Science.gov

Sample records for soft x-ray inelastic

  1. Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution.

    PubMed

    Lai, C H; Fung, H S; Wu, W B; Huang, H Y; Fu, H W; Lin, S W; Huang, S W; Chiu, C C; Wang, D J; Huang, L J; Tseng, T C; Chung, S C; Chen, C T; Huang, D J

    2014-03-01

    The design, construction and commissioning of a beamline and spectrometer for inelastic soft X-ray scattering at high resolution in a highly efficient system are presented. Based on the energy-compensation principle of grating dispersion, the design of the monochromator-spectrometer system greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. Comprising two bendable gratings, the set-up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin-flip, d-d and charge-transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set-up in terms of full width at half-maximum is 108 meV at an incident photon energy tuned about the Ni L3-edge. PMID:24562553

  2. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Fleszar, A.; Bar, M.; Blum, M.; Weigand, M.; Denlinger, J.D.; Yang, W.; Hanke, W.; Umbach, E.; Heske, C.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  3. The SEXTANTS beamline at SOLEIL: a new facility for elastic, inelastic and coherent scattering of soft X-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Jaouen, N.; Popescu, H.; Gaudemer, R.; Tonnerre, J. M.; Chiuzbaian, S. G.; Hague, C. F.; Delmotte, A.; Dubuisson, J. M.; Cauchon, G.; Lagarde, B.; Polack, F.

    2013-03-01

    SEXTANTS is a new SOLEIL beamline dedicated to soft X-ray scattering techniques. The beamline, covering the 50-1700 eV energy range, features two Apple-II undulators for polarization control and a fixed-deviation monochromator. Two branch-lines host three end-stations for elastic, inelastic and coherent scattering experiments.

  4. Electronic Structure in Thin Film Organic Semiconductors Studied using Soft X-ray Emission and Resonant Inelastic X-ray Scattering

    SciTech Connect

    Zhang,Y.; Downes, J.; Wang, S.; Learmonth, T.; Plucinski, L.; Matsuura, A.; McGuinness, C.; Glans, P.; Bernardis, S.; et al.

    2006-01-01

    The electronic structure of thin films of the organic semiconductors copper and vanadyl (VO) phthalocyanine (Pc) has been measured using resonant soft X-ray emission spectroscopy and resonant inelastic X-ray scattering. For Cu-Pc we report the observation of two discrete states near E{sub F}. This differs from published photoemission results, but is in excellent agreement with density functional calculations. For VO-Pc, the vanadyl species is shown to be highly localized. Both dipole forbidden V 3d to V 3d*, and O 2p to V 3d* charge transfer transitions are observed, and explained in a local molecular orbital model.

  5. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    SciTech Connect

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe; Kalus, Christian; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  6. Nuclear dynamics in the core-excited state of aqueous ammonia probed by resonant inelastic soft x-ray scattering

    SciTech Connect

    Weinhardt, L.; Weigand, M.; Fuchs, O.; Baer, M.; Blum, M.; Denlinger, J. D.; Yang, W.; Umbach, E.; Heske, C.

    2011-09-01

    The electronic structure of aqueous NH{sub 3} and ND{sub 3} has been investigated using resonant inelastic soft x-ray scattering. Spectral features of different processes involving nuclear dynamics in the core-excited state can be identified. When exciting into the lowest core-excited state, we find a strong isotope effect and clear evidence for ultrafast proton dynamics. Furthermore, a strong vibronic coupling is observed and, in the case of aqueous NH{sub 3}, a vibrational fine structure can be resolved.

  7. Isotope Effects in the Resonant Inelastic Soft X-ray Scattering Maps of Gas-Phase Methanol.

    PubMed

    Benkert, A; Meyer, F; Hauschild, D; Blum, M; Yang, W; Wilks, R G; Bär, M; Reinert, F; Heske, C; Weinhardt, L

    2016-04-14

    The electronic structure of gas-phase methanol molecules (H3COH, H3COD, and D3COD) at atmospheric pressure was investigated using resonant inelastic soft X-ray scattering (RIXS) at the O K and C K edges. We observe strong changes of the relative emission intensities of all valence orbitals as a function of excitation energy, which can be related to the symmetries of the involved orbitals causing an angularly anisotropic RIXS intensity. Furthermore, all observed emission lines are subject to strong spectator shifts of up to -0.9 eV at the O K edge and up to -0.3 eV at the C K edge. At the lowest O K resonance, we find clear evidence for dissociation of the methanol molecule on the time scale of the RIXS process, which is illustrated by comparing X-ray emission spectra of regular and deuterated methanol. PMID:27003748

  8. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    SciTech Connect

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  9. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  10. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering.

    PubMed

    Braicovich, L; Minola, M; Dellea, G; Le Tacon, M; Moretti Sala, M; Morawe, C; Peffen, J-Ch; Supruangnet, R; Yakhou, F; Ghiringhelli, G; Brookes, N B

    2014-11-01

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B4C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L3 edge on a high-Tc superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%. PMID:25430146

  11. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules

    SciTech Connect

    Weinhardt, Lothar; Benkert, Andreas; Meyer, Frank; Blum, Monika; Wilks, Regan G.; Yang, Wanli; Baer, Marcus; Reinert, Friedrich; and others

    2012-04-14

    The electronic structure of gas-phase H{sub 2}O and D{sub 2}O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a{sub 1} resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

  12. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  13. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    PubMed

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  14. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  15. Inelastic magnetic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Platzman, P. M.; Tzoar, N.

    1985-04-01

    The theory of magnetic X-ray scattering is used to discuss the possibilities for employing inelastic scattering to probe the magnetic properties of condensed matter systems. In particular, it is shown how the interference between the nonmagnetic (Compton) and magnetic scattering arising from the use of circularly polarized X-rays is absolutely essential in such experiments. The very beautiful preliminary experiments by Sakai and Ono (1976) on Fe which use circularly polarized Moessbauer gamma-rays will be discussed. They already show the sensitivity of the technique to the 'magnetic form factor'. In addition, the physics of a unique quarter wave plate employed in obtaining circularly polarized X-rays is considered, and the implications of this advance for doing such experiments on existing synchrotron X-ray sources are discussed.

  16. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  17. Electronic Structure of the ID Conductor K0.3MoO3 studied using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy

    SciTech Connect

    Learmonth, T.; Glans, P.-A.; McGuinness, C.; Plucinski, L.; Zhang, Y.; Guo, J.-H.; Greenblatt, M.; Smith, K.E.

    2008-09-24

    The electronic structure of the quasi-one dimensional conductor K{sub 0.3}MoO{sub 3} has been measured using high resolution resonant inelastic x-ray scattering and x-ray absorption spectroscopy. The data is compared to that from the related two dimensional insulator {alpha}-MoO{sub 3}. Scattering features are observed from both oxides that are explained in terms of the band momentum selectivity of the scattering process, allowing a comparison of the scattering data to recent band structure calculations.

  18. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  19. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  20. High energy-resolution inelastic x-ray scattering

    SciTech Connect

    Hastings, J.B.; Moncton, D.E.; Fujii

    1984-01-01

    A brief review is presented of various aspects of high energy-resolution inelastic x-ray scattering based on synchrotron sources. We show what kinematical advantages are provided by the photon probe and propose mirror and monochromator designs to achieve an optically efficient beam line for inelastic x-ray scattering.

  1. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  2. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2010-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton observations of those X-ray selected polars and genuine discoveries of new polar systems reveal growing evidence that the prevailence or even the existence of a soft X-ray component may be rather the exception than the rule. In the last decade polars were discovered in optical surveys like the SDSS and the CSS. Here we propose XMM-Newton observations of 5 optically selected polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution of polars.

  3. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C

    SciTech Connect

    Kristiansen, P. T.; Rocha, T. C. R.; Knop-Gericke, A.; Guo, J. H.; Duda, L. C.

    2013-11-15

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  4. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2011-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton discovered polars however and new polar systems from optical surveys (SDSS, CSS) reveal growing evidence that the prevalence or even the existence of a soft X-ray component may be rather the exception than the rule. Here we propose XMM-Newton observations of 5 optically identified polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution and accretion energy release of polars.

  5. Soft x-ray tomoholography

    NASA Astrophysics Data System (ADS)

    Guehrs, Erik; Stadler, Andreas M.; Flewett, Sam; Frömmel, Stefanie; Geilhufe, Jan; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Büldt, Georg; Eisebitt, Stefan

    2012-01-01

    We demonstrate an x-ray imaging method that combines Fourier transform holography with tomography (‘tomoholography’) for three-dimensional (3D) microscopic imaging. A 3D image of a diatom shell with a spatial resolution of 140 nm is presented. The experiment is realized by using a small gold sphere as the reference wave source for holographic imaging. This setup allows us to rotate the sample and to collect a number of 2D projections for tomography.

  6. Soft x-ray tomography on TFTR

    SciTech Connect

    Kuo-Petravic, G.

    1988-12-01

    The tomographic method used for deriving soft x-ray local emissivities on TFTR, using one horizontal array of 60 soft x-ray detectors, is described. This method, which is based on inversion of Fourier components and subsequent reconstruction, has been applied to the study of a sawtooth crash. A flattening in the soft x-ray profile, which we interpret as an m = 1 island, is clearly visible during the precursor phase and its location and width correlate well with those from electron temperature profiles reconstructed from electron cyclotron emission measurement. The limitations of the Fourier method, due notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of obtaining accurately the higher Fourier harmonics, are discussed. 9 refs., 13 figs.

  7. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  8. Inelastic X-ray Scattering Studies of Electronic Excitations

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji; Tohyama, Takami; Mizuki, Jun'ichiro

    2013-02-01

    Inelastic x-ray scattering (IXS) has developed into one of the most powerful momentum-resolved spectroscopies. Especially in the last decade, it has achieved significant progress utilizing brilliant x-rays from third-generation synchrotron radiation facilities. Simultaneously, theoretical efforts have been made to predict or interpret the experimental spectra. One of the scientific fields studied intensively by IXS is strongly correlated electron systems, where the interplay of charge, spin, and orbital degrees of freedom determines their physical properties. IXS can provide a new insight into the electron dynamics of the systems through the observation of charge, spin, and orbital excitations. Focusing on the momentum-resolved electronic excitations in strongly correlated electron systems, we review IXS studies and the present capabilities of IXS for the study of the dynamics of materials. With nonresonant inelastic x-ray scattering (NIXS), one can directly obtain dynamical charge correlation and we discuss its complementary aspects with inelastic neutron scattering. NIXS also has a unique capability of measuring higher multipole transitions, which are usually forbidden in conventional optical absorption. Resonant inelastic x-ray scattering (RIXS) is now established as a valuable tool for measuring charge, spin, and orbital excitations in a momentum-resolved manner. We describe RIXS works on cuprates in detail and show what kind of electronic excitations have been observed. We also discuss RIXS studies on other transition-metal compounds. Finally, we conclude with an outlook on IXS using next-generation x-ray sources.

  9. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  10. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  11. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  12. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  13. Resonant inelastic x-ray scattering from molecules and atoms

    SciTech Connect

    Arp, U.; Deslattes, R.D.; Miyano, K.E.; Southworth, S.H.

    1995-12-31

    X-ray fluorescence spectroscopy is one of the most powerful methods for the understanding of the electronic structure of matter. We report here on fluorescence experiments in the 2 to 6 keV photon energy range using tunable synchrotron radiation and the resulting experimental programs on resonant inelastic scattering in atoms and on polarization measurements in resonant molecular excitations.

  14. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D.; Meixler, L.; Skinner, C.H.; Suckewer, S.; Hirschberg, J.; Kohen, E.

    1987-12-31

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  15. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D. ); Meixler, L.; Skinner, C.H.; Suckewer, S. . Plasma Physics Lab.); Hirschberg, J.; Kohen, E. . Dept. of Physics)

    1987-01-01

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  16. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  17. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  18. Inelastic x-ray scattering from phonons under multibeam conditions

    NASA Astrophysics Data System (ADS)

    Bosak, Alexey; Krisch, Michael

    2007-03-01

    We report on an experimental observation of a previously neglected multibeam contribution to the inelastic x-ray scattering cross section. Its manifestation is a substantial modification of the apparent phonon selection rules when two (or more) reciprocal lattice points are simultaneously intercepted by the Ewald sphere. The observed multibeam contributions can be treated semi-quantitatively in the frame of Renninger’s “simplest approach.” A few corollaries, relevant for experimental work on inelastic scattering from phonons, are presented.

  19. Soft x-ray transmission gratings

    SciTech Connect

    Arakawa, E. T.; Caldwell, P. J.; Williams, M. W.

    1980-01-01

    A technique was developed for producing transmission diffraction gratings suitable for use in the soft x-ray region. Thin self-supporting films of a transparent material are overlaid with several thousand opaque metallic strips per mm. Gratings with 2100, 2400, and 5600 1/mm have been produced and tested. Representative spectra over the wavelength range from 17.2 to 40.0 nm are given for a grating consisting of a 120-nm-thick Al support layer overlaid with 2400, 34-nm-thick, Ag strips/mm. The absolute transmittance is approx. 13% at 30 nm, and the efficiency in the first order is approx. 16%. The observed resolution of approx. 2A is acceptable for many of the potential applications. These gratings have several advantages over the two presently available alternatives in the soft x-ray region (i.e., reflection gratings used at grazing incidence and free-standing metallic wire transmission gratings). Fabrication is relatively quick, simple, and cheap. The support layer can also serve as a filter and help conduct excessive heat away. Higher line densities and hence higher resolutions are possible, and when used at normal incidence the spectra are aberration free. Suitable materials, component thicknesses, and line densities can be chosen to produce a grating of optimum characteristics for a particular application.

  20. The PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Wunderer, C. B.; Marras, A.; Bayer, M.; Correa, J.; Göttlicher, P.; Lange, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Viti, M.; Xia, Q.; Zimmer, M.; Das, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Gianoncelli, A.; Giuressi, D.; Menk, R.; Stebel, L.; Yousef, H.; Marchal, J.; Rees, N.; Tartoni, N.; Graafsma, H.

    2015-02-01

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile And Large'') is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic ``PERCIVAL13M'' sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ~ 105 (500 eV) simultaneously-arriving photons. A smaller ``PERCIVAL2M'' with ~ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  1. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  2. Soft X-Ray Tomography in HSX

    NASA Astrophysics Data System (ADS)

    Sakaguchi, V.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Likin, K.

    2003-10-01

    Under certain discharge conditions, HSX plasmas exhibit a sudden loss of stored energy followed by fluctuations of the order of few kHz in both the stored energy and the soft x-ray (SXR) signals. These are measured by a diamagnetic loop and a set of PIPS detectors respectively. To help understand the origin of these crashes and the nature of the oscillations, as well as to measure basic plasma properties such as position and shape, a SXR tomography system is under development in HSX. A single array of 20 silicon p-n junction photodiodes is installed on the device and, in the near future, the diagnostic system will be expanded to several arrays in order to obtain tomographic reconstructions of the SXR emission. Initial SXR and stored energy measurements during these crashing discharges as well as the results of the one-array reconstruction will be presented. Implementation details of the complete tomographic system will be shown as well.

  3. Tunable Soft X-Ray Oscillators

    SciTech Connect

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  4. Inelastic x-ray scattering from shocked liquid deuterium.

    PubMed

    Regan, S P; Falk, K; Gregori, G; Radha, P B; Hu, S X; Boehly, T R; Crowley, B J B; Glenzer, S H; Landen, O L; Gericke, D O; Döppner, T; Meyerhofer, D D; Murphy, C D; Sangster, T C; Vorberger, J

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5  eV, an electron density of 2.2(±0.5)×10(23)  cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results. PMID:23368573

  5. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    SciTech Connect

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; Doeppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  6. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    SciTech Connect

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  7. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGESBeta

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  8. Effects of Galactic absorption on soft X-ray surveys

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Gioia, I. M.; Maccacaro, T.; Wolter, A.

    1988-01-01

    A bias in the spectral distribution of X-ray sources detected in X-ray surveys is discussed which is due to the combination of the intrinsic characteristics of X-ray telescopes and the effects of low-energy photoelectric absorption within the Galaxy. A statistical method for obtaining information on the average spectrum of X-ray sources detected in well-defined surveys is presented. This method can be applied to surveys performed with X-ray telescopes working at relatively soft X-ray energies, such as Einstein, Exosat, and Rosat.

  9. A soft X-ray image of the moon

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Snowden, S. L.

    1991-01-01

    A soft X-ray image of the moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the moon's X-ray luminosity arises from backscattering of solar X-rays. The moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one percent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the moon's surface.

  10. Dante Soft X-ray Power Diagnostic for NIF

    SciTech Connect

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  11. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  12. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  13. Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures

    SciTech Connect

    Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-03-03

    We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

  14. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  15. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  16. Stellar contribution to the galactic soft x-ray background

    SciTech Connect

    Rosner, R.; Avni, Y.; Bookbinder, J. R.,Giacconi; Golub, L.; Harnden, F.R. Jr.; Maxson, C.W.; Topka, K.; Vaiana, G.S.

    1981-10-01

    We construct log N-log S relations for stars based on medium x-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed x-ray luminosity function derived here for dM stars, and investigate the stellar contribution to the diffuse soft x-ray background. The principal results are that stars provide approx.20% of the soft x-ray background in the 0.28--1.0 keV passband and therefore contribute significantly to the soft x-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse x-ray background in the 0.15--0.28 keV passband is < or approx. =3%.

  17. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  18. Phase Resolved X-ray Spectral Analysis of Soft IPs

    NASA Astrophysics Data System (ADS)

    Pekon, Yakup

    2016-07-01

    As a subclass of Cataclysmic Variables, Intermediate Polars (IPs) are magnetic systems which mainly show hard X-ray emission. However, there have been an increasing number of systems that also show a soft emission component arising from reprocessed X-rays from the white dwarf limbs. Due to their relatively short periods, they pose as good canditates to perform phase resolved analysis. In this work, X-ray phase resolved spectral analysis of selected IPs with soft X-ray emission components (such as PQ Gem, V2069 Cyg etc.) over the orbital and/or spin periods will be presented. The analyses will help a better understanding of the complex absorption mechanisms and the nature of the soft X-ray emissions in soft IPs.

  19. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  20. Modeled soft X-ray solar irradiances

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1994-01-01

    Solar soft X-rays have historically been inaccurately modeled in both relative variations and absolute magnitudes by empirical solar extreme ultraviolet (EUV) irradiance models. This is a result of the use of a limited number of rocket data sets which were primarily associated with the calibration of the AE-E satellite EUV data set. In this work, the EUV91 solar EUV irradiance model has been upgraded to improve the accuracy of the 3.0 to 5.0 nm relative irradiance variations. The absolute magnitude estimate of the flux in this wavelength range has also been revised upwards. The upgrade was accomplished by first digitizing the SOLRAD 11 satellite 4.4 to 6.0 nm measured energy flux data set, then extracting and extrapolating a derived 3.0 to 5.0 nm photon flux from these data, and finally by performing a correlation between these derived data and the daily and 81-day mean 10.7 cm radio flux emission using a multiple linear regression technique. A correlation coefficient of greater than 0.9 was obtained between the dependent and independent data sets. The derived and modeled 3.0 to 5.0 nm flux varies by more than an order of magnitude over a solar cycle, ranging from a flux below 1 x 10(exp 8) to a flux greater than 1 x 10(exp 9) photons per sq cm per sec. Solar rotational (27-day) variations in the flux magnitude are a factor of 2. The derived and modeled irradiance absolute values are an order of magnitude greater than previous values from rocket data sets related to the calibration of the AE-E satellite.

  1. Inelastic X-ray Scattering Studies of Zeolite Collapse

    SciTech Connect

    Greaves, G. Neville; Kargl, Florian; Ward, David; Holliman, Peter; Meneau, Florian

    2009-01-29

    In situ inelastic x-ray scattering (IXS) experiments have been used to probe heterogeneity and deformability in zeolte Y as this thermally collapses to a high density amorphous (HDA) aluminosilicate phase. The Landau-Placzek ratio R{sub LP} falls slowly as amorphisation advances, increasing in the later stages of collapse clearly showing how homogeneity improves non-linearly--behaviour linked closely with the decline in molar volume V{sub Molar}. The Brillouin frequency {omega}{sub Q} also decreases with amorphisation in a similar fashion, signifying a non-uniform decrease in the speed of sound v{sub l}. All of these changes with zeolite amorphisation infer formation of an intermediate low density amorphous (LDA) phase. This low entropy or 'perfect glass' has mechanical properties which are closer to the zeolite rather to the HDA glass--notably a very small value of Poisson's Ratio signifying unusually low resistance to deformation.

  2. Development of small scale soft x-ray lasers

    SciTech Connect

    Kim, D.; Suckewer, S. . Plasma Physics Lab. Princeton Univ., NJ . Dept. of Mechanical and Aerospace Engineering); Skinner, C.H.; Voorhees, D. . Plasma Physics Lab.)

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183{angstrom} has been obtained with relatively low pump laser energies (as low as 6J) in a portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs.

  3. Hard X-Ray, Soft X-Ray, and EUV Studies of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Wagner, William (Technical Monitor)

    2003-01-01

    Document study the hard X-ray (HXR), soft X-ray (SXR) ,EUV, and magnetic nature of solar eruptions, with the objective of elucidating the physics of the eruption process. In particular, it was examine the viability of two specific eruption mechanisms, detailed in our proposal. These mechanisms are the "breakout model", and the "tether cutting model". During the second year, it was a significant progress in the goals to Data Sets Utilized. In the publications during this second year of the grant period, the data was used from the E W Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) instruments on SOHO, and from the Soft X-ray Telescope (SXT), Hard X-ray Telescope (HXT), and the Bragg Crystal Spectrometer (BCS) on Yooh.

  4. Soft-X-Ray Prefilter for Hot, Bright Objects

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Ortendahl, J. A.

    1985-01-01

    Prefilters consisting of beryllium foil supported on conductive silver mesh transmit soft x-rays but are nearly opaque to visible and infrared light. New Be/AG filters protect imaging X-ray detectors from damage by visible and longer wavelength radiation when viewing such hot, bright emitters as Sun or possibly certain industrial processes.

  5. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity. PMID:26134801

  6. First Terrestrial Soft X-ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Ostegaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2004-01-01

    Northern auroral regions of Earth were imaged using the High-Resolution Camera (HRC-1) aboard the Chandra X-Ray Observatory (CXO) at 10 epochs (each approx.20 min duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earth s soft (<2 keV) x-ray aurora in a comparative study with Jupiter s x-ray aurora, where a pulsating x-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft x-ray observations of Earth s aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft x-ray signal is produced by electron bremsstrahlung.

  7. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (< 2 keV) X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  8. Soft x-ray holographic microscopy

    NASA Astrophysics Data System (ADS)

    Stickler, Daniel; Frömter, Robert; Stillrich, Holger; Menk, Christian; Tieg, Carsten; Streit-Nierobisch, Simone; Sprung, Michael; Gutt, Christian; Stadler, Lorenz-M.; Leupold, Olaf; Grübel, Gerhard; Oepen, Hans Peter

    2010-01-01

    We present a new x-ray microscopy technique based on Fourier transform holography (FTH), where the sample is separate from the optics part of the setup. The sample can be shifted with respect to the holography optics, thus large-scale or randomly distributed objects become accessible. As this extends FTH into a true microscopy technique, we call it x-ray holographic microscopy (XHM). FTH allows nanoscale imaging without the need for nanometer-size beams. Simple Fourier transform yields an unambiguous image reconstruction. We demonstrate XHM by studying the magnetic domain evolution of a Co/Pt multilayer film as function of locally varied iron overlayer thickness.

  9. Soft x-ray imaging using Polaroid Land films

    SciTech Connect

    Wong, C.S.; Choi, P.; Deeney, C.

    1988-02-01

    It is demonstrated in this note that optical Polaroid Land films can be used as a convenient detector in the soft x-ray region. The performance of Polaroid 667 film has been found to be comparable to that of the Kodak direct exposure film (DEF) for soft x-ray pinhole imaging. By a suitable choice of multiple filters, qualitative information about a dense plasma has been obtained.

  10. Filters for soft X-ray solar telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  11. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  12. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  13. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  14. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  15. Effects of soft x-ray irradiation on cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Ford, Thomas W.; Page, Anton M.; Foster, Guy F.; Stead, Anthony D.

    1993-01-01

    The future of x-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artefacts are not introduced as a result of the image collection system. One possible source of artefacts is cellular damage resulting form the irradiation of the material with soft x rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380 eV) soft x rays. Extreme ultrastructural damage has been detected following doses of 103 - 104 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft x-ray microscopy.

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  17. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  18. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  19. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  20. Soft X-ray Polarimetry Development

    NASA Astrophysics Data System (ADS)

    Marshall, Herman; Schulz, Norbert S.; Heine, Sarah

    2016-07-01

    We present continued development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 95%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. We will present results from measurements of new laterally graded multilayer mirrors and new gratings essential to the design. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission could measure the polarization of a blazar such as Mk 421 to 5-10 percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.

  1. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  2. Laboratory cryo soft X-ray microscopy.

    PubMed

    Hertz, H M; von Hofsten, O; Bertilson, M; Vogt, U; Holmberg, A; Reinspach, J; Martz, D; Selin, M; Christakou, A E; Jerlström-Hultqvist, J; Svärd, S

    2012-02-01

    Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined. PMID:22119891

  3. Nanoimaging cells using soft X-ray tomography.

    PubMed

    Parkinson, Dilworth Y; Epperly, Lindsay R; McDermott, Gerry; Le Gros, Mark A; Boudreau, Rosanne M; Larabell, Carolyn A

    2013-01-01

    Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen-water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer-Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues. PMID:23086890

  4. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  5. First Terrestrial Soft X-ray Aurora Observations by Chandra

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Ostgaard, Nikolai; Chang, Shen-Wu; Metzger, Albert E.; Majeed, Tariq

    2004-01-01

    Northern polar "auroral" regions of Earth was observed by High-Resolution Camera in imaging mode (T32C-I) aboard Chandra X-Ray Observatory (CXO) during mid December 2003 - mid April 2004. Ten CXO observations, each approximately 20 min duration, were made in a non-conventional method (due to CXO technical issues), such that Chandra was aimed at a fixed point in sky and the Earth's polar cusp was allowed to drift through the HRC-I field-of-view. The observations were performed when CXO was near apogee and timed during northern winter mostly near midnight (6 hr), except two observations which occurred around 1200 UT, so that northern polar region is entirely in dark and solar fluoresced x-ray contamination can be avoided. These observations were aimed at searching the Earth's soft x-ray aurora and to do a comparative study with Jupiter's x-ray aurora, where a pulsating x-ray hot-spot near the northern magnetic pole has been observed by Chandra that implies a particle source region near Jupiter's magnetopause, and entry of heavy solar wind ions due to high-latitude reconnection as a viable explanation for the soft x-ray emissions. The first Chandra soft (0.1-2 keV) x-ray observations of Earth's aurora show that it is highly variable (intense arc, multiple arcs, diffuse, at times almost absent). In at least one of the observations an isolated blob of emission is observed where we expect cusp to be: giving indication of solar wind charge-exchange signature in x-rays. We are comparing the Chandra x-ray observations with observations at other wavelengths and particle data from Earth-orbiting satellites and solar wind measurements from near-Earth ACE and SOH0 spacecraft. Preliminary results from these unique CXO-Earth observations will be presented and discussed.

  6. Soft x-ray imager onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Nakajima, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Dotani, Tadayasu; Ozaki, Masayuki; Natsukari, Chikara; Tomida, Hiroshi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Bamba, Aya

    2013-09-01

    The Soft X-ray Imager, SXI, is an X-ray CCD camera onboard the ASTRO-H satellite to be launched in 2015. ASTRO-H will carry two types of soft X-ray detector. The X-ray calorimeter, SXS, has an excellent energy resolution with a narrow field of view while the SXI has a medium energy resolution with a large field of view, 38' square. We employ 4 CCDs of P-channel type with a depletion layer of 200 μm. Having passed the CDR, we assemble the FM so that we can join the final assembly. We present here the SXI status and its expected performance in orbit.

  7. Soft x-ray amplification in a plasma waveguide

    SciTech Connect

    Kato, Y.; Kodama, R.; Daido, H.; Murai, K.; Yuan, G.; Ninomiya, S.; Neely, D.; MacPhee, A.; Lewis, C. L. S.; Choi, I. W.; Nam, C. H.; Kawachi, T.

