in response to ACTZ injection for 6 days, and treatment with amiloride in ACTZ-pretreated mice caused a robust increase in salt

  15. Effect of Na+ Flow on Cd2+ Block of Tetrodotoxin-resistant Na+ Channels

    PubMed Central

    Kuo, Chung-Chin; Lin, Ting-Jiun; Hsieh, Chi-Pan

    2002-01-01

    Tetrodotoxin-resistant (TTX-R) Na+ channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na+ channels. On the other hand, TTX-R channels are much more susceptible to external Cd2+ block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter “DEKA” ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd2+. In this study we demonstrate that the binding affinity of Cd2+ to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na+ current flow. In the presence of inward Na+ current, the apparent dissociation constant of Cd2+ (∼200 μM) is ∼9 times smaller than that in the presence of outward Na+ current. The Na+ flow–dependent binding affinity change of Cd2+ block is true no matter whether the direction of Na+ current is secured by asymmetrical chemical gradient (e.g., 150 mM Na+ vs. 150 mM Cs+ on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na+ on both sides of the membrane, −20 mV vs. 20 mV). These findings suggest that Cd2+ is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na+ ions coexist with the blocking Cd2+ ion in this pore region in the presence of 150 mM ambient Na+. Thus, the selectivity filter of the TTX-R Na+ channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca2+ and K+ channels. PMID:12149278

  16. Molecular Na-channel excitability from statistical physics

    NASA Astrophysics Data System (ADS)

    Ramírez-Piscina, L.; Sancho, J. M.

    2014-12-01

    The excitable properties of the neural cell membrane is the driving mechanism of the neural pulses. Coordinated ionic fluxes across Na and K channels are the devices responsible of this function. Here we present a simple microscopic physical scenario which accounts for this phenomenology. The main elements are ions and channel doors that obey the standard formulation of statistical physics (overdamped Langevin equations) with appropriate nonlinear interacting potentials. From these equations we obtain the ionic flux and the dynamics of the membrane potential. We show that the excitable properties of the membrane are present in a single and simple Na channel. From this framework, additional microscopic information can be obtained, such as statistics of single-channels dynamics or the energetics of action potential events.

  17. Multiple pathways regulate the expression of genes encoding sodium channel subunits in developing neurons.

    PubMed

    Giraud, P; Alcaraz, G; Jullien, F; Sampo, B; Jover, E; Couraud, F; Dargent, B

    1998-05-01

    In primary cultures of fetal neurons, activation of sodium channels with either alpha-scorpion toxin or veratridine caused a rapid and persistent decrease of mRNAs encoding beta2 and different sodium channel alpha mRNAs. In contrast, beta1 subunit mRNA was up-regulated by sodium channel activation. This phenomenon was calcium-independent. The effects of activating toxins on mRNAs of different sodium channel subunits were mimicked by membrane depolarization. An important aspect of this study was the demonstration that cAMP also caused rapid reduction of alphaI, alphaII and alphaIII mRNA levels whereas beta1 subunit mRNA was up regulated and beta2 subunit mRNA was not affected. Sodium channel activation by veratridine was shown to increase cAMP immunoreactivity in cultured neurons, but alphaII mRNA down-regulation induced by activating toxins was not reversed by protein kinase A antagonists, indicating that this phenomenon is not protein kinase A dependent. The effects of cAMP and membrane depolarisation were antagonized by the PKA inhibitor H89. These results are indicative of the existence of multiple and independent regulatory pathways modulating the expression of sodium channel genes in the developing central nervous system. PMID:9602139

  18. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami

    PubMed Central

    Herzig, Volker; Ikonomopoulou, Maria; Smith, Jennifer J.; Dziemborowicz, Sławomir; Gilchrist, John; Kuhn-Nentwig, Lucia; Rezende, Fernanda Oliveira; Moreira, Luciano Andrade; Nicholson, Graham M.; Bosmans, Frank; King, Glenn F.

    2016-01-01

    The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species. PMID:27383378

  19. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami.

    PubMed

    Herzig, Volker; Ikonomopoulou, Maria; Smith, Jennifer J; Dziemborowicz, Sławomir; Gilchrist, John; Kuhn-Nentwig, Lucia; Rezende, Fernanda Oliveira; Moreira, Luciano Andrade; Nicholson, Graham M; Bosmans, Frank; King, Glenn F

    2016-01-01

    The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1-S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species. PMID:27383378

  20. Sodium and potassium competition in potassium-selective and non-selective channels

    NASA Astrophysics Data System (ADS)

    Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing

    2013-11-01

    Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.

