Science.gov

Sample records for sodium chloride concentration

  1. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    PubMed

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. PMID:27105154

  2. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    Several studies from the 1970s and more recently (for example, Hall (1975), Daley and others (2009) and Mullaney (2009)) have found that concentrations of chloride and sodium in groundwater in New Hampshire have increased during the past 50 years. Increases likely are related to road salt and other anthropogenic sources, such as septic systems, wastewater, and contamination from landfills and salt-storage areas. According to water-quality data reported to the New Hampshire Department of Environmental Services (NHDES), about 100 public water systems (5 percent) in 2010 had at least one groundwater sample with chloride concentrations that were equal to or exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) of 250 mg/L before the water was treated for public consumption. The SMCL for chloride is a measurement of potential cosmetic or aesthetic effects of chloride in water. High concentrations of chloride and sodium in drinking-water sources can be costly to remove. A new cooperative study between the U.S. Geological Survey (USGS) and the NHDES (Medalie, 2012) assessed chloride and sodium levels in groundwater in New Hampshire from the 1960s through 2011. The purpose of the study was to integrate all data on concentrations of chloride and sodium from groundwater in New Hampshire available from various Federal and State sources, including from the NHDES, the New Hamsphire Department of Health and Human Services, the USGS, and the U.S. Environmental Protection SurveyAgency (USEPA), for public and private (domestic) wells and to organize the data into a database. Medalie (2012) explained the many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives. This fact sheet summarizes the most important findings of the data.

  3. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    A new cooperative study between the U.S. Geological Survey (USGS) and the NHDES (Medalie, 2012) assessed chloride and sodium levels in groundwater in New Hampshire from the 1960s through 2011. The purpose of the study was to integrate all data on concentrations of chloride and sodium from groundwater in New Hampshire available from various Federal and State sources, including from the NHDES, the New Hamsphire Department of Health and Human Services, the USGS, and the U.S. Environmental Protection SurveyAgency (USEPA), for public and private (domestic) wells and to organize the data into a database. Medalie (2012) explained the many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives. This fact sheet summarizes the most important findings of the data.

  4. Stress anisotropy and concentration effects in high pressure measurements. [sodium chloride

    NASA Technical Reports Server (NTRS)

    Nelson, D. A., Jr.; Ruoff, A. L.

    1974-01-01

    Sodium chloride is used as an internal pressure standard in high pressure research. Possible corrections are discussed which are needed in the calibration of this standard due to the independent effects of stress anisotropy and stress concentration in pressure vessels. The first is due to the lack of a truly hydrostatic state of stress in solid state pressure vessels. The second is due to the difference in the compressibilities between the pressure transmitting substances (sodium chloride) and a stiffer test specimen. These two corrections are then combined and a total correction, as a function of measured pressure, is discussed for two systems presently in use. The predicted value of the combined effect is about 5-10% of the pressure at 30 GPa.

  5. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  6. Recent trends in chloride and sodium concentrations in the deep subalpine lakes (Northern Italy).

    PubMed

    Rogora, Michela; Mosello, Rosario; Kamburska, Lyudmila; Salmaso, Nico; Cerasino, Leonardo; Leoni, Barbara; Garibaldi, Letizia; Soler, Valentina; Lepori, Fabio; Colombo, Luca; Buzzi, Fabio

    2015-12-01

    A growing concern exists about the effects of chloride (Cl) on freshwater systems. Increasing Cl concentrations have been observed in the last few decades in several rivers and lakes, mainly in northern countries. In Italy, present levels and temporal changes of sodium (Na) and Cl in water bodies have rarely been assessed. Based on long-term data for the lakes of the subalpine district in Italy (Maggiore, Lugano, Como, Iseo, Garda), we analyzed trends affecting Cl and Na concentrations during the last 25 years, with the aim of identifying temporal changes and assessing possible causes. An in-depth analysis is presented for Lake Maggiore. Positive temporal Na and Cl trends were evident in all studied lakes, with the trends increasing since early 2000s. Data for Lake Maggiore tributaries showed a clear seasonality (higher values in winter and early spring). The NaCl used as road de-icing agent, together with Cl discharge from wastewater treatment plants, were identified as the main causes for the observed trends. Chloride concentrations in the lakes are below the threshold limit for reduced water quality and below concentrations known to harm aquatic biota. However, considering the relevance of deep subalpine lakes, representing almost 80% of the total freshwater volume in Italy, these trends indicate an important chemical change, which warrants further analysis. PMID:26233742

  7. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration.

    PubMed

    Kelly, Victoria R; Lovett, Gary M; Weathers, Kathleen C; Findlay, Stuart E G; Strayer, David L; Burns, David I; Likens, Gene E

    2008-01-15

    Sodium and chloride concentrations and export increased from 1986 to 2005 in a rural stream in southeastern New York. Concentrations increased 1.5 mg/L per year (chloride) and 0.9 mg/L per year (sodium), and export increased 33,000 kg/year (chloride) and 20,000 kg/year (sodium) during this period. We estimate that salt used for deicing accounted for 91% of the sodium chloride input to the watershed, while sewage and water softeners accounted for less than 10% of the input. Road salt use in the watershed did not increase during the study, but sodium and chloride from sewage and water softeners is likely to have increased slightly due to a small increase in population. Increased input from sewage and water softeners cannot account for the increase in concentration and export from the watershed. Model results suggest that the increase in streamwater concentration and export was likely due to a lag effect of long-term road salt use and subsurface buildup. PMID:18284139

  8. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating

  9. Comparative characteristics of MA-40 and MA-41 membranes under conditions of maximal concentration of sodium chloride solutions by electrodialysis

    SciTech Connect

    Grebenyok, V.D.; Lokota-Fabulyak, Y.G.; Ponomareu, M.I.

    1985-10-01

    This paper gives a quantitative assessment of salt diffusion from brine into the diluate, and osmotic and electro-osmotic transport of water into the brine compartments in concentration of sodium chloride with the use of commercially produced ion-exchange membranes MK-40, MA-40, and MA-41. A schematic diagram of the electrochemical cell, comprising electrode compartments, desalination compartments, and concentrating compartments is presented. It is shown that although brines of higher concentration can be obtained by the use of MA-41 membranes, it is economically preferable to use MA-40 membranes for concentrating sodium chloride. The higher electrical conductivity of MA-40 in comparison with MA-41 lowers the energy consumption for brine production in the former.

  10. Stabilization of the Serum Lithium Concentration by Regulation of Sodium Chloride Intake: Case Report.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    To avoid fluctuation of the serum lithium concentration (CLi), sodium chloride (NaCl) intake was regulated in oral alimentation. A 62-year-old woman was hospitalized and orally administered 400 mg of lithium carbonate a day to treat her mania. Her CLi was found to be 0.75-0.81 mEq/L. Vomiting made it difficult for the patient to ingest meals orally, and therefore parenteral nutrition with additional oral intake of protein-fortified food was initiated. On day 22, parenteral nutrition was switched to oral alimentation to enable oral intake of food. The total NaCl equivalent amount was decreased to 1.2 g/d, and the CLi increased to 1.15 mEq/L on day 26. Oral alimentation with semi-solid food blended in a mixer was immediately initiated. Although the total NaCl equivalent amount was increased to 4.5-5.0 g/d, her CLi remained high at 1.14-1.17 mEq/L on days 33 and 49, respectively. We investigated oral administration of NaCl (1.8 g/d) on day 52. The total NaCl equivalent amount was increased to 6.3-6.8 g/d, and the CLi decreased to 1.08-0.97 mEq/L on days 63 and 104, respectively. After the start of the orally administered NaCl, her diet was changed to a completely blended diet on day 125. The total NaCl equivalent amount was increased to 9.0-14.5 g/d, and the CLi decreased to 0.53 mEq/L on day 152; therefore, the oral administration of NaCl was discontinued on day 166. The CLi was found to be 0.70-0.85 mEq/L on days 176 and 220. PMID:26935095

  11. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-01

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials. PMID:26999998

  12. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    ERIC Educational Resources Information Center

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  13. The physical and chemical stability of cisplatin (Teva) in concentrate and diluted in sodium chloride 0.9%

    PubMed Central

    Szałek, Edyta; Urjasz, Hanna; Głęboka, Aleksandra; Mierzwa, Emilia; Grześkowiak, Edmund

    2012-01-01

    Aim of the study The subject of study was the stability of cisplatin in concentrate in glass vials and diluted in polyethylene (PE) bags stored at 15–25°C for up to 30 days. Material and methods Original vials of cisplatin injection (1 mg/ml, Teva) were stored at room temperature and subjected to re-piercing after 1, 2, 3, 7, 14, 21, 28 and 30 days following the initial piercing. Cisplatin infusions at nominal concentrations of 0.1 mg/ml were prepared in 0.9% sodium chloride (1000 ml) in PE bags. Chemical stability was measured by means of a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection in normal light. Results The concentration of cisplatin at each sampling time in the analysed solutions remained within 92.0–100.7% of initial concentration, regardless of the container. No changes in colour or turbidity were observed in any of the vials or prepared solutions. Conclusions Cisplatin, both undiluted in glass containers and diluted with NaCl 0.9% in PE bags, remains stable (< 10% degradation) for at least 30 days at room temperature when protected from light. PMID:23788924

  14. Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations.

    PubMed

    Leuko, Stefan; Raftery, Mark J; Burns, Brendan P; Walter, Malcolm R; Neilan, Brett A

    2009-05-01

    Responses to changes in external salinity were examined in Halobacterium salinarum NRC-1. H. salinarum NRC-1 grows optimally at 4.3 M NaCl and is capable of growth between 2.6 and 5.1 M NaCl. Physiological changes following incubation at 2.6 M NaCl were investigated with respect to growth behavior and proteomic changes. Initial observations indicated delayed growth at low NaCl concentrations (2.6 M NaCl), and supplementation with different sugars, amino acids, or KCl to increase external osmotic pressure did not reverse these growth perturbations. To gain a more detailed insight into the adaptive responses of H. salinarum NRC-1 to changes in salinity, the proteome was characterized using iTRAQ (amine specific isobaric tagging reagents). Three hundred and nine differentially expressed proteins were shown to be associated with changes in the external sodium chloride concentration, with proteins associated with metabolism revealing the greatest response. PMID:19206189

  15. Influence of sodium chloride on the colloidal and rennet coagulation properties of concentrated casein micelle suspensions.

    PubMed

    Zhao, Z; Corredig, M

    2016-08-01

    The research investigated the influence of NaCl on the colloidal and rennet coagulation properties of concentrated milk. Milk was concentrated to 1×, 3×, and 5× using ultrafiltration. Rennet gelation was followed by rheology and diffusing wave spectroscopy. Soluble protein, total and diffusible calcium and phosphate, size, and zeta potential were also measured as a function of concentration history. In the presence of 300mM NaCl, colloidal calcium phosphate solubilized and pH and the negative charge on the surface of casein micelles decreased. Increasing the volume fraction caused the formation of stiffer gels for both samples with or without NaCl. The addition of NaCl caused a significant increase in the bulk viscosity of the milk concentrated 5× and a decrease in turbidity. The concentration had no effect on the gelation time of control samples, nor on the kinetics of caseinomacropeptide release. On the other hand, rennet gelation was retarded by the addition of NaCl, and the gels showed lower elastic moduli compared with those obtained with control milk. PMID:27320668

  16. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment.

    PubMed

    Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-10-01

    Single-chamber microbial fuel cells (MFCs) were inoculated with mangrove-grown brackish sediment (MBS) and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8M). Different from MFCs inoculated with paddy-field soil (high power outputs were observed between 0.05 and 0.1M), power outputs from MBS-MFCs were high at NaCl concentrations from 0 to 0.6M. Amplicon-sequence analyses of anode biofilms suggest that different exoelectrogens occurred from MBS depending on NaCl concentrations; Geobacter occurred abundantly below 0.1M, whereas Desulfuromonas was abundant from 0.3M to 0.6M. These results suggest that NaCl concentration is the major determinant of exoelectrogens that occur in anode biofilms from MBS. It is also suggested that MBS is a potent source of microbes for MFCs to be operated in a wide range of NaCl concentrations. PMID:27420153

  17. Concentrations of aluminum in gut tissue of crayfish (Procambarus clarkii), purged in sodium chloride

    SciTech Connect

    Madigosky, S.R.; Alvarez-Hernandez, X.; Glass, J.

    1992-10-01

    Recent concern over the release of Al in the environment has prompted researchers and health officials to assess its effects on biological systems. Aluminum, despite being the most abundant metal in earth`s lithosphere, is normally complexed in soil and is therefore unavailable for biological assimilation. The recent advent of acid rain, however, has prompted Al release due to mobilization from surrounding sediments into the environment. This is of particular concern in aquatic environments because organisms in aquatic food chains can access and concentrate sublethal levels of Al in their tissues relatively quickly. The ingestion of affected organisms by humans may therefore pose a potential health risk. One such organism, is known to concentrate metals in a variety of tissues. In northern Louisiana, many people trap or fish for crayfish in lowland areas which lie adjacent to highways and secondary roadways. Water, soil, and crayfish from these areas are known to contain high levels of Al. Some tissues known to concentrate Al (muscle, hepatopancreas and intestine tissue and contents) are those which humans commonly consume. The ingestion of these tissues may therefore expose humans to elevated Al levels. Many people who eat crayfish often purge them in dilute concentrations (1-2%) of NaCl to rid them of contaminants and make them more palatable. We are aware of no literature which corroborates the claim that purging removes contaminating metals. The objectives of this study were to (1) document the amount of Al found in water, soil, and gut tissue of crayfish (P. clarkii) collected from a roadside wetland site; (2) determine the affect of NaCl purging on the release of Al in P. clarkii and (3) assess the differences in Al levels found between stomach tissue, stomach tissue contents, intestine tissue, and intestine contents in P. clarkii. 12 refs., 3 figs., 1 tab.

  18. Concentration dependence of ionic conductance measured with ion-selective sub-micro pipette probes in aqueous sodium and potassium chloride solutions

    NASA Astrophysics Data System (ADS)

    Son, J. W.; Takami, T.; Lee, J.-K.; Kawai, T.; Park, B. H.

    2011-07-01

    Selective ionic currents in aqueous sodium and potassium chloride solutions with concentrations from 0.01 M to 1.0 M were measured using sub-micro pipette probes in which a poly(vinyl chloride) film containing crown ethers selectively filtered sodium or potassium ions. The selective ionic currents were monitored with a sub-picoampere current measurement system developed from the techniques of TΩ-gap impedance scanning tunneling microscopy. The ionic currents increased with the concentration of the corresponding solution, and thus these sub-micro pipette probes can be applied to detect local ionic concentration of a specific ion in living cells with ionic concentration higher than 0.1 M.

  19. Chloride substitution in sodium borohydride

    SciTech Connect

    Ravnsbaek, Dorthe B.; Rude, Line H.; Jensen, Torben R.

    2011-07-15

    The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

  20. Sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1992-01-01

    It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.

  1. Slow Sodium: An Oral Slowly Released Sodium Chloride Preparation

    PubMed Central

    Clarkson, E. M.; Curtis, J. R.; Jewkes, R. J.; Jones, B. E.; Luck, V. A.; de Wardener, H. E.; Phillips, N.

    1971-01-01

    The use of a slowly released oral preparation of sodium chloride is described. It was given to patients and athletes to treat or prevent acute and chronic sodium chloride deficiency. Gastrointestinal side effects were not encountered after the ingestion of up to 500 mEq in one day or 200 mEq in 10 minutes. PMID:5569979

  2. Slow sodium: an oral slowly released sodium chloride preparation.

    PubMed

    Clarkson, E M; Curtis, J R; Jewkes, R J; Jones, B E; Luck, V A; de Wardener, H E; Phillips, N

    1971-09-11

    The use of a slowly released oral preparation of sodium chloride is described. It was given to patients and athletes to treat or prevent acute and chronic sodium chloride deficiency. Gastrointestinal side effects were not encountered after the ingestion of up to 500 mEq in one day or 200 mEq in 10 minutes. PMID:5569979

  3. Binary Nucleation of Water and Sodium Chloride

    SciTech Connect

    Nemec, Thomas; Marsik, Frantisek; Palmer, Donald

    2005-01-01

    Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.

  4. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  5. Production of concentrated caustic soda and hydrochloride acid solutions from sodium chloride by electrodialysis with the aid of bipolar ion-exchange membranes

    SciTech Connect

    Greben', V.P.; Pivovarov, N.Ya.; Latskov, V.L.

    1988-10-20

    This paper gives a comparative analysis of the action of electrodialyzers containing three and five compartments in the structural unit, and equipped with bipolar, cation-exchange, and anion-exchange membranes, used for production of hydrochloric acid and caustic soda from sodium chloride solutions. It was shown that an electrodialyzer with five compartments gives hydrochloric acid and caustic soda for 2.5-3 M concentration with 0.2-0.3 current efficiency, whereas an electrodialyzer with three compartments in the structural unit gives hydrochloric acid and caustic soda concentrations of about 1.2 M at the same current efficiency. The performance of the electrodialyzers was analyzed and equations were derived for calculating the current efficiencies for acid and alkali under conditions of acidification of the salt solution; this was based on determination of the transport numbers of ions passing through the membranes.

  6. Mechanism for forming hydrogen chloride and sodium sulfate from sulfur trioxide, water, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1984-01-01

    A molecular orbital study of sodium sulfate and hydrogen chloride formation from sulfur trioxide, water, and sodium chloride shows no activation barrier, in agreement with recent experimental work of Kohl, Fielder, and Stearns. Two overall steps are found for the process. First, gas-phase water reacts with sulfur trioxide along a pathway involving a linear O-H-O transition state yielding closely associated hydroxyl and bisulfite which rearrange to become a hydrogen sulfate molecule. Then the hydrogen sulfate molecule transfers a hydrogen atom to a surface chloride in solid sodium chloride while an electron and a sodium cation simultaneously transfer to yield sodium bisulfate and gas-phase hydrogen chloride. This process repeats. Both of these steps represent well-known reactions for which mechanisms have not been previously determined.

  7. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  8. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    SciTech Connect

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-08-11

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  9. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  10. Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera).

    PubMed

    Peredo-Alvarez, Víctor M; Sarma, S S; Nandini, S

    2003-06-01

    Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on non-euryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 +/- 0.04 g l-1) than B. patulus (2.14 +/- 0.09 g l-1). The maximal population density (mean +/- standard error) for B. calyciflorus in the control at 4.5 x 10(6) cells ml-1 (algal level) was 80 +/- 5 ind. ml-1, which was nearly a fifth of the one for B. patulus (397 +/- 7 ind. ml-1) under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 +/- 0.5 days) for B. calyciflorus than for B. patulus (11 +/- 1 day). The highest rates of population increase (r values) for B. calyciflorus and B. patulus were 0.429 +/- 0.012 and 0.367 +/- 0.004, respectively, recorded at 4.5 x 10(6) cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus. PMID:15162733

  11. Aging related changes in mixed basal saliva concentration of sodium, potassium and chloride in healthy non medicated humans.

    PubMed

    De Oliveira, Rui; Navas, Eunice; Duran, Carolina; Pinto, Maria; Gutierrez, Jose; Eblen-Zajjur, Antonio

    2014-01-01

    It is well known that the salivary flow is reduced by aging but ionic composition changes associated to aging have been less evaluated. To measure salivary and plasmatic [Na(+)], [K(+)] and [Cl(-)] and to correlate with age in healthy, non-medicated subjects of any gender, 165 healthy participating subjects (over 15 years old) were asked to give sample of 5 mL mix basal saliva in a plastic vial without any stimulation technique, additionally, 5 mL of venous blood was collected. Samples [Na(+)] and [K(+)] were measured by flame photometry (Corning™ M-405) and [Cl(-)] by voltametric chlorometry (Corning™ M-920). Ionic concentrations were expressed as (X±DE; meq.L⁻¹). All three ionic concentrations progressively increased with age, with the lineal regression equation being: [Na(+)] mEq=17.76 + 0.26(Age); r=+0.42; F=31.5; P=0.00001; [K(+)] mEq=13.2+0.15(Age); r=+0.32; F=16.5; P=0.00001; [Cl(-)] mEq=9.05+0.18(Age); r=+0.35; F=7.8; P=0.0071. Age induced changes in salivary ionic concentrations were not associated to blood ionic changes. However, saliva and blood [Na(+)] and [K(+)] were correlated (r=+0.25; F=4.49; P=0.04 and r=+0.30; F=6.98; P=0.01, respectively). Significant association was found among salivary ions: [Na(+)] mEq=9.14+0.99[K(+)] (r=+0.79; F=95.2; P=0.000001); [Cl(-)] mEq=0.95+0.56[Na(+)] (r=0.79; F=106.6; P=0.000001) and [Cl(-)] mEq=3.45+0.69[K(+)] (r=0.73; F=72.5; P=0.000001). These results confirm and measure the impact of aging over the mixed and resting salivary secretion process and suggest that local changes are not related to blood ionic composition. PMID:25101709

  12. Solute rejection by porous glass membranes. I - Hyperfiltration of sodium chloride and urea feed solutions.

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Leban, M. I.

    1971-01-01

    Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.

  13. Recovery of acids and sodium hydroxide from solutions of sodium sulfate and sodium chloride with the use of bipolar membranes

    SciTech Connect

    Bobrinskaya, G.A.; Pavlova, T.V.; Shatalov, A.Ya.

    1985-09-01

    The authors examined the kinetic laws governing the electrodialysis recovery of hydrochloric acid and sulfuric acid, as well as sodium hydroxide, from 1M sodium chloride and 0.5 M sodium sulfate solutions and from a mixture of these salts with the use of the MB-1, MB-2, and MB-3 bipolar membranes. Kinetic plots of the current density and the concentration of the acid and the base in the chambers next to the bipolar membranes during the electrodialysis treatment of 1M sodium chloride, 0.5 M sodium sulfate, and solutions are presented. It was established that it is better to use the MB-3 membrane for the electrodialysis conversion of sodium chloride and sodium sulfate into acids and sodium hydroxide owing to the high rate and current efficiency and low expenditure of electrical energy and degree of contamination of the products obtained by the salts. It was also established that the resistance of the MB-1 and MB-2 bipolar membranes is almost an order of magnitude higher than that of the MB-3 membrane.

  14. Hydrogen embrittlement of type 410 stainless steel in sodium chloride, sodium sulfate, and sodium hydroxide environments at 90 C

    SciTech Connect

    Gonzalez-Rodriguez, J.G.; Salinas-Bravo, V.M.; Martinez-Villafane, A.

    1997-06-01

    Susceptibility of martensitic type 410 (UNS S41000) stainless steel (SS) to environmental cracking was evaluated at 90 C in concentrated sodium chloride, sodium sulfate and sodium hydroxide solutions, all of which are environments related to steam turbine conditions, using the slow strain rate testing (SSRT) technique. In NaCl, the effects of solution pH, concentration, and anodic and cathodic polarization were investigated. Tests were supplemented by detailed electron fractography and hydrogen permeation measurements. A clear correlation was found between the degree of embrittlement and the amount of hydrogen permeating the steel, suggesting a hydrogen-induced cracking mechanism.

  15. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set

  16. The sodium chloride primary pressure gauge

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.; Chhabildas, L. C.

    1976-01-01

    The failure of a central force model for sodium chloride is discussed. It is noted that it does not closely satisfy the Cauchy conditions at low temperatures, and that it fails the central force requirement of the Love condition. The available shock data for sodium chloride and its analysis is examined, and two reasons why the Hugoniot transformation pressure is likely to be less than 231 kbar are discussed. The important (but unjustified) theoretical assumptions made in converting Hugoniot to isothermal data is discussed; it is noted that serious error can enter for very large pressures for a given material and that at such high pressures the isothermal data should thus be considered only semiquantitative even if the Hugoniot data itself is accurate. An alternate method of estimating the isothermal transformation pressure from the Hugoniot transformation pressure is used. This method is based on the temperature derivative of the transformation pressure. On this basis it is concluded that an upper bound for the isothermal transformation of NaCl (to a CsCl-type structure) at room temperature is 257 kbar; it is noted that the actual value may be considerably less than this.

  17. Regional analysis of the effect of paved roads on sodium and chloride in lakes.

    PubMed

    Kelting, Daniel L; Laxson, Corey L; Yerger, Elizabeth C

    2012-05-15

    Salinization of surface water from sodium chloride (road salt) applied to paved roads is a widely recognized environmental concern in the northern hemisphere, yet practical information to improve winter road management to reduce the environmental impacts of this deicer is lacking. The purpose of our study was to provide such information by developing baseline concentrations for sodium and chloride for lakes in watersheds without paved roads, and then determining the relationship between these ions and density, type, and proximity of paved roads to shoreline. We used average summer (June-September) sodium and chloride data for 138 lakes combined in a watershed based analysis of paved road networks in the Adirondack Park of New York, U.S.A. The watersheds used in our study represented a broad range in paved road density and type, 56 of which had no paved roads. Median lake sodium and chloride concentrations in these 56 watersheds averaged 0.55 and 0.24 mg/L, respectively. In contrast, the median sodium and chloride concentrations for the 82 lakes in watersheds with paved roads were 3.60 and 7.22 mg/L, respectively. Paved road density (lane-km/km(2)) was positively correlated with sodium and chloride concentrations, but only state roads were significantly correlated with sodium and chloride while local roads were not. State road density alone explained 84 percent of the variation in both ions. We also successfully modeled the relationship between road proximity to shoreline and sodium and chloride concentrations in lakes, which allowed us to identify sections of road that contributed more to explaining the variation in sodium and chloride in lakes. This model and our approach could be used as part of larger efforts to identify environmentally sensitive areas where alternative winter road management treatments should be applied. PMID:22406283

  18. Alternate cathodes for sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Various metal chlorides were tested as possible cathode materials for sodium-metal batteries (in addition to Fe and Ni chlorides, which have been already developed to a stage of commercialization), using an electrochemical cell consisting of a pyrex tube, heated to 250 C, with the metal wire as working electrode, concentric Ni foil as counterelectrode, and high-purity Al as reference electrode. In particular, the aim of this study was to identify metal chlorides insoluble even in neutral melts, possible at the interface during overcharge, in order to eliminate the failure mode of the cell through a cationic exchange of the dissolved metal ions with sodium beta-double-prime alumina solid electrolyte. Results indicate that Mo and Co are likely alternatives to FeCl2 and NiCl2 cathodes in sodium batteries. The open circuit voltages of Na/CoCl(x) and Na/MoCl(x) cells at 250 C would be 2.55 V and 2.64 V, respectively.

  19. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  20. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  1. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable. PMID:27386878

  2. Thermodynamic calculation of self-diffusion in sodium chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Li, Chengbo; Shan, Shuangming

    2016-05-01

    Using the available pressure-volume-temperature equation of state of sodium chloride, we show that the self-diffusion coefficients of sodium and chloride in sodium chloride as a function of temperature and pressure can be successfully reproduced in terms of bulk elastic and expansivity data. We use a thermodynamic model that interconnects point-defect parameters with bulk properties. Our calculated diffusion coefficients and point-defect parameters, including activation enthalpy, activation entropy, and activation volume, well agree with reported experimental results when uncertainties are considered. Furthermore, the ionic conductivity of sodium chloride inferred from our predicted diffusivities of sodium through the Nernst-Einstein equation is compared with previous experimental data.

  3. Sodium/metal chloride batteries: Summary of status

    SciTech Connect

    Sen, R.K.

    1988-09-01

    In 1972, there was an effort underway at ESB to try to develop a sodium/antimony trichloride battery that would operate at 200/degree/C or less. These cells, like their sodium/sulfur counterpart, used beta alumina electrolyte tubes, but with a second component in the electrolyte, namely molten sodium tetrachloroaluminate. The latter was used on the acid side, i.e., with an excess of aluminum chloride. Starting a little later, about 1975 it is rumored, workers at the Anglo American Company in South Africa began experimenting with positive electrodes consisting of iron or nickel chloride, using an electrolyte system that was similar to that of ESB except that the sodium tetrachloroaluminate was used on the basic side, i.e., with an excess of sodium chloride. The Anglo American work was focused on the high-temperature chlorination of the metal carbides as the means to form the porous iron or nickel chloride positive electrodes. Ultimately, the work at ESB was abandoned, while that at Anglo American blossomed, eventually leading to the formation of Zebra Power Systems S.A. in South Africa. The latter has been involved, since about 1980, in a number of collaborative programs with UKAEA Harwell and Beta RandD Ltd. in the UK to develop the sodium/metal chloride battery technology. The embodiment with iron chloride has become known as the Zebra battery, while the nickel chloride variant is known as the Cheetah battery. 17 refs., 4 figs., 2 tabs.

  4. Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols

    SciTech Connect

    Brockmann, J.E.; Lucero, D.A.; Romero, T.; Pentecost, G.

    1993-12-01

    The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

  5. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  6. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    PubMed

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. PMID:26744800

  7. Temporal and spatial trends of chloride and sodium in groundwater in New Hampshire, 1960–2011

    USGS Publications Warehouse

    Medalie, Laura

    2012-01-01

    Data on concentrations of chloride and sodium in groundwater in New Hampshire were assembled from various State and Federal agencies and organized into a database. This report provides documentation of many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives and investigates temporal and spatial trends of the data. Data summaries presented in this report and analyses performed for this study needed to take into account the 27 percent of chloride and 5 percent of sodium data that were censored (less than a reporting limit) at multiple reporting limits that systematically decreased over time. Throughout New Hampshire, median concentrations of chloride were significantly greater during 2000-2011 than in every decade since the 1970s, and median concentrations of sodium were significantly greater during 2000-2011 than during the 1990s. Results of summary statistics showed that the 50th, 75th, and 90th percentiles of the median concentrations of chloride and sodium by source (well) from Rockingham and Strafford counties were the highest in the State; and the 75th and 90th percentiles from Carroll, Coos, and Grafton counties were the lowest. Large increases in median concentrations of chloride and sodium for individual wells after 1995 compared with concentrations for years before were found in parts of Belknap and Rockingham counties and in small clusters within Carroll, Hillsborough, and Merrimack counties.

  8. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  9. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  10. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generation of waste water containing sodium chloride from cucumber fermentation tank yards could be eliminated if cucumbers were fermented in brines that did not contain this salt. To determine if this is feasible, cucumbers were fermented in brines that contained only calcium chloride to maintain f...

  11. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride

    NASA Astrophysics Data System (ADS)

    Rey, Louis

    2003-05-01

    Ultra-high dilutions of lithium chloride and sodium chloride (10 -30 g cm -3) have been irradiated by X- and γ-rays at 77 K, then progressively rewarmed to room temperature. During that phase, their thermoluminescence has been studied and it was found that, despite their dilution beyond the Avogadro number, the emitted light was specific of the original salts dissolved initially.

  12. Sodium Chloride, NaCl/ϵ: New Force Field.

    PubMed

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C

    2016-03-10

    A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321

  13. Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress

    PubMed Central

    Mohamed, Eman H. F. A.; Abd Elzaher, E. H. F.

    2007-01-01

    Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However,the mycelial dry weight,total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall,plasmolysis,and vacuolation as indicated with electron microscopic examination of the fungal growth. PMID:24015082

  14. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  15. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  16. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  17. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  18. Tolerance Test of Eisenia Fetida for Sodium Chloride

    SciTech Connect

    Kerr, M.; Stewart, A.J.

    2003-01-01

    Saltwater spills that make soil excessively saline often occur at petroleum exploration and production (E&P) sites and are ecologically damaging. Brine scars appear when produced water from an E&P site is spilled onto surrounding soil, causing loss of vegetation and subsequent soil erosion. Revegetating lands damaged by brine water can be difficult. The research reported here considers earthworms as a bioremedial treatment for increasing the salt mobility in this soil and encouraging plant growth and a healthy balance of soil nutrients. To determine the practical application of earthworms to remediate brine-contaminated soil, a 17-d test was conducted to establish salt tolerance levels for the common compost earthworm (Eisenia fetida) and relate those levels to soil salinity at brine-spill sites. Soil samples were amended with sodium chloride in concentrations ranging from 1 to 15 g/kg, which represent contamination levels at some spill sites. The survival rate of the earthworms was near 90% in all tested concentrations. Also, reproduction was noted in a number of the lower-concentration test replicates but absent above the 3-g/kg concentrations. Information gathered in this investigation can be used as reference in further studies of the tolerance of earthworms to salty soils, as results suggest that E. fetida is a good candidate to enhance remediation at brine-damaged sites.

  19. Insecticide sensitivity of native chloride and sodium channels in a mosquito cell line.

    PubMed

    Jenson, Lacey J; Anderson, Troy D; Bloomquist, Jeffrey R

    2016-06-01

    The aim of this study was to investigate the utility of cultured Anopheles gambiae Sua1B cells for insecticide screening applications without genetic engineering or other treatments. Sua1B cells were exposed to the known insecticidal compounds lindane and DIDS, which inhibited cell growth at micromolar concentrations. In patch clamp studies, DIDS produced partial inhibition (69%) of chloride current amplitudes, and an IC50 of 5.1μM was determined for Sua1B cells. A sub-set of chloride currents showed no response to DIDS; however, inhibition (64%) of these currents was achieved using a low chloride saline solution, confirming their identity as chloride channels. In contrast, lindane increased chloride current amplitude (EC50=116nM), which was reversed when cells were bathed in calcium-free extracellular solution. Voltage-sensitive chloride channels were also inhibited by the presence of fenvalerate, a type 2 pyrethroid, but not significantly blocked by type 1 allethrin, an effect not previously shown in insects. Although no evidence of fast inward currents typical of sodium channels was observed, studies with fenvalerate in combination with veratridine, a sodium channel activator, revealed complete inhibition of cell growth that was best fit by a two-site binding model. The high potency effect was completely inhibited in the presence of tetrodotoxin, a specific sodium channel blocker, suggesting the presence of some type of sodium channel. Thus, Sua1B cells express native insect ion channels with potential utility for insecticide screening. PMID:27155485

  20. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region.

    PubMed

    Steele, M K; Aitkenhead-Peterson, J A

    2011-07-15

    Sodium and chloride in surface water are typically related to urbanization and population density and can have a significant impact on drinking water sources and the subsequent salinity of aquatic ecosystems. While the majority of research has focused on the impact of deicing salts on urban surface waters in colder climates, the effect of urbanization on sodium and chloride concentrations has been found to occur in warmer climates. This study investigated long-term exports of sodium and chloride from watersheds with increasing urbanization in the humid subtropical Dallas-Fort Worth region. We compared exports to characteristics of urbanization: urban land cover, impervious surface area, and calculated contributions from wastewater discharges. Long-term data (1980-2008) were obtained from five USGS gages located in and around the cities. Exports were calculated by regression analysis between concentrations and discharge and normalized for time and the watershed area. Grab samples were collected from June 2009 to May 2010 and sodium and chloride concentrations quantified. Our results show a strong positive relationship between the mean annual sodium and chloride exports from each watershed and the percent urban land cover and impervious surface area. Long-term increases in sodium and chloride fluxes were found for the three watersheds with the highest percentage of urban land cover. The single largest contributor was wastewater effluent that was estimated to contribute approximately half of the total loads in the three urbanized watersheds. Atmospheric deposition and deicing salts accounted for small amounts of the total export for urbanized watersheds. The source of the remaining salt load is still unknown and may be a combination of non-point sources. Estimates of urban salt exports were similar to estimates from northern watersheds affected by deicing salts. PMID:21621814

  1. Sodium-metal chloride battery research at JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Sodium metal chloride batteries have certain distinct advantages over sodium sulfur batteries such as increased safety, inherent overcharge capability and lower operation temperatures. Two systems, i.e., Na/FeCl2 and Na/NiCl2 were developed extensively elsewhere and evaluated for various applications including electric vehicles and space. Their performance has been very encouraging and prompted a detailed fundamental study of these cathodes here at the Jet Propulsion Laboratory. A brief review of our studies on these new cathode materials is presented here. The initial efforts focussed on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics and identifying the rate limiting processes in the reduction of metal chloride cathodes. Nickel chloride emerged from these studies as the most promising candidate material and was taken up for further detailed study on its passivation - a rate limiting process - under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have higher energy density, has been assessed. Based on the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt chlorides appear promising.

  2. Solubility of hydrogen sulfide in aqueous solutions of the single salts sodium sulfate, ammonium sulfate, sodium chloride, and ammonium chloride at temperatures from 313 to 393 K and total pressures up to 10 MPa

    SciTech Connect

    Xia, J.; Kamps, A.P.S.; Rumpf, B.; Maurer, G.

    2000-04-01

    New experimental results for the solubility of hydrogen sulfide in aqueous solutions of the single salts sodium sulfate, ammonium sulfate, sodium chloride, and ammonium chloride at temperatures from 313 to 393 K and total pressures up to 10 MPa are reported. As in the salt-free system, a second-hydrogen sulfide-rich--liquid phase is observed at high hydrogen sulfide concentrations. A model to describe the phase equilibrium is presented. Calculations are compared to the new experimental data.

  3. Alternative Approach To Modeling Bacterial Lag Time, Using Logistic Regression as a Function of Time, Temperature, pH, and Sodium Chloride Concentration

    PubMed Central

    Nonaka, Junko

    2012-01-01

    The objective of this study was to develop a probabilistic model to predict the end of lag time (λ) during the growth of Bacillus cereus vegetative cells as a function of temperature, pH, and salt concentration using logistic regression. The developed λ model was subsequently combined with a logistic differential equation to simulate bacterial numbers over time. To develop a novel model for λ, we determined whether bacterial growth had begun, i.e., whether λ had ended, at each time point during the growth kinetics. The growth of B. cereus was evaluated by optical density (OD) measurements in culture media for various pHs (5.5 ∼ 7.0) and salt concentrations (0.5 ∼ 2.0%) at static temperatures (10 ∼ 20°C). The probability of the end of λ was modeled using dichotomous judgments obtained at each OD measurement point concerning whether a significant increase had been observed. The probability of the end of λ was described as a function of time, temperature, pH, and salt concentration and showed a high goodness of fit. The λ model was validated with independent data sets of B. cereus growth in culture media and foods, indicating acceptable performance. Furthermore, the λ model, in combination with a logistic differential equation, enabled a simulation of the population of B. cereus in various foods over time at static and/or fluctuating temperatures with high accuracy. Thus, this newly developed modeling procedure enables the description of λ using observable environmental parameters without any conceptual assumptions and the simulation of bacterial numbers over time with the use of a logistic differential equation. PMID:22729541

  4. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration.

    PubMed

    Koseki, Shige; Nonaka, Junko

    2012-09-01

    The objective of this study was to develop a probabilistic model to predict the end of lag time (λ) during the growth of Bacillus cereus vegetative cells as a function of temperature, pH, and salt concentration using logistic regression. The developed λ model was subsequently combined with a logistic differential equation to simulate bacterial numbers over time. To develop a novel model for λ, we determined whether bacterial growth had begun, i.e., whether λ had ended, at each time point during the growth kinetics. The growth of B. cereus was evaluated by optical density (OD) measurements in culture media for various pHs (5.5 ∼ 7.0) and salt concentrations (0.5 ∼ 2.0%) at static temperatures (10 ∼ 20°C). The probability of the end of λ was modeled using dichotomous judgments obtained at each OD measurement point concerning whether a significant increase had been observed. The probability of the end of λ was described as a function of time, temperature, pH, and salt concentration and showed a high goodness of fit. The λ model was validated with independent data sets of B. cereus growth in culture media and foods, indicating acceptable performance. Furthermore, the λ model, in combination with a logistic differential equation, enabled a simulation of the population of B. cereus in various foods over time at static and/or fluctuating temperatures with high accuracy. Thus, this newly developed modeling procedure enables the description of λ using observable environmental parameters without any conceptual assumptions and the simulation of bacterial numbers over time with the use of a logistic differential equation. PMID:22729541

  5. Identification of sodium chloride-regulated genes in Burkholderia cenocepacia.

    PubMed

    Bhatt, Shantanu; Weingart, Christine L

    2008-05-01

    Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen. PMID:18288523

  6. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  7. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    PubMed

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. PMID:22728197

  8. Growth and physiological responses of five cotton genotypes to sodium chloride and sodium sulfate saline water irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to investigate the salt tolerance of five cotton genotypes [three Gossypium hirsutum L. (DN 1, DP 491, and FM 989) and two G. barbadense L. (Cobalt and Pima S-7)] under sodium chloride or sodium sulfate salinity conditions at similar osmotic potentials (100 mM sodium chlorid...

  9. Sodium chloride's effect on self-assembly of diphenylalanine bilayer.

    PubMed

    Kwon, Junpyo; Lee, Myeongsang; Na, Sungsoo

    2016-07-15

    Understanding self-assembling peptides becomes essential in nanotechnology, thereby providing a bottom-up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two-dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes. In this study, we analyzed the effect of sodium chloride on diphenylalanine bilayer using coarse-grained molecular dynamics simulations, and calculated the bending Young's modulus and the torsional modulus by applying normal modal analysis using an elastic network model. The results showed that sodium chloride dramatically increases the assembling efficiency and stability, thereby promising to allow the precise design and control of the fabrication process and properties of bio-inspired materials. © 2016 Wiley Periodicals, Inc. PMID:27241039

  10. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  11. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs. PMID:26512798

  12. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    PubMed Central

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  13. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel.

    PubMed

    Nagel, G; Szellas, T; Riordan, J R; Friedrich, T; Hartung, K

    2001-03-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of (22)Na(+) through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage- and patch-clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of (22)Na(+) uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR. PMID:11266369

  14. The effect of chloride ion concentration gradients on the initiation of localized corrosion of steel in reinforced concrete

    SciTech Connect

    Kane, M.J.; Brown, R.

    1994-12-31

    It has been established that for steel reinforced concrete roads treated with deicing salts or exposed to a marine environment, chloride ions are introduced at the surface of the concrete structure. Two models were discussed in which chloride ion concentration gradients would form in a steel reinforced concrete structure. Electrochemical testing to investigate the models was conducted on plain carbon steel specimens in a simulated concrete environment of saturated calcium hydroxide solution with varying concentrations of sodium chloride. The varying chloride ion concentrations promoted open circuit potential shifts. These potential shifts may lead to galvanic corrosion effects depending on the chloride ion concentration gradients in the structure.

  15. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  16. Phase equilibrium of sodium bis(2-ethylhexyl) phosphate/water/n-heptane/sodium chloride microemulsion

    SciTech Connect

    Shioi, Akihisada; Harada, Makoto; Matsumoto, Keishi )

    1991-09-19

    The microemulsion phase diagram for the sodium bis(2-ethylhexyl) phosphate (SDEHP)/water/n-heptane/sodium chloride system is reported. The salinity effects on the phase diagram are discussed in detail. Cylindrical aggregates were found to exist in the oil-rich region and disklike aggregates in the brine-rich region. The middle-phase microemulsion in equilibrium with both the excess brine and oil phases was concluded to be composed of these microstructures. Sodium bis(2-ethylhexyl) phosphate has a common hydrocarbon tail with sodium bis(2-ethylhexyl) sulfosuccinate (AOT), but the phase equilibrium and the structures of the microemulsion phases in SDEHP system were much different from those in the AOT case. The differences were attributed to those in the shapes of aggregates for the two cases.

  17. Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471.

    PubMed

    Neysens, Patricia; Messens, Winy; De Vuyst, Luc

    2003-11-15

    A kinetic investigation of the effect of sodium chloride on cell growth of Lactobacillus amylovorus DCE 471 and amylovorin L471 production was carried out through in vitro experiments using a temperature and pH prevailing during sourdough fermentations. Sodium chloride interfered both with cell growth and bacteriocin production. Biomass formation and amylovorin L471 production decreased in the presence of increasing salt concentrations. Maximum bacteriocin activities were observed after the addition of 10 g l(-1) of NaCl, while the maximum specific growth rate reached an optimum at 5 g l(-1) of NaCl. High salt concentrations (20-40 g l(-1)) resulted in biphasic fermentation profiles. Based on these results, incorporation of 5-10 g l(-1) of sodium chloride in the water phase of type II sourdough preparations might be beneficial to enhance bacterial growth and amylovorin L471 production, and so contribute to the competitiveness of the strain in a sourdough environment. PMID:14527783

  18. 7-T (35)Cl and (23)Na MR Imaging for Detection of Mutation-dependent Alterations in Muscular Edema and Fat Fraction with Sodium and Chloride Concentrations in Muscular Periodic Paralyses.

    PubMed

    Weber, Marc-André; Nagel, Armin M; Marschar, Anja M; Glemser, Philip; Jurkat-Rott, Karin; Wolf, Maya B; Ladd, Mark E; Schlemmer, Heinz-Peter; Kauczor, Hans-Ulrich; Lehmann-Horn, Frank

    2016-09-01

    Purpose To determine whether altered sodium (Na(+)) and chloride (Cl(-)) homeostasis can be visualized in periodic paralyses by using 7-T sodium 23 ((23)Na) and chlorine 35 ((35)Cl) magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval and informed consent of all participants were obtained. (23)Na (repetition time msec/echo time msec, 160/0.35) and (35)Cl (40/0.6) MR imaging of both lower legs was performed with a 7-T whole-body system in patients with genetically confirmed hypokalemic periodic paralysis (Cav1.1-R1239H mutation, n = 5; Cav1.1-R528H mutation, n = 8) and Andersen-Tawil syndrome (n = 3) and in 16 healthy volunteers. Additionally, each participant underwent 3-T proton MR imaging on the same day by using T1-weighted, short-tau inversion-recovery, and Dixon-type sequences. Muscle edema was assessed on short-tau inversion-recovery images, fatty degeneration was assessed on T1-weighted images, and muscular fat fraction was quantified with Dixon-type imaging. Na(+) and Cl(-) were quantified in the soleus muscle by using three phantoms that contained 10-, 20-, and 30-mmol/L NaCl solution and 5% agarose gel as a reference. Parametric data for all subpopulations were tested by using one-way analysis of variance with the Dunnett test, and correlations were assessed with the Spearman rank correlation coefficient. Results Median muscular (23)Na concentration was higher in patients with Cav1.1-R1239H (34.7 mmol/L, P < .001), Cav1.1-R528H (32.0 mmol/L, P < .001), and Kir2.1 (24.3 mmol/L, P = .035) mutations than in healthy volunteers (19.9 mmol/L). Median muscular normalized (35)Cl signal intensity was higher in patients with Cav1.1-R1239H (27.6, P < .001) and Cav1.1-R528H (23.6, P < .001) than in healthy volunteers (12.6), but not in patients with the Kir2.1 mutation (14.3, P = .517). When compared with volunteers, patients with Cav1.1-R1239H and Cav1.1-R528H showed increased muscular edema (P < .001 and P = .003, respectively

  19. Water structure in concentrated lithium chloride solutions

    NASA Astrophysics Data System (ADS)

    Tromp, R. H.; Neilson, G. W.; Soper, A. K.

    1992-06-01

    The radial pair distribution functions gHH(r) and gOH(r) (to a good approximation) of 1 and 10 m solutions of lithium chloride in water have been obtained from neutron diffraction. It turns out that the intermolecular water structure in a solution of 10 m is affected considerably by the presence of ions—the number of hydrogen bonds is about 70% lower than in pure water. The intermolecular water structure in 1 m lithium chloride as well as the intramolecular water structure in both 1 and 10 m lithium chloride is not distinguishable from that of pure water in any measurable extent.