    1995-05-01

    Narrow divergence soft x-ray laser has been generated by double-pass amplification in a curved slab target with a neon-like germanium laser. Considering the electron density profile with the curved slab target, the plasma acts as a one-dimensional waveguide to the x-ray laser beam. Beam parameters such as radius and wavefront curvature of the Gaussian beam are derived from the analysis on beam propagation in the waveguide. Possibility for generating a single-mode x-ray laser beam by multiple-pulse pumping of the curved target is discussed.

  8. Fabrication of a focusing soft X-ray collector payload

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Decaprio, A. R.; Manko, H.; Ting, J. W. S.

    1976-01-01

    A large area X-ray focusing collector with arc minute resolution and a position sensitive detector capable of operating in the soft X-ray region was developed for use on sounding rockets in studying stellar X-ray sources. The focusing payload consists of the following components, which are described: (1) a crossed paraboloid mirror assembly; (2) an aspect camera and star tracker; (3) a focal plane assembly containing an imaging proportional counter and its preamplifiers, high voltage power supplies and gas system; (4) a fiducial system; and (5) housekeeping, data handling, instrumentation and telemetry electronics. The design, tests, and operation are described.

  9. The interstellar medium and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    1996-01-01

    The soft X-ray background (SXRB) surface brightness provides data to study the approximately 10(exp 6) K plasma of the local interstellar medium of our Galaxy. Various studies were carried out in order to search for negative correlation, or shadowing, of the SXRB, and were coupled with interstellar medium absorption line studies. The purpose was to determine whether the distances to the shadowing material will lead to a three dimensional mapping of the X-ray emitting, and X-ray absorbing components.

  10. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  11. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  12. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  13. Soft X-ray Spectromicroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Ade, Harald

    1997-03-01

    The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.

  14. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect

    Guo, Jinghua

    2008-09-22

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  15. Isolated attosecond soft X-rays and water window XAFS

    NASA Astrophysics Data System (ADS)

    Biegert, Jens

    2016-05-01

    We demonstrate generation of isolated attosecond soft X-ray pulses with duration less than 350 as at the carbon K-edge at 284 eV. This reproducible and CEP stable attosecond soft X-ray continuum covers the entire water window from 200 eV to 550 eV with a flux of 7.3x 107 photons/s and corresponds to a pulse energy of 2.9 pJ. We demonstrate the utility of our table-top source through soft X-ray near-edge fine-structure spectroscopy at K-shell absorption edges in condensed matter and retrieve the specific absorption features corresponding to the binding orbitals. We believe that these results herald attosecond material science by bridging the gap between ultrafast temporal resolution and element specific probing at the fundamental absorption edges of matter.

  16. Soft x-ray spectroscopy in atmospheric pressure helium

    SciTech Connect

    Roper, M.D.; van der Laan, G.; Flaherty, J.V.; Padmore, H.A. )

    1992-01-01

    We report on an environmental chamber, which is attached to a UHV beamline, in which soft x-ray measurements can be done at atmospheric pressure in helium. X-ray measurements in air can only be performed at energies above about 3 keV because of the strong absorption of soft x rays by oxygen and nitrogen. However, a low-{ital Z} scatterer such as helium has a long absorption length for soft x rays even at atmospheric pressure. Thus, this new chamber allows soft x-ray experiments to be performed on samples with physical properties that are incompatible with UHV conditions, e.g., liquid and frozen aqueous solutions, corrosive materials, etc. A helium-tight tank has been installed behind the vacuum experimental chamber of the double crystal beamline 3.4 at the Daresbury SRS. The tank is purged with helium at atmospheric pressure and the gas in the tank is isolated from the high vacuum of the rest of the beamline by a thin mylar window which is supported on a capillary array. The tank contains a sample stage, two ionization chambers and a parallel-plate gas proportional counter for fluorescence detection of dilute samples, which has produced good results on the {ital K} edges of Cl, S, and P.

  17. X-Ray Morphology,Kinematics and Geometry of the Eridanus Soft X-Ray Enhancement

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyu; Burrows, David N.; Sanders, Wilton T.; Snowden, Steve L.; Penprase, Bryan E.

    1994-12-01

    We present mosaics of X-ray intensity maps and spectral fit results for selected regions of the Eridanus soft X-ray Enhancement (EXE), as well as kinematics of the X-ray absorbing clouds in the EXE region and geometrical properties of this X-ray emitting bubble. The work is based on pointed observations with the ROSAT Position Sensitive Proportional Counter, 21 cm observations with the NRAO 140 foot telescope at Green Bank and interstellar Na D line observations with the NOAO Coude Feed telescope at Kitt Peak. The ROSAT pointed observations examine two regions of the EXE. The first is an X-ray absorption lane produced by an IR filament which is located at galactic coordinates of about (199(deg) , -45(deg) ). The second is in the vicinity of the northern (galactic) boundary of the 1/4 keV EXE, at galactic coordinates of about (200(deg) , -25(deg) ). Both our spatial and spectral analysis suggest that variations in emission measure and NH are primarily reponsible for the observed variations of the X-ray intensity. Using 100mu intensities obtained from IRAS maps and NH column densities obtained from our X-ray spectral fits, we find 100 microns/NH ratios across the IR filament that are compatible with typical high latitude values. Maps of the X-ray absorbing clouds in the EXE region at 21 cm reveal that these clouds may belong to two different expanding systems, with one possibly associated with our Local Bubble and the other with the boundary of the EXE. Combination of 21 cm data with interstellar Na D line observations toward stars in the directions of some of the X-ray absorbing clouds along (l,b) ~ (200(deg) ,-40(deg) ) indicate that the near side of the EXE is farther than 151 pc and the distance to the center of the EXE at this latitude is about 226 pc. The density and the thermal pressure found for this X-ray emitting superbubble are 0.015 cm(-3) and 4.9 times 10(4) cm(-3) K.

  18. Soft X-ray Excesses and X-ray Line Variability in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Varlotta, Angelo; McCollough, Michael L

    2014-06-01

    Cygnus X-3 is an X-ray binary (XRB) system containing a stellar-mass compact object, most likely a black hole, and a Wolf-Rayet companion star, which produces collimated, relativistic jets, placing it in the sub-class of XRBs known as microquasars. During a Swift/XRT monitoring program of Cygnus X-3, a soft X-ray excess (below 1 keV) was observed at certain states and phases of activity. This soft excess appears to be similar to the variable soft emission observed in Seyfert galaxies. The presence of these features in Cygnus X-3 would argue for a greater support of the black-hole nature of the compact object and serve to better highlight the similarities of microquasars and AGN. We present the results of our investigations of these soft excesses, as well as the variations of the X-ray Fe line region (6.4-7.0 keV) as a function of the state activity and orbital phase.

  19. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Orsini, F.; Batani, D.; Bernardinello, A.; Desai, T.; Ullschmied, J.; Skala, J.; Kralikova, B.; Krousky, E.; Juha, L.; Pfeifer, M.; Kadlec, Ch.; Mocek, T.; Präg, A.; Renner, O.; Cotelli, F.; Lora Lamia, C.; Zullini, A.

    2004-08-01

    Soft X-ray Contact Microscopy (SXCM) of Caenorhabditis elegans nematodes with typical length ~800 μ m and diameter ~30 μ m has been performed using the PALS laser source of wavelength λ = 1.314~μ m and pulse duration τ (FWHM) = 400 ps. Pulsed soft X-rays were generated using molybdenum and gold targets with laser intensities I ≥ 1014 W/cm2. Images have been recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Cuticle features and several internal organs have been identified in the SXCM images including lateral field, cuticle annuli, pharynx, and hypodermal and neuronal cell nuclei.

  20. A soft x-ray octadecyl hydrogen maleate crystal spectrograph

    SciTech Connect

    Fan, P.Z.; Fill, E.E.; Tietang, G.

    1996-03-01

    A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}

  1. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  2. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  3. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    SciTech Connect

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  4. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  5. Soft x-ray streak camera for laser fusion applications

    SciTech Connect

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  6. Microspectroscopic soft X-ray analysis of keratin based biofibers.

    PubMed

    Späth, Andreas; Meyer, Markus; Semmler, Sonja; Fink, Rainer H

    2015-03-01

    Scanning soft X-ray transmission microspectroscopy (STXM) and transmission electron microscopy (TEM) have been employed for a high-resolution morphological and chemical analysis of hair fibers from human, sheep and alpaca. STXM allows optimum contrast imaging of the main hair building blocks due to tuneable photon energy. Chemical similarities and deviations for the human hair building blocks as well as for the three investigated species are discussed on the basis of the local near-edge X-ray absorption fine structure (NEXAFS). The spectra of melanosomes corroborate the state-of-the-art model for the chemical structure of eumelanin. Complementary TEM micrographs reveal the occurrence of cortex sectioning in alpaca hair to some extent. A spectroscopic analysis for human hair cortex indicates low mass loss upon soft X-ray irradiation, but transformation of chemical species with decreasing amount of peptide bonds and increasing NEXAFS signal for unsaturated carbon-carbon bonds. PMID:25553413

  7. Soft x-ray virtual diagnostics for tokamak simulations

    SciTech Connect

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-15

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  8. Soft x-ray virtual diagnostics for tokamak simulations.

    PubMed

    Kim, J S; Zhao, L; Bogatu, I N; In, Y; Turnbull, A; Osborne, T; Maraschek, M; Comer, K

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling. PMID:19947727

  9. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGESBeta

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  10. Lasers, extreme UV and soft X-ray

    DOE PAGESBeta

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  11. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  12. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-06-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  13. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-03-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  14. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  15. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  16. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  17. Exploring nanomagnetism with soft x-ray microscopy

    SciTech Connect

    Fischer, P.; Kim, D.-H.; Mesler, B.L.; Chao, W.; Sakdinawat,A.E.; Anderson, E.H.

    2006-10-30

    Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows to study magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10nm and at next generation X-ray sources a time resolution in the fsec regime can be envisioned.

  18. Soft X-Ray Polarimetry with a CubeSat

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    We describe an instrument capable of measuring the polarization of astrophysical sources in soft X-rays that can be accomplished at modest cost by exploiting CubeSats as novel vehicles for high energy astrophysics. The instrument would re-use technologies that will be demonstrated on the HaloSat cubesat that is currently under construction. Potential target include thermally-emitting isolated neutron stars and blazars. Measurement of the polarization of X-rays emitted from the surface of a highly magnetized neutron star provides a means to test a unique signature of strong-field quantum electrodynamics and probe the neutron star magnetic field and X-ray emission geometry. Polarization measurements of blazars should strongly constrain jet emission models.

  19. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial

  20. The Interrelation of Soft and Hard X-Ray Emission During Solar Flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1998-01-01

    The objective of this project is to determine the characteristics of flare energy transport processes through the study of soft X-rays, hard X-rays, and their interrelationships through analysis of Yohkoh SXT (Soft X-ray Telescope), HXT (Hard X- Ray Telescope) , and BCS (Bragg Crystal Spectrometer) data, and comparison with theoretical models.

  1. ASTRO-H Soft X-Ray Telescope (SXT)

    NASA Technical Reports Server (NTRS)

    Soong, Yang; Serlemitsos Peter J.; Okajima, Takashi; Hahne, Devin

    2011-01-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors\\ of which the energy range is from a few hundred eV to 15 keY, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 micron, 229 micron, and 305 micron of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 micron nominal and surface gold layer of 0.2 micron. Improvements on angular response over the Astro-El/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  2. Viewing spin structures with soft x-ray microscopy

    SciTech Connect

    Fischer, Peter

    2010-06-01

    The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

  3. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  4. Soft X-ray spectroscopy of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall L.

    My thesis work consisted of the design, fabrication and launch of a sounding rocket payload to observe the spectrum of the soft X-ray emission from the Cygnus Loop supernova remnant. This payload was designated the Cygnus X-ray Emission Spectroscopic Survey (CyXESS) and launched from White Sands Missile Range on November 20th, 2006. The novel X-ray spectrograph incorporated a wire- grid collimator feeding an array of gratings in the extreme off-plane mount which ultimately dispersed the spectrum onto never before flown Gaseous Electron Multiplier (GEM) detectors. This instrument recorded 65 seconds of usable data between 43-49.5 Å in two prominent features. The first feature near 45 Å is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in first order, while the second feature near 47.5 Å is first order S IX and S X. Fits to the spectra give an equilibrium plasma at log( T )=6.2 ( kT e =0.14 keV) and near cosmic abundances. This is consistent with previous observations, which demonstrated that the soft x-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity surrounding the Cygnus Loop.

  5. Soft X-ray polarimeter-spectrometer SOLPEX

    NASA Astrophysics Data System (ADS)

    Steslicki, Marek; Sylwester, Janusz; Plocieniak, Stefan; Bakala, Jaroslaw; Szaforz, Zaneta Anna; Scislowski, Daniel; Kowalinski, Miroslaw; Hernandez, Jose; Vadimovich Kuzin, Sergey; Shestov, Sergey

    2015-08-01

    We present an innovative soft X-ray polarimeter and spectrometer SOLPEX. The instrument will be mounted aboard the ISS within the Russian science complex KORTES. The measurements to be made by SOLPEX are expected to be of unprecedented quality in terms of sensitivity to detect the soft-X- ray polarization of solar emission emanating from active regions and flares in particular. Simultaneous measurements of the polarization degree and the other characteristics (eg. evolution of the spectra) constitute the last, rather unexplored area of solar X-ray spectroscopy providing substantial diagnostic potential. Second important science task to be addressed are the measurements of Doppler shifts in selected X-ray spectral emission lines formed in hot flaring sources. The novel-type Dopplerometer (flat Bragg crystal drum unit) is planned to be a part of SOLPEX and will allow to measure line Doppler shifts in absolute terms with unprecedented time resolution (fraction of a second) during the impulsive flare phases. We shall present some details of the SolpeX instrument and discuss observing sequences in a view of science objectives to be reached.

  6. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  7. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  8. The soft X ray excess in Einstein quasar spectra

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Masnou, Jean-Louis; Elvis, Martin; Mcdowell, Jonathan; Arnaud, Keith

    1989-01-01

    The soft X-ray excess component is studied for a signal to noise limited subsample of 14 quasars from the WE87 sample observed with the Einstein Imaging Proportional Counter (IPC). Detailed analysis of the IPC data, combined with Einstein Monitor Proportional Counter (MPC) data where possible, and use of accurate galactic N sub H values allows estimation of the strength of any excess and improvement of constraints on the spectral slope at higher X-ray energies. A significant excess in 9 of the 14 objects is found. It is confined in all but one case to below 0.6 keV and variable in the two cases where there are multiple observations. The relation of the soft excess to other continuum properties of the quasars is investigated.

  9. Quantifying the Exospheric Component of Soft X-ray Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Snowden, Steven L.; Robertson, Ina; Hansen, Kenneth; Cravens, Thomas

    2007-01-01

    High charge state heavy ions in the solar wind exchange charge with ambient neutral gas. This process creates a product ion in an excited state. During the radiative cascade process, EUV and X-ray photons are emitted with energies in the range of about 100 eV to 1 keV. Because the terrestrial exospheric density at the nominal magnetopause location is relatively high, approx. 10 cu cm, solar wind charge exchange, or SWCX, can be observed by Earth-orbiting soft X-ray instruments such as the ROSAT Position Sensitive Proportional Counters (PSPC). In this presentation, we will compare simulated and observed soft Xray emission during an event on August 18-19, 1991 and discuss the role of exospheric SWCX emission for this and other events.

  10. Phase dispersion X-ray imaging of murine soft tissue

    NASA Astrophysics Data System (ADS)

    Ingal, V. N.; Ingal, E. A.

    2013-12-01

    The generation of phase-contrast (PC) images in the phase-dispersion introscopy (PDI) technique is the subject of this paper. Conditions for extreme sensitivity to murine soft-tissue anatomy are discussed. The unique information content and good contrast of the minutest details of anatomy, together with the high brilliance of X-ray optics, give the authors confidence that the PDI method can be successfully applied for medical diagnostics.

  11. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.; Odell, Stephen L.; Ramsey, Brian D.; Gubarev, Mikhail V.; Ishida, Manabu; Maeda, Yoshitomo; Iizuka, Ryo; Hayashi, Takayuki; Tawara, Yuzuru; Furuzawa, Akihiro; Mori, Hideyuki; Miyazawa, Takuya; Kunieda, Hideyo; Awaki, Hisamitsu; Sugita, Satoshi; Tamura, Keisuke; Ishibashi, Kazunori; Izumiya, Takanori; Minami, Sari; Sato, Toshiki; Tomikawa, Kazuki; Kikuchi, Naomichi; Iwase, Toshihiro

    2014-07-01

    ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV within the effective aperture being defined by the nested reflectors' radius ranging between 5.8 cm to 22.5 cm. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before converging on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 m nominal and surface gold layer of 0.2 μm. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), SXT-1 or SXT-2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests

  12. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  13. Tokamak T-10 soft x-ray imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Bobrovskij, G. A.; Kislov, D. A.; Lyadina, E. S.; Savrukhin, P. V.

    1991-04-01

    Three arrays of silicon surface-barrier diodes were recently installed on T-10 (R=1.5 m, a=0.3 m). The detectors view the plasma cross section along 58 chords spaced in the poloidal direction at one toroidal location. The tomographic reconstruction technique allows one to obtain the time evolution of the two-dimensional soft x-ray intensity profiles in the energy range of 2.5-15 keV. The field of view covered the main part of the plasma (r/a<0.7) with a spatial resolution as small as 2 cm, which is consistent with the scale of the processes under study. The signals are digitized at rates up to 100 kHz and stored in 464K (total) memory (8K per channel). The measured soft x-ray emission was applicable for investigation of the magnetohydrodynamic instabilities, heat and particle transport, and plasma position control. Studies of the evolution of soft x-ray perturbations were made in ohmically and ECRH heated plasmas. It was shown that the effect of ECRH on the plasma parameters (transport coefficients, sawtooth activity, modification of the electron temperature profiles) depends on the position of the EC resonance zone within the plasma cross section. The tomographic reconstruction revealed the different mechanisms of sawtooth crashes in the T-10 plasma.

  14. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  15. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  16. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.

    PubMed

    Carpentier, P; Berthet-Colominas, C; Capitan, M; Chesne, M L; Fanchon, E; Lequien, S; Stuhrmann, H; Thiaudière, D; Vicat, J; Zielinski, P; Kahn, R

    2000-07-01

    Anomalous diffraction with soft X-ray synchrotron radiation opens new possibilities in protein crystallography and materials science. Low-Z elements like silicon, phosphorus, sulfur and chlorine become accessible as new labels in structural studies. Some of the heavy elements like uranium exhibit an unusually strong dispersion at their M(V) absorption edge (lambdaMV = 3.497 A, E(MV) = 3545 eV) and so does thorium. Two different test experiments are reported here showing the feasibility of anomalous X-ray diffraction at long wavelengths with a protein containing uranium and with a salt containing chlorine atoms. With 110 electrons the anomalous scattering amplitude of uranium exceeds by a factor of 4 the resonance scattering of other strong anomalous scatterers like that of the lanthanides at their L(III) edge. The resulting exceptional phasing power of uranium is most attractive in protein crystallography using the multi-wavelength anomalous diffraction (MAD) method. The anomalous dispersion of an uranium derivative of asparaginyl-tRNA synthetase (hexagonal unit cell; a = 123.4 A, c = 124.4 A) has been measured for the first time at 4 wavelengths near the M(V) edge using the beamline ID1 of ESRF (Grenoble, France). The present set up allowed to measure only 30% of the possible reflections at a resolution of 4 A, mainly because of the low sensitivity of the CCD detector. In the second experiment, the dispersion of the intensity of 5 X-ray diffraction peaks from pentakismethylammonium undecachlorodibismuthate (PMACB, orthorhombic unit cell; a = 13.003 A, b = 14.038 A, c = 15.450 A) has been measured at 30 wavelengths near the K absorption edge of chlorine (lambdaK = 4.397 A, EK= 2819.6 eV). All reflections within the resolution range from 6.4 A to 3.4 A expected in the 20 degree scan were observed. The chemical state varies between different chlorine atoms of PMACB, and so does the dispersion of different Bragg peaks near the K-edge of chlorine. The results reflect

  17. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  18. High energy resolution inelastic x-ray scattering at the SRI-CAT

    SciTech Connect

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

  19. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  20. The soft X-ray turnoff of Nova Muscae 1983

    NASA Technical Reports Server (NTRS)

    Shanley, L.; Ogelman, H.; Gallagher, J. S.; Orio, M.; Krautter, J.

    1995-01-01

    Nova GQ Muscae 1983 was detected by ROSAT as a luminous 'supersoft' X-ray source in 1992, nearly a decade after outburst. Further, this is the only classical postnova known to have maintained constant luminosity on a timescale predicted by theoretical models. Follow-up observations were made with the ROSAT position-sensitive proportional counter in 1993 January and September, and complemented with B-band photometry taken in 1993 January. By 1993 January, the X-ray count rate had declined by a factor of 17, while there was neither an appreciable decrease in the optical magnitude nor a change in the amplitude of modulation. In 1993 September the soft X-ray flux was below the ROSAT threshold limit, implying a decrease of a factor greater than or equal to 30 in the count rate. This decline can be interpreted by the turnoff of nuclear processes due to the complete consumption of the residual hydrogen-rich envelope. However, the optical luminosity of the system is not simply coupled to the X-ray luminosity (e.g., through reprocessing).

  1. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  2. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    SciTech Connect

    Chow, P. Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.

  3. Discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1.

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Wilson, C. A.; Tavani, M.; Zhang, S. N.; Rubin, B. C.; Paciesas, W. S.; Ford, E. C.; Kaaret, P.

    1996-11-01

    We report the BATSE discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1 (Aql X-1). Aql X-1 is the most prolific of the soft X-ray transient sources and it has been known to produce large outbursts near the Eddington limit in the 1-10keV energy band. The typical recurrence time of outbursts is about 1-year. Aql X-1 shows type I X-ray bursts during the decay phase of the X-ray outbursts and is believed to contain a neutron star. These characteristics of Aql X-1 make it an ideal system to study time variable hard X-ray emission from accreting neutron stars. BATSE has monitored Aql X-1 continuously since the Compton Observatory mission began in April 1991. Several episodes of hard X-ray emission with durations of weeks to months have been detected in 1991-1994. These episodes are coincident with substantial brightening of the optical counterpart and to a lesser degree with observations of soft X-ray emission by ROSAT, EURECA/WATCH and ASCA. We find fluxes in the 20-100mCrab range with hard spectra extending to above 100keV and power law spectral fits yielding photon indices between -2 and -3.

  4. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  5. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed. PMID:16021423

  6. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Serlemitsos, Peter J.; Okajima, Takashi; Hahne, Devin

    2011-09-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 μm nominal and surface gold layer of 0.2 μm. Improvements on angular response over the Astro-E1/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  7. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    SciTech Connect

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-31

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10{sup 5} resolving power.

  8. Soft X-ray FEL simulation in PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Shim, Chi Hyun; Ko, In Soo; Parc, Yong Woon; Han, Jang Hui

    2015-10-01

    The soft X-ray beamline in the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) will provide a photon beam with a wavelength from 1 nm to 3 nm in the self-amplified spontaneous emission (SASE) mode by using an electron beam with a 3.15-GeV beam energy. Linearly polarized radiation will be supplied by using six planar undulators (PUs). The linearly-polarized radiation powers at 1 (3) nm can reach 10.2 (30) GW. Polarization of the radiation will be controlled by applying the reverse undulator tapering scheme to the PUs and adding two helical undulators (HUs). The circularly-polarized radiation powers at 1 (3) nm will be 3.11 (11.73) GW. The degrees of circular polarization will be larger than 0.99 for both wavelengths. Three options for the future upgrade of the beamline to increase the radiation power are proposed.

  9. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  10. Soft X-ray spectroscopy of solar flares - An overview

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1990-01-01

    An overview of the current status of high spectral resolution soft X-ray observations of solar flares is given. The review concentrates primarily on recent results and interpretations of results obtained from orbiting Bragg crystal spectrometers flow during the last solar maximum on the US DoD P78-1 spacecraft, the NASA SMM, and the ISAS Hinotori spacecraft. Results and several key issues regarding interpretation of the spectra are presented. Specifically, the dynamics of coronal flare plasmas as revealed by X-ray line profiles and wavelength shifts are discussed. Recent results concerning the theory of chromospheric evaporation are given. The temperature of coronal flare plasma is discussed within the context of a differential mission measure. Results concerning electron density measurements, nonequilibrium processes, and relative element abundances are also reviewed.

  11. Goldhelox: a soft x-ray solar telescope.

    PubMed

    Durfee, D S; Moody, J W; Brady, K D; Brown, C; Campbell, B; Durfee, M K; Early, D; Hansen, E; Madsen, D W; Morey, D B; Roming, P W; Savage, M B; Eastman, P F; Jensen, V

    1995-01-01

    The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor. PMID:21307474

  12. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  13. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  14. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  15. Soft x-ray resist characterization: Studies with a laser plasma x-ray source

    SciTech Connect

    Kubiak, G.D.; Outka, D.A. ); Zeigler, J.M. )

    1990-01-01

    Little work has been performed to characterize the exposure sensitivity, contrast, and tone of candidate resists for photon energies between 100--300 eV, the range in which projection soft x-ray lithography will be developed. We report here the characterization of near-edge x-ray absorption fine structure (NEXAFS) spectra, exposure sensitivity, contrast, and post-exposure processing of selected polysilane resists at photon energies close to the Si L{sub 2,3} absorption edge (100 eV). We find absorption resonance features in the NEXAFS spectra which we assign to excitation into Si--Si and Si--C {sigma}* orbitals. Using monochromatized XUV exposures on the Si--Si {sigma}* resonance at 105 eV, followed by solvent dissolution development, we have measured the exposure sensitivity curves of these resists. We find sensitivities in the range of 600--3000 mJ/cm{sup 2} and contrasts in the range from 0.5--1.4, depending on the polysilane side chain. We have also performed exposure sensitivity measurements at 92 eV, below the edge. Sensitivity decreases slightly compared to 105 eV exposures and the saturation depth and contrast both increase, as expected. We find also that exposing resist films to oxygen after XUV exposure, but before development increases the sensitivity markedly. 7 figs.

  16. Heliospheric X-Rays and the 1/4 keV Soft X-Ray Background Map

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Cravens, T. E.; Snowden, S. L.

    2003-12-01

    X-rays are generated throughout the heliosphere as a consequence of charge transfer collisions between heavy solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. X-rays are also generated because of charge transfer collisions with neutral hydrogen in the Earth's geocorona. Our model simulates this charge transfer mechanism. It uses the Fahr hot model to determine spatial variations of interstellar helium and hydrogen densities. It also uses published terrestrial exospheric hydrogen distributions and solar wind speed, density and temperature distributions to determine x-ray intensities due to charge transfer with geocoronal hydrogen. We used the same viewing conditions as Snowden [1995] for the 1/4 keV channel soft x-ray background map in galactic coordinates, and produce an analogous heliospheric/geocoronal x-ray intensity map. Our preliminary conclusion is that roughly 50% of the total background soft x-ray intensity in the galactic plane and 25% at high galactic latitudes can be attributed to the charge transfer process operating within the solar system, with the remaining emission coming from outside our heliosphere.

  17. A wide-field soft X-ray camera

    NASA Technical Reports Server (NTRS)

    Petre, R.

    1981-01-01

    A wide-field soft X-ray camera (WFSXC) sensitive in the 50 to 250 eV band is described. The camera features Wolter-Schwarzschild optics with an 8 degree field of view and 300 cu cu collecting area. The focal plane instrument is a microchannel plate detector. Broad-band energy discrimination is provided by thin-film filters mounted immediately in front of the focal plane. The WFSXC is capable of detecting sources with intensities greater than 5 percent of HZ 43 during typical sounding rocket exposures, and it would approach the same sensitivity range as EUVE during a typical exposure from the Shuttle.

  18. Advanced laser driver for soft x-ray projection lithography

    SciTech Connect

    Zapata, L.E.; Beach, R.J.; Dane, C.B.; Reichert, P.; Honig, J.N.; Hackel, L.A.

    1994-03-01

    A diode-pumped Nd:YAG laser for use as a driver for a soft x-ray projection lithography system is described. The laser will output 0.5 to 1 J per pulse with about 5 ns pulse width at up to 1.5 kHz repetition frequency. The design employs microchannel-cooled diode laser arrays for optical pumping, zigzag slab energy storage, and a single frequency oscillator injected regenerative amplifier cavity using phase conjugator beam correction for near diffraction limited beam quality. The design and initial results of this laser`s activation experiments will be presented.