  1. Assessment of sodium channel mutations in Makah Tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning

    PubMed Central

    Adams, Nicolaus G.; Robertson, Alison; Grattan, Lynn M.; Pendleton, Steve; Roberts, Sparkle; Tracy, J. Kathleen; Trainer, Vera L.

    2015-01-01

    The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, we aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah Tribal members to saxitoxin is not a function of Nav1.4 modification but may be due to mutations in neuronal or cardiac sodium channels or some other mechanism unrelated to sodium channel function.

  2. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.

    PubMed

    Chen, Juner; Huang, Zhenguo; Wang, Caiyun; Porter, Spencer; Wang, Baofeng; Lie, Wilford; Liu, Hua Kun

    2015-06-18

    A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries. PMID:25987231

  3. Voltage-Gated Na+ Channels: Not Just for Conduction.

    PubMed

    Kruger, Larisa C; Isom, Lori L

    2016-01-01

    Voltage-gated sodium channels (VGSCs), composed of a pore-forming α subunit and up to two associated β subunits, are critical for the initiation of the action potential (AP) in excitable tissues. Building on the monumental discovery and description of sodium current in 1952, intrepid researchers described the voltage-dependent gating mechanism, selectivity of the channel, and general structure of the VGSC channel. Recently, crystal structures of bacterial VGSC α subunits have confirmed many of these studies and provided new insights into VGSC function. VGSC β subunits, first cloned in 1992, modulate sodium current but also have nonconducting roles as cell-adhesion molecules and function in neurite outgrowth and neuronal pathfinding. Mutations in VGSC α and β genes are associated with diseases caused by dysfunction of excitable tissues such as epilepsy. Because of the multigenic and drug-resistant nature of some of these diseases, induced pluripotent stem cells and other novel approaches are being used to screen for new drugs and further understand how mutations in VGSC genes contribute to pathophysiology. PMID:27252364

  4. Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury

    PubMed Central

    Henry, Michael A; Freking, Angelique R; Johnson, Lonnie R; Levinson, S Rock

    2007-01-01

    Background Sodium channel (NaCh) expressions change following nerve and inflammatory lesions and this change may contribute to the activation of pain pathways. In a previous study we found a dramatic increase in the size and density of NaCh accumulations, and a remodeling of NaChs at intact and altered myelinated sites at a location just proximal to a combined partial axotomy and chromic suture lesion of the rat infraorbital nerve (ION) with the use of an antibody that identifies all NaCh isoforms. Here we evaluate the contribution of the major nodal NaCh isoform, Nav1.6, to this remodeling of NaChs following the same lesion. Sections of the ION from normal and ION lesioned subjects were double-stained with antibodies against Nav1.6 and caspr (contactin-associated protein; a paranodal protein to identify nodes of Ranvier) and then z-series of optically sectioned images were captured with a confocal microscope. ImageJ (NIH) software was used to quantify the average size and density of Nav1.6 accumulations, while additional single fiber analyses measured the axial length of the nodal gap, and the immunofluorescence intensity of Nav1.6 in nodes and of caspr in the paranodal region. Results The findings showed a significant increase in the average size and density of Nav1.6 accumulations in lesioned IONs when compared to normal IONs. The results of the single fiber analyses in caspr-identified typical nodes showed an increased axial length of the nodal gap, an increased immunofluorescence intensity of nodal Nav1.6 and a decreased immunofluorescence intensity of paranodal caspr in lesioned IONs when compared to normal IONs. In the lesioned IONs, Nav1.6 accumulations were also seen in association with altered caspr-relationships, such as heminodes. Conclusion The results of the present study identify Nav1.6 as one isoform involved in the augmentation and remodeling of NaChs at nodal sites following a combined partial axotomy and chromic suture ION lesion. The

  5. Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels

    PubMed Central

    Stevens, Marijke; Peigneur, Steve; Tytgat, Jan

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Therefore, genetic defects in sodium channel genes can cause a wide variety of diseases, generally called “channelopathies.” The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. These concepts still form the basis for understanding the function of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and consequently generate a massive influx of sodium ions. Immediately after, channels will start to inactivate and currents decrease. In the inactivated state, channels stay refractory for new stimuli and they must return to the closed state before being susceptible to a new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX) and saxitoxin (STX) also contributed largely to our today’s understanding of the structure and function of ion channels and of VGSCs specifically. Moreover, neurotoxins acting on ion channels turned out to be valuable lead compounds in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt®, Elan). The original peptide, ω-MVIIA, is derived from the cone snail Conus magus and now FDA/EMA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in pain fibers. This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the structure and