  20. Sodium Is Not Required for Chloride Efflux via Chloride/Bicarbonate Exchanger from Rat Thymic Lymphocytes

    PubMed Central

    Stakišaitis, Donatas; Meilus, Vaidevutis; Juška, Alfonsas; Matusevičius, Paulius; Didžiapetrienė, Janina

    2014-01-01

    Sodium-dependent Cl−/HCO3− exchanger acts as a chloride (Cl−) efflux in lymphocytes. Its functional characterization had been described when Cl− efflux was measured upon substituting extracellular sodium (Na+) by N-methyl-D-glucamine (NMDG). For Na+ and Cl− substitution, we have used D-mannitol or NMDG. Thymocytes of male Wistar rats aged 7–9 weeks were used and intracellular Cl− was measured by spectrofluorimetry using MQAE dye in bicarbonate buffers. Chloride efflux was measured in a Cl−-free buffer (Cl− substituted with isethionate acid) and in Na+ and Cl−-free buffer with D-mannitol or with NMDG. The data have shown that Cl− efflux is mediated in the absence of Na+ in a solution containing D-mannitol and is inhibited by H2DIDS. Mathematical modelling has shown that Cl− efflux mathematical model parameters (relative membrane permeability, relative rate of exchanger transition, and exchanger efficacy) were the same in control and in the medium in which Na+ had been substituted by D-mannitol. The net Cl− efflux was completely blocked in the NMDG buffer. The same blockage of Cl− efflux was caused by H2DIDS. The study results allow concluding that Na+ is not required for Cl− efflux via Cl−/HCO3− exchanger. NMDG in buffers cannot be used for substituting Na+ because NMDG inhibits the exchanger. PMID:25003116

  1. Nanoscale Periodic Modulations on Sodium Chloride Induced by Surface Charges

    SciTech Connect

    Clark, Kendal W; Qin, Shengyong; Zhang, Xiaoguang; Li, An-Ping

    2012-01-01

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along 110 crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

  2. Evaluation of sodium-nickel chloride cells for space applications

    NASA Technical Reports Server (NTRS)

    Hendel, B.; Dudley, G. J.

    1991-01-01

    The status of the European Space Agency (ESA) program on sodium nickel chloride batteries is outlined. Additionally, the results of initial tests of two prototype space cells are reported. After 2800 cycles typical of a low-earth orbit (LEO) application without failure, the recharge ratio remained at unity, the round trip energy efficiency remained high (87 percent), and the increase in internal cell resistance was modest. Initial tear-down analysis data show no degradation whatsoever of the beta-alumina electrolyte tubes. The low-rate capacity did, however drop by some 40 percent, which needs further investigation, but overall results are encouraging for future use of this couple in geosynchronous (GEO) and LEO spacecraft.

  3. Progress and recent developments in sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Significant strides have been made in the development of high-temperature rechargeable sodium batteries utilizing transition metal chloride cathodes in the last decade, mainly due to the expertise available on Na/S batteries. These systems have already performed attractively in the various feasibility studies and have an excellent safety record. Despite the encouraging figures obtained for specific energies, certain design changes such as modifying the geometry of the beta alumina electrolyte and optimization of the porous cathodes for enhanced electrolyte flow need to be made to achieve high power densities required in applications such as electric vehicles and space. The chemistry of MCl2 cathodes, electrode fabrication, and design options are discussed, and performance data are examined.

  4. Stability of methylprednisolone sodium succinate in small volumes of 5% dextrose and 0. 9% sodium chloride injections

    SciTech Connect

    Townsend, R.J.; Puchala, A.H.; Nail, S.L.

    1981-09-01

    The stability of methylprednisolone sodium succinate in small volumes of 5% dextrose and 0.9% sodium chloride injections was studied. Vials of methylprednisolone sodium succinate (125-3000 mg) were reconstituted and added to 50- and 100-ml volumes of the two diluents. These piggyback solutions were visually inspected for the development of haze over a 24-hour period. A nephelometer was used to quantitate the development of turbidity with time. The effect of pH on haze formation was investigated, and infrared spectroscopy was used to identify the haze. Nephelometer readings were found to correlate well with visual inspections. The haze was identified as being formed by the precipitation of free methylprednisolone. The rate of change of turbidity was directly related to the pH. A 1.4-3.2 percentage-point increase in the free methylprednisolone concentration secondary to hydrolysis over the 24-hour period was noted. The duration of stability was variable among the investigated lots and concentrations. Nineteen of the 24 admixtures stored at room temperature remained stable and free of visible haze for at least 12 hours after preparation. For all dosage strengths of methylprednisolone sodium succinate studied, these data indicate that solutions can be made stable for at least 12 hours by selecting the appropriate volume of diluent.

  5. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride...

  6. Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite.

    PubMed

    Yaganza, Elian-Simplice; Rioux, Danny; Simard, Marie; Arul, Joseph; Tweddell, Russell J

    2004-11-01

    Aluminum and bisulfite salts inhibit the growth of several fungi and bacteria, and their application effectively controls potato soft rot caused by Erwinia carotovora. In an effort to understand their inhibitory action, ultrastructural changes in Erwinia carotovora subsp. atroseptica after exposure (0 to 20 min) to different concentrations (0.05, 0.1, and 0.2 M) of these salts were examined by using transmission electron microscopy. Plasma membrane integrity was evaluated by using the SYTOX Green fluorochrome that penetrates only cells with altered membranes. Bacteria exposed to all aluminum chloride concentrations, especially 0.2 M, exhibited loosening of the cell walls, cell wall rupture, cytoplasmic aggregation, and an absence of extracellular vesicles. Sodium metabisulfite caused mainly a retraction of plasma membrane and cellular voids which were more pronounced with increasing concentration. Bacterial mortality was closely associated with SYTOX stain absorption when bacteria were exposed to either a high concentration (0.2 M) of aluminum chloride or prolonged exposure (20 min) to 0.05 M aluminum chloride or to a pH of 2.5. Bacteria exposed to lower concentrations of aluminum chloride (0.05 and 0.1 M) for 10 min or less, or to metabisulfite at all concentrations, did not exhibit significant stain absorption, suggesting that no membrane damage occurred or it was too weak to allow the penetration of the stain into the cell. While mortality caused by aluminum chloride involves membrane damage and subsequent cytoplasmic aggregation, sulfite exerts its effect intracellularly; it is transported across the membrane by free diffusion of molecular SO2 with little damage to the cellular membrane. PMID:15528547

  7. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  8. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique

    PubMed Central

    van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S.

    2016-01-01

    Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products. PMID:27110818

  9. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique.

    PubMed

    van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S

    2016-01-01

    Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products. PMID:27110818

  10. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  11. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C) subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  12. Kinematic Viscosity and Density of Binary and Ternary Mixtures Containing Hydrocolloids, Sodium Chloride, and Water

    NASA Astrophysics Data System (ADS)

    Assis, Tassia F.; Rojas, Edwin E. Garcia; Guimarães, Guilherme C.; Coelho, Marcos C.; Ramos, Andresa V.; Costa, Bernardo S.; Coimbra, Jane S. R.

    2010-03-01

    The kinematic viscosity and density of binary aqueous solutions containing xanthan gum and ternary aqueous solutions containing carboxymethyl cellulose and sodium chloride have been measured from 303 K to 318 K at different values of pH. The viscosity and density for binary and ternary systems showed increases with a higher concentration of hydrocolloids (xanthan gum or carboxymethyl cellulose) and reductions with increasing temperature. The presence of NaCl in the ternary systems produced an electro-viscous effect that influenced the viscosity and density of the system. The models used to predict the viscosity, density, and apparent specific volume demonstrated satisfactory results in comparisons with experimental data.

  13. Activity coefficients of aqueous sodium chloride from 15° to 50°C measured with a glass electrode

    USGS Publications Warehouse

    Truesdell, A.H.

    1968-01-01

    Values of the mean activity coefficient of sodium chloride at 15°, 25°, 38° and 50°C were determined for aqueous NaCl solutions of 0.01 to 1.0 molal from electromotive force measurements on the cell: (sodium-sensitive glass electrode, aqueous sodium chloride, silver chloride-silver).

  14. Long-term Sodium and Chloride Surface Water Exports from a Humid Subtropical Urban Gradient

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2010-12-01

    Increasing concentrations of sodium and chloride in surface water are strongly related to urbanization and population density and can have a significant impact on drinking water and salinity of aquatic ecosystems. While the majority of research has focused on the impact of deicing salts on urban surface waters in colder climates, the effect of urbanization on these exports has been found to occur in warmer climates as well. The purpose of this study is to investigate long term exports of sodium and chloride from watersheds with increasing urbanization in the Dallas-Fort Worth metroplex in a humid subtropical climate and compare exports to common characteristics of urbanization: urban land use, impervious surface area, and wastewater discharges. Long term data (1980 to 2008) was obtained from five USGS gauges located in and around the cities. Exports were calculated by regression analysis between concentrations and discharge and normalizing for time and the watershed area. In addition, grab samples were collected from the period of June 2009 to May 2010 and analyzed for Na and Cl. Results show a very strong positive relationship between urban land use, water fluxes, and impervious surface and the fluxes of both sodium and chloride from each watershed for the decades available. Long-term increases in fluxes were found for the three watersheds with the highest percent urban land use. Fluxes were not related to the estimates of wastewater discharge, nor could atmospheric deposition or deicing salts account for significant amounts of the total export for urbanized watersheds. Based on the results the most likely source of Na and Cl is impervious surface deposition and erosion from within the watershed. Estimates of urban fluxes were lower than but similar to estimates from northern watersheds affected by deicing salts and suggest that other mechanisms may contribute to the climbing salinity in northern states.

  15. The salt (sodium chloride) requirements of growing bobwhite quail

    USGS Publications Warehouse

    Nestler, R.B.

    1949-01-01

    In the two experiments involving 452 bobwhite quail chicks, seven diets containing the following salt supplements, were compared: No additional salt; 0.25 per cent KaCl; 0.50 per cent NaC1; 0.75per cent NaCl; 1.00 per cent NaCl; 0.25 per cent Na2SO4; and 0.50 per cent KCl. All four diets containing sodium chloride gave about equal results in bird-growth, and produced better weights than the diet containing no additional salt. Survival was high on the 0.50, 0.75 and 1.00 per cent levels, especially the 0.75 per cent level. Feed consumption increased directly as the salt level of the diet was raised.....The results on the Na2SO4 and KCl while better than those on no saline supplementation, and somewhat inferior to those on NaCl, nevertheless are inconclusive because of inconsistency.

  16. Stability of Diphenhydramine Hydrochloride, Lorazepam, and Dexamethasone Sodium Phosphate in 0.9% Sodium Chloride Stored in Polypropylene Syringes.

    PubMed

    Anderson, Collin R; Halford, Zachery; MacKay, Mark

    2015-01-01

    Chemotherapy induced nausea and vomiting is problematic for many patients undergoing chemotherapy. Multiple-drug treatments have been developed to mitigate chemotherapy induced nausea and vomiting. A patient-controlled infusion of diphenhydramine hydrochloride, lorazepam, and dexamethasone sodium phosphate has been studied in patients who are refractory to first-line therapy. Unfortunately, the physical and chemical compatibility of this three-drug combination is not available in the published literature. Chemical compatibility was evaluated using high-performance liquid chromatography with ultraviolet detection. Visual observation was employed to detect change in color, clarity, or gas evolution. Turbidity and pH measurements were performed in conjunction with visual observation at hours 0, 24, and 48. Results showed that diphenhydramine hydrochloride 4 mg/mL, lorazepam 0.16 mg/mL, and dexamethasone sodium phosphate 0.27 mg/mL in 0.9% sodium chloride stored in polypropylene syringes were compatible, and components retained greater than 95% of their original concentration over 48 hours when stored at room temperature. PMID:26625573

  17. Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited.

    PubMed

    Benson, James D; Bagchi, Aniruddha; Han, Xu; Critser, John K; Woods, Erik J

    2010-12-01

    Partial phase diagrams are of considerable utility in the development of optimized cryobiological procedures. Recent theoretical predictions of the melting points of ternary solutions of interest to cryobiology have caused us to re-examine measurements that our group made for the ethylene-glycol-sodium chloride-water phase diagram. Here we revisit our previous experiments by measuring melting points at five ethylene-glycol to sodium chloride ratios (R values; R=5, 10, 15, 30, and 45) and five levels of concentration for each ratio. Melting points were averaged from three measurements and plotted as a function of total solute concentration for each R value studied. The new measurements differed from our original experimental values and agreed with predicted values from both theoretical models. Additionally, the data were fit to the polynomial described in our previous report and the resulting equation was obtained: T(m) = (38.3-2.145 x 10⁻¹ R)w + (81.19 - 2.909×10⁻¹ R)w², where w is the total solute mass fraction. This new equation provided good fits to the experimental data as well as published values and relates the determined polynomial constants to the R value of the corresponding isopleths of the three dimensional phase diagram, allowing the liquids curve for any R value to be obtained. PMID:20955693

  18. How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates.

    PubMed

    Holzammer, Christine; Finckenstein, Agnes; Will, Stefan; Braeuer, Andreas S

    2016-03-10

    We present an experimental Raman study on how the addition of sodium chloride to CO2-hydrate-forming systems inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction and the molar entropy of reaction for the reaction of weakly hydrogen-bonded water molecules to strongly hydrogen bonded water molecules are determined for different salinities from the Raman spectrum of the water-stretching vibration. Simultaneously, the influence of the salinity on the solubility of CO2 in the liquid water-rich phase right before the start of hydrate formation is analyzed. The results demonstrate that various mechanisms contribute to the inhibition of gas hydrate formation. For the highest salt concentration of 20 wt % investigated, the temperature of gas hydrate formation is lowered by 12 K. For this concentration the molar enthalpy and entropy of reaction become smaller by 50 and 20%, respectively. Concurrently, the solubility of carbon dioxide is reduced by 70%. These results are compared with data in literature for systems of sodium chloride in water (without carbon dioxide). PMID:26867107

  19. Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage.

    PubMed

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2004-04-01

    Lactobacillus curvatus LTH 1174, a strain originating in fermented sausage, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of salt (sodium chloride) were investigated in vitro during laboratory fermentations using modified MRS medium. A model was set up to describe the effects of different NaCl concentrations on microbial behavior. Both cell growth and bacteriocin activity were affected by changes in the salt concentration. Sodium chloride clearly slowed down the growth of L. curvatus LTH 1174, but more importantly, it had a detrimental effect on specific curvacin A production (k(B)) and hence on overall bacteriocin activity. Even a low salt concentration (2%, wt/vol) decreased bacteriocin production, while growth was unaffected at this concentration. The inhibitory effect of NaCl was mainly due to its role as an a(w)-lowering agent. Further, it was clear that salt interfered with bacteriocin induction. Additionally, when 6% (wt/vol) sodium chloride was added, the minimum biomass concentration necessary to start the production of curvacin A (X(B)) was 0.90 g (cell dry mass) per liter. Addition of the cell-free culture supernatant or a protein solution as a source of induction factor resulted in a decrease in X(B), an increase in k(B), and hence an increase in the maximum attainable bacteriocin activity. PMID:15066822

  20. Measurement of sodium chloride electrical conductivity under quasisentropic compression to 140 GPa

    SciTech Connect

    Postnov, V.I.; Dremin, A.N.; Nabatov, S.S.; Shunin, V.M.; Yakushev, V.V.

    1984-03-01

    In this paper the authors present the results of experiments on the measurement of resistivity of sodium chloride single crystals under quasiisentropic loading as compared with the data of Al'tshuler et al. obtained with shock compression.

  1. Electromagnetic-induction logging to monitor changing chloride concentrations.

    PubMed

    Metzger, Loren F; Izbicki, John A

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality-possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer. PMID:22607466

  2. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  3. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    PubMed

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. PMID:26232039

  4. Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fractional factorial design was used to assess the combined effects of four internal temperatures (55.0, 57.5, 60.0 and 62.5C) and five concentrations of sodium chloride (NaCl) (0.0, 1.5, 3.0, 4.5 and 6.0 wt/wt%) and sodium pyrophosphate (SPP) (0.0, 0.1, 0.15, 0.2 and 0.3 wt/wt%) on the heat resis...

  5. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  6. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  7. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  8. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration. PMID:26540438

  9. Apical membrane sodium and chloride entry during osmotic swelling of renal (A6) epithelial cells.

    PubMed

    Crowe, W E; Ehrenfeld, J; Brochiero, E; Wills, N K

    1995-03-01

    To assess the role of chloride in cell volume and sodium transport regulation, we measured cell height changes (CH), transepithelial chloride and sodium fluxes, and intracellular chloride content during challenge with hyposmotic solutions under open circuit (OC) conditions. CH maximally increased following hyposmotic challenge within approximately 5 minutes. The change in CH was smaller under short circuit (SC) conditions or following replacement of chloride in the mucosal solution by gluconate or cyclamate (Cl(-)-freem). When corrected for the osmotically inactive cell volume (30 +/- 2%), delta CH for controls (OC) were greater than predicted for an ideal osmometer. In contrast, delta CH for Cl(-)-freem or SC conditions were similar to that predicted for an ideal osmometer. Na+ and Cl- mucosa-to-serosa fluxes increased following hyposmotic challenge. Chloride fluxes increased maximally within 5 min, then decreased. In contrast, the Na+ flux increased slowly and reached a steady state after approximately 25 min. Under isosmotic conditions, exposure to Cl(-)-freem solutions led to decreases in the transepithelial conductance, Na+ flux, and CH. Chloride permeabilities in the apical and basolateral membranes were detected using the fluorescent intracellular chloride indicator MQAE. The results indicate that during osmotic swelling, the entry of both sodium and chloride is increased. The time courses of these increases differ, suggesting distinct mechanisms for the osmotic regulation of these apical membrane transport processes. PMID:7541082

  10. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    PubMed

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para

  11. Effects of Road Density and Road-Salt Application Practices on Sodium and Chloride Loads to the Scituate Reservoir, Rhode Island

    NASA Astrophysics Data System (ADS)

    Waldron, M. C.; Nimiroski, M.

    2001-05-01

    The Scituate Reservoir drainage basin is the drinking-water source area for two thirds of the population of Rhode Island. The effects of road density and road-salt-application practices on sodium and chloride concentrations in streams in the drainage basin were examined using concentration data collected at intervals of one to six months from January 1982 through June 2000 at 32 stream sites distributed throughout the basin. Median concentrations of sodium and chloride for individual streams during the period of data collection were related to 1995 road densities (road miles per square mile of subbasin) for roads maintained by the Rhode Island Department of Transportation (State-maintained roads) and for roads maintained by the four municipalities in the drainage basin (locally maintained roads). Nearly 60 percent of the variation in median stream sodium and chloride concentrations was accounted for by the variation in density of State-maintained roads (R2= 0.595, p < 0.0001). In contrast, no correlations could be identified between median concentrations of sodium and chloride in streams and the densities of locally maintained roads in the subbasins (R2 = 0.001, p = 0.8771). Also, there was no difference in the relations between median stream sodium concentrations and subbasin road densities for data collected before and after a 1990 State-mandated reduction in the rate of application of sodium during winter deicing of State-maintained roads. Analysis of data on sources of sodium and chloride in the Scituate Reservoir drainage basin during water year 2000 (October 1999 through September 2000) indicates that, while the lengths and densities of locally maintained roads were greater than those of State-maintained roads in most subbasins, the total amount of sodium applied during water year 2000 was nearly three times greater for State-maintained roads than for locally maintained roads. This would be expected, given that State-maintained roads carry more traffic at

  12. Co-doped sodium chloride crystals exposed to different irradiation temperature

    SciTech Connect

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J, C.; Hernandez A, J.; Murrieta S, H.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  13. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright, M. I.; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  14. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  15. Effects of calcium chloride and sodium hexametaphosphate on certain chemical and physical properties of soymilk.

    PubMed

    Pathomrungsiyounggul, P; Grandison, A S; Lewis, M J

    2007-10-01

    Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca) were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (Pconcentration and significant (Pconcentrations of added Ca significantly increased (Pconcentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (Pconcentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM. PMID:17995601

  16. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  17. Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries

    SciTech Connect

    Trickett, D.

    1998-12-15

    This report addresses environmental, health, and safety (EH&S) issues associated with sodium/ metal chloride batteries, in general, although most references to specific cell or battery types refer to units developed or being developed under the Zebra trademark. The report focuses on issues pertinent to sodium/metal chloride batteries and their constituent components; however, the fact that some ''issues'' arise from interaction between electric vehicle (EV) and battery design compels occasional discussion amid the context of EV vehicle design and operation. This approach has been chosen to provide a reasonably comprehensive account of the topic from a cell technology perspective and an applications perspective.

  18. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  19. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    PubMed

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  20. Prolactin stimulates sodium and chloride ion channels in A6 renal epithelial cells

    PubMed Central

    Greenlee, Megan M.; Mitzelfelt, Jeremiah D.; Duke, Billie Jeanne; Al-Khalili, Otor; Bao, Hui-Fang

    2015-01-01

    Many hormonal pathways contribute to the regulation of renal epithelial sodium channel (ENaC) function, a key process for maintaining blood volume and controlling blood pressure. In the present study, we examined whether the peptide hormone prolactin (PRL) regulates ENaC function in renal epithelial cells (A6). Basolateral application of several different concentrations of PRL dramatically stimulated the transepithelial current in A6 cells, increasing both amiloride-sensitive (ENaC) and amiloride-insensitive currents. Using cell-attached patch clamp, we determined that PRL increased both the number (N) and open probability (Po) of ENaC present in the apical membrane. Inhibition of PKA with H-89 abolished the effect of PRL on amiloride-sensitive and insensitive transepithelial currents and eliminated the increase in ENaC NPo with PRL exposure. PRL also increased cAMP in A6 cells, consistent with signaling through the cAMP-dependent PKA pathway. We also identified that PRL induced activity of a 2-pS anion channel with outward rectification, electrophysiological properties consistent with ClC4 or ClC5. RT-PCR only detected ClC4, but not ClC5 transcripts. Here, we show for the first time that PRL activates sodium and chloride transport in renal epithelial cells via ENaC and ClC4. PMID:25587116

  1. A Comparison of Taste and Odor Perception in Pediatric Patients Receiving a 0.9% Sodium Chloride Flush From 2 Different Brands of Prefilled 0.9% Sodium Chloride Syringes.

    PubMed

    Hamze, Benjamin; Vaillancourt, Régis; Sharp, Diane; Villarreal, Gilda

    2016-01-01

    The aim of this randomized single-blind study is to compare taste and odor disturbances in patients receiving 0.9% sodium chloride flushes from 2 brands. Seventy-five patients from 6 to 18 years of age received intravenous 0.9% sodium chloride infusions, and 50 healthy volunteers who tasted the 2 brands of 0.9% sodium chloride from prefilled syringes were assessed for taste and/or odor disturbances. Taste or odor disturbances were equally present in patients flushed with MedXL and Becton-Dickinson 0.9% sodium chloride. Disturbances are more frequent when 0.9% sodium chloride is flushed through central venous access devices than through peripheral catheters. No difference between the brands was found when healthy volunteers tasted it orally. PMID:26714115

  2. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    SciTech Connect

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Van Tendeloo, G.; Fuertes, A. . E-mail: amparo.fuertes@icmab.es

    2006-05-25

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na{sub x}HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains.

  3. Evaluation of the maximum beyond-use-date stability of regular human insulin extemporaneously prepared in 0.9% sodium chloride in a polyvinyl chloride bag

    PubMed Central

    Rocchio, Megan A; Belisle, Caryn D; Greenwood, Bonnie C; Cotugno, Michael C; Szumita, Paul M

    2013-01-01

    Background Regular human insulin 100 units added to a sufficient quantity of 0.9% sodium chloride, to yield a total volume of 100 mL within a polyvinylchloride bag, is accepted to be stable for 24 hours due to physical denaturation and chemical modification. The objective of this study was to evaluate the extended stability of such extemporaneously prepared regular human insulin, stored under refrigeration, to the maximum beyond-use-date allowed by United States Pharmacopeia chapter 797. Methods At time “0” three admixtures of regular human insulin were prepared by withdrawing 1 mL of regular human insulin with a concentration of 100 units/mL and adding it to a sufficient quantity of 0.9% sodium chloride for injection in a polyvinylchloride bag to yield a total volume of 100 mL. The three admixtures were stored under refrigeration (2°C–8°C [36°F–46°F]), and one sample of each admixture was withdrawn and tested in duplicate at 0, 6, 24, 48, 72, 144, 168, 192, 216, 240, 312, and 336 hours. Utilizing high performance liquid chromatography, each sample underwent immediate testing. The time points were stable if the mean concentration of the samples exceeded 90% of the equilibrium concentration at 6 hours. Results The equilibrium concentration was 0.89 units/mL. Time points were stable if the mean concentration was at least 0.80 units/mL. All time points retained at least 90% of the equilibrium concentration, with the exception of hour 168 (0.79 ± 0.03 units/mL). At 192 hours the mean concentration was 0.88 ± 0.03 units/mL. At 336 hours the mean concentration was 0.91 ± 0.02 units/mL. Conclusion Based on these results, regular human insulin 100 units added to 0.9% sodium chloride for injection in a polyvinylchloride bag to yield a total volume of 100 mL is stable for up to 336 hours when stored at 2°C–8°C (36°F–46°F). PMID:24143117

  4. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    PubMed

    Luhmann, Heiko J; Kirischuk, Sergei; Kilb, Werner

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl(-)]i, and thereby the polarity of γ-aminobutyric acid type A (GABAA) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to. PMID:25190788

  5. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related. PMID:18680941

  6. Bromide, Chloride, and Sulfate Concentrations, and Specific Conductance, Lake Texoma, Texas and Oklahoma, 2007-08

    USGS Publications Warehouse

    Baldys, Stanley

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, collected water-quality data from 11 sites on Lake Texoma, a reservoir on the Texas-Oklahoma border, during April 2007-September 2008. At 10 of the sites, physical properties (depth, specific conductance, pH, temperature, dissolved oxygen, and alkalinity) were measured and samples were collected for analysis of selected dissolved constituents (bromide, calcium, magnesium, potassium, sodium, carbonate, bicarbonate, chloride, and sulfate); at one site, only physical properties were measured. The primary constituent of interest was bromide. Bromate can form when ozone is used to disinfect raw water containing bromide, and bromate is a suspected human carcinogen. Chloride and sulfate were of secondary interest. Only the analytical results for bromide, chloride, sulfate, and measured specific conductance are discussed in this report. Median dissolved bromide concentrations ranged from 0.28 to 0.60 milligrams per liter. The largest median dissolved bromide concentration (0.60 milligram per liter at site 11) was from the Red River arm of Lake Texoma. Dissolved bromide concentrations generally were larger in the Red River arm of Lake Texoma than in the Washita arm of the lake. Median dissolved chloride concentrations were largest in the Red River arm of Lake Texoma at site 11 (431 milligrams per liter) and smallest at site 8 (122 milligrams per liter) in the Washita arm. At site 11 in the Red River arm, the mean and median chloride concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter for chloride established by the 'Texas Surface Water Quality Standards' for surface-water bodies designated for the public water supply use. Median dissolved sulfate concentrations ranged from 182 milligrams per liter at site 4 in the Big Mineral arm to 246 milligrams per liter at site 11 in the Red River arm. None of the mean or median sulfate concentrations

  7. Separation of sodium chloride from the evaporated residue of the reverse osmosis reject generated in the leather industry--optimization by response surface methodology.

    PubMed

    Boopathy, R; Sekaran, G

    2014-08-01

    Reverse osmosis (RO) concentrate is being evaporated by solar/thermal evaporators to meet zero liquid discharge standards. The resulted evaporated residue (ER) is contaminated with both organic and inorganic mixture of salts. The generation of ER is exceedingly huge in the leather industry, which is being collected and stored under the shelter to avoid groundwater contamination by the leachate. In the present investigation, a novel process for the separation of sodium chloride from ER was developed, to reduce the environmental impact on RO concentrate discharge. The sodium chloride was selectively separated by the reactive precipitation method using hydrogen chloride gas. The selected process variables were optimized for maximum yield ofNaCl from the ER (optimum conditions were pH, 8.0; temperature, 35 degrees C; concentration of ER, 600 g/L and HCl purging time, 3 min). The recovered NaCl purity was verified using a cyclic voltagramm. PMID:24956779

  8. The interaction energies and polarizabilities of sodium fluoride, sodium chloride, and some alkali and halide ions pairs

    NASA Astrophysics Data System (ADS)

    Bounds, David G.; Hinchliffe, Alan

    1982-02-01

    Ab initio SCF pair potentials and polarizabilities for NaF, NaCl, F 2-2, Na 2-2, K 2-2, FCl 2-, LiNa 2+, LiK 2+, presented. Together with results reported previously, these values form a complete and consistent set of energy and polarizability data on the fluorides and chlorides of lithium, sodium and potassium.

  9. Exploring How Different Features of Animations of Sodium Chloride Dissolution Affect Students' Explanations

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Jones, Loretta L.

    2007-01-01

    Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level…

  10. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance–voltage (C–V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  11. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. PMID:27060992

  12. Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the combined effect of three internal temperatures (57.5, 60, and 62.5C) and different concentrations (0 to 3.0 wt/wt %) of sodium chloride (NaCl) and apple polyphenols (APP), individually and in combination, on the heat-resistance of a five-strain cocktail of Listeria monocytogenes ...

  13. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study

    PubMed Central

    de Oliveira, Fabrício Singaretti

    2014-01-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210

  14. The chemistry of sodium chloride involvement in processes related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Sodium chloride is one of the primary contaminants that enter gas turbine engines and contribute, either directly or indirectly, to the hot corrosion degradation of hot-gas-path components. The paper surveys the results of laboratory experiments along with thermodynamic and mass transport calculations, intended for elucidating the behavior of sodium chloride in combustion environments. It is shown that besides being a source of sodium for the formation of corrosive liquid Na2SO4, the NaCl itself contributes in other indirect ways to the material degradation associated with the high-temperature environmental attack. In addition, the experimental results lend credence to the conceptual scheme presented schematically (behavior of NaCl in a turbine engine combustion gas environment) and resolve conflicting aspects of relevant NaCl misconceptions.

  15. High Power Planar Sodium-Nickel Chloride Battery

    SciTech Connect

    Lu, Xiaochuan; Coffey, Greg W; Meinhardt, Kerry D; Sprenkle, Vincent L; Yang, Zhenguo; Lemmon, John P

    2010-07-01

    Widespread penetration of renewable energy and increasing demands on reliability/security of the electrical grid require extensive advances in energy storage technologies. One most promising technology is the sodium-beta batteries (NBBs) based on a sodium-ion conducting β''-Al2O3 solid electrolyte (BASE) and operated at elevated temperatures (300-350oC). Current NBBs, constructed on a 1-3 mm thick tubular electrolyte, have high capital cost, performance/safety issues and relatively high operating temperature that limit market penetration of the technology. In this work we report a new generation NBB that utilizes a planar design, incorporating a thinner BASE that reduces the area of specific resistance and may be operated at reduced temperatures. The lower operating temperatures allows for use of more cost-effective cell materials and decreases adverse temperature effects that impact cycle life and overall cost. We here present recent progress generated from planar NBB button cells, including initial cell performance, cathode design and chemistry.

  16. Stability of butorphanol-tropisetron mixtures in 0.9% sodium chloride injection for patient-controlled analgesia use.

    PubMed

    Chen, Fu-Chao; Shi, Xiao-Ya; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2015-02-01

    Tropisetron is an adjuvant for butorphanol used in intravenous patient-controlled analgesia (PCA) and has been reported to provide superior pain control. It is efficacious in reducing the incidence of postoperative nausea and vomiting. However, this admixture is not available commercially and stability data applicable to hospital practice are limited. This study aimed to describe the drug compounding and evaluates the long-term (up to 14 days) stability of butorphanol and tropisetron in 0.9% sodium chloride injection for PCA use.In this study, commercial solutions of butorphanol tartrate and tropisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL. The polyolefin bags and glass bottles were stored at 4°C and 25°C for up to 14 days. The drug stabilities were determined by visual inspection, pH measurement, and high-pressure liquid chromatography assay of drug concentrations.The data obtained for admixtures prepared and stored at temperatures of 25°C and 4°C show the drugs have maintained at least 98% of the initial concentration. All solutions remained clear and colorless over the 14-day period, and the pH value did not change significantly.The results indicate that admixtures of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL in 0.9% sodium chloride injection solution were stable for 14 days when stored in polyolefin bags or glass bottles at 4°C and 25°C and protected from light. The infusion is feasible for manufacturing in pharmacy aseptic units and can be stored for up to 14 days for routine use in PCA infusions. PMID:25674732

  17. Stability of Butorphanol–Tropisetron Mixtures in 0.9% Sodium Chloride Injection for Patient-Controlled Analgesia Use

    PubMed Central

    Chen, Fu-Chao; Shi, Xiao-Ya; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2015-01-01

    Tropisetron is an adjuvant for butorphanol used in intravenous patient-controlled analgesia (PCA) and has been reported to provide superior pain control. It is efficacious in reducing the incidence of postoperative nausea and vomiting. However, this admixture is not available commercially and stability data applicable to hospital practice are limited. This study aimed to describe the drug compounding and evaluates the long-term (up to 14 days) stability of butorphanol and tropisetron in 0.9% sodium chloride injection for PCA use. In this study, commercial solutions of butorphanol tartrate and tropisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL. The polyolefin bags and glass bottles were stored at 4°C and 25°C for up to 14 days. The drug stabilities were determined by visual inspection, pH measurement, and high-pressure liquid chromatography assay of drug concentrations. The data obtained for admixtures prepared and stored at temperatures of 25°C and 4°C show the drugs have maintained at least 98% of the initial concentration. All solutions remained clear and colorless over the 14-day period, and the pH value did not change significantly. The results indicate that admixtures of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL in 0.9% sodium chloride injection solution were stable for 14 days when stored in polyolefin bags or glass bottles at 4°C and 25°C and protected from light. The infusion is feasible for manufacturing in pharmacy aseptic units and can be stored for up to 14 days for routine use in PCA infusions. PMID:25674732

  18. The effect of chloride ion on the ferric chloride leaching of galena concentrate

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Kim, Seon-Hyo; Henein, H.

    1987-03-01

    Previous investigations of the ferric chloride brine leaching of galena concentrate have shown that additions of chloride ion result in accelerated dissolution rates. The current study has provided the necessary information to extend and modify these previous results by incorporating the important effect of chloride ion on the dissolution kinetics. As part of this study the solubility of lead chloride in ferric chloride-brine solutions has been determined and results indicate that additions of either FeCl3 or NaCl increase the PbCl2 solubility. This is attributed to the effect of complexing on the level of free chloride ion. In addition, the dissolution kinetics of elemental lead and lead chloride were also determined and compared with the kinetics of PbS dissolution. It is significant that the rate of dissolution of PbCl2 decreases as the concentration of Cl- is decreased and as the concentration of dissolved lead increases. These results along with SEM examination of partially reacted Pb shot show that solid PbCl2 forms on the surface long before the bulk solution is saturated with lead. The PbCl2 is proposed to form by a direct electrochemical reaction between Cl- and PbS prior to the formation of dissolved lead. The reaction was determined to be first order with respect to Cl- and closely obeys the following kinetic model based on a rate limiting charge transfer reaction at the surface:1 - (1 - a)^{1/3} left[ {{5.01x10^{11} }/{r_0 }left[ {Fe^{3 + } } right]_T^{0.21} left[ {Cl^ - } right]_T^{1.0} exp left( {{ - 72100}/{RT}} right)} right]t The model is in excellent agreement with experimental results up to about 95 pct reaction as long as the solubility of PbCl2 is greater than about 0.051 M. Where these conditions are not met, deviation from the surface reaction model occurs due to the extremely slow dissolution rate of PbCl2. Therefore the effect of Cl- on the brine leaching of PbS is attributed to two factors, the direct reaction of Cl- with the pbS surface

  19. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    NASA Astrophysics Data System (ADS)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  20. Effects of sodium chloride on the properties of chlorophyll a submonolayer adsorbed onto hydrophobic and hydrophilic surfaces using broadband spectroscopy with single-mode integrated optical waveguides

    NASA Astrophysics Data System (ADS)

    Wiederkehr, Rodrigo S.; Hoops, Geoffrey C.; Mendes, Sergio B.

    2011-07-01

    In this work, we experimentally investigated the effects of sodium chloride on the molar absorptivity and surface density of a submonolayer of chlorophyll a adsorbed onto hydrophilic and hydrophobic solid/liquid interfaces. Those investigations were made possible by a broadband spectroscopic platform based on single-mode, integrated optical waveguides, which allows for extremely sensitive spectroscopic detection of analytes immobilized at submonolayer levels. Chlorophyll a with a constant bulk concentration (1.4 μM) was dissolved in phosphate buffer solutions (7 mM) of neutral pH, but with different sodium chloride concentrations. For a buffer solution of 1 mM of sodium chloride, the measured surface density of chlorophyll a was 0.209 pmol/cm2 for a hydrophilic and 0.125 pmol/cm2 for a hydrophobic surface. For a phosphate buffer solution of 10 mM of sodium chloride, the measured surface density of chlorophyll a was 0.528 pmol/cm2 for a hydrophilic and 0.337 pmol/cm2 for a hydrophobic surface. Additionally, a hypsochromic shift of the Soret band was observed for the adsorbed pigment in correlation with an increase in buffer ionic strength. The adsorption of chlorophyll a onto different surfaces can play an important role to elucidate several processes found in nature and provide a rationale for bio-inspired new material technologies.

  1. Are extracellular osmolality and sodium concentration determined by Donnan effects of intracellular protein charges and of pumped sodium?

    PubMed

    Kurbel, Sven

    2008-06-21

    counteracting the average Donnan effect of charges on cytoplasmic proteins. When the optimal ECF sodium concentration had once become the reference point for osmoreceptors (controlling thirst and ADH secretion) and other regulatory mechanisms (secretion of renin/angiotensin/aldosterone, natriuretic factors), it made an important survival advantage that allowed spreading of animal life in fresh water and conquering of earth. The actual common value had to be a compromise that reduces the average osmotic burden on body cells to zero. Individual cells can reduce eventual residual osmotic forces on their membrane through altering cell volume by chloride shift, and by modulating the Na+K+-ATPase function. PMID:18374361

  2. Thermodynamics of aqueous borate solutions I. Mixture of boric acid with sodium or potassium borate and chloride

    SciTech Connect

    Simonson, J.M.; Roy, R.N.; Roy, L.N.; Johnson, D.A.

    1987-10-01

    Potentials for the cell without liquid junction H/sub 2/, Ptlt. slashB(OH)/sub 3/(m/sub 1/),MB(OH)/sub 4/(m/sub 2/),MCl(m/sub 3/)lt. slashAgCl,Ag where M is sodium or potassium are reported over a range of ionic strength to I = 3 mol-kg/sup -1/ at 5 to 55/sup 0/C. Total boron concentration in the solutions was restricted to low levels to minimize formation of polynuclear boron species. Cell potentials are treated with the Pitzer ion interaction treatment for mixed electrolytes, with linear ionic strength dependence assumed for the activity coefficient of undissociated boric acid. Trace activity coefficients of sodium and potassium borates in chloride media are calculated at various temperatures.

  3. Ultrastructural alterations in Fusarium sambucinum and Heterobasidion annosum treated with aluminum chloride and sodium metabisulfite.

    PubMed

    Avis, T J; Rioux, D; Simard, M; Michaud, M; Tweddell, R J

    2009-02-01

    Aluminum chloride (AlCl(3)) and sodium metabisulfite (Na(2)S(2)O(5)) have received increasing attention as antifungal agents for the control of plant diseases. In an effort to understand their toxic action on fungi, ultrastructural changes and membrane damage in Fusarium sambucinum (Ascomycota) and Heterobasidion annosum (Basidiomycota) in response to salt exposure was investigated using transmission electron microscopy. Conidial membrane damage was quantified using SYTOX Green stain, which only enters altered membranes. The results showed that mortality of the conidia was generally closely associated with SYTOX stain absorption in F. sambucinum treated with Na(2)S(2)O(5) and in H. annosum treated with AlCl(3) or Na(2)S(2)O(5), suggesting that these salts cause membrane alterations. For both fungi, ultrastructural alterations in conidia treated with AlCl(3) and Na(2)S(2)O(5) included membrane retraction, undulation, and invagination. At higher concentrations or exposure periods to the salts, loss of membrane integrity, cytoplasmic leakage, and cell rupture were observed. Ultrastructural alterations and increased SYTOX stain absorption in salt-treated conidia appear consistent with a mode of action where AlCl(3) and Na(2)S(2)O(5) alter membrane integrity and permeability. PMID:19159309

  4. Effect of sulfate ions on corrosion inhibition of AA 7075 aluminum alloy in sodium chloride solutions

    SciTech Connect

    Wu, T.I.; Wu, J.K.

    1995-03-01

    The effect of the addition of sulfate ions on corrosion inhibition of Aluminum Association (AA) 7075 aluminum (Al) alloy (UNS A97075) in aqueous solution was studied. Corrosion behavior was affected significantly by the addition of SO{sub 4}{sup 2{minus}}. The corrosion morphology and corrosion rate changed with various thermomechanical treatment sand with the relative amount of sodium sulfate and sodium chloride in the immersion test solutions. However, the inhibitive effect of SO{sub 4}{sup 2{minus}} was evident with the increasing relative amount of Na{sub 2}SO{sub 4}. Corrosion data and morphologies obtained were illustrated by a competitive anion adsorption mechanism.

  5. Changes in potassium and sodium concentrations in stored blood.

    PubMed

    Opoku-Okrah, Clement; Acquah, Benjamin Kojo Safo; Dogbe, Elliot Eli

    2015-01-01

    Potassium is the principal intracellular cation with sodium being the principal extracellular cation. Maintenance of the distribution of potassium and sodium between the intracellular and the extracellular compartments relies on several homeostatic mechanisms. This study analysed the effect of blood storage on the concentrations of potassium and sodium in stored blood and also determine any variations that may exist in their concentrations. 50 mls of blood was sampled each from 28 units of evenly mixed donated blood in citrate phosphate dextrose adenine (CPDA-1) bags immediately after donation into satellite bag and stored at 4oC. Potassium and sodium concentration determinations were done on each of the 28 samples on day 0 (before blood was initially stored in the fridge), day 5, day 10, day 15 and day 20 of storage using the Roche 9180 ISE Electrolyte Analyser (Hoffmann-La Roche Ltd, Switzerland). data analysis showed significant changes in the potassium and sodium concentrations with a continuous rise in potassium and a continuous fall in sodium. A daily change of 0.59 mmol/l and 0.50 mmol/l was observed in the potassium and sodium concentrations respectively. We showed steady but increased daily concentrations of potassium and decrease concentrations of sodium in blood stored over time at 4oC. PMID:27386032

  6. Changes in potassium and sodium concentrations in stored blood

    PubMed Central

    Opoku-Okrah, Clement; Acquah, Benjamin Kojo Safo; Dogbe, Elliot Eli

    2015-01-01

    Potassium is the principal intracellular cation with sodium being the principal extracellular cation. Maintenance of the distribution of potassium and sodium between the intracellular and the extracellular compartments relies on several homeostatic mechanisms. This study analysed the effect of blood storage on the concentrations of potassium and sodium in stored blood and also determine any variations that may exist in their concentrations. 50mls of blood was sampled each from 28 units of evenly mixed donated blood in citrate phosphate dextrose adenine (CPDA-1) bags immediately after donation into satellite bag and stored at 4oC. Potassium and sodium concentration determinations were done on each of the 28 samples on day 0 (before blood was initially stored in the fridge), day 5, day 10, day 15 and day 20 of storage using the Roche 9180 ISE Electrolyte Analyser (Hoffmann-La Roche Ltd, Switzerland). data analysis showed significant changes in the potassium and sodium concentrations with a continuous rise in potassium and a continuous fall in sodium. A daily change of 0.59mmol/l and 0.50mmol/l was observed in the potassium and sodium concentrations respectively. We showed steady but increased daily concentrations of potassium and decrease concentrations of sodium in blood stored over time at 4oC.

  7. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese.

    PubMed

    Hystead, E; Diez-Gonzalez, F; Schoenfuss, T C

    2013-10-01

    Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5 °C, respectively). In cheese inoculated with 4 log₁₀ cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log₁₀ cfu/g in all treatments over 60 d. When inoculated with 5 log₁₀ cfu/g at 3mo of cheese age, L. monocytogenes counts in Cheddar cheese were also

  8. Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.).

    PubMed

    Agudelo, Nikolay; Hinestroza, Juan P; Husserl, Johana

    2016-01-01

    Fique fibers obtained from the leaves of Furcraea spp., a highly abundant plant in the mountains of South America, may offer an alternative as biosorbents in desalination processes as they exhibit high removal capacities (13.26 meq/g for chloride ions and 15.52 meq/g for sodium ions) up to four times higher than exchange capacities commonly observed in synthetic resins. The ion removal capacity of the fibers was also found to be a function of the pH of the solution with the maximum removal of ions obtained at pH 8. Unlike most commercial ion exchange resins, our results suggest that fique fibers allow simultaneous removal of chloride and sodium ions. PMID:26942543

  9. Research on optical damage to sodium chloride by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gavasheli, Yu. O.; Komarov, P. S.; Ashitkov, S. I.; Savintsev, A. P.

    2016-06-01

    Thresholds of optical damage to sodium chloride by ultrashort laser pulses with a duration of about 40 fs are determined. Experiments were carried out using a terawatt titanium-sapphire laser device. p-polarized laser radiation at a wavelength of 800 nm fell on the specimen surface at an angle of 60°. Optical damage to the surface was observed when the critical electric field strength attained 94 MV/cm.

  10. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  11. Density and Viscosity of Ternary Mixtures of kappa -Carrageenan, Sodium Chloride, and Water

    NASA Astrophysics Data System (ADS)

    Ramos, Andresa V.; Rojas, Edwin E. Garcia; Giraldo-Zuniga, Abraham D.

    2013-02-01

    The viscosity and density of ternary mixtures containing kappa -carrageenan, sodium chloride, and water have been measured from (303 to 318) K at different values of pH. The presence of NaCl in the ternary systems produced an electro-viscous effect that influenced the viscosity and density of the system. The polynomial models used to correlate the viscosity and density gave good fits to the experimental data.

  12. Inhibition of biosynthesis of metalloprotease of Aeromonas sobria by sodium chloride in the medium.

    PubMed

    Takahashi, Eizo; Kobayashi, Hidetomo; Yamanaka, Hiroyasu; Nair, Gopinath Balakrish; Takeda, Yoshifumi; Arimoto, Sakae; Negishi, Tomoe; Okamoto, Keinosuke

    2011-01-01

    The present authors have previously shown that the serine protease activity of Aeromonas sobria is markedly decreased when A. sobria is cultured in medium containing 3.0% sodium chloride (NaCl, concentration almost equivalent to sea water salinity), and that this occurs because, although the synthesis of ASP is not disturbed by the salt in the medium, the maturation pathway of serine protease of A. sobria (ASP) does not proceed successfully in such a medium. In this study, the effect of salt in the medium on the production of metalloprotease by A. sobria (AMP) was examined. A. sobria produced AMP in the milieu when the bacteria were cultured in medium containing (NaCl) at a concentration of 0.5%. However, AMP was not produced when the bacteria were cultured in salty medium containing 1.5% or more NaCl. To examine how NaCl reduces the production of metalloprotease by A. sobria, the amount of amp mRNA in the cell was measured and it was found that this decreased in proportion to the concentration of NaCl in the medium. The mRNA of amp was not detected in cells cultured in medium containing 1.5% or more NaCl. This means that the transcription of amp is inhibited in salty condition. As described, NaCl in the medium disturbs the maturation pathway of ASP. The mode of action whereby NaCl suppresses AMP activity in A. sobria differs from the mechanism for suppressing ASP activity. PMID:21175775

  13. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    PubMed

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics. PMID:22703479

  14. Transmittance of distilled water and sodium-chloride-water solutions

    SciTech Connect

    Kanayama, K.; Baba, H.

    1988-05-01

    The spectral transmittance of pure water and salt water solutions of various concentrations, which are important for the thermal calculation of a solar pond, is measured experimentally for specimen thickness of 1 to 100 mm by means of an autorecording spectro-radiometer inside an air-conditioned room. On the basis of the measured spectral transmittance, the total transmittance of pure and salty waters to 3 m of water depth is calculated as a ratio of the total radiation energy over all wavelengths arriving at any depth from the water surface of the solar pond to the solar radiation incident upon the water surface with various air masses. According to Nielsens' four-partition method, the effective absorption coefficient is calculated for each wavelength band. Lastly, the transmission properties obtained for pure water, i.e., spectral and total transmittances, absorption wavelength band, and effective absorption coefficient, are compared with past results, and those for salty water with various concentrations are compiled as basic data for the use of solar energy by a solar pond.

  15. Effect of sodium chloride on bakers' yeast growing in gelatin

    SciTech Connect

    Wei, C.J.; Tanner, R.D.; Malaney, G.W.