  19. Soft X-ray microscopy to characterize polyelectrolyte assemblies.

    PubMed

    Köhler, Karen; Déjugnat, Christophe; Dubois, Monique; Zemb, Thomas; Sukhorukov, Gleb B; Guttmann, Peter; Möhwald, Helmuth

    2007-07-26

    Transmission microscopy with soft X-rays (TXM) is applied to image in-situ polyelectrolyte assemblies in aqueous environment. The method is element specific and at this stage exhibits a lateral resolution of 20 nm. With the specific examples of hollow capsules and full spheres made of PAH/PSS polyelectrolyte multilayers, it is shown quantitatively that heat treatment irreversibly reduces the water content in the membrane. These experiments complement those reported recently on the polyion system PDADMAC/PSS, which shows a different glass-transition behavior. Finally, the potential and present limitations of TXM are discussed. PMID:17428089

  20. Imaging the Magnetosphere in Soft X-Rays

    NASA Astrophysics Data System (ADS)

    Sibeck, David; Connor, Hyunju K.; Collier, MIchael; Kuntz, Kip

    2015-04-01

    The charge exchange that occurs when high charge state solar wind ions encounter exospheric neutrals in the Earth's magnetosheath and cusps results in the emission of soft (0.1 to 1 keV) x-rays that have been observed by a number of astrophysics telescopes with narrow fields of view. A global imager would be able to visualize and diagnose the state of the solar wind-magnetosphere interaction, including the characteristics of reconnection on the dayside magnetopause. This talk presents our current efforts to develop such an imager, including both hardware and simulations of the expected signatures.

  1. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  2. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  3. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1982-01-01

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  4. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Astrophysics Data System (ADS)

    Kraushaar, W. L.

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  5. The Astro-H Soft X-ray Spectrometer (SXS)

    NASA Astrophysics Data System (ADS)

    Porter, F. Scott; Fujimoto, Ryuichi; Kelley, Richard L.; Kilbourne, Caroline A.; Mitsuda, Kazuhiasa; Ohashi, Takaya; Astro-H/SXS Collaboration

    2009-12-01

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81×0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.

  6. The Astro-H Soft X-ray Spectrometer (SXS)

    SciTech Connect

    Porter, F. Scott; Kelley, Richard L.; Kilbourne, Caroline A.; Fujimoto, Ryuichi; Mitsuda, Kazuhiasa; Ohashi, Takaya

    2009-12-16

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81x0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.0.

  7. Synoptic IPS and Yohkoh soft X-ray observations

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Rappoport, S.; Woan, G.; Slater, G.; Strong, K.; Uchida, Y.

    1995-01-01

    Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh Soft X-ray Telescope (SXT) instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the interplanetary scintillation (IPS) maps tend to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.

  8. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  9. Comparison of hard and soft x-ray photoelectron spectra of silicon

    NASA Astrophysics Data System (ADS)

    Offi, F.; Werner, W. S. M.; Sacchi, M.; Torelli, P.; Cautero, M.; Cautero, G.; Fondacaro, A.; Huotari, S.; Monaco, G.; Paolicelli, G.; Smekal, W.; Stefani, G.; Panaccione, G.

    2007-08-01

    A detailed comparison of the surface sensitivity of x-ray photoemission spectroscopy for hard and soft x rays is presented and discussed. Electron scattering parameters and their energy dependence are given for Si and two Si spectra are analyzed: a MgKα (hν=1253.6eV) excited spectrum of the Si2p and 2s lines and a hard x-ray excited spectrum (hν=5925eV) of the Si1s line. The differential inelastic scattering characteristics for Si are extracted from reflection electron energy loss spectra taken at energies of 1500 and 4000eV . Using these scattering characteristics and electron mean free paths from the literature, simulated spectra are compared with experiment. The experimental spectra are deconvoluted to give the true intrinsic line shape corresponding to the theoretical collision statistics when interference effects between intrinsic and extrinsic scattering are neglected. The magnitude of interference effects cannot be assessed by our analysis. Within the (unknown) uncertainty introduced by neglecting interference effects, it is possible to determine the relative intensity of intrinsic and extrinsic excitations. In this way, it is found that in the case of the soft x-ray excited photoelectron spectrum of the shallower electronic shells ( 2p and 2s ), intrinsic plasmon creation is rather weak, and the apparent asymmetric line shape of the spectrum might be interpreted as the fact that electron-hole pair creation dominates the intrinsic loss spectrum, while an alternative explanation in terms of surface core level shifted components is also proposed. For the deeper core electronic shell, probed with hard x rays, the opposite situation is observed: while intrinsic electron-hole pair creation was not observed, a strong contribution of intrinsic plasmon losses of about 30% was seen.

  10. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  11. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K. D.; Tischler, J. Z.; Larson, B. C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements.

  12. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  13. Soft x-ray spectroscopic studies of the electronic structure of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng

    Organic semiconductors have several unique properties, different from traditional inorganic semiconductors, such as flexibility and low cost production on a large scale. Potentially, they can be used in several new optoelectronic devices, such as organic solar cells, and organic light-emitting devices (OLEDs) Phthalocyanines (Pc's) are one important type of molecular organic semiconductor. The ease with which a diverse set of cations can bond to the phthalocyanine ligand leads to Pc-based thin films that display a wide variety of optical and electrical properties. In these materials, the ligand has a complex electronic structure in itself, and the introduction of metal cations adds further complexity to the states near the Fermi level (EF) due to the overlap of metal d states with carbon and nitrogen 2p states. In this thesis, the electronic structure of several Pc's has been studied by soft x-ray spectroscopies, such as x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), and x-ray emission spectroscopy (XES). To avoid potential contamination and beam damage, the large area thin film samples have been prepared in situ by using organic molecular beam deposition (OMBD). The structure of samples were characterized ex situ by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The soft x-ray spectra recorded from stationary samples are found to represent the electronic structure from damaged molecules, which is caused by intense x-ray beams. Continuously translating samples during measurement overcomes this problem. Element, chemical, and symmetry specific occupied and unoccupied partial density of states (PDOS) from Pc's were observed. They show good agreement with density functional theory (DFT) calculations. Studies of potassium doping non-transition metal Pc, fluorinated metal Pc, and metal oxide Pc's show several interesting phenomena, such as variation of molecular symmetry, and charge transfer and d-d* resonant inelastic x-ray

  14. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect

    Wang, Yong; Wang, Shoujun; Oliva, E; Lu, L; Berrill, Mark A; Yin, Liang; Nejdl, J; Luther, Brad; Proux, C; Le, T. T.; Dunn, James; Ros, D; Zeitoun, Philippe; Rocca, Jorge

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  15. UV and Soft X-ray Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Cranmer, S. R.; Li, J.

    2002-01-01

    Coronal jets are spectacular dynamic events originating from different structures in the solar corona. Jetlike phenomena were observed by various instruments aboard SOHO, and the X--ray jets were discovered by Yohkoh's soft X--ray telescope (SXT). The relation among the different types of jets is still not yet clear. We present ultraviolet spectroscopy of polar coronal jets obtained by the Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) at heights in the corona ranging from 1.5 Rodot to 2.5 Rodot. The jets appear to originate near flaring ultraviolet bright points within polar coronal holes and were recorded by UVCS as a significant enhancement in the integrated intensities of the strongest coronal emission lines: mainly H I Ly alpha and O VI lambda lambda 1032,1037. A number of the detected jets are correlated with EIT Fe XII 195Å and LASCO C2 white-light events. Our modeling of the jet's observable properties provided estimates of the jet plasma conditions, as well as the initial electron temperature and heating rate required to reproduce the observed O VI ionization state. We discuss possible relationship between the polar ultraviolet and X--ray jets based on the results of coordinated SXT and UVCS observations in December 1996. We compare their properties and consider the magnetic reconnection models, developed for X--ray jets, as a model for UV jet formation. This work is supported by the National Aeronautics and Space Administration under grant NAG5--10093 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  16. Applications of soft x-ray magnetic dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, G.

    2013-04-01

    Applications of x-ray magnetic circular and linear dichroism (XMCD and XMLD) are reviewed in the soft x-ray region, covering the photon energy range 0.4-2 keV, which includes important absorption edges such as the 3d transition metal L2,3 and rare earth M4,5. These techniques enable a broad range of novel and exciting studies such as on the electronic properties and magnetic ordering of novel nanostructured systems. XMCD has a sensitivity better than 0.01 monolayer (at the surface) and due to simple detection methods, such as electron yield and fluorescence yield, it has become a workhorse technique in physics and materials science. It is the only element-specific technique able to distinguish between the spin and orbital parts of the magnetic moments. The applications are vast, e.g., in x-ray holographic imaging, XMCD gives a spatial resolution of tens of nm. While many studies in the past were centered on physics, more recently new applications have emerged in areas such as chemistry, biology and earth and environmental sciences. For instance, XMCD allows the determination of the cation occupations in spinels and other ternary oxides. In scanning transmission x-ray microscopy (STXM), XMCD enables us to map biogenic magnetite redox changes resulting in a surprising degree of variation on the nanoscale. Another recent development is ferromagnetic resonance (FMR) detected by time-resolved XMCD which opens the door to element-, site- and layer-specific dynamical measurements. By exploiting the time structure of the pulsed synchrotron radiation from the storage ring the relative phase of precession in the individual magnetic layers of a multilayer stack can be determined.

  17. Opening the Field of Soft X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.; Schulz, Norbert; Windt, David; Gullikson, Eric

    2015-08-01

    We present development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. Previously, we demonstrated that the polarimetry beam-line provides 100% polarized X-rays at 0.525 keV (Marshall et al. 2013). Recently, we upgraded the source by installing a mirror with a laterally graded multilayer (LGML) coating, providing a wide energy range. Here, we will present results from continued development that includes LGMls of new material combinations (C/CrCo and La/B4C) with high efficiencies in different soft X-ray bands. We have also sponsored the development of new gratings and anticipate showing results from testing these new gratings. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission would be limited to measuring the polarization of a blazar such as Mk 421 to a few percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.Support for this work was provided by the National Aeronautics and Space Administration through grant NNX12AH12G and by Research Investment Grants from the MIT Kavli Institute.

  18. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  19. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  20. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.

  1. Investigation of the Ionic Hydration in Aqueous Salt Solutions by Soft X-ray Emission Spectroscopy.

    PubMed

    Jeyachandran, Y L; Meyer, F; Benkert, A; Bär, M; Blum, M; Yang, W; Reinert, F; Heske, C; Weinhardt, L; Zharnikov, M

    2016-08-11

    Understanding the molecular structure of the hydration shells and their impact on the hydrogen bond (HB) network of water in aqueous salt solutions is a fundamentally important and technically relevant question. In the present work, such hydration effects were studied for a series of representative salt solutions (NaCl, KCl, CaCl2, MgCl2, and KBr) by soft X-ray emission spectroscopy (XES) and resonant inelastic soft X-ray scattering (RIXS). The oxygen K-edge XES spectra could be described with three components, attributed to initial state HB configurations in pure water, water molecules that have undergone an ultrafast dissociation initiated by the X-ray excitation, and water molecules in contact with salt ions. The behavior of the individual components, as well as the spectral shape of the latter component, has been analyzed in detail. In view of the role of ions in such effects as protein denaturation (i.e., the Hofmeister series), we discuss the ion-specific nature of the hydration shells and find that the results point to a predominant role of anions as compared to cations. Furthermore, we observe a concentration-dependent suppression of ultrafast dissociation in all salt solutions, associated with a significant distortion of intact HB configurations of water molecules facilitating such a dissociation. PMID:27442708

  2. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    NASA Technical Reports Server (NTRS)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  3. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  4. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  5. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K.D.; Larson, B.C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements. {copyright} {ital 1997 American Institute of Physics.}

  6. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  7. Soft x-ray yield from NX2 plasma focus

    SciTech Connect

    Lee, S.; Rawat, R. S.; Lee, P.; Saw, S. H.

    2009-07-15

    The Lee model code is used to compute neon soft x-ray yield Y{sub sxr} for the NX2 plasma focus as a function of pressure. Comparison with measured Y{sub sxr} shows reasonable agreement in the Y{sub sxr} versus pressure curve, the absolute maximum yield as well as the optimum pressure. This gives confidence that the code gives a good representation of the neon plasma focus in terms of gross properties including speeds and trajectories and soft x-ray yields, despite its lack of modeling localized regions of higher densities and temperatures. Computed current curves versus pressure are presented and discussed particularly in terms of the dynamic resistance of the axial phase. Computed gross properties of the plasma focus including peak discharge current I{sub peak}, pinch current I{sub pinch}, minimum pinch radius r{sub min}, plasma density at the middle duration of pinch n{sub pinch}, and plasma temperature at middle duration of pinch T{sub pinch} are presented and the trends in variation of these are discussed to explain the peaking of Y{sub sxr} at optimum pressure.

  8. Time-resolved measurement of x-ray heating in plastic foils irradiated by intense soft-x-ray pulses

    SciTech Connect

    Edwards, J.; Dunne, M.; Riley, D.; Taylor, R.; Willi, O. ); Rose, S.J. )

    1991-12-30

    Intense, soft-x-ray pulses, generated from separate laser-irradiated converters, were used to irradiate plane plastic foils. The x-ray heating was investigated by measuring the temperature histories of chlorinated tracer layers buried at different depths in the targets. The temperature diagonistic was a time-resolved extreme-UV absorption spectroscopy technique using chlorine {ital L}-shell transitions. The temporal temperature profiles were reasonably well reproduced by radiation-hydrocode simulations.

  9. Soft X-ray observation of the Rho Ophiuchus dark cloud region

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.

    1979-01-01

    Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.

  10. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer.

    PubMed

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-01

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%. PMID:19044359

  11. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer

    SciTech Connect

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-15

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.

  12. Resonant inelastic x-ray scattering at the limit of subfemtosecond natural lifetime

    SciTech Connect

    Marchenko, T.; Journel, L.; Marin, T.; Guillemin, R.; Carniato, S.; Simon, M.; Zitnik, M.; Kavcic, M.; Bucar, K.; Mihelic, A.; Hoszowska, J.; Cao, W.

    2011-04-14

    We present measurements of the resonant inelastic x-ray scattering (RIXS) spectra of the CH{sub 3}I molecule in the hard-x-ray region near the iodine L{sub 2} and L{sub 3} absorption edges. We show that dispersive RIXS spectral features that were recognized as a fingerprint of dissociative molecular states can be interpreted in terms of ultrashort natural lifetime of {approx}200 attoseconds in the case of the iodine L-shell core-hole. Our results demonstrate the capacity of the RIXS technique to reveal subtle dynamical effects in molecules with sensitivity to nuclear rearrangement on a subfemtosecond time scale.

  13. Momentum-resolved resonant and nonresonant inelastic x-ray scattering at the Advanced Photon Source.

    SciTech Connect

    Gog, T.; Seidler, G. T.; Casa, D. M.; Upton, M. H.; Kim, J.; Shvydko, Y.; Stoupin, S.; Nagle, K. P.; Balasubramanian, M.; Gordon, R. A.; Fister, T. T.; Heald, S. M.; Toellner, T.; Hill, J. P.; Coburn, D. S.; Kim, Y. J.; Said, A. H.; Alp, E. E.; Sturhahn, W.; Yavas, H.; Burns, C. A.; Sinn, H.

    2009-11-01

    The study of electronic excitations by inelastic X-ray scattering (IXS) has a rich history. Very early IXS work, for example, provided seminal demonstrations of the validity of relativistic kinematics and the quantum hypothesis and of Fermi-Dirac statistics. While there have been many important results in the interim, it has been the development of the third generation light sources together with continuing innovations in the manufacture and implementation of dispersive X-ray optics that has led to the rapid growth of IXS studies of electronic excitations.

  14. Phonon dispersion in uranium measured using inelastic x-ray scattering.

    SciTech Connect

    Manley, M. E.; Lander, G. H.; Sinn, H.; Alatas, A.; Hults, W. L.; McQueeney, R. J.; Smith, J. L.; Wilt, J.; XFD

    2003-02-01

    Phonon-dispersion curves were obtained from inelastic x-ray scattering measurements on high-purity uranium single crystals at room temperature. Modes displacing atoms along [00{zeta}] and propagating in all three high-symmetry directions were measured. Whereas the acoustic modes agree with the neutron measurements, the longitudinal-optic branch is about 10% higher in energy, but consistent with higher cutoff energies observed in phonon density-of-states measurements on polycrystals. The application of this x-ray technique, which requires only very small samples, opens possibilities in actinide science.

  15. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering.

    PubMed

    Gao, Xuan; Casa, Diego; Kim, Jungho; Gog, Thomas; Li, Chengyang; Burns, Clement

    2016-08-01

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals. PMID:27587100

  16. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  17. SAS 3 survey of the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Clark, G. W.

    1984-01-01

    The results of a survey of the soft X-ray sky in the C band (0.10-0.28keV) are reported. The observations were carried out using two independent flow proportional counters on board the SAS 3 X-ray satellite which had a total angular resolution of 2.9 deg FWHM, and a total exposure of 2.2 x 10 to the 4th per sq cm s sr. It is found that C band counting rates were generally inversely correlated with the column density of the neutral hydrogen on all angular scales down to the lowest angular resolution of the detectors. In the region 90-180 deg l and 0-10 deg b, the relation between C-band rates and the column densities of neutral hydrogen was fitted with a residual rms deviation of less than 13 percent by a two-component numerical model of the X-ray background. For the apparent attenuation column density a value of 2.7 x 10 to the 20th per sq cm was obtained. On the basis of a computer simulation of the SAS 3 data, it is shown that the observed clumping of interstellar matter was consistent with the magnitude of spatial fluctuations in the C-band map. When the background rates were subtracted from the survey map, the subsequent map showed foreground emission and absorption features with improved sensitivity and clarity. A series of computer-generated maps incorporating the SAS 3 data is given in an appendix.

  18. ROSAT observations of the Eridanus soft X-ray enhancement

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Burrows, D. N.; Sanders, W. T.; Aschenbach, B.; Pfeffermann, E.

    1995-01-01

    We present maps of the Eridanus soft X-ray enhancement made from the ROSAT all-sky survey data. The maps are in two energy bands: 0.25 keV (0.12-0.284 keV at 10% response, the ROSAT R1 and R2 bands), and 0.75 keV (0.47-1.20 keV at 10% response, the ROSAT R4 and R5 bands). The entire enhancement spans a total of approximately 35 deg in Galactic latitude and approximately 20 deg in Galactic longitude, centered at l approximately 22 deg, b approximately -32 deg. While the higher spatial resolution of the ROSAT data reveals a pattern of detailed anticorrelations with 100 micrometers intensity that was not evident in the HEAO 1 or earlier data, the basic morphology found in previous maps of this enhancement is confirmed. The ROSAT data also clearly show that the X-ray enhancement continues up to the Orion region in the 0.75 keV band, confirming the structure suggested by the Wisconsin sky survey maps. The ROSAT data are consistent with the interpretation of Reynolds & Ogden and Burrows et al. that this enhancement, the higher temperature component of Burrows et al., is generated for the most part by several-million-degree gas filling a huge interstellar cavity. However, we interpret the low-temperature component discussed by Burrows et al. as part of a more distant large scale (greater than or equal to approximately 30 deg) diffuse background enhancement. The part of this softer X-ray enhancement examined here appears to be produced by million degree gas in the galactic halo, and is therfore unlikely to be an isolated bubble as suggested by Burrows et al. on the basis of lower resolution HEAO 1 data.

  19. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  20. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics. PMID:27410064

  1. Stellar contributions to the diffuse soft X-ray background

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.; Avni, Y.; Golub, L.; Rosner, R.; Vaiana, G.

    1981-01-01

    One of the results of the EINSTEIN/C.f.A. X-ray stellar survey was a determination of the contribution of the disk stellar population to the galactic component of the diffuse soft (0.28 - 1.0 keV) X-ray background. This analysis employed both binned and unbinned nonparametric statistical methods that have been developed by Avni, et al. (1980). These methods permitted the use of the information contained in both the 22 detections and 4 upper bounds on the luminosities of 26 dM stars in order to derive their luminosity function. Luminosity functions for earlier stellar types are not yet developed. For these earlier stellar types, the median luminosities as determined by Vaiana, et al., are used (1981), which underestimates their contribution to the background. We find that it is the M dwarfs that dominate the disk population stellar contribution to this background. To calculate the contribution of the stellar sources to the background, simple models both for the spatial distribution of the stars and for the properties of the intervening interstellar medium are used. A model is chosen in which all stellar classes have the same functional form for their spatial distribution: an exponentially decreasing distribution above the galactic equatorial plane, and a uniform distribution within the galactic plane for a region of several kiloparsecs centered on the Sun.

  2. Ultra high resolution soft x-ray tomography

    SciTech Connect

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-07-19

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by {approximately}5{mu}m. A series of nine 2-D images of the object were recorded at angles between {minus}50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of {approximately}1000 {Angstrom} was observed. Artifacts in the reconstruction limited the overall depth resolution to {approximately}6000 {Angstrom}, however some features were clearly reconstructed with a depth resolution of {approximately}1000 {Angstrom}. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to {approximately}1200 {Angstrom} overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  3. Coherent backscattering in the soft x-ray region

    SciTech Connect

    Matone, G.; Luccio, A.

    1986-06-01

    It is shown that coherent polarized soft x-rays can be produced by a combination of two techniques - stimulated amplification of laser light in a magnetic undulator, and Compton scattering of laser photons on an electron beam. In the combined technique, laser radiation is Compton scattered from a relativistic electron beam, whose current or charge density is periodically modulated. An electron beam and a laser beam propagate through an undulator along the same line. Inside the undulator, the laser electromagnetic waste produces a modulation of the electron energy. After some drift space, the modulation of the electron energy transforms into a modulation of the beam longitudinal charge density. The laser photons are reflected by a concave mirror against the electrons and are backscattered. In the process, their energy is greatly increased. If the electron and laser photon energy are matched properly, the modulated electron beam may act as a moving diffraction grating, and the backscattered x-rays show a high degree of coherence. The mechanism of modulation is described. The effects of electron beam energy spread, finite electron beam emittance, and undulator imperfections are discussed. The theory of scattering of a light wave by a bunched electron beam and the properties of the scattered radiation are examined. (LEW)

  4. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  5. Observation of Organelles in Leydig Cells by Contact Soft X-Ray Microscopy with a Laser Plasma X-Ray Source

    NASA Astrophysics Data System (ADS)

    Kado, M.; Ishino, M.; Tamotsu, S.; Yasuda, K.; Kishimoto, M.; Nishikino, M.; Kinjo, Y.; Shinohara, K.

    2011-09-01

    We observed the same biological specimens for comparison of the images by contact soft x-ray microscopy with a laser plasma x-ray source with those by confocal laser microscopy. Images of wet Leydig cells were directly comparable for organelles and showed that actin filaments and mitochondria were clearly identified in the soft x-ray images.

  6. Point diffraction interferometry at soft x-ray wavelengths

    SciTech Connect

    Sommargren, G.E.; Hostetler, R.

    1993-07-01

    To achieve the image performance necessary for soft x-ray projection lithography, interferometric testing at the design wavelength is required to accurately characterize the wavefront of the imaging system. The wavefront depends not only on the surface figure of the individual optics and on their relative alignment, but also on aperture dependent phase shifts induced by the resonant multilayer coatings on the optical surfaces. This paper describes the design and lithographic fabrication of an array of point diffraction interferometers on a silicon nitride membrane that has been over-coated with a spatially graded partially transmitting film to provide fringe contrast control. Experimental results using a visible light analogue (larger pinholes and different transmission gradient) will be shown.

  7. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  8. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  9. Tracing Chromospheric Evaporation in Radio and Soft X-rays

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.

    1997-01-01

    There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.

  10. Imaging performance and tests of soft x-ray telescopes

    SciTech Connect

    Spiller, E.; McCorkle, R.; Wilczynski, J. . Thomas J. Watson Research Center); Golub, L.; Nystrom, G. ); Takacz, P.Z. ); Welch, C. )

    1990-08-01

    Photos obtained during 5 min. of observation time from the flight of our 10 in. normal incidence soft x-ray ({lambda} = 63.5{Angstrom}) telescope on September 11, 1989 are analyzed and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1{Angstrom}. The photos demonstrate a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corresponding to surface irregularities with spatial periods below 10 {mu}m. Our results are used to predict the possible performance of future flights. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec. Higher resolutions will require flights of longer durations and improvements in mirror testing for the largest spatial periods. 21 refs., 7 figs., 1 tab.

  11. Holography-guided ptychography with soft X-rays.

    PubMed

    Hessing, Piet; Pfau, Bastian; Guehrs, Erik; Schneider, Michael; Shemilt, Laura; Geilhufe, Jan; Eisebitt, Stefan

    2016-01-25

    Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects. PMID:26832562

  12. Soft x-ray undulator for the Siam Photon Source

    SciTech Connect

    Rugmai, S.; Dasri, T.; Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S.

    2007-01-19

    An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

  13. G-133: A soft X ray solar telescope

    NASA Astrophysics Data System (ADS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-10-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  14. Soft x-ray microscope with zone plates at UVSOR

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Shimanuki, Yoshio; Taniguchi, Mieko; Kihara, Hiroshi

    1993-01-01

    A soft x-ray microscope with zone plates was set up at UVSOR (Okazaki, Japan). A 0.41 micrometers line and space pattern was clearly distinguished using an objective zone plate with the outermost zone width of 0.41 micrometers . Modulation transfer functions were measured at wavelengths of 3.1 nm and 5.4 nm, and compared with theoretical calculations. Considering the resolution of a microchannel plate used as a detector, the agreement is fairly good. With this microscope, some biological specimens such as diatoms, spicule of trepang, crab and rabbit muscles, human blood cells, human chromosomes, and magnetotactic bacterium were observed at 3.1 nm and 5.4 nm. With an environmental chamber (wet cell) using polypropylene foils as windows, wet specimens were observed at a wavelength of 4.6 nm. Images of spicule of trepang, human blood cell, and cultured protoplast of plant cell stained by methyl mercury were observed with good contrast.

  15. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  16. Soft X-Ray Observations of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Shelton, Robin; Kuntz, K. D.

    2003-01-01

    In this project, my co-I (K.D. Kuntz) and I plan to extract the soft X-ray spectrum emitted by the hot gas along a high latitude line of sight. We plan to subtract off the local component (garnered from other observations) in order to isolate the halo component. We then plan to combine this spectral information with the ultraviolet resonance line emission produced by slightly cooler gas along the line of sight and use the two observations as a constraint on models. My co-I, K.D., Kuntz has been working on the determination of the instrumental background. I have not yet drawn any of the funds for this project. I have just moved from J h s Hopkins University to the University of Georgia and anticipate finishing the project while at the University of Georgia.

  17. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  18. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  19. 2-D soft x-ray arrays in the EAST.

    PubMed

    Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong

    2016-06-01

    A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities. PMID:27370451

  20. 2-D soft x-ray arrays in the EAST

    NASA Astrophysics Data System (ADS)

    Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong

    2016-06-01

    A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities.

  1. ComIXS on BACH: a compact soft x-ray spectrometer operating at Elettra

    SciTech Connect

    Cocco, Daniele; Matteucci, Maurizio; Zangrando, Marco; Bondino, Federica; Zacchigna, Michele; Plate, Mauro; Parmigiani, Fulvio; Nelles, Bruno; Prince, Kevin C.

    2004-05-12

    To accommodate increasing interest in soft x-ray inelastic scattering, a new spectrometer has been designed, constructed and commissioned at Elettra. This instrument uses as the dispersive element one of two interchangeable Variable Line Spacing (VLS) spherical gratings. The energy scan is performed by a 7 cm linear translation of a back illuminated CCD which also collects the zero order light, facilitating alignment and calibration. The two gratings have the same radius of curvature while the groove densities and the groove density variations differ by a factor four. Thus the energies focused by the gratings at a particular position differ by a factor of four. The total length of the instrument is 60 cm, the energy range covered is roughly 25-1000 eV and the expected resolving power ranges from 1000 to 5000. The spectrometer is now operating on the beamline Bach. It takes advantage of the small size of the photon spot in the experimental chamber and of the possibility to control the polarization of the incoming radiation. The small spot constitutes the virtual entrance slit, and the spectrometer collects the photons emitted in a solid angle of about 30x10 mrad2. The instrument, named ComIXS (Compact Inelastic X-ray Spectrometer), has been routinely operating since October 2002. Several experiments have already been carried out, and some results illustrating the characteristics of the instrument are described. The manufacture and testing of the blaze gratings are also discussed.

  2. ComIXS on BACH: a compact soft x-ray spectrometer operating at Elettra

    NASA Astrophysics Data System (ADS)

    Cocco, Daniele; Zangrando, Marco; Matteucci, Maurizio; Bondino, Federica; Platè, Mauro; Zacchigna, Michele; Parmigiani, Fulvio; Nelles, Bruno; Prince, Kevin C.