  6. Neurotoxins and their binding areas on voltage-gated sodium channels.

    PubMed

    Stevens, Marijke; Peigneur, Steve; Tytgat, Jan

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Therefore, genetic defects in sodium channel genes can cause a wide variety of diseases, generally called "channelopathies." The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. These concepts still form the basis for understanding the function of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and consequently generate a massive influx of sodium ions. Immediately after, channels will start to inactivate and currents decrease. In the inactivated state, channels stay refractory for new stimuli and they must return to the closed state before being susceptible to a new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX) and saxitoxin (STX) also contributed largely to our today's understanding of the structure and function of ion channels and of VGSCs specifically. Moreover, neurotoxins acting on ion channels turned out to be valuable lead compounds in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt(®), Elan). The original peptide, ω-MVIIA, is derived from the cone snail Conus magus and now FDA/EMA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in pain fibers. This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the structure and function of

  7. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  8. SODIUM CHANNELS (NAV1.2/B1) EXPRESSED IN XENOPUS OOCYTES DEMONSTRATE SENSITIVITY TO PYRETHROIDS.

    EPA Science Inventory

    Voltage-sensitive sodium channels (VSSCs) are hypothesized to be a primary target of pyrethroid insecticides. However, multiple isoforms of VSSCs exist and the sensitivity of different isoforms to pyrethroids has not been well characterized. The Nav1.2/1 channel predominates in a...

  9. A HIERARCHY OF ANKYRIN/SPECTRIN COMPLEXES CLUSTERS SODIUM CHANNELS AT NODES OF RANVIER

    PubMed Central

    Ho, Tammy Szu-Yu; Zollinger, Daniel R.; Chang, Kae-Jiun; Xu, Mingxuan; Cooper, Edward C.; Stankewich, Michael C.; Bennett, Vann; Rasband, Matthew N.

    2014-01-01

    SUMMARY The scaffolding protein ankyrinG is required for Na+ channel clustering at axon initial segments. It is also considered essential for Na+ channel clustering at nodes of Ranvier to facilitate fast and efficient action potential propagation. However, in contrast to these widely accepted roles, we show here that ankyrinG is dispensable for nodal Na+ channel clustering in vivo. Surprisingly, without ankyrinG, erythrocyte ankyrin (ankyrinR) and its binding partner βI spectrin substitute and rescue nodal Na+ channel clustering. In addition, channel clustering is also rescued after loss of nodal βIV spectrin by βI spectrin and ankyrinR. In mice lacking both ankyrinG and ankyrinR, Na+ channels fail to cluster at nodes. Thus, ankyrinR/βI spectrin protein complexes function as secondary reserve Na+ channel clustering machinery, and two independent ankyrin/spectrin protein complexes exist in myelinated axons to cluster Na+ channels at nodes of Ranvier. PMID:25362473

  10. Mutant bacterial sodium channels as models for local anesthetic block of eukaryotic proteins.

    PubMed

    Smith, Natalie E; Corry, Ben

    2016-05-01

    Voltage gated sodium channels are the target of a range of local anesthetic, anti-epileptic and anti-arrhythmic compounds. But, gaining a molecular level understanding of their mode of action is difficult as we only have atomic resolution structures of bacterial sodium channels not their eukaryotic counterparts. In this study we used molecular dynamics simulations to demonstrate that the binding sites of both the local anesthetic benzocaine and the anti-epileptic phenytoin to the bacterial sodium channel NavAb can be altered significantly by the introduction of point mutations. Free energy techniques were applied to show that increased aromaticity in the pore of the channel, used to emulate the aromatic residues observed in eukaryotic Nav1.2, led to changes in the location of binding and dissociation constants of each drug relative to wild type NavAb. Further, binding locations and dissociation constants obtained for both benzocaine (660 μM) and phenytoin (1 μ M) in the mutant channels were within the range expected from experimental values obtained from drug binding to eukaryotic sodium channels, indicating that these mutant NavAb may be a better model for drug binding to eukaryotic channels than the wild type. PMID:26852716