    1982-04-01

    In recent years, industrial fermentation researchers have shifted their attention from liquid to solid and semisolid culture conditions. We converted liquid cultures to the semisolid mode by adding high levels of gelatin. Previous studies on liquid cultures have revealed the inhibitory activity of mineral salts, such as NaCl, on the fermentation of sugars by yeasts. We made a kinetic study of the effects of 1 to 5% (wt/vol) NaCl on the alcoholic fermentations of glucose by Saccharomyces cerevisiae in a growth medium containing 16% gelatin. Our results showed that the effect of high salt content on semisolid culture is essentially the same as the effect on liquid culture; i.e., as the salt content increased, the following occurred: (i) the growth of yeasts decreased, (ii) the lag period of the yeast biomass curve lengthened, (iii) the sugar intake was lowered, (iv) the yield of ethanol was reduced and (v) the production of glycerol was increased. We observed a new relationship correlating the area of kinetic hysteresis with ethanol production rate, acetaldehyde concentration, and the initial NaCl concentration. (Refs. 20).

  16. Hyponatremia due to Secondary Adrenal Insufficiency Successfully Treated by Dexamethasone with Sodium Chloride

    PubMed Central

    Kazama, Itsuro; Tamada, Tsutomu; Nakajima, Toshiyuki

    2015-01-01

    Patient: Female, 60 Final Diagnosis: Hyponatremia due to secondary adrenal insufficiency Symptoms: prolonged general fatigue and anorexia Medication: — Clinical Procedure: Successfully treated by dexamethasone with sodium chloride Specialty: Nephrology Objective: Rare co-existance of disease or pathology Background: Patients who were surgically treated for Cushing’s syndrome postoperatively surrender to “primary” adrenal insufficiency. However, the preoperative over-secretion of cortisol or the postoperative administration of excessive glucocorticoids can cause “secondary” adrenal insufficiency, in which the prevalence of hyponatremia is usually lower than that of primary adrenal insufficiency. Case Report: A 60-year-old woman with a past medical history of Cushing’s syndrome developed hyponatremia with symptoms of acute glucocorticoid deficiency, such as prolonged general fatigue and anorexia, after upper respiratory tract infection. A decrease in the serum cortisol level and the lack of increase in the ACTH level, despite the increased demand for cortisol, enabled a diagnosis of “secondary” adrenal insufficiency. Although the initial fluid replacement therapy was not effective, co-administration of dexamethasone and sodium chloride quickly resolved her symptoms and ameliorated the refractory hyponatremia. Conclusions: In this case, the hypothalamic-pituitary axis of the patient was thought to have become suppressed long after the surgical treatment for Cushing’s syndrome. This case suggested a mechanism of refractory hyponatremia caused by secondary adrenal insufficiency, for which the administration of dexamethasone and sodium chloride exerted additional therapeutic efficacy. PMID:26319655

  17. A Review of Sodium-Metal Chloride Battery Activity At JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Following the disclosures by Coetzer et al. on the use of transition metal chlorides in chloroaluminates as alternate cathodes to sulfur in rechargeable sodium batteries, several laboratories, including the Jet Propulsion Laboratory, focused their attention on these systems. These systems have certain distinct advantages over sodium-sulfur batteries such as increased safety, inherent overcharge capability, and lower operating temperatures. Two systems, i.e., Na/FeCl2 and NaNiCl2, were developed extensively and evaluated in various applications including electric vehicles and space. Their performance has been very encouraging and warrants a detailed fundamental study on these cathodes. At the Jet Propulsion Laboratory a program was initiated two years back to understand the electrochemical behavior of FeCl2 and NiCl2, and to identify and evaluate other transition metal chlorides of promise. The initial efforts focused on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics, and identifying the rate-limiting processes in te reduction of metal chloride cathodes. Nickel chloride emerged form these studies as the most promising candidate material and was taken up for further detailed study on its passivation- a rate limiting process-under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have a higher energy density, has been assessed. On the basis of the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt appear promising.

  18. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    USGS Publications Warehouse

    Schreier, T.M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  19. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    PubMed

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats. PMID:25064141

  20. Effect of pH, sodium chloride and sodium pyrophosphate on the termal resistance of Escherichia coli O157:H7 in ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Response to the Letter to the Editor: We have received with great satisfaction that our article “Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef” (Food Research International, 69:289-304; 2015) has awaken inte...

  1. Components of Sodium and Chloride Flux Across Toad Bladder

    PubMed Central

    Walser, Mackenzie

    1972-01-01

    The effect of transepithelial potential difference (ψ) on Na and Cl flux across toad bladder was assessed by measuring isotopic flux between identical media at various values of ψ. The contribution of edge damage to ionic permeability was eliminated, resulting in relatively high spontaneous ψ (-97 ±4 mv) and low electrical conductance g. Bidirectional Na fluxes were measured simultaneously. Unidirectional Cl fluxes were measured in paired hemibladders at ψ = 0 mv or -97 mv. Net Na flux JNa, at ψ = 0 mv, was slightly less than short-circuit current (SCC). At ψ = -97 mv, JNa averaged 17% of SCC, and was sometimes zero. ΔJNa/Δψ (= g+) averaged 60% of g between -97 mv and +75 mv; at -150 mv, g+ fell, indicating rectification. Analysis of unidirectional Na fluxes indicates low passive conductance (1.5 μmho/mg wet weight), a bidirectional, electrically neutral flux of approximately 0.13 μa/mg, and relatively large conductance of the active transport path at ψ ≥ -97 mv. The absence of appreciable transstimulation of serosal (S)-to-mucosal (M) Na flux (in response to increasing mucosal Na concentration) indicates that the electrically neutral flux is not exchange diffusion in the usual sense. Analysis of Cl fluxes indicates similar values for passive conductance and neutral flux, suggesting linked neutral flux of Na and Cl. Either the electromotive force of the Na pump E, its conductance ga, or both are strong functions of ψ. The product of these two quantities, Ega, is a measure of the “transport capacity” at any given value of ψ, independent of the direct effect of ψ on JNa through the pump path. Ega varies with ψ. Hence estimation of the net Na flux or current at any one value of ψ, including ψ = 0, fails to reveal the maximal transport capacity of the pump, its resting electromotive force (when JNa = 0 through the pump), or the dependence of transport capacity on potential. PMID:4623090

  2. Effect of chromuium, aluminum, and titanium on the corrosion resistance of nickel in molten sodium sulfate and chloride

    SciTech Connect

    Oryshich, I.V.

    1985-09-01

    The author reports on a study whose purpose was to determine the corrosion of binary nickel alloys, containing aluminum, titanium and chromium, in molten sodium sulfate and chloride. The work was undertaken because under operating conditions, gas-turbine materials are subject to oxidation and high-temperature corrosion caused by contact with molten salt based on sodium sulfate formed during fuel combustion. It is concluded that: on alloying nickel with chromium, resistance to sulfide corrosion increases, but with aluminum and titanium it is reduced; alloying nickel with aluminum, titanium (up to 6-8 %) and chromium (up to 10-12 %) leads to an increase in its resistance to the action of molten sodium chloride; and, binary Ni-Al, Ni-Ti and ternary Ni-Al-Ti alloys have a lower corrosion resistance in sodium solfate than in sodium chloride.

  3. Effect of divalent ions on electroosmotic transport in a sodium chloride aqueous solution confined in an amorphous silica nanochannel

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zambrano, Harvey; Cevheri, Necmettin; Yoda, Minami; Computational Micro-; Nanofluidics Lab Team; The Fluids, Optical; Interfacial Diagnostics Lab Team

    2012-11-01

    A critical enabling technology for the next generation of nanoscale devices, such as nanoscale ``lab on a chip'' systems, is controlling electroosmotic flow (EOF) in nanochannels. In this work, we control EOF in an aqueous sodium chloride (NaCl) solution confined in a silica nanochannel by systematically adding different amounts of divalent ions. Multivalent ions have a different affinity for the silica surface and different hydration characteristics in comparison to monovalent ions. Therefore by adding Mg++ and Ca++ to the sodium chloride solution, the electroosmotic velocity and the structure of the electrical double layer will be modified. The effects of adding Mg++ and Ca++ will be compared using non-equilibrium molecular dynamics simulations of the EOF at different electric fields of a NaCl solution in a silica nanochannel with different fractions of Ca++ and Mg++ ions. In general, the wall zeta-potential magnitude, and hence the EOF velocity, decreases as the Ca++ or Mg++ concentration increases. The system responds linearly with electric field. We will compare the computational results with the experimental data of Cevheri and Yoda (2012). This work is supported by Army Research Office (ARO) grant number W911NF1010290.

  4. Nucleation and growth of zinc from chloride concentrated solutions

    SciTech Connect

    Trejo, G.; Ortega B, R.; Meas V, Y.; Ozil, P.; Chainet, E.; Nguyen, B.

    1998-12-01

    The electrodeposition of metals is a complex phenomenon influenced by a number of factors that modify the rates of nucleation and growth and determine the properties of the deposits. In this work the authors study the influence of the zinc chloride (ZnCl{sub 2}) concentration on the zinc nucleation process on glassy carbon, in a KCl electrolyte under conditions close to those employed in commercial acid deposition baths for zinc. The electrochemical study was performed using cyclic voltammetry and potentiostatic current-time transients. The charge-transfer coefficient and the formal potential for ZnCl{sub 2} reduction were evaluated from cyclic voltammetry experiments. The nucleation process was analyzed by comparing the transients obtained with the known dimensionless (i/i{sub m}){sup 2} vs. t/t{sub m} response for instantaneous or progressive nucleation. The results show that the nucleation process and the number density of sites are dependent on ZnCl{sub 2} concentration. Scanning electron microscopy analysis of the deposits shows that the deposits are homogeneous and compact although a change in the morphology is observed as a function of ZnCl{sub 2} concentration. Evaluation of the corrosion resistance reveals the influence of the nucleation process on the subsequent corrosion resistance of the zinc deposits.

  5. Effect of Polyvnylpyrrolidone (PVP) in Binary Solution on the Performance of Polyethersulfone Hollow Fibre Membrane for Sodium Chloride Separation

    NASA Astrophysics Data System (ADS)

    Bolong, N.; Ismail, A. F.; Salim, M. R.

    2010-03-01

    In membrane preparation, phase inversion is a versatile technique that allow polymer to be transformed from liquid to a solid state in a controlled manner. The preparation and process involves many factors and parameters specifically in fabricating hollow fibre membrane. In this study, dope solution factor in the process of fabricating hollow fibre membrane were explored. The effects of polymer concentration and polyvinylpyrrolidone (PVP) as additive in the dope solution on the morphology and separation performance were found able to produced high porous membranes, well interconnected pores and surface properties. Employing polyethersulfone (PES) as polymer, hollow fibre membranes were fabricated using N-methyl-2-pyrrolidone (NMP) as solvent and using water as the external coagulant. Finally the fabricated ultrafiltration membranes were characterized and evaluated based on solute transport concentration (sodium chloride) and pure water permeation properties.

  6. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride.

    PubMed

    McFeeters, Roger F; Pérez-Díaz, Ilenys

    2010-04-01

    Waste water containing high levels of NaCl from cucumber fermentation tank yards is a continuing problem for the pickled vegetable industry. A major reduction in waste salt could be achieved if NaCl were eliminated from the cucumber fermentation process. The objectives of this project were to ferment cucumbers in brine containing CaCl(2) as the only salt, to determine the course of fermentation metabolism in the absence of NaCl, and to compare firmness retention of cucumbers fermented in CaCl(2) brine during subsequent storage compared to cucumbers fermented in brines containing both NaCl and CaCl(2) at concentrations typically used in commercial fermentations. The major metabolite changes during fermentation without NaCl were conversion of sugars in the fresh cucumbers primarily to lactic acid which caused pH to decrease to less than 3.5. This is the same pattern that occurs when cucumbers are fermented with NaCl as the major brining salt. Lactic acid concentration and pH were stable during storage and there was no detectable production of propionic acid or butyric acid that would indicate growth of spoilage bacteria. Firmness retention in cucumbers fermented with 100 to 300 mM CaCl(2) during storage at a high temperature (45 degrees C) was not significantly different from that obtained in fermented cucumbers with 1.03 M NaCl and 40 mM CaCl(2). In closed jars, cucumber fermentations with and without NaCl in the fermentation brine were similar both in the chemical changes caused by the fermentative microorganisms and in the retention of firmness in the fermented cucumbers. PMID:20492282

  7. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    NASA Technical Reports Server (NTRS)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  8. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri

    PubMed Central

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-01-01

    Background and Purpose Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Experimental Approach Organ bath studies were employed to assess the pharmacological effects of Na2S in uterine strips by exposing them to Na2S with or without Cl− channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K+ channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca2+ channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Key Results Na2S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2S compared with uteri in 15 mM KCl. Na2S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3−, suggesting the involvement of chloride ion channels. Na2S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. Conclusions and Implications The relaxant effects of Na2S in rat uteri are mediated mainly via a DIDS-sensitive Cl−-pathway. Components of the relaxation are redox- and Ca2+-dependent. PMID:25857480

  9. Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic Th17 Cells

    PubMed Central

    Kleinewietfeld, Markus; Manzel, Arndt; Titze, Jens; Kvakan, Heda; Yosef, Nir; Linker, Ralf A.; Muller, Dominik N.; Hafler, David A.

    2013-01-01

    There has been a marked increase in the incidence of autoimmune diseases in the last half-century. While the underlying genetic basis of this class of diseases has recently been elucidated implicating predominantly immune response genes1, changes in environmental factors must ultimately be driving this increase. The newly identified population of interleukin (IL)-17 producing CD4+ helper T cells (Th17 cells) plays a pivotal role in autoimmune diseases2. Pathogenic IL-23 dependent Th17 cells have been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), and genetic risk factors associated with MS are related to the IL23/Th17 pathway1, 2. However, little is known regarding the environmental factors that directly influence Th17 cells. Here we show that increased salt (sodium chloride; NaCl) concentrations found locally under physiological conditions in vivo dramatically boost the induction of murine and human Th17 cells. High-salt conditions activate the p38/MAPK pathway involving the tonicity-responsive enhancer binding protein (TonEBP/NFAT5) and the serum/glucocorticoid-regulated kinase 1 (SGK1) during cytokine-induced Th17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5 or SGK1 abrogates the high-salt induced Th17 cell development. The Th17 cells generated under high-salt display a highly pathogenic and stable phenotype characterized by the up-regulation of the pro-inflammatory cytokines GM-CSF, TNFα and IL-2. Moreover, mice fed with a high-salt diet develop a more severe form of EAE, in line with augmented central nervous system infiltrating and peripherally induced antigen specific Th17 cells. Thus, increased dietary salt intake might represent an environmental risk factor for the development of autoimmune diseases through the induction of pathogenic Th17 cells. PMID:23467095

  10. Sodium Concentration Measurement during Hemodialysis through Ion-Exchange Resin and Conductivity Measure Approach: In Vitro Experiments

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some “mixed samples”, i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis. PMID:23844253

  11. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  12. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  13. Chemistry of Frozen Sodium-Magnesium-Sulfate-Chloride Brines: Implications for Surface Expression of Europa's Ocean Composition

    NASA Astrophysics Data System (ADS)

    Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Johnson, Paul V.

    2016-01-01

    The composition of Europa’s subsurface ocean is a critical determinant of its habitability. However, our current understanding of the ocean composition is limited to its expression on the surface. This work investigates experimentally the composition of mixed sodium-magnesium-sulfate-chloride solutions when frozen to 100 K, simulating conditions that likely occur as ocean fluids are emplaced onto Europa’s surface. Micro-Raman spectroscopy is used to characterize phase composition of the frozen brines at 100 K. Our results show that solutions containing Na+, Cl-, Mg2+, and {{{SO}}4}2- preferentially crystallize into Na2SO4 and MgCl2 hydrated minerals upon freezing, even at elevated [Mg2+]/[Na+] ratios. The detection of epsomite (MgSO4•7H2O) on Europa’s surface, if confirmed, may thus imply a relatively sodium-poor ocean composition or a radiolytic process that converts MgCl2 to MgSO4 as suggested by Brown & Hand. The formation of NaCl on the surface, while dependent upon a number of factors such as freezing rate, may indicate an ocean significantly more concentrated in sodium than in magnesium.

  14. Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network

    NASA Astrophysics Data System (ADS)

    Benato, Roberto; Cosciani, Nicola; Crugnola, Giorgio; Dambone Sessa, Sebastian; Lodi, Giuseppe; Parmeggiani, Carlo; Todeschini, Marco

    2015-10-01

    The extensive application of Sodium-Nickel Chloride (Na-NiCl2) secondary batteries in electric and hybrid vehicles, in which the safety requirements are more restrictive than these of stationary storage applications, depicts the Na-NiCl2 technology as perfectly suitable for the stationary storage applications. The risk of fire is negligible because of the intrinsic safety of the cell chemical reactions, related to the sodium-tetrachloroaluminate (NaAlCl4) content into the cell, which acts as a secondary electrolyte (the primary one being the ceramic β″-alumina as common for Na-Beta batteries). The 3 h rate discharge time makes this technology very attractive for load levelling, voltage regulation, time shifting and the power fluctuation mitigation of the renewable energy sources in both HV and EHV networks.

  15. Block of sodium channels by internal mono- and divalent guanidinium analogues. Modulation by sodium ion concentration.

    PubMed Central

    Danko, M; Smith-Maxwell, C; McKinney, L; Begenisich, T

    1986-01-01

    We have investigated the block of squid axon sodium channels by mono- and divalent guanidinium analogues. The action of these compounds on steady state sodium currents was independent of the presence or absence of the normal inactivation process. Block by both mono- and divalent analogues was voltage-dependent, but was a steeper function of potential for divalent molecules. The voltage-dependence could not, in general, be reproduced by a simple model based on Boltzmann's equation. Inhibition of steady state currents by guanidinium ions with 50 mM internal sodium was reasonably well described by a 1:1 drug/channel binding function. Increasing the internal sodium ion concentration increased both the degree and voltage-dependence of current inhibition. This is in sharp contrast to the decrease in inactivation caused by internal sodium. Changes in the external sodium concentration had very little effect on drug block. These results are consistent with a model of the sodium channel as a multi-ion pore. Only a small increase in block can be produced by increased internal sodium in a three-barrier two-site model, but a four-barrier three-site model can reproduce these experimental findings. The implications of these results for physical models of inactivation are discussed. PMID:2420382

  16. 1D Measurement of Sodium Ion Flow in Hydrogel After a Bath Concentration Jump.

    PubMed

    Roos, R W; Pel, L; Huinink, H P; Huyghe, J M

    2015-07-01

    NMR is used to measure sodium flow driven by a 1D concentration gradient inside poly-acrylamid (pAA) hydrogel. A sodium concentration jump from 0.5 M NaCl to 0 M NaCl is applied at the bottom of a cylindrical pAA sample. The sodium level and hydrogen level are measured as a function of time and position inside the sample for 5 days. Then a reversed step is applied, and ion flow is measured for another 5 days. During the measurement, the cylindrical sample is radially confined and allowed to swell in the axial direction. At the same time, sodium and moisture in the sample are measured on a 1D spatial grid in the axial direction. A quadriphasic mixture model (Huyghe and Janssen in Int J Eng Sci 35:793, 1997) is used to simulate the results and estimate the diffusion coefficient of sodium and chloride. The best fit results were obtained for D[Formula: see text] cm(2)/s and D[Formula: see text] cm(2)/s, at 25 degrees centigrade. Different time constants were observed for swelling and deswelling. PMID:25786888

  17. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  18. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  19. The effect of different dietary sodium levels on blood mineral concentrations and tibia mineralization in turkeys.

    PubMed

    Jankowski, J; Lichtorowicz, K; Zduńczyk, Z; Juśkiewicz, J

    2012-01-01

    The objective of this study was to determine the effect of different dietary levels of sodium in diets with and without sodium chloride on mineral metabolism, including blood electrolyte levels and tibia mineralization parameters, in young turkeys (to six weeks of age). The influence of diets with a low (L), medium (M) and high (H) sodium content, at 0.34, 1.34 and 2.82 g/kg respectively, was compared. The content of chloride and potassium in turkey diets (1.7 - 5.9 and 11 g/kg, respectively) was above the recommended levels. The sodium-deficient diet L decreased the serum concentrations of sodium, chloride and phosphorus, and it increased the serum levels of calcium and magnesium in turkeys, compared with groups M and H. Relative to group L, different dietary sodium levels in groups M and H contributed to a similar increase in the body weights of birds (1.06 vs. 1.46 and 1.44 kg, p < 0.001) and in the absolute (4.60 vs. 6.83 and 6.62 g, p < 0.001) and relative tibia weight (0.42 vs. 0.46 and 0.46% body weight, p = 0.031). No significant differences were found between groups with respect to the content of ash, calcium and phosphorus in tibia dry matter. Supplemental sodium increased the bone density index (from 50.6 to 68.4 and 66.3 mg/mm in groups L, M and H, respectively, p < 0.001), the maximum bending moment (from 5.27 to 7.40 and 7.33 N/mm, p = 0.002) and the minimum breaking strength of tibia (from 0.136 to 0.191 and 0.189, p = 0.002). In conclusion, our study indicates that the applied dietary treatment with a moderate sodium level (1.34 g/kg) resulted in a rate of bird growth and tibia mineralization similar to those observed with the treatment with much higher Na content (2.82 g/kg). PMID:22844698

  20. Determining salt concentrations for equivalent water activity in reduced-sodium cheese by use of a model system.

    PubMed

    Grummer, J; Schoenfuss, T C

    2011-09-01

    The range of sodium chloride (salt)-to-moisture ratio is critical in producing high-quality cheese products. The salt-to-moisture ratio has numerous effects on cheese quality, including controlling water activity (a(w)). Therefore, when attempting to decrease the sodium content of natural cheese it is important to calculate the amount of replacement salts necessary to create the same a(w) as the full-sodium target (when using the same cheese making procedure). Most attempts to decrease sodium using replacement salts have used concentrations too low to create the equivalent a(w) due to the differences in the molecular weight of the replacers compared with salt. This could be because of the desire to minimize off-flavors inherent in the replacement salts, but it complicates the ability to conclude that the replacement salts are the cause of off-flavors such as bitter. The objective of this study was to develop a model system that could be used to measure a(w) directly, without manufacturing cheese, to allow cheese makers to determine the salt and salt replacer concentrations needed to achieve the equivalent a(w) for their existing full-sodium control formulas. All-purpose flour, salt, and salt replacers (potassium chloride, modified potassium chloride, magnesium chloride, and calcium chloride) were blended with butter and water at concentrations that approximated the solids, fat, and moisture contents of typical Cheddar cheese. Salt and salt replacers were applied to the model systems at concentrations predicted by Raoult's law. The a(w) of the model samples was measured on a water activity meter, and concentrations were adjusted using Raoult's law if they differed from those of the full-sodium model. Based on the results determined using the model system, stirred-curd pilot-scale batches of reduced- and full-sodium Cheddar cheese were manufactured in duplicate. Water activity, pH, and gross composition were measured and evaluated statistically by linear mixed model

  1. Effects of the Paradox Valley Unit on dissolved solids, sodium, and chloride in the Dolores River near Bedrock, Colorado, water years 1988-98

    USGS Publications Warehouse

    Watts, Kenneth R.

    2000-01-01

    During 1999, a study was conducted by the U.S. Geological Survey (USGS) in cooperation with the Bureau of Reclamation to evaluate the effect of the Paradox Valley Unit on dissolved solids, sodium, and chloride in the Dolores River downstream from the Paradox Valley Unit. This report describes this evaluation and presents the results from this study. Daily mean flow and daily mean specific conductance, measured at gages upstream and downstream from the Paradox Valley Unit, and results from monthly water-quality samples are used to estimate changes in the dissolved-solids load and concentrations of sodium and chloride in the river as it crosses the valley and to correlate these changes with withdrawals of brine by the Paradox Valley Unit. The time period for this evaluation was restricted to October 1987?September 1998 (water years 1988?98) because regular collection of water-quality samples from the Dolores River in the valley gaban in 1987.

  2. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor. PMID:25314953

  3. Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity.

    PubMed

    Wu, Geyang; Peterson, Adam J; Morris, Craig F; Murphy, Kevin M

    2016-01-01

    Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m(-1) of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m(-1) Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m(-1) Na2SO4 soil had lower density (0.66 g/cm(3)) than those from 16 dS m(-1) and 32 dS m(-1) Na2SO4, 0.74 and 0.72g/cm(3), respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648

  4. Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity

    PubMed Central

    Wu, Geyang; Peterson, Adam J.; Morris, Craig F.; Murphy, Kevin M.

    2016-01-01

    Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m-1 of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m-1 Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m-1 Na2SO4 soil had lower density (0.66 g/cm3) than those from 16 dS m-1 and 32 dS m-1 Na2SO4, 0.74 and 0.72g/cm3, respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648

  5. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  6. Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man.

    PubMed

    Merson, Stuart J; Maughan, Ronald J; Shirreffs, Susan M

    2008-07-01

    To investigate how differing moderate sodium chloride concentrations affect rehydration after exercise and subsequent exercise capacity, eight males lost 1.98 +/- 0.1% body mass exercising in the heat, then consumed one of four drinks in a volume equivalent to 150% of mass loss. Drinks were identical except for sodium chloride content (1 +/- 1, 31 +/- 1, 40 +/- 1, 50 +/- 1 mmol/l). After 4 h recovery subjects cycled for 5 min at 70% VO(2peak) then at 95% VO(2peak) until volitional fatigue. Urine output was inversely related to sodium intake: more was produced with the 1 than the 40 and 50 mmol/l drinks (P < 0.01). Time to exhaustion in the exercise capacity test was not different between treatments (P = 0.883). The addition of 40 or 50 mmol/l of sodium chloride to a rehydration beverage reduced subsequent urine output, thereby providing more effective rehydration than a sodium-free drink. This did not, however, result in improved performance 4 h after the end of the rehydration period. PMID:18463891

  7. PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER.

    PubMed

    Shrestha, Sony; Park, Jiyeong; Ahn, Seung-Joon; Kim, Yonggyun

    2015-08-01

    Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 . PMID:25845372

  8. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk.

    PubMed

    Todd, Aaron K; Kaltenecker, M Georgina

    2012-12-01

    Warm season (May-October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975-2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. PMID:22940273

  9. Unusual electronic and mechanical properties of sodium chlorides at high pressures

    NASA Astrophysics Data System (ADS)

    Bu, Hongxia; Zhao, Mingwen; Zhou, Hongcai; Du, Yanling

    2016-04-01

    Using first-principles calculations, we performed systematic investigation on the electronic and mechanical properties of sodium chlorides with different stoichiometries at high pressures. It was found that most of the phases are metallic except the Pnma-NaCl3 with a gap of 2.155 eV. The extended Cl (or Na) sublattice at Cl-rich (or Na-rich) conditions contributes to the metallization. Accompanied by metallization, the NamCln crystals exhibit good ductility in contrast to the brittle NaCl crystal, due to the changes of binding features induced by high pressure. These results are expected to be useful for understanding the exotic properties of NaCl at high pressures.

  10. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  11. High throughput growth of zinc oxide nanowires from zinc powder with the assistance of sodium chloride.

    PubMed

    Yang, Jian; Wang, Wenzhong; Ma, Yi; Wang, D Z; Steeves, D; Kimball, B; Ren, Z F

    2006-07-01

    Sodium chloride (NaCl) was found to be very helpful in producing single crystal zinc oxide (ZnO) nanowires in gram quantities. The growth involves heating the mixture of zinc powder and NaCl to 600-700 degrees C in flowing gases of oxygen and argon. A conversion efficiency of 70-80% (Zn to ZnO) was achieved when NaCl was used, and 5-10% without NaCl. The NaCl was completely removed by soaking and rinsing the mixture in water a few times. Photoluminescence spectra using excitation of 325 nm showed a very strong emission only in the visible frequency range, indicating that the surface states dominate the emission. PMID:17025149

  12. Nanoscale periodic modulations on sodium chloride surface revealed by tuning fork atomic force microscopy.

    PubMed

    Clark, Kendal W; Qin, Shengyong; Zhang, X-G; Li, An-Ping

    2012-05-11

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along <110> crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 °C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction. PMID:22513484

  13. Nanoscale periodic modulations on sodium chloride surface revealed by tuning fork atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Clark, Kendal W.; Qin, Shengyong; Zhang, X.-G.; Li, An-Ping

    2012-05-01

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along <110> crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 °C) however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

  14. Removal of sodium chloride from human urine via batch recirculation electrodialysis at constant applied voltage

    NASA Technical Reports Server (NTRS)

    Gordils-Striker, Nilda E.; Colon, Guillermo

    2003-01-01

    The removal of sodium chloride (NaCl) from human urine using a six-compartment electrodialysis cell with batch recirculation mode of operation for use in advanced life support systems (ALSS) was studied. From the results obtained, batch recirculation at constant applied voltage yields high values (approximately 94% of NaCl removal. Based on the results, the initial rate of NaCl removal was correlated to a power function of the applied voltage: -r=2.0 x 10(-4)E(3.8). With impedance spectroscopy methods, it was also found that the anion membranes were more affected by fouling with an increase of the ohmic resistance of almost 11% compared with 7.4% for the cationic ones.

  15. Aqueous sodium chloride induced intergranular corrosion of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Daeschner, D. L.

    1986-01-01

    Two methods have been explored to assess the susceptibility of Al-Li-Cu alloys to intergranular corrosion in aqueous sodium chloride solution. They are: (1) constant extension rate testing with and without alternate-immersion preexposure and (2) metallographic examination after exposure to a NaCl-H2O2 corrosive solution per Mil-H-6088F. Intergranular corrosion was found to occur in both powder and ingot metallurgy alloys of similar composition, using both methods. Underaging rendered the alloys most susceptible. The results correlate to stress-corrosion data generated in conventional time-to-failure and crack growth-rate tests. Alternate-immersion preexposure may be a reliable means to assess stress corrosion susceptibility of Al-Li-Cu alloys.

  16. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  17. Stability of buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution.

    PubMed

    Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S

    1999-12-01

    Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C. PMID:10658237

  18. Experimental evaluation of sodium silicate-based nanosilica against chloride effects in offshore concrete.

    PubMed

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (-) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  19. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    PubMed Central

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (−) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  20. Physicochemistry of interaction between the cationic polymer poly(diallyldimethylammonium chloride) and the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate in water and isopropyl alcohol-water media.

    PubMed

    Mukherjee, Suvasree; Dan, Abhijit; Bhattacharya, Subhash C; Panda, Amiya K; Moulik, Satya P

    2011-05-01

    The physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration. The phenomena observed were affected by the presence of isopropyl alcohol (IP) in the medium. The hydrodynamic sizes of the dispersed polymer and its surfactant-interacted species were determined by DLS measurements. The surface morphologies of the solvent-removed PDADMAC and its surfactant-interacted complexes from water and IP-water media were examined by the SEM technique. The morphologies witnessed different patterns depending on the composition and the solvent environment. The head groups of the dodecyl chain containing surfactants made differences in the interaction process. PMID:21466231

  1. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  2. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  3. Effect of sodium chloride on glassy and crystalline transitions of wheat starch treated with high hydrostatic pressure: Prediction of solute-induced barostability from nonmonotonic solute-induced thermostability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat starch was high hydrostatic pressure (HHP)-treated in various sodium chloride (NaCl) concentrations (0 to near-saturation), in order to explore the effects of salt on glassy and crystalline transitions of starch during the treatment, using differential scanning calorimetry (DSC). For wheat st...

  4. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    SciTech Connect

    Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying; Cowin, James P.

    2014-06-20

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.

  5. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.

    PubMed

    Zhang, Shaozhi; Yu, Xiaoyi; Chen, Zhaojie; Chen, Guangming

    2013-04-01

    Vitrification is considered as the most promising method for long-term storage of tissues and organs. An effective way to reduce the accompanied cryoprotectant (CPA) toxicity, during CPA addition/removal, is to operate at low temperatures. The permeation process of CPA into/out of biomaterials is affected by the viscosity of CPA solution, especially at low temperatures. The objective of the present study is to measure the viscosity of the ternary solution, dimethyl sulfoxide (Me2SO)/water/sodium chloride (NaCl), at low temperatures and in a wide range of concentrations. A rotary viscometer coupled with a low temperature thermostat bath was used. The measurement was carried out at temperatures from -10 to -50°C. The highest mass fraction of Me2SO was 75% (w/w) and the lowest mass fraction of Me2SO was the value that kept the solution unfrozen at the measurement temperature. The concentration of NaCl was kept as a constant [0.85% (w/w), the normal salt content of extracellular fluids]. The Williams-Landel-Ferry (WLF) model was employed to fit the obtained viscosity data. As an example, the effect of solution viscosity on modeling the permeation of Me2SO into articular cartilage was qualitatively analyzed. PMID:23376371

  6. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes

    NASA Astrophysics Data System (ADS)

    Ghalwa, Nasser Abu; Tamos, Hassan; ElAskalni, Mohamed; El Agha, Abed Rhman

    2012-06-01

    Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon substrates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOCl) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOCl generation, including current density, pH values, conductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOCl.

  7. Quantitative Determination of Paraquat in Meconium by Sodium Borohydride-Nickel Chloride Chemical Reduction and Gas Chromatography/Mass Spectrometry (GC/MS)

    PubMed Central

    Posecion, Norberto C.; Ostrea, Enrique M.; Bielawski, Dawn M.

    2008-01-01

    The objective of this study was to develop a procedure for the GC/MS assay of paraquat in meconium as a biomarker of fetal exposure to paraquat. The method involved a sodium borohydride-nickel chloride reduction procedure, liquid-liquid extraction of the perhydrogenated product, concentration, and GC/MS assay. The method demonstrated good overall recovery (102.56 %) with %CV (inter-assay) of less than 13%, and a limit of detection of 0.0156 μg/g. Analysis of meconium samples from a study population in the Philippines (n = 70) showed a 2.8% prevalence of fetal exposure to paraquat. PMID:18037033

  8. Compatibility and Stability of Morphine Sulphate and Naloxone Hydrochloride in 0.9% Sodium Chloride for Injection

    PubMed Central

    Kistner, Charlotte; Ensom, Mary H H; Decarie, Diane; Lauder, Gillian; Carr, Roxane R

    2013-01-01

    Background Naloxone may be administered in conjunction with morphine to reduce the risk of opioid-induced pruritis. Combining these drugs for coadministration may be beneficial, but little is known about their physical compatibility and stability in combined solutions. Objective: To describe the physical compatibility and stability of morphine sulphate and naloxone hydrochloride (at various concentrations) in IV admixtures. Methods: The physical compatibility and stability of admixtures of morphine 1000 μg/mL and naloxone 4 μg/mL, 12.5 μg/mL, and 25 μg/mL in 0.9% sodium chloride were studied. For each concentration of naloxone, one bag was stored at room temperature (22°C) for 72 h and one bag was stored under refrigeration (4°C) for 30 days. For all preparations, physical characteristics, including pH, colour, and formation of precipitate, were evaluated. The samples were also analyzed by a stability-indicating high-performance liquid chromatographic method. Stability was defined as the retention of at least 90% of the initial concentration. Results: No notable changes in pH or colour and no macroprecipitation were observed in any of the preparations after storage at 22°C for up to 72 h or at 4°C for up to 30 days. All preparations maintained more than 90% of the initial concentrations of morphine and naloxone at the end of the respective study periods. The calculated lower limit of the 95% confidence interval also indicated that 90% or more of the initial concentration remained at the end of each study period. Conclusion: Admixtures of morphine sulphate and naloxone hydrochloride were stable for 72 h at room temperature and for 30 days with refrigeration. PMID:23814283

  9. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases.

    PubMed

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  10. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases

    PubMed Central

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na+, K+ and 2Cl- inside the cell. It acts in concert with K+ Cl- co-transporter (KCC), which extrudes K+ and Cl- ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  11. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration.

    PubMed

    Rupprecht, Kevin R; Lang, Ewa Z; Gregory, Svetoslava D; Bergsma, Janet M; Rae, Tracey D; Fishpaugh, Jeffrey R

    2015-10-01

    Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise. PMID:26150094

  12. A novel device for quantitative measurement of chloride concentration by fluorescence indicator

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Wu, Xudong; Chon, Chanhee; Gonska, Tanja; Li, Dongqing

    2012-02-01

    Cystic fibrosis (CF) is a life-threatening genetic disease. At present, the common method for diagnosis of CF is to detect the chloride concentration in sweat using ion-selective electrodes. However, the current sweat testing methods require a relatively large quantity of sweat sample, at least 25 µL, which is very difficult to obtain, especially for newborns. This paper presents a new method and a new device for rapid detection of the chloride concentration from a small volume of solution. In this method, the chloride concentration is determined quantitatively by the fluorescence intensity of MQAE, a chloride ion fluorescent indicator. In this device, the sample is carried by a small piece of filter paper on a cover glass exposed to an UV LED light source. The resulting fluorescent signals are detected by a Si photodiode. Data acquisition and processing are accomplished by LabVIEW software in a PDA. Based on the Stern-Volmer relationship, the effects of different parameters on the fluorescence intensity were analyzed. The observed significant difference between 40 and 60 mM (the borderline of chloride concentration for CF) is discussed in this paper. The results show that detection can be completed within 10 s. The minimum detectable volume of the chloride solution is 1 μL. The novel method and the device are of great potential for CF diagnosis.

  13. The coprecipitation of strontium, magnesium, sodium, potassium and chloride ions with gypsum. An experimental study

    NASA Astrophysics Data System (ADS)

    Kushnir, Jacob

    1980-10-01

    The coprecipitation of Sr 2+, Mg 2+, Na +, K + and Cl - into gypsum was studied as a function of temperature, brine concentration and growth rate. The concentrations of the studied cations in the gypsum increase with growth rate (kinetic effect), with a tendency to reach a limiting value at high growth rates. The partition coefficients of Sr tend to increase with brine concentration and decrease with temperature. The partition coefficients of the other cations also decrease with temperature but depend only very slightly on brine concentration. The concentrations of coprecipitated chloride are negligibly small. The coprecipitation behavior is explained in terms of the relation between the rate of desorption of the coprecipitating ions from the surface of the growing crystal, and the rate of growth. The studied cations may substitute for Ca 2+ in its normal lattice sites and/or reside in interstitial positions among the structural water molecules. The relative amount of foreign cations occupying interstitial positions increases with increasing growth rate. The elucidation of the behavior of coprecipitated ions in gypsum given here forms a basis for the utilization of these ions as geochemical indicators for the environment of deposition of gypsum. These indicators may help in reconstructing important parameters such as temperature, brine concentration and growth rate.

  14. Analysis of antibacterial efficacy of plasma-treated sodium chloride solutions

    NASA Astrophysics Data System (ADS)

    Hänsch, Mareike A. C.; Mann, Miriam; Weltmann, Klaus-Dieter; von Woedtke, Thomas

    2015-11-01

    In this study, the change of chemical composition of sodium chloride solutions (NaCl, 0.85%) induced by non-thermal atmospheric pressure plasma (APP) treatment and subsequent effects on bacteria (Escherichia coli) are investigated. Besides acidification caused by APP, hydrogen peroxide (H2O2), nitrite (\\text{NO}2- ), and nitrate (\\text{NO}3- ) are generated as stable end-products of various chemical reactions in APP-treated liquids. Inactivation kinetics and reduction factors were recorded for E. coli (K12). Almost identical antimicrobial effects were observed with both direct APP exposure to bacteria suspension and exposure of APP-treated liquids to bacteria (indirect treatment). Consequently, main bactericidal effects are caused by chemical reactions which are mediated via the liquid phase. Moreover, APP-treated liquids have shown long-term activity (30 min) that possibly correlates with the ratio of \\text{NO}2- /H2O2. Therefore, \\text{NO}2- and H2O2 are identified as key agents for antimicrobial short- and long-term effects, respectively. The antimicrobial stability observed is strongly dependent on the used treatment regime and correlates additionally with the altered chemical composition of APP-treated liquids. Besides these effects, it was also shown that bacteria do not acquire resistance to such APP-treated solutions.

  15. Electrochemical, galvanic, and mechanical responses of grade 2 titanium in 6% sodium chloride solution

    SciTech Connect

    Wang, Z.F.; Briant, C.L.; Kumar, K.S.

    1999-02-01

    The electrochemical, galvanic, and mechanical responses of grade 2 titanium in 6% sodium chloride (NaCl) solution at different temperatures were investigated. The initial corrosion potential and cathodic reaction rate increased with decreasing pH and increasing temperature. The initial corrosion potential changed when titanium was coupled with other metals. Naval brass and alloy 600 (UNS N06600) anodically polarized titanium, while zinc and aluminum caused titanium to become a cathode. HY80 steel (UNS K31820), type 316 stainless steel ([SS] UNS S31600), and Monel K500 (UNS N05500, a copper-nickel alloy), polarized titanium anodically or cathodically depending upon temperature and pH. Hydrides formed on the titanium surface at potentials < {approximately} {minus}600 mV{sub SCE} to {minus}700 mV{sub SCE}. Zinc at all temperatures and HY80 at high temperatures caused hydride formation in titanium when coupled galvanically with titanium. Mechanical tests showed an {approx} 10% decrease in ductility under prior and dynamic hydrogen charging conditions.

  16. Study on kinetics of cathodic reduction of dissolved oxygen in 3.5% sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Li, Yongjuan; Zhang, Dun; Wu, Jiajia

    2010-09-01

    Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is -0.85 V vs Ag/AgCl, 3 molL-1 KCl. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.

  17. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  18. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    PubMed

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast. PMID:26753521

  19. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops.

    PubMed

    Genc, Yusuf; Oldach, Klaus; Taylor, Julian; Lyons, Graham H

    2016-04-01

    The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp. durum with and without the Na(+) exclusion gene Nax2) differing in Na(+) exclusion were grown in a potting mix under sodicity (Na(+) humate) and salinity (NaCl), and water use, leaf nutrient profiles and yield were determined. Under sodicity, Na(+)-excluding bread wheat and durum wheat with the Nax2 gene had higher yield than Na(+)-accumulating barley and durum wheat without the Nax2 gene. However, under salinity, despite a 100-fold difference in leaf Na(+), all species yielded similarly, indicating that osmotic stress negated the benefits of Na(+) exclusion. In conclusion, Na(+) exclusion can be an effective mechanism for sodicity tolerance, while osmoregulation and tissue tolerance to Na(+) and/or Cl(-) should be the main foci for further improvement of salinity tolerance in cereals. This represents a paradigm shift for breeding cereals with salinity tolerance. PMID:26607560

  20. Effect of sodium chloride on hydration structures of PMEA and P(MPC-r-BMA).

    PubMed

    Morita, Shigeaki; Tanaka, Masaru

    2014-09-01

    The hydration structures of two different types of biomaterials, i.e., poly(2-methoxyethyl acrylate) (PMEA) and a random copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (P(MPC-r-BMA)), were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The effects of the addition of sodium chloride to liquid water in contact with the surfaces of the polymer films were examined. The neutral polymer of PMEA was easily dehydrated by NaCl addition, whereas the zwitterionic polymer of P(MPC-r-BMA) was hardly dehydrated. More specifically, nonfreezing water having a strong interaction with the PMEA chain and freezing bound water having an intermediate interaction were hardly dehydrated by contacting with normal saline solution, whereas freezing water having a weak interaction with the PMEA chain was readily dehydrated. In contrast, freezing water in P(MPC-r-BMA) is exchanged for the saline solution contacting with the material surface without dehydration. PMID:25133748

  1. Experimental evaluation of the performance of the sodium metal chloride battery below usual operating temperatures

    NASA Astrophysics Data System (ADS)

    Gerovasili, Eirini; May, Johanna F.; Sauer, Dirk Uwe

    2014-04-01

    The high operating temperature of the sodium metal chloride battery limits the possible applications of this storage technology. In this study, the performance of a 3.65 kWh (80 Ah, 48 V) battery at temperatures as low as 240 °C is measured and the efficiency at different discharge currents, cycling frequencies and operating temperatures is examined. The total available capacity of a 40 Ah string at 240 °C when discharging with 0.1C is found to be just 1 Ah smaller compared to 275 °C, which is the nominal operating temperature of the battery. However it is shown that low temperatures have a big impact on the charge duration. Starting from 20% SOC (state-of-charge) the duration of charging until the fulfillment of the end-of-charge criterion at 240 °C is 25 h with the quickest charging regime (0.25C, 2.7 V/cell) whereas until 90% SOC 7.6 h are required. At a limited SOC operation window from 20% to 90% the total daily efficiency of the 3.65 kWh battery is higher at 240 °C compared to 275 °C and increases from 69% if one cycle is performed daily with 0.175C discharge current to 81% for two cycles with the same discharge rate.

  2. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-01

    The sodium-nickel chloride (ZEBRA) battery is operated at relatively high temperature (250-350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β″-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150 °C.

  3. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    Ma, Ning; Li, Chunsheng; Dong, Xiaoyan; Wang, Dongfeng; Xu, Ying

    2015-08-01

    Application of growing microorganisms for cadmium removal is restricted by high cadmium toxicity. The effects of sodium chloride (NaCl) preincubation on the cadmium tolerance and removal ability of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation improved the biomass of P. kudriavzevii under cadmium stress, while no obvious effect was observed in S. cerevisiae. The improved activities of peroxidase (POD) and catalase (CAT) after NaCl preincubation might be an important reason for the decrease of the reactive oxygen species (ROS) accumulation, cell death, and oxidative damage of proteins and lipids induced by cadmium, contributing to the improvement of the yeast growth. The cadmium bioaccumulation capacity of P. kudriavzevii decreased significantly after NaCl preincubation, which played an important role in mitigating the cadmium toxicity to the yeast. The cadmium removal rate of P. kudriavzevii was obviously higher than S. cerevisiae and was significantly enhanced after NaCl preincubation. The results suggested that NaCl preincubation improved the cadmium tolerance and removal ability of P. kudriavzevii. PMID:25721585

  4. Insight into fractal self-assembly of poly(diallyldimethylammonium chloride)/sodium carboxymethyl cellulose polyelectrolyte complex nanoparticles.

    PubMed

    Zhao, Qiang; An, Quanfu; Qian, Jinwen; Wang, Xuesan; Zhou, Yang

    2011-12-22

    Poly(diallyldimethylammonium chloride)-sodium carboxymethyl cellulose polyelectrolyte complexes (PDDA-CMCNa PECs) solids were prepared and dispersed in NaOH aqueous solution. Self-assembly of PECs nanoparticles during the solvent evaporation was examined by field emission electron microscopy (FESEM), atomic force microscopy (AFM), and fractal dimension analysis. It was found that tree-shaped fractal patterns formed after the solvent (water) was dried at ambient temperatures, and the fractal pattern is composed of needle-shaped PEC aggregate (PECA) nanoparticles. Time-dependent FESEM observation revealed that the fractal pattern started with the formation of initial nucleon and it is growing, during which the diffusion limited aggregation (DLA) mechanism revealed and made the pattern branched. Physical insight into the DLA mechanism was discussed in detail. Effects of PEC concentrations, PEC compositions, solvent evaporation temperatures, pH of PEC dispersion, and chemical structures of PECs on the formation of self-assembled fractal pattern were studied. Generally, it was found that the morphologies, charge characters of PEC particles, and the solvent evaporation conditions play important roles during the fractal self-assembly process. PMID:22098094

  5. Interactions and aggregations in aqueous and brine solutions of poly(diallydimethylammonium chloride)/sodium bis(2-ethylhexyl) sulfosuccinate.