    2004-05-01

    To accommodate increasing interest in soft x-ray inelastic scattering, a new spectrometer has been designed, constructed and commissioned at Elettra. This instrument uses as the dispersive element one of two interchangeable Variable Line Spacing (VLS) spherical gratings. The energy scan is performed by a 7 cm linear translation of a back illuminated CCD which also collects the zero order light, facilitating alignment and calibration. The two gratings have the same radius of curvature while the groove densities and the groove density variations differ by a factor four. Thus the energies focused by the gratings at a particular position differ by a factor of four. The total length of the instrument is 60 cm, the energy range covered is roughly 25-1000 eV and the expected resolving power ranges from 1000 to 5000. The spectrometer is now operating on the beamline Bach. It takes advantage of the small size of the photon spot in the experimental chamber and of the possibility to control the polarization of the incoming radiation. The small spot constitutes the virtual entrance slit, and the spectrometer collects the photons emitted in a solid angle of about 30×10 mrad2. The instrument, named ComIXS (Compact Inelastic X-ray Spectrometer), has been routinely operating since October 2002. Several experiments have already been carried out, and some results illustrating the characteristics of the instrument are described. The manufacture and testing of the blaze gratings are also discussed.

  3. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    SciTech Connect

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  4. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, Jennifer L; Stone, Matthew B

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  5. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect

    Niedziela, J. L.; Stone, M. B.

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80 K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  6. Interface science in nanoparticles: An electronic structure view of photon-in/photon-out soft-X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering nanostructured 3d metal compounds in the applications of solar photovoltaic, sunlight water splitting and photoelectrochemical cells, chemical and biosensors, etc. In the soft X-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms? Soft-X-ray absorption and emission spectroscopy have basic features that are important to interface science. X-ray is originating from an electronic transition between a localized core state and a valence state that makes this probe localized to one specific atomic site and gives the method chemical state sensitivity and further, particular symmetry information. The possibility to select the energy of the excitation has created an extra degree of freedom and opens a new field of study by disclosing many new possibilities of soft-X-ray resonant inelastic scattering. In this presentation, recent findings regarding X-ray spectroscopic studies of various nanomaterials are presented. Also, in situ characterization of nanocrystal suspensions demonstrated the way for real-time studies of nanomaterial growth and chemical reactions.

  7. Implementation of soft x-ray microscopy with several tens nanometers spatial resolution at NSRL

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Chen, Liang

    2009-09-01

    A transmission soft x-ray microscope (TXM), which is similar to the full-field x-ray microscopes installed on other synchrotron radiation sources in the world, was developed at National Synchrotron Radiation Laboratory (NSRL) in Hefei. An x-ray image taken with the microscope was acquired and its spatial resolution was estimated to be better than 70nm.

  8. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  9. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    SciTech Connect

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  10. ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal

    2012-10-20

    We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

  11. Chemically selective soft x-ray patterning of polymers

    SciTech Connect

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-06-19

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system.

  12. Analysis of the Electronic Structure of Aqueous Urea and Its Derivatives: A Systematic Soft X-Ray-TD-DFT Approach.

    PubMed

    Tesch, Marc F; Golnak, Ronny; Ehrhard, Felix; Schön, Daniela; Xiao, Jie; Atak, Kaan; Bande, Annika; Aziz, Emad F

    2016-08-16

    Soft X-ray emission (XE), absorption (XA), and resonant inelastic scattering (RIXS) experiments have been conducted at the nitrogen K-edge of urea and its derivatives in aqueous solution and were compared with density functional theory and time-dependent density functional theory calculations. This comprehensive study provides detailed information on the occupied and unoccupied molecular orbitals of urea, thiourea, acetamide, dimethylurea, and biuret at valence levels. By identifying the electronic transitions that contribute to the experimental spectral features, the energy gap between the highest occupied and the lowest unoccupied molecular orbital of each molecule is determined. Moreover, a theoretical approach is introduced to simulate resonant inelastic X-ray scattering spectra by adding an extra electron to the lowest unoccupied molecular orbital, thereby mimicking the real initial state of the core-electron absorption before the subsequent relaxation process. PMID:27416871

  13. Correlative Analysis of Hard and Soft X-ray Emissions in Solar Flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1997-01-01

    This report describes research performed under the Phase 3 Compton Gamma-Ray Observatory (CGRO) Guest Investigator Program. The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the CGRO Burst and Transient Source Experiment (BATSE) and soft X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  14. Real space soft x-ray imaging at 10 nm spatial resolution

    SciTech Connect

    Chao, Weilun; Fischer, Peter; Tyliszczak, T.; Rekawa, Senajith; Anderson, Erik; Naulleau, Patrick

    2011-04-24

    Using Fresnel zone plates made with our robust nanofabrication processes, we have successfully achieved 10 nm spatial resolution with soft x-ray microscopy. The result, obtained with both a conventional full-field and scanning soft x-ray microscope, marks a significant step forward in extending the microscopy to truly nanoscale studies.

  15. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Misra, Ranjeev; Pawar, Pramod K.

    2016-03-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II Zw 177 using a 137 ks long and another 13 ks short XMM-Newton observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing 76.9 ± 4.9 per cent in 2012 and 58.8 ± 10.2 per cent in 2001 in the 0.3-2 keV band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of ˜20 ks reveals strong correlation between the soft excess and the power-law components. The fractional variability amplitude Fvar derived from EPIC-pn light curves at different energy bands is nearly constant (Fvar ˜ 20 per cent). This is in contrast to other active galactic nuclei where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the `lamppost' model. Thus, the variations in power-law emission are most likely intrinsic to corona rather than just due to the changes of height of compact corona. The variable UV emission (Fvar ˜ 1 per cent) is uncorrelated to any of the X-ray components on short time-scales suggesting that the UV emission is not dominated by the reprocessed emission. The gradual observed decline in the UV emission in 2012 may be related to the secular decline due to the changes in the accretion rate. In this case, the short term X-ray variability is not due to the changes in the seed photons but intrinsic to the hot corona.

  16. Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array.

    PubMed

    Tianming, Song; Jiamin, Yang; Rongqing, Yi

    2012-11-01

    A method for the recovery of soft x-ray spectra in indirect-drive inertial confinement fusion experiments is presented. Virtual detection channels with bandpass responses are obtained using linear combinations of the channel response functions of a filtered x-ray diode array and a weighted correction is introduced to improve the recovery. These virtual channels can be used to calculate radiation fluxes in some specific photon energy bands and hence to recover the spectrum of the whole photon energy range from 80 eV to 4.5 keV. Examples are listed which demonstrate the capability of this method to unfold various spectra such as Planck spectra with different radiation temperatures and to obtain x-ray flux of certain narrow energy interval. PMID:23206046

  17. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    SciTech Connect

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  18. High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science

    PubMed Central

    Shvyd’ko, Yuri; Stoupin, Stanislav; Shu, Deming; Collins, Stephen P.; Mundboth, Kiran; Sutter, John; Tolkiehn, Martin

    2014-01-01

    Photon and neutron inelastic scattering spectrometers are microscopes for imaging condensed matter dynamics on very small length and time scales. Inelastic X-ray scattering permitted the first quantitative studies of picosecond nanoscale dynamics in disordered systems almost 20 years ago. However, the nature of the liquid-glass transition still remains one of the great unsolved problems in condensed matter physics. It calls for studies at hitherto inaccessible time and length scales, and therefore for substantial improvements in the spectral and momentum resolution of the inelastic X-ray scattering spectrometers along with a major enhancement in spectral contrast. Here we report a conceptually new spectrometer featuring a spectral resolution function with steep, almost Gaussian tails, sub-meV (≃620 μeV) bandwidth and improved momentum resolution. The spectrometer opens up uncharted space on the dynamics landscape. New results are presented on the dynamics of liquid glycerol, in the regime that has become accessible with the novel spectrometer. PMID:24953338

  19. Resonant inelastic contact scattering of X-ray photons on atoms and ions

    NASA Astrophysics Data System (ADS)

    Hopersky, A. N.; Nadolinsky, A. M.; Yavna, V. A.

    2006-10-01

    The existence of an extended resonance structure outside the X-ray emission regions is theoretically predicted in the total double differential cross section for the scattering of linearly polarized photons on free atoms (ions). This structure is almost entirely determined by inelastic photon scattering of the contact type. The amplitude of the inelastic contact scattering probability is described using an analytical expression for a non-relativistic transition operator, which was previously obtained by the author outside the dipole and momentum approximations. The resonant inelastic contact scattering of X-ray photons on a neon atom and neonlike ions of argon, titanium, and iron has been studied. Calculations were performed in a nonrelativistic approximation for the wave functions of the scattering states, with allowance for many-body effects of the radial relaxation of one-electron orbitals in the Hartree-Fock field of a deep 1 s vacancy and (for neon atom) the double excitation/ionization of the ground atomic state.

  20. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  1. Toward a soft x-ray Fourier-transform spectrometer

    SciTech Connect

    Howells, M.R.; Frank, K.; Hussain, Z.; Moler, E.J.; Reich, T. |; Moeller, D.; Shirley, D.A.

    1993-10-29

    The use of Fourier transform spectroscopy (FTS) in the soft x-ray region is advocated as a possible route to spectral resolution superior to that attainable with a grating system. A technical plan is described for applying FTS to the study of the absorption spectrum of helium in the region of double ionization around 60--80 eV. The proposed scheme includes a Mach-Zehnder interferometer deformed into a rhombus shape to provide grazing incidence reflections. The path difference between the interfering beams is to be tuned by translation of a table carrying four mirrors over a range {+-}1 cm which, in the absence of errors generating relative tilts of the wave fronts, would provide a resolving power equal to the number of waves of path difference: half a million at 65 eV, for example. The signal-to-noise ratio of the spectrum is analyzed and for operation on an Advanced Light Source bending magnet beam line should be about 330.

  2. Soft X Ray Telescope (SXT) focus error analysis

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1991-01-01

    The analysis performed on the soft x-ray telescope (SXT) to determine the correct thickness of the spacer to position the CCD camera at the best focus of the telescope and to determine the maximum uncertainty in this focus position due to a number of metrology and experimental errors, and thermal, and humidity effects is presented. This type of analysis has been performed by the SXT prime contractor, Lockheed Palo Alto Research Lab (LPARL). The SXT project office at MSFC formed an independent team of experts to review the LPARL work, and verify the analysis performed by them. Based on the recommendation of this team, the project office will make a decision if an end to end focus test is required for the SXT prior to launch. The metrology and experimental data, and the spreadsheets provided by LPARL are used at the basis of the analysis presented. The data entries in these spreadsheets have been verified as far as feasible, and the format of the spreadsheets has been improved to make these easier to understand. The results obtained from this analysis are very close to the results obtained by LPARL. However, due to the lack of organized documentation the analysis uncovered a few areas of possibly erroneous metrology data, which may affect the results obtained by this analytical approach.

  3. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  4. Multi-energy Soft X-ray diagnostic for NSTX

    NASA Astrophysics Data System (ADS)

    Tritz, Kevin; Stutman, Dan; Finkenthal, Michael; Kumar, Deepak; Clayton, Daniel

    2010-11-01

    A high resolution, ``multi-energy'' soft X-ray (ME-SXR) diagnostic is being developed for the NSTX edge plasma. The system will measure with spatial resolution of <=1cm and with ˜10 kHz bandwidth the XUV and SXR emission from the outer NSTX regions, including the pedestal, and will serve for studies of edge particle and electron transport, of ELM dynamics, and other edge phenomena. The system comprises five tangential AXUV diode arrays, viewing the plasma between 0.5

  5. The stellar contribution to the galactic soft X-ray background

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Avni, Y.; Bookbinder, J.; Giacconi, R.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Topka, K.; Vaiana, G. S.

    1981-01-01

    Log N-log S relations for stars are constructed based on median X-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed X-ray luminosity function derived here for dM stars, and the stellar contribution to the diffuse soft X-ray background is investigated. The principal results are that stars provide approximately 20% of the soft X-ray background in the 0.28-1.0 keV passband and therefore contribute significantly to the soft X-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse X-ray background in the 0.15-0.28 keV passband is less than approximately 3%.

  6. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  7. Resonant Inelastic X-ray Scattering Study of the Electronic Structure of Cu2O

    SciTech Connect

    Hill, J.P.; Kim, Y.-J.; Yamaguchi, H.; Gog, T.; Casa, D.

    2010-05-15

    A resonant inelastic x-ray scattering study of the electronic structure of the semiconductor cuprous oxide, Cu{sub 2}O, is reported. When the incident x-ray energy is tuned to the CuK-absorption edge, large enhancements of the spectral features corresponding to the electronic transitions between the valence band and the conduction band are observed. A feature at 6.5 eV can be well described by an interband transition from occupied states of mostly Cu3d character to unoccupied states with mixed 3d, 4s, and O2p character. In addition, an insulating band gap is observed, and the momentum dependence of the lower bound is measured along the {Gamma}-R direction. This is found to be in good agreement with the valence-band dispersion measured with angle-resolved photoemission spectroscopy.

  8. Inelastic x-ray scattering studies on dynamic structure factor of polymeric liquid Se under pressure

    SciTech Connect

    Inui, Masanori; Kajihara, Yukio; Kimura, Koji; Matsuda, Kazuhiro; Ohara, Koji; Tsutsui, Satoshi; Ishikawa, Daisuke

    2015-08-17

    Inelastic X-ray scattering measurements at 25 MPa using synchrotron radiation were carried out for semiconducting liquid Se at high temperatures up to 1673 K. The excitation energy of the acoustic mode disperses approximately 10-50 % faster than the ultrasonic sound velocity in the observed temperature range while the ultrasonic sound rapidly slows down with increasing temperature. We carried out X-ray scattering measurements and found that the average coordination number at 1673 K is 1.3, indicating that the high temperature liquid consists of short chain molecules. These results suggest that weakening of the interatomic interaction is correlated with breaking of polymeric chain molecules.

  9. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    SciTech Connect

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.

    2009-01-01

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.

  10. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  11. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  12. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples.

    PubMed

    Fuchs, O; Weinhardt, L; Blum, M; Weigand, M; Umbach, E; Bär, M; Heske, C; Denlinger, J; Chuang, Y-D; McKinney, W; Hussain, Z; Gullikson, E; Jones, M; Batson, P; Nelles, B; Follath, R

    2009-06-01

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) microm2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min. PMID:19566192

  13. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  14. Probing nucleobase photo protection with soft x-rays

    NASA Astrophysics Data System (ADS)

    Gühr, Markus

    2013-05-01

    We [1] present a new method for ultrafast spectroscopy of molecular photoexcited dynamics. The technique uses a pair of femtosecond pulses: a photoexcitation pulse initiating excited state dynamics followed by a soft x-ray (SXR) probe pulse that core ionizes certain atoms inside the molecule. We observe the Auger decay of the core hole as a function of delay between the photoexcitation and SXR pulses. The core hole decay is particularly sensitive to the local valence electrons near the core and shows new types of propensity rules, compared to dipole selection rules in SXR absorption or emission spectroscopy. We apply the delayed ultrafast x-ray Auger probing (DUXAP) method to the specific problem of nucleobase photoprotection to demonstrate its potential. The ultraviolet photoexcited ππ * states of nucleobases are prone to chemical reactions with neighboring bases. To avoid this, the single molecules funnel the ππ * population to lower lying electronic states on an ultrafast timescale under violation of the Born-Oppenheimer approximation. The new type of propensity rule, which is confirmed by Auger decay simulations, allows us to have increased sensitivity on the direct relaxation from the ππ * state to the vibrationally hot electronic ground state. For the nucleobase thymine, we measure a decay of the ππ * state and a subsequent filling of the vibrationally hot ground state in 300 fs. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of

  15. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  16. A 2 m inelastic x-ray scattering spectrometer at CMC-XOR, Advanced Photon Source.

    SciTech Connect

    Hill, J. P.; Coburn, D. S.; Kim, Y. J.; Gog, T.; Casa, D. M.; Kodituwakku, C. N.; Sinn, H.; X-Ray Science Division; BNL; Univ. of Toronto

    2007-07-01

    The design and commissioning of an inelastic X-ray scattering instrument at CMC-XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical-scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre-monochromator. Early results from a representative cuprate, La{sub 2}CuO{sub 4}, are reported.

  17. Novel rhenium gasket design for nuclear resonant inelastic x-ray scattering at high pressure

    SciTech Connect

    Tanis, Elizabeth A.; Giefers, Hubertus; Nicol, Malcolm F.

    2008-02-15

    For the first time, a highly absorbing element, rhenium, has been proven to be a strong, reliable, and safe gasket material for achieving high pressure in nuclear resonant inelastic x-ray scattering (NRIXS) experiments. Rhenium foil was cut into rectangular slices and in order to reduce absorption, the elevated imprint due to preindenting of the gasket is removed using electrical discharge machining. By utilizing this novel gasket design, transmission losses were mitigated while performing NRIXS experiments conducted on the {sup 119}Sn and {sup 57}Fe Moessbauer isotopes.

  18. Resonant inelastic x-ray scattering studies of the organic semiconductor copper phthalocyanine

    SciTech Connect

    Kodituwakku, C. N.; Burns, C. A.; Said, A. H.; Sinn, H.; Wang, X.; Gog, T.; Casa, D. M.; Tuel, M.; Western Michigan Univ.; DESY, Hasylab

    2008-01-01

    We report resonant inelastic x-ray scattering (RIXS) measurements on polycrystalline and single crystal samples of the organic semiconductor {beta}-copper phthalocyanine (CuPc) as well as time dependent density functional theory calculations of the electronic properties of the CuPc molecule. Resonant and nonresonant excitations were measured along the three crystal axes with 120 meV resolution. We observe molecular excitations as well as charge-transfer excitons along certain crystal directions and compare our data with the calculations. Our results demonstrate that RIXS is a powerful tool for studying excitons and other electronic excitations in organic semiconductors.

  19. Inelastic X-ray scattering experiments on B[subscript 4]C under high static pressures

    SciTech Connect

    Kumar, Ravhi S.; Dandekar, Dattatraya; Leithe-Jasper, Andres; Tanaka, Takaho; Xiao, Yuming; Chow, Paul; Nicol, Malcolm F.; Cornelius, Andrew L.

    2010-05-04

    Boron K-edge inelastic X-ray scattering experiments were performed on clean B{sub 4}C and shock impact recovered boron carbide up to 30 GPa and at ambient temperature to understand the pressure induced bonding changes. The spectral features corresponding to the boron site in the interlinking chain remained unchanged up to 30 GPa. The results of our experiments indicate that pressure induces less distortion to the boron sites and the local amorphization observed in the previous reports are due to the rearrangement of carbon atoms under extreme conditions without affecting the boron environment.

  20. A pressure cell for nonresonant inelastic x-ray scattering studies of gas phases

    SciTech Connect

    Minzer, M.; Bradley, J. A.; Musgrave, R.; Seidler, G. T.; Skilton, A.

    2008-08-15

    We report the design and performance of a gas-phase sample cell for measurements of momentum transfer (q) dependent nonresonant inelastic x-ray scattering (NRIXS). NRIXS measurements from He gas at 2 MPa (20 bars) readily demonstrate dipole-allowed and dipole-forbidden final states for two-electron excitations. Direct comparison of gas-phase NRIXS measurements with the corresponding nonresonant electron energy loss spectroscopy results (EELS) will be a valuable method for characterizing systematic errors in either technique for studies that require absolute normalization of the double differential cross section.

  1. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated. PMID:19876245

  2. Soft-x-ray hollow fiber optics with inner metal coating.

    PubMed

    Matsuura, Yuji; Oyama, Tadaaki; Miyagi, Mitsunobu

    2005-10-10

    A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary. PMID:16237934

  3. Ground-based x-ray calibration of the Astro-H soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2014-07-01

    The X-ray astronomy satellite Astro-H, planned to be launched in 2015, will have several instruments for covering a wide energy band from a few hundreds eV to 600 keV. There are four X-ray telescopes, and two of them are soft X-ray telescopes (SXTs) covering up to about 15 keV. One is for an X-ray micro-calorimeter detector (SXS) and the other is for an X-ray CCD detector (SXI). The design of the SXTs is a conical approximation of the Wolter Type-I optics, which is also adopted for the telescopes on the previous mission Suzaku launched in 2005. It consists 203 thin-foil reflectors coated with gold monolayer (2000 Å) on the aluminum substrate (101.6 mm length) with the thickness of 0.15, 0.23 and 0.31 mm. These are nested confocally within the radius of 58 to 225 mm. The focal length of SXTs is 5.6 m. The weight is as light as ~ 43 kg per telescope. We present the current status of the calibration activity of two SXTs (SXT-1 and SXT-2). The developments of two SXTs were completed by NASA's Goddard Space Flight Center (GSFC). First X-ray measurements with a diverging beam at the GSFC 100m beamline found an angular resolution at 8.0 keV to be 1.1 and 1.0 arcmin (HPD) for SXT-1 and SXT-2, respectively. The full characterization of the X-ray performance has been now continuously calibrated with the 30m X-ray beamline facility at the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace eXploration Agency (JAXA) in Japan. We adopted a raster scan method with a narrow X-ray pencil beam with the divergence of ~ 15". X-ray characterization of the two SXTs has been measured from May and December 2013, respectively. In the case of SXT-1, the on-axis effective area was approximately 580, 445, 370, 270, 185 and 90 cm2 at energies of 1.5, 4.5, 8.0, 9.4, 11.1 and 12.9 keV respectively. The effective area of SXT-2 is 2% larger than that of SXT-1 irrespective to X-ray energy. The on-axis angular resolution of SXT-1 was evaluated as 1.3 - 1.5 arcmin (HPD) in the 1

  4. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  5. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiuzbǎian, Sorin G.; Hague, Coryn F.; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm2 focal spot source with full polarization control.

  6. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  7. Plane-grating flat-field soft x-ray spectrometer

    SciTech Connect

    Hague, C.F.; Underwood, J.H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.

    2005-02-01

    We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of {<=}5 {mu}m is planned at SOLEIL which, according to simulations, should ensure a resolving power {>=}1000 over the whole energy range. A 1024x1024 pixel charge-coupled device (CCD) with a 13 {mu}mx13 {mu}m pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.

  8. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  9. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    NASA Astrophysics Data System (ADS)

    Davis, Paul F.

    In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

  10. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  11. The Soft X-Ray Spectrometer (SXS) for the ISAS/JAXA New Exploration X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Kilbourne, C. A.; McCammon, D.; Mushotzky, R. F.; Okajima, T.; Petre, R.; Porter, F. S.; Serlemitsos, P. J.; Smith, R. K.; Soong, Y.; Szymkowiak, A. E.; Mitsuda, K.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamasaki, N. Y.; Shinozaki, K.; Fujimoto, R.; Kawaharada, M.

    2008-03-01

    The ISAS/JAXA New Exploration X-Ray Telescope (NEXT) is now under development for launch in 2013. The observatory is designed to provide extremely high spectral resolution with large collecting area below 10 keV using an x-ray calorimeter, and a very large band pass (up to 300 keV) with extraordinary sensitivity over the range 10-80 keV using focusing x-ray optics. In this talk we will discuss plans for the Soft X-Ray Spectrometer (SXS), which uses an x-ray calorimeter array to provide the high spectral resolution. The SXS is a joint effort between ISAS and NASA and recently proposed to NASA as a Mission of Opportunity for the US participation. The SXS incorporates a 6x6 calorimeter array that has strong heritage in the Suzaku program and better than 7 eV energy resolution, with 4-5 eV expected based on recent laboratory tests. The cryogenic system will be a hybrid design with both liquid helium and mechanical coolers to provide a robust, redundant system with long life (> 3 years). The x-ray optical system (6 m focal length) uses thin-foil conical optics to provide at least 220 square cm at 6 keV. The SXS will enable a wide variety of interesting science topics to be pursued, including testing theories of structure formation using velocity measurements of clusters of galaxies and inferring the energy output from the jets and winds of active galaxies. The SXS will accurately measure metal abundances in the oldest galaxies, providing unique information on the origin of the elements, and observe matter in extreme gravitational fields, enabling time-resolved spectra from material approaching the event horizon of a black hole. Along with providing the instrument, we have proposed a well supported guest investigator program that will enable full US participation.

  12. Deconstructing the Spectrum of the Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  13. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  14. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  15. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    NASA Astrophysics Data System (ADS)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-08-01

    The behaviour of neutron stars in high mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7±0.2 K and inferred emitting radius of ˜0.2 - 0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  16. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  17. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    NASA Astrophysics Data System (ADS)

    Wanli, Yang; Ruimin, Qiao

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode-electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries.

  18. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    SciTech Connect

    Fischer, P.; Im, M.-Y.

    2010-01-18

    Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

  19. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  20. The Interrelation of Soft and Hard X-ray Emission During Solar Flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1997-01-01

    The objective of this project is to determine the characteristics of flare energy transport processes through the study of soft X-rays, hard X-rays, and their interrelationships through analysis of Yohkoh SXT, HXT, and BCS data, and comparison with theoretical models. The personnel involved in the research include SSL Assistant Research Physicists Dr. Peng Li and Dr. James McTiernan.

  1. Molecular Orbital Simulations of Metal 1s2p Resonant Inelastic X-ray Scattering.

    PubMed

    Guo, Meiyuan; Källman, Erik; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-07-28

    For first-row transition metals, high-resolution 3d electronic structure information can be obtained using resonant inelastic X-ray scattering (RIXS). In the hard X-ray region, a K pre-edge (1s→3d) excitation can be followed by monitoring the dipole-allowed Kα (2p→1s) or Kβ (3p→1s) emission, processes labeled 1s2p or 1s3p RIXS. Here the restricted active space (RAS) approach, which is a molecular orbital method, is used for the first time to study hard X-ray RIXS processes. This is achieved by including the two sets of core orbitals in different partitions of the active space. Transition intensities are calculated using both first- and second-order expansions of the wave vector, including, but not limited to, electric dipoles and quadrupoles. The accuracy of the approach is tested for 1s2p RIXS of iron hexacyanides [Fe(CN)6](n-) in ferrous and ferric oxidation states. RAS simulations accurately describe the multiplet structures and the role of 2p and 3d spin-orbit coupling on energies and selection rules. Compared to experiment, relative energies of the two [Fe(CN)6](3-) resonances deviate by 0.2 eV in both incident energy and energy transfer directions, and multiplet splittings in [Fe(CN)6](4-) are reproduced within 0.1 eV. These values are similar to what can be expected for valence excitations. The development opens the modeling of hard X-ray scattering processes for both solution catalysts and enzymatic systems. PMID:27398775

  2. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    SciTech Connect

    Tomczak, M.; Chmielewska, E. E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

  3. The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients

    NASA Astrophysics Data System (ADS)

    Wu, Yuxiang; Yu, Wenfei; Li, Tipei

    2010-01-01

    Recent studies of black hole and neutron star low mass X-ray binaries (LMXBs) show a positive correlation between the X-ray flux at which the low/hard(LH)-to-high/soft(HS) state transition occurs and the peak flux of the following HS state. By analyzing the data from the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE), we show that the HS state flux after the source reaches its HS flux peak still correlates with the transition flux during soft X-ray transient (SXT) outbursts. By studying large outbursts or flares of GX 339-4, Aql X-1 and 4U 1705-44, we have found that the correlation holds up to 250, 40, and 50 d after the LH-to-HS state transition, respectively. These time scales correspond to the viscous time scale in a standard accretion disk around a stellar mass black hole or a neutron star at a radius of ˜104-5 R g, indicating that the mass accretion rates in the accretion flow either correlate over a large range of radii at a given time or correlate over a long period of time at a given radius. If the accretion geometry is a two-flow geometry composed of a sub-Keplerian inflow or outflow and a disk flow in the LH state, the disk flow with a radius up to ˜105 R g would have contributed to the nearly instantaneous non-thermal radiation directly or indirectly, and therefore affects the time when the state transition occurs.

  4. Soft X-ray results from the Wisconsin experiment on OSO-8

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1978-01-01

    Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.

  5. A soft X-ray beamline for transmission X-ray microscopy at ALBA.

    PubMed

    Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R

    2009-07-01

    The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use. PMID:19535865

  6. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  7. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  8. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  9. A new soft x-ray pulse height analysis array in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.

    2009-12-15

    A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p/b{>=}3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.

  10. Solar-terrestrial coupling: Solar soft X-rays and thermospheric nitric oxide

    NASA Astrophysics Data System (ADS)

    Barth, Charles A.; Bailey, Scott M.; Solomon, Stanley C.