    PubMed

    Zheng, Peizhu; An, Xueqin; Peng, Xuhong; Shen, Weiguo

    2009-10-15

    The interactions between the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and the polycation poly(diallydimethylammonium chloride) (PDDAC), the aggregations of AOT and PDDAC-bound AOT in PDDAC/AOT aqueous solutions, and the influence of salt on the interactions and aggregations have been studied by isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and negative staining transmission electron microscopy (TEM). The adsorptions of AOT onto PDDAC and the formations of PDDAC-bound AOT micelles, free AOT micelles, and AOT vesicles were examined, and the corresponding critical concentrations were determined. Combining calculations of thermodynamic parameters with the above three experimental techniques, it was shown that the micellization of free AOT is driven by entropy gain, while the adsorption of AOT onto PDDAC and the micellization of PDDAC-bound AOT are driven by both enthalpy and entropy. It was also found that addition of salt enhances the binding of AOT onto PDDAC through the ion exchange and favors the formations of PDDAC/AOT micelles, free AOT micelles, and free AOT vesicles but prevents the transition of PDDAC/AOT micelles to the vesicles. Thermodynamic analysis suggested that the adsorption of AOT onto PDDAC and the micellization of PDDAC/AOT in PDDAC/AOT brine solutions are different in mechanism compared with that in corresponding aqueous solutions. PMID:19772316

  6. Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates

    PubMed Central

    Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph

    2012-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation. PMID:22590639

  7. Periarteritis nodosa in rats treated with chronic excess sodium chloride (NaCl) after X-irradiation

    SciTech Connect

    Watanabe, H.; Nakagawa, Y.; Ito, A.; Kajihara, H.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically, these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions, elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.

  8. Periarteritis nodosa in rats treated with chronic excess sodium chlorides (NaCl) after X-irradiation

    SciTech Connect

    Watanabe, H.; Nakagawa, Y.; Ito, A.; Kajihara, H.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions, elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.

  9. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    SciTech Connect

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole; Brown, Richard; Forster, Sam; Spinks, Jenny; Toms, Nick; Gibson, G. Gordon; Lyon, Jon; Plant, Nick

    2009-02-15

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcript (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism.

  10. Sensory evaluation of sodium chloride-containing water-in-oil emulsions.

    PubMed

    Rietberg, Matthew R; Rousseau, Dérick; Duizer, Lisa

    2012-04-25

    The sensory perception of water-in-oil emulsions containing a saline-dispersed aqueous phase was investigated. Manipulating saltiness perception was achieved by varying the mass fraction aqueous phase (MFAP), initial salt load, and surfactant concentration [(polyglycerol polyricinoleate (PgPr)] of the emulsions, with formulations based on a central composite design. Saltiness and emulsion thickness were evaluated using a trained sensory panel, and collected data were analyzed using response surface analysis. Emulsion MFAP was the most important factor correlated with increased salt taste intensity. Emulsifier concentration and interactions between NaCl and PgPr had only minor effects. Emulsions more prone to destabilization were perceived as saltier irrespective of their initial salt load. The knowledge gained from this study provides a powerful tool for the development of novel sodium-reduced liquid-processed foods. PMID:22463684

  11. Bromate peak distortion in ion chromatography in samples containing high chloride concentrations.

    PubMed

    Pappoe, Michael K; Naeeni, Mohammad Hosein; Lucy, Charles A

    2016-04-29

    In this study, the effect of column overload of the matrix ion, chloride, on the elution peak profiles of trace bromate is investigated. The resultant peak profiles of chloride and bromate are explained on the basis of competitive Langmuir isotherms. The Thermo IonPac AS9-HC, AS19 and AS23 columns are recommended by the manufacturer for bromate (a carcinogen) analysis. Under trace conditions, these columns provide baseline resolution of bromate from matrix ions such as chloride (Rs=2.9, 3.3 and 3.2, respectively for the three columns). Injection of 10-300mM chloride with both hydroxide and carbonate eluents resulted in overload on these columns. On the basis of competitive Langmuir isotherms, a deficiency in the local concentration of the more retained eluent in addition to analyte overload leads to fronting of the overloaded analyte peak. The peak asymmetries (B/A10%) for chloride changed from 1.0 (Gaussian) under trace conditions to 0.7 (fronting) at 300mM Cl(-) for IonPac AS9-HC, 0.9-0.6 for AS19 and 0.8-0.5, for AS23, respectively. The 10mM bromate peak is initially near Gaussian (B/A10%=0.9) but becomes increasingly distorted and pulled back into the chloride peak as the concentration of chloride increased. Increasing the eluent strength reduced the pull-back effect on bromate and fronting in chloride in all cases. PMID:27046004

  12. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    PubMed

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  13. Predicting fluoride and chloride concentrations of hydrothermal fluids

    SciTech Connect

    Zhu, Chen )

    1992-01-01

    A new method of predicting F and Cl concentrations of hydrothermal fluids has been developed, which can be used to study water-rock interactions in a variety of hydrothermal, metamorphic, and magnetic processes. This method is based on a comprehensive assessment of thermodynamic partitioning of F-Cl-OH between minerals and hydrothermal fluids. The calculation method is explained. Fluid compositions obtained by applying this method to amphibolites from Hunts Brook Fault Zone, Connecticut, and to Santa Rita porphyry copper deposits, New Mexico, are similar to results obtained by metasomatism modeling and from fluid inclusion studies.

  14. Storage of platelets in additive solutions: a new method for storage using sodium chloride solution.

    PubMed

    Gulliksson, H; Sallander, S; Pedajas, I; Christenson, M; Wiechel, B

    1992-06-01

    The in vitro effect of 6-day storage of platelets prepared from 6 pooled buffy coat (BC) units and stored in a platelet storage medium containing approximately 40 percent CPD-plasma and 60 percent platelet additive solution (PAS) was evaluated. PAS is composed of sodium and potassium chloride, citrate, phosphate, and mannitol. The total count of platelets per pooled unit included in the in vitro studies (n = 25) was 376 +/- 59 x 10(9) (mean +/- SD). The present study included three steps. 1. Evaluation of platelet storage in one (n = 7) and two (n = 6) 1000-mL polyolefin containers using PAS. During storage in one container, significantly lower values were found for pH, pO2, glucose, ATP, and the ratio of ATP to AMP+ADP+ATP. The values for mean platelet volume, pCO2, lactate, and extracellular adenylate kinase activity were significantly higher. These results indicate that storage in only one polyolefin container is not appropriate for maintaining satisfactory platelet quality. During storage in two polyolefin containers, a remarkably decreased lactate production (0.07 +/- 0.02 mmol/day/10(11) platelets) was noted. 2. PAS was substituted for saline during 6-day storage in two 1000-mL polyolefin containers (n = 12). The composition of the platelet preparations was the same in all other respects. Similar in vitro results were noted with PAS and saline, which indicated that PAS has no specific effect on the storage of platelets different from that of saline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1626346

  15. Structure and corrosive wear resistance of plasma-nitrided alloy steels in 3% sodium chloride solutions

    SciTech Connect

    Lee, C.K.; Shih, H.C. . Dept. of Materials Science and Engineering)

    1994-11-01

    Type 304 stainless steel (SS), type 410 SS, and type 4140 low-alloy steel were plasma nitrided in a commercial furnace at 560 C for 50 h. Microstructure and the composition of the nitrided layer were analyzed. The resistance to corrosive wear was evaluated by a tribotest in which the specimen was held under potentiostatic control at anodic and cathodic potentials in 3% sodium chloride solution (pH 6.8). Electrochemical polarization measurements were made, and the surface morphology and composition after corrosive wear were examined. Wear rates at cathodic potentials were very low, but significant weight losses were observed as the applied potentials were increased anodically. The coefficient of friction varied in a fashion similar to the wear rate. For the untreated alloys, the magnitude of the wear rate and coefficient of friction decreased as follows: type 4140 alloy > type 41 SS > type 304 SS. For the plasma-nitrided alloys, the ranking was: type 304 SS > type 410 SS. type 4140 alloy. Plasma nitriding was shown to be beneficial to the corrosive wear resistance of type 4140 alloy, but an adverse effect was obtained for types 304 and 410 SS. These findings could be interpreted in terms of the electrochemical polarization characteristics of a static specimen and were strongly related to the subtleties of the nitrided microstructures. The stable chromium nitride (CrN) segregated in the [gamma]-iron (type 304 SS) and [alpha]-Fe (type 41 SS) matrices and resulted in a pitting and spalling type of corrosive wear mechanism. The phases [epsilon]-(Fe, Cr)[sub 2-3]N and [gamma]-(Fe, Cr)[sub 4]N enriched in the surface layer of nitrided type 4140 alloy provided excellent corrosive wear resistance.

  16. Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009

    USGS Publications Warehouse

    Conrads, Paul A.; Roehl, Edwin A., Jr.; Davie, Steven R.

    2011-01-01

    The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on

  17. [The use of potassium-magnesium-sodium chloride-sulfate mineral water and direct current (experimental research)].

    PubMed

    Mishchuk, A V; Gereliuk, I P

    1989-01-01

    To evaluate a therapeutic potential of a test treatment of chronic hepatitis with mineral water followed by hepatic galvanization, the authors have conducted an experimental study on 38 rats. The animals were divided into 4 experimental and 4 control groups. Experimental animals of groups 1 and 2 underwent galvanization of the liver 1 hour after the intake of mineral water in combination with 22Na-labelled sodium chloride, of group 3 in combination with 35S-labelled sodium sulfate, of group 4--with labelled rubidium. Control animals were treated according to the same schedule but galvanization. The study of the hepatic tissue of the sacrificed rats evidenced that oral administration of mineral water followed in an hour by hepatic galvanization results in a significant elevation of hepatic content of labelled sulphur and rubidium, whereas the level of labelled sodium remained unchanged. The data obtained by the authors need to be confirmed in further clinical trials. PMID:2800438

  18. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium

  19. Bromination of aromatic compounds by residual bromide in sodium chloride matrix modifier salt during heated headspace GC/MS analysis.

    PubMed

    Fine, Dennis D; Ko, Saebom; Huling, Scott

    2013-12-15

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. PMID:24209304

  20. Alloy 22 Localized Corrosion Susceptibility In Aqueous Solutions Of Chloride And Nitrate Salts Of Sodium And Potassium At 110 - 150?C

    SciTech Connect

    Felker, S; Hailey, P D; Lian, T; Staggs, K J; Gdowski, G E

    2006-01-17

    Alloy 22 (a nickel-chromium-molybdenum-tungsten alloy) is being investigated for use as the outer barrier of waste containers for a high-level nuclear waste repository in the thick unsaturated zone at Yucca Mountain, Nevada. Experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C (some limited testing was also conducted at 90 C). Electrochemical tests were run in neutral salt solutions without acid addition and others were run in salt solutions with an initial hydrogen ion concentration of 10{sup -4} molal. The Alloy 22 specimens were weld prism specimens and de-aeration was performed with nitrogen gas. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. At 110 C, aqueous solutions can have dissolved chloride in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. However, the exact upper temperature limit is unknown and no electrochemical testing was done at these temperatures. Limited comparison between 8 m Cl aqueous solutions of Na + K on the one hand and Ca on the other indicated similar electrochemical E{sub crit} values and similar morphology of attack

  1. Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency.

    PubMed

    Garzon-Sanabria, Andrea J; Ramirez-Caballero, Silvia S; Moss, Francesca E P; Nikolov, Zivko L

    2013-09-01

    This study evaluates the effect of polymer molecular weight and charge density, algogenic organic matter (AOM), and salt concentration on harvesting efficiency of marine microalgae. Aluminum chloride (AlCl3), chitosan, and five synthetic cationic polymers of different molecular weights and charge density levels were used as flocculation agents. Polymer flocculation of marine microalgae was most efficient when using the highest charge density polymer (FO4990). The flocculant dosage irrespectively of the agent chemistry and charge density was affected by the amount of AOM secreted into the culture media. The presence of AOM increased the amount of required flocculant 7-fold when using synthetic cationic polymers; 10-fold with chitosan; and ~3-fold with AlCl3. Salt concentration of 5 or 35 g/L NaCl alone did not significantly affect removal efficiency, indicating that AOM were the main cause for the increased flocculant dosage requirement. The synthetic cationic polymer (FO4990) was the least expensive flocculation agent. PMID:23796606

  2. Potential of salt-accumulating and salt-secreting halophytic plants for recycling sodium chloride in human urine in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kudenko, Yu. A.; Gribovskaya, I. V.; Shklavtsova, E. S.; Balnokin, Yu. V.; Popova, L. G.; Myasoedov, N. A.; Gros, J.-B.; Lasseur, Ch.

    2011-07-01

    This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop's solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m 2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m 2 vs. 41 g/m 2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.

  3. Chloride Test

    MedlinePlus

    ... Addison disease, or increased salt intake. If both chloride and sodium levels are high in a person on a ... anything else I should know? Drugs that affect sodium blood levels will also cause changes in chloride. In addition, swallowing large amounts of baking soda ...

  4. Effects of pH, sodium chloride, and curing salt on the infectivity of Toxoplasma gondii tissue cysts.

    PubMed

    Pott, S; Koethe, M; Bangoura, B; Zöller, B; Daugschies, A; Straubinger, R K; Fehlhaber, K; Ludewig, M

    2013-06-01

    Toxoplasma gondii is one of the most common zoonotic parasites in the world. The parasite causes no or mild symptoms in immunocompetent humans. However, a high potential hazard exists for seronegative pregnant women and immunocompromised patients. The consumption of meat containing tissue cysts or oocyst-contaminated vegetables and fruits or the handling of cat feces poses a high risk of infection with T. gondii. It is known that raw minced meat, raw fresh sausages, and locally produced raw meat products are possible causes of T. gondii infection. The infectivity of T. gondii tissue cysts in meat products depends, among other factors, on the pH and the salt concentration. Therefore, the impact of these two factors on the tissue cysts was examined. For this purpose, dissected musculature and brain from experimentally infected mice (donor mice) were placed in a cell culture medium (RPMI 1640). The medium was adjusted to different pH values (pH 5, 6, and 7) with lactic acid and to different salt concentrations (2.0, 2.5, and 3.0%) with sodium chloride (NaCl) or nitrite-enriched curing salt (NCS) for the various tests. After storage at 4°C for different time periods, the materials were fed to bioassay mice. Later, the brains were examined for presence of T. gondii to assess the infectivity. The data show that T. gondii tissue cysts have a high pH tolerance. Cysts were infectious in the muscle for up to 26 days (pH 5). In contrast to their tolerance to pH, cysts were very sensitive to salt. Muscle cysts survived at an NaCl concentration of up to 2.0% only, and for no longer than 8 days. At NaCl concentrations of 2.5 and 3.0%, the cysts lost their infectivity after 1 day. When NCS instead of NaCl was used under the same conditions, T. gondii muscle cysts retained infectivity for only 4 days at 2.0%. Consequently, NCS (NaCl plus 0.5% nitrite) has a stronger effect on T. gondii cysts than does common table salt. Sausages produced with low NaCl concentration and short

  5. Intake and urinary excretion of sodium chloride under varying conditions of effort and environment heat

    NASA Technical Reports Server (NTRS)

    Zohar, E.; Adar, R.; Tennenbaum, J.; Kesten, M.

    1982-01-01

    Intake and urinary excretion of sodium were investigated in a group of young, healthy and acclimated men. The sodium excretions of workers and of machinists in the engine rooms of a ship were also investigated.

  6. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development.

    PubMed

    Post van der Burg, Max; Tangen, Brian A

    2015-03-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers. PMID

  7. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films.

    PubMed

    Liu, Kai; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Wang, Huangwei

    2013-07-01

    The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials. PMID:23750871

  8. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  9. Elasticity and phase transitions of stishovite and sodium chloride at high pressure

    NASA Astrophysics Data System (ADS)

    Lakshtanov, Dmitry Leonidovich

    2007-12-01

    Knowledge of elastic properties of the phases constituting the Earth's mantle are of extreme importance for determination of Earth's chemical composition, the distribution of phases and the processes that result in such distribution. Data on elasticity of these constituent phases are critical not only for interpreting seismic observations, but are also essential for geochemical and geodynamical modeling. This dissertation is mainly devoted to determination of the elasticity and stability of stishovite, the high-pressure silica polymorph, as a major constituent of the MORB layer of subducting lithospheric slabs. These thin (˜10km thick) layers subducted into the Earth mantle create regions of thermal, compositional and, hence, rheological heterogeneity. Being a key component of the mantle convection system, subducting slabs may counteract compositional stratification of the Earth by acting to remix differentiated lithospheric material. In addition, there has recently been great interest in subducting slabs as possible carriers of volatiles - mainly water - back to the lower mantle. Stishovite is likely the primary water-bearing phase. The elastic properties and thermodynamic stability of water-bearing stishovite, and the effect of other impurities on these properties, is the main focus of this work. An important related issue I addressed is the establishment of a self-consistent (absolute) equation of state for the B2 phase of sodium chloride (NaCl). NaCl is a commonly-used pressure transmitting medium in high-pressure devices. Accurate knowledge of the NaCl equation of state therefore reduces errors in pressure determination resulting from the use of the secondary pressure calibrants. In order to perform these tasks I used Brillouin scattering and Raman spectroscopy, combined with synchrotron x-ray diffraction at standard conditions, and at high pressures and temperatures in the diamond anvil cell. Experiments were performed in Merrill-Bassett and piston

  10. Chloride Concentrations in Ground Water in East and West Baton Rouge Parishes, Louisiana, 2004-05

    USGS Publications Warehouse

    Lovelace, John K.

    2007-01-01

    Increasing chloride concentrations are a threat to fresh ground-water sources in East Baton Rouge and West Baton Rouge Parishes, Louisiana. Large withdrawals at Baton Rouge have lowered water levels and altered flow patterns in most of the 10 aquifers that underlie the area. Prior to development, freshwater flowed southward to the Baton Rouge fault, an east-west trending growth fault that extends through Baton Rouge and across southeastern Louisiana. Aquifers south of the fault generally contain saltwater. Ground-water withdrawals north of the fault have created gradients favorable for the movement of saltwater from south of the fault into freshwater areas north of the fault. Water samples were collected from 152 wells during 2004-05 to document chloride concentrations in aquifers underlying East and West Baton Rouge Parishes. The background concentration for chloride in fresh ground water in the Baton Rouge area north of the Baton Rouge fault is generally less than 10 milligrams per liter. Chloride concentrations exceeded 10 milligrams per liter in one or more samples from wells north of the fault screened in the '600-foot', '1,000-foot', '1,200-foot', '1,500-foot', '1,700-foot', '2,000-foot', '2,400-foot', and '2,800-foot' sands. Comparison of the 2004-05 data with historical data indicated that chloride concentrations are increasing at wells in the '600-foot', '1,000-foot', '1,200-foot', '1,500-foot', '2,000-foot', '2,400-foot', and '2,800-foot' sands north of the Baton Rouge fault.

  11. Higher serum chloride concentrations are associated with acute kidney injury in unselected critically ill patients

    PubMed Central

    2013-01-01

    Background Chloride administration has been found to be harmful to the kidney in critically ill patients. However the association between plasma chloride concentration and renal function has never been investigated. Methods This was a retrospective study conducted in a tertiary 24-bed intensive care unit from September 2010 to November 2012. Data on serum chloride for each patient during their ICU stay were abstracted from electronic database. Cl0 referred to the initial chloride on ICU entry, Clmax, Clmin and Clmean referred to the maximum, minimum and mean chloride values before the onset of AKI, respectively. AKI was defined according to the conventional AKIN criteria. Univariate and multivariable analysis were performed to examine the association of chloride and AKI development. Results A total of 1221 patients were included into analysis during study period. Three hundred and fifty-seven patients (29.2%) developed AKI. Clmax was significantly higher in AKI than in non-AKI group (111.8 ± 8.1 vs 107.9 ±5.4 mmol/l; p < 0.001); Cl0 was not significantly different between AKI and non-AKI patients; Clmean was significantly higher in AKI than non-AKI (104.3 ±5.8 vs 103.4 ± 4.5; p = 0.0047) patients. Clmax remained to be associated with AKI in multivariable analysis (OR: 1.10, 95% CI: 1.08-1.13). Conclusion Chloride overload as represented by Clmean and Clmax is significantly associated with the development of AKI. PMID:24164963

  12. Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment.

    PubMed

    Miller, D G; Brayton, S V; Boyles, W T

    2001-01-01

    Current chemical oxygen demand (COD) analyses generate wastes containing hexavalent and trivalent chromium, mercury, and silver. Waste disposal is difficult, expensive, and poses environmental hazards. A new COD test is proposed that eliminates these metals and shortens analysis time, where trivalent manganese oxidant replaces hexavalent chromium (dichromate). A silver catalyst is not required. Optional pretreatment removes chloride via oxidation to chlorine using sodium bismuthate, eliminating the need for mercury. Sample aqueous and solid components are separated for chloride removal, then recombined for total COD measurement. Soluble and nonsoluble COD can be determined separately. Digestion at 150 degrees C is complete in 1 hour. Results are determined by titration or by spectrophotometric reading. Test wastes contain none of the metals regulated for disposal under the Resource Conservation and Recovery Act. Results are shown for selected organic compounds and various wastewaters. Statistical comparisons are made with dichromate COD and biochemical oxygen demand (BOD5) test values. PMID:11558305

  13. The unusual importance of activity coefficients for micelle solutions illustrated by an osmometry study of aqueous sodium decanoate and aqueous sodium decanoate + sodium chloride solutions.

    PubMed

    Sharma, Poonam; MacNeil, Jennifer A; Bowles, Justine; Leaist, Derek G

    2011-12-28

    Freezing-point and vapor-pressure osmometry data are reported for aqueous sodium decanoate (NaD) solutions and aqueous NaD + NaCl solutions. The derived osmotic coefficients are analyzed with a mass-action model based on the micelle formation reaction qNa(+) + nD(-) = (Na(q)D(n))(q-n) and Guggenheim equations for the micelle and ionic activity coefficients. Stoichiometric activity coefficients of the NaD and NaCl components and the equilibrium constant for micelle formation are evaluated. Illustrating the remarkable but not widely appreciated nonideal behavior of ionic surfactant solutions, the micelle activity coefficient drops to astonishingly low values, below 10(-7) (relative to unity for ideal solutions). The activity coefficients of the Na(+) and D(-) ions, raised to large powers of q and n, reduce calculated extents of micelle formation by up to 15 orders of magnitude. Activity coefficients, frequently omitted from the Gibbs equation, are found to increase the calculated surface excess concentration of NaD by up to an order of magnitude. Inflection points in the extent of micelle formation, used to calculate critical micelle concentration (cmc) lowering caused by added salt, provide unexpected thermodynamic evidence for the elusive second cmc. PMID:22037556

  14. Measurement of chloride-ion concentration with long-period grating technology

    NASA Astrophysics Data System (ADS)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2007-06-01

    A simple and low-cost long-period fiber grating (LPG) sensor suited for chloride-ion concentration measurement is presented. The LPG sensor is found to be sensitive to the refractive index of the medium around the cladding surface of the sensing grating, thus offering the prospect of development of practical sensors such as an ambient index sensor or a chemical concentration indicator with high stability and reliability. We measured chloride ions in a typical concrete sample immersed in salt water solutions with different weight concentrations ranging from 0% to 25%. Results show that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for the concentration of salt in water solution is estimated to be 0.6% and the limit of detection for chloride ions is about 0.04%. To further enhance its sensitivity for chloride concentrations, we coated a monolayer of colloidal gold nanoparticles as the active material on the grating surface of the LPG sensor. The operating principle of sensing is based on the sensitivity of localized surface plasmon resonance of self-assembled gold colloids on the grating section of the LPG. With this method, a factor of two increase in the sensitivity of detecting chemical solution concentrations was obtained. The advantages of this type of fiber-optic sensor are that it is compact, relatively simple to construct and easy to use. Moreover, the sensor has the potential capability for on-site, in vivo and remote sensing, and it has potential use as a disposable sensor.

  15. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. PMID:26994581

  16. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese.

    PubMed

    Dugat-Bony, E; Sarthou, A-S; Perello, M-C; de Revel, G; Bonnarme, P; Helinck, S

    2016-04-01

    Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content. PMID:26852809

  17. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. PMID:25910634

  18. Conductivity measures coupled with treatment with ion-exchange resin for the assessment of sodium concentration in physiological fluids: analyses on artificial solutions

    NASA Astrophysics Data System (ADS)

    Tura, A.; Sbrignadello, S.; Mambelli, E.; Ravazzani, P.; Santoro, A.; Pacini, G.

    2013-09-01

    In humans, sodium is essential for the regulation of blood volume and pressure. During hemodialysis, sodium measurement is important to preserve the patient from hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity measured again. On average, the difference ɛ in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. With treatment with the resin, it was 9.9%, only. We conclude that ion-exchange resin treatment coupled with conductivity measures may be a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  19. Chloride in diet

    MedlinePlus

    ... found in table salt or sea salt as sodium chloride. It is also found in many vegetables. Foods ... Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. ...

  20. High dietary sodium chloride causes further protein loss during head-down tilt bed rest (HDBR)

    NASA Astrophysics Data System (ADS)

    Buehlmeier, Judith; Frings-Meuthen, Petra; Baecker, Natalie; Stehle, Peter; Heer, Martina

    Human spaceflight is associated with a loss of body protein most likely caused by muscle degradation. Additionally astronauts tend towards a high dietary intake of sodium chloride (NaCl), which has recently been shown to induce low grade metabolic acidosis (Frings-Meuthen et al. JBMR, Epub 2007). In several patterns, e.g. chronical renal failure, metabolic acidosis is associated with protein catabolism. We therefore hypothesized that high dietary intake of NaCl enforces protein losses in HDBR, a model for physiological changes in microgravity (µG). Eight healthy male subjects (mean age 26.25 ± 3.5; mean body weight: 78.5 ± 4.1 kg) participated in a 14-day bed rest study in the metabolic ward of the DLR - Institute of Aerospace Medicine, Cologne, Germany. The study was carried out in a cross over design, consisting of two phases, each lasting 22 days (5 days adaptation, 14 days 6° HDBR and 3 days recovery). Both study phases were identical with respect to environmental conditions and study protocol. Subjects received an individually tailored, weight-maintaining diet containing 1.3 g protein/kg/day. The diet was identical in both study phases with the exception of NaClintake: Every subject received a low NaCl diet (0.7 mmol/kg/day) in one phase and a high NaCl diet (7.7 mmol/kg/day) in another one. Blood gas for analysis of acid-base balance was implemented at days 4 and 5 of adaptation, days 2, 5, 7, 10, 12, 14 of HDBR and days 2, 3 of recovery. Continuous urine collection started on the first day in the metabolic ward to analyze nitrogen excretion. Nitrogen balance was calculated from the difference between protein intake and urinary nitrogen excretion, determined by use of chemiluminescence (Grimble et al. JPEN, 1988). Plasma pH did not change significantly (p=0.285), but plasma bicarbonate and base excess decreased (p=0.0175; p=0.0093) with high NaCl intake in HDBR compared to the low NaCl diet. Nitrogen balance in HDBR was negative, as expected in

  1. Role of lipid composition and lipid peroxidation in the sensitivity of fungal plant pathogens to aluminum chloride and sodium metabisulfite.

    PubMed

    Avis, Tyler J; Michaud, Mélanie; Tweddell, Russell J

    2007-05-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  2. Nucleation and scattering properties of ice cloud due to seeding of sodium chloride as aqueous solution and dust

    NASA Astrophysics Data System (ADS)

    Paul, Sahana; Biswas, L. N.; De, U. K.; Goswami, K.

    Sodium chloride in three forms, as aqueous solution and as dust of two size ranges are seeded in a cold room for heterogeneous ice nucleation in the temperature range between -24 °C and 0 °C. Maximum nucleation for all the three seeding agents occurs at -21.2 °C, which is the eutectic temperature of sodium chloride and water mixture. However, the number density of ice nucleation at the eutectic temperature is highest for the finer variety of dust and lowest for the solution. On the other hand, largest size crystals are produced by the solution and smallest size crystals are produced by the finer variety of dust, at the same temperature. It is observed that the optical properties of ice cloud depends more on the crystal size. The variation of scattering co-efficient, extinction co-efficient and optical depth with temperature are noted for the scattering angles of 30°, 36°, 144° and 150°. The duration of growth of crystals and the same for the subsequent falling down of crystals can be estimated from the time variation of scattering intensity. It is observed that ice crystals due to the solution take maximum time to grow and minimum time to fall down.

  3. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other

  4. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  5. Determination of nutrients in the presence of high chloride concentrations by column-switching ion chromatography.

    PubMed

    Bruno, P; Caselli, M; de Gennaro, G; De Tommaso, B; Lastella, G; Mastrolitti, S

    2003-06-27

    Determination of inorganic anions in waters of high salinity is one of the most difficult task in analytical chemistry. A simple column-switching method, based on an original chromatographic set-up, for the determination of nutrients (nitrate, nitrite and phosphate) in chloride rich aqueous matrices is presented. A pre-separation system (made of two in line pre-columns, Dionex AG9-HC 4 mm) connected to an analytical column (Dionex AS9-HC 4 mm) by a four way pneumatic valve, allows chloride to be eluted off into the waste and nutrients to be separated and detected by a conductimeter and/or a UV spectrophotometer. Neither chemical pre-treatment nor sample dilution are required; sample matrices presenting a large range of chloride concentrations can be investigated. Moreover by using this technology, automation for routine analysis, low analysis time and low costs can be achieved. LODs of 100, 300, 1000 microg/l for nitrate, nitrite and phosphate, respectively, have been obtained by spiking a synthetic sea water sample containing 20,000 mg/l of chloride and 3000 mg/l of sulphate. Analyte calibration curves of analytes are linear (r>0.99) in the range between the LODs and 60 mg/l. This method was applied to nutrients determination in sea water samples collected near a river outlet. PMID:12899303

  6. Sexual maturation and productivity of Japanese quail fed graded concentrations of mercuric chloride

    USGS Publications Warehouse

    Hill, E.F.; Shaffner, C.S.

    1976-01-01

    Japanese quail (Coturnix c. japonica) were fed 0, 2, 4, 8, 16, and 32 p.p.m. Hg as mercuric chloride (HgCl2) from the time of hatching up to the age of 1 year. None of the birds manifested any gross signs of mercury poisioning. Food consumption, growth rate, and weight maintenance were unaffected. Initial oviposition tended to occur at a younger age as dietary mercuric chloride increased, e.g., the median age at which egg laying began among hens fed 32 p.p.m. Hg was 6 days younger than for controls. The average rate of egg production was positively related to the concentration of mercuric chloride with the most pronounced differences between treatments occurring among young (less than 9-week-old) hens. Beyond 9 weeks of age production was more uniform among the treatments, but even after 1 year hens on 32 p.p.m. Hg were laying an average of 13.5% more eggs than controls. Rate of egg fertilization was generally depressed for all Hg-treatments above 4 p.p.m. Hatchability of fertilized eggs and eggshell thickness appeared unaffected by mercuric chloride.

  7. Effects of lead chloride on human erythrocyte membranes and on kinetic anion sulphate and glutathione concentrations.

    PubMed

    Gugliotta, Tiziana; De Luca, Grazia; Romano, Pietro; Rigano, Caterina; Scuteri, Adriana; Romano, Leonardo

    2012-12-01

    Our study concerns the effects of exposure to lead chloride on the morphology, K(+) efflux, SO(4)(-) influx and GSH levels of the human erythrocyte. Blood was collected in heparinized tubes and washed three times. The cells were suspended at 3% hematocrit and incubated for 1 h at 25°C in a medium containing increasing concentrations of lead chloride (0, 0.3, 0.5 and 1 μM). After incubation, the suspensions were centrifuged and the erythrocyte pellets were divided into three aliquots for testing. The results show: an increase in the permeability of erythrocytes treated with lead chloride with consequent damage and cellular death, especially in the presence of high concentrations; an increase in potassium ion efflux; alterations in the morphology and membrane structure of the red blood cells; and a decrease in sulphate uptake, due either to the oxidative effect of this compound on the band 3 protein, which loses its biological valence as a carrier of sulphate ions, or to a decrease in the ATP erythrocyte concentration. In conclusion, the exposure of erythrocytes to Pb(2+) ions leads to a reduction in the average lifetime of the erythrocytes and the subsequent development of anemia. These data are discussed in terms of the possible effect of lead on the reduction-oxidation systems of the cell. Oxidant agents, such as lead, are known to cross-link integral membrane proteins, leading to K/Cl-cotransport. The increased K(+) efflux affects the altered redox state. PMID:22941203

  8. The effect of initial tonicity on freeze/thaw injury to human red cells suspended in solutions of sodium chloride.

    PubMed

    Pegg, D E; Diaper, M P

    1991-02-01

    Human red blood cells, suspended in solutions of sodium chloride, have been frozen to temperatures between -2 and -14 degrees C and thawed, and the extent of hemolysis was measured. In parallel experiments, red cells were exposed to similar cycles of change in the composition of the suspending solution, but by dialysis at 21 degrees C. The tonicity of the saline in which the cells were initially suspended was varied between 0.6x isotonic and 4x isotonic; some samples from each experimental treatment were returned to isotonic saline before hemolysis was measured. It was found that the tonicity of the saline used to suspend the cells for the main body of the experiment affected the amount of hemolysis measured: raising the tonicity from 0.6x to 1x to 2x reduced hemolysis, both in the freezing and in the dialysis experiments, whereas raising the tonicity further to 4x reversed that trend. There was little difference between the freeze/thaw and the dialysis treatments for the cells suspended in 1x or 2x saline, whether or not the cells were returned to isotonic conditions. However, the cells suspended in 0.6x saline showed greater damage from freezing and thawing than from the comparable change in the composition of the solution, whether or not they were returned to isotonic conditions. Cells that were suspended in 4x saline and exposed to changes in salt concentration by dialysis showed less hemolysis when they were assayed in the 4x solution than cells that had received the comparable freezing/thaw treatment, but when the experiment included a return to isotonicity, the two treatments gave similar results. Returning the cells to isotonic saline had a negligible affect on the cells in 0.6x and 1x saline, but caused considerable hemolysis in the 2x and 4x samples, more so after dialysis than after freezing and thawing. We conclude that cells suspended in 0.6x and 4x saline behave differently from cells suspended in 1x and 2x saline and hence that cells suspended in a

  9. Double opposite end injection capillary electrophoresis with contactless conductometric detection for simultaneous determination of chloride, sodium and potassium in cystic fibrosis diagnosis.

    PubMed

    Kubáň, Petr; Greguš, Michal; Pokojová, Eva; Skřičková, Jana; Foret, František

    2014-09-01

    A novel approach for diagnosis of cystic fibrosis is presented. A simple and fast procedure to obtain sweat sample was developed. It consists of repeatedly wiping the skin of the forearm with deionized water moisturized cotton swab and extraction in 1mL of deionized water. Double opposite end injection capillary electrophoresis with contactless conductometric detection is used for the analysis of the extract. Chloride, sodium and potassium as the three target ions that participate in the ion transfer across the cellular membranes, and are affected by CF, are simultaneously determined in approximately 3min in a background electrolyte containing 20mM 2-(N-morpholino)ethanesulfonic acid, 20mM l-histidine and 2mM 18-crown-6. By using the target ion ratios rather than the concentrations of each individual ion combined with principal component analysis, the diagnosis of CF can be made more accurately and greatly reduce the number of false positive or negative results as is often the case when single ion (chloride) is analyzed. PMID:25039067

  10. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: implications for salinization of surface waters.

    PubMed

    Gillis, Patricia L

    2011-06-01

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L⁻¹ (reconstituted water, 100 mg CaCO₃ L⁻¹). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO₃ L⁻¹) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L⁻¹) than in reconstituted water (EC50 285 mg L⁻¹). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L⁻¹). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. PMID:21429642

  11. Subminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics

    PubMed Central

    Moen, Birgitte; Rudi, Knut; Bore, Erlend; Langsrud, Solveig

    2012-01-01

    Exposure of Escherichia coli to a subminimal inhibitory concentration (25% below MIC) of benzalkonium chloride (BC), an antimicrobial membrane-active agent commonly used in medical and food-processing environments, resulted in cell death and changes in cell morphology (filamentation). A small subpopulation (1–5% of the initial population) survived and regained similar morphology and growth rate as non-exposed cells. This subpopulation maintained tolerance to BC after serial transfers in medium without BC. To withstand BC during regrowth the cells up regulated a drug efflux associated gene (the acrB gene, member of the AcrAB-TolC efflux system) and changed expression of outer membrane porin genes (ompFW) and several genes involved in protecting the cell from the osmotic- and oxidative stress. Cells pre-exposed to osmotic- and oxidative stress (sodium chloride, salicylic acid and methyl viologen) showed higher tolerance to BC. A control and two selected isolates showing increased BC-tolerance after regrowth in BC was genome sequenced. No common point mutations were found in the BC- isolates but one point mutation in gene rpsA (Ribosomal protein S1) was observed in one of the isolates. The observed tolerance can therefore not solely be explained by the observed point mutation. The results indicate that there are several different mechanisms responsible for the regrowth of a tolerant subpopulation in BC, both BC-specific and general stress responses, and that sub-MIC of BC may select for phenotypic variants in a sensitive E. coli culture. PMID:22605968

  12. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. PMID:26608659

  13. Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride

    SciTech Connect

    Lee, Won-Ki; Cha, Sang-Ho; Kim, Ki-Hyun; Kim, Byung-Woo; Lee, Jong-Chan

    2009-12-15

    Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide){sub 20}-poly(propylene oxide){sub 70}-poly(ethylene oxide){sub 20} (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl{sub 4}.3H{sub 2}O) at 60 deg. C for 25 min. When sodium chloride (NaCl:HAuCl{sub 4} molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {l_brace}111{r_brace} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added. - Graphical abstract: Gold icosahedra were prepared by heating an aqueous solution of Pluronic P123 and HAuCl{sub 4}. When NaCl was added to this solution, gold nanoplates were produced.

  14. Estimates of evapotranspiration or effective moisture in Rocky Mountain watersheds from chloride ion concentrations in stream baseflow

    USGS Publications Warehouse

    Claassen, H.C.; Halm, D.R.

    1996-01-01

    The principle that atmospherically derived chloride is a conservative tracer in many watersheds can be used to calculate average annual evapotranspiration or effective moisture if estimates are available for (1) the average annual chloride input to the watershed, (2) the average annual precipitation, and (3) the baseflow chloride concentration are known. The method assumes that no long-term storage of chloride occurs and there is no lithologic source of chloride, or that such source releases only insignificant amounts to groundwater compared to the atmospheric source. National Atmospheric Deposition Program estimates of chloride wet deposition, watershed precipitation records or hyetal map estimates of precipitation input to watersheds, and a single sample of chloride concentration in base flow were used to calculate evapotranspiration for diverse Rocky Mountain watersheds. This estimate was compared to evapotranspiration determined by subtracting mean discharge from precipitation. Of the 19 watersheds used to test the method, 13 agreed within 10%, 2 appear to have not met the lithology criterion, 1 appears to have not met the flow criterion, and 1 neither criterion. The method's greatest strength is the minimal data requirements and its greatest weakness is that for some watersheds it may be difficult to obtain reliable estimates of precipitation and chloride deposition. If reliable discharge data are available, the method may be used to estimate watershed-average precipitation; this is especially useful in high-altitude mountain watersheds where little or no precipitation data are available.

  15. Modeling the effects of temperature, sodium chloride and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactive effects of heating temperature (55 – 65C), sodium chloride (NaCl, 0-2%), and green tea 60% polyphenol extract (GTPE, 0-3%) on heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags submerged in ...

  16. Comparison of rhodomine-WT and sodium chloride tracer transport in a 4th order arctic river

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.

    2012-12-01

    Conservative tracers are useful for tracking a parcel of water through a river reach and understanding tracer transport phenomena (i.e. advection, dispersion, and transient storage). Rhodomine- WT (RWT) and sodium chloride (NaCl) are two popular stream tracers. NaCl is considered to be conservative and relatively inexpensive, yet it cannot be detected at very low concentrations. On the other hand, RWT can be detected at very low concentrations (<0.1 ppb), but it is known to photo-degrade and sorb to organic materials. Previous work has compared these tracers with small-scale laboratory analyses and field experiments on small headwater streams. The limitations and advantages to each of these tracers, as applied to large river slug injections, are not clearly understood. This work seeks to answer the following questions: 1) Does RWT improve the tracer window of detection (time of tracer arrival to time of tracer non-detection), compared to NaCl? 2) Are there differences in the late-time tailing behavior of each tracer? More specifically, can we compare RWT and NaCl breakthrough curve tail shapes to understand processes contributing to late time solute transport (transient storage or sorption-desorption)? During the summer of 2012, combined slug additions of RWT and NaCl were injected into a 1.5-kilometer reach on the Kuparuk River, a 4th order tundra river underlain by continuous permafrost located on Alaska's North Slope. Fluorescence and electrical conductivity were continuously logged at the upstream and downstream ends of the reach. Preliminary results show that the window of detection is expanded when using RWT under both high and low flow conditions by 0.2 times the advective transport timescale. Tail shapes are more similar under higher discharge conditions and dissimilar under lower discharge conditions. For example, using an exponential regression model (c(t) = eat) to quantify tail shapes, at Q = 500 l/s the exponential coefficient ratio, aRWT:aNaCl, is 0

  17. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods. PMID:25577894

  18. Rapid changes in concentrations of essential elements in organs of rats exposed to methylmercury chloride and mercuric chloride as shown by simultaneous multielemental analysis.

    PubMed Central

    Muto, H; Shinada, M; Tokuta, K; Takizawa, Y

    1991-01-01

    An in vivo study of rats given a dominant lethal dose of methylmercury chloride (MMC) or mercuric chloride (HgCl2) was conducted to elucidate the rapid biotransformation of essential elements. The elements were measured by inductively coupled plasma atomic emission spectrometry. For the rat brain Zn concentrations were higher in the MMC group than in the HgCl2 and control groups. The highest Cu concentration was found in HgCl2 dosed rat liver. For the rat kidney the highest Zn concentration was seen in the MMC group. From principal component analysis on the time dependent behaviour of each element in rat organs, characteristics specific to Cu in the liver and kidney and Mn in the brain were found after exposure to HgCl2 and Ca and Zn in the brain after exposure to MMC. PMID:2064976

  19. The Effect of Ammonium Chloride Concentration in In Vitro Maturation Culture on Ovine Embryo Development

    PubMed Central

    Golchin, Ali; Asadpour, Reza; Roshangar, Leila; Jafari-Jozani, Raziallah

    2016-01-01

    Background: Ammonium is produced in culture medium due to amino acids degradation and has adverse effect on in vitro culture of embryo. In the current study, the purpose was to evaluate the effects of ammuniom chloride (AC) on in vitro oocyte maturation rate and early embryo development in the sheep and its effect on the expression of Bcl-2. Methods: In vitro maturation (IVM) was performed in the presence of various concentrations (0, 29, 88,132,176 μM/ml) of ammonium chloride (NH 4 CL) (AC). Meiotic maturation, embryonic development and expression of Bcl2 gene in Blastocyst cells were determined. The data were analyzed by one-way ANOVA and Tukey post HOC test, and values with p<0.05 were considered statistically significant. Results: The highest concentration (176 μM) of AC significantly decreased the rate of fully expanded cumulus cells 24 hr after IVM compared with the control group (p<0.05). Moreover, significantly lower rates of MII oocytes were found in the 176 μM AC group compared with the 29 μM AC group. The percentage of zygotes developing to blastocysts in 176 μM AC was lower than the other group. Also, supplementation of the oocyte maturation media with 176 μM AC decreased Bcl2 expression. Conclusion: Our results suggested that significant increase in IVM rate could be obtained with supplementation maturation medium with AC in a dose dependent manner. Increased AC concentration led to lower blastocyst rate under normal condition. However, regulation of pro–apoptotic (Bcl-2) gene did not change with different concentrations of AC supplementing. PMID:27478767

  20. Concentration of polyaromatic hydrocarbons in water to sodium dodecyl sulfate-gamma-alumina admicelle.

    PubMed

    Saitoh, Tohru; Matsushima, Seiichi; Hiraide, Masataka

    2005-04-01

    Polyaromatic hydrocarbons (PAHs) in water were concentrated into sodium dodecyl sulfate (SDS)-gamma-alumina and di-2-ethylhexyl sodium sulfosuccinate (Aerosol-OT, AOT)-gamma-alumina admicelles. The comparison of the binding constants (Kad[={adsorbed concentration of the solute (mol/g surfactant)}/{the concentration in the bulk aqueous phase (mol/ml)}] indicated almost the same extraction abilities of the both admicelles. However, better and more reproducible recovery was obtained in the concentration of PAHs into the SDS-gamma-alumina admicelle. PAHs in tobacco smoke that were trapped in water were successfully concentrated into SDS-gamma-alumina admicelle for the HPLC analysis. PMID:15830954

  1. Urinary kallikrein in the rat: stimulation with angiotensin infusion but depression with increasing sodium concentration.

    PubMed Central

    Mills, I H; Lee, G; Brownlee, A A

    1994-01-01

    1. The kallikrein response to angiotensin II infusion in the conscious rat was studied to compare it with the response in the dog. 2. Active kallikrein was measured by the aprotinin-suppressible esterase technique in 20 min periods. Angiotensin (5 x 10(-9) to 5 x 10(-2) micrograms min-1) was infused in 10 mM saline in period 10 (group A), or in 90 mM saline in periods 10-12 (group B). 3. In group A, no dose of angiotensin was antinatriuretic. Natriuresis and urinary sodium concentration were dose dependent. 4. Kallikrein excretion was dose dependent with angiotensin (P < 0.0001) and inversely correlated with urinary sodium concentration (P = 0.011). In natriuretic and non-natriuretic rats, kallikrein excretion after angiotensin was inversely correlated with urinary sodium concentration in the preceding period. 5. In group B, natriuresis and urinary sodium concentration were dose dependent. Kallikrein excretion in periods 10-13 was inversely correlated with urinary sodium concentration in the preceding period (P = 0.0001) and inversely correlated with urinary osmolality in periods 9-13. 6. Infusion of angiotensin II at 5 x 10(-6) micrograms min-1 led to antinatriuresis. 7. Formulae were derived which enabled the opposing effects of angiotensin and urinary sodium concentration on kallikrein excretion to be separated. In group A both these effects were statistically significant only in the natriuretic rats (natriuresis > 20 mumols per period). In group B the formulae showed a dose-dependent rise in kallikrein excretion, which was counteracted by the decrease in kallikrein excretion associated with the increasing urinary sodium concentration. 8. With infusions of 0.9% saline, kallikrein excretion in periods 10-13 was inversely correlated with urinary sodium concentration in the preceding period (P = 0.001). 9. The overall effect in the rat differs from that in the dog, where kallikrein increases with angiotensin natriuresis and dilution of the urine occurs. PMID

  2. EFFECT OF CHLORIDE AND SULFATE CONCENTRATION ON PROBABLITY BASED CORROSION CONTROL FOR LIQUID WASTE TANKS- PART IV

    SciTech Connect

    Hoffman, E.

    2012-08-23

    A series of cyclic potentiodynamic polarization tests was performed on samples of A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion susceptibility. Testing solutions were chosen to build off previous experimental results from FY07, FY08, FY09 and FY10 to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate. The FY11 results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits as well.

  3. Specific conductance and dissolved chloride concentrations of freshwater aquifers and streams in petroleum producing areas in Mississippi

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1982-01-01

    Specific conductance and dissolved chloride reconnasissance sampling was conducted in six oil-producing areas of Mississippi during periods of low streamflow in 1980 and 1981. Water samples were collected at 224 ground-water and 190 suface-water sites. Samples from 55 surface-water and 17 ground-water sites contained dissolved chloride concentrations in excess of 100 milligrams per liter. All data collected are presented in tables without interpretation. (USGS)

  4. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium–nickel chloride (ZEBRA) battery is operated at relatively high temperature (250–350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β"-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. Finally, the cells also exhibited stable cycling performance even at 150 °C.

  5. Densitometry and ultrasound velocimetry of hyaluronan solutions in water and in sodium chloride solution.

    PubMed

    Kargerová, A; Pekař, M

    2014-06-15

    The densities of hyaluronan solutions in water and 0.15M NaCl were measured in the temperature range from 25 to 50°C for the hyaluronan molecular weights from 10 to 1,750 kDa. The density increased linearly with concentration and decreased with temperature. The data were fitted by the equation describing the density as a linear function of concentration and a quadratic function of temperature. The effect of molecular weight was negligible and thus single equation was sufficient to describe all data. The apparent and partial specific volumes were calculated from the density data including their extrapolated values to infinite dilutions. The measurement of ultrasound speed in the same solutions under the same conditions enabled to calculate the compressibility and its dependence on concentration and temperature. The compressibility decreased with both the concentration and the temperature but the effect of the concentration was only slight mild. The compressibility was used to estimate the hydration numbers which slightly decreased with increasing temperature and concentration. The addition of NaCl changed only the numerical values of density and ultrasound velocity while not changing the character of their dependence on temperature and concentration. Measured and calculated data indicate that hyaluronan does not disturb the specific water structure in the studied concentration range and support the idea of the existence of water clusters or nanodroplets hydrating the hyaluronan chains in solution. PMID:24721101

  6. Sodium (Salt or Sodium Chloride)

    MedlinePlus

    ... reduce the salt in your diet and for information, strategies, and tools you need to lead a healthier ... reduce the salt in your diet and get information, strategies, and tools you need to lead a healthier ...

  7. High concentration aqueous sodium fluoride certified reference materials for forensic use certified by complexometric titration.

    PubMed

    Archer, Marcellé; Brits, Martin; Prevoo-Franzsen, Désirée; Quinn, Laura

    2015-04-01

    Sodium fluoride in concentrations of 1 to 2 % is used to prevent the formation of ethanol in blood and urine samples that are to be analysed for ethanol content. The majority of such samples form part of forensic investigations into alleged drunken driving. In South Africa, the laboratory performing the tests is required to prove that the sodium fluoride concentration in the blood samples is above 1 g/100 ml on receipt. This is done by using a fluoride ion-selective electrode calibrated with external aqueous solutions of sodium fluoride. The National Metrology Institute of South Africa (NMISA) prepares sodium fluoride solutions in concentrations from 0.3 to 3.0 g/100 ml. No other certified sodium fluoride reference solutions in these concentrations are available commercially. The sodium fluoride is certified by precipitation of the fluoride as lead chlorofluoride (PbClF) through the addition of a known excess of lead nitrate. The excess lead is back-titrated with ethylenediamine tetraacetic acid (EDTA) using a photometric electrode to detect the endpoint. Aqueous sodium fluoride solutions are prepared and the concentrations verified by the precipitation/back-titration method. This paper shows the application of a classical complexometric method to the certification of reference materials and describes the procedures for the preparation of the sodium fluoride solutions, verification of the concentrations, homogeneity and stability by primary titrimetry. It also briefly covers the calculation of uncertainty, the establishment of traceability and the quality control measures applied to ensure the quality of the certified reference materials (CRMs). PMID:25326884

  8. Contribution of concentration-sensitive sodium channels to the absorption of alveolar fluid in mice.

    PubMed

    Hagiwara, Teruki; Yoshida, Shigeru

    2016-09-01

    The concentration-sensitive sodium channel (Nac) is activated by an increase in the extracellular sodium concentration. Although the expression of Nac in alveolar type II epithelial cells (AEC II) has been reported previously, the physiological role of Nac in the lung has not been established. We characterized Nac expression and examined amiloride-insensitive sodium transport mediated by Nac in mouse lung. Immunofluorescence studies revealed that Nac did not colocalize with either aquaporin 5 or cystic fibrosis transmembrane conductance regulator, but partially colocalized with the epithelial sodium channel γ-subunit. Immunoelectron microscopy studies showed that Nac localized at the basolateral membrane of pulmonary microvascular endothelial cells (PMVECs). Nac mRNA and protein were expressed in PMVECs isolated from the lungs of mice. Image analysis indicated that sodium influx into the alveolar wall was dependent on increases in extracellular sodium concentration. We conclude that Nac expressed in PMVECs and AEC II contributes to the reabsorption of sodium via an amiloride-insensitive pathway during alveolar fluid clearance. PMID:27259686

  9. Analysis and methodology for measuring oxygen concentration in liquid sodium with a plugging meter

    SciTech Connect

    Nollet, B. K.; Hvasta, M.; Anderson, M.

    2012-07-01

    Oxygen concentration in liquid sodium is a critical measurement in assessing the potential for corrosion damage in sodium-cooled fast reactors (SFRs). There has been little recent work on sodium reactors and oxygen detection. Thus, the technical expertise dealing with oxygen measurements within sodium is no longer readily available in the U.S. Two methods of oxygen detection that have been investigated are the plugging meter and the galvanic cell. One of the overall goals of the Univ. of Wisconsin's sodium research program is to develop an affordable, reliable galvanic cell oxygen sensor. Accordingly, attention must first be dedicated to a well-known standard known as a plugging meter. Therefore, a sodium loop has been constructed on campus in effort to develop the plugging meter technique and gain experience working with liquid metal. The loop contains both a galvanic cell test section and a plugging meter test section. Consistent plugging results have been achieved below 20 [wppm], and a detailed process for achieving effective plugging has been developed. This paper will focus both on an accurate methodology to obtain oxygen concentrations from a plugging meter, and on how to easily control the oxygen concentration of sodium in a test loop. Details of the design, materials, manufacturing, and operation will be presented. Data interpretation will also be discussed, since a modern discussion of plugging data interpretation does not currently exist. (authors)

  10. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  11. Some aspects of the atmospheric corrosion of copper in the presence of sodium chloride

    SciTech Connect

    Strandberg, H.; Johansson, L.G.

    1998-04-01

    The effect of NaCl in combination with O{sub 3} and SO{sub 2} on the atmospheric corrosion of copper was investigated. Corrosion products formed after 4 weeks exposure were characterized qualitatively by X-ray diffraction and quantitatively by gravimetry and ion chromatography of leaching solutions. Studies of SO{sub 2} deposition and O{sub 3} consumption were performed using on-line gas analysis. Large amounts of cuprite (Cu{sub 2}O) formed in all environments at 70 and 90% relative humidity. The corrosive effect of salt was strong in pure humid air and in air containing O{sub 3} or SO{sub 2}. Corrosion rate was correlated to the amount of chloride applied to the surface and to humidity. In an atmosphere containing a combination of SO{sub 2} and O{sub 3} at 90% relative humidity, corrosion was rapid in the absence of NaCl. In this case, small additions of NaCl resulted in a marked decrease in corrosion rate. In the absence of SO{sub 2}, tenorite (CuO), nantokite (CuCl), clinoatacamite [Cu{sub 2}(OH){sub 3}Cl], and malachite [Cu{sub 2}(OH){sub 2}CO{sub 3}] were identified. In the presence of SO{sub 2}, brochantite [Cu{sub 4}(OH){sub 6}SO{sub 4}], soluble sulfate, and an unknown phase occurred, while no tenorite or malachite was formed. The combination of SO{sub 2} and O{sub 3} resulted in the formation of antlerite [Cu{sub 3}(OH){sub 4}SO{sub 4}] and Cu{sub 2.5}(OH){sub 3}SO{sub 4}{center_dot}2H{sub 2}O as well.

  12. Toxicity of dysprosium nano particles with glucose and sodium chloride on E. Coli

    NASA Astrophysics Data System (ADS)

    Anaya, N. M.; Solomon, F.; Oyanedel-Craver, V.

    2013-12-01

    Application of rare earth elements (REEs) such as, dysprosium nanoparticles (nDy), to the biomedical field are increasing due to their paramagnetic properties. Current applications of nDy in the biomedical field are in MRI screening and anti-cancer therapy. Environmental impacts of nDy released into the environment are unknown or poorly understood and are a concern due to the lack of appropriate recycling systems. The objective of this toxicological study is to assess the impacts of nDy at relevant environmental concentrations on Escherichia coli. A range of glucose concentrations were used to evaluate the impact under different aerobic metabolic stages when the bacteria are exposed to the nanoparticles. Two traditional techniques used to evaluate the physiological response of E. coli at different environmental conditions were dual staining with fluorescent dyes (Live/Dead BacLight viability kit) and respirometric assays. A high-through put array-based methodology was implemented to provide additional toxicity testing. Preliminary toxicology results for both traditional techniques showed a positive trend between nDy and carbon source concentrations. High concentrations of nDy (>5mg/L) in environments with high glucose concentration (>210mg/L) are more toxic to E. coli than environments with low glucose concentrations. On the other hand, Live/Dead experiments showed higher toxicity effect in comparison to the respirometric tests using the same exposure conditions, suggesting that even at high membrane disruption the bacteria can still performed some metabolic activity.

  13. Stability of octreotide acetate decreases in a sodium bisulfate concentration-dependent manner: compatibility study with morphine and metoclopramide injections

    PubMed Central

    Wada, Junko; Ohkubo, Jun; Nitta, Atsumi; Ikezaki, Tomoaki; Takeuchi, Miyako; Handa, Aya; Tanaka, Mai; Murakami, Nozomu; Kashii, Tatsuhiko; Kitazawa, Hidenori

    2015-01-01

    Purpose Sodium bisulfate is known to affect the stability of octreotide. However, the critical concentration of sodium bisulfate is not known. Therefore, we assessed the critical concentration of sodium bisulfate needed to preserve the stability of octreotide using actual drugs containing sodium bisulfate. Methods Although morphine and metoclopramide preparations are considered to be compatible with octreotide, some of their products are known to contain sodium bisulfate. Thus, octreotide was mixed with preparations of sodium bisulfate solutions at serial concentrations and morphine and metoclopramide preparations containing sodium bisulfate, and octreotide stability was then evaluated using high performance liquid chromatography. Results Octreotide concentrations decreased significantly at a sodium bisulfate concentration of 0.1 mg/mL or higher after 10 days when octreotide was mixed with sodium bisulfate solutions at various concentrations. A significant decrease in octreotide concentrations also occurred when it was mixed with morphine and metoclopramide preparations containing sodium bisulfate and stored for 10 days; however, slight decreases were observed in the mixture with both preparations and were within the clinically acceptable range for morphine preparations. Conclusions These results indicate that the residual rate of octreotide decreases with time in a sodium bisulfate concentration-dependent manner when octreotide was mixed with morphine or metoclopramide. However, this incompatibility may be clinically acceptable when the final sodium bisulfate concentration is lower than 0.1 mg/mL and the mixed solution is used within 7 days. PMID:25984298

  14. Modeling the effects of temperature, sodium chloride, and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in turkey.

    PubMed

    Juneja, Vijay K; Garcia-Dávila, Jimena; Lopez-Romero, Julio Cesar; Pena-Ramos, Etna Aida; Camou, Juan Pedro; Valenzuela-Melendres, Martin

    2014-10-01

    The interactive effects of heating temperature (55 to 65°C), sodium chloride (NaCl; 0 to 2%), and green tea 60% polyphenol extract (GTPE; 0 to 3%) on the heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags that were submerged in a circulating water bath set at 55, 57, 60, 63, and 65°C. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values were analyzed by second-order response surface regression for temperature, NaCl, and GTPE. The data indicated that all three factors interacted to affect the inactivation of the pathogen. The D-values for turkey with no NaCl or GTPE at 55, 57, 60, 63, and 65°C were 36.3, 20.8, 13.2, 4.1, and 2.9 min, respectively. Although NaCl exhibited a concentration-dependent protective effect against heat lethality on L. monocytogenes in turkey, addition of GTPE rendered the pathogen more sensitive to the lethal effect of heat. GTPE levels up to 1.5% interacted with NaCl and reduced the protective effect of NaCl on heat resistance of the pathogen. Food processors can use the predictive model to design an appropriate heat treatment that would inactivate L. monocytogenes in cooked turkey products without adversely affecting the quality of the product. PMID:25285486

  15. Structural and functional studies on the sodium- and chloride-coupled. gamma. -aminobutyric acid transporter: Deglycosylation and limited proteolysis

    SciTech Connect

    Kanner, B.I.; Keynan, S.; Radian, R. )

    1989-05-02

    The sodium- and chloride-coupled {gamma}-aminobutyric transporter, an 80-kDa glycoprotein, has been subjected to deglycosylation and limited proteolysis. The treatment of the 80-kDa band with endoglycosidase F results in its disappearance and reveals the presence of a polypeptide with an apparent molecular mass of about 60 kDa, which is devoid of {sup 125}I-labeled wheat germ agglutinin binding activity but is nevertheless recognized by the antibodies against the 80-kDa band. Upon limited proteolysis with papain or Pronase, the 80-kDa band was degraded to one with an apparent molecular mass of about 60 kDa. This polypeptide still contains the {sup 125}I-labeled wheat germ agglutinin binding activity but is not recognized by the antibody. The effect of proteolysis on function is examined. The transporter was purified by use of all steps except that for the lectin chromatography. After papain treatment and lectin chromatography, {gamma}-aminobutyric transport activity was eluted with N-acetylglucosamine. The characteristics of transport were the same as those of the pure transporter, but the preparation contained instead of the 80-kDa polypeptide two fragments of about 66 and 60 kDa. The ability of the anti-80-kDa antibody to recognize these fragments was relatively low. The observations indicate that the transporter contains exposed domains which are not important for function.

  16. Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E.

    PubMed

    Uzunhisarcikli, Meltem; Aslanturk, Ayse; Kalender, Suna; Apaydin, Fatma Gokce; Bas, Hatice

    2016-09-01

    This study focuses on investigating the possible protective effect of sodium selenite (Na2SeO3) and/or vitamin E against mercuric chloride (HgCl2)-induced hepatotoxicity in rat. Male rats were given HgCl2 (1 mg/kg body weight (bw)) and HgCl2 plus Na2SeO3 (0.25 mg/kg bw) and/or vitamin E (100 mg/kg bw) daily via gavage for 4 weeks. HgCl2-treated groups had significantly higher white blood cell and thrombocyte counts than the control group. Serum activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl-transferase, and lactate dehydrogenase significantly increased and serum levels of total protein, albumin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol significantly decreased in the HgCl2-treated groups compared with control group. Malondialdehyde level significantly increased and superoxide dismutase, catalase, and glutathione peroxidase activities decreased in liver tissue of HgCl2-treated rats. Also, HgCl2 exposure resulted in histopathological changes. Supplementation of Na2SeO3 and/or vitamin E provided partial protection in hematological and biochemical parameters that were altered by HgCl2 As a result, Na2SeO3 and/or vitamin E significantly reduced HgCl2-induced hepatotoxicity, but not protected completely. PMID:25757480

  17. A Fiber-Optic Sensor Using an Aqueous Solution of Sodium Chloride to Measure Temperature and Water Level Simultaneously

    PubMed Central

    Yoo, Wook Jae; Sim, Hyeok In; Shin, Sang Hun; Jang, Kyoung Won; Cho, Seunghyun; Moon, Joo Hyun; Lee, Bongsoo

    2014-01-01

    A fiber-optic sensor system using a multiplexed array of sensing probes based on an aqueous solution of sodium chloride (NaCl solution) and an optical time-domain reflectometer (OTDR) for simultaneous measurement of temperature and water level is proposed. By changing the temperature, the refractive index of the NaCl solution is varied and Fresnel reflection arising at the interface between the distal end of optical fiber and the NaCl solution is then also changed. We measured the modified optical power of the light reflected from the sensing probe using a portable OTDR device and also obtained the relationship between the temperature of water and the optical power. In this study, the water level was simply determined by measuring the signal difference of the optical power due to the temperature difference of individual sensing probes placed inside and outside of the water. In conclusion, we demonstrate that the temperature and water level can be obtained simultaneously by measuring optical powers of light reflected from sensing probes based on the NaCl solution. It is anticipated that the proposed fiber-optic sensor system makes it possible to remotely monitor the real-time change of temperature and water level of the spent fuel pool during a loss of power accident. PMID:25310471

  18. Solid-State (17)O NMR of Oxygen-Nitrogen Singly Bonded Compounds: Hydroxylammonium Chloride and Sodium Trioxodinitrate (Angeli's Salt).

    PubMed

    Lu, Jiasheng; Kong, Xianqi; Terskikh, Victor; Wu, Gang

    2015-07-23

    We report a solid-state NMR study of (17)O-labeled hydroxylammonium chloride ([H(17)O-NH3]Cl) and sodium trioxodinitrate monohydrate (Na2[(17)ONNO2]·H2O, Angeli's salt). The common feature in these two compounds is that they both contain oxygen atoms that are singly bonded to nitrogen. For this class of oxygen-containing functional groups, there is very limited solid-state (17)O NMR data in the literature. In this work, we experimentally measured the (17)O chemical shift and quadrupolar coupling tensors. With the aid of plane-wave DFT computation, the (17)O NMR tensor orientations were determined in the molecular frame of reference. We found that the characteristic feature of an O-N single bond is that the (17)O nucleus exhibits a large quadrupolar coupling constant (13-15 MHz) but a rather small chemical shift anisotropy (100-250 ppm), in sharp contrast with the nitroso (O═N) functional group for which both quantities are very large (e.g., 16 MHz and 3000 ppm, respectively). PMID:26107984

  19. Sodium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  20. Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule.

    PubMed Central

    Hays, S R; Baum, M; Kokko, J P

    1987-01-01

    Several hormones induce phosphatidylinositol turnover in cell membranes and thus activate protein kinase C. Activation of protein kinase C can, in turn, have effects on epithelial transport. These experiments were designed to investigate the effects of two activators of protein kinase C, phorbol 12-myristate,13-acetate (PMA) and L-alpha-1,2-dioctanoylglycerol (L-alpha-1,2-DOG), and two inactive analogues, 4 alpha-phorbol and 4-O-methyl phorbol 12-myristate,13-acetate, on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. Utilizing in vitro microperfusion techniques, we found that activation of protein kinase C with either PMA or L-alpha-1,2-DOG significantly inhibited net sodium absorption, net potassium secretion and transepithelial voltage in a dose-dependent manner. There was no effect on net chloride or total CO2 transport. In contrast, the inactive phorbol analogues did not alter either sodium or potassium transport. These studies demonstrate that in the rabbit cortical collecting tubule sodium and potassium transport can be inhibited by compounds known to activate proteins kinase C. Thus, hormones that induce phosphatidylinositol turnover in the rabbit cortical collecting tubule may lead to inhibition of sodium transport by activation of protein kinase C. PMID:3680514

  1. EFFECT OF SODIUM CHLORIDE ON TRANSPORT OF BACTERIA IN A SATURATED AQUIFER MATERIAL

    EPA Science Inventory

    Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. ulse-type boundary condition was used. hen a 1-h pulse of a 0.01 M NaCl solu...

  2. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes

    PubMed Central

    Flowers, Timothy J.; Munns, Rana; Colmer, Timothy D.

    2015-01-01

    Background Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na+ and Cl−) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na+ and/or Cl− in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K+ (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. Scope This review discusses the evidence for Na+ and Cl− toxicity and the concept of tissue tolerance in relation to halophytes. Conclusions The data reviewed here suggest that halophytes tolerate cytoplasmic Na+ and Cl− concentrations of 100–200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability. PMID:25466549

  3. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-08-17

    This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl. PMID:27477785

  4. GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate.

    PubMed

    Jahn, Stephan C; Solayman, Mohamed Hassan M; Lorenzo, Ryan J; Langaee, Taimour; Stacpoole, Peter W; James, Margaret O

    2016-06-01

    Dichloroacetate (DCA), commonly used to treat metabolic disorders, is under investigation as an anti-cancer therapy due to its ability to reverse the Warburg effect and induce apoptosis in tumor cells. While DCA's mechanism of action is well-studied, other factors that influence its potential as a cancer treatment have not been thoroughly investigated. Here we show that expression of glutathione transferase zeta 1 (GSTZ1), the enzyme responsible for conversion of DCA to its inactive metabolite, glyoxylate, is downregulated in liver cancer and upregulated in some breast cancers, leading to abnormal expression of the protein. The cellular concentration of chloride, an ion that influences the stability of GSTZ1 in the presence of DCA, was also found to be abnormal in tumors, with consistently higher concentrations in hepatocellular carcinoma than in surrounding non-tumor tissue. Finally, results from experiments employing two- and three-dimensional cultures of HepG2 cells, parental and transduced to express GSTZ1, demonstrate that high levels of GSTZ1 expression confers resistance to the effect of high concentrations of DCA on cell viability. These results may have important clinical implications in determining intratumoral metabolism of DCA and, consequently, appropriate oral dosing. PMID:26850694

  5. Mn and Zn incorporation into calcite as a function of chloride aqueous concentration

    NASA Astrophysics Data System (ADS)

    Temmam, M.; Paquette, J.; Vali, H.

    2000-07-01

    During spiral growth of the calcite rhombohedron {10 overline14}, divalent metals substituting for Ca 2+ are differentially incorporated due to steric differences inherent to the asymmetric kink sites exposed at nonequivalent growth steps. Hence, ions "larger" than Ca 2+ (e.g., Sr 2+ and Ba 2+) exhibit an incorporation trend opposite to that of "smaller" ions (e.g., Mn 2+ and Co 2+). However, Zn 2+ exhibits the same incorporation trend as large ions in coprecipitation experiments conducted from strong NH 4Cl electrolytes. In this study we compared the incorporation trends of Zn and Mn from solutions with various chloride content to test the possibility that the adsorption of "large" ZnCl n2-n aqueous complexes influences the site preference of Zn. The incorporation trends of Mn and Zn were opposite at the symmetrically nonequivalent growth steps. From a 0.4 M NH 4Cl solution, where Zn aqueous speciation was thermodynamically dominated by the "free" aquo ion, Zn maintained its site preference for the geometrically less constrained surface sites. Thus, Zn exhibits a particular interaction with surface sites and its incorporation trend is not controlled by the prevalence of ZnCl n2-n complexes. Other factors like the electronic configuration must be considered. The surface microtopography of calcite was found to be sensitive to changes in the aqueous concentrations of NH 4Cl and Zn. Decreases in NH 4Cl concentration resulted in an increase of the density of growth hillocks. The strong adsorbing behaviour of Zn increased the surface roughness, decreased the rate of growth, perturbed the spiral growth mechanism, and triggered the nucleation of discrete surface precipitates (˜0.2 μm) along macrosteps. An increase of Cl incorporation, despite the decrease of its aqueous concentration by dilutions of the parent solution, suggests that surface roughness at the calcite-solution interface is another factor involved in the nonequilibrium process of impurity element

  6. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  7. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  8. Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells

    PubMed Central

    Billups, Daniela; Attwell, David

    2002-01-01

    GABAergic modulation of retinal bipolar cells plays a crucial role in early visual processing. It helps to form centre-surround receptive fields which filter the visual signal spatially at the bipolar cell dendrites in the outer retina, and it produces temporal filtering at the bipolar cell synaptic terminals in the inner retina. The observed chloride transporter distribution in ON bipolar cells has been predicted to produce an intracellular chloride concentration, [Cl−]i, that is significantly higher in the dendrites than in the synaptic terminals. This would allow dendritic GABA-gated Cl− channels to generate the depolarization needed for forming the lateral inhibitory surround of the cell's receptive field, while synaptic terminal GABA-gated Cl− channels generate the hyperpolarization needed for temporal shaping of the light response. In contrast to this idea, we show here that in ON bipolar cells [Cl−]i is only slightly higher in the dendrites than in the synaptic terminals, and that GABA-gated channels in the dendrites may generate a hyperpolarization rather than a depolarization. We also show that [Cl−]i is controlled by movement of Cl− through ion channels in addition to transporters, that changes of [K+]o alter [Cl−]i and that voltage-dependent equilibration of [Cl−]i in bipolar cells will produce a time-dependent adaptation of GABAergic modulation with a time constant of 8 s after illumination-evoked changes of membrane potential. Time-dependent adaptation of [Cl−]i to voltage changes in retinal bipolar cells may add a previously unsuspected layer of temporal processing to signals as they pass through the retina. PMID:12433959

  9. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S., Jr.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  10. Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats.

    PubMed

    Li, Jinrong; Yan, Jianqun; Chen, Ke; Lu, Bo; Wang, Qian; Yan, Wei; Zhao, Xiaolin

    2012-10-01

    Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl. PMID:22796484

  11. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  12. Effect of Sodium Chloride on the Intensity of the Spectral Lines of Elements During ARC Discharge

    NASA Astrophysics Data System (ADS)

    Strunina, N. N.; Baisova, B. T.

    2016-01-01

    The effect of the carrier (NaCl) during arc discharge on the intensity of the lines for elements with various ionization potentials (Al, Ca, Fe, Mg, Si, Ti, Zn) was investigated. It was found that the intensity of the spectral lines of the elements increases with increase in the concentration of the carrier. The relative roles of the factors responsible for the increase in the intensity of the spectral lines (the plasma temperature, the intensity of the spectral lines of the elements, and the degree of ionization of the elements, the fl ow rate and residence time of the atoms in the plasma) were analyzed.

  13. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (ΔP(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions. PMID:25528229

  14. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  15. Saturated sodium chloride solution under an external static electric field: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ren, Gan; Wang, Yan-Ting

    2015-12-01

    The behavior of saturated aqueous NaCl solutions under a constant external electric field (E) was studied by molecular dynamics (MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation. Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 91227115, 11274319, and 11421063).

  16. Penetration of Pseudomonas aeruginosa by Sodium Chloride and Its Relation to the Mechanism of Optical Effects1

    PubMed Central

    Matula, Tibor I.; Macleod, Robert A.

    1969-01-01

    When cells of Pseudomonas aeruginosa were suspended in solutions containing increasing concentrations of NaCl, the optical density (OD) of the suspensions measured within 30 sec was found to increase in proportion to the increase in salt concentration. Measurement of intracellular fluid volumes indicated that the volume of the cells decreased roughly in proportion to the increase in salt concentration. After the initial increase in optical density, there was a slow decrease at all concentrations of NaCl tested except the highest, 500 mm. Metabolic inhibitors such as sodium azide and 2,4-dinitrophenol prevented the decrease. Direct analysis showed that the Na+ and Cl− concentrations in the cells were 86 and 77%, respectively, of the concentrations of the ions in the suspending medium after 1 hr. Measurement of the 22Na space in packed cells showed that Na+ penetrated the total fluid space in the packed cells. The penetration of 22Na was not prevented by the presence of metabolic inhibitors or by 500 mm NaCl in the suspending medium. The results indicate that the OD increases produced in suspensions of P. aeruginosa by NaCl are not due to the osmotic action of the salt. The subsequent optical density decreases observed are under metabolic control. PMID:4981061

  17. Atmospheric pitting corrosion of 304L stainless steel: the role of highly concentrated chloride solutions.

    PubMed

    Street, Steven R; Mi, Na; Cook, Angus J M C; Mohammed-Ali, Haval B; Guo, Liya; Rayment, Trevor; Davenport, Alison J

    2015-01-01

    The morphology of atmospheric pitting corrosion in 304L stainless steel plate was analysed using MgCl(2) droplets in relation to changes in relative humidity (RH) and chloride deposition density (CDD). It was found that highly reproducible morphologies occur that are distinct at different RH. Pitting at higher concentrations, i.e. lower RH, resulted in satellite pits forming around the perimeter of wide shallow dish regions. At higher RH, these satellite pits did not form and instead spiral attack into the shallow region was observed. Increasing CDD at saturation resulted in a very broad-mouthed pitting attack within the shallow dish region. Large data sets were used to find trends in pit size and morphology in what is essentially a heterogeneous alloy. Electrochemical experiments on 304 stainless steel wires in highly saturated solutions showed that the passive current density increased significantly above 3 M MgCl(2) and the breakdown pitting potential dropped as the concentration increased. It is proposed that the shallow dish regions grow via enhanced dissolution of the passive film, whereas satellite pits and a spiral attack take place with active dissolution of bare metal surfaces. PMID:25910020

  18. Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton.

    PubMed

    Kim, Hyunji; Van Duong, Hieu; Kim, Eunhee; Lee, Byeong-Gweon; Han, Seunghee

    2014-08-01

    In the current study, the effects of phytoplankton cell size and methylmercury (MeHg) speciation on the bioaccumulation of MeHg by marine phytoplankton were investigated. Volume concentration factors (VCFs) of MeHg were determined in relation to the surface area to volume ratio of the cells for four species of diatom and a cyanobacteria species cultured in unenriched seawater. The VCFs of MeHg, ranging from 7.3 × 10(4) to 1.6 × 10(6) , increased linearly as the cell surface area-to-volume ratio increased. It suggests that pico- and nano-dominated phytoplankton communities may lead to larger MeHg accumulation than the one dominated by microphytoplankton. MeHg VCFs increased with increasing chloride concentration from 0.47 to 470 mM, indicating that MeHg bioaccumulation is enhanced under conditions that facilitate membrane permeability by the formation of neutral MeHgCl species. Overall results suggest that the size distributions of the planktonic community as well as the seawater chemistry affect MeHg bioaccumulation by marine phytoplankton. PMID:23065924

  19. Crevice Corrosion of Titanium in High Temperature-Concentrated Chloride Environments

    NASA Astrophysics Data System (ADS)

    Abdulsalam, Mohammed I.

    2007-12-01

    Crevice corrosion of titanium is activated in concentrated chloride media at 100 °C. This was possible only with the tightest gap (0.005 cm) between Ti-Ti surfaces. No crevice corrosion was observed with greater gap dimensions. The design of the crevice led to the occurrence of two concentric circular rings of corroded areas, with many pits on them. After potentiostating in the passive region for 5 h in 25% NaCl (pH = 4.7)—where hydrogen evolution is thermodynamically prohibited—hydrogen gas bubbles were observed to egress out of the crevice mouth during ongoing crevice corrosion. This indicates that hydrogen evolution occurs within the crevice. The results are compatible with the occurrence of gradually increasing ohmic potential shift and localized acidification in the crevice electrolyte as judged by the measured gradual increase of the crevice corrosion current. The high acidity of the bulk electrolyte does not seem to be sufficient or even a necessary condition for crevice corrosion to occur.

  20. Synergistic interaction between nitrogen dioxide and respirable aerosols of sulfuric acid or sodium chloride on rat lungs

    SciTech Connect

    Last, J.A.; Warren, D.L.

    1987-08-01

    We examined interactions in rats between NO/sub 2/ gas and respirable aerosols of sulfuric acid (H/sub 2/SO/sub 4/) or sodium chloride (NaCl). Rats were exposed for 1, 3, or 7 days to 5 ppm of NO/sub 2/ gas, alone or in combination with 1 mg/m3 of H/sub 2/SO/sub 4/ or NaCl aerosols. The apparent rate of collagen synthesis by lung minces was measured after 7 days of exposure, and the protein content of whole lung lavage fluid was measured after 1 or 3 days of exposure. Responses from rats exposed to 5 ppm of NO/sub 2/ alone were significantly different from controls by these assays. A synergistic interaction was demonstrated between 5 ppm of NO/sub 2/ and 1 mg/m3 of either H/sub 2/SO/sub 4/ or NaCl aerosol as evaluated by measurement of the rate of lung collagen synthesis. A synergistic interaction was also demonstrated by the criterion of increased protein content of lung lavage fluid in rats exposed to 5 ppm of NO/sub 2/ and 1 mg/m3 of H/sub 2/SO/sub 4/ aerosol after 1 day of exposure and between 5 ppm of NO/sub 2/ and 1 mg/m3 of NaCl aerosol after 3 days of exposure. These observations with 5 ppm of NO/sub 2/ alone and in combination with 1 mg/m3 of NaCl aerosol support the hypothesis that formation of nitrosyl chloride may contribute to a synergistic interaction between NO/sub 2/ gas and NaCl aerosol. These results suggest that, in general, combinations of oxidant gases with respirable acidic aerosols or with acidogenic gases will demonstrate interactive effects on rat lungs. Such a hypothesis is testable and makes specific predictions about effects of inhalation of pollutant mixtures.

  1. Rhizon sampler alteration of deep ocean sediment interstitial water samples, as indicated by chloride concentration and oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Miller, Madeline D.; Adkins, Jess F.; Hodell, David A.

    2014-06-01

    their potential to inform past ocean salinity, δ18O, and temperature, high-resolution depth profiles of interstitial water chloride concentration and hydrogen and oxygen isotopes exist in very few locations. One of the primary limitations to the recovery of these depth profiles is that traditional interstitial water sampling requires 5-10 cm whole rounds of the sediment core, which has the potential to interfere with stratigraphic continuity. The Rhizon sampler, a nondestructive tool developed for terrestrial sediment interstitial water extraction, has been proposed for efficient and nondestructive sampling of ocean sediment pore waters. However, there exists little documentation on the reliability and performance of Rhizon samplers in deep ocean sediments, particularly in regard to their effect on chloride concentration and oxygen and hydrogen isotopic measurements. We perform an intercomparison of chloride concentration and oxygen and hydrogen isotopic composition in samples taken using traditional squeezing versus those taken with Rhizon samplers. We find that samples taken with Rhizons have positive biases in both chloride concentration and stable isotopic ratios relative to those taken by squeezing water from sediments in a hydraulic press. The measured offsets between Rhizon and squeeze samples are consistent with a combination of absorption by and diffusive fractionation through the hydrophilic membrane of the Rhizon sampler. These results suggest caution is needed when using Rhizons for sampling interstitial waters in any research of processes that leave a small signal-to-noise ratio in dissolved concentrations or isotope ratios.

  2. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250{degrees}C

    SciTech Connect

    Kettler, R.M.; Palmer, D.A.; Wesolowski, D.J.

    1995-04-01

    The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250{degrees}C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25{degrees}C and 1 bar: logK{sub a} = -4.206{+-}0.006, {Delta}H{sub a}{sup 0} = 0.3{+-}0.3 kJ-mol{sup {minus}1}, {Delta}S{sub a}{sup 0} = -79.6{+-}1.0 J-mol{sup {minus}1}-K{sup {minus}1}, and {Delta}C{sub p;a}{sup 0} = -207{+-}5 J-mol{sup {minus}1}-K{sup {minus}1}. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250{degrees}C and 200 MPa.

  3. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater.

    PubMed

    Cho, J H; Lee, J E; Ra, C S

    2010-08-15

    The effects of electric voltage and NaCl concentration on the removal of pollutants in swine wastewater were investigated to determine the optimum operation conditions for a designed electrolysis process. An up-flow electrolytic reactor was fabricated from Plexiglas, and one titanium anode coated with iridium oxide (IrO(2)) and two stainless steel cathodes were installed in it. The anode surface area was 80 cm(2)/L and the hydraulic retention time (HRT) was 6h. The results indicated that the pollutant removal was highly proportional to the electric voltage and removal could be enhanced by adding NaCl. The removal efficiencies of NH(4)-N, soluble nitrogen (NH(4)-N plus NO(x)-N), soluble total organic carbon (STOC), and color were proportional to the NaCl level up to 0.05% NaCl level, beyond which no further enhancement in removal was observed. However, such a tendency was not observed in the case of PO(4)-P removal. The obtained results indicate that 7 V and 0.05% (8.56 mM) NaCl level would be the optimum conditions for the designed electrolysis process. Under these conditions, the average removal efficiencies of NH(4)-N, soluble nitrogen, PO(4)-P, STOC, and color were 99%, 94%, 59%, 64%, and 93%, respectively. PMID:20471168

  4. [The influence of 24-epibrassidinole on the hormone status of wheat plants under sodium chloride].

    PubMed

    Aval'baev, A M; Iuldashev, R A; Fatkhutdinova, R A; Urusov, F A; Safutdinova, Iu V; Shakirova, F M

    2010-01-01

    We studied the influence of the preconditioning of wheat germ (Triticum aestivum L.) with 0.4 microM 24-epibrassidinole (EB) on the growth and hormone status of plants under the influence of 2% NaCl. The preconditioning with EB promoted the lowering of the extent of the damaging influence of pickling on the growth of germs. The important contribution to the realization of the protective action of EB in the preconditioning of plants is probably that of its ability to lower the level of stress-induced abscisic acid accumulation and the decrease in the content of indole-acetic acid. At the same time, the cytokinin concentration in plants preconditioned with EB under pickling was practically the same as in plants without stress. This fact combined with data about the ability of EB to induce the increase in cytokinin content in wheat, obtained before, allowed us to assume that the protective action of EB on plants is connected, first of all, with the prevention of the increase in level of hormones of cytokinin nature under pickling. PMID:20198927

  5. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  6. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro.

    PubMed

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-11-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10(-4) mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  7. Using Fish Sauce as a Substitute for Sodium Chloride in Culinary Sauces and Effects on Sensory Properties.

    PubMed

    Huynh, Hue Linh; Danhi, Robert; Yan, See Wan

    2016-01-01

    Historically, fish sauce has been a standard condiment and ingredient in various Southeast Asian cuisines. Moreover, fish sauce imparts umami taste, which may enhance perceived saltiness in food. This quality suggests that fish sauce may be used as a partial substitute for sodium chloride (NaCl) in food preparation, which may present a valuable option for health-conscious and salt-restricted consumers. However, the degree to which NaCl can be decreased in food products without compromising taste and consumer acceptance has not been determined. We hypothesized that NaCl content in food may be reduced by partial replacement with fish sauce without diminishing palatability and consumer acceptance. Preparations of 3 types of food were assessed to test this hypothesis: chicken broth (n = 72); tomato sauce (n = 73); and coconut curry (n = 70). In the first session, the percentage of NaCl that could be replaced with fish sauce without a significant change in overall taste intensity was determined for each type of food using the 2-Alternative Forced Choice method. In the second session, subjects rated 5 samples for each food with varying NaCl and/or fish sauce content on 3 sensory attributes: deliciousness; taste intensity; and saltiness. Our results demonstrate that NaCl reduction was possible in chicken broth, tomato sauce, and coconut curry at 25%, 16%, and 10%, respectively, without a significant loss (P < 0.05) in deliciousness and overall taste intensity. These results suggest that it is possible to replace NaCl in foods with fish sauce without reducing overall taste intensity and consumer acceptance. PMID:26613570

  8. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  9. Hemodynamic, hematologic and eicosanoid mediated mechanisms in 7.5 percent sodium chloride treatment of uncontrolled hemorrhagic shock.

    PubMed

    Rabinovici, R; Yue, T L; Krausz, M M; Sellers, T S; Lynch, K M; Feuerstein, G

    1992-10-01

    Hypertonic saline solution (HTS) (7.5 percent sodium chloride [NaCl]) treatment (5 milliliters per kilogram) of rats subjected to uncontrolled hemorrhagic shock (n = 7) caused an initial partial recovery of blood pressure (+38 +/- 5 percent, p<0.05) and cardiac index (+48 +/- 6 percent, p<0.01) followed by increased bleeding (+53 +/- 5 percent versus rats treated with 0.9 percent NaCl, p<0.05), secondary shock (mean arterial pressure [MAP] 23 +/- 7 millimeters of mercury, p<0.01) and decreased survival (-54 +/- 15 minutes versus control, p<0.05). The increased blood loss resulted from: 1, increased vascular pressure and vasodilatation (total peripheral resistance index -27 +/- 5 percent, p<0.05), as initial bleeding occurred when MAP and cardiac index are increased compared with the control group (+88 +/- 10 percent, p<0.05 and +82 +/- 7 percent, p<0.01, respectively) and as the concomitant infusion of angiotensin II, a potent vasoconstrictor, delayed the HTS-induced bleeding (resumed at 60 minutes), and 2, a defect in platelet aggregation reflected by decreased adenosine diphosphate (ADP)-induced maximal aggregation (-79 percent versus rats treated with 0.9 percent NaCl, p<0.05) and increased EC50 of ADP (+159 percent, p<0.05). These hemodynamic and hematologic responses might be mediated at least in part by prostacyclin, a vasodilator and antiplatelet aggregator, as HTS-treated rats markedly elevated the 6-keto-PGF1 alpha per thromboxane B2 ratio (+140 +/- 12 percent, p<0.01) and pretreatment with indomethacin decreased blood loss and improved MAP and survival. These data point out potential untoward hemodynamic and hematologic consequences of HTS treatment in traumatic injury in which control of bleeding cannot be confirmed. PMID:1411892

  10. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway

    PubMed Central

    Feng, Xiuyan; Zhang, Yiqian; Shao, Ningjun; Wang, Yanhui; Zhuang, Zhizhi; Wu, Ping; Lee, Matthew J.; Liu, Yingli; Wang, Xiaonan; Zhuang, Jieqiu; Delpire, Eric; Gu, Dingying

    2015-01-01

    Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs. PMID:25761881

  11. The impact of organic coatings on light scattering by sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2011-08-01

    Light scattering by airborne particles plays a major role in visibility degradation and climate change. The composition and structure of particles in air can be complex, so that predictions of light scattering a priori have significant uncertainties. We report here studies of light scattering by NaCl, a model for airborne salt particles from the ocean and alkaline lakes, with and without an organic coating formed from the low volatility products of the reaction of α-pinene with ozone at room temperature at 1 atm in air. Light scattering at 450, 550 and 700 nm was measured using an integrating nephelometer on particles whose size distribution was independently determined using a scanning mobility particle sizer (SMPS). For comparison, polystyrene latex spheres (PSL) of a known size and dioctylphthalate (DOP) particles generated with a narrow size distribution were also studied. The measured values were compared to those calculated using Mie theory. Although excellent agreement between experiment and theory was found for the PSL and DOP particles, there were large discrepancies for a polydisperse NaCl sample. These were traced to errors in the size distribution measurements. Despite the use of 85Kr neutralizers, the Boltzmann charge equilibrium distribution assumption used to derive particle size distributions from SMPS data was shown not to be valid, leading to an overestimate of the concentration of larger particles and their contribution to light scattering. Correcting for this, the combination of experiments and theory show that as salt takes up low volatility organics in the atmosphere and the geometric mean diameter increases, the effect on light scattering may be reasonably approximated from the change in size distribution under conditions where the organic coating is small relative to the core size. However, for a given particle diameter, light scattering decreases as the relative contribution of the organic component increases. Thus, light scattering by

  12. Polaronic effects in manganese oxides: Self-trapped electronic states in lanthanum manganate and sodium chloride

    NASA Astrophysics Data System (ADS)

    Perebeinos, Vasili

    2001-12-01

    Self-trapped states occur in many insulating solids but are not especially well-understood. There is a need for better theoretical models and better experimental tools for exploring these states. This thesis provides models for two kinds of materials LaMnO3 and NaCl, and predicts experimental effects which can be used to characterize such states. LaMnO3 is an insulating antiferromagnet which can be doped with holes over a wide concentration range, as in La1- xCaxMnO3. Here I study the regime x << 1 where particularly interesting and simple behavior is predicted. The model has electronic and lattice-vibrational degrees of freedom chosen to represent the Mn ion outer electronic states and their interaction with oxygen motions in the three dimensional perovskite crystal structure. Four independent types of data are available to choose three adjusted parameters. Using electronic structure calculations, optical conductivity and Raman spectra for this choice the predicted magnitude of the static Jahn-Teller distortion agrees within 10-15% with neutron diffraction data. I use the model to analyze and predict the self-localized states which form under optical excitation and under hole doping. In particular five types of behavior are analyzed: (1)the insulating nature of lightly doped LaMnO3 due to the anti-Jahn-Teller polaron formation; (2)phonon broadening due to the exciton formation; (3)polaronic angle-resolved- photoemission-spectra (ARPES); (4)Raman spectra due to the Franck-Condon mechanism; (5)the self-trapped exciton in NaCl and its optical properties including the Franck-Condon effect using the first-principles Density Functional Theory (DFT) calculations. Experimental confirmation of the predicted behavior for LaMnO3 will differentiate the Jahn-Teller model studied here from competing versions. The results given here are novel in five ways. (1)Essentially exact analytical polaronic spectra of the two-orbital model Hamiltonian have been obtained. (2)Self

  13. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution

    SciTech Connect

    Park, J.J.; Pyun, S.I.; Lee, W.J.; Kim, H.P.

    1999-04-01

    The effect of bicarbonate ions (HCO{sub 3}{sup {minus}}) on pitting corrosion of type 316L stainless steel (SS, UNS S3 1603) was investigated in aqueous 0.5 M sodium chloride (NaCl) solution using potentiodynamic polarization, the abrading electrode technique, alternating current (AC) impedance spectroscopy combined with x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions extended the passive potential region in width and, at the same time, raised the pitting potential in value on the potentiodynamic polarization curve. Potentiostatic current transients obtained from the moment just after interrupting the abrading action showed the repassivation rate of propagating pits increased and that the pit growth rate decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Over the whole applied potential, the oxide film resistance was higher in the presence of HCO{sub 3}{sup {minus}} ions. The pit number density decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Moreover, addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions retarded lateral pit growth, while promoting downward pit growth from the surface. The bare surface of the specimen repassivated preferentially along the pit mouth and walls, compared to the pit bottom, as a result of formation of a surface film with a high content of protective mixed ferrous-chromous carbonate ([Fe,Cr]CO{sub 3}) that formed from preferential adsorption of HCO{sub 3}{sup {minus}} ions.

  14. Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols.

    PubMed

    Juneja, Vijay K; Altuntaş, Evrim Güneş; Ayhan, Kamuran; Hwang, Cheng-An; Sheen, Shiowshuh; Friedman, Mendel

    2013-06-01

    We investigated the combined effect of three internal temperatures (57.5, 60, and 62.5°C) and different concentrations (0 to 3.0 wt/wt.%) of sodium chloride (NaCl) and apple polyphenols (APP), individually and in combination, on the heat-resistance of a five-strain cocktail of Listeria monocytogenes in ground beef. A complete factorial design (3×4×4) was used to assess the effects and interactions of heating temperature, NaCl, and APP. All 48 combinations were tested twice, to yield 96 survival curves. Mathematical models were then used to quantitate the combined effect of these parameters on heat resistance of the pathogen. The theoretical analysis shows that compared with heat alone, the addition of NaCl enhanced and that of APP reduced the heat resistance of L. monocytogenes measured as D-values. By contrast, the protective effect of NaCl against thermal inactivation of the pathogen was reduced when both additives were present in combination, as evidenced by reduction of up to ~68% in D-values at 57.5°C; 65% at 60°C; and 25% at 62.5°C. The observed high antimicrobial activity of the combination of APP and low salt levels (e.g., 2.5% APP and 0.5% salt) suggests that commercial and home processors of meat could reduce the salt concentration by adding APP to the ground meat. The influence of the combined effect allows a reduction of the temperature of heat treatments as well as the salt content of the meat. Meat processors can use the predictive model to design processing times and temperatures that can protect against adverse effects of contaminated meat products. Additional benefits include reduced energy use in cooking, and the addition of antioxidative apple polyphenols may provide beneficial health affects to consumers. PMID:23587714

  15. The detection of μm and sub-μm droplets of aqueous solutions of sodium chloride and sodium sulfate

    NASA Astrophysics Data System (ADS)

    Ueno, Yasuo; Williams, Alan

    μm and sub-μm droplets of aqueous NaCl and Na 2SO 4 solutions were quantitatively identified by a chemical spot technique using thin and ultra-thin films of polyvinyl alcohol-reagent mixture. A comparison has been made between theoretical and experimental calibration curves under various conditions with respect to the thickness of the film and different reagent concentration for the detection of chloride or sulfate. Droplets generated by the atomization of aqueous NaCl or Na 2SO 4 solution were collected on these polyvinyl alcohol-reagent films. The spots impressed on the films were measured by an optical microscope. Calibration curves relating the spot and droplet diameters were experimentally measured. It was found that each of the calibration curves could be expressed by a relation Dd3 = Kd2s, where Dd is the volume average diameter of the droplets, ds the surface average diameter of the spots and K is a calibration curve constant. The meaning of K is discussed. A linear relationship has been found between the ratio of an experimental calibration curve constant to a theoretical one and the concentration of the reagent in the film. Then the following equation was obtained: K (exptl)/K (theor.) = 0.29A , where A is the concentration of the reagent in the film (molℓ -1). This equation is useful in estimating the values of different experimental calibration curve constants. The minimum diameter of the droplets that can be identified by this technique is 0.2 μm.

  16. The effects of increasing sodium chloride concentration on Mycoplasma gallisepticum vaccine survival in solution.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lyophilized Mycoplasma gallisepticum (MG) vaccines are generally rehydrated and diluted with distilled or chlorine-free water as per manufacturer recommendations. However, as mycoplasma species lack a cell wall, this can lead to decreased viability of live vaccine during administration. The abilit...