    Simultaneous measurements were made of the solar soft x-ray irradiances and the thermospheric nitric oxide density in the tropics from the Student Nitric Oxide Explorer (SNOE) satellite. The analysis of these observations for 44 days of low geomagnetic activity in the spring of 1998 show that there is a correlation between the solar soft x-ray irradiances and thermospheric nitric oxide densities in the tropics. Photochemical model calculations that used the measured solar soft x-ray irradiances as input parameters adequately reproduce the magnitude of the time-varying component of the thermospheric nitric oxide in the tropics. An additional amount of nitric oxide is present in the tropics that does not vary with the time period of the solar rotation. The conclusion of this analysis is that solar soft x-rays are the primary cause of the variation in the thermospheric nitric oxide densities in the tropics during times of low geomagnetic activity.

  11. Homogeneous focusing with a transient soft X-ray laser for irradiation experiments

    NASA Astrophysics Data System (ADS)

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, B.; Koslová, M.; Stupka, M.; Mocek, T.; Douillet, D.; Zeitoun, Ph.; Joyeux, D.; Phalippou, D.

    2006-07-01

    We report the work done on a transient soft X-ray laser (SXRL) beam to deliver a proper extreme UV irradiation source for applications. The same optical tool was first demonstrated on a quasi stationnary state (QSS) soft X-Ray laser at the PALS Institute in Prague. The problem set by the transient soft X-Ray laser developed by the LIXAM at the LULI installation in Palaiseau is more crucial, first because the beam spatial profile is more irregular secondly because high repetition rate soft X-ray laser facilities in the future are based on this SXRL type. The spots obtained show a 20 micron average diameter and a rather homogeneous and smooth profile that make them a realistic irradiation source to interact with targets requiring relatively high fluence (near 1 J/cm 2) or intensity (near 10 11 W/cm 2) in the extreme UV domain.

  12. Diffraction grating transmission efficiencies for XUV and soft x rays.

    PubMed

    Schnopper, H W; Van Speybroeck, L P; Delvaille, J P; Epstein, A; Källne, E; Bachrach, R Z; Dijkstra, J; Lantward, L

    1977-04-01

    Efficiencies for diffraction of 45-275-eV x rays into orders by interferometrically formed, electrodeposited, gold transmission gratings have been measured on the 4 degrees beam line at the Stanford Synchrotron Radiation Project (SSRP). Anomalous dispersion affects the observed efficiency since the gold is partially transmitting to x rays. Model calculations which include anomalous dispersion are in good agreement with observations. With a suitable choice of material and thickness, a grating can be optimized for a given wavelength range by reducing the zero order transmission and enhancing the higher orders. Even orders are suppressed for a grating with equal slit and wire sizes. PMID:20168641

  13. Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr30Ti70)O3 thin films by soft x-ray absorption and soft x-ray emission spectroscopy

    SciTech Connect

    Schneller, T.; Schneller, T.; Kohlstedt, H.; Petraru, A.; Waser, R.; Guo, J.; Denlinger, J.; Learmonth, T.; Glans, Per-Andres; Smith, K. E.

    2008-08-01

    Chemical solution deposited (CSD) complex oxide thin films attract considerable interest in various emerging fields as for example, fuel cells, ferroelectric random access memories or coated conductors. In the present paper the results of soft-x-ray spectroscopy between 100 eV and 500 eV on the amorphous to crystalline phase transition of ferroelectric PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} (PZT) thin films are presented. Five CSD samples derived from the same wafer coated with a PZT film pyrolyzed at 350 C were heat treated at different temperatures between 400 C and 700 C. At first the sample were morphologically and electrically characterized. Subsequently the soft-x-ray absorption and emission experiments were performed at the undulator beamline 8.0 of the Advanced Light Source of the Lawrence Berkeley National Laboratory. Soft-x-ray absorption spectra were acquired for the Ti L{sub 2,3-}, O K-, and C K-edge thresholds by using simultaneously the total electron yield (TEY) and total fluorescence yield (TFY) detection methods. For two samples, annealed at 400 C and 700 C, respectively, the resonant inelastic soft-x-ray spectroscopy (RIXS) was applied for various excitation energies near the Ti L-, O K-edges. We observed clear evidence of a rutile phase at untypically low temperatures. This rutile phase transforms into the perovskite phase upon increasing annealing temperature. These results are discussed in the framework of current microscopic models of the PZT (111) texture selection.

  14. On the source function of the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Kraft, Ralph P.

    1993-01-01

    Radiation transfer theory has been used recently to derive the source function of the soft X-ray diffuse background, resulting in the claim of evidence for 10 exp 6 K gas in the Galactic halo. We show that this analysis has several errors that invalidate its conclusions. We argue that the case for an extensive hot halo remains open, pending further work, but may be settled by the continuing series of Rosat observations of high-latitude soft X-ray shadows.

  15. Generation of soft X rays in a vircator with exploding anode foil

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Efimova, I. A.; Kargin, V. I.; Ryaslov, E. A.; Selemir, V. D.

    2007-06-01

    A soft X-ray generator is designed on the basis of a vircator the plasma anode of which is formed by electrical explosion of anode foil. The intensity of soft X-ray radiation (E γ > 20 eV) produced by vircators with a metal and plasma anode is measured. Microwave pulses indicating the presence of a virtual cathode in the plasma beam are detected.

  16. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  17. Running Shanghai Soft x-ray FEL with the EEHG scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    With the nominal beam parameters (beam energy: 0.84 GeV, slice energy spread: 168 keV, peak current: 600 A, normalized emittance: 2 mm mrad) of the Shanghai soft X-ray Free Electron Laser (SXFEL) project, we show that using the echo-enabled harmonic generation (EEHG) scheme, 9 nm coherent soft x-ray with peak power exceeding 400 MW can be generated directly from the 270 nm seeding laser.

  18. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  19. Inelastic scattering measurements of low energy x-ray photons by organics, soil, water, wood, and metals

    NASA Astrophysics Data System (ADS)

    Paki Amouzou, P.; Gertsenshteyn, M.; Jannson, T.; Shnitser, P.; Savant, G.

    2006-08-01

    The angular distribution of the inelastic scattering of photons at low energies (<=80 KeV) has been measured in organic material, soil, rocks, wood, steel sheet, and water. The measurements have been performed under air inside an X-ray shield cabinet using X-rays tube as a photon source and a thermoelectrically cooled CdTe detector. Measurements have been taken for both single and combined materials. The contributions of inelastic scattering of photons for the lower Z material in a given configuration have been extracted. The measured signal is primarily Compton scattering. The measured inelastic scattering contributions were compared with the calculated inelastic scattering cross sections according to the Klein-Nishina theory, updated to include a practical energy distribution of an X-ray tube beam. Relatively good agreement was found for all targets under investigation. The slight discrepancy is attributed to photoelectric effect and sample configuration. Present results may act as a guide for optimization of X-ray imaging sensors and in particular of those based on lobster eye X-ray optics suitable for cargo inspection, improvised explosives detection, non-destructive evaluation, and medical imaging.

  20. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  1. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  2. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  3. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  4. Progress and prospects in soft x-ray holographic microscopy

    SciTech Connect

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab.

  5. Soft X-ray astronomy using grazing incidence optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.

    1989-01-01

    The instrumental background of X-ray astronomy with an emphasis on high resolution imagery is outlined. Optical and system performance, in terms of resolution, are compared and methods for improving the latter in finite length instruments described. The method of analysis of broadband images to obtain diagnostic information is described and is applied to the analysis of coronal structures.

  6. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    SciTech Connect

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  7. Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams

    SciTech Connect

    Sandberg, Richard L.; Paul, Ariel; Raymondson, Daisy A.; Haedrich, Steffen; Gaudiosi, David M.; Holtsnider, Jim; Tobey, Ra'anan I.; Cohen, Oren; Murnane, Margaret M.; Kapteyn, Henry C.; Song, Changyong; Miao Jianwei; Liu Yanwei; Salmassi, Farhad

    2007-08-31

    We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size. These patterns reconstruct to images with 214 nm resolution. This work demonstrates a practical tabletop lensless microscope that promises to find applications in materials science, nanoscience, and biology.

  8. Progress in compact soft x-ray lasers and their applications

    SciTech Connect

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers.

  9. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.; Glenzer, S.H.; Landen, O.L.; Turner, R.E.; Waide, P.A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  10. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  11. An extreme ultraviolet telescope with no soft X-ray response

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    While EUV grazing incidence telescopes of conventional design exhibit a substantial X-ray response as well as an extreme UV response, and existing bandpass filters for the transmission of radiation longward of 400 A also transmit soft X-rays, the grazing incidence telescope presented suppresses this soft X-ray throughput through the incorporation of a Wolter Schwarzschild Type II mirror with large graze angles. The desirable features of an EUV photometric survey telescope are retained. An instrument of this design will be flown on the EUE mission, in order to make a survey of the sky at wavelengths longer than 400 A.

  12. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    SciTech Connect

    Ribeiro, T.; Lopes de Oliveira, R.

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  13. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  14. A Viscoelastic Analysis of Inelastic X-ray Scattering Spectra from He/Ne Mixtures

    SciTech Connect

    M Izzo; F Bencivenga; A Gessini; A Cunsolo; C Masciovecchio

    2011-12-31

    A generalization of the viscoelastic model to binary systems has been applied to analyze inelastic X-ray scattering spectra from a He{sub 0.8}Ne{sub 0.2} mixture. Experiments have been carried out at temperature T = 82 K and number density n = 18.5 nm{sup -3}. In order to test the reliability of such a generalization, we measured a few representative spectra. The model exhaustively describes the experimental data and provides a determination of the spectral densities of the separate mixture components as well as those of both density and concentration fluctuations. These results can be considered as a first test for further developments.

  15. Development of a graphite polarization analyzer for resonant inelastic x-ray scattering

    SciTech Connect

    Gao Xuan; Burns, Clement; Li Chengyang; Casa, Diego; Upton, Mary; Gog, Thomas; Kim, Jungho

    2011-11-15

    Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in correlated electron systems. Current RIXS spectrometers measure the changes in energy and momentum of the photons scattered by the sample. A powerful extension of the RIXS technique is the measurement of the polarization state of the scattered photons which contains information about the symmetry of the excitations. This long-desired addition has been elusive because of significant technical challenges. This paper reports the development of a new diffraction-based polarization analyzer which discriminates between linear polarization components of the scattered photons. The double concave surface of the polarization analyzer was designed as a good compromise between energy resolution and throughput. Such a device was fabricated using highly oriented pyrolytic graphite for measurements at the Cu K-edge incident energy. Preliminary measurements on a CuGeO{sub 3} sample are presented.

  16. Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic X-ray scattering.

    PubMed

    Minola, M; Dellea, G; Gretarsson, H; Peng, Y Y; Lu, Y; Porras, J; Loew, T; Yakhou, F; Brookes, N B; Huang, Y B; Pelliciari, J; Schmitt, T; Ghiringhelli, G; Keimer, B; Braicovich, L; Le Tacon, M

    2015-05-29

    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa_{2}Cu_{3}O_{6+x} over a wide range of doping levels (0.1≤x≤1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed. PMID:26066453

  17. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    PubMed Central

    Bi, Wenli; Zhao, Jiyong; Lin, Jung-Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability. PMID:25931094

  18. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    DOE PAGESBeta

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technicalmore » development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.« less

  19. Phonon density of states of α - and δ -plutonium by inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Manley, M. E.; Said, A. H.; Fluss, M. J.; Wall, M.; Lashley, J. C.; Alatas, A.; Moore, K. T.; Shvyd'Ko, Yu.

    2009-02-01

    Inelastic x-ray scattering measurements of the phonon density of states (DOS) were performed on polycrystalline samples of pure α-Pu and δ-Pu0.98Ga0.02 at room temperature. The heat capacity of α-Pu is well reproduced by contributions calculated from the measured phonon DOS plus conventional thermal-expansion and electronic contributions, showing that α-Pu is a “well-behaved” metal in this regard. A comparison of the phonon DOS of the two phases at room temperature showed that the vibrational entropy difference between them is only a quarter of the total entropy difference expected from known thermodynamic measurements. The missing entropy is too large to be accounted for by conventional electronic entropy and evidence from the literature rules out a contribution from spin fluctuations. Possible alternative sources for the missing entropy are discussed.

  20. Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2

    DOE PAGESBeta

    Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; Said, A. H.; Leu, B. M.; Williams, Travis J.; Luke, G. M.; Lee, Y. S.

    2016-02-11

    In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu2Si2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the lowmore » temperature phase.« less

  1. Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic x-ray scattering.

    PubMed

    Chen, S H; Liao, C Y; Huang, H W; Weiss, T M; Bellisent-Funel, M C; Sette, F

    2001-01-22

    The short wavelength density fluctuation of DLPC (dilaurylphosphatidylcholine) bilayers close to full hydration has been studied by the inelastic x-ray scattering technique below and above the main transition temperature. The analysis based on a generalized three effective eigenmode theory allows us to construct the dispersion relation of the high frequency sound mode for the first time. The marked softening of the excitation near k = 14 nm(-1), corresponding to the lipid chain-chain correlation peak in the structure factor, in the L(alpha) phase implies prevalent occurrences of short-wavelength in-plane motions of lipid chains that might be of importance for transportation of small molecules across membranes. PMID:11177926

  2. Soft X-ray observations of the interacting galaxies NGC 1808 and NGC 1792

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Hartner, Gisela D.; Junkes, Norbert

    1994-01-01

    The soft X-ray emission from both galaxies NGC 1808 and NGC 1792, which we investigated using the ROSAT HRI and Position Sensitive Proportional Counter (PSPC), comes most probably from X-ray binaries and/or from hot ionized gas in powerful supernovae and supernova remnants. The distribution of the soft X-ray emission in NGC 1808, which is very well correlated with the distribution of 'radio knots' in the central starburst, suggests that hot gas dominates the emission in the ROSAT band. This is consistent with the results of PSPC observations by Junkes et al. The total soft X-ray luminosity in the ROSAT band of NGC 1808 of 1.2 x 10(exp 41) ergs/s is relatively high compared with other nearby starburst galaxies. Soft X-ray emission of diffuse hot ionized gas that is associated with the outflow traced by the conspicuous dust filaments protruding from the plane has been detected. Its luminosity in the ROSAT band is greater than or equal to 3 x 10(exp 39) ergs/s, i.e., several percent of the total soft X-ray luminosity. Thus, NGC 1808 is another example for a 'superwind' galaxy. The soft X-ray radiation from NGC 1792 is more likely to be dominated by a population of high-mass X-ray binaries or young powerful supernovae which are associated with the high-level star formation going on in the very prominent H II regions along its spiral arms, with possibly an additional contribution of diffuse hot ionized gas. The soft X-ray luminosities of individual sources lie in the range of 5 x 10(exp 38) to 2.7 x 10(exp 39) ergs/s, thus exceeding by far the Eddington luminosity of an accreting neutron star. The peaks of some of these soft X-ray luminous sources are offset with respect to the H II regions by a few hundred parsecs. Accordingly, if the soft X-ray sources should originate from the H II regions, their relative velocities with respect to the ambient medium have to be as high as approximately 100 km/s.

  3. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films

    SciTech Connect

    Tzvetkov, George; Netzer, Falko P.

    2011-05-28

    Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H{sub 2}O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H{sub 2}O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.

  4. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Renault, O.; Zborowski, C.; Risterucci, P.; Wiemann, C.; Grenet, G.; Schneider, C. M.; Tougaard, S.

    2016-07-01

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al0.25Ga0.75N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  5. Inelastic x-ray scattering in the vicinity of xenon L3 edge

    NASA Astrophysics Data System (ADS)

    Žitnik, M.; Kavčič, M.; Bučar, K.; Mihelič, A.; Štuhec, M.; Kokalj, J.; Szlachetko, J.

    2007-09-01

    A series of x-ray emission spectra of xenon in the region of L3M5,4(Lα1,2) and L3N5,4(Lβ2,15) lines were recorded along the polarization direction of the incoming photons with energies ranging from 4779.4 to 4804.4eV . A combination of monochromatic photon beam and high resolution x-ray spectrometer resulted in the experimental broadening of 1eV allowing the observation of resonantly enhanced and narrowed emission lines from the decay of [2p3/2]nd,ns states. The measured spectra are decomposed into the continuum and resonant contributions to determine their relative emission strengths and the energies of the lowest resonant excitations converging to the L3 edge. The calculated differential cross section for inelastically scattered photons is compared to the measured data. Each of the resonant states is described by a single relativistic configuration in the frame of the Dirac-Fock model, and the continuum contribution to the scattered light is evaluated within the Caldwell-Zare approach, which neglects anisotropic interaction of the ejected electron with the ion.

  6. Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexey; Cai, Yong Q.; Sutter, John P.; Chubar, Oleg

    2014-09-01

    Up to now simulation of perfect crystal optics in the "Synchrotron Radiation Workshop" (SRW) wave-optics computer code was not available, thus hindering the accurate modelling of synchrotron radiation beamlines containing optical components with multiple-crystal arrangements, such as double-crystal monochromators and high-energy-resolution monochromators. A new module has been developed for SRW for calculating dynamical diffraction from a perfect crystal in the Bragg case. We demonstrate its successful application to the modelling of partially-coherent undulator radiation propagating through the Inelastic X-ray Scattering (IXS) beamline of the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The IXS beamline contains a double-crystal and a multiple-crystal highenergy- resolution monochromator, as well as complex optics such as compound refractive lenses and Kirkpatrick-Baez mirrors for the X-ray beam transport and shaping, which makes it an excellent case for benchmarking the new functionalities of the updated SRW codes. As a photon-hungry experimental technique, this case study for the IXS beamline is particularly valuable as it provides an accurate evaluation of the photon flux at the sample position, using the most advanced simulation methods and taking into account parameters of the electron beam, details of undulator source, and the crystal optics.

  7. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  8. On the Lack of a Soft X-Ray Excess from Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Lloyd-Davies, Edward J.

    2006-06-01

    A soft X-ray excess has been claimed to exist in and around a number of galaxy clusters, and this emission has been attributed to the warm-hot intergalactic medium that may constitute most of the baryons in the local universe. We have reexamined a study of the XMM-Newton observations on this topic by Kaastra and coworkers and find that the X-ray excess (or deficit) depends on Galactic latitude and appears to be most closely related to the surface brightness of the 1/4 keV emission, which is largely due to emission from the local hot bubble and the halo of the Milky Way. We suggest that the presence of the soft X-ray excess is due to incorrect subtraction of the soft X-ray background. An analysis is performed for which we choose a 1/4 keV background that is similar to the background near the cluster (and a similar H I column). We find that the soft X-ray excess largely disappears using our background subtraction and conclude that these soft X-ray excesses are not associated with the target clusters. We also show that the detections of ``redshifted'' O VII lines claimed by Kaastra and coworkers are correlated with solar system charge exchange emission, suggesting that they are not extragalactic either.

  9. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant

  10. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  11. Streak cameras for soft x-ray and optical radiation

    SciTech Connect

    Medecki, H.

    1983-09-01

    The principal component of a streak camera is the image converter tube. A slit-shaped photocathode transforms the radiation into a proportional emission of electrons. An electron - optics arrangement accelerates the electrons and projects them into a phosphor screen creating the image of the slit. A pair of deflection plates deflects the electronic beam along a direction perpendicular to the main dimension of the slit. Different portions of the phosphor screen show the instantaneous image of the slit with brightness proportional to the number of emitted electrons and, consequently, to the intensity of the radiation. For our x-ray streak cameras, we use the RCA C73435A image conventer tube intended for the measurement of the radiation of light and modified to have an x-ray sensitive photocathode. Practical considerations lead to the use of transparent rather than reflecting photocathodes. Several of these camera tubes are briefly described.

  12. Soft x-ray holographic computerized tomography imaging: experimental research

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Jiang, Shiping; Zhang, Xinyi

    2003-03-01

    A high-resolution three-dimensional (3D) imaging technology has been developed, which is a combination of x-ray holography and computerized tomography (CT) technology called holographic computerized tomography (HCT). The theory and experimental techniques on biological specimens with the use of synchrotron radiation are discussed. Projections at different angles are reconstructed with the numerical method of in-line holography, and then the reconstructed data with a higher lateral resolution are used to restore the 3D image by the CT technique. With this method, the degradation caused by the diffraction of x rays is canceled, and 3D images with high resolution of micrometer magnitude in both the lateral and the longitudinal directions are obtained.

  13. The Soft X-Ray Emission Component of Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, Giuseppina

    1998-01-01

    Work included the analysis of the HRJ observations of the Sombrero galaxy (Fabbiano and Juda) published in Ap.J. This paper discussed the discovery of a point-like x-ray source at the nucleus of the galaxy, which is suspected to host a massive black hole. More work was done on the analysis of the Observation of M94 in support of an AXAF proposal. We have also analyzed the M81 data by adding to our observation the entire set of the archival ROSAT data. We plan to write up the results for publication. Both galaxies have nuclei optically similar to that of the Sombrero galaxy. The nucleus of M81 is a known x-ray source. The M94 data has revealed a point-like nuclear source superposed on more diffuse emission.

  14. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  15. OSO-8 soft X-ray experiment (Wisconsin)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Information for operating and reducing data from the experiment which was designed to map low energy X-ray background emissions from 130 eV to 35 keV is presented. The detectors, counters, data system, and the gas system are discussed along with the functional operation of the subsystems. A command list indicating preconditions and resulting telemetry response for each command is included.

  16. Design considerations for soft X-ray television imaging detectors

    NASA Technical Reports Server (NTRS)

    Kalata, Kenneth; Golub, Leon

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed.

  17. Incoherent imaging with the soft X-ray microscope

    PubMed

    Burge; Yuan; Morrison; Charalambous; Browne; An

    2000-05-01

    The imaging characteristics for X-ray wavelengths in the "water window" under incoherent imaging conditions (large detector aperture) are examined for the King's College London scanning transmission X-ray microscope with zone-plate objective installed at the Daresbury (UK) synchrotron. The principal consideration was to express image theory, incorporating wave aberrations and apodised zone plates, and to apply the theory to experimental data. Comparisons are made, showing reasonable agreement, for a range of defocus values and two wavelengths. Due to problems in fabrication it was necessary to determine the effective, or operational, zone-plate parameters (radius of outermost active zone rN, width of outermost active zone drN); this was accomplished by through-focus series. Calculated point spread functions were used to deblurr images, in through-focus series of two-dimensional scanned X-ray images of specimen holes and test grating patterns. Significant contrast enhancement is achieved after deconvolution with a best point-to-point resolution of about 35 nm. PMID:10805394

  18. Inelastic X-ray scattering from 6H-SiC

    SciTech Connect

    Macrander, A.T.; Blasdell, B.; Montano, P.A. |; Kao, C.C.

    1995-07-01

    The authors have studied electronic excitations in 6H-SiC using inelastic x-ray scattering. Inelastic scattering spectra were measured at momentum transfers ranging from 0.47 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the c-axis in the hexagonal lattice, i.e. , along [00{center_dot}1], and from 0.67 {angstrom}{sup {minus}1} to 2.00 {angstrom}{sup {minus}1} along the a-axis, i.e., alone, [10{center_dot}0]. Comparison of the two sets of data reveals an orientation dependence of the spectra, except for a characteristic peak at 22--23 eV that occurs for both directions at low Q. This peak has also been observed in electron energy loss spectroscopy studies and is identified as a bulk plasmon. The orientation dependence of the other spectral features is indicative of band structure effects. These data were obtained using a Ge(444) analyzer in a near backscattering geometry.

  19. Crystal Dynamics of (delta) fcc Pu-Ga by High Resolution Inelastic X-Ray Scattering

    SciTech Connect

    Wong, J; Krisch, M; Farber, D; Occelli, F; Xu, R; Chiang, T C; Clatterbuck, D; Schwartz, A J; Wall, M; Boro, C

    2004-09-28

    We have used a microbeam on large grain sample concept to carry out an inelastic x-ray scattering experiment to map the full phonon dispersion curves of an fcc {delta}-phase Pu-Ga alloy. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common {sup 239}Pu isotope and the non-availability of large (mm size) single crystal materials for Pu and its alloys. A classical Born von-Karman force constant model was used to model the experimental results, and no less than 4th nearest neighbor interactions had to be included to account for the observation. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus, (C{sub 11}-C{sub 12})/2, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the T[111] branch towards the L point in the Brillouin are found. These features can be related to the phase transitions of plutonium and to strong coupling between the crystal structure and the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium.

  20. Revealing the electronic ground state of ReNiO3 combining Ni-L3 x-ray absorption and resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Balandesh, Shadi; Strocov, Vladimir N.; Zubko, Pavlo; Sawatzky, George; Triscone, Jean-Marc; Schmitt, Thorsten

    Rare-earth nickelates ReNiO3 attract a lot of interest thanks to their intriguing physical properties like sharp metal to insulator transition, unusual magnetic order and expected superconductivity in nickelate-based heterostructures. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). Taking a NdNiO3 thin film as a representative example, we reveal with x-ray absorption and resonant inelastic x-ray scattering unusual coexistence of bound and continuum excitations, providing strong evidence for abundant O 2p holes in the GS of these materials. Using an Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the O 2p valence band, confirming suggestions that these materials exhibit a negative charge-transfer energy, with O 2p states extending across the Fermi level.

  1. Persistence and change in the soft X-ray spectrum of the quasar PG 1211 + 143

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Wilkes, Belinda J.; Giommi, P.; Mcdowell, Jonathan

    1991-01-01

    The present study examines two Einstein and three Exosat observations of PG 1211 + 143 over a 6-yr baseline which show that strong steep-spectrum low-energy X-ray emission is a persistent feature of this quasar. Exosat observations of PG 1211 + 143 detected an increase of a factor of 2.3 in its steep soft X-ray flux during 18 days. It is concluded that the bulk of the soft X-ray emission of PG 1211 + 143 comes from a region less than 5 x 10 to the 16th cm across. In another interval of 193 days, the soft X-rays decreased by a factor of 3.7. In the same interval the hard X-rays decreased by a factor of 1.6 + or - 0.05, which suggests a connection between the two energy regimes and argues against variable absorption causing the soft X-ray variations. It is contended that in order to decrease in luminosity so rapidly, a thermal source in PG 1211 + 143 would have to be optically thick to both electron scattering and free-bound absorption.

  2. The soft X-ray excess in Einstein quasar spectra

    NASA Technical Reports Server (NTRS)

    Masnou, J. L.; Wilkes, B. J.; Elvis, M.; Mcdowell, J. C.; Arnaud, K. A.

    1992-01-01

    An SNR-limited subsample of 14 quasars from the Wilkes and Elvis (1987) sample is presently investigated for low-energy excess above a high-energy power law in the X-ray spectra obtained by the Einstein Imaging Proportional Counter. A significant excess that is 1-6 times as strong as the high-energy component at 0.2 keV is noted in eight of the 14 objects. In the case of 3C273, multiple observations show the excess to be variable.

  3. Soft X-ray search of centre of Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Snyder, W. A.; Henry, R. C.; Charles, P. A.; Culhane, J. L.; Sanford, P. W.; Bleach, R.; Drake, J.

    1975-01-01

    Equipment on the Copernicus satellite has been used to search for evidence of a compact object in the center of the Cygnus Loop supernova remnant. Rocket measurements reported by Rappaport et al. (1973) indicate that a central object exists. However, the study conducted with the aid of the satellite was negative. This negative result could indicate that the X-ray source was simply not in its high-intensity mode at the time of observation, or could arise because the source is at some other location in the Loop.

  4. Discovery of Soft X-Ray Emission from Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    The Chandra X-ray Observatory observed the Jovian system for about 24 hours on 25-26 Nov 1999 with the Advanced CCD Imaging Spectrometer (ACIS), in support of the Galileo flyby of Io, and for about 10 hours on 18 Dec 2000 with the imaging array of the High Resolution Camera (HRC-I), in support of the Cassini flyby of Jupiter. Analysis of these data have revealed soft (0.25--2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays is about an order of magnitude too weak even during flares from the active Sun to account for the observed x-ray flux from the IPT. Charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains both fall by orders of magnitude. On the other hand, we calculate that bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range accounts for roughly one third of the observed x-ray flux from the IPT. Extension of the far ultraviolet (FUV) IPT spectrum likely also contributes.

  5. Observations of the structure and evolution of solar flares with a soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Gibson, E. G.; Landecker, P. B.; Mckenzie, D. L.; Underwood, J. M.

    1975-01-01

    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented.

  6. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  7. Evaluating the quality of images produced by soft X-ray units.