  17. Reconstructed chloride concentration profiles below the seabed in Hong Kong (China) and their implications for offshore groundwater resources

    NASA Astrophysics Data System (ADS)

    Jiao, Jiu Jimmy; Shi, Lei; Kuang, Xingxing; Lee, Chun Ming; Yim, Wyss W.-S.; Yang, Shouye

    2015-03-01

    Offshore hydrogeology has been much less studied compared to onshore hydrogeology. The marine Quaternary system in Hong Kong (China) consists of interlayers of aquitards and aquifers and was part of the Pearl River Delta when the sea level was low before the Holocene. Core samples from six offshore boreholes were collected to measure the chloride concentration in the system by adding deionized water. A method was proposed to convert the sediment chloride into that of the original pore water. A one-dimensional sedimentation-transport model was developed to simulate the historical conservative transport of the reconstructed pore-water chloride. The model integrates present knowledge of stratigraphy and the historical evolution of the geological system. The chloride concentration profiles show that the chloride decreases from an average of 13,800 mg/L in the first marine unit to an average of 5,620 mg/L in the first aquifer. At the bottom of one borehole, the concentration is only 1,420 mg/L. The numerical model shows that the vertical chloride distribution is due to diffusion-controlled downward migration of seawater. The second marine unit obstructs the downward migration, indicating its low permeability and good aquitard integrity. The relatively fresh or brackish water in deep aquifers protected by the aquitard has the potential to be used as drinking water following some treatment, or at least as raw water with much cheaper desalinization compared with using seawater. The methodology and findings in this study are instructional for other coastal areas with similar geology and history in the South China Sea.

  18. Developmental Decrease of Neuronal Chloride Concentration Is Independent of Trauma in Thalamocortical Brain Slices

    PubMed Central

    Glykys, Joseph; Staley, Kevin J.

    2016-01-01

    The intraneuronal chloride concentration ([Cl-]i) is paramount for determining the polarity of signaling at GABAA synapses in the central nervous system. Sectioning hippocampal brain slices increases [Cl-]i in the superficial layers. It is not known whether cutting trauma also increases [Cl-]i in the neocortex and thalamus, and whether the effects of trauma change during development. We used Cl- imaging to study the [Cl-]i vs. the distance from the cut surface in acute thalamocortical slices from mice at developmental ages ranging from post-natal day 5 (P5) to P20. We demonstrate: 1) [Cl-]i is higher in the most superficial areas in both neocortical and thalamic brain slices at all ages tested and, 2) there is a developmental decrease in [Cl-]i that is independent of acute trauma caused by brain slicing. We conclude that [Cl-]i has a developmental progression during P5-20 in both the neocortex and thalamus. However, in both brain regions and during development the neurons closest to the slicing trauma have an elevated [Cl-]i. PMID:27337272

  19. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks.

    PubMed

    Çelik, Ekin; Bayram, Cem; Akçapınar, Rümeysa; Türk, Mustafa; Denkbaş, Emir Baki

    2016-09-01

    Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH. In this study, Fmoc-FF dipeptides were mechanically enhanced by incorporation of alginate, a biocompatible and absorbable polysaccharide. The binary hydrogel is obtained via molecular self-assembly of FmocFF dipeptide in alginate solution followed by ionic crosslinking of alginate moieties with varying concentrations of calcium chloride. Hydrogel characterization was evaluated in terms of morphology, viscoelastic moduli and diffusional phenomena and the structures were tested as 3D scaffolds for bovine chondrocytes. In vitro evaluation of scaffolds lasted up to 14days and cell viability, sulphated glycosaminoglycan (sGAG) levels, collagen type II synthesis were determined. Our results showed that alginate incorporation into FmocFF hydrogels leads to better mechanical properties and higher stability with good biocompatibility. PMID:27207058

  20. Lithium ions in nanomolar concentration modulate glycine-activated chloride current in rat hippocampal neurons.

    PubMed

    Solntseva, E I; Bukanova, J V; Kondratenko, R V; Skrebitsky, V G

    2016-03-01

    Lithium salts are successfully used to treat bipolar disorder. At the same time, according to recent data lithium may be considered as a candidate medication for the treatment of neurodegenerative disorders. The mechanisms of therapeutic action of lithium have not been fully elucidated. In particular, in the literature there are no data on the effect of lithium on the glycine receptors. In the present study we investigated the effect of Li(+) on glycine-activated chloride current (IGly) in rat isolated pyramidal hippocampal neurons using patch-clamp technique. The effects of Li(+) were studied with two glycine concentrations: 100 μM (EC50) and 500 μM (nearly saturating). Li(+) was applied to the cell in two ways: first, by 600 ms co-application with glycine through micropipette (short application), and, second, by addition to an extracellular perfusate for 10 min (longer application). Li(+) was used in the range of concentrations of 1 nM-1 mM. Short application of Li(+) caused two effects: (1) an acceleration of desensitization (a decrease in the time of half-decay, or "τ") of IGly induced by both 100 μM and 500 μM glycine, and (2) a reduction of the peak amplitude of the IGly, induced by 100 μM, but not by 500 μM glycine. Both effects were not voltage-dependent. Dose-response curves for both effects were N-shaped with two maximums at 100 nM and 1 mM of Li(+) and a minimum at 1 μM of Li(+). This complex form of dose-response may indicate that the process activated by high concentrations of lithium inhibits the process that is sensitive to low concentrations of lithium. Longer application of Li(+)caused similar effects, but in this case 1 μM lithium was effective and the dose-effect curves were not N-shaped. The inhibitory effect of lithium ions on glycine-activated current suggests that lithium in low concentrations is able to modulate tonic inhibition in the hippocampus. This important property of lithium should be considered when using this drug as a

  1. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  2. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. PMID:25261742

  3. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    PubMed Central

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  4. Chloridization and Reduction Roasting of High-Magnesium Low-Nickel Oxide Ore Followed by Magnetic Separation to Enrich Ferronickel Concentrate

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-02-01

    The chloridization and reduction roasting of high-magnesium, low-nickel oxide ore containing 0.82 pct Ni and 31.49 pct MgO were investigated in this study. Mineralogical investigation indicated that 84.6 pct of nickel was associated with silicates, and nickel was well distributed in mineral in the form of isomorphism. A series of chloridization tests with different added proportions of sodium chloride and coal along with different roasting temperatures and times was conducted. The results indicate that for a ferronickel content of 7.09 pct Ni, a nickel recovery of 98.31 pct could be obtained by chloridizing the laterite ore at 1473 K (1200 °C) for 20 minutes with the addition of 10 wt pct sodium chloride and 8 wt pct coal followed by the application of a 150-mT magnetic field. X-ray diffraction indicated that the nickel is mainly present in the form of ferronickel, which can also be detected by SEM-EDS. Compared with the roasted ore with no added chlorinating agent, the ore roasted in the presence of sodium chloride exhibited enhanced ferronickel particle growth.

  5. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate

    PubMed Central

    Kabakov, Anatoli Y.; Rosenberg, Paul A.

    2015-01-01

    Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19–75 μM) and high (300–1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM–10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in

  6. Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink

    ERIC Educational Resources Information Center

    LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina

    2013-01-01

    The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…

  7. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-02-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  8. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  9. Modeling the Sodium Recovery Resulting from Using Concentrated Caustic for Boehmite Dissolution

    SciTech Connect

    Mahoney, Lenna A.; Rapko, Brian M.; Schonewill, Philip P.

    2011-10-19

    Boehmite dissolution experiments were conducted at NaOH concentrations of 10 M and 12 M to determine whether the increased aluminum solubility at high hydroxide concentration would offset the increase in added sodium, leading to an overall decrease in the amount of sodium added during the boehmite dissolution process. A shrinking-core dissolution rate model that assumed reversible reaction was used to fit the test data. The resulting model accounted for the effects of temperature, hydroxide concentration, and dissolved aluminum concentration. The rate was found to be dependent on the {approx}1.5 power of hydroxide molarity. When the dissolution rate model was used in simulations of batch boehmite dissolution, a concentration range of 7 to 9 M NaOH was found to minimize the mass of sodium needed to dissolve a given mass of aluminum, potentially reducing it by as much as two-thirds. The time required to dissolve the boehmite was also found to be decreased by using hydroxide concentrations greater than {approx}10 M.

  10. Therapeutic Effects of Sodium Hyaluronate on Ocular Surface Damage Induced by Benzalkonium Chloride Preserved Anti-glaucoma Medications

    PubMed Central

    Liu, Xing; Yu, Fen-Fen; Zhong, Yi-Min; Guo, Xin-Xing; Mao, Zhen

    2015-01-01

    Background: Long-term use of benzalkonium chloride (BAC)-preserved drugs is often associated with ocular surface toxicity. Ocular surface symptoms had a substantial impact on the glaucoma patients’ quality of life and compliance. This study aimed to investigate the effects of sodium hyaluronate (SH) on ocular surface toxicity induced by BAC-preserved anti-glaucoma medications treatment. Methods: Fifty-eight patients (101 eyes), who received topical BAC-preserved anti-glaucoma medications treatment and met the severe dry eye criteria, were included in the analysis. All patients were maintained the original topical anti-glaucoma treatment. In the SH-treated group (56 eyes), unpreserved 0.3% SH eye drops were administered with 3 times daily for 90 days. In the control group (55 eyes), phosphate-buffered saline were administered with 3 times daily for 90 days. Ocular Surface Disease Index (OSDI) questionnaire, break-up time (BUT) test, corneal fluorescein staining, corneal and conjunctival rose Bengal staining, Schirmer test, and conjunctiva impression cytology were performed sequentially on days 0 and 91. Results: Compared with the control group, SH-treated group showed decrease in OSDI scores (Kruskal-Wallis test: H = 38.668, P < 0.001), fluorescein and rose Bengal scores (Wilcoxon signed-ranks test: z = −3.843, P < 0.001, and z = −3.508, P < 0.001, respectively), increase in tear film BUT (t-test: t = −10.994, P < 0.001) and aqueous tear production (t-test: t = −10.328, P < 0.001) on day 91. The goblet cell density was increased (t-test: t = −9.981, P < 0.001), and the morphology of the conjunctival epithelium were also improved after SH treatment. Conclusions: SH significantly improved both symptoms and signs of ocular surface damage in patients with BAC-preserved anti-glaucoma medications treatment. SH could be proposed as a new attempt to reduce ocular surface toxicity, and alleviate symptoms of ocular surface damage in BAC-preserved anti

  11. Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion.

    PubMed

    João-Souza, Samira Helena; Bezerra, Sávio José Cardoso; Borges, Alessandra Bühler; Aranha, Ana Cecília; Scaramucci, Tais

    2015-12-01

    This study evaluated the progression of enamel erosion after treatment with gels containing sodium fluoride (NaF; 9047 ppm F) and stannous chloride (SnCl2; 3000 ppm Sn), associated or not with Nd:YAG laser irradiation. Sixty enamel specimens were prepared from bovine incisors and protected by a tape, leaving an exposed surface area of 4 × 1 mm. The specimens were immersed in 1 % citric acid (pH = 2.3) for 10 min to create an initial erosion lesion. After, they were randomly divided into six groups: (C) control: gel without active ingredient; (F): NaF gel; (F + Sn): NaF + SnCl2 gel; (laser): Nd:YAG laser irradiation (0.5 W; 50 mJ; ∼41.66 J/cm(2); 10 Hz; 40 s); (F + laser): NaF gel + Nd:YAG; (F + Sn + laser): NaF + SnCl2 gel + Nd:YAG. All gels had pH = 4.5 and were applied for 1 min. Laser irradiation was performed after gel application. The specimens were then submitted to a 5-day erosion-remineralization cycling model using 1 % citric acid (pH = 2.3), six times per day. Enamel surface loss (SL) was analyzed by optical profilometry in the end of the cycling (in μm). Data were analyzed by one-way ANOVA and Holm-Sidak tests (alpha = 0.05). The control and the laser groups presented the highest enamel loss (means ± SD = 53.52 ± 3.65 and 53.30 ± 2.73, respectively), followed by F + Sn (44.76 ± 2.83). The groups F (36.76 ± 2.28), F + laser (36.25 ± 3.59), and F + Sn + laser (39.83 ± 4.62) showed the lowest enamel loss, with no significant difference among them (p > 0.05). In conclusion, NaF by itself or associated with SnCl2 and Nd:YAG laser was able to reduce enamel erosion progression. Nd:YAG laser alone did not show a protective effect. PMID:26227298

  12. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

    PubMed

    Corsi, Steven R; De Cicco, Laura A; Lutz, Michelle A; Hirsch, Robert M

    2015-03-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period. PMID:25514764

  13. Chloride and total hardness concentrations of water from the upper part of the Floridan Aquifer in St. Johns County, Florida

    USGS Publications Warehouse

    Hampson, Paul S.; Hayes, Eugene C.

    1982-01-01

    Data collected from 1976 to 1979 indicate large water-quality variations in the upper 300 feet of the Floridan aquifer in St. Johns County, Florida. Chloride concentrations range from less than 10 milligrams per liter in the northwestern part of the county to more than 1,000 milligrams per liter in the southeast and extreme southwest. Total hardness concentrations range from 110 milligrams per liter in the northwest to 1,700 milligrams per liter in the southeast. In most of the county, high chloride and total hardness concentrations indicate the presence of saline water that entered the aquifer during the Pleistocene Epoch and has not been flushed out. Water quality in the aquifer has also been influenced by submarine discharge in the southeast and by heavy pumpage for irrigation in the southwest. High total hardness concentrations not accompanied by high chloride values in the western part of the county may be structurally controlled or may indicate the presence of gypsum evaporite beds in the upper 300 feet of the aquifer. (USGS)

  14. Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure.

    PubMed

    Lu, Xiaofeng; Pikal, Michael J

    2004-01-01

    The objective of this article was to study the mechanism by which annealing increases the primary drying time in mannitol-trehalose-sodium chloride-based formulations. The thermal events occurring during annealing and the glass transition of the frozen solutions were monitored with differential scanning calorimetry (DSC). Manometric temperature measurement was used to evaluate the dry layer resistances during primary drying. The morphologies of the freeze-dried cakes were examined by scanning electron microscopy (SEM). The degrees of crystallinity of mannitol and sodium chloride (NaCl) in freeze-dried cakes were determined by powder X-ray diffraction (XRD). DSC results indicated that annealing during freezing did not increase the glass transition temperature (Tg') significantly, but there was a distinct decrease of deltaCp at Tg' with annealing, suggesting a decrease in amorphous content. SEM revealed that most mannitol crystallized as the delta-form during annealing at -23 degrees C, and further crystallized as the alpha-form, together with NaCl crystallization, during subsequent annealing at -33 degrees C. The powder XRD results demonstrated that annealing caused crystal growth of mannitol and NaCl, and thus prevented the partial collapse observed without annealing. However, the highly crystallized mannitol blocked the pathways for water vapor escape, contributing to the increase in the dry layer resistance and thus the longer times for primary drying. Freeze-dried cakes without annealing had lower dry layer resistances because partial collapse created larger channels for water vapor escape. Therefore, two-step annealing in freezing makes mannitol-trehalose-sodium chloride-based formulations robust in freeze-drying, but annealing increases the dry layer resistances, thereby extending primary drying. PMID:15000469

  15. X-ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution

    SciTech Connect

    Venugopal, A.; Selvam, P.; Raja, V.S.; Veluchamy, P.; Minoura, H.

    1997-10-01

    Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.

  16. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    NASA Astrophysics Data System (ADS)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-08-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  17. Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival

    PubMed Central

    Pellegrino, Christophe; Gubkina, Olena; Schaefer, Michael; Becq, Hélène; Ludwig, Anastasia; Mukhtarov, Marat; Chudotvorova, Ilona; Corby, Severine; Salyha, Yuriy; Salozhin, Sergey; Bregestovski, Piotr; Medina, Igor

    2011-01-01

    Abstract KCC2 is a neuron-specific potassium–chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl−]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl−]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule. PMID:21486764

  18. Seawater teleosts: evidence for a sodium-potassium exchange in the branchial sodium-excreting pump.

    PubMed

    Maetz, J

    1969-10-31

    The net sodium extrusion rate by the gill of the seawater-adapted euryhaline flounder is identical to the potassium influx. The excretion of sodium is blocked in K(+)-free seawater solutions. The instantaneous sodium outflux readjustment pattern of flounders transferred from seawater to solutions of various sodium chloride or potassium chloride concentrations is consistent with the hypothesis of a linkage between Na(+) outflux and K(+) influx through a common exchange carrier. External Na(+) and K(+) compete for this comnmonz carrier. It is suggested that the exchange diffusion mechanism (linkage of sodium influx and outflux) and the high internal sodium turnover rate which characterizes all seawater teleosts are the results of this competitive process. The sodium-potassium dependent adenosine triphosphatase system occurring in the gill of the seawater teleosts may play a central role in this sodium-potassium exchange pump. PMID:5823292

  19. Concentrations of sodium, potassium, magnesium, and iron in the serum of dairy cows with subclinical ketosis.

    PubMed

    Zhang, Zhigang; Li, Xiaobing; Wang, Hongbin; Guo, Changming; Gao, Li; Liu, Lei; Gao, Ruifeng; Zhang, Yi; Li, Peng; Wang, Zhe; Li, Yanfei; Liu, Guowen

    2011-12-01

    Serum concentrations of sodium, potassium, magnesium, and iron were measured in dairy cows with subclinical ketosis. Compared with healthy cows, the subclinically ketotic cows had significantly higher levels of non-esterified fatty acids and β-hydroxybutirate in serum and significantly lower levels of blood glucose (p < 0.01). No significant differences were observed, suggesting that the mineral elements measured are not involved in the pathogenesis of subclinical ketosis. PMID:21739162

  20. Chloride concentrations, loads, and yields in four watersheds along Interstate 95, southeastern Connecticut, 2008-11: factors that affect peak chloride concentrations during winter storms

    USGS Publications Warehouse

    Brown, Craig J.; Mullaney, John R.; Morrison, Jonathan; Martin, Joseph W.; Trombley, Thomas J.

    2015-01-01

    The addition of a lane mile in both directions on I–95 would result in an estimate of approximately 2 to 11 percent increase in Cl- input from deicers applied to I–95 and other roads maintained by Connecticut Department of Transportation. The largest estimated increase in Cl- load was in the watersheds with the greatest number miles of I–95 corridor relative to the total lane miles maintained by Connecticut Department of Transportation. On the basis of these estimates and the estimated peak Cl- concentrations during the study period, it is unlikely that the increased use of deicers on the additional lanes would lead to Cl- concentrations that exceed the aquatic habitat criteria.

  1. Watershed scale chloride storage across a gradient of urbanization

    NASA Astrophysics Data System (ADS)

    Wellen, C. C.; Oswald, C. J.; Oni, S. K.

    2014-12-01

    Sodium chloride is the main de-icing agent used during the winter in Canada and the northern United States. However, little is known about the long term fate, residence time, and ecological effects of chloride. This talk integrates work taking place across three sites in Southern Ontario, Canada: Hamilton Harbour, the Toronto lakeshore, and Lake Simcoe. We quantify chloride inputs, outputs, and changes in storage for a number of watersheds across a gradient of urbanization. For the three winter months (January, February, March), we show that stream water chloride concentrations approach those of brackish waters for urban watersheds. Chloride is also highly persistent, with stream water chloride concentrations decreasing from the winter months and approaching baseline levels only in July. These baseline levels are greater than 100 mg Cl/l in the urban watersheds, suggesting high levels of chloride storage in soil and groundwater. Using road salt application rates and groundwater levels and chloride concentrations, we estimate the magnitude and residence time of the chloride pools in a number of watersheds across a gradient of urbanization. Our results suggest that the magnitude and residence time of chloride storage varies with urbanization and other factors. We show that summer baseflow concentrations do approach the EPA's chronic exposure guideline of 230 mg Cl/l, implying more work is needed to understand the in stream and downstream ecological effects of chloride.

  2. Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis

    SciTech Connect

    Thampy, S.K.; Narayanan, P.K.; Chauhan, D.K.

    1995-11-01

    An electrodialysis technique using indigeneously prepared interpolymer membranes and a laboratory-scale electrodialysis unit having an effective area of 25 cm x 12 cm with 20 pairs of ion-exchange membranes was used for the concentration of sodium sulfate in the effluent was concentrated three and half times with respect to the original effluents, thereby rendering the concentrate usable in the tannery process. The diluate of first stage solution was further subjected to eletrodialysis in a once through pass system, and the total dissolved solids content of the second stage diluation was brought down to less than 1000 ppm. This process offers the possibility of either reusing the water or safely discharging it. The parameters voltage, flow rate, and change of concentration with fresh effluent were investigated. The energy requirement and current efficiency were also calculated.

  3. Solvation of sodium chloride in the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid: a molecular dynamics study.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2007-06-28

    We report molecular dynamics studies on the solvation of sodium chloride in the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid ([BMI][Tf2N] IL). We first consider the potential of mean force for dissociating a single Na+Cl- ion pair, showing that the latter prefers to be undissociated rather than dissociated (by ca. 9 kcal/mol), with a free energy barrier of ca. 5 kcal/mol (at d approximately 5.2 A) for the association process. The preference for Na+Cl- association is also observed from a 100 ns molecular dynamics simulation of a concentrated solution, where the Na+Cl- ions tend to form oligomers and microcrystals in the IL. Conversely, the simulation of Na13Cl14- and Na14Cl13+ cubic microcrystals (with, respectively, Cl- and Na+ at the vertices) does not lead to dissolution in the IL. Among these, Na14Cl13+ is found to be better solvated than Na13Cl14-, mainly due to the stronger Na+...Tf2N- interactions as compared to the Cl-...BMI+ interactions at the vertices of the cube. We finally consider the solid/liquid interface between the 100 face of NaCl and the IL, revealing that, in spite of its polar nature, the crystal surface is solvated by the less polar IL components (CF3(Tf2N) and butyl(BMI) groups) rather than by the polar ones (O(Tf2N) and imidazolium(BMI) ring). Specific ordering at the interface is described for both Tf2N- anions and BMI+ cations. In the first IL layer, the ions are rather parallel to the surface, whereas in the second "layer" they are more perpendicular. A similar IL structure is found at the surface of the all-neutral Na0Cl0 solid analogue, confirming that the solvation of the crystal is rather "apolar", due to the mismatch between the IL and the crystal ions. Several comparisons with water, methanol, or different BMI+-based ILs as solvents are presented, allowing us to better understand the specificity of the ionic liquid-NaCl interactions. PMID:17550283

  4. Determination of chloride in geological samples by ion chromatography

    USGS Publications Warehouse

    Wilson, S.A.; Gent, C.A.

    1983-01-01

    Samples of silicate rocks are prepared by sodium carbonate fusion and then treated by ion chromatography. The method was tested for geological standards with chloride concentration between 0.003 and 3%. Observed chloride concentrations comparedd favorably with literature values. The relative standard deviation and detection limit for the method were 8% and 7 ppm, respectively. Up to 30 determination per 24-hour period were possible. ?? 1983.

  5. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  6. Short-T2 Imaging for Quantifying Concentration of Sodium (23Na) of Bi-Exponential T2 Relaxation

    PubMed Central

    Qian, Yongxian; Panigrahy, Ashok; Laymon, Charles M.; Lee, Vincent K.; Drappatz, Jan; Lieberman, Frank S.; Boada, Fernando E.; Mountz, James M.

    2014-01-01

    Purpose This work intends to demonstrate a new method for quantifying concentration of sodium (23Na) of bi-exponential T2 relaxation in patients on MRI scanners at 3.0 Tesla. Theory Two single-quantum (SQ) sodium images acquired at very-short and short echo times (TE=0.5 and 5.0ms) are subtracted to produce an image of the short-T2 component of the bi-exponential (or bound) sodium. An integrated calibration on the SQ and short-T2 images quantifies both total and bound sodium concentrations. Methods Numerical models were used to evaluate signal response of the proposed method to the short-T2 components. MRI scans on agar phantoms and brain tumor patients were performed to assess accuracy and performance of the proposed method, in comparison with a conventional method of triple-quantum filtering. Results A good linear relation (R2=0.98) was attained between the short-T2 image intensity and concentration of bound sodium. A reduced total scan time of 22min was achieved under the SAR restriction for human studies in quantifying both total and bound sodium concentrations. Conclusion The proposed method is feasible for quantifying bound sodium concentration in routine clinical settings at 3.0 Tesla. PMID:25078966

  7. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  8. Electrochemical oxidation of humic acid and sanitary landfill leachate: Influence of anode material, chloride concentration and current density.

    PubMed

    Fernandes, A; Santos, D; Pacheco, M J; Ciríaco, L; Lopes, A

    2016-01-15

    The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4. Contrary to BDD, Ti/Pt/PbO2 promotes lower nitrate formation and is the most suitable material for total nitrogen elimination. The importance of the optimum ratio of Cl-/COD/NH4 +initial concentrations is discussed. PMID:26410703

  9. Effect of potassium sodium tartrate and sodium citrate on the preparation of {alpha}-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution

    SciTech Connect

    Shen, Z.X.; Guan, B.H.; Fu, H.L.; Yang, L.C.

    2009-12-15

    Flue gas desulfurization (FGD) gypsum mainly composed of calcium sulfate dihydrate (DH) was used as a raw material to obtain alpha-calcium sulfate hemihydrate ({alpha}-HH) through dehydration in a Ca-Mg-K-Cl-solution medium at 95{sup o}C under atmospheric pressure. The effects of potassium sodium tartrate and sodium citrate on the preparation of alpha-HH in the electrolyte solution were investigated. The results revealed that the addition of potassium sodium tartrate (1.0 x 10{sup -2} - 2.5 x 10{sup -2}M) decreased the dehydration rate of FGD gypsum and increased the length/width (l/w) ratio of {alpha}-HH crystals, which could yield unfavorable strength properties. Addition of sodium citrate (1.0 x 10{sup -5} - 2.0 x 10{sup -5}M) slightly increased the dehydration rate of FGD gypsum and decreased the l/w ratio of {alpha}-HH crystals, which could be beneficial to increase strength. However, it also led to a partial formation of anhydrite (AH) crystals. AH was also the only dehydration product when the concentration of sodium citrate increased to 1.0 x 10{sup -4}M. Therefore, sodium citrate rather than potassium sodium tartrate could be used as an additive in Ca-Mg-K-Cl electrolyte solutions if alpha-HH with a shorter l/w ratio is the desired product from FGD gypsum dehydration. The concentration of sodium citrate should be properly controlled to reduce the formation of AH.

  10. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A. R.; Prasad, M. V. R.; Ponraju, D.; Krishnan, H.

    2004-10-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO4.7H2O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO4 and Na2SO4 as well as Mg(OH)2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting.

  11. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.

    PubMed

    Kwok, Kevin W H; Dong, Wu; Marinakos, Stella M; Liu, Jie; Chilkoti, Ashutosh; Wiesner, Mark R; Chernick, Melissa; Hinton, David E

    2016-11-01

    Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96 h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na(+)/K(+ )ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress. PMID:27345576

  12. Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, S. F.; Shen, Y. L.; Zhang, L. H.; Liu, T. Z.; Zhang, Y. Q.; Guo, S. B.

    2012-06-01

    The influence of sodium borate concentration on the formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on magnesium alloys was systematically studied in an alkaline solution with addition of 0-40 g/L sodium borate. It is shown that sodium borate can decrease the solution conductivity, take part in the coating formation and increase the coating thickness. With the increase of sodium borate concentration, the boron content in the coatings increases in the range of 10-20 g/L but decreases within the range of 20-40 g/L. Sodium borate cannot further improve the corrosion resistance attributed to the development of porous or rough anodic coatings.

  13. Spatial an temporal analysis of chloride concentrations in underground water in the coastal wetland of l'Albufera, Spain

    NASA Astrophysics Data System (ADS)

    Puhakka, Evelina; Pascual-Aguilar, Juan Antonio; Andreu, Vicente

    2010-05-01

    Mediterranean coastal wetlands are of great interest for their richness in biodiversity. They are also fragile systems because they are exposed to various human pressures, such as farming systems and urban sprawl. Most Mediterranean coastal wetlands have a transient underground inter phase of continental and marine water. In many cases, the variations of the rain regime towards an increasing dryness and the overexploitation of aquiphers in these zones could favour the marine water intrusion, being a source of continental water salinisation and loss of its quality. This process can directly affect the ecosystems and produce loss of biodiversity. Thus, studies to assess the dynamics in time and space of the possible marine intrusion are necessary to evaluate coastal environment health and quality. The study has been applied to L'Albufera Natural Park, the largest Coastal Wetland in eastern Spain. Due to its importance, it has been included in the list of Wetlands of the RAMSAR Convention. In the area there is a complex relationship between the intrinsic natural importance (endemicity and biodiversity) and the human activities (traditional agriculture and hinterland industrial and settlement development). The methodological approach is based in the analysis of chloride concentrations time series of thirteen sample water points distributed in and around the boundaries of the Natural Park. All time series, between 1982 and 2008, have been analysed to establish trends both in time and space. Results show that in samples close to the see (between 1500 and 2000 metres) chloride concentrations are not too high, with values between 37 mg/l and 213 mg/l. Nonetheless, the shorter is the distance to the see the higher are the chloride levels, with values between 58 mg/l and 1131 mg/l. For longer distances, more than 2000 from the coast line, values are quite similar in most sample points, from 52 mg/l to 691 mg/l. Among all the thirteen time series analysed trends are detected

  14. A Solution NMR Investigation into the Early Events of Amelogenin Nanosphere Self-Assembly Initiated with Sodium Chloride or Calcium Chloride

    SciTech Connect

    Buchko, Garry W.; Tarasevich, Barbara J.; Bekhazi, Jacky G.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-12-08

    Using solution-state NMR spectroscopy, new insights into the early intermolecular interactions stabilizing amelogenin supramolecular assembly and the potential role of calcium ions have been discovered. Two-dimensional 1H-15N spectra were recorded for 15N-labeled amelogenin as a function of increasing Ca2+ concentration starting from monomeric conditions. Evidence for protein-protein interactions were observed between residues E18 and E40 in the N-terminus. At higher Ca2+ concentrations there was concurrent involvement of residues in both the N- (Y12-Q56) and the C-terminus (Q144-T171). Neither specific residues nor their stepwise interaction have previously been identified in the initial stages of nanosphere assembly.

  15. Effect of grain-boundary corrosion on impedance characteristics of an aluminum-zinc-indium alloy in 3.5% sodium chloride solution

    SciTech Connect

    Venugopal, A.; Angal, R.D.; Raja, V.S.

    1996-02-01

    Applications of Al alloy sacrificial anodes for cathodic protection (CP) of steel structures in marine environments are well known. Small changes in composition and heat treatment can affect the corrosion behavior of the alloy substantially. However, characterization of the alloy anodes in relation to such changes is lacking in the literature. Electrochemical impedance spectroscopy (EIS) was used to understand the dissolution behavior of an Al-Zn-In alloy in 3.5% sodium chloride (NaCl) solution as a function of time after the alloy was subjected to galvanostatic dissolution. Compared to optical microscopy, the changing trend in impedance spectra reflected the preferential dissolution of the alloy along the grain boundaries. The usefulness of EIS as a tool to indicate the current efficiency loss from grain-boundary attack was illustrated.

  16. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate).

    PubMed

    Guzmán, Eduardo; Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel; Rubio, Ramón G

    2016-01-01

    This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377

  17. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

    PubMed Central

    Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel

    2016-01-01

    Summary This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377

  18. Sodium chloride induces an NhaA/NhaR-independent acid sensitivity at neutral external pH in Escherichia coli.

    PubMed Central

    Rowbury, R J; Goodson, M; Humphrey, T J

    1994-01-01

    Escherichia coli previously grown in low-salt broth, pH 7.0, produced organisms which were markedly more acid sensitive when subsequently cultured in the same broth with 200 mM or more salt (NaCl) added. Induction of acid sensitivity occurred rapidly at both 37 and 30 degrees C, with a substantial effect within 15 min. Sensitization was partially inhibited by chloramphenicol and tetracycline and may depend on both protein synthesis-dependent and -independent physiological changes in the NaCl-induced organisms; sensitization did not result from osmotic shocking on transfer to challenge medium. Induction of acid sensitivity was affected by neither the sodium ion pore inhibitor amiloride nor the DNA synthesis inhibitor nalidixic acid; rifampin had a small effect, similar to that of chloramphenicol. Chlorides of other monovalent cations, especially Li+ and NH4+, also produced sensitization to acid, although CsCl was ineffective but did not interfere with sensitization by NaCl. Other sodium salts were also active as sensitizers, as were chlorides of divalent cations, but although sucrose (but not glycerol) was a good inducer, the results were not fully in accord with triggering of induction solely by the NaCl-associated increase in osmotic pressure. Sensitization was not prevented by deletion of the nhaA, nhaR, or nhaB gene. Acid sensitivity of NaCl-induced cells was slightly reduced after 90 min of growth at 37 degrees C in low-salt broth but was completely lost after 240 min. For NaCl-induced cells, acid killing in challenge media was not inhibited by amiloride. The NaCl-induced sensitization is distinct from the phenomenon of acid sensitivity induction in E. coli at alkaline external pH. PMID:8017942

  19. Microscale chemistry-based design of eco-friendly, reagent-saving and efficient pharmaceutical analysis: a miniaturized Volhard's titration for the assay of sodium chloride.

    PubMed

    Rojanarata, Theerasak; Sumran, Krissadecha; Nateetaweewat, Paksupang; Winotapun, Weerapath; Sukpisit, Sirarat; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2011-09-15

    This work demonstrates the extended application of microscale chemistry which has been used in the educational discipline to the real analytical purposes. Using Volhard's titration for the determination of sodium chloride as a paradigm, the reaction was downscaled to less than 2 mL conducted in commercially available microcentrifuge tubes and using micropipettes for the measurement and transfer of reagents. The equivalence point was determined spectrophotometrically on the microplates which quickened the multi-sample measurements. After the validation and evaluation with bulk and dosage forms, the downsized method showed good accuracy comparable to the British Pharmacopeial macroscale method and gave satisfactory precision (intra-day, inter-day, inter-analyst and inter-equipment) with the relative standard deviation of less than 0.5%. Interestingly, the amount of nitric acid, silver nitrate, ferric alum and ammonium thiocyanate consumed in the miniaturized titration was reduced by the factors of 25, 50, 50 and 215 times, respectively. The use of environmentally dangerous dibutyl phthalate was absolutely eliminated in the proposed method. Furthermore, the release of solid waste silver chloride was drastically reduced by about 25 folds. Therefore, microscale chemistry is an attractive, facile and powerful green strategy for the development of eco-friendly, safe, and cost-effective analytical methods suitable for a sustainable environment. PMID:21807190

  20. Some effects of sublethal concentrations of sodium arsenite on bluegills and the aquatic environment

    USGS Publications Warehouse

    Gilderhus, P.A.

    1966-01-01

    Bluegills were exposed to sodium arsenite at various concentrations and treatment frequencies in outdoor pools. The effects of the treatments on the fish and invertebrates in the pools were assessed. Applications totaling 4.0 ppm or more of NaAsO2 during the experiment were reflected in reduced survival and growth of the fish, with immature fish being affected to a greater degree than adults. Some pathological changes were observed in adults. Substantial residues of arsenic were found in the water, bottom soil, and throughout the organs and flesh of the bluegills at the termination of the experiment. Bottom fauna and plankton populations were reduced or inhibited in several pools with the highest concentrations of the herbicide.

  1. Addition of sodium bicarbonate to complete pelleted diets fed to dairy calves.

    PubMed

    Wheeler, T B; Wangsness, P J; Muller, L D; Griel, L C

    1980-11-01

    During two trials, 35 and 27 Holstein calves were fed ad libitum complete, pelleted diets containing either 35% alfalfa (Trial 1) or 35% grass (Trial 2) hay from birth to 12 wk of age. Calves in Trial 1 were fed one of the following diets: control, control + 3.5% sodium chloride, or control + 5% sodium bicarbonate. In Trial 2, diets were: control, control + 5% sodium bicarbonate, or control + 5% sodium bicarbonate + loose, chopped grass hay. Intake of dry matter, gain in body weight, ruminal pH, or fecal starch did not differ. Calves fed sodium bicarbonate in Trial 1 but not 2 had a reduced feed efficiency compared with control and supplemented diets. In Trial 1 added sodium bicarbonate did not alter intake or digestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water intake in Trial 2. Incidence of free-gas bloat was higher in calves fed sodium bicarbonate in both trials. Addition of sodium bicarbonate to complete pelleted diets containing 35% alfalfa or 35% grass hay appeared to have no benefit for young, growing dairy calves in performance and health. PMID:7440817

  2. [Inhibition of growth of E. coli cells by anolites of sodium and potassium chloride after processing solutions in a diaphragmatic electrolyzer].

    PubMed

    Miroshnikov, A I

    1998-01-01

    The relationship between the inhibitory effect of sodium chloride and potassium anolites, obtained in a diaphragm electrolyser, and the physicochemical parameters of solutions was compared with that between the inhibitory effect and physicochemical properties of hypochlorites obtained after treating the solutions in an electrolyser having no diaphragm was compared. The biological activity of solutions containing molecular chlorine, hypochlorous acid, and hypochlorite ions was determined by their effect on the growth of E. coli cells. After a 5-min incubation of cells with each of the oxidizers, the bacterial growth stopped and was not restored during one day. The conclusion is made that the oxidizers irreversibly disturb the barrier properties of cell membranes and, in some cases, destroy cells. In model solutions, as well as in solutions treated after heating on a water bath or after the addition of sodium thiosulfate, a delay in the start of E. coli growth occurs. After the lag-phase, the repair of cells sets on, and after a day the optical density of cells increases and approaches the control. PMID:10079921

  3. Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum.

    PubMed

    Wang, Dongyang; Wang, Haiyan; Han, Bing; Wang, Bin; Guo, Anping; Zheng, Dong; Liu, Chongjing; Chang, Lili; Peng, Ming; Wang, Xuchu

    2012-02-01

    Soil salinity is contributed largely by NaCl but some halophytes such as Sesuvium portulacastrum have evolved to adapt salinity environment and demonstrate optimal development under moderate salinity. To elucidate the detail mechanisms of the great salt tolerance and determine the respective contributions of Na(+), K(+) and Cl(-) on the development of S. portulacastrum, morphological and physiological analysis were performed using plants supplied with 200 mM of different ions including cations (Na(+), K(+), Li(+)) and anions (Cl(-), NO(3)(-), Ac(-)) respectively. The results revealed that the salt-treated plants accumulated large amounts of sodium in both leaf and stem. There was a greater shoot growth in presence of external Na(+) compared to K(+) and Cl(-). Na(+) was found more effective than K(+) and Cl(-) in cell expansion, leaf succulence, and shoot development. Flame emission and X-Ray microanalysis revealed the relative Na(+) content was much higher than K(+) and Cl(-) in both leaf and stem of well developed S. portulacastrum, leading to a higher Na(+)/K(+) ratio. The effects of different ions on the development of S. portulacastrum were listed as the following: Na(+) > NO(3)(-) > CK > Cl(-) > K(+) > Ac(-) > Li(+). These results demonstrated NaCl toxicity is attributable largely to the effect of Cl(-) but rarely to Na(+), and thus sodium is concluded as a more important macronutrient than potassium and chloride for improving leaf succulence and shoot development of halophyte S. portulacastrum. PMID:22153240

  4. Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons.

    PubMed

    Zhang, Bo; Nie, Aifang; Bai, Wei; Meng, Ziqiang

    2004-09-01

    The effects of aluminum chloride (AlCl3) on sodium current (INa), the transient outward potassium (IA) and delayed rectifier potassium currents (IK) in hippocampal CA1 neurons of rats were studied using the whole cell patch-clamp technique. AlCl3 decreased INa, IA, and IK in a partly reversible, dose and voltage-dependent manner. AlCl3 prolonged the time to peak of INa, and increased the inactivation time constants of INa and IA . In addition, 1000 microM AlCl3 shifted the voltage dependence of steady-state activation of INa, IA and IK toward positive potential, and the voltage dependence of steady-state inactivation of INa, IA toward negative potential. These results imply that AlCl3 could affect the activation and inactivation courses of sodium current and potassium current of rat hippocampal CA1 neurons, which may contribute to damage of the central nervous system by aluminum. PMID:15234075

  5. Value of plasma chloride concentration and acid-base status in the differential diagnosis of hyperpara-thyroidism from other causes of hypercalcaemia

    PubMed Central

    Wills, M. R.

    1971-01-01

    A study is reported of the estimation of plasma chloride concentration and acid-base status in the differentiation of primary hyperparathyroidism from all other causes of hypercalcaemia. In the two groups of patients studied, all of whom had hypercalcaemia, there was complete separation between the two groups on the basis of plasma chloride concentration and acid-base status. In 16 patients with primary hyperparathyroidism the increase in plasma chloride concentration and associated metabolic acidosis could have been accounted for by the known renal tubular effects of parathyroid hormone. In 13 patients with hypercalcaemia due to various other causes the decrease in plasma chloride concentration and associated metabolic alkalosis could be accounted for either by the known effects of an excess of calcium-ion on the renal tubules, or perhaps by suppression of endogenous parathyroid hormone secretion. In patients with hypercalcaemia and hypophosphataemia of `pseudohyperparathyroidism' associated with non-endocrine tumours it is postulated that the low plasma chloride concentrations and metabolic alkalosis found in these patients were due either to a differing biological activity of the parathyroid-hormone-like polypeptide secreted by the tumour cells, or possibly to simultaneous secretion by these cells of an ACTH-like polypeptide. PMID:5573436

  6. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiClsbnd KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Yoon, Dalsung; Phongikaroon, Supathorn

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiClsbnd KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl3sbnd ZrCl4sbnd LiClsbnd KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl4 show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl4 and ZrCl2 as the function of temperature can be expressed as DZr(IV) = 0.00046exp(-3716/T) and DZr(II) = 0.027exp(-5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl4 at different temperatures were calculated. Furthermore, the results from the mixture of UCl3 and ZrCl4 indicate that high concentrations of UCl3 hide the features of the smaller concentration of ZrCl4 while Zr peaks become prominent as the concentration of ZrCl4 increases.

  7. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  8. Histopathological changes in the epidermis of the air breathing catfish Heteropneustes fossilis exposed to sublethal concentration of mercuric chloride.

    PubMed

    Rajan, M T; Banerjee, T K

    1993-12-01

    Histopathological alterations induced by the sublethal concentration of (0.03 ppm) mercuric chloride solution on the epidermis of the fresh-water catfish Heteropneustes fossilis have been studied. It induces slow but significant histopathological changes in the various cellular components of the epidermis. It induces vacuolization, necrosis and pycnosis of the nuclei of the epithelial cells which subsequently shed. Loosening of epithelial cells of the outermost and middle layers following degeneration of the intercellular material and widened intercellular spaces is another important alteration. Prolonged mercury treatment also causes a gradual decrease in staining intensity for sulphated glycosaminoglycans in the outer border of the most superficial layer epithelial cells. The glandular elements (club cells and mucocytes) also get affected, showing cyclic degeneration followed by regeneration. PMID:8198757

  9. The action of very low concentrations of sodium pentachlorophenate on freshly laid eggs of Australorbis glabratus*

    PubMed Central

    Olivier, Louis; Haskins, Willard T.; Gurian, Joan

    1962-01-01

    This paper describes experiments to test the action of low concentrations of sodium pentachlorophenate against freshly laid eggs of Australorbis glabratus, the principal intermediate host of Schistosoma mansoni in the western hemisphere. Techniques for collecting the eggs without damage and for conducting the tests are described. This compound was found to be 4-10 times more toxic for the eggs than for the adult snails. Strain differences in susceptibility of the eggs were also found. The demonstration of greater susceptibility of the eggs to the compound suggests that snail control might be accomplished more economically in some situations if the chemical were directed primarily against the eggs. The possibility of using eggs instead of adults for screening potential molluscicides is also discussed. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7 PMID:14481844

  10. Effects of methylmercuric chloride of low concentration on the rat nervous system

    SciTech Connect

    Yamamura, K.; Maehara, N.; Ohno, H.; Ueno, N.; Kohyama, A.; Satoh, T.; Shimoda, A.; Kishi, R.

    1987-06-01

    In an earlier study the authors reported the effects of 20 ..mu..g/g of MeHg on the rat. After 2-week exposure to 20 ..mu..g/g MeHg, effects on behavior, pathological changes of brain and prolongation of EEP (early potential of evoked potential) latency were observed. So, in this experiment, they planned to expose rats to lower concentrations of MeHg. They therefore investigated the effects of MeHg exposure at a low concentration on behavioral indices, neurological signs, the circadian rhythm of behaviors, EEP, and pathology of the visual cortex and the sciatic nerve in rats.

  11. Predicting perchlorate uptake in greenhouse lettuce from perchlorate, nitrate and chloride irrigation water concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perchlorate (ClO4-) has been detected in edible leafy vegetables irrigated with Colorado River water. The primary concern has been the ClO4- concentration in lettuce. There has been a limited number of studies on ClO4- uptake but the interactive effect of other anions on ClO4- uptake is not known in...

  12. Congenital Chloride Diarrhea: Diagnosis by Easy-Accessible Chloride Measurement in Feces

    PubMed Central

    Eckhardt, M.-C.; Nielsen, P. E.

    2016-01-01

    Background. Congenital chloride diarrhea (CCD) is an autosomal recessive disorder caused by mutations in the genes encoding the intestinal Cl−/HCO3− exchanger and is clinically characterized by watery, profound diarrhea, electrolyte disturbances, and metabolic alkalosis. The CCD diagnosis is based on the clinical symptoms and measurement of high chloride concentration in feces (>90 mmol/L) and is confirmed by DNA testing. Untreated CCD is lethal, while long-term clinical outcome improves when treated correctly. Case Presentation. A 27-year-old woman had an emergency caesarian due to pain and discomfort in gestational week 36 + 4. The newborn boy had abdominal distension and yellow fluid per rectum. Therapy with intravenous glucose and sodium chloride decreased his stool frequency and improved his clinical condition. A suspicion of congenital chloride diarrhea was strongly supported using blood gas analyzer to measure an increased chloride concentration in the feces; the diagnosis was confirmed by DNA testing. Discussion. Measurement of chloride in feces using an ordinary blood gas analyzer can serve as a preliminary analysis when congenital chloride diarrhea is suspected. This measurement can be easily performed with a watery feces composition. An easy-accessible chloride measurement available will facilitate the diagnostics and support the initial treatment if CCD is suspected.

  13. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.

    PubMed Central

    Dulhunty, A F

    1978-01-01

    1. The steady-state intracellular membrane potential of fibres in thin bundles dissected from mouse extensor digitorum longus or soleus muscles or rat sternomastoid muscles was measured with 3 M-KCl glass micro-electrodes. The steady-state membrane potential was found to depend on the extracellular concentrations of Na, K and Cl ions. 2. The resting membrane potential (3.5 mM-[K]o, 160 mM-[Cl]o) was -74 +/- 1 mV (mean +/- S.E.) and a reduction in [Cl]o to 3.5 mM caused a reversible steady-state hyperpolarization to -94 +/- 1 mV (mean +/- S.E.). 3. The steady-state membrane potentials recorded in fibres exposed to different [K]o and zero [Cl]o were consistent with potentials predicted by the Goldman, Hodgkin & Katz (GHK) equation for Na and K. The results of similar experiments done with Cl as the major external anion could not be fitted by the same equation. 4. The GHK equation for Na, K and Cl did fit data obtained from fibres in solutions containing different [K]o with Cl as the major external anion if the intracellular Cl concentration was allowed to be out of equilibrium with the steady-state membrane potential. 5. It is suggested that an active influx of Cl ions controls the intracellular Cl concentrations in these fibres and hence maintains the Cl equilibrium potential at a depolarized value with respect to the resting membrane potential. 6. The steady-state membrane potential of rat diaphragm fibres was independent of [Cl]o and it seems likely that the intracellular Cl concentration of these fibres is not controlled by active Cl transport. PMID:650497

  14. Effect of over-the-counter dosages of naproxen sodium and acetaminophen on plasma lithium concentrations in normal volunteers.