    PubMed

    Bradley, D A; Wong, C S; Ng, K H

    2000-01-01

    For broad-beam soft X-ray sources, assessment of the quality of image produced by such units is made complex by the low penetration capabilities of the radiation. In the present study we have tested the utility of several types of test tool, some of which have been fabricated by us, as part of an effort to evaluate several key image defining parameters. These include the film characteristic, focal-spot size, image resolution and detail detectability. The two sources of X-rays used in present studies were the University of Malaya flash X-ray device (UMFX1) and a more conventional soft X-ray tube (Softex, Tokyo), the latter operating at peak accelerating potentials of 20 kVp. We have established, for thin objects, that both systems produce images of comparable quality and, in particular, objects can be resolved down to better than 45 microm. PMID:11003508

  8. Using Resonant Soft X-rays to Reveal Internal Organic Thin Film Structure

    NASA Astrophysics Data System (ADS)

    Gann, Eliot

    This dissertation details the establishment and expansion of resonant soft X-ray scattering techniques to reveal the internal structure of organic thin films. These films are increasingly important in numerous electronic systems, including organic thin film transistors, organic photovoltaics, and organic light emitting diodes. These devices use the electrical properties of polymers to respectively turn on and off conduction, turn light into electricity, and create light. The performance of each of these systems depends critically on their physical structure but unfortunately, traditional techniques fail to adequately characterize that structure. This dissertation will explore the use of soft X-ray scattering to reveal the mesoscale structure or organic electronic devices. This begins with an overview of the field to make the case for soft X-rays being an appropriate and novel tool. Next, to explain how to collect accurate soft X-ray scattering, the development of a new and unique soft X-ray scattering facility will be presented. Having the tools, the next step is to develop scattering theories and models for understanding and correctly analyzing scattering from these complicated devices. This includes development and comparison of analysis techniques and theory to simulate scattering. This simulation system is then used in the development of a theory to understand the novel phenomenon of anisotropic X-ray scattering from isotropic organic samples. Finally, I will describe the development and first use of a method able to simultaneously measure size scales and chemical structure with depth sensitivity in thin films: Grazing Resonant Soft X-ray Scattering. This work provides valuable understanding and tools to the field of materials characterization, opening up new opportunities for principled design of organic electronics.

  9. The origin of the soft X-ray excess in the Seyfert 2 galaxy NGC 2110

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Mushotzky, R. F.; Serlemitsos, P. J.; Wilson, A. S.; Elvis, M.; Briel, U.

    1995-01-01

    We present and discuss an X-ray image and a medium-resolution X-ray spectrum of the Seyfert 2 galaxy NGC 2110 obtained with the high-resolution imager (HRI) on ROSAT (0.1-2.4 keV) and Goddard's Broad Band X-ray Telescope (BBXRT; 0.3-11 keV), respectively. Spatially resolved soft X-ray emission, which peaks 4 arcsecs to the north of the nucleus and near the position of the highest excitation optical emission line gas is seen in the HRI observation. The extent has a flux of approximately 3 x 10(exp -13) ergs/sq cm/s and accounts for 11% +/- 3% of the total 0.1-2.4 keV flux. To model the BBXRT spectrum, a soft excess component is required which has a flux of approximately 3.5 x 10(exp -13) ergs/sq cm/s and accounts for approximately 14% +/- 6% of the total 0.1-2.4 keV flux. In addition, BBXRT confirms the presence of an approximately 175 eV equivalent width Fe K alpha flourescence line in NGC 2110. Because of the good agreement between their fluxes, we propose that the soft excess in NGC 2110 is due to leakage of the X-ray continuum through a patchy absorber. The temperature of the gas responsible for the soft excess is too high to be accounted for by local shock heating. In order to explain the soft excess and extent as either scattered continuum X-rays or flourescence from gas photoionized by the nuclear source, the hard X-rays must be emitted anisotropically. However, the soft excess and extent can be well modeled as thermal emission from a hot, outflowing wind, which may also be responsible for confirming at least some portion of the optical narrow line-emitting clouds.

  10. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers (version 2)

    SciTech Connect

    Schneider, M B; Holder, J P; James, D L; Bruns, H C; Celeste, J R; Compton, S; Costa, R L; Ellis, A D; Emig, J A; Hargrove, D; Kalantar, D H; MacGowan, B J; Power, G D; Sorce, C; Rekow, V; Widmann, K; Young, B K; Young, P E; Garcia, O F; McKenney, J; Haugh, M; Goldin, F; MacNeil, L P; Cone, K

    2006-07-21

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  11. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers

    SciTech Connect

    Schneider, M; Holder, J; James, D; Bruns, H; Celeste, J; Compton, S; Costa, R; Ellis, A; Emig, J; Hargrove, D; Kalantar, D; MacGowan, B; Power, G; Sorce, C; Rekow, V; Widmann, K; Young, B; Young, P; Garcia, O; McKenney, J; Haugh, M; Goldin, F; MacNeil, L; Cone, K

    2006-05-04

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  12. Soft x-ray imager (SXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi Go; Dotani, Tadayasu; Hiraga, Junko S.; Anabuki, Naohisa; Bamba, Aya; Hatsukade, Isamu; Kohmura, Takayoshi; Mori, Koji; Murakami, Hiroshi; Nakajima, Hiroshi; Ozaki, Masanobu; Uchida, Hiroyuki; Yamauchi, Makoto

    2010-07-01

    We are designing an X-ray CCD camera (SXI) for ASTRO-H, including many new items. We have developed the CCD, CCD-NeXT4, that is a P-channel type CCD. It has a thick depletion layer of 200μm with an imaging area of 30mm square. Since it is back-illuminated, it has a good low energy response and is robust against the impact of micro-meteorites. We will employ 4 chips to cover the area of 60mm square. A mechanical rather than peltier cooler will be employed so that we can cool the CCD to -120°C. We will also introduce an analog ASIC that is placed very close to the CCD. It performs well, having a similar noise level to that assembled by using individual parts used on SUZAKU. We also employ a modulated X-ray source (MXS), that improves the accuracy of the calibration. The SXI will have one of the largest SΩ among various satellites.

  13. The Onset Phase of "Soft" X-ray Transients

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Shaposhnikov, N.; Shrader, C. R.; Rupen, M. P.; Beckmann, V.; Markwardt, C. B.; Smith, D. A.

    2006-01-01

    Transient outbursts of black holes and neutron stars in X-ray binaries with low-mass companions start with a flickering hard power-law flux that contains a low frequency quasi-periodic oscillation (QPO). The frequency of the QPO may reflect the outer boundary of the coronal emission and its inward motion toward the compact object. It has also been proposed that the hard flux is related to the base of a radio emitting outflow or compact jet. We had detailed observations of the beginning of the 2005 outburst of GRO J165.5-40 with RXTE, INTEGRAL, the VLA and ROTSE. We use the X-ray, radio, and optical results in the context of these models to address their applicability to the onset of the outburst and to specify the physical parameters. Decline of the radio flux as both the power-law and disk flux increased constrains the amount of synchrotron self-Compton emission. Values are compared to those of other black hole and neutron star transients. We are glad to acknowledge support by a NASA INTEGRAL Guest Observer Grant and by the UTE project, NRAO, and ROTSE.

  14. STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS

    SciTech Connect

    Kislyakova, K. G.; Lammer, H.; Fossati, L.; Johnstone, C. P.; Holmström, M.; Zaitsev, V. V.

    2015-01-30

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈10{sup 22} erg s{sup –1}, which is 10{sup 6} times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  15. Stelllar wind induced soft X-ray emission from close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Kislyakova, Kristina; Fossati, Luca; Johnstone, Colin P.; Holmström, Mats; Zaitsev, Valery V.; Lammer, Helmut

    2016-04-01

    We estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray radiation is very effective for hot Jupiters. In this mechanism, X-ray photons are produces by charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. This mechanism is know to generate X-ray emission of comets in the Solar system. It has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not effective for the Solar system giants. We present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar Hot Jupiters due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈ 1022 erg s‑1, which is 106 times stronger than the emission from the Jovian aurora. We discuss the possibility to observe the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  16. Imaging of lateral spin valves with soft x-ray microscopy

    SciTech Connect

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

    2009-05-01

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

  17. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  18. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  19. Calibration of a high resolution grating soft x-ray spectrometer

    SciTech Connect

    Magee, E. W.; Dunn, J.; Brown, G. V.; Beiersdorfer, P.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2010-10-15

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 A waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  20. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. PMID:21034013

  1. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Peng, Wen-Xi; Wang, Huan-Yu; Cui, Xing-Zhu; Guo, Dong-Ya

    2015-10-01

    The X-ray spectrometer is one of the satellite payloads on the Chang'E-2 satellite. The soft X-ray detector is one of the devices on the X-ray spectrometer, designed to detect the major rock-forming elements within the 0.5-10 keV range on the lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak 55Fe source. Temperature and time effects are found not to give a large error. The total uncertainty of calibration is estimated to be within 5% after correction. Supported by National Science Foundation of Ministry of Education

  2. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  3. Ultra soft X-ray Microbeam: optical analysis and intensity measurements

    NASA Astrophysics Data System (ADS)

    Emilio, M. Di Paolo; Palladino, L.; Del Grande, F.

    2016-06-01

    In this work, optical analysis and intensity measurements of the Ultra Soft x-ray microbeam (100 eV–1 keV) are presented. X-ray emission at 500 eV are generated from a plasma produced by focusing Nd-YAG laser beam on the Yttrium target. In particular, we will report the study of x-ray intensity and the measurement of focal spot dimension. Moreover, the software/hardware control of sample holder position and the alignment of biological sample to the microbeam will be described.

  4. The Soft X-ray research instrument at the Linac Coherent Light Source

    SciTech Connect

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  5. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  6. The Soft X-ray Research instrument at the Linac Coherent Light Source

    PubMed Central

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-01-01

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights. PMID:25931059

  7. Emission Line Spectra in the Soft X-Ray Region 20-75 (Angstrom)

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Chen, H; Behar, E; Kahn, S M

    2002-06-18

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, we studied emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region. Here we present observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 {angstrom} to illustrate our work.

  8. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    NASA Astrophysics Data System (ADS)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  9. Laser Plasma Soft X-Ray Contact Microscopy of Polymer Composites

    NASA Astrophysics Data System (ADS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1994-08-01

    Microstructures of polymer composites are observed with a good contrast and with a submicron spatial resolution by contact soft X-ray microscopy with a laser plasma as a soft X-ray source. An iron target was irradiated by a YAG laser ( 2ω=532 nm, 0.4 J) at laser power density of 2.5×1012 W/cm2 and the emitted soft X-rays were filtered with a thin aluminum foil. For a 0.1-µ m-thick poly acrylonitrile-butadiene-styrene specimen, poly-butadiene or copolymer of butadiene spheres of about 500 nm diameter, which are selectively stained with osmium, is observed with soft X-rays in the wavelength region between 17 and 20 nm. For a 4-µ m-thick polyvinyl chloride film specimen formed by polymer powder compaction, peripheral areas of holes, grain boundaries, and areas probably degraded by HCl reduction are observed with soft X-rays in the wavelength region mainly around 2 nm.

  10. Soft X-ray synchrotron radiation investigations of actinidematerials systems utilizing X-ray emission spectroscopy and resonantinelastic X-ray scattering

    SciTech Connect

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-03

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies.

  11. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  12. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K. |; Jia, J.J.; Underwood, J.H.

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  13. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  14. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Welgand, M.; Umbach, E.; Bar, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-11

    We present a variable line-space grating spectrometer for soft s-rays that coverst the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite is slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) micrometers squared, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scatters (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken with 10 min.

  15. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  16. Soft x-ray ionization induced fragmentation of glycine

    NASA Astrophysics Data System (ADS)

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-01

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH_2^+ fragment.

  17. Two-chicane compressed harmonic generation of soft x rays

    NASA Astrophysics Data System (ADS)

    Ratner, Daniel; Chao, Alex; Huang, Zhirong

    2011-02-01

    Seeding an electron bunch prior to compression simultaneously shifts the laser modulation to shorter wavelengths while decreasing the required modulation amplitude. The final x-ray wavelength is then tunable by controlling the compression factor with the rf phase. In this paper we describe a two-chicane scheme that allows for large modulation amplitudes, extending the method to photocathode beams with significant uncorrelated energy spreads. The downside of such compressed seeding is the need to maintain bunching across an extended accelerator region. We present analytical estimates and computer simulations to study tolerances for a sample lattice. We also note that transportation of the fine compressed modulation structure is helped by error self-correction in the second chicane, an effect that may be of more general interest.

  18. Characteristics of x-ray emission from optically thin high-Z plasmas in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Ohashi, Hayato; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Tamura, Naoki; Sudo, Shigeru; Koike, Fumihiro; Suzuki, Chihiro

    2015-07-01

    The characteristics of soft x-ray emission from optically thin high-Z plasmas of gold, lead and bismuth were investigated with the large helical device. Compared to optically thicker laser-produced plasmas, significantly different spectral structures were observed due to the difference in opacities and electron temperatures. Peak structures appearing in unresolved transition arrays were identified by calculations using atomic structure codes. The main contributors of discrete line emission in each case were Pd-, Ag-, and Rh-like ion stages. The present calculations point to the overestimation of contributions for 4p-4d transitions based on intensity estimates arising purely from gA distributions that predict strong emission from 4p-4d transitions. Understanding of such spectral emission is not only important for the completion of databases of high-Z highly ion charge states but also the development of promising high brightness sources for biological imaging applications.

  19. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers.

    PubMed

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm(-1) spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm(-1) are required to close the gap in energy-momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10(12) photons s(-1) in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  20. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    PubMed Central

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John

    2016-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  1. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE PAGESBeta

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-02-12

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seedingmore » and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  2. Generation and application of the soft X-ray laser beam based on capillary discharge

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Straus, Jaroslav; Schmidt, Jiri; Prukner, Vaclav; Shukurov, Andrey

    2014-05-01

    In this work we report on the generation and characterization of a focused soft X-ray laser beam with intensity and energy density that exceed the threshold for the ablation of PMMA. We demonstrate a feasibility of direct ablation of holes using a focused soft X-ray laser beam. Ablated craters in PMMA/gold-covered-PMMA samples were obtained by focusing the soft X-ray Ar8+ laser pulses generated by a 46.9 nm tabletop capillary-discharge-pumped driver with a spherical Si/Sc multilayer mirror. It was found that the focused beam is capable by one shot to ablate PMMA, even if the focus is significantly influenced by astigmatism. Analysis of the laser beam footprints by atomic force microscope shows that ablated holes have periodic surface structure (similarly as Laser-Induced Periodic Surface Structure) with period ~2,8 μm and with peak-to-peak depth ~5-10 nm.

  3. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    SciTech Connect

    Kraljic, David; Rummel, Markus; Conlon, Joseph P. E-mail: Markus.Rummel@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP to photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.

  4. Wide field-of-view soft X-ray imaging for solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; Read, A. M.; Sembay, S.; Thomas, N. E.

    2016-04-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  5. Initial Operation of the NSTX Fast Tangential Soft X-Ray Camera

    SciTech Connect

    B.C. Stratton; R. Feder; S. von Goeler; G.F. Renda; J.L. Lowrance; V.J. Mastrocola

    2004-05-11

    Fast, two-dimensional, soft x-ray imaging is a powerful technique for the study of MHD instabilities in tokamak plasmas. We have constructed an ultra-fast frame rate soft x-ray camera for the National Spherical Torus Experiment. It is based on a recently developed 64 x 64 pixel CCD camera capable of capturing 300 frames at up to 500,000 frames per second. A pinhole aperture images the plasma soft x-ray emission (0.2-10 keV) onto a P47 scintillator deposited on a fiber-optic faceplate; the scintillator visible light output is detected and amplified by a demagnifying image intensifier and lens-coupled to the CCD chip. A selection of beryllium foils provides discrimination of low-energy emission. The system is installed on NSTX with a wide-angle tangential view of the plasma. Initial plasma data and an assessment of the system performance are presented.

  6. Continuous high-repetition-rate operation of collisional soft-x-ray lasers with solid targets.

    PubMed

    Weith, A; Larotonda, M A; Wang, Y; Luther, B M; Alessi, D; Marconi, M C; Rocca, J J; Dunn, J

    2006-07-01

    We have generated a laser average output power of 2 microW at a wavelength of 13.9 nm by operating a tabletop laser-pumped Ni-like Ag laser at a 5 Hz repetition rate, using a solid helicoidal target that is continuously rotated and advanced to renew the target surface between shots. More than 2 x 10(4) soft-x-ray laser shots were obtained by using a single target. Similar results were obtained at 13.2 nm in Ni-like Cd with a Cd-coated target. This scheme will allow uninterrupted operation of laser-pumped tabletop collisional soft-x-ray lasers at a repetition rate of 10 Hz for a period of hours, enabling the generation of continuous high average soft-x-ray powers for applications. PMID:16770410

  7. In situ/operando soft x-ray spectroscopy characterization of ion solvation and catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Sheng; Guo, Jinghua

    Many important systems especially in energy-related regime are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the varying applications calls for in-situ/operando characterization tools. We will present the recent development of the in-situ/operando soft X-ray spectroscopic in the studies of catalytic and alkali ion solvation under bias condition, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. Also the different feasible detection approaches can provide surface and bulk sensitivity experimentally from those in-situ cells. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle with examples in Ca, Na, Mg based solutions at ambient pressure/temperature and high temperature (~250°C) gas catalysis will be shown.

  8. Overview of the program on soft x-ray lasers and their applications at Princeton

    SciTech Connect

    Suckewer, S.; Ilcisin, K. . Plasma Physics Lab. Princeton Univ., NJ . Dept. of Mechanical and Aerospace Engineering)

    1991-05-01

    In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab.

  9. The coolest DA white dwarfs detected at soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Kidder, K. M.; Holberg, J. B.; Barstow, M. A.; Tweedy, R. W.; Wesemael, F.

    1992-01-01

    New soft X-ray/EUV photometric observations of the DA white dwarfs KPD 0631 + 1043 = WD 0631 + 107 and PG 1113 + 413 = WD 1113 + 413 are analyzed. Previously reported soft X-ray detections of three other DAs and the failure to detect a fourth DA in deep Exosat observations are investigated. New ground-based spectra are presented for all of the objects, with IUE Ly-alpha spectra for some. These data are used to constrain the effective temperatures and surface gravities. The improved estimates of these parameters are employed to refer a photospheric He abundance for the hotter objects and to elucidate an effective observational low-temperature threshold for the detection of pure hydrogen DA white dwarfs at soft X-ray wavelengths.

  10. Critical Reexamination of Resonant Soft X-Ray Bragg Forbidden Reflections in Magnetite

    SciTech Connect

    Wilkins, S.B.; Di Matteo, S.; Beale, T.A.W.; Joly, Y.; Mazzoli, C.; Hatton, P.D.; Bencok, P.; Yakhou, F.; Brabers, V.A.M.

    2009-05-01

    Magnetite, Fe{sub 3}O{sub 4}, displays a highly complex low-temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have reexamined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2){sub c} reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering.

  11. Examination of Cadence of Solar Soft X-ray Flux on the Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Talaat, E. R.; Yee, J.; Woods, T.; Roble, R. G.; Crowley, G.

    2006-12-01

    The solar soft x-ray flux is crucial to modeling the thermosphere and ionosphere accurately. However, measurements of soft x-ray spectrum (0-10~nm) have been few and far between. As a result, the time variation of the spectrum has been tied to daily indices, such as F10.7 or E10.7. While this is adequate for long term studies such as seasonal, annual, or solar cycle variations, studies that address short-term effects such as geomagnetic disturbances or solar flares require a higher cadence input for a more proper driver of physics. With recent solar soft x-ray and EUV data available from the Solar Extreme ultraviolet Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, a complete spectrum is available, but only once every orbit (~97 minutes). In this paper, we examine the effects of varying the cadence in which high energy solar irradiance is input into the global thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM). Specifically, we compare once a day, once an orbit, and every minute cadence and the resulting ionospheric and thermospheric response. We use the observed solar spectrum from SEE/TIMED and combine the measurements from SEE with the 1-min Geostationary Oribiting Earth Satellite (GOES) Space Environment Monitor (SEM) hard x-ray flux to produce high cadence solar soft x-ray flux.

  12. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions. PMID:12939982

  13. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    SciTech Connect

    Zhou, L.; Callcott, T.A.; Jia, J.J.

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  14. Soft x-ray emission spectra of lithium fluoride excited by synchrotron radiation

    SciTech Connect

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.

    1986-01-01

    A core excited Li atom is perhaps the simplest cation defect that can be introduced into LiF. It frequently binds an electron in an electronic state, whose properties dominate both the soft x-ray absorption and soft x-ray emission properties of LiF. This phenomena was examined using a new, very high efficiency, emission spectrometer. Exciton and valence band peaks were observed which decay with time and are replaced by a metallic Li peak at 54 eV.

  15. High Precision Mechanical Components for Soft X-ray Beamline: Engineering Goal and Testing Results

    SciTech Connect

    Kaznacheyev, K. V.; Karunakaran, Ch.; Sitnikov, A.; Loken, D.; Warwick, T.; Nagy, M.; Hitchcock, A. P.

    2007-01-19

    As the emittance of SR rings approaches the diffraction limit for soft x-rays, one requires not only excellence in design and performance of the optical elements, but also precision and performance of mechanical components, such as mirror manipulators, monochromator scanners and exit slits. We will present simple but efficient solutions for the mechanical systems of this type, commonly encountered in soft x-ray beamlines. These solutions have been implemented and their performance evaluated with test results from the spectromicroscopy beamline at the Canadian Light Source.

  16. High Precision Mechanical Components for Soft X-ray Beamline: Engineering Goal and Testing Results

    NASA Astrophysics Data System (ADS)

    Kaznacheyev, K. V.; Karunakaran, Ch.; Sitnikov, A.; Loken, D.; Warwick, T.; Nagy, M.; Hitchcock, A. P.

    2007-01-01

    As the emittance of SR rings approaches the diffraction limit for soft x-rays, one requires not only excellence in design and performance of the optical elements, but also precision and performance of mechanical components, such as mirror manipulators, monochromator scanners and exit slits. We will present simple but efficient solutions for the mechanical systems of this type, commonly encountered in soft x-ray beamlines. These solutions have been implemented and their performance evaluated with test results from the spectromicroscopy beamline at the Canadian Light Source.

  17. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  18. Soft X-rays, winds, and the cataclysmic variable boundary-layer problem

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Jensen, K. A.

    1985-01-01

    Models are presented for the effects of a stellar wind on the UV and soft X-ray spectra of cataclysmic variables (CVs). It is shown that P Cygni absorption lines observed from many CVs are consistent with the existence of a strong wind, and that such a wind can also account for the soft X-ray upper limits if the wind mass loss rate is about 10 to the -8th solar masses per yr. The implications of such a wind for the CV momentum and energy budget are discussed.

  19. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-03-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle.

  20. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    PubMed Central

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  1. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    DOE PAGESBeta

    Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; et al

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  2. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    SciTech Connect

    Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; Decker, F. J.; Ding, Y.; Eckman, C.; Emma, P.; Fairley, D.; Feng, Y.; Field, C.; Flechsig, U.; Gassner, G.; Hastings, J.; Heimann, P.; Huang, Z.; Kelez, N.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Marcus, G.; Maxwell, T.; Moeller, S.; Morton, D.; Nuhn, H. D.; Rodes, N.; Schlotter, W.; Serkez, S.; Stevens, T.; Turner, J.; Walz, D.; Welch, J.; Wu, J.

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  3. Optimization of reflectivity of periodic and quasiperiodic multilayer films at soft X-ray wavelengths

    NASA Astrophysics Data System (ADS)

    Gu, E.; Marr, G. V.; Player, M. A.

    1990-06-01

    The reflectivity of multilayer films consisting of alternating layers of high and low refractive index is investigated. It is found that the thickness of periods affects the optimized reflectivity, and that a quasi-periodic structure with fixed thickness of periods but changing thicknesses of the layers can form two reflecting peaks at different wavelength positions. The result can be used to increase the bandwidth and to change the shape of reflectivity curves in the soft X-ray region. Since nonabsorbing material does not exist in the soft X-ray region, the thickness of each layer should be optimized separately in order to obtain maximum reflectivity at a single wavelength.

  4. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas

    NASA Astrophysics Data System (ADS)

    Hara, Hiroyuki; Arai, Goki; Kondo, Yoshiki; Dinh, Thanh-Hung; Dunne, Padraig; O’Sullivan, Gerry; Ejima, Takeo; Hatano, Tadashi; Jiang, Weihua; Nishikino, Masaharu; Sasaki, Akira; Sunahara, Atsushi; Higashiguchi, Takeshi

    2016-06-01

    We characterized the spectral structure of the soft X-ray emission and determined the plasma parameters in laser-produced highly charged platinum plasmas. The spectral structure observed originated from Pt21+ to Pt34+ ions, emissions from which overlapped to produce a high output flux in the carbon-window soft X-ray spectral region. Using dual laser pulse irradiation, we observed the maximum output flux, which was 20% larger than that obtained under single-laser irradiation, and the evolution of a strongly absorbed spectral structure, which was attributed to the effects of both opacity and long-scale length of the expanding pre-plasma.

  5. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography.

    PubMed

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm(3) sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  6. Experimental demonstration of a soft x-ray self-seeded free-electron laser.

    PubMed

    Ratner, D; Abela, R; Amann, J; Behrens, C; Bohler, D; Bouchard, G; Bostedt, C; Boyes, M; Chow, K; Cocco, D; Decker, F J; Ding, Y; Eckman, C; Emma, P; Fairley, D; Feng, Y; Field, C; Flechsig, U; Gassner, G; Hastings, J; Heimann, P; Huang, Z; Kelez, N; Krzywinski, J; Loos, H; Lutman, A; Marinelli, A; Marcus, G; Maxwell, T; Montanez, P; Moeller, S; Morton, D; Nuhn, H D; Rodes, N; Schlotter, W; Serkez, S; Stevens, T; Turner, J; Walz, D; Welch, J; Wu, J

    2015-02-01

    The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users. PMID:25699448

  7. High-average-power 100-Hz repetition rate table-top soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Reagan, Brendan A.; Wernsing, Keith; Wang, Yong; Yin, Liang; Wang, Shoujun; Berrill, Mark; Woolston, Mark R.; Curtis, Alden H.; Furch, Federico J. A.; Shlyaptsev, Vyacheslav N.; Luther, Brad M.; Patel, Dinesh; Marconi, Mario C.; Menoni, Carmen S.

    2013-09-01

    The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.

  8. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    SciTech Connect

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.

  9. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE PAGESBeta

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; et al

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  10. A new method to derive electronegativity from resonant inelastic x-ray scattering

    SciTech Connect

    Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M.; Stolte, W. C.; Lindle, D. W.

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  11. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    PubMed Central

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; He, Y.; Shen, Z. X.; Yoshida, Y.; Eisaki, H.; Mou, C. Y.; Chen, C. T.; Huang, D. J.

    2016-01-01

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors. PMID:26794437

  12. Chemical reduction of actinides probed by resonant inelastic X-ray scattering.

    PubMed

    Butorin, Sergei M; Shuh, David K; Kvashnina, Kristina O; Guo, Jinghua; Werme, Lars; Nordgren, Joseph

    2013-12-01

    The study addresses the possibilities of immobilizing the mobile species of actinides in the geosphere using metallic iron. Sorption on corroding iron is well-known, but there have been uncertainties with regard to the possibilities of reducing the actinyl species to sparingly soluble oxides and, thereby, permanently immobilizing them. Resonant inelastic X-ray scattering (RIXS) measurements at the actinide 5d edges on Fe foils exposed to uranium(VI) and neptunium(V) solutions in groundwater unambigiously indicate reduction of actinides to, respectively, uranium(IV) and neptunium(IV) on iron surfaces. The reduction manifests itself in an appearance of distinct specific signatures of uranium(IV) and neptunium(IV) in the RIXS profile of 5f-5f excitations. Such signatures and RIXS intensity/cross-section behavior with varying energy of incident photons can be reproduced by model atomic-multiplet calculations of the RIXS spectra. By normalizing the RIXS signal of corresponding 5f-5f excitations to core-to-core 6p-to-5d characteristic fluorescence transitions of actinides, their reduction rates on Fe samples with different exposure to actinide solutions can be estimated. Observed reduction implies similar processes in the nuclear waste canister thus suggesting reduced probability of nuclear waste release with ground waters from the canister. PMID:24187957

  13. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering.

    PubMed

    Bohinc, R; Žitnik, M; Bučar, K; Kavčič, M; Carniato, S; Journel, L; Guillemin, R; Marchenko, T; Kawerk, E; Simon, M; Cao, W

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ(∗) and π(∗) resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure. PMID:27059572

  14. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  15. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  16. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; He, Y.; Shen, Z. X.; Yoshida, Y.; Eisaki, H.; Mou, C. Y.; Chen, C. T.; Huang, D. J.

    2016-01-01

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.

  17. Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering

    PubMed Central

    Abbamonte, Peter; Graber, Tim; Reed, James P.; Smadici, Serban; Yeh, Chen-Lin; Shukla, Abhay; Rueff, Jean-Pascal; Ku, Wei

    2008-01-01

    The absorption of light by materials proceeds through the formation of excitons, which are states in which an excited electron is bound to the valence hole it vacated. Understanding the structure and dynamics of excitons is important, for example, for developing technologies for light-emitting diodes or solar energy conversion. However, there has never been an experimental means to study the time-dependent structure of excitons directly. Here, we use causality-inverted inelastic x-ray scattering (IXS) to image the charge-transfer exciton in the prototype insulator LiF, with resolutions Δt = 20.67 as (2.067 × 10−17 s) in time and Δx = 0.533 Å (5.33 × 10−11 m) in space. Our results show that the exciton has a modulated internal structure and is coherently delocalized over two unit cells of the LiF crystal (≈8 Å). This structure changes only modestly during the course of its life, which establishes it unambiguously as a Frenkel exciton and thus amenable to a simplified theoretical description. Our results resolve an old controversy about excitons in the alkali halides and demonstrate the utility of IXS for imaging attosecond electron dynamics in condensed matter. PMID:18711146

  18. Signatures of strong correlation effects in resonant inelastic x-ray scattering studies on cuprates

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Lin, Cheng-Ju; Lee, Ting-Kuo

    2016-08-01

    Recently, spin excitations in doped cuprates have been measured using resonant inelastic x-ray scattering. The paramagnon dispersions show the large hardening effect in the electron-doped systems and seemingly doping independence in the hole-doped systems, with the energy scales comparable to that of the antiferromagnetic (AFM) magnons. This anomalous hardening effect and the lack of softening were partially explained by using the strong-coupling t -J model but with a three-site term [Nat. Commun. 5, 3314 (2014), 10.1038/ncomms4314], although the hardening effect is already present even without the latter. By considering the t -t'-t''-J model and using the slave-boson mean-field theory, we obtain, via the spin-spin susceptibility, the spin excitations in qualitative agreement with the experiments. The doping-dependent bandwidth due to the strong correlation physics is the origin of the hardening effect. We also show that dispersions in the AFM regime, different from those in the paramagnetic (PM) regime, hardly vary with dopant density. These excitations are mainly collective in nature instead of particle-hole-like. We further discuss the interplay and different contributions of these two kinds of excitations in the PM phase and show that the dominance of the collective excitation increases with decreasing dopant concentrations.

  19. Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions

    NASA Astrophysics Data System (ADS)

    Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.

    2012-03-01

    Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).

  20. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates.

    PubMed

    Huang, H Y; Jia, C J; Chen, Z Y; Wohlfeld, K; Moritz, B; Devereaux, T P; Wu, W B; Okamoto, J; Lee, W S; Hashimoto, M; He, Y; Shen, Z X; Yoshida, Y; Eisaki, H; Mou, C Y; Chen, C T; Huang, D J

    2016-01-01

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O(8+δ). Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors. PMID:26794437

  1. Collective dynamics of hydrated β-lactoglobulin by inelastic x-ray scattering.

    PubMed

    Yoshida, Koji; Hosokawa, Shinya; Baron, Alfred Q R; Yamaguchi, Toshio

    2010-10-01

    Inelastic x-ray scattering measurements of hydrated β-lactoglobulin (β-lg) were performed to investigate the collective dynamics of hydration water and hydrated protein on a picosecond time scale. Samples with different hydration levels h [=mass of water (g)/mass of protein (g)] of 0 (dry), 0.5, and 1.0 were measured at ambient temperature. The observed dynamical structure factor S(Q,ω)/S(Q) was analyzed by a model composed of a Lorentzian for the central peak and a damped harmonic oscillator (DHO) for the side peak. The dispersion relation between the excitation energy in the DHO model and the momentum transfer Q was obtained for the hydrated β-lg at both hydration levels, but no DHO excitation was found for the dry β-lg. The high-frequency sound velocity was similar to that previously observed in pure water. The ratio of the high-frequency sound velocity of hydrated β-lg to the adiabatic one of hydrated lysozyme (h=0.41) was estimated as ∼1.6 for h=0.5. The value is significantly smaller than that (∼2) of pure water that has the tetrahedral network structure. The present finding thus suggests that the tetrahedral network structure of water around the β-lg is partially disrupted by the perturbation from protein surface. These results are consistent with those reported from Brillouin neutron spectroscopy and molecular dynamics simulation studies of hydrated ribonuclease A. PMID:20942540

  2. Wide-Field MAXI - Wide-Field Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki

    WF-MAXI is a mission to detect and localize X-ray transients including GRBs and XRFs, X-ray binaries, and hopefully tidal disruption events and supernova shockbreakouts. We are designing WF-MAXI to be ready for the initial operational phase of the next generation GW telescopes: Adv-LIGO, VIRGO and KAGRA, which are expected to be operational in 2-4 years. It will be sensitive to soft extended emission of short GRBs. It will also succeed the current MAXI mission, which is providing alerts for outbursts of X-ray sources to the community. We chose to use flight-proven or qualified technologies developed for MAXI, ASTRO-H, and TSUBAME for a fast development of the mission. The main instrument is Soft X-ray Large-sky Cameras (SLC), pairs of criss-cross coded aperture cameras using CCD as one-dimensional fast-readout detectors covering 20% of the sky in the 0.7-12 keV band. The Hard X-ray Monitor share the same field as SLC in the hard X-ray band. We are proposing this mission for the ISS/JEM AO in this year aiming to start operations in 2018.

  3. Nanostructured diffractive optical devices for soft X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Hambach, D.; Peuker, M.; Schneider, G.

    2001-07-01

    The new transmission X-ray microscope (TXM) installed at the BESSY II electron storage ring uses an off-axis transmission zone plate (OTZ) as diffractive and focusing element of the condenser-monochromator setup. A high resolution micro-zone plate (MZP) forms a magnified image on a CCD-detector. Both, the OTZ with an active area of up to 24 mm2 and the MZP with zone widths as small as 25 nm are generated by a process including electron beam lithography (EBL), dry etching and subsequent electroplating of nickel on top of silicon membrane substrates with about 100- 150 nm thickness. The combination of a larger zone width and the usage of nickel zone structures allows to increase the diffraction efficiency of the condenser element at least by a factor of 3 compared to the earlier used KZP7 condenser zone plate in the TXM at BESSY I. Groove diffraction efficiencies of 21.6% and 14.7% were measured for MZP objectives with 40 and 25 nm outermost zone width, respectively.

  4. The ISM From the Soft X-ray Background Perspective

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2003-01-01

    In the past few years progress in understanding the local and Galactic ISM in terms of the diffuse X-ray background has been as much about what hasn't been seen as it has been about detections. High resolution spectra of the local SXRB have been observed, but are inconsistent with current thermal emission models. An excess over the extrapolation of the high-energy (most clearly visible at E greater than 1.5 keV) extragalactic power law down to 3/4 keV has been observed but only at the level consistent with cosmological models, implying the absence of at least a bright hot Galactic halo. A very recent FUSE result indicates that O VI emission from the Local Hot Bubble is insignificant, if it exists at all, a result which is also inconsistent with current thermal emission models. A short review of the current status of our (well, at least my) understanding of the Galactic SXRB and ISM is presented here.

  5. A study of X-ray emission from galactic and extragalactic sources with emphasis on soft and ultra-soft wavelengths

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Lampton, M.; Cruddace, R. G.; Paresce, F.

    1974-01-01

    A Black Brant VC rocket was used to scan the Coma and Virgo clusters in order to measure structure in the X-ray sources. The rocket also made measurements of soft X-ray spectra, soft X-ray background flux during a 50 deg scan of the sky, soft X-rays from De Voucoulers 50, set limits to the energy dependence of soft X-ray background spectra, and the flux of solar 584 A radiation resonantly scattered by interstellar He flowing through the solar system.

  6. First measurement of the ASTRO-H soft x-ray telescope performance

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Serlemitsos, Peter J.; Soong, Yang; Hahne, Devin J.

    2012-09-01

    ASTRO-H is a Japanese X-ray astrophysics satellite under the development led by Japan and US. It will have two Soft X-ray Telescopes (SXTs), among other instruments, that are being developed by NASA's Goddard Space Flight Center. One is for an X-ray micro-calorimeter instrument and the other for an X-ray CCD camera, both covering the X-ray energy band below 15 keV. The SXT Engineering Model (EM) quadrant was successfully completed and has shown big improvements in the X-ray performance from Suzaku owing to number of changes made. The EM was tested at the Goddard 100-m X-ray beamline (diverging beam) and the ISAS/JAXA beamline (pencil beam scan). The angular resolution was found to be 1.1 arcmin at Goddard, while 1.27 arcmin at ISAS, and the effective area was 157 and 122 cm2 at 1 and 6 keV, respectively. The discrepancy in the angular resolution can be explained by the difference of the measurement method, i.e. the diverging beam vs. the pencil beam scan. The development of the first Flight Model (FM) is underway. The first three quadrants are completed so far and show about 1 arcmin (HPD) angular resolution. We expect that the first FM SXT will have about 1 arcmin resolution, which will be completed in September, 2012.

  7. Development of the ASTRO-H Soft X-ray Telescope (SXT): Engineering Model Performance

    NASA Technical Reports Server (NTRS)

    Okajima, Takashi; Serlemitsos, P. J.; Soong, Y.

    2011-01-01

    The X-ray astronomy satellite ASTRO-H, being developed under the collaboration among JAXA, NASA's GSFC and ESA, will have two Soft X-ray Telescopes (SXTs), among other instuments onboard, with a sensitive energy band below 12 keV. One is for an X-ray micorocalorimeter detector and the other for a X-ray CCD detector. The SXT uses a conically approximated Wolter I grazing incidence optic implemented by thin aluminum foil substrates with thickness of 0.152, 0.229, and 0.305 mm. It is similar to the Suzaku XRT, but with larger diameter (45 cm) and longer focal length (5.6 m). Goal of the angular resolution and effective area are 1 arcmin and 390 cm$A2$ at 6 keV, respectively. We made serveral improvements from Suzaku to ASTRO-H, such as thicker substrates, more forming mandrels, thinner epoxy layer for replication, stiffer housings, precise alignment bars, etc. With all these changes, we have fabricated the engineering test unit of the SXT. In this paper, we will discuss all the changes made, their effects, and report X-ray performance of the SXT test unit. An angular resolution of the test unit was measured at new Goddard X-ray calibration facility (100 m X-ray beamline) and was found to be 1.1 arcmin. We will also discuss further improvements toward the flight unit to be delivered to JAXA in 2012.

  8. Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Kriss, Gerard A.

    1987-01-01

    Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.

  9. The photoelectric effect from CsI by polarized soft X-rays

    NASA Technical Reports Server (NTRS)

    Shaw, Ping S.; Church, Eric D.; Hanany, Shaul; Liu, Yee; Fleischman, Judith; Kaaret, Philip; Novick, Robert; Manzo, Giuseppe

    1991-01-01

    Studies of the polarization dependence of the photoelectric effect produced by soft X-rays from CsI indicate that the geometrical effects in these experiments can often mimic the polarization signature. This paper presents a detailed calculation of these geometrical effects that are produced when the X-ray beam is not precisely aligned on a rotatable plane photocathode. The experimentally observed geometrical effects were used to precisely determine the realignment of the incident beam of polarized X-rays on a rotatable photocathode. The results allow determinations of the true polarization dependence of the photoemission from CsI. It is shown that the photoelectric effect in CsI depends on the polarization state of the X-rays.

  10. Writable graphene: Breaking sp2 bonds with soft X-rays

    SciTech Connect

    Zhou, S.; Girit, C.; Scholl, A.; Jozwiak, C.; Siegel, D.; Yu, P.; Robinson, J.; Wang, F.; Zettl, A.; Lanzara, A.

    2010-06-09

    We study the stability of various kinds of graphene samples under soft x-ray irradiation. Our results show that in single-layer exfoliated graphene (a closer analog to two-dimensional material), the in-plane carbon-carbon bonds are unstable under x-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of x-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using x-ray to pattern graphene nanostructures in exfoliated graphene.

  11. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    SciTech Connect

    Schmitt, J.H.M.M.; Snowden, S.L. Wisconsin Univ., Madison )

    1990-09-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. 41 refs.

  12. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  13. A model for the distribution of material generating the soft X-ray background

    SciTech Connect

    Snowden, S.L.; Cox, D.P.; Mccammon, D.; Sanders, W.T. )

    1990-05-01

    The observational evidence relating to the soft X-ray diffuse background is discussed, and a simple model for its source and spatial structure is presented. In this simple model with one free parameter, the observed 1/4 keV X-ray intensity originates as thermal emission from a uniform hot plasma filling a cavity in the neutral material of the Galactic disk which contains the sun. Variations in the observed X-ray intensity are due to variations in the extent of the emission volume and therefore the emission measure of the plasma. The model reproduces the observed negative correlation between X-ray intensity and H I column density and predicts reasonable values for interstellar medium parameters. 64 refs.

  14. A model for the distribution of material generating the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Cox, D. P.; Mccammon, D.; Sanders, W. T.

    1990-01-01

    The observational evidence relating to the soft X-ray diffuse background is discussed, and a simple model for its source and spatial structure is presented. In this simple model with one free parameter, the observed 1/4 keV X-ray intensity originates as thermal emission from a uniform hot plasma filling a cavity in the neutral material of the Galactic disk which contains the sun. Variations in the observed X-ray intensity are due to variations in the extent of the emission volume and therefore the emission measure of the plasma. The model reproduces the observed negative correlation between X-ray intensity and H I column density and predicts reasonable values for interstellar medium parameters.

  15. Single-shot calibration of soft x-ray mirrors using a sinusoidal transmission grating.

    PubMed

    Shpilman, Z; Ehrlich, Y; Maman, S; Levy, I; Shussman, T; Oren, G; Zakosky Nueberger, I; Hurvitz, G

    2014-11-01

    Calibration of soft x-ray diagnostics is a challenge due to the lack of laboratory-size calibrated sources. An in situ calibration method for newly developed x-ray mirrors, is presented. The x-ray source is produced by laser-matter interaction, and twin transmission gratings which create two identical dispersion lines. The gratings have a sinusoidal transmission function, which produces a highly precise high-orders free spectrum. An x-ray mirror interacts with one of the dispersion lines, and the mirror efficiency curve as a function of wavelength is extracted. Mirror efficiency shows good agreement with the literature, and evidence of water layer may justify the need of in situ calibration. PMID:25430374

  16. Single-shot calibration of soft x-ray mirrors using a sinusoidal transmission grating

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Ehrlich, Y.; Maman, S.; Levy, I.; Shussman, T.; Oren, G.; Zakosky Nueberger, I.; Hurvitz, G.

    2014-11-01

    Calibration of soft x-ray diagnostics is a challenge due to the lack of laboratory-size calibrated sources. An in situ calibration method for newly developed x-ray mirrors, is presented. The x-ray source is produced by laser-matter interaction, and twin transmission gratings which create two identical dispersion lines. The gratings have a sinusoidal transmission function, which produces a highly precise high-orders free spectrum. An x-ray mirror interacts with one of the dispersion lines, and the mirror efficiency curve as a function of wavelength is extracted. Mirror efficiency shows good agreement with the literature, and evidence of water layer may justify the need of in situ calibration.

  17. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    PubMed Central

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S.; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  18. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  19. Observation of Actin Filaments in Leydig Cells with a Contact-type Soft X-ray Microscope with Laser Plasma X-ray Source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Kishimoto, Maki; Nishikino, Masaharu; Kinjo, Yasuhito; Shinohara, Kunio

    Actin filaments in Leydig cells from mouse testes have been observed with a contact-type soft x-ray microscope with laser plasma x-ray source. The Leydig cells were fixed with paraformaldehyde, stained with Phalloidin, and observed with a confocal laser microscope prior to the observation with x-ray microscope. Obtained images by both of the confocal laser microscopy and the x-ray microscopy were directly compared and revealed that not only position of actin filaments but also the shapes can be identified each other. The actin filaments in the x-ray images were clearly recognized and their structures were obtained in more detail compared to those in the confocal laser microscope images.

  20. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    SciTech Connect

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-07

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  1. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-01

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  2. A Soft X-Ray Transient in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Garcia, Michael R.; McClintock, Jeffrey E.; Primini, Frank A.; Murray, Stephen S.

    2006-01-01

    We have examined a probable soft X-ray transient source in the M31 bulge at R.A.=0h42m41.814s+/-0.08", decl.=41deg16'35.86"+/-0.07". On the three occasions we observed the source, its spectrum was soft (kTin~1 keV). The brightest detection of the source was on 2004 July 17, with a 0.3-7 keV luminosity of ~5×1037 ergs s-1. The only previous detection of the source was in 1979 by the Einstein observatory. The multiple detections over 25 years suggest that the duty cycle of the source is in the range 0.02-0.06. Coordinated HST ACS imaging before, during, and after the outburst revealed no variable optical source within the position errors of the X-ray source. The optical data place a firm upper limit on the brightness of the counterpart of the X-ray outburst of B>24.7, suggesting that the binary has a period <~5.2 days. The X-ray spectrum and lack of bright stars at the source location indicate that the source was a soft transient event occurring in a low-mass X-ray binary, making this source a good black hole candidate in M31.

  3. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  4. Soft X-ray flare spectra. [existence of high temperature plasmas in solar flares

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Meekins, J. F.

    1973-01-01

    Large solar flares produce intense soft X-ray emission, indicating the existence of high temperature plasmas that coexist in time with the plasmas responsible for the normally observed brightenings in H-alpha. The time behavior of the X-ray flux, as revealed, for example, by ion chamber detectors on the series of Solrad monitoring satellites, appears to roughly mimic the intensity-time behavior of the H-alpha flare, insofar as start times, times of maximum flux, and approximate decay times are concerned. In recent years, soft X-ray spectra of both active regions and solar flares have been obtained by instruments flown on spacecraft such as the Orbiting Solar Observatory (OSO) series. The disbursing elements used were Bragg crystals, and in the 8 Angstrom region the resolution is typically approximately 1200. This paper discusses the observed characteristics of X-ray flare spectra and spectroscopic diagnostics for determining electron temperatures, electron densities, and departures from ionization equilibrium within the soft X-ray emitting plasma.

  5. Simulation of Soft X-Ray Emission Lines from the Missing Baryons

    NASA Astrophysics Data System (ADS)

    Fang, Taotao; Croft, Rupert A. C.; Sanders, Wilton T.; Houck, John; Davé, Romeel; Katz, Neal; Weinberg, David H.; Hernquist, Lars

    2005-04-01

    We study the soft X-ray emission (0.1-1 keV) from the warm-hot intergalactic medium (WHIM) in a hydrodynamic simulation of a cold dark matter universe. Our main goal is to investigate how such emission can be explored with a combination of imaging and spectroscopy and to motivate future X-ray missions. We first present high-resolution images of the X-ray emission in several energy bands in which emission from different ion species dominates. We pick three different areas to study the high-resolution spectra of X-rays from the WHIM: (1) a galaxy group, (2) a filament, and (3) an underluminous region. By taking into account the background X-ray emission from AGNs and foreground emission from the Galaxy, we compute composite X-ray spectra of the selected regions. We briefly investigate angular clustering of the soft X-ray emission, finding a strong signal. Most interestingly, the combination of high spectral resolution and angular information allows us to map the emission from the WHIM in three dimensions. We cross-correlate the positions of galaxies in the simulation with this redshift map of emission and detect the presence of six different ion species (Ne IX, Fe XVII, O VII, O VIII, N VII, and C VI) in the large-scale structure traced by the galaxies. Finally, we show how such emission can be detected and studied with future X-ray satellites, with particular attention to a proposed mission, the Missing Baryon Explorer (MBE). We present simulated observations of the WHIM gas with MBE.

  6. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  7. Phase interference and sub-femtosecond time dynamics of resonant inelastic X-ray scattering from Mott insulators

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; Huang, Shih-Wen; Xia, Yuqi; Hasan, M. Zahid; Mathy, Charles; Eisaki, Hiroshi; Hussain, Zahid; Chuang, Yi-De

    2014-03-01

    Resonant inelastic X-ray scattering (RIXS) is a powerful technique for observing the energy states of many-body quantum materials. The core hole resonance states that make RIXS possible are strongly correlated, and undergo complex time evolution that shapes scattering spectra. However, current inelastic scattering measurements cannot be converted to a time resolved picture, because techniques that determine relative phase information from elastic scattering have not been adapted to the greater complexity of inelastic spectra. We will show that inelastic scattering phases can be identified from quantum interference in sharply resolved (dE < 35meV) M-edge RIXS spectra of Mott insulators (e.g. SrCuO2 and NiO), and provide new information for identifying excitation symmetries and many-body time dynamics.

  8. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Walton, Dominic J.; Fabian, Andrew; Roberts, Timothy P.; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-12-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad lines), studying the evolution of the residuals with underlying spectral shape allows for an important, indirect test for their origin. The ULX NGC 1313 X-1 provides the best opportunity to perform such a test due to the dynamic range in spectral hardness provided by archival observations. We show through highly simplified spectral modelling that the strength of the features (in either absorption or emission) appears to anticorrelate with spectral hardness, which would rule out an origin via reflection of a primary continuum and instead supports a picture of atomic transitions in a wind or nearby material associated with such an outflow.

  9. Performance of the ASTRO-H Soft X-ray Telescope (SXT-1)

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Serlemitsos, P. J.; Soong, Y.

    2013-04-01

    The X-ray astronomy satellite, ASTRO-H, being developed under the collaboration among JAXA, NASA's GSFC and ESA, will have two Soft X-ray Telescopes (SXTs), among other instruments onboard, with a sensitive energy band up to 15 keV. One is for an X-ray micro-calorimeter detector and the other for an X-ray CCD detector. The SXT uses a conically approximated Wolter I grazing incidence optic implemented by thin aluminum foil substrates with thickness of 0.152, 0.229, and 0.305 mm. X-ray reflecting surface is a gold thin layer (2000A) transferred from a smooth glass mandrel to the substrate by a replication method using an epoxy buffer layer (12 um). It is similar to the Suzaku X-ray telescope, but with larger diameter (45 cm) and longer focal length (5.6 m). Recently we have completed the first flight SXT (SXT-1). X-ray measurments with a diverging beam at the Goddard 100-m beamline found an angular resolution to be 1.13 arcmin (HPD) at 4.5 keV. Since we also found that this performance has radial dependence, the angular resolution will be different for a parallel beam, i.e. in orbit. It will be measured by the full performance characterization at ISAS/JAXA, Japan, later this year. SXT-1 has successfully gone through environmental testing (vibration and thermal) and the performance ramains same. In this paper, we will report X-ray test results obtained at the Goddard X-ray beamline.

  10. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  11. Efficient alignment scheme for zone-plates-based transmission soft X-ray microscope

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Shin, Hyun-Joon; Hong, Chung Ki

    2010-12-01

    Alignment and operation of a zone-plate (ZP)-based transmission soft X-ray microscope (TXM) is difficult and time consuming, especially when the TXM has no dedicated X-ray source. We introduce here an efficient TXM alignment scheme. The TXM employed is a simple in-situ-experiment-capable setup. It includes ultrahigh-vacuum (UHV)-compatible conflat flanges and is mountable in tandem with any soft X-ray synchrotron radiation beamlines. Obtaining zeroth- and first-order diffracted (condenser-zone-plate [CZP]-focused) beams simultaneously by means of the objective zone plate (OZP) is the most essential step in the alignment scheme. We were able to acquire, in one hour at a radiation wavelength of 2.49 nm, an image of 50 nm spatial resolution.

  12. X-pinch soft x-ray source dynamics at a subnanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Artyomov, A. P.; Fedunin, A. V.; Chaikovsky, S. A.; Ratakhin, N. A.

    2015-11-01

    The paper reports on an experimental study of the X-pinch soft x-ray source dynamics at a subnanosecond time resolution with the use of an x-ray imaging technique based on an AXIS-NX streak camera. The study was performed on a compact generator with a current amplitude of 300 kA to a short-circuit load and current rise time of 180 ns. It is shown that in the spectral range 1-1.55 keV, the X-pinch soft x-ray source in whole represents a set of sources which can be radially offset by ∼ 10 microns about the X-pinch axis. Each of the sources generates a pulse of duration 0.2-0.7 ns. The interval between the formation of the sources and hence between their radiation pulses is 0.5 ns and longer.

  13. Soft X-Ray Imaging of spin dynamics at high spatial and temporalresolution

    SciTech Connect

    Mesler, Brooke L.; Fischer, Peter; Chao, Weilun; Anderson, Erik H.

    2007-06-01

    Soft X-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15nm. At XM-1, the full-field soft X-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70ps which is set by the width of the X-ray pulses from the synchrotron. Results obtained with a 2 {micro}m x 4 {micro}m x 45nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nsec after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed.

  14. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  15. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A. ); Mitchell, G.E.; Dekoven, B.M. ); Yeh, A.T.; Gland, J.L. ); Moodenbaugh, A.R. )

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  16. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A.; Mitchell, G.E.; Dekoven, B.M.; Yeh, A.T.; Gland, J.L.; Moodenbaugh, A.R.

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  17. Magnetogram and soft X-ray comparisons of XBP and ER

    NASA Technical Reports Server (NTRS)

    Golub, Leon; Harvey, Karen L.; Webb, David F.

    1986-01-01

    The potential importance of the smallest emerging flux regions on the sun was discussed in numerous publications. The association between the objects seen in ground-based data, such as high resolution magnetrons or H alpha and soft X-ray data has produced results which are often contradictory. In the hope of resolving the present impasse, as much simultaneous soft X-ray and magnetogram data as possible were assembled in order to clarify the situation. It was found that separation of magnetic features into chance encounters and emerging flux makes some difference in overlapp with X-ray bright points (XBPs), although the effect is not overwhelming. The difference in solar cycle dependence between XBP and ephemeral regions is not explainable in terms of the results.

  18. Spatial and spectral features of soft diffuse X ray background seen by the Einstein observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Harnden, F. R.; Rosner, R., Jr.; Sciortino, S.; Vaiana, G. S.

    1989-01-01

    A survey of the diffuse soft X-ray background as seen directly by the Einstein Observatory Imaging Proportional Counter (IPC) is presented. A source free region of the detector 1 by 1 degree field is used. The background in the 0.16 to 3.5 keV spectral region is viewed. The data covers roughly 5 percent of the sky, with some bias in coverage towards the galactic plane. The moderate energy resolution of the IPC enables the characterization and the production of maps of the background as a function of energy within the Einstein passband. The results are compared with previous observations of the diffuse X-ray background. The implications for galactic structure and for the soft component of the extragalactic X-ray background are discussed.

  19. Resolving the origin of the diffuse soft X-ray background

    SciTech Connect

    Smith, Randall K.; Foster, Adam R.; Edgar, Richard J.; Brickhouse, Nancy S.

    2014-05-20

    The ubiquitous diffuse soft (1/4 keV) X-ray background was one of the earliest discoveries of X-ray astronomy. At least some of the emission may arise from charge exchange between solar wind ions and neutral atoms in the heliosphere, but no detailed models have been fit to the available data. Here, we report on a new model for charge exchange in the solar wind, which, when combined with a diffuse hot plasma component, filling the Local Cavity provides a good fit to the only available high-resolution soft X-ray and extreme ultraviolet spectra using plausible parameters for the solar wind. The implied hot plasma component is in pressure equilibrium with the local cloud that surrounds the solar system, creating for the first time a self-consistent picture of the local interstellar medium.

  20. Development of ellipsoidal focusing mirror for soft x-ray and extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Mimura, Hidekazu; Takei, Yoshinori; Saito, Takahiro; Kume, Takehiro; Motoyama, Hiroto; Egawa, Satoru; Takeo, Yoko; Higashi, Takahiro

    2015-08-01

    Mirrors are key devices for creating various systems in optics. Focusing X-ray and extreme ultraviolet (EUV) light requires mirror surfaces with an extremely high accuracy. The figure of an ellipsoidal mirror is obtained by rotating an elliptical profile, and using such a mirror, soft X-ray and EUV light can be focused to dimensions on the order of nanometers without chromatic aberration. Although the theoretical performance of ellipsoidal mirrors is extremely high, the fabrication of an ideal ellipsoidal mirror remains problematic. Based on this background, we have been working to develop a fabrication system for ellipsoidal mirrors. In this proceeding, we briefly introduce the fabrication process and the soft X-ray focusing performance of the ellipsoidal mirror fabricated using the proposed process.