    PubMed

    Levin, G M; Grum, C; Eisele, G

    1998-06-01

    Prescription doses of nonsteroidal antiinflammatory agents have been shown to decrease clearance and increase plasma concentrations of lithium. This study was designed to evaluate whether over-the-counter (OTC) doses of naproxen sodium or acetaminophen have the same potential to affect lithium concentration. This was a prospective, crossover, 3-phase study conducted at the Clinical Pharmacology Studies Unit of the Albany Medical Center Hospital during July and August of 1995. The 3-phase study comprised the following: phase 1, lithium carbonate (300 mg every 12 hours) alone for 7 days; phase 2, lithium and either naproxen sodium (220 mg every 8 hours) or acetaminophen (650 mg every 6 hours) for 5 days; and phase 3, a 2-day washout period followed by a crossover to lithium with the alternate drug (acetaminophen or naproxen sodium) for 5 days. Twelve healthy male volunteers were recruited, nine of whom completed the study and were included in the statistical analysis. Mean (+/-SD) plasma lithium concentrations for subjects in treatment group 1 (lithium in phase 1, lithium and naproxen sodium in phase 2, lithium and acetaminophen in phase 3) were 0.38 (+/-0.11), 0.40 (+/-0.07), and 0.36 (+/-0.11) mEq/L, respectively. Mean plasma lithium concentrations for subjects in treatment group 2 (lithium in phase 1, lithium and acetaminophen in phase 2, lithium and naproxen sodium in phase 3) were 0.43 (+/-0.05), 0.48 (+/-0.10), and 0.48 (+/-0.05) mEq/L, respectively. One-way repeated-measures analysis of variance and paired t-test showed no statistically significant differences (p>0.05) in plasma lithium concentrations during any phase of the study. The results of this study demonstrated that OTC doses of naproxen sodium and acetaminophen did not increase plasma lithium concentrations in these volunteers when taken for short periods of time. PMID:9617983

  15. "Low" concentrations of sodium fluoride inhibit neurotransmitter release from the guinea-pig superior cervical ganglion.

    PubMed

    Borasio, Pier Giorgio; Cervellati, Franco; Pavan, Barbara; Pareschi, Maria Cristina

    2004-07-01

    The role of G proteins and related second messenger system on the modulation of acetylcholine release from [3H]choline-preloaded guinea-pig superior cervical ganglion was investigated using the potent general activator NaF. The electrically evoked (1 Hz, 5 min) [3H] release was inhibited by "low" F- concentrations (1-2.5 mM), by the adenylyl cyclase blocker MDL 12330A (10 microM), alone and in combination with 1 mM NaF, and increased by 0.5 mM 8Br-cAMP, 100 microM forskolin and 0.5 mM 3-isobutyl-1-methylxantine. No effect of 1 mM F- was observed on spontaneous release. Fluoride-induced inhibition was counteracted by the G protein blocker sulmazole (1 mM), forskolin and alteration of calcium influx by increasing [Ca2+]out from 2.2 to 6 mM, raising the rate of stimulation (10 Hz, 30 s), or broadening the presynaptic action potential with 10 microM 4-aminopyridine and 50 microM tetraethylammonium chloride. Thus a NaF-sensitive G protein, linked to cAMP synthesis, is determinant for the inhibition of neurosecretion in this cholinergic synapse, involving Ca2+-dependent mechanisms. PMID:15196683

  16. Leaching of lead slag component by sodium chloride and diluted nitric acid and synthesis of ultrafine lead oxide powders

    NASA Astrophysics Data System (ADS)

    Shu, Yuehong; Ma, Cheng; Zhu, Longguan; Chen, Hongyu

    2015-05-01

    The compounds in lead slag are transformed into [PbCl4]2- in a mixed solution of HNO3 and NaCl, which is converted into PbC2O4 by the addition of sodium oxalate and polyethylene glycol dispersant. Novel lead oxides are prepared via a combustion-calcination process from lead oxalate precursor. Key properties of the new oxides, such as crystalline phases and morphology, have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that lead oxides synthesized at different calcination temperatures comprise mainly α-PbO and β-PbO phases. In battery testing, the results reveal that the α-PbO phase exhibits higher initial capacity as positive active material, discharging about 150 mAh g-1 at 20 mA g-1. While β-PbO yields a relatively improved cycle life, in 50 cycles, its capacity loss is 5%. Further work is being carried out with the aim to optimize the battery manufacturing process or to find out the optimum ratio of α-PbO to β-PbO in order to sustain high discharge capacity and acceptable cycle life.

  17. [Experimental substantiation of the maximum permissible concentration (MAC) of polyvinyl chloride resin].

    PubMed

    Khristeva, V; Spasovski, M

    1976-01-01

    The acute and chronic oral, dermal and inhalatory toxicity of PVH resin is studied in white rats. It is established that in acute treatment, irrespective of the route of PVC resin penetration into the organism, its effect proves weakly toxic. During chronic oral and inhalatory experiments, a slight affection of peripheral blood elements only is noted. In the lungs of the animals inhalating 2 and 6 mg/m3 concentrations for a duration of four months, no changes are detected which might be interpreted as being PVH specific. Cumulative effect, and skin stimulating and sensibilizing action of the polymer are neither established. Against the background of the obtained results, a provisional normal MAC value is proposed, namely 2 mg/m3 of PVH dust in the air of the working environment. PMID:1032719

  18. Sodium blood test

    MedlinePlus

    ... foods. The most common form of sodium is sodium chloride, which is table salt. This test is usually done as part of an electrolyte or basic metabolic panel blood test . Your blood sodium level represents a balance between the sodium and ...

  19. Physiochemical Studies of Sodium Chloride on Mungbean (Vigna radiata L. Wilczek) and Its Possible Recovery with Spermine and Gibberellic Acid

    PubMed Central

    Mitra, Sanglap; Paul, Atreyee

    2015-01-01

    The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings. PMID:25734186

  20. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt separates out at elevated temperatures, and ammonium chloride is recovered... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  1. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt separates out at elevated temperatures, and ammonium chloride is recovered... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138...

  2. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt separates out at elevated temperatures, and ammonium chloride is recovered... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  3. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt separates out at elevated temperatures, and ammonium chloride is recovered... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  4. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-12-01

    The evolution of the corrosion process of AA 2024-T3 in 0.58 g L-1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La3Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  5. The study of the varying characteristics of cathodic regions for defective coating in 3.5% sodium chloride solution by EIS and WBE

    NASA Astrophysics Data System (ADS)

    Wang, Haijie; Wang, Jia; Wang, Wei; Zhang, Wei

    2015-04-01

    The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carried out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.

  6. Effect of chlorine, sodium chloride, trisodium phosphate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface.

    PubMed

    Favier, G L; Escudero, M E; de Guzman, A M

    2001-10-01

    Eggshell sanitizing practices are necessary to improve microbiological safety of fresh hen eggs and their products. In this work, the effects of 100 mg/liter free chlorine (chl), 3% sodium chloride (NaCl), 1, 5, and 12% trisodium phosphate (TSP) in wash solutions, and UVR (ultraviolet radiation; 4.573 microW/cm2) were studied at different times on uninoculated and Yersinia enterocolitica-inoculated eggs. On uninoculated eggs, the best results were obtained with 100 mg/liter chlorine and UV exposure for >25 min, with reductions of 1.28 and 1.60 log cycles, respectively, compared to the average bacterial count (4.55 log CFU/egg) on the control (untreated eggs). On Y. enterocolitica-inoculated eggs, highest reductions of the average bacterial count (7.35 log CFU/egg) were obtained with 5 and 12% TSP and 100 mg/liter chl. The decrease obtained with 12% TSP (3.74-log reduction) was significantly higher (P < 0.05) than those obtained with the remaining treatments. Y. enterocolitica was more resistant to UVR than the eggshell natural mesophilic aerobic microflora, except when low inoculum (4.39 log CFU/egg) was assayed. Changes in eggshell microstructure were measured by the blue lake staining method. The presence of Yersinia and Salmonella in eggshell natural flora was also investigated. PMID:11601717

  7. Hypotonicity Stimulates Potassium Flux through the WNK-SPAK/OSR1 Kinase Cascade and the Ncc69 Sodium-Potassium-2-Chloride Cotransporter in the Drosophila Renal Tubule*

    PubMed Central

    Wu, Yipin; Schellinger, Jeffrey N.; Huang, Chou-Long; Rodan, Aylin R.

    2014-01-01

    The ability to osmoregulate is fundamental to life. Adult Drosophila melanogaster maintain hemolymph osmolarity within a narrow range. Osmolarity modulates transepithelial ion and water flux in the Malpighian (renal) tubules of the fly, which are in direct contact with hemolymph in vivo, but the mechanisms causing increased transepithelial flux in response to hypotonicity are unknown. Fly renal tubules secrete a KCl-rich fluid. We have previously demonstrated a requirement for Ncc69, the fly sodium-potassium-2-chloride cotransporter (NKCC), in tubule K+ secretion. Mammalian NKCCs are regulated by a kinase cascade consisting of the with-no-lysine (WNK) and Ste20-related proline/alanine-rich (SPAK)/oxidative stress response (OSR1) kinases. Here, we show that decreasing Drosophila WNK activity causes a reduction in K+ flux. Similarly, knocking down the SPAK/OSR1 homolog fray also decreases K+ flux. We demonstrate that a hierarchical WNK-Fray signaling cascade regulates K+ flux through Ncc69, because (i) a constitutively active Fray mutant rescues the wnk knockdown phenotype, (ii) Fray directly phosphorylates Ncc69 in vitro, and (iii) the effect of wnk and fray knockdown is abolished in Ncc69 mutants. The stimulatory effect of hypotonicity on K+ flux is absent in wnk, fray, or Ncc69 mutant tubules, suggesting that the Drosophila WNK-SPAK/OSR1-NKCC cascade is an essential molecular pathway for osmoregulation, through its effect on transepithelial ion flux and fluid generation by the renal tubule. PMID:25086033

  8. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces.

    PubMed

    Block, C

    2004-06-01

    Clostridium difficile is an important cause of nosocomial diarrhoea. The aim of this study was to evaluate the potential for Perasafe, a recently introduced biocide, to contribute to control of C. difficile spores in the patient environment, in comparison with the chlorine-releasing agent sodium dichloroisocyanurate (NaDCC). These agents were evaluated against a water control, in a surface test on stainless steel and polyvinyl chloride (PVC) floor covering, materials commonly found in the hospital environment. The organisms studied were a toxigenic clinical isolate of C. difficile, and Bacillus atrophaeus (formerly B. subtilis var niger). The data indicate that in our in vitro system, Perasafe was significantly more active than NaDCC (1000 ppm available chlorine) against C. difficile spores dried on stainless steel surfaces, and against B. atrophaeus on PVC floor covering material, achieving mean log10 reduction factors in viable counts of 6 and 5.5, respectively, at 10 min exposures. Perasafe appeared to be less lethal in 10 min exposures to C. difficile spores fixed on PVC floor covering material. In general, 1000 ppm chlorine generated from NaDCC showed lower log10 reduction factors in viable counts at 10 min, ranging from 0.7 to 1.5, than Perasafe which ranged from 2.7 to 6.0. The potential efficacy of Perasafe in reducing the density of C. difficile spores in the patient environment in hospitals, nursing homes or other long-stay facilities should be evaluated in field studies. PMID:15183245

  9. Corrosion resistance of AA6063-Type Al-Mg-Si alloy by silicon carbide in sodium chloride solution for marine application

    NASA Astrophysics Data System (ADS)

    Fayomi, Ojo Sunday Isaac; Abdulwahab, Malik; Popoola, Abimbola Patricia Idowu; Asuke, Ferdinand

    2015-12-01

    The present work focused on corrosion inhibition of AA6063 type (Al-Mg-Si) alloy in sodium chloride (NaCl) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance ( R p), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCl environment decreased significantly with addition of the inhibitor.

  10. Effects of brine injection wells, dry holes, and plugged oil/gas wells on chloride, bromide, and barium concentrations in the Gulf Coast Aquifer, southeast Texas, USA.

    PubMed

    Hudak, P F; Wachal, D J

    2001-06-01

    Data from 1,122 brine injection wells, 24,515 dry holes, 20,877 plugged oil/gas wells, and 256 water wells were mapped with a geographic information system (GIS) and statistically analyzed. There were 9, 107, and 58 water wells within 750 m of a brine injection well, dry hole, or plugged oil/gas well, respectively. Computed median concentrations were 157 mg/l for chloride, 0.8 mg/l for bromide, and 169 microg/l for barium. The maximum chloride concentration was 2,384 mg/l, close to 10 times the secondary drinking water standard. Shallow water wells and water wells near plugged oil/gas wells had significantly higher chloride and bromide levels. PMID:11485217

  11. Cytotoxic effects of high concentrations of sodium ascorbate on human myeloid cell lines.

    PubMed

    Mastrangelo, Domenico; Massai, Lauretta; Lo Coco, Francesco; Noguera, Nélida Inés; Borgia, Loredana; Fioritoni, Giuseppe; Berardi, Anna; Iacone, Antonio; Muscettola, Michela; Pelosi, Elvira; Castelli, Germana; Testa, Ugo; Di Pisa, Francesco; Grasso, Giovanni

    2015-11-01

    The effect of high doses of intravenous (sodium) ascorbate (ASC) in the treatment of cancer has been controversial although there is growing evidence that ASC in high (pharmacologic) concentrations induces dose-dependent pro-apoptotic death of tumor cells, in vitro. Very few data are available on the role of ASC in the treatment of acute myeloid leukemia (AML). Ascorbate behaves as an antioxidant at low (physiologic), and as pro-oxidant at pharmacologic, concentrations, and this may account for the differences reported in different experimental settings, when human myeloid cell lines, such as HL60, were treated with ASC. Considering the myeloid origin of HL60 cells, and previous literature reports showing that some cell lines belonging to the myeloid lineage could be sensitive to the pro-apoptotic effects of high concentrations of ASC, we investigated in more details the effects of high doses (0.5 to 7 mM) of ASC in vitro, on a variety of human myeloid cell lines including the following: HL60, U937, NB4, NB4-R4 (retinoic acid [RA]-resistant), NB4/AsR (ATO-resistant) acute promyelocytic leukemia (APL)-derived cell lines, and K562 as well as on normal CD34+ progenitors derived from human cord blood. Our results indicate that all analyzed cell lines including all-trans retinoic acid (ATRA)- and arsenic trioxide (ATO)-resistant ones are highly sensitive to the cytotoxic, pro-oxidant effects of high doses of ASC, with an average 50 % lethal concentration (LC50) of 3 mM, depending on cell type, ASC concentration, and time of exposure. Conversely, high doses of ASC neither did exert significant cytotoxic effects nor impaired the differentiation potential in cord blood (CB) CD34+ normal cells. Since plasma ASC concentrations within the millimolar (mM) range can be easily and safely reached by intravenous administration, we conclude that phase I/II clinical trials using high doses of ASC should be designed for patients with advanced/refractory AML and APL. PMID:26264692

  12. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  13. Photoinactivation of sodium-potassium-chloride cotransport in LLC-PK1/Cl 4 cells by bumetanide

    SciTech Connect

    Amsler, K.; Kinne, R.

    1986-05-01

    Rb+ uptake into LLC-PK1/Cl 4 cells can be subdivided into three components: 1) ouabain-sensitive uptake, 2) bumetanide-sensitive uptake, and 3) ouabain- and bumetanide-insensitive uptake. Exposure of cells to near-UV light in the presence of low concentrations of bumetanide produces a specific, irreversible inhibition of the bumetanide-sensitive uptake component, while not affecting the other two uptake components. Irreversible inhibition of bumetanide-sensitive transport is observed when measuring either cellular uptake or efflux and also when measuring /sup 86/Rb+ uptake into membrane vesicles. The irreversible inhibition is both concentration and time dependent and is blocked under conditions where the interaction of bumetanide with the Na+-K+-Cl- cotransporter is disturbed. We conclude that bumetanide, at low concentrations, can specifically and irreversibly inhibit the Na+-K+-Cl- cotransporter of LLC-PK1/Cl 4 cells. We suggest that this irreversible inhibition is the result of the photoactivation of an ether linkage in the bumetanide molecule, leading to a covalent binding of bumetanide to the Na+-K+-Cl- cotransporter.

  14. EVALUATION OF A TEFLON HELIX LIQUID-LIQUID EXTRACTOR FOR CONCENTRATION OF TRACE ORGANICS FROM WATER INTO METHYLENE CHLORIDE (JOURNAL VERSION)

    EPA Science Inventory

    A continuous liquid-liquid extraction system (CLLE) for concentrating trace organics from water into methylene chloride for analysis was designed, built and evaluated. The CLLE uses Teflon coils for phase contact and gravity phase separation. The system includes a self-contained ...

  15. Understanding the Concentration-Discharge Relationship of Chloride and Magnesium in Shale Hills Using RT-Flux-PIHM

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Bao, C.; Li, L.; Shi, Y.; Sullivan, P. L.; Duffy, C.; Brantley, S. L.

    2015-12-01

    A number of solutes have been found to be "chemostatic" in US watersheds, meaning the concentration of these solutes only change slightly while stream discharge varies by up to more than three orders of magnitude. To understand complex hydrogeochemical processes at watershed scale, here we use RT-Flux-PIHM, a newly developed code that adds a multi-component reactive transport (RT) module to Flux-PIHM, a hydrological land-surface model. The model was calibrated using hydrological and water chemistry data at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) and was used to understand the watershed dynamics for chloride (Cl) and magnesium (Mg). Shale Hills is a V-shaped watershed with a first order stream underlain by Rose Hill shale in central Pennsylvania. Both Cl and Mg are found to be "chemostatic" in the stream water in SSHCZO. The use of RT-Flux-PIHM helps us validate and visualize this solute watershed dynamic. We found that the watershed is hydrologically more connected (between hillslope and stream) during wet spring and winter seasons, which leads to quicker release of Cl. In the dry summer, however, the watershed is much less connected and high concentration of Cl is trapped along planar hillslopes. The stream mostly drains from swales and valley flows with relatively low Cl concentrations. Large rainfall events right after summer flush out and dilute the "old water" with high Cl concentration ([Cl]). Thus, this seasonal hydrologic connectivity controls the relative stable stream [Cl] despite of changes in stream discharge. Mg is originated from clay dissolution and groundwater influx and is also buffered by cation exchange reaction, which maintains relatively uniform Mg concentration across the watershed. In the wet season, higher discharge and therefore more diluted groundwater influx is compensated by faster dissolution and quick release of Mg from cation exchange sites. The opposite occurs in the dry summer. The balance of these multiple

  16. A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers

    NASA Astrophysics Data System (ADS)

    Ravansalar, Masoud; Rajaee, Taher; Zounemat-Kermani, Mohammad

    2016-06-01

    The prediction of water quality parameters in water resources such as rivers is of importance issue that needs to be considered in better management of irrigation systems and water supplies. In this respect, this study proposes a new hybrid wavelet-linear genetic programming (WLGP) model for prediction of monthly sodium (Na+) concentration. The 23-year monthly data used in this study, were measured from the Asi River at the Demirköprü gauging station located in Antakya, Turkey. At first, the measured discharge (Q) and Na+ datasets are initially decomposed into several sub-series using discrete wavelet transform (DWT). Then, these new sub-series are imposed to the ad hoc linear genetic programming (LGP) model as input patterns to predict monthly Na+ one month ahead. The results of the new proposed WLGP model are compared with LGP, WANN and ANN models. Comparison of the models represents the superiority of the WLGP model over the LGP, WANN and ANN models such that the Nash-Sutcliffe efficiencies (NSE) for WLGP, WANN, LGP and ANN models were 0.984, 0.904, 0.484 and 0.351, respectively. The achieved results even points to the superiority of the single LGP model than the ANN model. Continuously, the capability of the proposed WLGP model in terms of prediction of the Na+ peak values is also presented in this study.

  17. Effects of sodium chloride exposure on ion regulation in larvae (glochidia) of the freshwater mussel Lampsilis fasciola.

    PubMed

    Nogueira, Lygia S; Bianchini, Adalto; Wood, Chris M; Loro, Vania L; Higgins, Sarah; Gillis, Patricia L

    2015-12-01

    The salinization of freshwater can have negative effects on ecosystem health, with heightened effects in salt-sensitive biota such as glochidia, the larvae of freshwater mussels. However, the toxicological mechanism underlying this sensitivity is unknown. Therefore, Lampsilis fasciola glochidia were exposed to NaCl (nominally 0.25 and 1.0 g/L) prepared in reconstituted moderately-hard water (control), as well as to a dilution of that water (1:4) with ultrapure reference water (diluted control). Unidirectional Na(+) influx (measured with (22)Na) was evaluated after 1, 3 and 48 h of exposure. In addition, unidirectional Cl(-) influx (measured with (36)Cl), whole-body ion (Cl(-) and Na(+)) concentrations, and glochidia viability (measured as the ability to close valves) were assessed after 48 h of exposure. Significantly reduced glochidia viability (56%) was observed after exposure to 1.0 g/L NaCl. Na(+) influx was significantly higher in glochidia exposed to both 0.25 and 1.0 g/L NaCl for 1h than in those kept under control conditions. After 3 and 48 h of exposure, differences in Na(+) influx rate between salt-exposed and control glochidia were generally reduced, indicating that larvae may be able to, at least temporarily, recover their ability to regulate Na(+) influx when exposed to elevated NaCl concentration. Compared to the moderately-hard water control, whole-body Na(+) and Cl(-) concentrations were relatively unchanged in glochidia exposed to 0.25 g/L NaCl, but were significantly elevated in glochidia exposed to 1.0 g/L NaCl and the diluted control. While Na(+) influx rate had recovered to the control level after 48 h of exposure to 1.0 g/L NaCl, Cl(-) influx rate remained elevated, being ~7-fold higher than the Na(+) influx rate. These findings suggest that the loss of viability observed when glochidia were exposed to a high NaCl concentration (1.0 g/L) could be caused by ionoregulatory disturbances mainly associated with an elevated Cl(-) influx. PMID

  18. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations

    PubMed Central

    TARTARI, Talita; BACHMANN, Luciano; MALIZA, Amanda Garcia Alves; ANDRADE, Flaviana Bombarda; DUARTE, Marco Antonio Hungaro; BRAMANTE, Clovis Monteiro

    2016-01-01

    ABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0

  19. Textures on the surface of BSA films with different concentrations of sodium halides and water state in solution

    NASA Astrophysics Data System (ADS)

    Glibitskiy, Gennadiy; Glibitskiy, Dmitriy; Gorobchenko, Olga; Nikolov, Oleg; Roshal, Alexander; Semenov, Mikhail; Gasan, Anatoliy

    2015-03-01

    The formation of the textures on the surface of the films from the solutions of bovine serum albumin (BSA) with sodium halides (NaF, NaCl, and NaBr) of various concentrations was studied. The formation of symmetric zigzag textures on the surface of BSA films (Cryst Eng 3:173-194, 2000) in the presence of sodium halides depends on the conformational state of the protein globule. Thermal denaturation of BSA also did not allow to form zigzag textures on the surface of the films.

  20. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate

    PubMed Central

    Li, M-S; Demsey, AFA; Qi, J; Linsdell, P

    2009-01-01

    Background and purpose: Methanethiosulphonate (MTS) reagents are used extensively to modify covalently cysteine side chains in ion channel structure-function studies. We have investigated the interaction between a widely used negatively charged MTS reagent, (2-sulphonatoethyl) methanethiosulphonate (MTSES), and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Experimental approach: Patch clamp recordings were used to study a ‘cys-less’ variant of human CFTR, in which all 18 endogenous cysteine residues have been removed by mutagenesis, expressed in mammalian cell lines. Use of excised inside–out membrane patches allowed MTS reagents to be applied to the cytoplasmic face of active channels. Key results: Intracellular application of MTSES, but not the positively charged MTSET, inhibited the function of cys-less CFTR. Inhibition was voltage dependent, with a Kd of 1.97 mmol·L−1 at −80 mV increasing to 36 mmol·L−1 at +80 mV. Inhibition was completely reversed on washout of MTSES, inconsistent with covalent modification of the channel protein. At the single channel level, MTSES caused a concentration-dependent reduction in unitary current amplitude. This inhibition was strengthened when extracellular Cl− concentration was decreased. Conclusions and implications: Our results indicate that MTSES inhibits the function of CFTR in a manner that is independent of its ability to modify cysteine residues covalently. Instead, we suggest that MTSES functions as an open channel blocker that enters the CFTR channel pore from its cytoplasmic end to physically occlude Cl− permeation. Given the very widespread use of MTS reagents in functional studies, our findings offer a broadly applicable caveat to the interpretation of results obtained from such studies. PMID:19466983

  1. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels.

    PubMed

    Mei, XiuQin; Li, SongSong; Li, QuSheng; Yang, YuFeng; Luo, Xuan; He, BaoYan; Li, Hui; Xu, ZhiMin

    2014-07-01

    Soil salinity is known to enhance cadmium (Cd) accumulation in crops. However, the mechanism by which this occurs independent of the surrounding soil remains unclear. In this study, root adsorption and uptake of salt cations and Cd by edible amaranth under NaCl salinity stress were investigated in hydroponic cultures with 0, 40, 80, 120, and 160mM of NaCl and 27nM Cd. The dominant Cd species in the nutrient solution changed from free Cd(2+) to Cd chlorocomplexes as NaCl salinity increased. High salinity significantly reduced K, Ca, and Cd root adsorption and K, Ca, Mg, and Cd uptake. High salinity decreased root adsorption of Cd by 43 and 58 percent and Cd uptake by 32 and 36 percent in salt-tolerant and salt-sensitive cultivars, respectively. Transformation of Cd from free ion to chlorocomplexes is unlikely to have significantly affected Cd uptake by the plant because of the very low Cd concentrations involved. Application of Ca ion channel blocker significantly reduced Na, K, Ca, Mg, and Cd uptake by the roots, while blocking K ion channels significantly reduced Na and K uptake but not Ca, Mg, and Cd uptake. These results suggest that Na was absorbed by the roots through both Ca and K ion channels, while Cd was absorbed by the roots mainly through Ca ion channels and not K ion channels. Salinity caused a greater degree of reduction in Cd adsorption and uptake in the salt-sensitive cultivar than in the salt-tolerant cultivar. Thus, competition between Na and Cd for Ca ion channels can reduce Cd uptake at very low Cd concentrations in the nutrient solution. PMID:24785711

  2. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  3. A micropuncture investigation of electrolyte transport in the parotid glands of sodium-replete and sodium-depleted sheep.

    PubMed Central

    Compton, J S; Nelson, J; Wright, R D; Young, J A

    1980-01-01

    1. Parotid secretion has been studied by micropuncture in sodium-replete and sodium-deficient sheep. 2. The osmolality of unstimulated primary saliva was slightly higher than in plasma and fell following cholinergic nerve stimulation. In sodium-depleted animals the osmolality of final saliva was hypotonic and exhibited flow dependency, where as in sodium-replete animals it was always isotonic. 3. In sodium-replete sheep, the primary fluid sodium concentration was about 120-130 mmol l-1 but in final saliva it was about 167 mmol l-1 and showed little or no flow-dependency. In sodium-depleted sheep, the primary sodium concentration averaged only 82.2 mmol l-1 and it was concluded that sodium-depleted primary fluid contained some other unidentified solute that allowed it to remain approximately isotonic; in final saliva the unstimulated sodium concentration was about 40 mmol l-1 and it rose with increasing flow rate to a maximum of 114.9 mmol l-1. 4. The primary fluid potassium concentration in sodium-replete animals did not differ significantly from that seen in sodium-depleted animals and the values were uninfluenced by stimulation; the over-all mean value was 11.2 mmol l-1. In final saliva, in sodium-replete sheep, the potassium concentrations averaged 7.8 mmol l-1 but in sodium-depleted sheep the concentrations were between 5 and 10 times greater than in primary fluid. 5. It was calculated from the equilibrium pH that the primary bicarbonate concentration would have been about 35 mmol l-1. In final saliva, where bicarbonate was measured directly, the concentrations were much greater and increased with stimulation to about 115 mmol l-1. 6. The primary fluid phosphate and chloride concentrations were the same in both sodium-replete and sodium-depleted animals and were unchanged by stimulation; the mean concentration of phosphate was 1.30 mmol l-1 and of chloride, 53.0 mmol l-1. In final saliva the phosphate concentrations were little changed but the chloride

  4. Pressor effect of centrally administered sodium chloride: role of the ventral third ventricle region and the area postrema.

    PubMed

    Kawano, Y; Barnes, K L; Ferrario, C M

    1991-08-01

    To determine the site(s) responsible for the central cardiovascular effect of hypertonic saline, 0.2 ml of 1.5 M NaCl was administered to anesthetized dogs via three routes, a lateral ventricle, the third ventricle and the cisterna magna. Intracisternal administration of hypertonic NaCl produced much prompter pressor and tachycardic responses than did administration via the other two routes. Covering the ventral third ventricle region with a petroleum jelly plug had the effect of abolishing the pressor response to lateral ventricular hypertonic NaCl but did not modify the response to intracisternal hypertonic NaCl. By contrast, electrolytic lesion of the area postrema attenuated the rise in blood pressure produced by the intracisternal NaCl without affecting the response to lateral ventricular NaCl. These results indicate that at least two sites, the ventral third ventricle region in the hypothalamus and the area postrema in the lower brainstem, are responsible for the acute hypertension induced by an increase in NaCl concentration in the cerebrospinal fluid of the dog. PMID:1682352

  5. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. PMID:26742620

  6. Repeatability of Quantitative Sodium Magnetic Resonance Imaging for Estimating Pseudo-Intracellular Sodium Concentration and Pseudo-Extracellular Volume Fraction in Brain at 3 T

    PubMed Central

    Madelin, Guillaume; Babb, James; Xia, Ding; Regatte, Ravinder R.

    2015-01-01

    The purpose of this study is to assess the repeatability of the quantification of pseudo-intracellular sodium concentration (C1) and pseudo-extracellular volume fraction (α) estimated in brain in vivo using sodium magnetic resonance (MRI) at 3 T. Eleven healthy subjects were scanned twice, with two sodium MRI acquisitions (with and without fluid suppression by inversion recovery), and two double inversion recovery (DIR) proton MRI. DIR MRIs were used to create masks of gray and white matter (GM, WM), that were subsequently applied to the C1 and α maps calculated from sodium MRI and a tissue three-compartment model, in order to measure the distributions of these two parameters in GM, WM or full brain (GM+WM) separately. The mean, median, mode, standard deviation (std), skewness and kurtosis of the C1 and α distributions in whole GM, WM and full brain were calculated for each subject, averaged over all data, and used as parameters for the repeatability assessment. The coefficient of variation (CV) was calculated as a measure of reliability for the detection of intra-subject changes in C1 and αfor each parameter, while intraclass correlation (ICC) was used as a measure of repeatability. It was found that the CV of most of the parameters was around 10–20% (except for C1 kurtosis which is about 40%) for C1 and α measurements, and that ICC was moderate to very good (0.4 to 0.9) for C1 parameters and for some of the α parameters (mainly skewness and kurtosis). In conclusion, the proposed method could allow to reliably detect changes of 50% and above of the different measurement parameters of C1 and αin neuropathologies (multiple sclerosis, tumor, stroke, Alzheimer’s disease) compared to healthy subjects, and that skewness and kurtosis of the distributions of C1 and αseem to be the more sensitive parameters to these changes. PMID:25751272

  7. Concomitant administration of sodium 2,3-dimercapto-1-propanesulphonate (DMPS) and diphenyl diselenide reduces effectiveness of DMPS in restoring damage induced by mercuric chloride in mice.

    PubMed

    Brandão, Ricardo; Borges, Lysandro Pinto; Nogueira, Cristina Wayne

    2009-08-01

    The effect of combined therapy with diphenyl diselenide (PhSe)(2) and sodium 2,3-dimercapto-propane-1-sulphonate (DMPS) against alterations induced by mercury (Hg(2+)) was evaluated. Mice were exposed to mercuric chloride (HgCl(2)) (1mg/kg, subcutaneously) for two weeks. After that, mice received (PhSe)(2) (15.6 mg/kg), or DMPS (12.6 mg/kg), or a combination of both for one week. Thiobarbituric acid-reactive substances (TBARS), ascorbic acid and Hg(2+) levels and glutathione S-transferase (GST) and catalase (CAT) activities were carried out in kidney. Hematological parameters, plasmatic bilirubin, uric acid, urea and creatinine levels as well as lactate dehydrogenase (LDH) activity were determined. (PhSe)(2) or DMPS restored the increase in LDH activity and TBARS, bilirubin, uric acid, urea and creatinine levels caused by HgCl(2). The levels of erythrocytes, hemoglobin and hematocrit reduced by HgCl(2) exposure were restored by (PhSe)(2) or DMPS administration in mice. Leukocyte and platelet counts modified by HgCl(2) exposure were restored by (PhSe)(2) or DMPS therapy. DMPS restored the increase in Hg(2+) levels induced by exposure to HgCl(2). Concomitant administration of (PhSe)(2) and DMPS reduced the effectiveness of DMPS in restoring damage induced by HgCl(2). Combined therapy with (PhSe)(2) and DMPS was less effective than isolated therapies in restoring the damage induced by HgCl(2) in mice. PMID:19406194

  8. Effects of a mouthwash containing potassium nitrate, sodium fluoride, and cetylpyridinium chloride on dentin hypersensitivity: a randomized, double-blind, placebo-controlled study

    PubMed Central

    2016-01-01

    Purpose We evaluated the efficacy of a mouthwash containing potassium nitrate (KNO3) as its main component, along with sodium fluoride (NaF) and cetylpyridinium chloride (CPC). The primary endpoint was the relief of dentin hypersensitivity (DH) against the cold stimuli. The effects on other DH tests and periodontal inflammation were also evaluated. Methods We used a single-center, double-blind, placebo-controlled, randomized design. A total of 82 patients with DH (40 in the test group, 42 placebo controls) were analyzed using visual analog scales (VASs) for a cold test, a tactile test, a compressive air test, and self-reported pain during daily activities, as well as clinical parameters including plaque index, gingival index, modified sulcular bleeding index (mSBI), gingival recession, and probing depth, which were collected at baseline and after four and six weeks of mouthwash use. Results VAS scores for cold sensations, tactile sensations, the compressive air test, and self-reported pain significantly decreased from baseline during the six weeks in both groups (P<0.01), and no significant differences between the groups were found. In male patients (10 in the test group and 7 in the control group), both groups showed significant reductions in VAS scores for the cold test over the six weeks, and greater reductions were found in the test group than in the control group between four and six weeks (P=0.01) and between baseline and six weeks (P<0.01). In addition, the mSBI in the test group significantly decreased from baseline during the six weeks (P<0.01), and the changes at four and six weeks from baseline were significantly greater in the test group compared to the control group (P=0.03 and P=0.02, respectively). Conclusions A mouthwash containing a mixture of KNO3, NaF, and CPC reduced DH and gingival inflammation, however, the efficacy was comparable to the control group. PMID:26937293

  9. The effect of different topical agents (silver sulfadiazine, povidone-iodine, and sodium chloride 0.9%) on burn injuries in rats.

    PubMed

    Yüksel, Emir Burak; Yıldırım, Alpagan Mustafa; Bal, Ali; Kuloglu, Tuncay

    2014-01-01

    It was aimed to comparatively evaluate the effects of dressing methods with silver sulfadiazine, povidone-iodine, and saline which have a common use in routine practices for burn injuries. Twenty-eight Sprague Dawley adult female rats were used in this study. All the rats were divided into 4 groups: the control group, the povidone-iodine group, the saline group, and the silver sulfadiazine group. On each rat, a second degree burn which covered less than 10% of the body surface area was created under general anesthesia by a metal comb including four probes with 2 × 1 cm area. The control group did not have any treatment during the experiment. Povidone-iodine, saline, and silver sulfadiazine administrations were performed under ether anesthesia every day. On 0, 7th, 14th, and 21st days of the study, tissue samples were taken for histological analyses. The sections taken from the paraffin blocks were stained and avidin-biotin-peroxidase method was used for collagen immune-reactivity. In the light microscope analyses, number of inflammatory cells, vascularization, fibroblast proliferation, collagen formation and epithelialization were evaluated histologically in all groups and analysed statistically. The agents that we used for injury healing in the treatment groups did not show any significant better results in comparison with the control group. In conclusion, further studies with the use of sodium chloride, silver sulfadiazine, and povidone-iodine by creating deeper and/or larger burn injury models are needed in order to accept these agents in routine treatment. PMID:25328700

  10. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-06-16

    The food industry must prevent the build-up of strong Escherichia coli O157:H7 biofilms in food processing environments. The present study examined the bactericidal action of phytic acid (PA), a natural extract from rice bran and the hulls/peels of legumes, against E. coli O157:H7 biofilms. The synergistic bactericidal effects of PA plus sodium chloride (NaCl) were also examined. E. coli O157:H7 biofilms were allowed for form on stainless steel coupons by culture in both rich (tryptic soy broth, TSB) and minimal (M9) medium at 22°C for 6days. Bacterial cells within biofilms grown in M9 medium were significantly more resistant to PA than those grown in TSB (p<0.05); thus M9 medium was selected for further experiments. The anti-biofilm effect of PA was significantly increased by addition of NaCl (2-4%) (p<0.05); indeed, the combination of 0.4% PA plus 3-4% NaCl completely inactivated E. coli O157:H7 biofilms without recovery (a>6.5logCFU/cm(2) reduction). Neither PA nor NaCl alone were this effective (PA, 1.6-2.7logCFU/cm(2) reduction; NaCl, <0.5logCFU/cm(2) reduction). Confocal laser scanning microscopy images of propidium iodide-treated cells showed that PA (0.4%) plus NaCl (2-4%) had marked membrane permeabilizing effects. These results suggest that a sanitizer that combines these two naturally occurring antimicrobial agents may be useful to food safety managers who encounter thick biofilm formation in food processing environments. PMID:27043385

  11. The Effect of Different Topical Agents (Silver Sulfadiazine, Povidone-Iodine, and Sodium Chloride 0.9%) on Burn Injuries in Rats

    PubMed Central

    Yüksel, Emir Burak; Yıldırım, Alpagan Mustafa; Kuloglu, Tuncay

    2014-01-01

    It was aimed to comparatively evaluate the effects of dressing methods with silver sulfadiazine, povidone-iodine, and saline which have a common use in routine practices for burn injuries. Twenty-eight Sprague Dawley adult female rats were used in this study. All the rats were divided into 4 groups: the control group, the povidone-iodine group, the saline group, and the silver sulfadiazine group. On each rat, a second degree burn which covered less than 10% of the body surface area was created under general anesthesia by a metal comb including four probes with 2 × 1 cm area. The control group did not have any treatment during the experiment. Povidone-iodine, saline, and silver sulfadiazine administrations were performed under ether anesthesia every day. On 0, 7th, 14th, and 21st days of the study, tissue samples were taken for histological analyses. The sections taken from the paraffin blocks were stained and avidin-biotin-peroxidase method was used for collagen immune-reactivity. In the light microscope analyses, number of inflammatory cells, vascularization, fibroblast proliferation, collagen formation and epithelialization were evaluated histologically in all groups and analysed statistically. The agents that we used for injury healing in the treatment groups did not show any significant better results in comparison with the control group. In conclusion, further studies with the use of sodium chloride, silver sulfadiazine, and povidone-iodine by creating deeper and/or larger burn injury models are needed in order to accept these agents in routine treatment. PMID:25328700

  12. Renal Blood Flow Response to Angiotensin 1-7 versus Hypertonic Sodium Chloride 7.5% Administration after Acute Hemorrhagic Shock in Rats

    PubMed Central

    Maleki, Maryam; Nematbakhsh, Mehdi

    2016-01-01

    Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg−1 min−1), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (Ptime < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited. PMID:27073699

  13. Relationship of osmotic inhibition in thermoregulatory responses and sweat sodium concentration in humans.

    PubMed

    Takamata, A; Yoshida, T; Nishida, N; Morimoto, T

    2001-03-01

    Heat acclimatization improves thermoregulatory responses to heat stress and decreases sweat sodium concentration ([Na(+)](sweat)). The reduced [Na(+)](sweat) results in a larger increase in plasma osmolality (P(osmol)) at a given amount of sweat output. The increase in P(osmol) inhibits thermoregulatory responses to increased body core temperature. Therefore, we hypothesized that the inhibitory effect of plasma hyperosmolality on the thermoregulatory responses to heat stress should be attenuated with the reduction of [Na(+)](sweat) due to heat acclimatization. Eleven subjects (9 male and 2 female) were passively heated by immersing their lower legs into water at 42 degrees C (room temperature 28 degrees C and relative humidity 30%) for 50 min following isotonic or hypertonic saline infusion. We determined the increase in the esophageal temperature (T(es)) required to elicit sweating and cutaneous vasodilation (CVD) (DeltaT(es) thresholds for sweating and CVD, respectively) in each condition and calculated the elevation of the T(es) thresholds per unit increase in P(osmol) as the osmotic inhibition of sweating and CVD. The osmotic shift in the DeltaT(es) thresholds for both sweating and CVD correlated linearly with [Na(+)](sweat) (r = 0.858 and r = 0.628, respectively). Thus subjects with a lower [Na(+)](sweat) showed a smaller osmotic elevation of the DeltaT(es) thresholds for sweating and CVD. These results suggest the possibility that heat acclimatization attenuates osmotic inhibition of thermoregulatory responses as well as reducing [Na(+)](sweat). PMID:11171638

  14. Erythrocyte sodium concentration and sup 86 Rb uptake in weanling Dahl rats

    SciTech Connect

    McCormick, C.P.; Hennessy, J.F.; Rauch, A.L.; Buckalew, V.M. Jr. )

    1989-08-01

    Alterations in Na, K ATPase pump activity as well as erythrocyte (RBC) intracellular sodium concentration (Nai) have been demonstrated in humans and rats with established hypertension. The contribution of hypertension itself to these changes is unclear. Accordingly, we investigated RBC ion transport and plasma ouabain-like factor (OLF) in four- to five-week old normotensive Dahl salt-sensitive (DS) and salt-resistant (DR) rats on low salt diet. Although both strains were normotensive, systolic blood pressure (SBP) of DS (123 {plus minus} 2 mm Hg) was higher than that of DR (116 {plus minus} 1 mm Hg). No interstrain difference was evident in RBC pump activity measured as ouabain-sensitive 86rubidium ({sup 86}Rb) uptake (DS = 0.277 {plus minus} .030 and DR = 0.271 {plus minus} .029 mumol/10(9)RBC/h) even though RBC Nai was greater in DS than DR (14.9 {plus minus} 2.0 v 10.7 {plus minus} 1.0 mEq/L; P less than 0.05). Plasma OLF was higher in DS than DR (28.9 {plus minus} 4.7 v 16.5 {plus minus} 2.3 pmol/mL; P less than 0.05), but did not correlate with RBC pump activity in either strain. RBC Nai was directly correlated with pump activity in DS (r = 0.84, P less than 0.01) and demonstrated a trend to correlate in DR (r = 0.71, P = 0.07). RBC Nai was also directly correlated with SBP in DR (r = 0.73, P less than 0.05) and DS (r = 0.70, P = 0.05). We conclude that RBC Nai is genetically determined in Dahl rats and is elevated in normotensive DS who are at risk for hypertension development.

  15. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  16. Impacts of Venturi Turbulent Mixing on the Size Distributions of Sodium Chloride and Dioctyl-Phthalate Aerosols

    SciTech Connect

    Cheng, M-D.

    2000-08-23

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results of the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10

  17. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the Federal State of Lower Saxony and industry partner Baker Hughes Celle.

  18. The effect of sodium chloride concentration and pH on the growth of Salmonella typhimurium colonies on solid medium.

    PubMed

    McKay, A L; Peters, A C

    1995-10-01

    The growth of Salmonella typhimurium colonies on a model food system (agar solidified culture medium) was followed. Colony radius, determined using computer image analysis (IA) techniques, and viable cell number per colony were measured as indices of colony growth, and the effect of [NaCl] (0.5-3.5% (w/v)) and pH (7.0-5.0) on colony growth at 30 degrees C was observed; colonies were point inoculated from serial dilutions. Colony growth (between 13 and 26 h after inoculation) was linear when expressed in terms of radius, and exponential when expressed in terms of viable cell number per colony. Overall, both increasing the [NaCl] and decreasing the pH had little effect on colony growth, other than to delay the onset of linear radial growth. Initial specific growth rate (mu) ranged from 0.73 to 0.87 h-1. Thin films of agar medium on microscope slides allowed the growth of microcolonies to be observed after just 4 h incubation. A greater understanding of the growth kinetics of bacterial colonies, and the effects of environment on such data, may enable better control of foodborne bacterial pathogens, and consequently an improvement in food product safety. PMID:7592127

  19. Modeling the Impact of Ingoing Sodium Nitrite, Sodium Ascorbate, and Residual Nitrite Concentrations on Growth Parameters of Listeria monocytogenes in Cooked, Cured Pork Sausage.

    PubMed

    King, Amanda M; Glass, Kathleen A; Milkowski, Andrew L; Seman, Dennis L; Sindelar, Jeffrey J

    2016-02-01

    Sodium nitrite has been identified as a key antimicrobial ingredient to control pathogens in ready-to-eat (RTE) meat and poultry products, including Listeria monocytogenes. This study was designed to more clearly elucidate the relationship between chemical factors (ingoing nitrite, ascorbate, and residual nitrite) and L. monocytogenes growth in RTE meats. Treatments of cooked, cured pork sausage (65% moisture, 1.8% salt, pH 6.6, and water activity 0.98) were based on response surface methodology with ingoing nitrite and ascorbate concentrations as the two main factors. Concentrations of nitrite and ascorbate, including star points, ranged from 0 to 352 and 0 to 643 ppm, respectively. At one of two time points after manufacturing (days 0 and 28), half of each treatment was surface inoculated to target 3 log CFU/g of a five-strain L. monocytogenes cocktail, vacuum packaged, and stored at 7°C for up to 4 weeks. Growth of L. monocytogenes was measured twice per week, and enumerations were used to estimate lag time and growth rates for each treatment. Residual nitrite concentrations were measured on days 0, 4, 7, 14, 21, and 28, and nitrite depletion rate was estimated by using first-order kinetics. The response surface methodology was used to model L. monocytogenes lag time and growth rate based on ingoing nitrite, ascorbate, and the residual nitrite remaining at the point of inoculation. Modeling results showed that lag time was impacted by residual nitrite concentration remaining at inoculation, as well as the squared term of ingoing nitrite, whereas growth rate was affected by ingoing nitrite concentration but not by the remaining residual nitrite at the point of inoculation. Residual nitrite depletion rate was dependent upon ingoing nitrite concentration and was only slightly affected by ascorbate concentration. This study confirmed that ingoing nitrite concentration influences L. monocytogenes growth in RTE products, yet residual nitrite concentration contributes

  20. Effects of sodium caseinate concentration and storage conditions on the oxidative stability of oil-in-water emulsions.

    PubMed

    O' Dwyer, Sandra P; O' Beirne, David; Eidhin, Deirdre Ní; O' Kennedy, Brendan T

    2013-06-01

    The oxidative stability of various oils (sunflower, camelina and fish) and 20% oil-in-water (O/W) emulsions, were examined. The mean particle size decreased from 1179 to 325 nm as sodium caseinate (emulsifier) concentration was increased from 0.25% to 3% in O/W emulsions (P<0.05). Increasing the microfluidisation pressure from 21 to 138 MPa, resulted in a particle size decrease from 289 to 194 nm (P<0.05). Emulsified oils had lower detectable lipid hydroperoxide and p-Anisidine values than their corresponding bulk oils (P<0.05). The lipid hydroperoxide and p-Anisidine values of emulsions generally decreased as sodium caseinate concentration increased, and similarly decreased as microfluidisation pressure increased (P<0.05). Increasing storage temperature of the emulsions from 5 to 60°C, resulted in lower detectable lipid oxidation products during storage (P<0.05). PMID:23411225

  1. Solvation of sodium octanoate micelles in concentrated urea solution studied by means of molecular dynamics simulations.

    PubMed

    de Moura, André Farias; Bernardino, Kalil; de Oliveira, Osmair Vital; Freitas, Luiz Carlos Gomide

    2011-12-15

    The effects of urea on self-assembling remains a challenging topic on surface chemistry, and computational modeling may have a role on the unraveling of the molecular mechanisms underlying these effects. Bearing that in mind, we performed a set of molecular dynamics simulations to assess the effects of urea on the self-assembling properties of sodium octanoate, an anionic surfactant, as compared to the aggregation of the same surfactant in pure water as the solvent. The concentration of free monomers increased 3-fold in the presence of urea, in agreement with the accepted view that urea should increase monomer solubility. Regarding the size distribution of micellar aggregates, the urea solution favored smaller micelles and a narrower distribution. Preferential solvation by either water or urea changed along the surfactant molecules, from urea-rich shells around apolar atoms at the end of the hydrophobic tails to nearly no urea at the polar headgroups. This solvation profile is consistent with two different hypotheses from the literature: on one hand, urea molecules interact directly with apolar atoms from the hydrophobic tails, acting as a surfactant, and on the other hand the presence of urea molecules increases the hydration of polar sites. Another important observation regards the solvent structure, which exhibits a complex composition profile around both water and urea molecules. Although the solvent structure was appreciably different in each case, the free energy calculations for the dissociation of a pair of octanoate molecules pointed to a purely enthalpic free energy loss in urea solution, a finding that does not lend support to the third hypothesis that is often claimed as accounting for the urea effects, namely, that urea disrupts water structure and that this structural change decreases the hydrophobic effect due to an entropy change. The presence of urea had no significant effect on the molecular structure of the surfactant molecules, although it

  2. Role of second-sphere coordination in anion binding: Synthesis, characterization and X-ray structure of hexaamminecobalt(III) chloride hydrogen phthalate trihydrate and sodium hexaamminecobalt(III) benzoate monohydrate

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Bala, Ritu; Sharma, Rajni; Kariuki, B. M.; Rychlewska, Urszula; Warżajtis, Beata

    2005-06-01

    In an effort to utilize [Co(NH 3) 6] 3+cation as a new host for carboxylate ions, orange coloured crystalline solids of composition [Co(NH 3) 6]Cl(C 8H 5O 4) 2·3H 2O ( 1) and Na[Co(NH 3) 6](C 7H 5O 2) 4·H 2O ( 2) were obtained by reacting hot aqueous solutions of hexaamminecobalt(III) chloride with potassium hydrogen phthalate and sodium benzoate in 1:3 molar ratio, respectively. The title complex salts were characterized by elemental analyses and spectroscopic studies (IR, UV/Visible and NMR). Single crystal X-ray structure determinations revealed the formation of second-sphere coordination complexes based on hydrogen bond interactions. In complex salt 1 only two out of three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced by two CHO4- ions whereas in complex salt 2 all the three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced and the final product was an adduct with another mole of sodium benzoate in solid state. The crystal lattice is stabilized by electrostatic forces of attraction and predominantly N-H⋯O interactions.

  3. Changes in chloride concentration in water from municipal wells that tap aquifers in rocks of Cambrian and Ordovician age in northeastern Illinois, 1915-84

    USGS Publications Warehouse

    Balding, G.O.

    1991-01-01

    During the past few decades, several municipalities in northeastern Illinois have noted increases in the salinity of water from wells that tap aquifers in rocks of Cambrian and Ordovician age. The municipalities have discontinued the use of, or sealed-off sections of, those wells. The aquifers involved include the Ancell, the Ironton-Galesville, and the Elmhurst-Mt. Simon. To define the location, magnitude, and possible causes for the salinity increases in the six northeastern counties of Illinois, 17 municipal wells and 1 deep test well were selected on the basis of their proximity to major pumping centers, the availability of water-quality data, and their documented maintenance history. Well depths ranged from about 960 to 3,475 feet. One well was finished in the middle confining unit, 2 wells were finished in the Ironton-Galesville aquifer, 4 wells were finished in the Eau Claire confining unit, and 10 wells were finished in the Elmhurst-Mt. Simon aquifer. The deep test well was finished below the Elmhurst-Mt. Simon aquifer in Precambrian-age rock. Chloride concentrations in the municipal wells ranged from less than 5 to greater than 600 milligrams per liter; in the deep test well, they ranged from 13 t o 37,000 milligrams per liter. Some changes in the chloride concentration in water from the studied municipal wells can be related to physical changes to the wells, including the partial filling in of a well, bridging within a well, the cleaning out of a well, or the deepening of a well. Some changes in chloride concentration are not related to physical changes but may be caused by increased pumpage; changes in pumping rate, frequency, or duration; cessation of pumping; improper abandonment of wells; and the upconing of highly mineralized water. The data base was inadequate for a quantitative study of the changes in chloride concentration in water from individual aquifers in rocks of Cambrian and Ordovician age.

  4. XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions induced by the {001} basal plane

    SciTech Connect

    Shchukarev, Andrei; Boily, Jean F.; Felmy, Andrew R.

    2007-12-13

    The influence of the {001} basal plane of hematite on the composition of fast-frozen centrifuged wet pastes of hematite prepared at pH 4 and 9 and at ionic strengths of 0, 10 and 100 mM NaCl was investigated by x-ray photoelectron spectroscopy. Two hematite preparations consisted of micrometer-sized platelets with 42% (HEM-1) and 95% (HEM-8) of the surface terminated by the {001} basal plane. A third preparation of spherical shape with no recognizable crystal plane (HEM-control) was used as a control to these experiments. All hematite samples responded to changes in pH and ionic strength, showing that acid/base reactions of surface hydroxyl groups control the composition of the paste. The HEM-1 and HEM-8 sample exhibited divergent properties at the highest ionic strength (100 mM) with energy loss features in the Na 1s and Cl 2p spectra and an important water content. As the spectra were typical of hydrated Na+ and Cl- ions and that the surface concentrations were unusually large, the HEM-1 and HEM-8 samples are proposed to induce the formation of a three-dimensional distribution of these ions in the paste. The sodium, chloride and water content was also correlated to the fraction of the {001} basal plane present in the sample and provided evidence for an approximate stochiometric Na:Cl:H2O ratio of 1:1:2. The {001} basal plane of hematite is consequently proposeD to be the cause of this feature.

  5. Single sodium pyruvate ingestion modifies blood acid-base status and post-exercise lactate concentration in humans.

    PubMed

    Olek, Robert A; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-05-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg(-1) of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% VO2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  6. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    PubMed Central

    Olek, Robert A.; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-01-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  7. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma

    PubMed Central

    LI, BO; MENG, CHAO; ZHANG, XUFENG; CONG, DAMIN; GAO, XIN; GAO, WANLONG; JU, DONGHUI; HU, SHAOSHAN

    2016-01-01

    Peritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma. Adult male Wistar rats were inoculated with rat glioma C6 cells, and the presence of glioma was confirmed using magnetic resonance imaging 7 days subsequent to injection. The rats were randomly assigned to 4 groups (n=15): Control group, the rats received no treatment; PDT group, the rats received PDT at 80 J/cm2 for 10 min; torasemide group, the rats received 5 mg/kg torasemide intraperitoneally; and PDT + torasemide group, the rats received 5 mg/kg torasemide intraperitoneally for 3 days following PDT at 80 J/cm2 for 10 min. A total of 5 rats from each group were sacrificed 21 days following injection and the peritumoral edema tissues were harvested. MMP2 and NKCC1 expression levels were detected in the tissues using immunohistochemistry and western blot analysis. The mRNA expression levels of MMP2 and NKCC1 were observed using reverse transcription-quantitative polymerase chain reaction. Peritumoral edema was measured using a wet-to-dry weight (W/D) ratio, and survival times of the remaining 10 rats in each group were evaluated. Compared with the control group, tumor growth was significantly suppressed in the PDT group and the survival time was prolonged through a reduction in the expression of MMP2 (P<0.05), and an increased W/D ratio resulted in significantly increased expression of NKCC1 (P<0.05). Compared with the PDT group, the expression of NKCC1 and the W/D ratio in the PDT + torasemide group were significantly decreased (P<0.05), while no significant difference was observed in the expression levels of MMP2. In conclusion

  8. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings. PMID:26555519

  9. Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions.

    PubMed

    Abbasi, M Kaleem; Hina, Munazza; Tahir, Majid Mahmood

    2011-03-01

    A laboratory experiment was conducted to examine the effects of nitrification inhibitors (NIs) neem seed-cake (Azadirachta indica) (NSC), sodium thiosulphate (Na₂S₂O₃) and calcium chloride (CaCl₂) on changes in NH₄(+)⁻N, inhibition of nitrification and recovery of applied nitrogen (N) in soil. Surface soil samples of 0-15 cm were collected from an arable field, amended with urea N (UN) at the rate 200 mg N kg⁻¹, UN+NSC, UN+Na₂S₂O₃ and UN+CaCl₂ and incubated at 22°C periodically over 50 d. Soil without any amendment was used as check (control). Results indicated that more than 58% of N applied as NH₄⁻ disappeared over a period of 50 d from the soil mineral-N pool. Some of this N (21%) was accumulated as NO₃⁻-N while the remaining N was unaccounted for. Addition of nitrification inhibitors NSC, Na₂S₂O₃, and CaCl₂ resulted in a decrease in the extent of NH₄(+) disappearance by 35%, 44% and 30%, respectively. In the treatment receiving UN alone, 56 mg NO₃⁻-N kg⁻¹ was accumulated over 50 d (maximum 93 mg kg⁻¹) indicated an active nitrification. Application of nitrification inhibitors NSC, Na₂S₂O₃, and CaCl₂ with UN inhibited nitrification by 54%, 64%, and 59%, respectively. Apparent N recovery (ANR) in the treatment receiving UN alone was 63% that substantially increased to 83%, 89% and 76% in the treatments receiving UN+NSC, UN+Na₂S₂O₃, and UN+CaCl₂, respectively indicating 32%, 41% and 20% increase in N recovery. Among three NIs tested, Na₂S₂O₃ proved superior in inhibiting nitrification and increasing ANR. The study demonstrated that application of NSC, Na₂S₂O₃, and CaCl₂ which are cheap and easily available NIs inhibited nitrification and improved N recovery efficiency of applied N in an arable soil very effectively. It is suggested that these inhibitors should be tested under field conditions for increasing NUE and improving crop productivity. PMID:21146192

  10. Effect of concentration of sodium silicate solution in the synthesis of silica-coated magnetite nanoparticles by ultrasonication

    NASA Astrophysics Data System (ADS)

    Fajaroh, Fauziatul; Sumari, Nazriati

    2016-02-01

    An ex-situ silica coating of magnetite nanoparticles synthesized electrochemically had been successfully carried out by ultrasonication. An aqueous solution of sodium silicate had been used as silica source.The Si-O-Si, Si-O and Fe-O-Si bonds on the surface of the silica-coated magnetite had been successfully identified using FTIR. Reduction in particle size due to the influence of ultrasound was studied using SEM. Enhancement in the specific surface area of the particles due to the silica coating and reduction in particle size was learned through BET analysis. The Characters of the resulting silica-coated magnetite were influenced by the concentration of sodium silicate solution. The greater the concentration of sodium silicate solution, the smaller the particle crystallinity and the larger the particles surface area was produced. The resulting silica-coated magnetite has a surface area of 38.171 to 67.993 m2/g, otherwise the non-coated particles only has a surface area of 27.894 m2/g. This silica-coated magnetite nanoparticles has more potent as an adsorbent than that of the bare magnetite. Besides that, the presence of silanol groups on its surface makes an opportunity for further functionalization needed for some applications.

  11. Determination of Unknown Concentrations of Sodium Acetate Using the Method of Standard Addition and Proton NMR: An Experiment for the Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Rajabzadeh, Massy

    2012-01-01

    In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…

  12. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  13. Trends in chloride, dissolved-solids, and nitrate concentrations in ground water, Carson Valley and Topaz Lake Areas, Douglas County, Nevada, 1959-88

    USGS Publications Warehouse

    Thodal, C.E.

    1996-01-01

    Rapid population growth in Douglas County, an area of approximately 750 square miles in west-central Nevada, has led to concern about the present and future effects of development on ground water. This report describes the results of two nonparametric statistical procedures applied to detect trends in concentrations of chloride, dissolved solids, and nitrate in ground water. The water-quality data consist of analytical results from ground-water samples collected and analyzed by the U. S. Geological Survey and ground-water-quality data provided by the Nevada Bureau of Health Protection Services for the Carson Valley and Topaz Lake areas of Douglas County, Nevada. For purposes of this study, statistical significance, expressed as the p-value, was set at 0.1. The Mann-Whitney-Wilcoxan rank-sum test detected increasing step-trends for nitrate in one of seven residential areas and for dissolved-solids concentrations throughout the study area. Decreasing step-trends for chloride and dissolved-solids concentrations were detected in the west Carson Valley area. Kendall's Tau detected monotonic trends for increasing nitrate concentrations at four domestic wells and for increasing dissolved-solids concentrations at two domestic wells. No other statistically significant trends were indicated by either test. Land-use relations to areas where increasing trends were detected suggest that the density of individual wastewater-treatment systems may exceed the capacity of soils to treat wastewater leachate.

  14. Chloride removal from vitrification offgas

    SciTech Connect

    Slaathaug, E.J.

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  15. Sodium Dynamics in a Northern Ecosystem*

    PubMed Central

    Botkin, D. B.; Jordan, P. A.; Dominski, A. S.; Lowendorf, H. S.; Hutchinson, G. E.

    1973-01-01

    Analyses of terrestrial sources of sodium and estimates of the sodium requirement of moose (Alces alces) on Isle Royale, Lake Superior, suggest that availability of the element controls the moose population. The terrestrial vegetation is very poor in the element, but, as elsewhere, submerged and floating leaved water-plants are relatively rich. Consumption of such plants in summer would provide an adequate source, if the animal can store the element. The fairly high sodium contents of freshwater vegetation have been little appreciated. In general, sodium concentration in water-plants, unlike that of potassium, is not correlated with chloride but the latter is ordinarily in excess of the sodium, so that uptake of the latter implies an equivalent supply of NaCl. PMID:16592111

  16. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis

    PubMed Central

    Terker, Andrew S.; Zhang, Chong; Erspamer, Kayla J.; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H.

    2015-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low potassium diet. Recent data suggest plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the With no lysine kinase (WNK)-Ste20p-related proline-and alanine-rich kinase (SPAK) pathway. Since previous studies used extreme dietary manipulations, we sought to determine if the relationship between potassium and NCC is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect the thiazide-sensitive sodium-chloride cotransporter, NCC, in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3 and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable kinase mediating effects of potassium on NCC in vivo. PMID:26422504

  17. Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

    PubMed Central

    van Rooij, Frank J. A.; Ehret, Georg B.; Boerwinkle, Eric; Felix, Janine F.; Leak, Tennille S.; Harris, Tamara B.; Yang, Qiong; Dehghan, Abbas; Aspelund, Thor; Katz, Ronit; Homuth, Georg; Kocher, Thomas; Rettig, Rainer; Ried, Janina S.; Gieger, Christian; Prucha, Hanna; Pfeufer, Arne; Meitinger, Thomas; Coresh, Josef; Hofman, Albert; Sarnak, Mark J.; Chen, Yii-Der Ida; Uitterlinden, André G.; Chakravarti, Aravinda; Psaty, Bruce M.; van Duijn, Cornelia M.; Kao, W. H. Linda; Witteman, Jacqueline C. M.; Gudnason, Vilmundur; Siscovick, David S.; Fox, Caroline S.; Köttgen, Anna

    2010-01-01

    Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels. PMID:20700443

  18. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  19. Aqueous Electrolyte Ionization over Extreme Ranges as Simple Fundamental Relation with Density and Believed Universal; Sodium Chloride Ionization for 0o to 1000oC and to 1000 MPa (10000 Atm.).

    SciTech Connect

    Marshall, William {Bill} L

    2008-01-01

    The chemical nature of aqueous electrolyte ionization is illustrated by a simple relationship with water as a reactant believed to correlate ionization of aqueous sodium chloride approaching infinite dilution over the entire range of temperature and pressure [0 to 1000oC; 0.1 to 1000 MPa (10000 Atm)]. The derived equation accurately and smoothly describes the ionization constant of sodium chloride [K(NaCl)] in both water and water strongly diluted by inert solvent. Effects of water density on ionization are quantitatively and simply described that oppose conventional theory that ionization is a function only of dielectric constant, and theorists should apply this simplicity with density in understanding aqueous electrolyte ionization. There appears to be no substantive evidence for Pitzer's earlier proposal (1983) that K(NaCl) with decreasing very low densities (if known) would diverge sharply downward by several orders of magnitude. Classical ionization theories are limited in universal application, and it seems that theory must adjust to this observed simple fundamental relationship.

  20. Long-term inactivation of bacteriophage PRD1 as a function of temperature, pH, sodium and calcium concentration.

    PubMed

    Schijven, Jack F; Sadeghi, Gholamreza; Hassanizadeh, S Majid

    2016-10-15

    The two most significant processes controlling virus mobility in the subsurface environment are virus attachment and inactivation. In particular, models that predict subsurface virus transport are highly sensitive to inactivation. Virus inactivation is known to depend on temperature as well as hydrochemical conditions. The aim of the current work was to study the effects of temperature and hydrochemical conditions on the inactivation of bacteriophage PRD1 as a model virus, and to develop a quantitative relation for these effects. Series of batch experiments under controlled temperature were conducted, for a range of conditions: 9.5 °C and 12 °C, pH4 - pH8, sodium concentrations of 1, 10 and 20 mM, and calcium concentrations of 0.5, 1.5, and 3 mM. By multivariate regression analysis, a joint log-square model was developed that describes the inactivation rate of PRD1 as a function of these hydrochemical conditions. This model approximates two rate and Weibull models and accounts for the observed non-linear inactivation at increased pH and salt concentrations. Model predictions are within ±0.4 log10 (0.4-2.5 times) virus concentration reduction. The nature of the log-square model does not allow extrapolation of virus inactivation beyond the experimental conditions. Inactivation rate of PRD1 was found to increase with increasing temperature and increasing sodium and calcium concentrations, and to be lowest between pH 6.5 and pH 7.5. Within the studied conditions, the developed log-square model may be applied at field scale for predicting inactivation during subsurface transport of viruses. PMID:27438901

  1. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms

    PubMed Central

    Somerton, B.; Lindsay, D.; Palmer, J.; Brooks, J.

    2015-01-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm−2 lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na+ and low free Ca2+ and Mg2+ concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations. PMID:26002898

  2. Contrasting effects of chloride on growth, reproduction, and toxicant sensitivity in two genetically distinct strains of Hyalella azteca.

    PubMed

    Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell; McEwen, Abigail R

    2015-10-01

    The strain of Hyalella azteca (Saussure: Amphipoda) commonly used for aquatic toxicity testing in the United States has been shown to perform poorly in some standardized reconstituted waters frequently used for other test species. In 10-d and 42-d experiments, the growth and reproduction of the US laboratory strain of H. azteca was shown to vary strongly with chloride concentration in the test water, with declining performance observed below 15 mg/L to 20 mg/L. In contrast to the chloride-dependent performance of the US laboratory strain of H. azteca, growth of a genetically distinct strain of H. azteca obtained from an Environment Canada laboratory in Burlington, Ontario, Canada, was not influenced by chloride concentration. In acute toxicity tests with the US laboratory strain of H. azteca, the acute toxicity of sodium nitrate increased with decreasing chloride in a pattern similar not only to that observed for control growth, but also to previous acute toxicity testing with sodium sulfate. Subsequent testing with the Burlington strain showed no significant relationship between chloride concentration and the acute toxicity of sodium nitrate or sodium sulfate. These findings suggest that the chloride-dependent toxicity shown for the US laboratory strain may be an unusual feature of that strain and perhaps not broadly representative of aquatic organisms as a whole. PMID:26260521

  3. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    SciTech Connect

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  4. Nutrient, organic carbon, and chloride concentrations and loads in selected Long Island Sound tributaries—Four decades of change following the passage of the Federal Clean Water Act

    USGS Publications Warehouse

    Mullaney, John R.

    2016-01-01

    Loads of dissolved silica (DSi; flow-normalized and non-flow-normalized) increased slightly at most stations during the study period and were positively correlated to urbanized land in the basin and negatively correlated to area of open water. Concentrations and loads of chloride increased at 12 of the 14 sites during both periods. Increases likely are the result of an increase in the use of salt for deicing, as well as other factors related to urbanization and population growth, such as increases in wastewater discharge and discharge from septic systems.

  5. Dietary Sodium Reduction Does Not Affect Circulating Glucose Concentrations in Fasting Children or Adults: Findings from a Systematic Review and Meta-Analysis1234

    PubMed Central

    Patel, Sheena M; Cobb, Paul; Saydah, Sharon; Zhang, Xuanping; de Jesus, Janet M; Cogswell, Mary E

    2015-01-01

    Background: Although evidence shows that reduced sodium intake lowers blood pressure, some studies suggest that sodium reduction may adversely affect insulin resistance and glucose tolerance. Objectives: The objectives were to assess the effects of sodium reduction on glucose tolerance, evaluate strengths and weaknesses of the relevant scientific literature, and provide direction for future research. Methods: We searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, and Web of Science through August 2014. Both randomized and nonrandomized intervention trials were included in our meta-analyses. The effects of sodium reduction on glucose tolerance were evaluated in 37 articles, but because of a lack of comparable data, 8 trials were excluded from the meta-analyses. Results: Participants were 10–79 y old, either primarily healthy or with hypertension. In meta-analyses of 20 randomized, crossover trials (n = 504 participants) and 9 nonrandomized crossover trials (n = 337), circulating glucose concentrations of fasting participants were not affected by reduction in sodium intake. In contrast, in meta-analyses of 19 of the 20 randomized, crossover trials (n = 494), fasting insulin concentrations were 9.53 pmol/L higher (95% CI: 5.04, 14.02 pmol/L higher) with sodium reduction. In 9 nonrandomized trials (n = 337), fasting insulin did not differ with reduced sodium intake. Results differed little when the analyses were restricted to studies with a low risk of bias and duration of ≥7 d. Conclusions: This meta-analysis revealed no evidence that, in trials with a short intervention and large reductions in sodium, circulating glucose concentrations differed between groups. Recommendations for future studies include extending intervention durations, ensuring comparability of groups at baseline through randomization, and assessing sodium intakes relevant to population sodium reduction. In addition, analyses on other metabolic variables were limited because of the number of

  6. Synthesis and anti-microbial potencies of 1-(2-hydroxyethyl)-3-alkylimidazolium chloride ionic liquids: microbial viabilities at different ionic liquids concentrations.

    PubMed

    Hossain, M Ismail; El-Harbawi, Mohanad; Alitheen, Noorjahan Banu Mohamed; Noaman, Yousr Abdulhadi; Lévêque, Jean-Marc; Yin, Chun-Yang

    2013-01-01

    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity. PMID:23107478

  7. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    PubMed Central

    Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y

    2010-01-01

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162

  8. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  9. Inhibition Of Washed Sludge With Sodium Nitrite

    SciTech Connect

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  10. Interaction of hydrogen chloride with alumina. [atmospheric effluent concentrations and interaction of solid rocket propellants used in space shuttle

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Wightman, J. P.

    1978-01-01

    The influence of temperature, pressure, and outgas conditions on the absorption of hydrogen chloride and water vapor on both alpha and gamma alumina was studied. Characterization of the adsorbents was performed using X-ray powder diffraction, scanning electron microscopy (SEM), low temperature nitrogen adsorption desorption measurements, BET nitrogen surface area measurements and electron spectroscopy for chemical analysis (ESCA). Water vapor adsorption isotherms at 30, 40, and 50 C were measured on alpha and gamma alumina after outgassing at 80, 200, and 400 C. Both outgas temperature and adsorption temperature influenced the adsorption of water vapor on the aluminas. The water vapor adsorption was completely reversible. Alpha alumina absorbed more water per unit area than gamma alumina. Differences in the adsorption capacity for water vapor of the two aluminas were explained on the basis of ideal surface models of alpha and gamma alumina. Isosteric heats of adsorption for water vapor on the aluminas were determined over a limited range of surface coverage.

  11. Changes in chloride concentration in water from municipal wells that tap aquifers in rocks of Cambrian and Ordovician age in northeastern Illinois, 1915-84. Water Resources Investigation

    SciTech Connect

    Balding, G.O.

    1991-01-01

    In the late 1970's, the U.S. Geological Survey (USGS) initiated the Regional Aquifer-System Analysis (RASA) to study regional aquifer systems throughout the United States. The general goals of a RASA investigation are to evaluate each aquifer's water-supply potential and water quality, and, using computer models of the ground-water flow system, to provide a means for evaluating aquifer response to stresses placed on the flow system. The report describes the location, magnitude, and causes of the changes in chloride concentration in the aquifers in the Cambrian and Ordovician Systems in a six-county area of northeastern Illinois. The report includes stratigraphic columns, maps, and graphs that show the geology and hydrogeology of the study area and the changes in chloride concentration in water from wells that tap the aquifers in the Cambrian and Ordovician Systems. The geologic and hydrogeologic nomenclature used in the report is that used by Visocky and others (1985) and does not necessarily follow the usage of the USGS.

  12. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels

    SciTech Connect

    Pardo, A.; Otero, E.; Merino, M.C.; Lopez, M.D.; Utrilla, M.V.; Moreno, F.

    2000-04-01

    Localized corrosion resistance (pitting and crevice corrosion) of two high-alloy stainless steels (superduplex and superaustenitic) was studied in solutions with chloride concentrations of 200, 400, 600, and 6,000 ppm at pH values ranging from 2 to 6.5. Critical temperatures for pitting and crevice corrosion were calculated for these test media using electrochemical techniques (continuous current). From results obtained for cyclic polarization, the critical pitting temperature (CPT) and critical crevice temperature (CCT) of these materials in the different test media were determined. Under the tested conditions, the resistance of these materials to localized corrosion was very high. Only in test conditions of higher aggressivity (6,000 ppm CL{sup {minus}} and pH 6.5), pitting or crevice corrosion was observed. In those cases, values of pitting potential (E{sub pit}) and crevice potential (E{sub cre}) showed little tendency to decrease with an increase in CL{sup {minus}} concentration, temperature, and pH. Moreover, the CPT of these steels was determined in a ferric chloride (FeCl{sub 3}) medium, which corresponds to the standard ASTM G48 practice (Method A).

  13. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  14. Electrochemical regeneration of sodium hypochlorite in the absorption-oxidation method of desorbing waste gases

    SciTech Connect

    Znamenskii, Yu.D.; Perchugov, G.Ya.

    1988-07-10

    The electrochemical synthesis of sodium hypochlorite from a solution with a reduced concentration of sodium chloride is efficiently carried out with the use of ruthenium oxide-titanium anodes (ROTA). In this context they investigated the electrolysis of a solution of sodium chloride with concentrations equal to 20 and 50 kg/m/sup 3/ in a single cell flow-type electrolyzer with an ROTA and, for comparison, with a graphite anode under laboratory conditions. A flow-type electrolyzer was selected in view of the fact that it most closely satisfies the purposes of gas purification. The current efficiency with respect to sodium hypochlorite was almost two times higher, and the specific consumption of electrical energy was 1.6-1.8 times lower in the case of the ROTA than in the case of the graphite electrode. The yield of sodium chlorate remained on the same level in both cases.

  15. In Vitro Effect of Sodium Fluoride on Malondialdehyde Concentration and on Superoxide Dismutase, Catalase, and Glutathione Peroxidase in Human Erythrocytes

    PubMed Central

    Gutiérrez-Salinas, José; García-Ortíz, Liliana; Morales González, José A.; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma R.; Madrigal-Santillán, Eduardo

    2013-01-01

    The aim of this paper was to describe the in vitro effect of sodium fluoride (NaF) on the specific activity of the major erythrocyte antioxidant enzymes, as well as on the membrane malondialdehyde concentration, as indicators of oxidative stress. For this purpose, human erythrocytes were incubated with NaF (0, 7, 28, 56, and 100 μg/mL) or NaF (100 μg/mL) + vitamin E (1, 2.5, 5 and 10 μg/mL). The malondialdehyde (MDA) concentration on the surface of the erythrocytes was determined, as were the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GlPx). Our results demonstrated that erythrocytes incubated with increasing NaF concentrations had an increased MDA concentration, along with decreased activity of antioxidant enzymes. The presence of vitamin E partially reversed the toxic effects of NaF on erythrocytes. These findings suggest that NaF induces oxidative stress in erythrocytes in vitro, and this stress is partially reversed by the presence of vitamin E. PMID:24223512

  16. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg....

  17. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg....

  18. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg....

  19. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg....

  20. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance.

    PubMed Central

    Boulanger, Y; Vinay, P; Desroches, M

    1985-01-01

    The accuracy of the 23Na nuclear magnetic resonance (NMR) method for measuring the sodium concentration in erythrocytes was tested by comparing the NMR results to those obtained by emission-flame photometry. Comparisons were made on aqueous solutions, hemolysates, gels, ghosts, and intact erythrocytes. The intra- and extracellular 23Na NMR signals were distinguished by addition of the dysprosium tripolyphosphate [Dy(PPP)7-2] shift reagent to the extracellular fluid. The intra- and extracellular volumes of ghosts and cells were determined by the isotope dilution method. Our results indicate that greater than 20% of the intracellular signal remains undetected by NMR in ghosts and cells. When the cells are hemolyzed, the amount of NMR-detectable sodium varies depending on the importance of gel formation. In hemolysates prepared by water addition, the NMR and flame photometry results are identical. The loss of signal in ghosts, cells, and undiluted hemolysates is attributed to partial binding of the Na+ ion to intracellular components, this binding being operative only when these components exist in a gel state. In a second part, 31P NMR was used to monitor the penetration of the shift reagent into the cells during incubation. Our data demonstrate that free Dy3+ can slowly accumulate inside the red cell. PMID:3986283

  1. Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production.

    PubMed

    Wu, Xianghao; Altman, Ronni; Eiteman, Mark A; Altman, Elliot

    2014-05-01

    Adaptive evolution was employed to generate sodium (Na(+))-tolerant mutants of Escherichia coli MG1655. Four mutants with elevated sodium tolerance, designated ALS1184, ALS1185, ALS1186, and ALS1187, were independently isolated after 73 days of serial transfer in medium containing progressively greater Na(+) concentrations. The isolates also showed increased tolerance of K(+), although this cation was not used for selective pressure. None of the adapted mutants showed increased tolerance to the nonionic osmolyte sucrose. Several physiological parameters of E. coli MG1655 and ALS1187, the isolate with the greatest Na(+) tolerance, were calculated and compared using glucose-limited chemostats. Genome sequencing showed that the ALS1187 isolate contained mutations in five genes, emrR, hfq, kil, rpsG, and sspA, all of which could potentially affect the ability of E. coli to tolerate Na(+). Two of these genes, hfq and sspA, are known to be involved in global regulatory processes that help cells endure a variety of cellular stresses. Pyruvate formate lyase knockouts were constructed in strains MG1655 and ALS1187 to determine whether increased Na(+) tolerance afforded increased anaerobic generation of lactate. In fed-batch fermentations, E. coli ALS1187 pflB generated 76.2 g/liter lactate compared to MG1655 pflB, which generated only 56.3 g/liter lactate. PMID:24584246

  2. Absence of salting out effects in forensic blood alcohol determination at various concentrations of sodium fluoride using semi-automated headspace gas chromatography.

    PubMed

    Miller, B A; Day, S M; Vasquez, T E; Evans, F M

    2004-01-01

    Blood alcohol measurements determined by headspace gas chromatography have been challenged on the grounds that the presence of the preservative sodium fluoride in blood samples artificially increases headspace alcohol concentrations due to a salting out effect. Blood samples containing varying amounts of ethanol and sodium fluoride were tested using semi-automated headspace gas chromatography with n-propyl alcohol as the internal standard to assess the validity of this challenge. We find, in fact, that under these test conditions the measured alcohol levels are systematically depressed as the amount of sodium fluoride in the blood sample increases. The challenge thus has no basis. PMID:15112594

  3. Studies in the reaction-separation method for the preparation of barium chloride from barite using ion exchange

    SciTech Connect

    Gokarn, A.N.; Gaikwad, A.G.; Phalak, C.A.; Bhandari, V.M.

    1999-06-01

    The authors report the application of an ion-exchange process as a reaction-separation strategy for the preparation of barium chloride from barite ore and sodium chloride. Experimental studies were carried out to evaluate the process efficiency and purity/yield of barium chloride using a strong acid cation-exchange resin, Tulsion T-42. The effects of various process parameters such as concentration of barium sulfide and concentration of sodium chloride were investigated, and optimization of the experimental variables was attempted. The results indicate the developed strategy to be attractive and an alternative route to existing processes. The methodology developed has large potential for the inorganic chemical process industry in general.

  4. Changes in concentrations of trace minerals in lambs fed sericea lespedeza leaf meal pellets with or without dietary sodium molybdate.

    PubMed

    Acharya, M; Burke, J M; Coffey, K P; Kegley, E B; Miller, J E; Smyth, E; Welborn, M G; Terrill, T H; Mosjidis, J A; Rosenkrans, C

    2016-04-01

    Prolonged feeding of sericea lespedeza (SL) previously led to reduced serum concentrations of Mo, a cofactor in an enzyme complex that may be involved in weight gain. The current objective was to determine the effect of Mo supplementation on changes in serum, fecal, urine, and liver concentrations of trace minerals in lambs fed SL leaf meal pellets. Thirty ram lambs weaned in May (84 ± 1.5 d of age and 27 ± 1.1 kg; D 0) were blocked by BW, breed type (full or three-fourths Katahdin), and EBV of parasite resistance and randomly assigned to be fed 900 g/d of an alfalfa-based supplement (CON; = 10) or a SL-based supplement ( = 20) for 103 d. Supplements were formulated to be isonitrogenous and isocaloric and to meet trace mineral requirements. Within the SL group, individual lambs were administered either 5 mL water or 5 mL of water with 163.3 mg of sodium molybdate (SLMO). Serum was collected on d 28, 56, and 104; a liver sample was collected by biopsy on d 104 to determine concentrations of trace minerals. Data were analyzed using a mixed model and orthogonal contrasts. Serum concentrations of Mo increased in response to the drench and were greatest in SLMO lambs and then CON lambs and lowest in SL lambs ( < 0.001). Concentrations of Mo in the liver ( < 0.001) were similar between CON and SLMO lambs and were lower in SL lambs than other groups. Serum ( < 0.001) and liver ( = 0.013) concentrations of zinc (Zn) were reduced in both SL and SLMO lambs compared with CON lambs. Serum concentrations of cobalt (Co) increased in CON lambs compared with SL and SLMO lambs between d 0 and 56 but were similar on d 104 (diet × day, < 0.005) as with concentrations in the liver. Serum and liver concentrations of copper (Cu) were greatest ( < 0.001 and < 0.001, respectively) in CON lambs followed by SL lambs and then SLMO lambs. Serum concentrations of selenium (Se) tended ( = 0.10) to be reduced in SL lambs compared with CON and SLMO lambs, but concentrations in the liver were

  5. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    PubMed

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased. PMID:17331341

  6. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 1. Conceptual model

    USGS Publications Warehouse

    Kennedy, V.C.; Jackman, A.P.; Zand, S.M.; Zellweger, G.W.; Avanzino, R.J.

    1984-01-01

    Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition; but little is known about the details and rates of these adsorptive processes. To investigate such processes, a 24-hr. injection of a solution containing chloride, strontium, potassium, sodium and lead was made at the head of a 640-m reach of Uvas Creek in west-central Santa Clara County, California. Uvas Creek is a cobble-bed pool-and-riffle stream draining the eastern slopes of the Santa Cruz Mountains. By September 12, 1973, after a long dry season, Uvas Creek had a low (0.0215 m3s-1 average) flow which varied diurnally, from 0.018 to 0.025 m3s-1. Because stream discharge varied while the injection rate was constant, the concentration of tracers (injected solutes), after mixing in the stream, varied inversely with discharge. Chloride, a nonreactive solute, served as a tracer of water movement. Analysis of extensive chloride concentration data at five sites below the injection point during and after the injection demonstrated that there was considerable underflow of water through the stream gravels; however, the extent of underflow varied greatly within the study reach. Pre-injection water, displaced by tracer-laden water percolating through the gravels, diluted tracers in the stream channel, giving the mistaken impression of groundwater inflow at some points. Accurate measurement of total discharge in such streams requires prolonged tracer injection unless a reach can be found where underflow is negligible. Strontium and potassium were adsorbed by the bed sediments to a moderate extent and lead was strongly adsorbed. A high proportion of these metals could be removed by adsorption from percolating underflow because of extensive and intimate contact with bed sediments. After channel clearing following injection cutoff, 51% of the added strontium and 96% of the lead remained in the study reach, whereas only 19% of the chloride remained. Packets of sized

  7. Physiological sodium concentrations enhance the iodide affinity of the Na+/I- symporter

    NASA Astrophysics Data System (ADS)

    Nicola, Juan P.; Carrasco, Nancy; Mario Amzel, L.

    2014-06-01

    The Na+/I- symporter (NIS) mediates active I- transport—the first step in thyroid hormonogenesis—with a 2Na+:1I- stoichiometry. NIS-mediated 131I- treatment of thyroid cancer post-thyroidectomy is the most effective targeted internal radiation cancer treatment available. Here to uncover mechanistic information on NIS, we use statistical thermodynamics to obtain Kds and estimate the relative populations of the different NIS species during Na+/anion binding and transport. We show that, although the affinity of NIS for I- is low (Kd=224 μM), it increases when Na+ is bound (Kd=22.4 μM). However, this Kd is still much higher than the submicromolar physiological I- concentration. To overcome this, NIS takes advantage of the extracellular Na+ concentration and the pronounced increase in its own affinity for I- and for the second Na+ elicited by binding of the first. Thus, at physiological Na+ concentrations, ~79% of NIS molecules are occupied by two Na+ ions and ready to bind and transport I-.

  8. Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions

    NASA Astrophysics Data System (ADS)

    Driesner, T.; Seward, T. M.; Tironi, I. G.

    1998-09-01

    The increasing demand for accurate equations of state of fluids under extreme conditions and the need for a detailed microscopic picture of aqueous fluids in some areas of geochemistry (e.g., mineral dissolution/precipitation kinetics) potentially make molecular dynamics (MD) simulations a powerful tool for theoretical geochemistry. We present MD simulations of infinitely dilute and 1 molal aqueous NaCl solutions that have been carried out in order to study the systematics of hydration and ion association over a wide range of conditions from ambient to supercritical and compare them to the available experimental data. In the dilute case, the hydration number of the Na + ion remains essentially constant around 5.5 from ambient to supercritical temperatures when the density is kept constant at 1 g cm -3 but decreases to below 5 along the liquid-vapor curve. In both cases, the average ion-first shell water distance decreases by about 0.03 Å from ambient to near critical temperatures. The Cl - ion shows a slight expansion of the first hydration shell by about 0.02 Å from ambient to near critical temperatures. The geometric definition of the first hydration shell becomes ambiguous due to a shift of the position of the first minimum of the Cl-O radial distribution function. In the case of the 1 molal solution, the contraction of the Na + first hydration shell is similar to that in the dilute case whereas the hydration number decreases drastically from 4.9 to 2.8 due to strong ion association. The released waters are replaced on a near 1:1 basis by chloride ions. Polynuclear clusters as predicted by Oelkers and Helgeson (1993b) are observed in the high temperature systems. The hydration shell of the Cl --ion shows significant deviation from the behavior in dilute systems, that is, at near vapor saturated conditions, the expansion of the hydration shell is significantly larger (0.12 Å from ambient to near critical temperatures). Due to a very large shift of the first

  9. Laser-luminescent determination of uranium in natural waters with concentration of titanium hydroxide and using sodium polysilicate

    SciTech Connect

    Nikitina, S.A.; Stepanov, A.V.

    1987-05-01

    Two methods for determining uranium in samples with a high content of quenching agents are compared, taking as an example the analysis of waters from the Vuoksa River, Baltic Sea and Finnish Bay. The first of these methods was developed by the authors and consists in concentrating uranium on TiO/sub 2/ x nH/sub 2/O under dynamic conditions, followed by laser luminescent determination at 77/sup 0/K in 0.1 M H/sub 2/SO/sub 4/. The second method consists in direct recording of the luminescence of uranium in a 0.7% solution of sodium polysilicate at room temperature. The detection limit of the second method is estimated by the authors as 2 x 10/sup -11/ g/ml, while the detection limit of the first method is lower because concentration is used. The method is especially suitable for analysis of natural waters with a high concentration of hydrolyzable elements. Quenching rate constants of uranyl were measured for a large number of ions in a polysilicate medium.

  10. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

    NASA Astrophysics Data System (ADS)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M.; Park, Jinhong; Namkung, Wan; van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A.; Sessler, Jonathan L.; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  11. Membrane Na+-pyrophosphatases Can Transport Protons at Low Sodium Concentrations*

    PubMed Central

    Luoto, Heidi H.; Nordbo, Erika; Baykov, Alexander A.; Lahti, Reijo; Malinen, Anssi M.

    2013-01-01

    Membrane-bound Na+-pyrophosphatase (Na+-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na+ transport in bacteria and archaea. Each ∼75-kDa subunit of homodimeric Na+-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na+ concentrations (<5 mm), the Na+-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H+-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H+ accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2–8.2, H+ transport activity was high at 0.1 mm Na+ but decreased progressively with increasing Na+ concentrations until virtually disappearing at 5 mm Na+. In contrast, 22Na+ transport activity changed little over a Na+ concentration range of 0.05–10 mm. Conservative substitutions of gate Glu242 and nearby Ser243 and Asn677 residues reduced the catalytic and transport functions of the enzyme but did not affect the Na+ dependence of H+ transport, whereas a Lys681 substitution abolished H+ (but not Na+) transport. All four substitutions markedly decreased PPase affinity for the activating Na+ ion. These results are interpreted in terms of a model that assumes the presence of two Na+-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H+ transport activity. The inherent H+ transport activity of Na+-PPase provides a rationale for its easy evolution toward specific H+ transport. PMID:24158447

  12. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGESBeta

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; Edwards, Thomas

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  13. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams.

    PubMed

    Gardner, Kristin M; Royer, Todd V

    2010-01-01

    Contemporary information on road salt runoff is needed for management of water resources in regions experiencing urbanization and increased road density. We investigated seasonal Cl(-) concentrations among five streams in south-central Indiana that drained watersheds varying in degree of urbanization and ranging in size from 9.3 to 27 km(2). We also conducted acute toxicity tests with Daphnia pulex to assess the potential effects of the observed Cl(-) concentrations on aquatic life. Periods of elevated Cl(-) concentrations were observed during the winters of 2007-08 and 2008-09 at all sites except the reference site. The highest Cl(-) concentration observed during the study was 2100 mg L(-1) and occurred at the most urbanized site. The Cl(-) concentration at the reference site never exceeded 22 mg L(-1). The application of road salt caused large increases in stream Cl(-) concentrations, but the elevated Cl(-) levels did not appear to be a significant threat to aquatic life based on our toxicity testing. Only the most urbanized site showed evidence of salt retention within the watershed, whereas the other sites exported the road salt relatively quickly after its application, suggesting storm drains and impervious surfaces minimized interaction between soils and salt-laden runoff. During winter at these sites, the response in stream Cl(-) concentrations appeared to be controlled by the timing and intensity of road salt application, the magnitude of precipitation, and the occurrence of air temperatures that caused snowmelt and generated runoff. PMID:20400599

  14. Chloride concentrations and stable isotopes of hydrogen and oxygen in surface water and groundwater in and near Fish Creek, Teton County, Wyoming, 2005-06

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.

    2010-01-01

    Fish Creek, an approximately 25-kilometer long tributary to the Snake River, is located in Teton County in western Wyoming near the town of Wilson. The U.S. Geological Survey, in cooperation with the Teton Conservation District, conducted a study to determine the interaction of local surface water and groundwater in and near Fish Creek. In conjunction with the surface water and groundwater interaction study, samples were collected for analysis of chloride and stable isotopes of hydrogen and oxygen in water. Chloride concentrations ranged from 2.9 to 26.4 milligrams per liter (mg/L) near Teton Village, 1.2 to 4.9 mg/L near Resor's Bridge, and 1.8 to 5.0 mg/L near Wilson. Stable isotope data for hydrogen and oxygen in water samples collected in and near the three cross sections on Fish Creek are shown in relation to the Global Meteoric Water Line and the Local Meteoric Water Line.

  15. Minimizing Concentration of Sodium Hypochlorite in Root Canal Irrigation by Combination of Ultrasonic Irrigation with Photodynamic Treatment.

    PubMed

    Wang, Yanhuang; Xiao, Suli; Ma, Dianfu; Huang, Xiaojing; Cai, Zhiyu

    2015-01-01

    Concentration of sodium hypochlorite (NaOCl) is positively correlated with its effectiveness in root canal disinfection but negatively correlated with its biocompatibility. The objective of this in vitro study was to compare the bactericidal effects among ultrasonic irrigation with different concentration of NaOCl alone or together with photodynamic treatment (PDT) against Enterococcus faecalis (E. faecalis) in infected root canals. One hundred and twenty bovine root canals contaminated with E. faecalis were randomly distributed into 12 groups treated with different disinfection methods: PDT, ultrasonic irrigation with NaOCl at different concentrations (0.5%, 1.0%, 2.0%, 2.5% and 5.25%), and ultrasonic irrigation with NaOCl at different concentrations plus PDT. Data of microorganism load were collected before and after disinfection and analyzed by one-way ANOVA and LSD tests. Significantly enhanced antibacterial effects were noticed in groups treated by PDT plus 2.0% or 2.5% NaOCl irrigation (P < 0.05). No statistical differences existed in bactericidal efficacy among groups of PDT plus ultrasonic irrigation with 2.0%, 2.5% or 5.25% NaOCl, and ultrasonic irrigation with 5.25% NaOCl alone (P > 0.05). Our study confirmed the feasibility to reduce the concentration of NaOCl to a safer level while maintaining its antibacterial efficiency through synergistic effect of PDT with NaOCl ultrasonic irrigation. PMID:25892274

  16. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  17. Comparison of the crevice corrosion resistance of Alloys 625 and 22 in concentrated chloride solution from 60 to 95 degrees C

    SciTech Connect

    Kehler, B A; Illevbare, G O; Scully, J R

    1999-12-06

    The effects of electrolyte composition and oxide film age on the crevice corrosion properties of alloys 625 and 22 were studied at temperatures ranging from 60 to 95 C in concentrated chloride electrolytes. Critical potentials were determined using conventional current density thresholds and comparisons were made between 625 and 22 on the basis of these critical potentials. Air aged 22 specimens exhibited the highest resistance to crevice corrosion at 95 C in terms of critical crevice potentials, while freshly polished 22 exhibited the lowest resistance. Studies over the entire, temperature range showed that air aged 22 is more resistant to crevice corrosion than air aged 625 as evidenced by higher critical crevice potentials. As the temperature was lowered from 95 to 8O C, critical crevice potentials for 22 either approached or exceeded experimentally determined Cr (Mo, Ni) transpassive potentials.

  18. Quantitative analysis of serum sodium concentration after prolonged running in the heat.

    PubMed

    Baker, Lindsay B; Lang, James A; Kenney, W Larry

    2008-07-01

    This study compared measured serum [Na(+)] (S([Na+]); brackets denote concentration) with that predicted by the Nguyen-Kurtz equation after manipulating ingested [Na(+)] and changes in body mass (DeltaBM) during prolonged running in the heat. Athletes (4 men, 4 women; 22-36 yr) ran for 2 h, followed by a run to exhaustion and 1-h recovery. During exercise and recovery, subjects drank a 6% carbohydrate solution without Na(+) (Na(+)0), 6% carbohydrate solution with 18 mmol/l Na(+) (Na(+)18), or 6% carbohydrate solution with 30 mmol/l Na(+) (Na(+)30) to maintain BM (0%DeltaBM), increase BM by 2%, or decrease BM by 2% or 4% in 12 separate trials. Net fluid, Na(+), and K(+) balance were measured to calculate the Nguyen-Kurtz predicted S([Na+]) for each trial. For all beverages, predicted and measured S([Na+]) were not significantly different during the 0%, -2%, and -4%DeltaBM trials (-0.2 +/- 0.2 mmol/l) but were significantly different during the +2%DeltaBM trials (-2.6 +/- 0.5 mmol/l). Overall, Na(+) consumption attenuated the decline in S([Na+]) (-2.0 +/- 0.5, -