  1. Determination of half-dose depth in skin for soft x-rays

    SciTech Connect

    Harley, N.H.; Kolber, A.B.; Altman, S.M.; Gladstein, A.H.; Buchanan, S.; Marx, J.; Grisewood, E.; Kopf, A.

    1982-09-01

    Unlike superficial x-rays, the soft x-rays normally used in dermatologic practice spare unaffected underlying organs during treatment of cutaneous malignancies. However, since the dose with depth from soft x-rays varies markedly, it is important to know this relationship for optimal therapeutic results. The peak kilovoltage, and thus the energy of the beam, is generally selected so that the dose to the base of the lesion is one-half the surface dose. An absorbed dose of 3,400 rads to the surface and a dose of about one-half this amount to the base of most malignant lesions is one standard protocol for optimal therapeutic results. An accurate value of half-depth dose in skin is therefore necessary and is readily obtained from ordinary half-value layer measurements using the technic described.

  2. Electron-density measurements in hohlraums using soft-x-ray deflectometry

    SciTech Connect

    Decker, C.D.; London, R.A.; Harte, J.A.; Powers, L.V.; Trebes, J.E.

    1998-05-01

    This paper presents design calculations for experiments that measure electron densities of laser heated hohlraums with soft-x-ray moir{acute e} deflectometry. Hydrodynamical simulations of the hohlraums are analyzed to obtain deflection angles of the probing beam and x-ray emission from the hohlraum. The deflection angles and resulting moir{acute e} fringe shifts and fringe contrast are predicted to be sufficient to infer electron-density gradients from measurements. In addition, the self-emission is found to be much lower than that of the probing laser beam, giving a good signal-to-noise ratio. In conclusion, moir{acute e} deflectometry with soft-x-ray lasers has the potential to give valuable information about the electron density in laser driven hohlraums. {copyright} {ital 1998} {ital The American Physical Society}

  3. Detection of soft X-rays with NEA III-V photocathodes. [Negative Electron Affinity X-ray detector for astronomy

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Kellogg, E.; Murray, S.; Enck, R., Jr.

    1978-01-01

    A description is presented of the results of tests on an X-ray photomultiplier containing a negative electron affinity (NEA) photocathode. This device makes it possible to investigate the response of the NEA photocathode to X-rays of various energies. The obtained data provide a basis for the determination of the photoelectron yield and energy resolution of the considered photocathode as a function of energy in the range from 0.8 to 3 keV. The investigation demonstrates the feasibility of using an NEA III-V photocathode for the detection of soft X-rays.

  4. Inelastic X-ray scattering studies of the short-time collective vibrational motions in hydrated lysozyme powders and their possible relation to enzymatic function.

    PubMed

    Wang, Zhe; Bertrand, Christopher E; Chiang, Wei-Shan; Fratini, Emiliano; Baglioni, Piero; Alatas, Ahmet; Alp, E Ercan; Chen, Sow-Hsin

    2013-01-31

    High-resolution inelastic X-ray scattering was used to investigate the collective vibrational excitations in hydrated lysozyme powders as a function of hydration level and temperature. It is found that the samples with strong enzymatic function are "soft", in the sense that they exhibit low frequency and large amplitude intraprotein collective vibrational motions on certain length scales. This is not the case for samples with weak or no enzymatic activity. Thus, we identify a possible correlation between the short-time intraprotein collective vibrational motions and the establishment of enzymatic function in hydrated lysozyme powders, and bring new insight to notions of protein "conformational flexibility" and "softness" in terms of these motions. PMID:23301848

  5. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  6. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, O.; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Baer, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-15

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30x3000) {mu}m{sup 2}, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  7. The detection of soft X-rays with charged coupled detectors

    NASA Technical Reports Server (NTRS)

    Burstein, P.; Davis, John M.

    1989-01-01

    The characteristics of an ideal soft X-ray imaging detector are enumerated. Of recent technical developments the CCD or charge coupled device goes furthest to meeting these requirements. Several properties of CCDs are described with reference to experimental work and their application to practical instruments is reviewed.

  8. A rotating tomographic imager for solar extreme-ultraviolet/soft X-ray emission

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Thompson, W. T.

    1992-04-01

    A concept is presented for a high-resolution EUV/soft-X-ray imager that has much in common with the medical imaging procedure of tomography. The resulting instrument is compatible with a simpler, less costly spin-axis-stabilized spacecraft. To demonstrate the fidelity of the reconstruction procedure, the observation and reconstruction is simulated to compare the results with the original image.

  9. A rotating tomographic imager for solar extreme-ultraviolet/soft X-ray emission

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Thompson, W. T.

    1992-01-01

    A concept is presented for a high-resolution EUV/soft-X-ray imager that has much in common with the medical imaging procedure of tomography. The resulting instrument is compatible with a simpler, less costly spin-axis-stabilized spacecraft. To demonstrate the fidelity of the reconstruction procedure, the observation and reconstruction is simulated to compare the results with the original image.

  10. Utilizing ablation of solids to characterize a focused soft X-ray laser beam

    NASA Astrophysics Data System (ADS)

    Chalupský, J.; Juha, L.; Kuba, J.; Hájková, V.; Cihelka, J.; Homer, P.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.; Krzywinsky, J.; Sobierajski, R.; Wabnitz, H.; Feldhaus, J.; Tiedtke, K.; the, And

    2007-05-01

    An advanced time integrated method has been developed for soft X-ray pulsed laser beam characterization. A technique based on poly (methyl methacrylate) - PMMA laser induced ablation has been used for beam investigations of soft X-ray laser sources like FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL and/or TTF2 FEL) and plasma-based Ne-like Zn laser performed at PALS (Prague Asterix Laser System). For the interaction experiments reported here, the FLASH system provided ultra-short pulses (~10-fs) of 21.7-nm radiation. The PMMA ablation was also induced by plasma-based Ne-like Zn soft X-ray laser pumped by NIR beams at the PALS facility. This quasi-steady-state (QSS) soft X-ray laser provides 100-ps pulses of 21.2-nm radiation, i.e. at a wavelength very close to that of FLASH but with about 5,000 times longer pulses. In both cases, the PMMA samples were irradiated by a single shot with a focused beam under normal incidence conditions. Characteristics of ablated craters obtained with AFM (Atomic Force Microscope) and Nomarski microscopes were utilized for profile reconstruction and diameter determination of the focused laser beams ablating the PMMA surface.

  11. Gain dynamics measurement in injection-seeded soft x-ray laser plasma amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Wang, S.; Li, L.; Oliva, E.; Thuy Le, T. T.; Ros, D.; Berrill, M.; Dunn, J.; Zeitoun, Ph.; Yin, L.; Luther, B.; Rocca, J. J.

    2013-10-01

    Herein we report the first measurement of the gain dynamics in a soft x-ray plasma amplifier seeded by high harmonic pulses. A sequence of two time-delayed spatially-overlapping high harmonic pulses was injected into a λ = 18.9 nm Ni-like Mo plasma amplifier to measure the regeneration of the population inversion that follows the gain depletion caused by the amplification of the first seed pulse. Collisional excitation is observed to re-establish population inversion depleted during the amplification of the seed pulse in about ~1.75 ps. The measured gain-recovery time is compared to model simulations to gain insight on the population inversion mechanisms that create the transient gain in these amplifiers. This result supports the concept of a soft x-ray laser amplification scheme based on the continuous extraction of energy from a soft x-ray plasma-based amplifier by an stretched seed pulse has the potential to generate ultra-intense fully phase-coherent soft x-ray laser pulses. Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  12. Soft x-ray laser gain measurements in a recombining plasma column

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Milchberg, H.; Keane, C.; Voorhees, D.

    1985-03-01

    An enhancement of approx. 100 of stimulated emission over spontaneous emission of the CVI 182 A line (one-pass gain approx. = 6.5) was measured in a recombining, magnetically confined plasma column by two independent techniques using intensity calibrated XUV monochromators. Additional confirmation that the enhancement was due to stimulated emission has been obtained with a soft x-ray mirror.

  13. Soft-x-ray projection lithography experiments using Schwarzschild imaging optics

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Brown, L.A. ); Sweatt, W.C. ); Bjorkholm, J.E.; Freeman, R.R.; Himel, M.D.; MacDowell, A.A.; Tennant, D.M.; Wood II, O.R. ); Bokor, J.; Jewell, T.E.; Mansfield, W.M.; Waskiewicz, W.K.; White, D.L.; Windt, D.L. )

    1993-12-01

    Soft-x-ray projection imaging is demonstrated by the use of 14-nm radiation from a laser plasma source and a single-surface multilayer-coated ellipsoidal condenser. Aberrations in the condenser and the Schwarzschild imaging objective are characterized and correlated with imaging performance. A new Schwarzschild housing, designed for improved alignment stability, is described.

  14. Generation of intense coherent soft x-ray with electron microbunches induced and frozen by lasers

    SciTech Connect

    Yu. L.H.

    1983-01-01

    We describe a new improved version of Transverse Optical Klystron Harmonic Generator that uses three lasers to replace the undulators in the modulator and radiator and freeze the electron microbunching. We show that intense soft x-rays can be generated.

  15. A soft x-ray undulator for the U5 beamline at NSLS

    SciTech Connect

    Viccaro, P.J.; Shenoy, G.K.; Kim, S.H.; Bader, S.D.

    1988-10-01

    The magnetic structure and spectral properties of a 7.5-cm, 30-period hybrid undulator are described. The device will be installed at the U5 port of the VUV storage ring at Brookhaven National Laboratory and will be a tunable source of very high brilliance soft x-ray radiation over the range of 13 from approximately 150 eV.

  16. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution

    PubMed Central

    Sandberg, Richard L.; Song, Changyong; Wachulak, Przemyslaw W.; Raymondson, Daisy A.; Paul, Ariel; Amirbekian, Bagrat; Lee, Edwin; Sakdinawat, Anne E.; La-O-Vorakiat, Chan; Marconi, Mario C.; Menoni, Carmen S.; Murnane, Margaret M.; Rocca, Jorge J.; Kapteyn, Henry C.; Miao, Jianwei

    2008-01-01

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to ≈200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources—a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5λ. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution. PMID:18162534

  17. Soft X-ray spectrum of laser-produced aluminum plasma

    SciTech Connect

    Vergunova, G. A.; Grushin, A. S.; Kologrivov, A. A.; Novikov, V. G.; Osipov, M. V.; Puzyrev, V. N. Rozanov, V. B. Starodub, A. N. Yakushev, O. F.

    2015-05-15

    Soft X-ray spectra (30–70 Å) of aluminum plasma have been measured in experiments carried out at the Kanal-2 laser facility at laser intensities of (1–7) × 10{sup 13} W/cm{sup 2}. It is shown that the measured spectra satisfactory agree with those calculated using the RADIAN numerical code.

  18. Optical constants in the extreme ultraviolet and soft X-ray region

    NASA Technical Reports Server (NTRS)

    Rife, J. C.; Osantowski, J. F.

    1982-01-01

    The nature of optical constants and their measurement by reflection or absorption techniques in the extreme ultraviolet and soft X-ray spectral region from 30 to 3000 eV is discussed with emphasis on mirror design. Sources of optical constant data are mentioned and reflectance measurements for SiC and Kanigen between 40 and 200 eV are reported.

  19. Atmospheric parameters of a soft X ray selected set of hot DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Kenneth Mark

    Soft x-ray/EUV observations provide a sensitive means of probing the structure and composition of the atmospheres of hot hydrogen-rich (DA) white dwarf stars. This is due to the fact that soft x-rays originate from hotter, deeper layers of the photosphere than do longer wavelengths. A primary aim of this research is to expand the sample of DA's observed with soft x-ray instrumentation through a search for serendipitous observations of catalogued hot DA white dwarfs in existing soft x-ray databases. The positional coincidences of 31 catalogued DA's (McCook and Sion 1987) were examined in Einstein IPC and EXOSAT LE fields. As a result, three soft x-ray sources have been identified corresponding to the white dwarfs (WD0631 + 107, WD1113 + 413 and WD0425 + 168) and a fourth source which is probably not due to photospheric thermal emission from the coincident white dwarf. The three detected DA's have relatively low effective temperatures (27,200 +/- 400 K, 26,200 +/- 1100 K and 24,000 +/- 500 K, respectively), as determined independently using complementary optical and UV spectroscopy. Applying these temperature constraints to the soft x-ray photometric data, the photospheres of these stars must be composed of effectively pure hydrogen (n(He)/n(H) less than 10 exp -5), although the hottest star, WD0631 + 107, can have trace levels of homogeneously mixed helium less than 10 exp -4.2. The analysis of the soft x-ray observations are supplemented with independent determinations of temperature, gravity, and V magnitude. The method of determination employed is to fit the well-sampled wings of the broad hydrogen absorption profiles with self-consistent model atmosphere predictions. Precise temperatures and gravities are obtained by fitting the observed profiles independently, then jointly determining a consistent solution for each object. In this effort, a ground-based observation program was established to obtain high quality spectra of the Balmer delta and gamma lines and in

  20. Analysis of inelastic x-ray scattering spectra of low-temperature water

    PubMed

    Liao; Chen; Sette

    2000-02-01

    We analyze a set of high-resolution inelastic x-ray scattering (IXS) spectra from H2O measured at T=259, 273, and 294 K using two different phenomenological models. Model I, called the "dynamic cage model," combines the short time in-cage dynamics described by a generalized Enskog kinetic theory with a long-time cage relaxation dynamics described by an alpha relaxation. This model is appropriate for supercooled water where the cage effect is dominant and the existence of an alpha relaxation is evident from molecular-dynamics (MD) simulation data of extended simple point charge (SPC/E) model water. Model II is essentially a generalized hydrodynamic theory called the "three effective eigenmode theory" by de Schepper et al. 11. This model is appropriate for normal liquid water where the cage effect is less prominent and there is no evidence of the alpha relaxation from the MD data. We use the model I to analyze IXS data at T=259 K (supercooled water). We successfully extract the Debye-Waller factor, the cage relaxation time from the long-time dynamics, and the dispersion relation of high-frequency sound from the short time dynamics. We then use the model II to analyze IXS data at all three temperatures, from which we are able to extract the relaxation rate of the central mode and the damping of the sound mode as well as the dispersion relation for the high-frequency sound. It turns out that the dispersion relations extracted from the two models at their respective temperatures agree with each other giving the high-frequency sound speed of 2900+/-300 m/s. This is to be compared with a slightly higher value reported previously, 3200+/-320 m/s, by analyzing similar IXS data with a phenomenological-damped harmonic oscillator model 22. This latter model has traditionally been used exclusively for the analysis of inelastic scattering spectra of water. The k-dependent sound damping and central mode relaxation rate extracted from our model analyses are compared with the known

  1. Soft X-Ray Spectrometer Using 100-Pixel STJ Detectors for Synchrotron Radiation

    SciTech Connect

    Shiki, Shigetomo; Zen, Nobuyuki; Ukibe, Masahiro; Ohkubo, Masataka

    2009-12-16

    Fluorescent X-ray absorption fine structure (XAFS) is an important tool for material analysis, especially for the measurement of chemical states or local structures of elements. Semiconductor detectors are usually used for separating the fluorescent of elements in question from background fluorescence. However, the semiconductor detectors cannot always discriminate K-lines of light elements and L-lines of various elements as different X-ray peaks at an energy range below about 3 keV. Superconducting tunnel junction (STJ) detectors are promising device for the soft X-ray at synchrotron radiation beam lines because of excellent energy resolution, high detection efficiency, and high counting rate. We are constructing a fluorescent X-ray spectrometer having 100-pixel array of STJs with 200 {mu}m square. The array detector is mounted on a liquid cryogen-free {sup 3}He cryostat. The sensitive area is the largest among the superconducting X-ray spectrometers operating at synchrotron beam lines. Each pixel is connected to a room temperature readout circuit that consists of a charge sensitive amplifier and a pulse height analyzer. The spectrometer will achieve a total solid angle of {approx}0.01 sr and a maximum counting rate of more than 1 M count per second. The present status of developments of our fluorescent X-ray spectrometer was reported.

  2. Temperature and emission measure from GOES soft X-ray measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Howard A.

    1994-10-01

    This paper provides a detailed description of the procedure used for computing color temperature and emission measure from Geostationary Operational Environmental Satellite (GOES) X-ray data, including a table of constants for Synchronous Meteorological Satellite (SMS) and GOES X-ray sensors that are necessary for reducing the archived data from these satellites. Temperature and theoretical current tables were constructed, for individual GOES sensors, from laboratory calibrations of instrument responses and from synthetic solar X-ray spectra generated by two models of solar thermal X-ray emission: Raymond-Smith and Mewe-Alkemade. Example tables are shown and others are available on request. Errors that may be incurred from the use of GOES X-ray data in the computation of flare temperatures and emission measures may be classified under four major groups: instrument induced errors, including errors of calibration and random measurements errors; environmentally induced errors, due primarily to the ambient energetic electron background; solar influences, including the consequences of the isothermal assumption and the single-source assumption; and uncertainties in the modelled solar synthetic spectrum. These error sources are discussed separately, and a rough estimation of the collective error is made where this is quantitatively feasible. Finally, temperatures and emission measures are computed from GOES data and are compared with those derived from Solar Maximum Mission (SMM) and Hinotori soft X-ray spectrometer data and from broadband photometric data from the PROGNOZ satellite.

  3. Electronic Structure of Doped Lanthanum Cuprates Studied with Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Hill, J.P.; Ellis, D.S.; Kim, J.; Zhang, H.; Gu, G.; Komiya, S.; Ando, Y.; Casa, D.; Gog, T.; Kim, Y.-J.

    2011-02-24

    We report a comprehensive Cu K-edge resonant inelastic x-ray scattering (RIXS) investigation of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) for 0 {le} x {le} 0.35, stripe-ordered La{sub 1.875}Ba{sub 0.125}CuO{sub 4} (LBCO), and La{sub 2}Cu{sub 0.96}Ni{sub 0.04}O{sub 4} (LCNO) crystals. The RIXS spectra measured at three high-symmetry momentum-transfer (q) positions are compared as a function of doping and for the different dopants. The spectra in the energy range 1-6 eV can be described with three broad peaks, which evolve systematically with increased doping. The most systematic trend was observed for q = ({pi},0) corresponding to the zone boundary. As hole doping increased, the spectral weight transfer from high energies to low energies is nearly linear with x at this q. We interpret the peaks as interband transitions in the context of existing band models for this system, assigning them to Zhang-Rice band {yields} upper Hubbard band, lower-lying band {yields} upper Hubbard band, and lower-lying band {yields} Zhang-Rice band transitions. The spectrum of stripe-ordered LBCO was also measured, and found to be identical to the correspondingly doped LSCO, except for a relative enhancement of the near-infrared peak intensity at {approx}1.5-1.7 eV. The temperature dependence of this near-infrared peak in LBCO was more pronounced than for other parts of the spectrum, continuously decreasing in intensity as the temperature was raised from 25 to 300 K. Finally, we find that 4% Ni substitution in the Cu site has a similar effect on the spectra as does Sr substitution in the La site.

  4. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples. PMID:25821700

  5. Overview of nanoscale NEXAFS performed with soft X-ray microscopes

    PubMed Central

    Bittencourt, Carla

    2015-01-01

    Summary Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples. PMID:25821700

  6. Resonant soft X-ray scattering study of twist bend nematic phase

    NASA Astrophysics Data System (ADS)

    Zhu, Chenhui; Young, Anthony; Wang, Cheng; Hexemer, Alexander; Li, Quan; Lavrentovich, Oleg; Walba, David; Tuchband, Michael; Shuai, Min; Clark, Noel

    Liquid crystals (LCs) form many interesting nano-scale structures, many of which can be probed with X-ray scattering techniques, typically hard X-rays due to its high penetrating power. However, in the hard X-ray regime, the scattering contrast of some LC nanostructures can be extremely low due to their weak electron density modulation. Here we show it is possible to use resonant soft x-rays to probe the helical pitch of the newly discovered twist bend nematic phase, which is purely a twist bend structure with no electron density modulation. The in-situ temperature dependent measurement will be presented and discussed. This work together with our previous study on the helical nanofilament B4 phase shows the great potential of soft x-ray scattering in liquid crystals. Supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  7. iWF-MAXI: Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Ebisawa, Ken; Yatsu, Yoichi; Arimoto, Makoto; Mihara, Tatehiro; Serino, Motoko; Tsunemi, Hiroshi; Kohmura, Takayoshi; Sakamoto, Takanori; Negoro, Hitoshi; Ueda, Yoshihiro; Tsuboi, Yohko; Yoshida, Atsumasa

    2015-08-01

    iWF-MAXI is an X-ray transient monitor mission proposed for the ISS/JEM, starting in 2018-2019.It has four main scientific goals:(1) To find and localize the X-ray counterparts of gravitational wave events, which are expected to be detected by the next generation gravitational wave detectors such as Advance LIGO and KAGRA in late 2010's.(2) To detect short soft X-ray transients such as stellar flares, nova ignitions, and supernova shock breakouts, and promptly notify the world.(3) To trigger on short high-energy transients such as gamma-ray bursts and tidal disruption events, and promptly disseminate their locations to the community.(4) To detect the onset of activities from black hole binaries, neutron star binaries, and active galactic nuclei (AGN), and issue alerts to the astronomical community of the world.Its main scientific instrument is the Soft X-ray Large Solid Angle Camera (SLC). It is sensitive in the energy range of 0.7--10 keV with a localization accuracy of 0.1 degres. It will detect short transient events like GRBs with durations from a fraction of a second to minutes that occur in its large large field of view (>10% of the entire sky) .With the orbital revolution of the ISS, iWF-MAXI scans much larger sky area in 90 minutes, and looks for slower events such as outbursts of X-ray binaries.

  8. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. PMID:25088794

  9. Dissociation of the benzene molecule by ultraviolet and soft X-rays in circumstellar environment

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; Lago, A. F.; de Souza, G. G. B.

    2009-04-01

    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by ultraviolet (UV) and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time-of-flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum UV (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50 per cent of the ionized benzene molecules survive to UV dissociation while only about 4 per cent resist to X-rays. Partial ion yields of H+ and small hydrocarbons, such as C2H+2, C3H+3, C4H+2, are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross-sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 was obtained.

  10. Combined constraints on intergalactic dust from quasar colours and the soft X-ray background

    NASA Astrophysics Data System (ADS)

    Johansson, Joel; Mörtsell, Edvard

    2012-11-01

    Unless properly corrected for, the existence of intergalactic dust will introduce a redshift-dependent magnitude offset to standard candle sources. This would lead to overestimated luminosity distances compared to a dust-free universe and bias the cosmological parameter estimation as derived from, e.g., Type Ia supernova observations. In this paper, we model the optical extinction and X-ray scattering properties of intergalactic dust grains to constrain the intergalactic opacity using a combined analysis of observed quasar colours and the soft X-ray background. Quasar colours effectively constrain the amount of intergalactic dust grains smaller than ˜0.2 μm, to the point where we expect the corresponding systematic error in the Type Ia supernova magnitude-redshift relation to be sub-dominant. Soft X-ray background observations are helpful in improving the constraints on very large dust grains for which the amount of optical reddening is very small and therefore is more difficult to correct for. Our current upper limit corresponds to ˜0.25 mag dimming at optical wavelengths for a source at redshift z = 1, which is too small to alleviate the need for dark energy but large in terms of relative error. However, we expect it to be possible to lower this bound considerably with an improved understanding of the possible sources of the X-ray background, in combination with observations of compact X-ray sources such as active galactic nuclei.

  11. Soft x-ray generation in gases with an ultrashort pulse laser

    SciTech Connect

    Ditmire, T R

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF{sub 6} (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 10{sup 15} to 10{sup 17} W/cm{sup 2} is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  12. A compact soft X-ray microscope using an electrode-less Z-pinch source

    NASA Astrophysics Data System (ADS)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  13. Solar flares with similar soft but different hard X-ray emissions: case and statistical studies

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan N.; Struminsky, Alexei B.; Zimovets, Ivan V.; Gan, Wei-Qun

    2016-01-01

    From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) catalog we select events which have approximately the same GOES class (high C - low M or 500-1200 counts s-1 within the RHESSI 6-12 keV energy band), but with different maximal energies of detected hard X-rays. The selected events are subdivided into two groups: (1) flares with X-ray emissions observed by RHESSI up to only 50 keV and (2) flares with hard X-ray emission observed also above 50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSI X-ray data to obtain spectral and spatial information in order to find differences between selected groups. Spectra and images are analyzed in detail for six events (case study). For a larger number of samples (85 and 28 flares in the low-energy and high-energy groups respectively) we only make some generalizations. In spectral analysis we use the thick-target model for hard X-ray emission and one temperature assumption for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Although thermal and spatial properties of these two groups of flares are not easily distinguishable, power law indices of hard X-rays show significant differences. Events from the high-energy group generally have a harder spectrum. Therefore, the efficiency of chromospheric evaporation is not sensitive to the hardness of nonthermal electron spectra but rather depends on the total energy flux of nonthermal electrons.

  14. Soft X-Ray Irradiation of Pure Carbon Monoxide Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Jiménez-Escobar, A.; Muñoz Caro, G. M.; Cecchi-Pestellini, C.; Candia, R.; Giarrusso, S.; Barbera, M.; Collura, A.

    2012-02-01

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H2O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO2, C2O, C3O2, C3, C4O, and CO3/C5. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO2, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C3O2 column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  15. Development of the ASTRO-H Soft X-ray Telescope (SXT): Engineering Model Performance

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Serlemitsos, P. J.; Soong, Y.

    2011-09-01

    The X-ray astronomy satellite, ASTRO-H, being developed under the collaboration among JAXA, NASA's GSFC and ESA, will have two Soft X-ray Telescopes (SXTs), among other instruments onboard, with a sensitive energy band up to 15 keV. One is for an X-ray micro-calorimeter detector and the other for an X-ray CCD detector. The SXT uses a conically approximated Wolter I grazing incidence optic implemented by thin aluminum foil substrates with thickness of 0.152, 0.229, and 0.305 mm. X-ray reflecting surface is a gold thin layer ( 2000A) transferred from a smooth glass mandrel to the substrate by a replication method using an epoxy buffer layer (12 um). It is similar to the Suzaku XRT, but with larger diameter (45 cm) and longer focal length (5.6 m). Goals of angular resolution and effective area are 1 arcmin and 390 cm2 at 6 keV, respectively. We made several improvements from Suzaku to ASTRO-H, such as thicker substrates, more forming mandrels, thinner epoxy layer for replication, stiffer housings, precise alignment bars, etc. With all these changes, we have fabricated the engineering test unit of the SXT. In this paper, we will discuss all the changes made, their effects, and report X-ray performance of the SXT test unit. An angular resolution of the test unit was measured at new Goddard X-ray calibration facility (100 m X-ray beamline) and was found to be 65 arcsec at 4.5 keV. We will also discuss further improvements toward the flight unit to be delivered to JAXA in 2012.

  16. An Unusual Spectral State of an Ultraluminous Very Soft X-Ray Source during Outburst

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.; Di Stefano, R.

    2005-10-01

    We report the results of Chandra and XMM-Newton observations of a new outburst of an ultraluminous X-ray source in M101. During a Chandra monitoring observation of M101, M101 ULX-1 was found to be in outburst in 2004 December, the second outburst in 2004. The peak bolometric luminosity is about 3×1040 ergs s-1 (7×1039 ergs s-1 in 0.3-7 keV). The outburst spectra are very soft and can generally be fitted with a blackbody model, with temperatures of 40-80 eV, similar to supersoft X-ray sources in the Milky Way and in the Magellanic Clouds. In one Chandra observation, the source spectrum appears to be harder with a temperature of 150 eV. Such a spectral state is rarely seen in M101 ULX-1, and no X-ray source in the Milky Way shows this kind of spectrum. However, such an unusual spectral state very likely belongs to a new class of X-ray sources, quasi-soft X-ray sources, recently discovered in nearby galaxies. M101 ULX-1 returned to supersoft state in a subsequent XMM-Newton observation. Based on the two outbursts in 2004, the extremely high luminosity (Lbol=1040-1041 ergs s-1), very soft X-ray spectra (kT=40-150 eV), transient behavior, and state transition provide strong evidence that M101 ULX-1 harbors an intermediate-mass black hole.

  17. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections

  18. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  19. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  20. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    SciTech Connect

    Prisbrey, S; Vernon, S

    2004-04-05

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath.