Science.gov

Sample records for soft x-ray synchrotron

  1. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.

    PubMed

    Carpentier, P; Berthet-Colominas, C; Capitan, M; Chesne, M L; Fanchon, E; Lequien, S; Stuhrmann, H; Thiaudière, D; Vicat, J; Zielinski, P; Kahn, R

    2000-07-01

    Anomalous diffraction with soft X-ray synchrotron radiation opens new possibilities in protein crystallography and materials science. Low-Z elements like silicon, phosphorus, sulfur and chlorine become accessible as new labels in structural studies. Some of the heavy elements like uranium exhibit an unusually strong dispersion at their M(V) absorption edge (lambdaMV = 3.497 A, E(MV) = 3545 eV) and so does thorium. Two different test experiments are reported here showing the feasibility of anomalous X-ray diffraction at long wavelengths with a protein containing uranium and with a salt containing chlorine atoms. With 110 electrons the anomalous scattering amplitude of uranium exceeds by a factor of 4 the resonance scattering of other strong anomalous scatterers like that of the lanthanides at their L(III) edge. The resulting exceptional phasing power of uranium is most attractive in protein crystallography using the multi-wavelength anomalous diffraction (MAD) method. The anomalous dispersion of an uranium derivative of asparaginyl-tRNA synthetase (hexagonal unit cell; a = 123.4 A, c = 124.4 A) has been measured for the first time at 4 wavelengths near the M(V) edge using the beamline ID1 of ESRF (Grenoble, France). The present set up allowed to measure only 30% of the possible reflections at a resolution of 4 A, mainly because of the low sensitivity of the CCD detector. In the second experiment, the dispersion of the intensity of 5 X-ray diffraction peaks from pentakismethylammonium undecachlorodibismuthate (PMACB, orthorhombic unit cell; a = 13.003 A, b = 14.038 A, c = 15.450 A) has been measured at 30 wavelengths near the K absorption edge of chlorine (lambdaK = 4.397 A, EK= 2819.6 eV). All reflections within the resolution range from 6.4 A to 3.4 A expected in the 20 degree scan were observed. The chemical state varies between different chlorine atoms of PMACB, and so does the dispersion of different Bragg peaks near the K-edge of chlorine. The results reflect

  2. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.; Glenzer, S.H.; Landen, O.L.; Turner, R.E.; Waide, P.A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  3. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  4. Soft X-Ray Spectrometer Using 100-Pixel STJ Detectors for Synchrotron Radiation

    SciTech Connect

    Shiki, Shigetomo; Zen, Nobuyuki; Ukibe, Masahiro; Ohkubo, Masataka

    2009-12-16

    Fluorescent X-ray absorption fine structure (XAFS) is an important tool for material analysis, especially for the measurement of chemical states or local structures of elements. Semiconductor detectors are usually used for separating the fluorescent of elements in question from background fluorescence. However, the semiconductor detectors cannot always discriminate K-lines of light elements and L-lines of various elements as different X-ray peaks at an energy range below about 3 keV. Superconducting tunnel junction (STJ) detectors are promising device for the soft X-ray at synchrotron radiation beam lines because of excellent energy resolution, high detection efficiency, and high counting rate. We are constructing a fluorescent X-ray spectrometer having 100-pixel array of STJs with 200 {mu}m square. The array detector is mounted on a liquid cryogen-free {sup 3}He cryostat. The sensitive area is the largest among the superconducting X-ray spectrometers operating at synchrotron beam lines. Each pixel is connected to a room temperature readout circuit that consists of a charge sensitive amplifier and a pulse height analyzer. The spectrometer will achieve a total solid angle of {approx}0.01 sr and a maximum counting rate of more than 1 M count per second. The present status of developments of our fluorescent X-ray spectrometer was reported.

  5. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  6. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films

    SciTech Connect

    Tzvetkov, George; Netzer, Falko P.

    2011-05-28

    Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H{sub 2}O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H{sub 2}O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.

  7. Multilayer-based soft X-ray polarimeter at the Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Li-Juan; Cui, Ming-Qi; Zhu, Jie; Zhao, Yi-Dong; Zheng, Lei; Wang, Zhan-Shan; Zhu, Jing-Tao

    2013-07-01

    A compact high precision eight-axis automatism and two-axis manual soft-ray polarimeter with a multilayer has been designed, constructed, and installed in 3W1B at the Beijing Synchrotron Radiation Facility (BSRF). Four operational modes in the same device, which are double-reflection, double-transmission, front-reflection-behind-transmission and front-transmission-behind-reflection, have been realized. It can be used for the polarization analysis of synchrotron radiation. It also can be used to characterize the polarization properties of the optical elements in the soft X-ray energy range. Some experiments with Mo/Si and Cr/C multilayers have been performed by using this polarimeter with good results obtained.

  8. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  9. Soft X-ray synchrotron radiation investigations of actinidematerials systems utilizing X-ray emission spectroscopy and resonantinelastic X-ray scattering

    SciTech Connect

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-03

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies.

  10. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  11. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  12. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  13. Soft x-ray emission spectra of lithium fluoride excited by synchrotron radiation

    SciTech Connect

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.

    1986-01-01

    A core excited Li atom is perhaps the simplest cation defect that can be introduced into LiF. It frequently binds an electron in an electronic state, whose properties dominate both the soft x-ray absorption and soft x-ray emission properties of LiF. This phenomena was examined using a new, very high efficiency, emission spectrometer. Exciton and valence band peaks were observed which decay with time and are replaced by a metallic Li peak at 54 eV.

  14. Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.

    2009-04-01

    In the general context of self-organization of nanoparticles (in our case clay particles), and transitions in such structures, we study interconnected universal complex physical phenomena such as: (i) spontaneous gravitationally induced phase separation and nematic self-organization in systems of anisotropic clay nanoparticles in aqueous suspension, including studies of isotropic to nematic transitions [1,2] (ii) transitions from biaxial to uniaxial nematics by application of external magnetic field to self-organized systems of the same anisotropic (diamagnetic) clay nanoparticle systems [3,4] (iii) guided self-organization into chainlike structures of the same anisotropic clay nanoparticles in oil suspension when subjected to external electrical fields (electrorheological structures of polarized nanoparticles), and the stability of, and transitions of, such structures, when subjected to external mechanical stress [5,6] The experimental techniques used by us include synchrotron X-ray scattering, neutron scattering, rheometry. microscopy and magnetic resonance. We have demonstrated that clays may be used as good model systems for studies of universal physical phenomena and transitions in self-organized nanostructured soft and complex matter. Self-organization and related transitions in clay systems in particular, may have practical relevance for nano-patterning, properties of nanocomposites, and macroscopically anisotropic gels, among many other applications [7]. The synchrotron experiments have been performed at LNLS-Brazil, PLS- Korea, BNL-USA and ESRF-France. Acknowledgments: Collaborators, postdocs and students at NTNU-Norway, UiO-Norway, IFE-Norway, BNL-USA, LNLS-Brazil, UFPE-Brazil, UnB-Brazil, Univ. Amsterdam-Netherlands, Univ.Paris 7-France and other places. This research has been supported by the Research Council of Norway (RCN), through the NANOMAT, SUP and FRINAT Programs. References 1. J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi, T

  15. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  16. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials.

    PubMed

    Liu, Xiaosong; Yang, Wanli; Liu, Zhi

    2014-12-10

    Soft X-ray spectroscopy (SXS) techniques such as photoelectron spectroscopy, soft X-ray absorption spectroscopy and X-ray emission spectroscopy are efficient and direct tools to probe electronic structures of materials. Traditionally, these surface sensitive soft X-ray techniques that detect electrons or photons require high vacuum to operate. Many recent in situ instrument developments of these techniques have overcome this vacuum barrier. One can now study many materials and model devices under near ambient, semi-realistic, and operando conditions. Further developments of integrating the realistic sample environments with efficient and high resolution detection methods, particularly at the high brightness synchrotron light sources, are making SXS an important tool for the energy research community. In this progress report, we briefly describe the basic concept of several SXS techniques and discuss recent development of SXS instruments. We then present several recent studies, mostly in situ SXS experiments, on energy materials and devices. Using these studies, we would like to highlight that the integration of SXS and in situ environments can provide in-depth insight of material's functionality and help researchers in new energy material developments. The remaining challenges and critical research directions are discussed at the end. PMID:24799004

  17. Recent advances in soft x-ray scattering instrumentation at the national synchrotron light source

    SciTech Connect

    Johnson, E.D.; Kao, Chi-Chang; Hastings, J.B.

    1991-01-01

    For the study of condensed matter systems x-ray scattering experiments are often the best choice as they have several desirable features including complete conservation of momentum in the incident and detected particles, well characterized initial and final electronic states, and insensitivity of photon transport to external electric and magnetic fields (as compared to photoelectrons for example). To extend these techniques to the soft x-ray region ({Dirac h}v < 1keV) the lack of suitable detectors, and the difficulties associated with performing scattering experiments in vacuum must be overcome. In this paper we provide details of our instrumental development program, and show some representative examples of experiments we have performed to date. 7 refs., 4 figs.

  18. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-05-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  19. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  20. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    PubMed

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV. PMID:17317923

  1. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Kang, J.-S.; Kim, Kyung Hyun; Kim, Pil; Baik, Jaeyoon; Shin, H. J.

    2014-11-01

    The electronic structures of molecule-based nanoparticles, such as biomineralized Helicobacter pylori ferritin (Hpf), Heme, and RbCo[Fe(CN)6]H2O (RbCoFe) Prussian blue analogue, have been investigated by employing photoemission spectroscopy and soft X-ray absorption spectroscopy. Fe ions are found to be nearly trivalent in Hpf and Heme nanoparticles, which provides evidence that the amount of magnetite (Fe3O4) should be negligible in the Hpf core and that the biomineralization of Fe oxides in the high-Fe-bound-state Hpf core arises from a hematite-like formation. On the other hand, Fe ions are nearly divalent and Co ions are Co2+-Co3+ mixed-valent in RbCoFe. Therefore this finding suggests that the mechanism of the photo-induced transition in RbCoFe Prussian blue analogue is not a simple spin-state transition of Fe2+-Co3+ → Fe3+-Co2+. It is likely that Co2+ ions have the high-spin configuration while Fe2+ ions have the low-spin configuration.

  2. Design and fabrication of soft x-ray photolithography experimental beam line at Beijing National Synchrotron Radiation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhou, Changxin

    1991-08-01

    The synchrotron radiation (SR) soft x-ray photolithography experimental beam line (3B1 beam line) at Beijing National Synchrotron Radiation Laboratory, was completed and tested in June 1990. A soft x-ray photolithography experiment was successfully completed, and the width of linear etch on a silicon chip by the device with a 3B1 beam line is up to 0.5 micrometers . This SR soft x-ray photolithography experiment was done successfully for the first time in China. This paper describes the design of the beam line and the fabrication of the most important optical element--the cylindrical scanning mirror in the beam line. The 3B1 beam line consists of the shielding light plate with water-cooling, laser simulation light source system, 3-D adjustable scanning mirror, high pass-band filer (beryllium window), acoustic sensor, helium gas chamber, and vacuum system. The main specifications of the 3B1 beam line are as follows: spectral range 0.4-2 nm; horizontal acceptance angle 7.5 mrad; vertical acceptance angle 0.4 mrad; grazing incidence angle 1.5 deg; light spot size 35 nm X 12 nm; vacuum degree of the mirror box 5 X 10-10 torr (static). The cylindrical scanning mirror in grazing incidence is used in the beam line for photolithography to obtain uniform distributed intensity of illumination of the SR source in the vertical direction (Gaussian distribution) and sufficiently concentrated energy. It is made of aluminum alloy LD2 with a supersmooth optical surface. The curvature radius of the cylindrical surface is 527.5 mm; surface figure error is less than (lambda) /10; surface roughness is better than 1 nm RMS, and fold coating on the surface of the mirror under UHV of 109 torr. The laser simulation light source system is used for adjusting the optical system in the beam line instead of the SR source. The cylindrical mirror was polished supersmoothly using Al2O3 ultra micropower grinding material made in TOMAS in Japan on modified traditional machine tools, and surface

  3. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  4. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  5. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  6. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    PubMed

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  7. Absolute calibration of soft x-ray detectors (photocathodes, XUV photodiodes, thinned CCD, ...) with the synchrotron radiation of SUPER ACO at the LURE, Orsay

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Troussel, P.; Bourgade, J. L.; Le Guern, F.; Mens, A.; Schirmann, D.; Dalmasso, J. M.; Gontier, D.; Mazataud, D.

    1994-10-01

    To interpret the experimental results in laser matter interaction experiments, the absolute spectral response of soft x-ray detectors is often needed. For this purpose CEL-V uses calibration lines of synchrotron radiation of SUPER-ACO at the LURE. The energy of output photons can be selected from 50 eV to 1000 eV. The output photon flux is absolutely calibrated with a bolometer or a soft x-ray photodiode. Then we measure the response of the studied detector installed at the same location. Measurements of quantum efficiencies of photocathodes (Al and CsI on Al) and of the response of a thinned CCD are presented versus photon energy.

  8. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be

  9. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  10. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  11. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  12. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  13. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  14. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  15. Implementation of soft x-ray microscopy with several tens nanometers spatial resolution at NSRL

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Chen, Liang

    2009-09-01

    A transmission soft x-ray microscope (TXM), which is similar to the full-field x-ray microscopes installed on other synchrotron radiation sources in the world, was developed at National Synchrotron Radiation Laboratory (NSRL) in Hefei. An x-ray image taken with the microscope was acquired and its spatial resolution was estimated to be better than 70nm.

  16. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  17. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  18. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  19. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2010-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton observations of those X-ray selected polars and genuine discoveries of new polar systems reveal growing evidence that the prevailence or even the existence of a soft X-ray component may be rather the exception than the rule. In the last decade polars were discovered in optical surveys like the SDSS and the CSS. Here we propose XMM-Newton observations of 5 optically selected polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution of polars.

  20. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  1. The PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Wunderer, C. B.; Marras, A.; Bayer, M.; Correa, J.; Göttlicher, P.; Lange, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Viti, M.; Xia, Q.; Zimmer, M.; Das, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Gianoncelli, A.; Giuressi, D.; Menk, R.; Stebel, L.; Yousef, H.; Marchal, J.; Rees, N.; Tartoni, N.; Graafsma, H.

    2015-02-01

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile And Large'') is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic ``PERCIVAL13M'' sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ~ 105 (500 eV) simultaneously-arriving photons. A smaller ``PERCIVAL2M'' with ~ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  2. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity. PMID:26134801

  3. X-ray multilayer optics for Indus synchrotrons application

    NASA Astrophysics Data System (ADS)

    Nayak, Maheswar; Pradhan, P. C.; Lodha, G. S.

    2015-06-01

    We present the state-of-the-art X-ray multilayer optics fabrication facilities at Indus synchrotrons complex. The facilities are regularly used for fabrication of high quality x-ray multilayer structures. The results on two representative materials combination of Mo/Si and W/B4C are presented. In Mo/Si multilayer system, we have achieved ˜70% of reflectivity (near normal incidence angle) at soft x-ray region. Large area (300mm×50mm) Mo/Si multilayers are also successively fabricated for monochromator application in hard x-ray region. Whereas in W/B4C system, we demonstrate the capability of these facilities to fabricate ultra short period multilayer (periodicity ˜15-20 Å) with large number of layer pairs in the range of 200-400 for transmission polarizer near Fe L-edge and for monochromator application in hard x-ray region. Hard x-ray reflectivity of ˜54% is achieved from W/B4C MLs with periodicity ˜20 Å and number of layer pairs 300.

  4. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2011-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton discovered polars however and new polar systems from optical surveys (SDSS, CSS) reveal growing evidence that the prevalence or even the existence of a soft X-ray component may be rather the exception than the rule. Here we propose XMM-Newton observations of 5 optically identified polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution and accretion energy release of polars.

  5. Soft x-ray tomoholography

    NASA Astrophysics Data System (ADS)

    Guehrs, Erik; Stadler, Andreas M.; Flewett, Sam; Frömmel, Stefanie; Geilhufe, Jan; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Büldt, Georg; Eisebitt, Stefan

    2012-01-01

    We demonstrate an x-ray imaging method that combines Fourier transform holography with tomography (‘tomoholography’) for three-dimensional (3D) microscopic imaging. A 3D image of a diatom shell with a spatial resolution of 140 nm is presented. The experiment is realized by using a small gold sphere as the reference wave source for holographic imaging. This setup allows us to rotate the sample and to collect a number of 2D projections for tomography.

  6. Measuring Cavitation with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  7. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  8. Soft x-ray tomography on TFTR

    SciTech Connect

    Kuo-Petravic, G.

    1988-12-01

    The tomographic method used for deriving soft x-ray local emissivities on TFTR, using one horizontal array of 60 soft x-ray detectors, is described. This method, which is based on inversion of Fourier components and subsequent reconstruction, has been applied to the study of a sawtooth crash. A flattening in the soft x-ray profile, which we interpret as an m = 1 island, is clearly visible during the precursor phase and its location and width correlate well with those from electron temperature profiles reconstructed from electron cyclotron emission measurement. The limitations of the Fourier method, due notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of obtaining accurately the higher Fourier harmonics, are discussed. 9 refs., 13 figs.

  9. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  10. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Zhu, Tuo; Shang, Wanli; Zhang, Wenhai; Yang, Jiamin; Xiong, Gang; Zhao, Yang; Kuang, Longyu; Zhao, Yidong; Zheng, Lei; Cui, Mingqi; Tang, Kun; Ma, Chenyan

    2013-12-01

    A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the monochromatic X-ray has third-order and second-order harmonics. The proportion of second-order harmonic of 4B7B is less than 9.0% and the third-order harmonic is below 0.7% when no suppressing method is applied. When suppression methods are used, the proportion of second-order harmonic is less than 1.7% and the third-order harmonic is ignorable.

  11. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  12. Laboratory cryo soft X-ray microscopy.

    PubMed

    Hertz, H M; von Hofsten, O; Bertilson, M; Vogt, U; Holmberg, A; Reinspach, J; Martz, D; Selin, M; Christakou, A E; Jerlström-Hultqvist, J; Svärd, S

    2012-02-01

    Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined. PMID:22119891

  13. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  14. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  15. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  16. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  17. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  18. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  19. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-06-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  20. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-03-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  1. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D.; Meixler, L.; Skinner, C.H.; Suckewer, S.; Hirschberg, J.; Kohen, E.

    1987-12-31

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  2. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D. ); Meixler, L.; Skinner, C.H.; Suckewer, S. . Plasma Physics Lab.); Hirschberg, J.; Kohen, E. . Dept. of Physics)

    1987-01-01

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  3. EVOLUTION OF SYNCHROTRON X-RAYS IN SUPERNOVA REMNANTS

    SciTech Connect

    Nakamura, Ryoko; Bamba, Aya; Dotani, Tadayasu; Ishida, Manabu; Kohri, Kazunori

    2012-02-20

    A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy and studied how their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than {approx}5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10{sup 47-48} erg, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.

  4. The metrology of spherical shells using synchrotron x ray microtomography

    NASA Technical Reports Server (NTRS)

    Hmelo, Anthony B.; Allen, James L.; Damico, Kevin L.

    1990-01-01

    With recent advances in solid state imaging technology and the increasing availability of synchrotron x-ray radiation sources, synchrotron x-ray microtomography is emerging as a nondestructive technique for the evaluation of the structure and composition of small specimens with spatial resolution in the micron range. Synchrotron radiation offers the following advantages over conventional x-ray sources: high brightness, continuous emission which is tunable over a large energy range, faster data collection rates, and a highly collimated beam of large cross section permitting the illumination of large specimens. Synchrotron x-ray microtomography enables the structure of individual spheres to be evaluated in order to reveal the concentricity and sphericity of the internal void and the uniformity of the shell wall in the case of high quality spherical shells for Sandia National Laboratories' Inertial Confinement Fusion project.

  5. X-ray fluorescence imaging with synchrotron radiation

    SciTech Connect

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source.

  6. Synchrotron X-ray techniques for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kastengren, Alan; Powell, Christopher F.

    2014-03-01

    X-ray diagnostics have the potential for making quantitative measurements in many flowfields where optical diagnostics are challenging, especially multiphase flows. In the past, many such measurements have been taken with laboratory-scale X-ray sources. This review describes the measurements that are possible with synchrotron X-ray sources, which can provide high-flux, tunable, monochromatic X-ray beams that cannot be created with laboratory sources. The relevant properties of X-rays and their interactions with matter are described. The types and capabilities of various X-ray optics and sources are discussed. Finally, four major X-ray diagnostics are described in detail. X-ray radiography provides quantitative measurements of density in variable-density flows. X-ray phase-contrast imaging is used to visualize multiphase flows with high spatial and temporal resolution. X-ray fluorescence spectroscopy shows significant promise to study mixing in single-phase and multiphase flows. Small-angle X-ray scattering is a powerful technique to examine small-scale particles in flows.

  7. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  8. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial

  9. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  10. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  11. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  12. Soft x-ray transmission gratings

    SciTech Connect

    Arakawa, E. T.; Caldwell, P. J.; Williams, M. W.

    1980-01-01

    A technique was developed for producing transmission diffraction gratings suitable for use in the soft x-ray region. Thin self-supporting films of a transparent material are overlaid with several thousand opaque metallic strips per mm. Gratings with 2100, 2400, and 5600 1/mm have been produced and tested. Representative spectra over the wavelength range from 17.2 to 40.0 nm are given for a grating consisting of a 120-nm-thick Al support layer overlaid with 2400, 34-nm-thick, Ag strips/mm. The absolute transmittance is approx. 13% at 30 nm, and the efficiency in the first order is approx. 16%. The observed resolution of approx. 2A is acceptable for many of the potential applications. These gratings have several advantages over the two presently available alternatives in the soft x-ray region (i.e., reflection gratings used at grazing incidence and free-standing metallic wire transmission gratings). Fabrication is relatively quick, simple, and cheap. The support layer can also serve as a filter and help conduct excessive heat away. Higher line densities and hence higher resolutions are possible, and when used at normal incidence the spectra are aberration free. Suitable materials, component thicknesses, and line densities can be chosen to produce a grating of optimum characteristics for a particular application.

  13. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  14. Phase-contrast x-ray tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bonse, Ulrich; Beckmann, Felix; Bartscher, Markus; Biermann, Theodor; Busch, Frank; Guennewig, Olaf

    1997-10-01

    The principle and experimental l realization of x-ray phase- contrast in compute assisted microtomography ((mu) CT) at the micrometer resolution level is described. The camera used is a modification of a setup previously developed by us for attenuation-contrast (mu) CT using synchrotron x-rays. Phase detection is accomplished by employing the x-ray interferometer. By using x-ray phase contrast it is possible to image structural details in low-z biological tissues much better than with absorption contrast. The advantage of phase over attenuation contrast is not limited to light element or to low x-ray energies. Examples of applying phase contrast (mu) CT to the structural investigation of rat trigeminal nerve are given.

  15. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  16. Soft X-Ray Tomography in HSX

    NASA Astrophysics Data System (ADS)

    Sakaguchi, V.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Likin, K.

    2003-10-01

    Under certain discharge conditions, HSX plasmas exhibit a sudden loss of stored energy followed by fluctuations of the order of few kHz in both the stored energy and the soft x-ray (SXR) signals. These are measured by a diamagnetic loop and a set of PIPS detectors respectively. To help understand the origin of these crashes and the nature of the oscillations, as well as to measure basic plasma properties such as position and shape, a SXR tomography system is under development in HSX. A single array of 20 silicon p-n junction photodiodes is installed on the device and, in the near future, the diagnostic system will be expanded to several arrays in order to obtain tomographic reconstructions of the SXR emission. Initial SXR and stored energy measurements during these crashing discharges as well as the results of the one-array reconstruction will be presented. Implementation details of the complete tomographic system will be shown as well.

  17. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  18. Tunable Soft X-Ray Oscillators

    SciTech Connect

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  19. Soft X-ray Spectromicroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Ade, Harald

    1997-03-01

    The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.

  20. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  1. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  2. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  3. Effects of Galactic absorption on soft X-ray surveys

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Gioia, I. M.; Maccacaro, T.; Wolter, A.

    1988-01-01

    A bias in the spectral distribution of X-ray sources detected in X-ray surveys is discussed which is due to the combination of the intrinsic characteristics of X-ray telescopes and the effects of low-energy photoelectric absorption within the Galaxy. A statistical method for obtaining information on the average spectrum of X-ray sources detected in well-defined surveys is presented. This method can be applied to surveys performed with X-ray telescopes working at relatively soft X-ray energies, such as Einstein, Exosat, and Rosat.

  4. A soft X-ray image of the moon

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Snowden, S. L.

    1991-01-01

    A soft X-ray image of the moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the moon's X-ray luminosity arises from backscattering of solar X-rays. The moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one percent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the moon's surface.

  5. Dante Soft X-ray Power Diagnostic for NIF

    SciTech Connect

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  6. X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays

    SciTech Connect

    Pereira, N. R.; Presura, R.; Wallace, M.; Kastengren, A.

    2014-07-15

    In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended.

  7. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  8. X-Ray Absorption Spectra of Uranium by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hirohiko; Fujima, Kazumi; Taniguchi, Kazuo; Miyake, Chie; Imoto, Shosuke

    1981-08-01

    The X-ray absorption spectra of U, UO2 and UCl4 near the U OIV and OV thresholds have been measured by use of synchrotron radiation. The absorption peaks at about 100 eV and 110 eV are observed for all of these materials. However, the detailed structure of the spectra depend on the chemical state.

  9. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  10. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  11. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  12. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  13. TOPICAL REVIEW: Medical applications of synchrotron radiation x-rays

    NASA Astrophysics Data System (ADS)

    Lewis, R.

    1997-07-01

    The use of synchrotron radiation is not widespread in the field of medicine and in fact few health-care professionals have even heard of it. It is the purpose of this article to explain what it is and to give some examples of how it can contribute to medical science. X-rays have been used for diagnostic medical imaging for more than 100 years and, whilst new techniques such as computed tomography have been developed, the means of producing x-rays has altered little during that time. Synchrotron radiation sources provide multiple, extremely intense and tuneable beams of photons over a huge range of energies from infrared through to hard x-rays. Their advent has revolutionized many experimental techniques and synchrotron radiation is being applied across many fields from imaging to molecular dynamics. It has spawned several methods for studying live and wet tissue samples, yielding information on both structure and composition on all length scales down to atomic resolution. Such techniques have played a crucial role in the development of molecular biology and the solution of protein structures. The application of synchrotron radiation in the field of radiography is now expanding and it is clear that very substantial improvements in image quality and patient dose can be realized. Following an overview of the production and properties of synchrotron radiation, some of the ways in which this remarkable tool has already been exploited for medical research are reviewed and some potential clinical opportunities highlighted.

  14. Applications of soft x-ray magnetic dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, G.

    2013-04-01

    Applications of x-ray magnetic circular and linear dichroism (XMCD and XMLD) are reviewed in the soft x-ray region, covering the photon energy range 0.4-2 keV, which includes important absorption edges such as the 3d transition metal L2,3 and rare earth M4,5. These techniques enable a broad range of novel and exciting studies such as on the electronic properties and magnetic ordering of novel nanostructured systems. XMCD has a sensitivity better than 0.01 monolayer (at the surface) and due to simple detection methods, such as electron yield and fluorescence yield, it has become a workhorse technique in physics and materials science. It is the only element-specific technique able to distinguish between the spin and orbital parts of the magnetic moments. The applications are vast, e.g., in x-ray holographic imaging, XMCD gives a spatial resolution of tens of nm. While many studies in the past were centered on physics, more recently new applications have emerged in areas such as chemistry, biology and earth and environmental sciences. For instance, XMCD allows the determination of the cation occupations in spinels and other ternary oxides. In scanning transmission x-ray microscopy (STXM), XMCD enables us to map biogenic magnetite redox changes resulting in a surprising degree of variation on the nanoscale. Another recent development is ferromagnetic resonance (FMR) detected by time-resolved XMCD which opens the door to element-, site- and layer-specific dynamical measurements. By exploiting the time structure of the pulsed synchrotron radiation from the storage ring the relative phase of precession in the individual magnetic layers of a multilayer stack can be determined.

  15. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  16. Applications of synchrotron x-ray fluorescence to extraterrestrial materials

    SciTech Connect

    Sutton, S.R.; Rivers, M.L.; Smith, J.V.

    1986-01-01

    Synchrotron x-ray fluorescence (SXRF) is a valuable technique for trace element analyses of extraterrestrial materials permitting minimum detection limits less than 1 ppM for 20 micrometer spots. SXRF measurements have been performed on iron meteorites and micrometeorites using white synchrotron radiation and an energy dispersive x-ray detector at the National Synchrotron Light Source (X-26C), Brookhaven National Laboratory (NY). Partitioning of Cu between troilite (FeS) and metal in the nine iron meteorites studied suggests sub-solidus re-equilibration in these objects. A technique has been developed for determining self-absorption corrections for filtered, continuum excitation of small specimens, such as stratospheric particles and refractory inclusions in meteorites.

  17. Stellar contribution to the galactic soft x-ray background

    SciTech Connect

    Rosner, R.; Avni, Y.; Bookbinder, J. R.,Giacconi; Golub, L.; Harnden, F.R. Jr.; Maxson, C.W.; Topka, K.; Vaiana, G.S.

    1981-10-01

    We construct log N-log S relations for stars based on medium x-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed x-ray luminosity function derived here for dM stars, and investigate the stellar contribution to the diffuse soft x-ray background. The principal results are that stars provide approx.20% of the soft x-ray background in the 0.28--1.0 keV passband and therefore contribute significantly to the soft x-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse x-ray background in the 0.15--0.28 keV passband is < or approx. =3%.

  18. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  19. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    NASA Astrophysics Data System (ADS)

    Lafford, T. A.; Villanova, J.; Plassat, N.; Dubois, S.; Camel, D.

    2013-03-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  20. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  1. SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS

    SciTech Connect

    Duff, M

    2006-09-28

    Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

  2. Phase Resolved X-ray Spectral Analysis of Soft IPs

    NASA Astrophysics Data System (ADS)

    Pekon, Yakup

    2016-07-01

    As a subclass of Cataclysmic Variables, Intermediate Polars (IPs) are magnetic systems which mainly show hard X-ray emission. However, there have been an increasing number of systems that also show a soft emission component arising from reprocessed X-rays from the white dwarf limbs. Due to their relatively short periods, they pose as good canditates to perform phase resolved analysis. In this work, X-ray phase resolved spectral analysis of selected IPs with soft X-ray emission components (such as PQ Gem, V2069 Cyg etc.) over the orbital and/or spin periods will be presented. The analyses will help a better understanding of the complex absorption mechanisms and the nature of the soft X-ray emissions in soft IPs.

  3. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    SciTech Connect

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  4. Modeled soft X-ray solar irradiances

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1994-01-01

    Solar soft X-rays have historically been inaccurately modeled in both relative variations and absolute magnitudes by empirical solar extreme ultraviolet (EUV) irradiance models. This is a result of the use of a limited number of rocket data sets which were primarily associated with the calibration of the AE-E satellite EUV data set. In this work, the EUV91 solar EUV irradiance model has been upgraded to improve the accuracy of the 3.0 to 5.0 nm relative irradiance variations. The absolute magnitude estimate of the flux in this wavelength range has also been revised upwards. The upgrade was accomplished by first digitizing the SOLRAD 11 satellite 4.4 to 6.0 nm measured energy flux data set, then extracting and extrapolating a derived 3.0 to 5.0 nm photon flux from these data, and finally by performing a correlation between these derived data and the daily and 81-day mean 10.7 cm radio flux emission using a multiple linear regression technique. A correlation coefficient of greater than 0.9 was obtained between the dependent and independent data sets. The derived and modeled 3.0 to 5.0 nm flux varies by more than an order of magnitude over a solar cycle, ranging from a flux below 1 x 10(exp 8) to a flux greater than 1 x 10(exp 9) photons per sq cm per sec. Solar rotational (27-day) variations in the flux magnitude are a factor of 2. The derived and modeled irradiance absolute values are an order of magnitude greater than previous values from rocket data sets related to the calibration of the AE-E satellite.

  5. Development of small scale soft x-ray lasers

    SciTech Connect

    Kim, D.; Suckewer, S. . Plasma Physics Lab. Princeton Univ., NJ . Dept. of Mechanical and Aerospace Engineering); Skinner, C.H.; Voorhees, D. . Plasma Physics Lab.)

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183{angstrom} has been obtained with relatively low pump laser energies (as low as 6J) in a portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs.

  6. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  7. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  8. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  9. Calcified-tissue investigations using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X. ); Bockman, R.S. . Medical Coll.); Rabinowitz, M.B. ); Hammond, P.B.; Bornschein, R.L. ); Hoeltzel, D.A. )

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 {mu}m for the emission work and 25 {mu}m for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs.

  10. X-ray studies of multilayer semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Shiwen

    X-ray scattering and absorption techniques utilizing synchrotron radiation have been used to study a variety of multilayer semiconductors. The angular-dependent x-ray scattering at grazing incidence angles (grazing incidence x-ray scattering, GIXS) provides structural information of interfaces in these materials, such as rms interfacial roughness, cross- and lateral-correlation lengths, etc. Long-range order structures in material are probed by large-angle scattering (x-ray diffraction), in which strain and lattice constant as well as crystallinity of the epilayers are measured. Local structural variations in materials including local bond length, coordination number, and local disorder are obtained quantitatively by examining the modulation in the x-ray absorption spectrum some 40 eV above the absorption edge (extended x-ray absorption fine structure, EXAFS). Materials studied in the present work are SiGe/Si heterostructures, MnAs/GaAs ferromagnetic-semiconductor films, solar cell films, ZnSe-based II-VI semiconductor thin films, InGaAs/GaAs and GaAs/AlAs superlattices. Results obtained have shown (i) evidence for strain-induced surface/interface morphology variations in SiGe/Si heterostructures, (ii) template-dependent microstructures in MnAs/GaAs, (iii) changes in interface structures for films of different formations in solar cell films, (iv) differences between samples prepared by different epitaxial growth methods in II-VI semiconductor films, (v) observation of lateral structural ordering in one of the InGaAs/GaAs superlattices, (vi) differences in interfacial microstructures between MBE-grown samples with different interrupts in GaAs/AlAs superlattices. Most of all, x- rays are found to be a very useful nondestructive tool for probing microscopic structures in various multilayer semiconductor materials.

  11. Hard X-Ray, Soft X-Ray, and EUV Studies of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Wagner, William (Technical Monitor)

    2003-01-01

    Document study the hard X-ray (HXR), soft X-ray (SXR) ,EUV, and magnetic nature of solar eruptions, with the objective of elucidating the physics of the eruption process. In particular, it was examine the viability of two specific eruption mechanisms, detailed in our proposal. These mechanisms are the "breakout model", and the "tether cutting model". During the second year, it was a significant progress in the goals to Data Sets Utilized. In the publications during this second year of the grant period, the data was used from the E W Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) instruments on SOHO, and from the Soft X-ray Telescope (SXT), Hard X-ray Telescope (HXT), and the Bragg Crystal Spectrometer (BCS) on Yooh.

  12. Soft-X-Ray Prefilter for Hot, Bright Objects

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Ortendahl, J. A.

    1985-01-01

    Prefilters consisting of beryllium foil supported on conductive silver mesh transmit soft x-rays but are nearly opaque to visible and infrared light. New Be/AG filters protect imaging X-ray detectors from damage by visible and longer wavelength radiation when viewing such hot, bright emitters as Sun or possibly certain industrial processes.

  13. Ray tracing homogenizing mirrors for synchrotron x-ray lithography

    NASA Astrophysics Data System (ADS)

    Homer, Michael; Rosser, Roy J.; Speer, R. J.

    1991-12-01

    Saddle toroid array mirrors (STAMs) are novel grazing-incidence mirrors. They have been proposed as the optical component that most efficiently matches synchrotron orbital radiation (SOR) to the needs of proximity x-ray lithography. However, STAMs have yet to be accepted by the synchrotron lithography community because of the lack of detailed data on their expected performance, due primarily to the difficulty of raytracing such mirrors using existing optical raytrace programs. A raytracing package written especially to study the design and optimization of these unusually shaped mirrors and the very encouraging results obtained with the package to date are described. The optimum STAM designs turn out to be the most effective way of homogeneously illuminating a rectangular proximity x-ray lithography mask, improving on existing scanning mirror systems by at least a factor of four. They have the added advantage of being stationary, which should lead to greater reliability--a quality of considerable value in the production environment these mirrors are intended for, namely the ultra-high vacuum of a synchrotron beamline. Based on the results of the raytracing, a prototype STAM has been constructed, and preparations are being made for an x-ray test of the device.

  14. First Terrestrial Soft X-ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Ostegaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2004-01-01

    Northern auroral regions of Earth were imaged using the High-Resolution Camera (HRC-1) aboard the Chandra X-Ray Observatory (CXO) at 10 epochs (each approx.20 min duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earth s soft (<2 keV) x-ray aurora in a comparative study with Jupiter s x-ray aurora, where a pulsating x-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft x-ray observations of Earth s aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft x-ray signal is produced by electron bremsstrahlung.

  15. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (< 2 keV) X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  16. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  17. High-performance soft x-ray spectromicroscopy beamline at SSRF.

    PubMed

    Xue, Chaofan; Wang, Yong; Guo, Zhi; Wu, Yanqing; Zhen, Xiangjun; Chen, Min; Chen, Jiahua; Xue, Song; Peng, Zhongqi; Lu, Qipeng; Tai, Renzhong

    2010-10-01

    The Shanghai Synchrotron Radiation Facility (SSRF) is the first third-generation synchrotron facility in China and operated at an electron energy of 3.5 GeV. One of the seven beamlines in the first construction phase is devoted to soft x-ray spectromicroscopy and is equipped with an elliptically polarized undulator light source, a plane grating monochromator, and a scanning transmission x-ray microscope end station. Initial results reveal the high performance of this beamline, with an energy resolving power estimated to be over 10,000 at the argon L-edge and a spatial resolution better than 30 nm. PMID:21034086

  18. High-performance soft x-ray spectromicroscopy beamline at SSRF

    NASA Astrophysics Data System (ADS)

    Xue, Chaofan; Wang, Yong; Guo, Zhi; Wu, Yanqing; Zhen, Xiangjun; Chen, Min; Chen, Jiahua; Xue, Song; Peng, Zhongqi; Lu, Qipeng; Tai, Renzhong

    2010-10-01

    The Shanghai Synchrotron Radiation Facility (SSRF) is the first third-generation synchrotron facility in China and operated at an electron energy of 3.5 GeV. One of the seven beamlines in the first construction phase is devoted to soft x-ray spectromicroscopy and is equipped with an elliptically polarized undulator light source, a plane grating monochromator, and a scanning transmission x-ray microscope end station. Initial results reveal the high performance of this beamline, with an energy resolving power estimated to be over 10 000 at the argon L-edge and a spatial resolution better than 30 nm.

  19. X-Ray Synchrotron-emitting Fe-rich Ejecta in Supernova Remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Dyer, Kristy K.; Borkowski, Kazimierz J.; Reynolds, Stephen P.

    2002-12-01

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. In a previous study with ASCA data, we found that the middle-aged supernova remnant RCW 86 showed evidence for both processes, and we predicted that observations with much higher spatial resolution would distinguish harder X-rays, which we proposed were primarily synchrotron emission, from softer, thermal X-rays. Here we describe Chandra observations that amply confirm our predictions. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray-emitting electrons and longer lived radio-emitting electrons are accelerated. Soft X-rays are spatially well correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fitted with simple thermal plane-shock models. Harder X-rays show Fe Kα emission and are well described with a similar soft thermal component, but a much stronger synchrotron continuum dominating above 2 keV, and a strong Fe Kα line. Quantitative analysis of this line and the surrounding continuum shows that it cannot be produced by thermal emission from a cosmic-abundance plasma; the ionization time is too short, as shown by both the low centroid energy (6.4 keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane shock in Fe-rich ejecta, with a synchrotron continuum, provides a natural explanation. This requires that reverse shocks in ejecta be accelerating electrons to energies of order 50 TeV. We show that maximum energies of this order can be produced by radiation-limited diffusive shock acceleration at the reverse shocks. In the Appendix, we demonstrate that an explanation of the continuum as being due to nonthermal bremsstrahlung is unlikely.

  20. Soft x-ray holographic microscopy

    NASA Astrophysics Data System (ADS)

    Stickler, Daniel; Frömter, Robert; Stillrich, Holger; Menk, Christian; Tieg, Carsten; Streit-Nierobisch, Simone; Sprung, Michael; Gutt, Christian; Stadler, Lorenz-M.; Leupold, Olaf; Grübel, Gerhard; Oepen, Hans Peter

    2010-01-01

    We present a new x-ray microscopy technique based on Fourier transform holography (FTH), where the sample is separate from the optics part of the setup. The sample can be shifted with respect to the holography optics, thus large-scale or randomly distributed objects become accessible. As this extends FTH into a true microscopy technique, we call it x-ray holographic microscopy (XHM). FTH allows nanoscale imaging without the need for nanometer-size beams. Simple Fourier transform yields an unambiguous image reconstruction. We demonstrate XHM by studying the magnetic domain evolution of a Co/Pt multilayer film as function of locally varied iron overlayer thickness.

  1. Novel approaches for correction against the soft matrix effects in the quantitative elemental imaging of human substantia nigra tissue using synchrotron X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Surowka, A. D.; Wrobel, P.; Marzec, M. M.; Adamek, D.; Szczerbowska-Boruchowska, M.

    2016-09-01

    The inherent structural heterogeneity of biological specimens poses a number of problems for analytical techniques to assess for the elemental composition of a sample, and this is the case with quantitative X-ray fluorescence (XRF). Differences in density along with any possible variation in thickness upon frequently used freeze drying of thin samples could influence the results of the quantification and therefore underlie one of the most critical matrix effects in XRF, often referred to as the mass thickness effect. In our study, we analyzed substantia nigra tissue samples of various thicknesses mounted onto silicon nitride membranes. The aim was to show up the variation in the mass thickness of the different substantia nigra tissue compartments: the neuromelanine pigmented neurons and neuropil could influence the final quantitative results. In that respect, the main goal was to derive several semi- and fully-quantitative methods to correct for the mass thickness effects using either a membrane Si transmission signal or the intensity of incoherently scattered primary X-ray radiation. Also, the pioneer topographic studies on dried substantia nigra tissue specimens demonstrated the drying procedure is accompanied by an around 80% reduction in the samples' thickness. The correction scheme is presented together with the semi-theoretical procedure developed to compute for the mass thickness for substantia nigra tissue structures, and the correction scheme's robustness is also presented.

  2. Soft x-ray imaging using Polaroid Land films

    SciTech Connect

    Wong, C.S.; Choi, P.; Deeney, C.

    1988-02-01

    It is demonstrated in this note that optical Polaroid Land films can be used as a convenient detector in the soft x-ray region. The performance of Polaroid 667 film has been found to be comparable to that of the Kodak direct exposure film (DEF) for soft x-ray pinhole imaging. By a suitable choice of multiple filters, qualitative information about a dense plasma has been obtained.

  3. Filters for soft X-ray solar telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  4. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  5. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  6. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  7. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  8. X-ray diffraction microtomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Barroso, R. C.; Lopes, R. T.; de Jesus, E. F. O.; Oliveira, L. F.

    2001-09-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtained diffraction patterns form the basis of a selective tomography technique. Preliminary images are presented.

  9. Synchrotron X-ray Enhanced Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Rose, Volker; Freeland, John

    2011-03-01

    Proper understanding of complex phenomena occurring in nanostructures requires tools with both the ability to resolve the nanometer scale as well as provide detailed information about chemical, electronic, and magnetic structure. Scanning tunneling microscopy (STM) achieves the requisite high spatial resolution; however, direct elemental determination is not easily accomplished. X-ray microscopies, on the other hand, provide elemental selectivity, but currently have spatial resolution only of tens of nanometers. We present a novel and radically different concept that employs detection of local synchrotron x-ray interactions utilizing a STM that provides spatial resolution, and x-ray absorption directly yields chemical, electronic, and magnetic sensitivity. If during tunneling the sample is simultaneously illuminated with monochromatic x-rays, characteristic absorption will arise. Electrons that are excited into unoccupied levels close to the Fermi level modulate the tunneling current giving rise to elemental contrast. This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

  10. Soft-x-ray and vacuum-ultraviolet beamlines at the National Synchrotron Light Source 700-MeV storage ring

    SciTech Connect

    Williams, G.P.; Howells, M.R.

    1982-01-01

    We summarize the characteristics of the first beamlines which are being installed and commissioned at the National Synchrotron Light Source (NSLS) 700 MeV storage ring at Brookhaven National Laboratory. We also give a progress report as of July 1982 on the early stages of beamline alignment and operation in which particular attention is paid to the 5 beamlines which NSLS has developed. The report describes in detail a novel method for beamline alignment which is of general application.

  11. Effects of soft x-ray irradiation on cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Ford, Thomas W.; Page, Anton M.; Foster, Guy F.; Stead, Anthony D.

    1993-01-01

    The future of x-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artefacts are not introduced as a result of the image collection system. One possible source of artefacts is cellular damage resulting form the irradiation of the material with soft x rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380 eV) soft x rays. Extreme ultrastructural damage has been detected following doses of 103 - 104 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft x-ray microscopy.

  12. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  13. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  14. Soft X-ray Polarimetry Development

    NASA Astrophysics Data System (ADS)

    Marshall, Herman; Schulz, Norbert S.; Heine, Sarah

    2016-07-01

    We present continued development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 95%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. We will present results from measurements of new laterally graded multilayer mirrors and new gratings essential to the design. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission could measure the polarization of a blazar such as Mk 421 to 5-10 percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.

  15. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  16. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  17. CH 3Cl adsorption on a Si(100)2 × 1 surface modified by alkali metal overlayer studied by soft X-ray photoemission using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gentle, T. M.; Soukiassian, P.; Schuette, K. P.; Bakshi, M. H.; Hurych, Z.

    1988-08-01

    We present the first study of the effect of an alkali metal overlayer on the adsorption of an organic molecule, methylchloride, on a Si(100)2 × 1 surface. In strong contrast to the behavior of molecular oxygen or nitrogen which were found to react with the silicon substrate, there was no significant interaction between methylchloride and silicon, rather, the formation of alkali-chlorine bonds was observed. Core level and valence band spectroscopies using synchrotron radiation were used to study these systems. Sodium was found to exhibit the strongest interaction with mehtylchloride which was dissociated, while the effects produced by K and Cs were weaker.

  18. Nanoimaging cells using soft X-ray tomography.

    PubMed

    Parkinson, Dilworth Y; Epperly, Lindsay R; McDermott, Gerry; Le Gros, Mark A; Boudreau, Rosanne M; Larabell, Carolyn A

    2013-01-01

    Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen-water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer-Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues. PMID:23086890

  19. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  20. Contrasting of biological samples for X-ray synchrotron microtomography.

    PubMed

    Efimova, O I; Khlebnikov, A S; Senin, R A; Voronin, P A; Anokhin, K V

    2013-08-01

    The method of contrasting with iodine ions was developed to obtain high-resolution 3D images of large biological specimens using a synchrotron X-ray microtomography unit. It was shown that the samples (late mouse embryos) treated with 50% Lugol solution with addition of 25% ethanol for 48 h followed by a 48-h washout in phosphate buffered saline had maximum contrast and lowest compression artifacts. Processing of samples by this protocol allowed detecting zones of active proliferation. Incubation of brain samples for 120 h in 7.6% meglumine/sodium diatrizoate without washout ensured the best contrast during myelin identification. PMID:24143358

  1. First Terrestrial Soft X-ray Aurora Observations by Chandra

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Ostgaard, Nikolai; Chang, Shen-Wu; Metzger, Albert E.; Majeed, Tariq

    2004-01-01

    Northern polar "auroral" regions of Earth was observed by High-Resolution Camera in imaging mode (T32C-I) aboard Chandra X-Ray Observatory (CXO) during mid December 2003 - mid April 2004. Ten CXO observations, each approximately 20 min duration, were made in a non-conventional method (due to CXO technical issues), such that Chandra was aimed at a fixed point in sky and the Earth's polar cusp was allowed to drift through the HRC-I field-of-view. The observations were performed when CXO was near apogee and timed during northern winter mostly near midnight (6 hr), except two observations which occurred around 1200 UT, so that northern polar region is entirely in dark and solar fluoresced x-ray contamination can be avoided. These observations were aimed at searching the Earth's soft x-ray aurora and to do a comparative study with Jupiter's x-ray aurora, where a pulsating x-ray hot-spot near the northern magnetic pole has been observed by Chandra that implies a particle source region near Jupiter's magnetopause, and entry of heavy solar wind ions due to high-latitude reconnection as a viable explanation for the soft x-ray emissions. The first Chandra soft (0.1-2 keV) x-ray observations of Earth's aurora show that it is highly variable (intense arc, multiple arcs, diffuse, at times almost absent). In at least one of the observations an isolated blob of emission is observed where we expect cusp to be: giving indication of solar wind charge-exchange signature in x-rays. We are comparing the Chandra x-ray observations with observations at other wavelengths and particle data from Earth-orbiting satellites and solar wind measurements from near-Earth ACE and SOH0 spacecraft. Preliminary results from these unique CXO-Earth observations will be presented and discussed.

  2. Soft x-ray imager onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Nakajima, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Dotani, Tadayasu; Ozaki, Masayuki; Natsukari, Chikara; Tomida, Hiroshi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Bamba, Aya

    2013-09-01

    The Soft X-ray Imager, SXI, is an X-ray CCD camera onboard the ASTRO-H satellite to be launched in 2015. ASTRO-H will carry two types of soft X-ray detector. The X-ray calorimeter, SXS, has an excellent energy resolution with a narrow field of view while the SXI has a medium energy resolution with a large field of view, 38' square. We employ 4 CCDs of P-channel type with a depletion layer of 200 μm. Having passed the CDR, we assemble the FM so that we can join the final assembly. We present here the SXI status and its expected performance in orbit.

  3. Soft x-ray amplification in a plasma waveguide

    SciTech Connect

    Kato, Y.; Kodama, R.; Daido, H.; Murai, K.; Yuan, G.; Ninomiya, S.; Neely, D.; MacPhee, A.; Lewis, C. L. S.; Choi, I. W.; Nam, C. H.; Kawachi, T.

    1995-05-01

    Narrow divergence soft x-ray laser has been generated by double-pass amplification in a curved slab target with a neon-like germanium laser. Considering the electron density profile with the curved slab target, the plasma acts as a one-dimensional waveguide to the x-ray laser beam. Beam parameters such as radius and wavefront curvature of the Gaussian beam are derived from the analysis on beam propagation in the waveguide. Possibility for generating a single-mode x-ray laser beam by multiple-pulse pumping of the curved target is discussed.

  4. Fabrication of a focusing soft X-ray collector payload

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Decaprio, A. R.; Manko, H.; Ting, J. W. S.

    1976-01-01

    A large area X-ray focusing collector with arc minute resolution and a position sensitive detector capable of operating in the soft X-ray region was developed for use on sounding rockets in studying stellar X-ray sources. The focusing payload consists of the following components, which are described: (1) a crossed paraboloid mirror assembly; (2) an aspect camera and star tracker; (3) a focal plane assembly containing an imaging proportional counter and its preamplifiers, high voltage power supplies and gas system; (4) a fiducial system; and (5) housekeeping, data handling, instrumentation and telemetry electronics. The design, tests, and operation are described.

  5. The interstellar medium and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    1996-01-01

    The soft X-ray background (SXRB) surface brightness provides data to study the approximately 10(exp 6) K plasma of the local interstellar medium of our Galaxy. Various studies were carried out in order to search for negative correlation, or shadowing, of the SXRB, and were coupled with interstellar medium absorption line studies. The purpose was to determine whether the distances to the shadowing material will lead to a three dimensional mapping of the X-ray emitting, and X-ray absorbing components.

  6. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  7. Synchrotron Area X-ray Detectors, Present and Future

    SciTech Connect

    Gruner, Sol M.

    2010-06-23

    X-ray experiments are very frequently detector limited at today's storage ring synchrotron radiation (SR) sources, and will be even more so at future Energy Recovery Linac and X-ray Free Electron Laser sources. Image plate and phosphor-coupled CCD detectors that predominate at present-day sources were outgrowths of technologies initially developed for the medical and astronomical communities, respectively, with resultant limitations for SR. These limitations are enumerated. The growth of commercial silicon foundries and design tools enabling the production of large, customized integrated circuits is beginning to have a profound impact on SR detectors and is ushering in the age of 'designer detectors'. Novel area Pixel Array Detectors (PADs) are starting to appear in which each pixel has dedicated, complex circuitry capable of high speed and, in some cases, significant data processing power for specific applications. PADs now at, or near the horizon will be described. Integrated circuit methods continue to develop at a rapid pace. Implications for future x-ray detectors will be discussed.

  8. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  9. Isolated attosecond soft X-rays and water window XAFS

    NASA Astrophysics Data System (ADS)

    Biegert, Jens

    2016-05-01

    We demonstrate generation of isolated attosecond soft X-ray pulses with duration less than 350 as at the carbon K-edge at 284 eV. This reproducible and CEP stable attosecond soft X-ray continuum covers the entire water window from 200 eV to 550 eV with a flux of 7.3x 107 photons/s and corresponds to a pulse energy of 2.9 pJ. We demonstrate the utility of our table-top source through soft X-ray near-edge fine-structure spectroscopy at K-shell absorption edges in condensed matter and retrieve the specific absorption features corresponding to the binding orbitals. We believe that these results herald attosecond material science by bridging the gap between ultrafast temporal resolution and element specific probing at the fundamental absorption edges of matter.

  10. Soft x-ray spectroscopy in atmospheric pressure helium

    SciTech Connect

    Roper, M.D.; van der Laan, G.; Flaherty, J.V.; Padmore, H.A. )

    1992-01-01

    We report on an environmental chamber, which is attached to a UHV beamline, in which soft x-ray measurements can be done at atmospheric pressure in helium. X-ray measurements in air can only be performed at energies above about 3 keV because of the strong absorption of soft x rays by oxygen and nitrogen. However, a low-{ital Z} scatterer such as helium has a long absorption length for soft x rays even at atmospheric pressure. Thus, this new chamber allows soft x-ray experiments to be performed on samples with physical properties that are incompatible with UHV conditions, e.g., liquid and frozen aqueous solutions, corrosive materials, etc. A helium-tight tank has been installed behind the vacuum experimental chamber of the double crystal beamline 3.4 at the Daresbury SRS. The tank is purged with helium at atmospheric pressure and the gas in the tank is isolated from the high vacuum of the rest of the beamline by a thin mylar window which is supported on a capillary array. The tank contains a sample stage, two ionization chambers and a parallel-plate gas proportional counter for fluorescence detection of dilute samples, which has produced good results on the {ital K} edges of Cl, S, and P.

  11. X-Ray Morphology,Kinematics and Geometry of the Eridanus Soft X-Ray Enhancement

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyu; Burrows, David N.; Sanders, Wilton T.; Snowden, Steve L.; Penprase, Bryan E.

    1994-12-01

    We present mosaics of X-ray intensity maps and spectral fit results for selected regions of the Eridanus soft X-ray Enhancement (EXE), as well as kinematics of the X-ray absorbing clouds in the EXE region and geometrical properties of this X-ray emitting bubble. The work is based on pointed observations with the ROSAT Position Sensitive Proportional Counter, 21 cm observations with the NRAO 140 foot telescope at Green Bank and interstellar Na D line observations with the NOAO Coude Feed telescope at Kitt Peak. The ROSAT pointed observations examine two regions of the EXE. The first is an X-ray absorption lane produced by an IR filament which is located at galactic coordinates of about (199(deg) , -45(deg) ). The second is in the vicinity of the northern (galactic) boundary of the 1/4 keV EXE, at galactic coordinates of about (200(deg) , -25(deg) ). Both our spatial and spectral analysis suggest that variations in emission measure and NH are primarily reponsible for the observed variations of the X-ray intensity. Using 100mu intensities obtained from IRAS maps and NH column densities obtained from our X-ray spectral fits, we find 100 microns/NH ratios across the IR filament that are compatible with typical high latitude values. Maps of the X-ray absorbing clouds in the EXE region at 21 cm reveal that these clouds may belong to two different expanding systems, with one possibly associated with our Local Bubble and the other with the boundary of the EXE. Combination of 21 cm data with interstellar Na D line observations toward stars in the directions of some of the X-ray absorbing clouds along (l,b) ~ (200(deg) ,-40(deg) ) indicate that the near side of the EXE is farther than 151 pc and the distance to the center of the EXE at this latitude is about 226 pc. The density and the thermal pressure found for this X-ray emitting superbubble are 0.015 cm(-3) and 4.9 times 10(4) cm(-3) K.

  12. Soft X-ray Excesses and X-ray Line Variability in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Varlotta, Angelo; McCollough, Michael L

    2014-06-01

    Cygnus X-3 is an X-ray binary (XRB) system containing a stellar-mass compact object, most likely a black hole, and a Wolf-Rayet companion star, which produces collimated, relativistic jets, placing it in the sub-class of XRBs known as microquasars. During a Swift/XRT monitoring program of Cygnus X-3, a soft X-ray excess (below 1 keV) was observed at certain states and phases of activity. This soft excess appears to be similar to the variable soft emission observed in Seyfert galaxies. The presence of these features in Cygnus X-3 would argue for a greater support of the black-hole nature of the compact object and serve to better highlight the similarities of microquasars and AGN. We present the results of our investigations of these soft excesses, as well as the variations of the X-ray Fe line region (6.4-7.0 keV) as a function of the state activity and orbital phase.

  13. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Orsini, F.; Batani, D.; Bernardinello, A.; Desai, T.; Ullschmied, J.; Skala, J.; Kralikova, B.; Krousky, E.; Juha, L.; Pfeifer, M.; Kadlec, Ch.; Mocek, T.; Präg, A.; Renner, O.; Cotelli, F.; Lora Lamia, C.; Zullini, A.

    2004-08-01

    Soft X-ray Contact Microscopy (SXCM) of Caenorhabditis elegans nematodes with typical length ~800 μ m and diameter ~30 μ m has been performed using the PALS laser source of wavelength λ = 1.314~μ m and pulse duration τ (FWHM) = 400 ps. Pulsed soft X-rays were generated using molybdenum and gold targets with laser intensities I ≥ 1014 W/cm2. Images have been recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Cuticle features and several internal organs have been identified in the SXCM images including lateral field, cuticle annuli, pharynx, and hypodermal and neuronal cell nuclei.

  14. A soft x-ray octadecyl hydrogen maleate crystal spectrograph

    SciTech Connect

    Fan, P.Z.; Fill, E.E.; Tietang, G.

    1996-03-01

    A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}

  15. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  17. Efficient alignment scheme for zone-plates-based transmission soft X-ray microscope

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Shin, Hyun-Joon; Hong, Chung Ki

    2010-12-01

    Alignment and operation of a zone-plate (ZP)-based transmission soft X-ray microscope (TXM) is difficult and time consuming, especially when the TXM has no dedicated X-ray source. We introduce here an efficient TXM alignment scheme. The TXM employed is a simple in-situ-experiment-capable setup. It includes ultrahigh-vacuum (UHV)-compatible conflat flanges and is mountable in tandem with any soft X-ray synchrotron radiation beamlines. Obtaining zeroth- and first-order diffracted (condenser-zone-plate [CZP]-focused) beams simultaneously by means of the objective zone plate (OZP) is the most essential step in the alignment scheme. We were able to acquire, in one hour at a radiation wavelength of 2.49 nm, an image of 50 nm spatial resolution.

  18. Soft X-Ray Imaging of spin dynamics at high spatial and temporalresolution

    SciTech Connect

    Mesler, Brooke L.; Fischer, Peter; Chao, Weilun; Anderson, Erik H.

    2007-06-01

    Soft X-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15nm. At XM-1, the full-field soft X-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70ps which is set by the width of the X-ray pulses from the synchrotron. Results obtained with a 2 {micro}m x 4 {micro}m x 45nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nsec after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed.

  19. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  20. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  1. Diffraction grating transmission efficiencies for XUV and soft x rays.

    PubMed

    Schnopper, H W; Van Speybroeck, L P; Delvaille, J P; Epstein, A; Källne, E; Bachrach, R Z; Dijkstra, J; Lantward, L

    1977-04-01

    Efficiencies for diffraction of 45-275-eV x rays into orders by interferometrically formed, electrodeposited, gold transmission gratings have been measured on the 4 degrees beam line at the Stanford Synchrotron Radiation Project (SSRP). Anomalous dispersion affects the observed efficiency since the gold is partially transmitting to x rays. Model calculations which include anomalous dispersion are in good agreement with observations. With a suitable choice of material and thickness, a grating can be optimized for a given wavelength range by reducing the zero order transmission and enhancing the higher orders. Even orders are suppressed for a grating with equal slit and wire sizes. PMID:20168641

  2. Soft x-ray streak camera for laser fusion applications

    SciTech Connect

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  3. Microspectroscopic soft X-ray analysis of keratin based biofibers.

    PubMed

    Späth, Andreas; Meyer, Markus; Semmler, Sonja; Fink, Rainer H

    2015-03-01

    Scanning soft X-ray transmission microspectroscopy (STXM) and transmission electron microscopy (TEM) have been employed for a high-resolution morphological and chemical analysis of hair fibers from human, sheep and alpaca. STXM allows optimum contrast imaging of the main hair building blocks due to tuneable photon energy. Chemical similarities and deviations for the human hair building blocks as well as for the three investigated species are discussed on the basis of the local near-edge X-ray absorption fine structure (NEXAFS). The spectra of melanosomes corroborate the state-of-the-art model for the chemical structure of eumelanin. Complementary TEM micrographs reveal the occurrence of cortex sectioning in alpaca hair to some extent. A spectroscopic analysis for human hair cortex indicates low mass loss upon soft X-ray irradiation, but transformation of chemical species with decreasing amount of peptide bonds and increasing NEXAFS signal for unsaturated carbon-carbon bonds. PMID:25553413

  4. Synchrotron x-ray reticulography: principles and applications

    NASA Astrophysics Data System (ADS)

    Lang, A. R.; Makepeace, A. P. W.

    1999-05-01

    Synchrotron x-ray reticulography is a versatile new technique for mapping misorientations in single crystals. It is nearly as simple to perform as conventional single-crystal Laue topography, yet it yields quantitative data on misorientations that would demand long sequences of images if the double-crystal technique were applied. In reticulography a fine-scale x-ray absorbing mesh is placed between a Laue-diffracting crystal specimen and the topograph-recording photographic plate. The mesh splits the diffracted beam into an array of individually identifiable microbeams. Direction differences between microbeams, which give the orientation differences between the crystal elements reflecting them, are measured from their relative shifts within the array when mesh-to-plate distance is changed. The angular sensitivity of reticulography depends upon the angular size of the x-ray source. At Station 7.6 at the SRS, Daresbury, 80 m from the tangent point, and with source size FWHM (full width half maximum) = 0.23 mm vertically, the incidence angular range in the vertical plane is only 0.6 arcsec, and misorientations down to this magnitude are measurable. Applications of reticulography to three quite different problems are described, illustrating the method's versatility. The problems are: (1) measuring surface lattice-plane tilts due to an array of dislocations in a large synthetic diamond; (2) determining the sense of the Burgers vector of a giant screw dislocation in SiC; and (3) measuring lattice curvature above an energetic ion implant in a natural diamond.

  5. 3D synchrotron x-ray microtomography of paint samples

    NASA Astrophysics Data System (ADS)

    Ferreira, Ester S. B.; Boon, Jaap J.; van der Horst, Jerre; Scherrer, Nadim C.; Marone, Federica; Stampanoni, Marco

    2009-07-01

    Synchrotron based X-ray microtomography is a novel way to examine paint samples. The three dimensional distribution of pigment particles, binding media and their deterioration products as well as other features such as voids, are made visible in their original context through a computing environment without the need of physical sectioning. This avoids manipulation related artefacts. Experiments on paint chips (approximately 500 micron wide) were done on the TOMCAT beam line (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Paul Scherrer Institute in Villigen, CH, using an x-ray energy of up to 40 keV. The x-ray absorption images are obtained at a resolution of 350 nm. The 3D dataset was analysed using the commercial 3D imaging software Avizo 5.1. Through this process, virtual sections of the paint sample can be obtained in any orientation. One of the topics currently under research are the ground layers of paintings by Cuno Amiet (1868- 1961), one of the most important Swiss painters of classical modernism, whose early work is currently the focus of research at the Swiss Institute for Art Research (SIK-ISEA). This technique gives access to information such as sample surface morphology, porosity, particle size distribution and even particle identification. In the case of calcium carbonate grounds for example, features like microfossils present in natural chalks, can be reconstructed and their species identified, thus potentially providing information towards the mineral origin. One further elegant feature of this technique is that a target section can be selected within the 3D data set, before exposing it to obtain chemical data. Virtual sections can then be compared with cross sections of the same samples made in the traditional way.

  6. X-ray and synchrotron studies of porous silicon

    SciTech Connect

    Sivkov, V. N.; Lomov, A. A.; Vasil'ev, A. L.; Nekipelov, S. V.; Petrova, O. V.

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  7. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region

    SciTech Connect

    Zang, H. P.; Wang, C. K.; Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H.; Jiang, G.; Zhu, X. L.; Xie, C. Q.; Zhao, Y. D.; Cui, M. Q.

    2012-03-12

    We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

  8. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region

    NASA Astrophysics Data System (ADS)

    Zang, H. P.; Wang, C. K.; Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H.; Jiang, G.; Zhu, X. L.; Xie, C. Q.; Zhao, Y. D.; Cui, M. Q.

    2012-03-01

    We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

  9. Soft x-ray virtual diagnostics for tokamak simulations

    SciTech Connect

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-15

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  10. Soft x-ray virtual diagnostics for tokamak simulations.

    PubMed

    Kim, J S; Zhao, L; Bogatu, I N; In, Y; Turnbull, A; Osborne, T; Maraschek, M; Comer, K

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling. PMID:19947727

  11. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGESBeta

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  12. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect

    Guo, Jinghua

    2008-09-22

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  13. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  14. Lasers, extreme UV and soft X-ray

    DOE PAGESBeta

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  15. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  16. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  17. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  18. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  19. Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy.

    PubMed

    Zhang, Lijuan; Zhao, Binyu; Xue, Lian; Guo, Zhi; Dong, Yaming; Fang, Haiping; Tai, Renzhong; Hu, Jun

    2013-05-01

    Synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X-ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6, 4515-4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale. PMID:23592619

  20. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  1. Exploring nanomagnetism with soft x-ray microscopy

    SciTech Connect

    Fischer, P.; Kim, D.-H.; Mesler, B.L.; Chao, W.; Sakdinawat,A.E.; Anderson, E.H.

    2006-10-30

    Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows to study magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10nm and at next generation X-ray sources a time resolution in the fsec regime can be envisioned.

  2. Soft X-Ray Polarimetry with a CubeSat

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    We describe an instrument capable of measuring the polarization of astrophysical sources in soft X-rays that can be accomplished at modest cost by exploiting CubeSats as novel vehicles for high energy astrophysics. The instrument would re-use technologies that will be demonstrated on the HaloSat cubesat that is currently under construction. Potential target include thermally-emitting isolated neutron stars and blazars. Measurement of the polarization of X-rays emitted from the surface of a highly magnetized neutron star provides a means to test a unique signature of strong-field quantum electrodynamics and probe the neutron star magnetic field and X-ray emission geometry. Polarization measurements of blazars should strongly constrain jet emission models.

  3. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  4. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  5. Synchrotron X-ray microtomographic study of tablet swelling.

    PubMed

    Laity, P R; Cameron, R E

    2010-06-01

    Tablet swelling behaviour was investigated by following the movements of embedded glass microsphere tracers, using X-ray microtomography (XmicroT) with intense illumination from a synchrotron. Specimens were prepared using combinations of hydroxypropyl-methyl-cellulose (HPMC) and microcrystalline cellulose (MCC) or pre-gelatinised starch (PGS), three materials commonly used as excipients for compacted tablets. The results revealed significant differences in swelling behaviour due to excipient type and compaction conditions. In particular, a sudden change was observed from gel-forming behaviour of formulations containing PGS or high HPMC content, to more rapid expansion and disintegration for formulations above 70% MCC. Although some radial expansion was observable with the higher PGS formulations and during later stages of swelling, axial expansion (i.e. the reverse of the compaction process) appeared to dominate in most cases. This was most pronounced for the 10/90 HPMC/MCC specimens, which rapidly increased in thickness, while the diameter remained almost unchanged. The expansion appeared to be initiated by hydration and may be due to the relaxation of residual compaction stress. This occurred within 'expansion zones', which initially appeared as thin bands close to the compacted (upper and lower) faces, but gradually advanced towards the centre and spread around the sides of the tablets. These zones exhibited lower X-ray absorbance, probably because they contained significant amounts of bubbles, which were formed by air released from the swelling excipients. Although, in most cases, these bubbles were too small to be resolved (<60 microm), larger bubbles (diameter up to 1mm) were clearly evident in the rapidly swelling 10/90 HPMC/MCC specimens. It is suggested that the presence of these bubbles may affect subsequent water ingress, by increasing the tortuosity and occluding part of the gel, which may affect the apparent diffusion kinetics (i.e. Fickian or Case II

  6. The Interrelation of Soft and Hard X-Ray Emission During Solar Flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1998-01-01

    The objective of this project is to determine the characteristics of flare energy transport processes through the study of soft X-rays, hard X-rays, and their interrelationships through analysis of Yohkoh SXT (Soft X-ray Telescope), HXT (Hard X- Ray Telescope) , and BCS (Bragg Crystal Spectrometer) data, and comparison with theoretical models.

  7. Dissociation of the benzene molecule by ultraviolet and soft X-rays in circumstellar environment

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; Lago, A. F.; de Souza, G. G. B.

    2009-04-01

    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by ultraviolet (UV) and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time-of-flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum UV (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50 per cent of the ionized benzene molecules survive to UV dissociation while only about 4 per cent resist to X-rays. Partial ion yields of H+ and small hydrocarbons, such as C2H+2, C3H+3, C4H+2, are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross-sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 was obtained.

  8. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  9. ASTRO-H Soft X-Ray Telescope (SXT)

    NASA Technical Reports Server (NTRS)

    Soong, Yang; Serlemitsos Peter J.; Okajima, Takashi; Hahne, Devin

    2011-01-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors\\ of which the energy range is from a few hundred eV to 15 keY, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 micron, 229 micron, and 305 micron of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 micron nominal and surface gold layer of 0.2 micron. Improvements on angular response over the Astro-El/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  10. Viewing spin structures with soft x-ray microscopy

    SciTech Connect

    Fischer, Peter

    2010-06-01

    The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

  11. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  12. Soft X-ray spectroscopy of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall L.

    My thesis work consisted of the design, fabrication and launch of a sounding rocket payload to observe the spectrum of the soft X-ray emission from the Cygnus Loop supernova remnant. This payload was designated the Cygnus X-ray Emission Spectroscopic Survey (CyXESS) and launched from White Sands Missile Range on November 20th, 2006. The novel X-ray spectrograph incorporated a wire- grid collimator feeding an array of gratings in the extreme off-plane mount which ultimately dispersed the spectrum onto never before flown Gaseous Electron Multiplier (GEM) detectors. This instrument recorded 65 seconds of usable data between 43-49.5 Å in two prominent features. The first feature near 45 Å is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in first order, while the second feature near 47.5 Å is first order S IX and S X. Fits to the spectra give an equilibrium plasma at log( T )=6.2 ( kT e =0.14 keV) and near cosmic abundances. This is consistent with previous observations, which demonstrated that the soft x-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity surrounding the Cygnus Loop.

  13. Soft X-ray polarimeter-spectrometer SOLPEX

    NASA Astrophysics Data System (ADS)

    Steslicki, Marek; Sylwester, Janusz; Plocieniak, Stefan; Bakala, Jaroslaw; Szaforz, Zaneta Anna; Scislowski, Daniel; Kowalinski, Miroslaw; Hernandez, Jose; Vadimovich Kuzin, Sergey; Shestov, Sergey

    2015-08-01

    We present an innovative soft X-ray polarimeter and spectrometer SOLPEX. The instrument will be mounted aboard the ISS within the Russian science complex KORTES. The measurements to be made by SOLPEX are expected to be of unprecedented quality in terms of sensitivity to detect the soft-X- ray polarization of solar emission emanating from active regions and flares in particular. Simultaneous measurements of the polarization degree and the other characteristics (eg. evolution of the spectra) constitute the last, rather unexplored area of solar X-ray spectroscopy providing substantial diagnostic potential. Second important science task to be addressed are the measurements of Doppler shifts in selected X-ray spectral emission lines formed in hot flaring sources. The novel-type Dopplerometer (flat Bragg crystal drum unit) is planned to be a part of SOLPEX and will allow to measure line Doppler shifts in absolute terms with unprecedented time resolution (fraction of a second) during the impulsive flare phases. We shall present some details of the SolpeX instrument and discuss observing sequences in a view of science objectives to be reached.

  14. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  15. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  16. K-Edge Subtraction Angiography with Synchrotron X-Rays

    SciTech Connect

    Giacomini, John C.

    1996-12-31

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  17. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  18. The soft X ray excess in Einstein quasar spectra

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Masnou, Jean-Louis; Elvis, Martin; Mcdowell, Jonathan; Arnaud, Keith

    1989-01-01

    The soft X-ray excess component is studied for a signal to noise limited subsample of 14 quasars from the WE87 sample observed with the Einstein Imaging Proportional Counter (IPC). Detailed analysis of the IPC data, combined with Einstein Monitor Proportional Counter (MPC) data where possible, and use of accurate galactic N sub H values allows estimation of the strength of any excess and improvement of constraints on the spectral slope at higher X-ray energies. A significant excess in 9 of the 14 objects is found. It is confined in all but one case to below 0.6 keV and variable in the two cases where there are multiple observations. The relation of the soft excess to other continuum properties of the quasars is investigated.

  19. Quantifying the Exospheric Component of Soft X-ray Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Snowden, Steven L.; Robertson, Ina; Hansen, Kenneth; Cravens, Thomas

    2007-01-01

    High charge state heavy ions in the solar wind exchange charge with ambient neutral gas. This process creates a product ion in an excited state. During the radiative cascade process, EUV and X-ray photons are emitted with energies in the range of about 100 eV to 1 keV. Because the terrestrial exospheric density at the nominal magnetopause location is relatively high, approx. 10 cu cm, solar wind charge exchange, or SWCX, can be observed by Earth-orbiting soft X-ray instruments such as the ROSAT Position Sensitive Proportional Counters (PSPC). In this presentation, we will compare simulated and observed soft Xray emission during an event on August 18-19, 1991 and discuss the role of exospheric SWCX emission for this and other events.

  20. Phase dispersion X-ray imaging of murine soft tissue

    NASA Astrophysics Data System (ADS)

    Ingal, V. N.; Ingal, E. A.

    2013-12-01

    The generation of phase-contrast (PC) images in the phase-dispersion introscopy (PDI) technique is the subject of this paper. Conditions for extreme sensitivity to murine soft-tissue anatomy are discussed. The unique information content and good contrast of the minutest details of anatomy, together with the high brilliance of X-ray optics, give the authors confidence that the PDI method can be successfully applied for medical diagnostics.

  1. A compact soft X-ray microscope using an electrode-less Z-pinch source

    NASA Astrophysics Data System (ADS)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  2. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  3. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.; Odell, Stephen L.; Ramsey, Brian D.; Gubarev, Mikhail V.; Ishida, Manabu; Maeda, Yoshitomo; Iizuka, Ryo; Hayashi, Takayuki; Tawara, Yuzuru; Furuzawa, Akihiro; Mori, Hideyuki; Miyazawa, Takuya; Kunieda, Hideyo; Awaki, Hisamitsu; Sugita, Satoshi; Tamura, Keisuke; Ishibashi, Kazunori; Izumiya, Takanori; Minami, Sari; Sato, Toshiki; Tomikawa, Kazuki; Kikuchi, Naomichi; Iwase, Toshihiro

    2014-07-01

    ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV within the effective aperture being defined by the nested reflectors' radius ranging between 5.8 cm to 22.5 cm. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before converging on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 m nominal and surface gold layer of 0.2 μm. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), SXT-1 or SXT-2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests

  4. Soft x-ray holographic computerized tomography imaging: experimental research

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Jiang, Shiping; Zhang, Xinyi

    2003-03-01

    A high-resolution three-dimensional (3D) imaging technology has been developed, which is a combination of x-ray holography and computerized tomography (CT) technology called holographic computerized tomography (HCT). The theory and experimental techniques on biological specimens with the use of synchrotron radiation are discussed. Projections at different angles are reconstructed with the numerical method of in-line holography, and then the reconstructed data with a higher lateral resolution are used to restore the 3D image by the CT technique. With this method, the degradation caused by the diffraction of x rays is canceled, and 3D images with high resolution of micrometer magnitude in both the lateral and the longitudinal directions are obtained.

  5. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  6. Tokamak T-10 soft x-ray imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Bobrovskij, G. A.; Kislov, D. A.; Lyadina, E. S.; Savrukhin, P. V.

    1991-04-01

    Three arrays of silicon surface-barrier diodes were recently installed on T-10 (R=1.5 m, a=0.3 m). The detectors view the plasma cross section along 58 chords spaced in the poloidal direction at one toroidal location. The tomographic reconstruction technique allows one to obtain the time evolution of the two-dimensional soft x-ray intensity profiles in the energy range of 2.5-15 keV. The field of view covered the main part of the plasma (r/a<0.7) with a spatial resolution as small as 2 cm, which is consistent with the scale of the processes under study. The signals are digitized at rates up to 100 kHz and stored in 464K (total) memory (8K per channel). The measured soft x-ray emission was applicable for investigation of the magnetohydrodynamic instabilities, heat and particle transport, and plasma position control. Studies of the evolution of soft x-ray perturbations were made in ohmically and ECRH heated plasmas. It was shown that the effect of ECRH on the plasma parameters (transport coefficients, sawtooth activity, modification of the electron temperature profiles) depends on the position of the EC resonance zone within the plasma cross section. The tomographic reconstruction revealed the different mechanisms of sawtooth crashes in the T-10 plasma.

  7. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  8. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  9. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation.

    PubMed

    Beckhoff, Burkhard; Fliegauf, Rolf; Kolbe, Michael; Müller, Matthias; Weser, Jan; Ulm, Gerhard

    2007-10-15

    Total reflection X-ray fluorescence (TXRF) analysis is a well-established method to monitor lowest level contamination on semiconductor surfaces. Even light elements on a wafer surface can be excited effectively when using high-flux synchrotron radiation in the soft X-ray range. To meet current industrial requirements in nondestructive semiconductor analysis, the Physikalisch-Technische Bundesanstalt (PTB) operates dedicated instrumentation for analyzing light element contamination on wafer pieces as well as on 200- and 300-mm silicon wafer surfaces. This instrumentation is also suited for grazing incidence X-ray fluorescence analysis and conventional energy-dispersive X-ray fluorescence analysis of buried and surface nanolayered structures, respectively. The most prominent features are a high-vacuum load-lock combined with an equipment front end module and a UHV irradiation chamber with an electrostatic chuck mounted on an eight-axis manipulator. Here, the entire surface of a 200- or a 300-mm wafer can be scanned by monochromatized radiation provided by the plane grating monochromator beamline for undulator radiation in the PTB laboratory at the electron storage ring BESSY II. This beamline provides high spectral purity and high photon flux in the range of 0.078-1.86 keV. In addition, absolutely calibrated photodiodes and Si(Li) detectors are used to monitor the exciting radiant power respectively the fluorescence radiation. Furthermore, the footprint of the excitation radiation at the wafer surface is well-known due to beam profile recordings by a CCD during special operation conditions at BESSY II that allow for drastically reduced electron beam currents. Thus, all the requirements of completely reference-free quantitation of TXRF analysis are fulfilled and are to be presented in the present work. The perspectives to arrange for reference-free quantitation using X-ray tube-based, table-top TXRF analysis are also addressed. PMID:17880182

  10. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  11. Lead adsorption at the calcite-water interface: Synchrotron x-ray standing wave and x-ray reflectivity studies

    SciTech Connect

    Sturchio, N.C.; Chiarello, R.P.; You, Hoydoo

    1997-01-01

    By combining synchrotron X-ray standing wave (XSW) measurements with synchrotron X-ray reflectivity measurements, we have determined: (1) the precise three-dimensional location within the calcite unit cell of submonolayer Pb ions adsorbed at the calcite (104) surface from dilute aqueous solutions, and (2) the precise one-dimensional location of these unit cells relative to the calcite surface. Our XSW measurements, using three separate calcite Bragg reflections for triangulation, show that most adsorbed Pb ions occupy Ca sites in the calcite lattice with an ordered coverage of 0.05 equivalent monolayers, while the remaining Pb ions are disordered with a coverage of 0.03 equivalent monolayers. Our X-ray reflectivity measurements show that the ordered Ph ions occur primarily (>70%) in the surface atomic layer of calcite. Atomic force microscopy (AFM) was used to characterize the topography of the calcite (104) surface under conditions similar to the X-ray experiments. The quantitative morphological information obtained by AFM was used to develop realistic models of the calcite surface. The calculated X-ray reflectivities for these model surfaces were compared with the measured X-ray reflectivities. The new combined X-ray method that we have developed can be used to determine the atomic-scale structure of other metals adsorbed at mineral-water interfaces. Such high-resolution structural determinations are essential before detailed conceptual and theoretical models can be further developed to understand and predict the behavior of dissolved metals in mineral-water systems. 60 refs., 8 figs., 3 tabs.

  12. Large-area avalanche photodiodes for the detection of soft x rays

    SciTech Connect

    Gullikson, E.M.; Gramsch, E. |; Szawlowski, M.

    1995-08-01

    The charge-collection efficiency of beveled-edge-type silicon avalanche photodiodes has been determined for soft x rays in the 50--300-eV range. An efficiency of greater than 80% is measured for energies below the Si {ital L} absorption edge. The measured efficiency is well described by a model that accounts for absorption in an oxide overlayer and recombination at the front surface of the diode. The avalanche photodiodes are shown to be significantly more sensitive compared with other detectors for pulsed sources such as a laser-produced plasma source. These results are also very encouraging for soft-x-ray/extreme-UV applications involving synchrotron radiation.{ital PACS} {ital numbers}: 29.40.Wk, 07.85.+n, 85.60.Dw.

  13. Optics Design for a Soft X-ray FEL at the SLAC A-Line

    SciTech Connect

    Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

    2009-05-15

    LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

  14. A soft X-ray beamline for transmission X-ray microscopy at ALBA.

    PubMed

    Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R

    2009-07-01

    The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use. PMID:19535865

  15. Fast synchrotron X-ray tomography study of the rod packing structures

    SciTech Connect

    Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie

    2013-06-18

    We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

  16. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  17. The soft X-ray turnoff of Nova Muscae 1983

    NASA Technical Reports Server (NTRS)

    Shanley, L.; Ogelman, H.; Gallagher, J. S.; Orio, M.; Krautter, J.

    1995-01-01

    Nova GQ Muscae 1983 was detected by ROSAT as a luminous 'supersoft' X-ray source in 1992, nearly a decade after outburst. Further, this is the only classical postnova known to have maintained constant luminosity on a timescale predicted by theoretical models. Follow-up observations were made with the ROSAT position-sensitive proportional counter in 1993 January and September, and complemented with B-band photometry taken in 1993 January. By 1993 January, the X-ray count rate had declined by a factor of 17, while there was neither an appreciable decrease in the optical magnitude nor a change in the amplitude of modulation. In 1993 September the soft X-ray flux was below the ROSAT threshold limit, implying a decrease of a factor greater than or equal to 30 in the count rate. This decline can be interpreted by the turnoff of nuclear processes due to the complete consumption of the residual hydrogen-rich envelope. However, the optical luminosity of the system is not simply coupled to the X-ray luminosity (e.g., through reprocessing).

  18. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  19. IRMA-2 at SOLEIL: a set-up for magnetic and coherent scattering of polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Popescu, H.; Gaudemer, R.; Jaouen, N.; Avila, A.; Delaunay, R.; Fortuna, F.; Maier, U.; Spezzani, C.

    2013-03-01

    We have designed, built and tested a new instrument for soft x-ray scattering experiments. IRMA-2 is a UHV set-up for elastic and coherent scattering experiments developed at the SEXTANTS beamline of the SOLEIL synchrotron. Applications will be in the field of solid state physics, with emphasis on the investigation of the magnetic properties of artificially structured materials.

  20. Discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1.

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Wilson, C. A.; Tavani, M.; Zhang, S. N.; Rubin, B. C.; Paciesas, W. S.; Ford, E. C.; Kaaret, P.

    1996-11-01

    We report the BATSE discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1 (Aql X-1). Aql X-1 is the most prolific of the soft X-ray transient sources and it has been known to produce large outbursts near the Eddington limit in the 1-10keV energy band. The typical recurrence time of outbursts is about 1-year. Aql X-1 shows type I X-ray bursts during the decay phase of the X-ray outbursts and is believed to contain a neutron star. These characteristics of Aql X-1 make it an ideal system to study time variable hard X-ray emission from accreting neutron stars. BATSE has monitored Aql X-1 continuously since the Compton Observatory mission began in April 1991. Several episodes of hard X-ray emission with durations of weeks to months have been detected in 1991-1994. These episodes are coincident with substantial brightening of the optical counterpart and to a lesser degree with observations of soft X-ray emission by ROSAT, EURECA/WATCH and ASCA. We find fluxes in the 20-100mCrab range with hard spectra extending to above 100keV and power law spectral fits yielding photon indices between -2 and -3.

  1. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  2. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed. PMID:16021423

  3. Incoherent imaging with the soft X-ray microscope

    PubMed

    Burge; Yuan; Morrison; Charalambous; Browne; An

    2000-05-01

    The imaging characteristics for X-ray wavelengths in the "water window" under incoherent imaging conditions (large detector aperture) are examined for the King's College London scanning transmission X-ray microscope with zone-plate objective installed at the Daresbury (UK) synchrotron. The principal consideration was to express image theory, incorporating wave aberrations and apodised zone plates, and to apply the theory to experimental data. Comparisons are made, showing reasonable agreement, for a range of defocus values and two wavelengths. Due to problems in fabrication it was necessary to determine the effective, or operational, zone-plate parameters (radius of outermost active zone rN, width of outermost active zone drN); this was accomplished by through-focus series. Calculated point spread functions were used to deblurr images, in through-focus series of two-dimensional scanned X-ray images of specimen holes and test grating patterns. Significant contrast enhancement is achieved after deconvolution with a best point-to-point resolution of about 35 nm. PMID:10805394

  4. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Serlemitsos, Peter J.; Okajima, Takashi; Hahne, Devin

    2011-09-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 μm nominal and surface gold layer of 0.2 μm. Improvements on angular response over the Astro-E1/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  5. Soft X-ray FEL simulation in PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Shim, Chi Hyun; Ko, In Soo; Parc, Yong Woon; Han, Jang Hui

    2015-10-01

    The soft X-ray beamline in the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) will provide a photon beam with a wavelength from 1 nm to 3 nm in the self-amplified spontaneous emission (SASE) mode by using an electron beam with a 3.15-GeV beam energy. Linearly polarized radiation will be supplied by using six planar undulators (PUs). The linearly-polarized radiation powers at 1 (3) nm can reach 10.2 (30) GW. Polarization of the radiation will be controlled by applying the reverse undulator tapering scheme to the PUs and adding two helical undulators (HUs). The circularly-polarized radiation powers at 1 (3) nm will be 3.11 (11.73) GW. The degrees of circular polarization will be larger than 0.99 for both wavelengths. Three options for the future upgrade of the beamline to increase the radiation power are proposed.

  6. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  7. Soft X-ray spectroscopy of solar flares - An overview

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1990-01-01

    An overview of the current status of high spectral resolution soft X-ray observations of solar flares is given. The review concentrates primarily on recent results and interpretations of results obtained from orbiting Bragg crystal spectrometers flow during the last solar maximum on the US DoD P78-1 spacecraft, the NASA SMM, and the ISAS Hinotori spacecraft. Results and several key issues regarding interpretation of the spectra are presented. Specifically, the dynamics of coronal flare plasmas as revealed by X-ray line profiles and wavelength shifts are discussed. Recent results concerning the theory of chromospheric evaporation are given. The temperature of coronal flare plasma is discussed within the context of a differential mission measure. Results concerning electron density measurements, nonequilibrium processes, and relative element abundances are also reviewed.

  8. Goldhelox: a soft x-ray solar telescope.

    PubMed

    Durfee, D S; Moody, J W; Brady, K D; Brown, C; Campbell, B; Durfee, M K; Early, D; Hansen, E; Madsen, D W; Morey, D B; Roming, P W; Savage, M B; Eastman, P F; Jensen, V

    1995-01-01

    The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor. PMID:21307474

  9. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  10. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  11. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  12. Soft x-ray resist characterization: Studies with a laser plasma x-ray source

    SciTech Connect

    Kubiak, G.D.; Outka, D.A. ); Zeigler, J.M. )

    1990-01-01

    Little work has been performed to characterize the exposure sensitivity, contrast, and tone of candidate resists for photon energies between 100--300 eV, the range in which projection soft x-ray lithography will be developed. We report here the characterization of near-edge x-ray absorption fine structure (NEXAFS) spectra, exposure sensitivity, contrast, and post-exposure processing of selected polysilane resists at photon energies close to the Si L{sub 2,3} absorption edge (100 eV). We find absorption resonance features in the NEXAFS spectra which we assign to excitation into Si--Si and Si--C {sigma}* orbitals. Using monochromatized XUV exposures on the Si--Si {sigma}* resonance at 105 eV, followed by solvent dissolution development, we have measured the exposure sensitivity curves of these resists. We find sensitivities in the range of 600--3000 mJ/cm{sup 2} and contrasts in the range from 0.5--1.4, depending on the polysilane side chain. We have also performed exposure sensitivity measurements at 92 eV, below the edge. Sensitivity decreases slightly compared to 105 eV exposures and the saturation depth and contrast both increase, as expected. We find also that exposing resist films to oxygen after XUV exposure, but before development increases the sensitivity markedly. 7 figs.

  13. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    SciTech Connect

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-15

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  14. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  15. Time-resolved materials science opportunities using synchrotron x-ray sources

    SciTech Connect

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by {approximately}tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities.

  16. Heliospheric X-Rays and the 1/4 keV Soft X-Ray Background Map

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Cravens, T. E.; Snowden, S. L.

    2003-12-01

    X-rays are generated throughout the heliosphere as a consequence of charge transfer collisions between heavy solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. X-rays are also generated because of charge transfer collisions with neutral hydrogen in the Earth's geocorona. Our model simulates this charge transfer mechanism. It uses the Fahr hot model to determine spatial variations of interstellar helium and hydrogen densities. It also uses published terrestrial exospheric hydrogen distributions and solar wind speed, density and temperature distributions to determine x-ray intensities due to charge transfer with geocoronal hydrogen. We used the same viewing conditions as Snowden [1995] for the 1/4 keV channel soft x-ray background map in galactic coordinates, and produce an analogous heliospheric/geocoronal x-ray intensity map. Our preliminary conclusion is that roughly 50% of the total background soft x-ray intensity in the galactic plane and 25% at high galactic latitudes can be attributed to the charge transfer process operating within the solar system, with the remaining emission coming from outside our heliosphere.

  17. Optoelectronic measurement of x-ray synchrotron pulses: A proof of concept demonstration

    SciTech Connect

    Durbin, Stephen M.; Caffee, Marc; Savikhin, Sergei; Mahmood, Aamer; Dufresne, Eric M.; Wen, Haidan; Li, Yuelin

    2013-02-04

    Optoelectronic detection using photoconductive coplanar stripline devices has been applied to measuring the time profile of x-ray synchrotron pulses, a proof of concept demonstration that may lead to improved time-resolved x-ray studies. Laser sampling of current vs time delay between 12 keV x-ray and 800 nm laser pulses reveal the {approx}50 ps x-ray pulse width convoluted with the {approx}200 ps lifetime of the conduction band carriers. For GaAs implanted with 8 MeV protons, a time profile closer to the x-ray pulse width is observed. The protons create defects over the entire depth sampled by the x-rays, trapping the x-ray excited conduction electrons and minimizing lifetime broadening of the electrical excitation.

  18. A wide-field soft X-ray camera

    NASA Technical Reports Server (NTRS)

    Petre, R.

    1981-01-01

    A wide-field soft X-ray camera (WFSXC) sensitive in the 50 to 250 eV band is described. The camera features Wolter-Schwarzschild optics with an 8 degree field of view and 300 cu cu collecting area. The focal plane instrument is a microchannel plate detector. Broad-band energy discrimination is provided by thin-film filters mounted immediately in front of the focal plane. The WFSXC is capable of detecting sources with intensities greater than 5 percent of HZ 43 during typical sounding rocket exposures, and it would approach the same sensitivity range as EUVE during a typical exposure from the Shuttle.

  19. Advanced laser driver for soft x-ray projection lithography

    SciTech Connect

    Zapata, L.E.; Beach, R.J.; Dane, C.B.; Reichert, P.; Honig, J.N.; Hackel, L.A.

    1994-03-01

    A diode-pumped Nd:YAG laser for use as a driver for a soft x-ray projection lithography system is described. The laser will output 0.5 to 1 J per pulse with about 5 ns pulse width at up to 1.5 kHz repetition frequency. The design employs microchannel-cooled diode laser arrays for optical pumping, zigzag slab energy storage, and a single frequency oscillator injected regenerative amplifier cavity using phase conjugator beam correction for near diffraction limited beam quality. The design and initial results of this laser`s activation experiments will be presented.

  20. Soft X-ray microscopy to characterize polyelectrolyte assemblies.

    PubMed

    Köhler, Karen; Déjugnat, Christophe; Dubois, Monique; Zemb, Thomas; Sukhorukov, Gleb B; Guttmann, Peter; Möhwald, Helmuth

    2007-07-26

    Transmission microscopy with soft X-rays (TXM) is applied to image in-situ polyelectrolyte assemblies in aqueous environment. The method is element specific and at this stage exhibits a lateral resolution of 20 nm. With the specific examples of hollow capsules and full spheres made of PAH/PSS polyelectrolyte multilayers, it is shown quantitatively that heat treatment irreversibly reduces the water content in the membrane. These experiments complement those reported recently on the polyion system PDADMAC/PSS, which shows a different glass-transition behavior. Finally, the potential and present limitations of TXM are discussed. PMID:17428089

  1. Imaging the Magnetosphere in Soft X-Rays

    NASA Astrophysics Data System (ADS)

    Sibeck, David; Connor, Hyunju K.; Collier, MIchael; Kuntz, Kip

    2015-04-01

    The charge exchange that occurs when high charge state solar wind ions encounter exospheric neutrals in the Earth's magnetosheath and cusps results in the emission of soft (0.1 to 1 keV) x-rays that have been observed by a number of astrophysics telescopes with narrow fields of view. A global imager would be able to visualize and diagnose the state of the solar wind-magnetosphere interaction, including the characteristics of reconnection on the dayside magnetopause. This talk presents our current efforts to develop such an imager, including both hardware and simulations of the expected signatures.

  2. Synchrotron radiation sources and condensers for projection x-ray lithography

    SciTech Connect

    Murphy, J.B.; MacDowell, A.A. ); White, D.L. ); Wood, O.R. II )

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130[Angstrom] photons for production line projection x-ray lithography is possible.

  3. Synchrotron radiation sources and condensers for projection x-ray lithography

    SciTech Connect

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-11-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130{Angstrom} photons for production line projection x-ray lithography is possible.

  4. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  5. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1982-01-01

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  6. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Astrophysics Data System (ADS)

    Kraushaar, W. L.

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  7. The Astro-H Soft X-ray Spectrometer (SXS)

    NASA Astrophysics Data System (ADS)

    Porter, F. Scott; Fujimoto, Ryuichi; Kelley, Richard L.; Kilbourne, Caroline A.; Mitsuda, Kazuhiasa; Ohashi, Takaya; Astro-H/SXS Collaboration

    2009-12-01

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81×0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.

  8. The Astro-H Soft X-ray Spectrometer (SXS)

    SciTech Connect

    Porter, F. Scott; Kelley, Richard L.; Kilbourne, Caroline A.; Fujimoto, Ryuichi; Mitsuda, Kazuhiasa; Ohashi, Takaya

    2009-12-16

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81x0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.0.

  9. Synoptic IPS and Yohkoh soft X-ray observations

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Rappoport, S.; Woan, G.; Slater, G.; Strong, K.; Uchida, Y.

    1995-01-01

    Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh Soft X-ray Telescope (SXT) instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the interplanetary scintillation (IPS) maps tend to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.

  10. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  11. Structural characterization of sol-gel derived oxide nanostuctures using synchrotron x-ray techniques

    NASA Astrophysics Data System (ADS)

    Sun, Tao

    Ceramic oxides possess extraordinarily rich functionalities. With the advent of nanofabrication techniques, it is now possible to grow nanostructured oxides with precise control of composition, morphology, and microstructure, which has re-vitalized the research in the field of traditional ceramics. The unexpected behavior and enhanced properties of oxide nanostructures have been extensively reported. However, knowledge about the underlying mechanisms as well as structural implications is still quite limited. Therefore, it is imperative to develop and employ sophisticated characterization tools for unraveling the structure-property relationships for oxide nanostructures. The present thesis work aims at addressing the critical issues associated with fabrication, and more importantly, structural characterization of functional oxide nanostructures. The dissertation starts with introducing the strategy for synthesizing phase-pure and highly controlled oxide nanostructures using sol-gel deposition and an innovative approach called "soft" electron beam lithography. Some specific oxides are chosen for the present study, such as BiFeO3, CoFe2O4, and SnO2, because of their scientific and technological significance. Subsequent to fabrication of tailored oxide nanostructures, advanced synchrotron x-ray scattering techniques have been applied for structural characterization. The nucleation and growth behavior of BiFeO3 thin film was investigated using in situ grazing-incidence small-angle x-ray scattering (GISAXS) technique. The results reveal that the kinetics for early-stage nuclei growth are governed by the oriented-attachment model. Moreover, the porous structures of undoped and Pd-doped semiconducting SnOx thin films were quantitatively characterized using GISAXS. By correlating the structural parameters with H2 sensitivity of SnOx films, it is found out that the microstructure of doped film is favorable for gas sensing, but it is not the major reason for the overall

  12. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  13. Development of Computer Tomography System for the Soft X-ray Microscope at Ritsumeikan University

    SciTech Connect

    Ohigashi, T.; Fujii, H.; Usui, K.; Namba, H.; Mizutani, H.; Takemoto, K.; Kihara, H.

    2011-09-09

    A synchrotron-based full-field imaging soft x-ray microscope was tuned appropriately to perform computer tomography. The contrast and focal depth of the optical system were evaluated by using a Fresnel zone plate as a test object of variable spatial frequency. A focal depth of 15 {mu}m was obtained at the spatial frequency of 4.3 {mu}m{sup -1} according to Rayleigh's criterion. As a first trial of three-dimensional observation using this system, the cerebral cortex of the brain of a mouse, trimmed to a columnar shape by focused ion beam milling, was studied using a wavelength of 1.87-nm.

  14. Demonstration of guided-wave phenomena at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Ceglio, N M; Hawryluk, A M; Stearns, D G; Kühne, M; Müller, P

    1988-04-01

    We report an explicit demonstration of classical guided-wave propagation at XUV and soft-x-ray wavelengths. Experiments were performed using narrow-band synchrotron radiation at 5, 20.8, 21, and 30 nm. Free-standing gold transmission gratings served as waveguide structures. These structures had a 300-nm grating period with waveguide channel widths as small as 100 nm and were as thick as 700 nm in the direction of guided-wave transmission. Guided-wave phenomena were manifest in strongly asymmetric diffraction patterns resulting from the angular tilt of the transmission-grating normal from the incident-beam direction. PMID:19745868

  15. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect

    Wang, Yong; Wang, Shoujun; Oliva, E; Lu, L; Berrill, Mark A; Yin, Liang; Nejdl, J; Luther, Brad; Proux, C; Le, T. T.; Dunn, James; Ros, D; Zeitoun, Philippe; Rocca, Jorge

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  16. UV and Soft X-ray Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Cranmer, S. R.; Li, J.

    2002-01-01

    Coronal jets are spectacular dynamic events originating from different structures in the solar corona. Jetlike phenomena were observed by various instruments aboard SOHO, and the X--ray jets were discovered by Yohkoh's soft X--ray telescope (SXT). The relation among the different types of jets is still not yet clear. We present ultraviolet spectroscopy of polar coronal jets obtained by the Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) at heights in the corona ranging from 1.5 Rodot to 2.5 Rodot. The jets appear to originate near flaring ultraviolet bright points within polar coronal holes and were recorded by UVCS as a significant enhancement in the integrated intensities of the strongest coronal emission lines: mainly H I Ly alpha and O VI lambda lambda 1032,1037. A number of the detected jets are correlated with EIT Fe XII 195Å and LASCO C2 white-light events. Our modeling of the jet's observable properties provided estimates of the jet plasma conditions, as well as the initial electron temperature and heating rate required to reproduce the observed O VI ionization state. We discuss possible relationship between the polar ultraviolet and X--ray jets based on the results of coordinated SXT and UVCS observations in December 1996. We compare their properties and consider the magnetic reconnection models, developed for X--ray jets, as a model for UV jet formation. This work is supported by the National Aeronautics and Space Administration under grant NAG5--10093 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  17. Opening the Field of Soft X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.; Schulz, Norbert; Windt, David; Gullikson, Eric

    2015-08-01

    We present development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. Previously, we demonstrated that the polarimetry beam-line provides 100% polarized X-rays at 0.525 keV (Marshall et al. 2013). Recently, we upgraded the source by installing a mirror with a laterally graded multilayer (LGML) coating, providing a wide energy range. Here, we will present results from continued development that includes LGMls of new material combinations (C/CrCo and La/B4C) with high efficiencies in different soft X-ray bands. We have also sponsored the development of new gratings and anticipate showing results from testing these new gratings. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission would be limited to measuring the polarization of a blazar such as Mk 421 to a few percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.Support for this work was provided by the National Aeronautics and Space Administration through grant NNX12AH12G and by Research Investment Grants from the MIT Kavli Institute.

  18. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  19. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  20. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    NASA Technical Reports Server (NTRS)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  1. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  2. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  3. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  4. Evaluation of surface figure error profile of ellipsoidal mirror for soft x-ray focusing

    NASA Astrophysics Data System (ADS)

    Takeo, Yoko; Saito, Takahiro; Mimura, Hidekazu

    2015-08-01

    It is possible to achieve soft X-ray nanofocusing with a high efficiency and no chromatic aberration by using an ultraprecise ellipsoidal mirror. Surface figure metrology is key in the improvement of surface figure accuracy. In this study, we propose a ptychographic phase retrieval method using a visible light laser to measure the surface figure error profile of an ellipsoidal mirror. We introduce a simple experimental system for ptychographic phase retrieval and demonstrate the basic performance of the proposed system. Obtainable wavefront information provides both the figure error and the alignment of the ellipsoidal mirror that yield the best focusing. This developed method is required for offline adjustments when an ellipsoidal mirror is installed in the beamline of synchrotron radiation or X-ray free-electron laser light sources.

  5. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moore, A. S.; Guymer, T. M.; Kline, J. L.; Morton, J.; Taccetti, M.; Lanier, N. E.; Bentley, C.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J.; Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W.; Stevenson, M.

    2012-10-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 μm spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

  6. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility.

    PubMed

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-10-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 μm spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV. PMID:23126953

  7. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  8. X-Ray Irradiation of H2O + CO Ice Mixtures with Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Jiménez-Escobar, A.; Chen, Y.-J.; Ciaravella, A.; Huang, C.-H.; Micela, G.; Cecchi-Pestellini, C.

    2016-03-01

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250-1200 eV) were employed. During the irradiation, the H2O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  9. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  10. Soft x-ray yield from NX2 plasma focus

    SciTech Connect

    Lee, S.; Rawat, R. S.; Lee, P.; Saw, S. H.

    2009-07-15

    The Lee model code is used to compute neon soft x-ray yield Y{sub sxr} for the NX2 plasma focus as a function of pressure. Comparison with measured Y{sub sxr} shows reasonable agreement in the Y{sub sxr} versus pressure curve, the absolute maximum yield as well as the optimum pressure. This gives confidence that the code gives a good representation of the neon plasma focus in terms of gross properties including speeds and trajectories and soft x-ray yields, despite its lack of modeling localized regions of higher densities and temperatures. Computed current curves versus pressure are presented and discussed particularly in terms of the dynamic resistance of the axial phase. Computed gross properties of the plasma focus including peak discharge current I{sub peak}, pinch current I{sub pinch}, minimum pinch radius r{sub min}, plasma density at the middle duration of pinch n{sub pinch}, and plasma temperature at middle duration of pinch T{sub pinch} are presented and the trends in variation of these are discussed to explain the peaking of Y{sub sxr} at optimum pressure.

  11. Recent advances in X-ray nanolithography using synchrotron radiation at Super-ACO

    NASA Astrophysics Data System (ADS)

    Rousseaux, F.; Chen, Y.; Haghiri-Gosnet, A. M.; Launois, H.

    1995-02-01

    This paper describes our recent advances in high resolution synchrotron radiation lithography. Fabrication processes of high resolution X-ray masks based on our current {SiC}/{W} technology have been optimized to be compatible with a commercial Karl Süss stepper. As a result, well defined 50 nm wide isolated lines and small gratings of period down to 100 nm have been fabricated and tested in proximity X-ray lithography with the stepper. Replication tests were done with a minimum gap setting down to 5 μm. Results show that proximity X-ray lithography using synchrotron radiation is a viable technology for printing 50 nm linewidth features.

  12. Time-resolved measurement of x-ray heating in plastic foils irradiated by intense soft-x-ray pulses

    SciTech Connect

    Edwards, J.; Dunne, M.; Riley, D.; Taylor, R.; Willi, O. ); Rose, S.J. )

    1991-12-30

    Intense, soft-x-ray pulses, generated from separate laser-irradiated converters, were used to irradiate plane plastic foils. The x-ray heating was investigated by measuring the temperature histories of chlorinated tracer layers buried at different depths in the targets. The temperature diagonistic was a time-resolved extreme-UV absorption spectroscopy technique using chlorine {ital L}-shell transitions. The temporal temperature profiles were reasonably well reproduced by radiation-hydrocode simulations.

  13. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  14. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines.

    PubMed

    Kummer, K; Fondacaro, A; Yakhou-Harris, F; Sessi, V; Pobedinskas, P; Janssens, S D; Haenen, K; Williams, O A; Hees, J; Brookes, N B

    2013-03-01

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range. PMID:23556850

  15. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  16. X-ray phase-contrast tomography with a compact laser-driven synchrotron source

    PubMed Central

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D.; Pfeiffer, Franz

    2015-01-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced––and more challenging––X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  17. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  18. Soft X-ray observation of the Rho Ophiuchus dark cloud region

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.

    1979-01-01

    Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.

  19. The Onset Phase of "Soft" X-ray Transients

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Shaposhnikov, N.; Shrader, C. R.; Rupen, M. P.; Beckmann, V.; Markwardt, C. B.; Smith, D. A.

    2006-01-01

    Transient outbursts of black holes and neutron stars in X-ray binaries with low-mass companions start with a flickering hard power-law flux that contains a low frequency quasi-periodic oscillation (QPO). The frequency of the QPO may reflect the outer boundary of the coronal emission and its inward motion toward the compact object. It has also been proposed that the hard flux is related to the base of a radio emitting outflow or compact jet. We had detailed observations of the beginning of the 2005 outburst of GRO J165.5-40 with RXTE, INTEGRAL, the VLA and ROTSE. We use the X-ray, radio, and optical results in the context of these models to address their applicability to the onset of the outburst and to specify the physical parameters. Decline of the radio flux as both the power-law and disk flux increased constrains the amount of synchrotron self-Compton emission. Values are compared to those of other black hole and neutron star transients. We are glad to acknowledge support by a NASA INTEGRAL Guest Observer Grant and by the UTE project, NRAO, and ROTSE.

  20. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  1. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  2. Soft X-ray-induced decomposition of amino acids: An XPS, massspectrometry, and NEXAFS study

    SciTech Connect

    Zubavichus, Y.; Fuchs, O.; Weinhardt, L.; Heske, C.; Umbach, E.; Denlinger, J.D.; Grunze, M.

    2003-02-26

    Decomposition of five amino acids, viz. alanine, serine,cysteine, aspartic acid, and asparagine under soft X-ray irradiation (MgKα X-ray source) in ultra-high vacuum has been studied by meansof XPS and mass-spectrometry. A comparative analysis of changes in XPSline shapes, stoichiometry, and residual gas composition indicates thatthe molecules decompose via severalpathways. Dehydration,decarboxylation, decarbonylation, deamination, and desulfurization ofpristine molecules accompanied by desorption of H2, H2O, CO2, CO, NH3,H2S are observed with rates depending on the specific amino acid. NEXAFSspectra of cysteine at the C, O, N K- and S L2,3-edges complement the XPSand mass-spectrometry data and show that exposure of the sample to anintense soft X-ray synchrotron beam results in a formation of C-C and C-Ndouble and triple bonds. Qualitatively, the studied amino acids can bearranged in the following ascending order for radiation stability: serine

  3. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  4. Development of a soft x-ray diffractometer for a wideband multilayer grating with a novel layer structure in the 2-4 keV range

    SciTech Connect

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori

    2012-07-11

    We have been developing a wavelength-dispersive soft x-ray spectrograph covering an energy region of 50-4000 eV to attach to a conventional electron microscope. Observation of soft x-ray emission in the 2-4 keV range needs a multilayer coated grating. In order to evaluate the performance of the optical component in the energy region, a goniometric apparatus has been newly developed and the preliminary performance has been tested using synchrotron radiation.

  5. Introducing a New Capability at SSRL: Resonant Soft X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Sik; Jang, Hoyoung; Lu, Donghui; Kao, Chi-Chang

    Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC recently developed a setup for the resonant soft x-ray scattering (RSXS). In general, the RSXS technique uniquely probes not only structural information, but also chemical specific information. This is because this technique can explore the spatial periodicities of charge, orbital, spin, and lattice with spectroscopic aspect. Moreover, the soft x-ray range is particularly relevant for a study of soft materials as it covers the K-edge of C, N, F, and O, as well as the L-edges of transition metals and M-edges of rare-earth elements. Hence, the RSXS capability has been regarded as a very powerful technique for investigating the intrinsic properties of materials such as quantum- and energy-materials. The RSXS capability at the SSRL composes of in-vacuum 4-circle diffractometer. There are also the fully motorized sample-motion manipulations. Also, the sample can be cooled down to 25 K via the liquid helium. This capability has been installed at BL 13-3, where the photon source is from elliptically polarized undulator (EPU). Covering the photon energies is from 230 eV to 1400 eV. Furthermore, this EPU system offers more degree of freedoms for controlling x-ray polarizations (linear and circular). Using the advance of controlling x-ray polarization, we can also investigate a morphology effect of local domain/grain in materials. The detailed introduction of the RSXS end-station and several results will be touched in this poster presentation.

  6. SAS 3 survey of the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Clark, G. W.

    1984-01-01

    The results of a survey of the soft X-ray sky in the C band (0.10-0.28keV) are reported. The observations were carried out using two independent flow proportional counters on board the SAS 3 X-ray satellite which had a total angular resolution of 2.9 deg FWHM, and a total exposure of 2.2 x 10 to the 4th per sq cm s sr. It is found that C band counting rates were generally inversely correlated with the column density of the neutral hydrogen on all angular scales down to the lowest angular resolution of the detectors. In the region 90-180 deg l and 0-10 deg b, the relation between C-band rates and the column densities of neutral hydrogen was fitted with a residual rms deviation of less than 13 percent by a two-component numerical model of the X-ray background. For the apparent attenuation column density a value of 2.7 x 10 to the 20th per sq cm was obtained. On the basis of a computer simulation of the SAS 3 data, it is shown that the observed clumping of interstellar matter was consistent with the magnitude of spatial fluctuations in the C-band map. When the background rates were subtracted from the survey map, the subsequent map showed foreground emission and absorption features with improved sensitivity and clarity. A series of computer-generated maps incorporating the SAS 3 data is given in an appendix.

  7. ROSAT observations of the Eridanus soft X-ray enhancement

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Burrows, D. N.; Sanders, W. T.; Aschenbach, B.; Pfeffermann, E.

    1995-01-01

    We present maps of the Eridanus soft X-ray enhancement made from the ROSAT all-sky survey data. The maps are in two energy bands: 0.25 keV (0.12-0.284 keV at 10% response, the ROSAT R1 and R2 bands), and 0.75 keV (0.47-1.20 keV at 10% response, the ROSAT R4 and R5 bands). The entire enhancement spans a total of approximately 35 deg in Galactic latitude and approximately 20 deg in Galactic longitude, centered at l approximately 22 deg, b approximately -32 deg. While the higher spatial resolution of the ROSAT data reveals a pattern of detailed anticorrelations with 100 micrometers intensity that was not evident in the HEAO 1 or earlier data, the basic morphology found in previous maps of this enhancement is confirmed. The ROSAT data also clearly show that the X-ray enhancement continues up to the Orion region in the 0.75 keV band, confirming the structure suggested by the Wisconsin sky survey maps. The ROSAT data are consistent with the interpretation of Reynolds & Ogden and Burrows et al. that this enhancement, the higher temperature component of Burrows et al., is generated for the most part by several-million-degree gas filling a huge interstellar cavity. However, we interpret the low-temperature component discussed by Burrows et al. as part of a more distant large scale (greater than or equal to approximately 30 deg) diffuse background enhancement. The part of this softer X-ray enhancement examined here appears to be produced by million degree gas in the galactic halo, and is therfore unlikely to be an isolated bubble as suggested by Burrows et al. on the basis of lower resolution HEAO 1 data.

  8. Interactions between synchrotron radiation X-ray and biological tissues — theoretical and clinical significance

    PubMed Central

    Chen, Heyu; He, Xin; Sheng, Caibin; Ma, Yingxin; Nie, Hui; Xia, Weiliang; Ying, Weihai

    2011-01-01

    Synchrotron radiation (SR) X-ray has great potential for its applications in both diagnosis and treatment of diseases, due to its characteristic properties including coherence, collimation, monochromaticity, and exceptional brightness. Great advances have been made regarding potential medical applications of SR X-ray in recent years, particularly with the development of the third generation of SR light sources. However, multiple studies have also suggested damaging effects of SR X-ray on biological samples ranging from protein crystals to cells and biological tissues. It has become increasingly important to conduct comprehensive studies on two closely related topics regarding SR X-ray in medical applications: The safety issues regarding the medical applications of SR X-ray and the fundamental mechanisms underlying the interactions between SR X-ray and biological tissues. In this article, we attempted to provide an overview of the literatures regarding these two increasingly significant topics. We also proposed our hypothesis that there are significant differences between the biological tissue-damaging mechanisms of SR X-ray and those of normal X-ray, due to the characteristic properties of SR X-ray such as high dose rate. Future studies are warranted to test this hypothesis, which may profoundly improve our understanding regarding the fundamental mechanisms underlying the interactions between light and matter. These studies would also constitute an essential basis for establishing the safety standard for the medical applications of SR X-ray. PMID:22162780

  9. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  10. Synchrontron VUV and Soft X-Ray Radiation Effects on Aluminized Teflon FEP

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1998-01-01

    Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.

  11. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics. PMID:27410064

  12. Stellar contributions to the diffuse soft X-ray background

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.; Avni, Y.; Golub, L.; Rosner, R.; Vaiana, G.

    1981-01-01

    One of the results of the EINSTEIN/C.f.A. X-ray stellar survey was a determination of the contribution of the disk stellar population to the galactic component of the diffuse soft (0.28 - 1.0 keV) X-ray background. This analysis employed both binned and unbinned nonparametric statistical methods that have been developed by Avni, et al. (1980). These methods permitted the use of the information contained in both the 22 detections and 4 upper bounds on the luminosities of 26 dM stars in order to derive their luminosity function. Luminosity functions for earlier stellar types are not yet developed. For these earlier stellar types, the median luminosities as determined by Vaiana, et al., are used (1981), which underestimates their contribution to the background. We find that it is the M dwarfs that dominate the disk population stellar contribution to this background. To calculate the contribution of the stellar sources to the background, simple models both for the spatial distribution of the stars and for the properties of the intervening interstellar medium are used. A model is chosen in which all stellar classes have the same functional form for their spatial distribution: an exponentially decreasing distribution above the galactic equatorial plane, and a uniform distribution within the galactic plane for a region of several kiloparsecs centered on the Sun.

  13. Ultra high resolution soft x-ray tomography

    SciTech Connect

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-07-19

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by {approximately}5{mu}m. A series of nine 2-D images of the object were recorded at angles between {minus}50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of {approximately}1000 {Angstrom} was observed. Artifacts in the reconstruction limited the overall depth resolution to {approximately}6000 {Angstrom}, however some features were clearly reconstructed with a depth resolution of {approximately}1000 {Angstrom}. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to {approximately}1200 {Angstrom} overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  14. Coherent backscattering in the soft x-ray region

    SciTech Connect

    Matone, G.; Luccio, A.

    1986-06-01

    It is shown that coherent polarized soft x-rays can be produced by a combination of two techniques - stimulated amplification of laser light in a magnetic undulator, and Compton scattering of laser photons on an electron beam. In the combined technique, laser radiation is Compton scattered from a relativistic electron beam, whose current or charge density is periodically modulated. An electron beam and a laser beam propagate through an undulator along the same line. Inside the undulator, the laser electromagnetic waste produces a modulation of the electron energy. After some drift space, the modulation of the electron energy transforms into a modulation of the beam longitudinal charge density. The laser photons are reflected by a concave mirror against the electrons and are backscattered. In the process, their energy is greatly increased. If the electron and laser photon energy are matched properly, the modulated electron beam may act as a moving diffraction grating, and the backscattered x-rays show a high degree of coherence. The mechanism of modulation is described. The effects of electron beam energy spread, finite electron beam emittance, and undulator imperfections are discussed. The theory of scattering of a light wave by a bunched electron beam and the properties of the scattered radiation are examined. (LEW)

  15. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  16. Observation of Organelles in Leydig Cells by Contact Soft X-Ray Microscopy with a Laser Plasma X-Ray Source

    NASA Astrophysics Data System (ADS)

    Kado, M.; Ishino, M.; Tamotsu, S.; Yasuda, K.; Kishimoto, M.; Nishikino, M.; Kinjo, Y.; Shinohara, K.

    2011-09-01

    We observed the same biological specimens for comparison of the images by contact soft x-ray microscopy with a laser plasma x-ray source with those by confocal laser microscopy. Images of wet Leydig cells were directly comparable for organelles and showed that actin filaments and mitochondria were clearly identified in the soft x-ray images.

  17. Point diffraction interferometry at soft x-ray wavelengths

    SciTech Connect

    Sommargren, G.E.; Hostetler, R.

    1993-07-01

    To achieve the image performance necessary for soft x-ray projection lithography, interferometric testing at the design wavelength is required to accurately characterize the wavefront of the imaging system. The wavefront depends not only on the surface figure of the individual optics and on their relative alignment, but also on aperture dependent phase shifts induced by the resonant multilayer coatings on the optical surfaces. This paper describes the design and lithographic fabrication of an array of point diffraction interferometers on a silicon nitride membrane that has been over-coated with a spatially graded partially transmitting film to provide fringe contrast control. Experimental results using a visible light analogue (larger pinholes and different transmission gradient) will be shown.

  18. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  19. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  20. Tracing Chromospheric Evaporation in Radio and Soft X-rays

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.

    1997-01-01

    There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.

  1. Imaging performance and tests of soft x-ray telescopes

    SciTech Connect

    Spiller, E.; McCorkle, R.; Wilczynski, J. . Thomas J. Watson Research Center); Golub, L.; Nystrom, G. ); Takacz, P.Z. ); Welch, C. )

    1990-08-01

    Photos obtained during 5 min. of observation time from the flight of our 10 in. normal incidence soft x-ray ({lambda} = 63.5{Angstrom}) telescope on September 11, 1989 are analyzed and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1{Angstrom}. The photos demonstrate a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corresponding to surface irregularities with spatial periods below 10 {mu}m. Our results are used to predict the possible performance of future flights. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec. Higher resolutions will require flights of longer durations and improvements in mirror testing for the largest spatial periods. 21 refs., 7 figs., 1 tab.

  2. Holography-guided ptychography with soft X-rays.

    PubMed

    Hessing, Piet; Pfau, Bastian; Guehrs, Erik; Schneider, Michael; Shemilt, Laura; Geilhufe, Jan; Eisebitt, Stefan

    2016-01-25

    Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects. PMID:26832562

  3. Soft x-ray undulator for the Siam Photon Source

    SciTech Connect

    Rugmai, S.; Dasri, T.; Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S.

    2007-01-19

    An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

  4. G-133: A soft X ray solar telescope

    NASA Astrophysics Data System (ADS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-10-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  5. Soft x-ray microscope with zone plates at UVSOR

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Shimanuki, Yoshio; Taniguchi, Mieko; Kihara, Hiroshi

    1993-01-01

    A soft x-ray microscope with zone plates was set up at UVSOR (Okazaki, Japan). A 0.41 micrometers line and space pattern was clearly distinguished using an objective zone plate with the outermost zone width of 0.41 micrometers . Modulation transfer functions were measured at wavelengths of 3.1 nm and 5.4 nm, and compared with theoretical calculations. Considering the resolution of a microchannel plate used as a detector, the agreement is fairly good. With this microscope, some biological specimens such as diatoms, spicule of trepang, crab and rabbit muscles, human blood cells, human chromosomes, and magnetotactic bacterium were observed at 3.1 nm and 5.4 nm. With an environmental chamber (wet cell) using polypropylene foils as windows, wet specimens were observed at a wavelength of 4.6 nm. Images of spicule of trepang, human blood cell, and cultured protoplast of plant cell stained by methyl mercury were observed with good contrast.

  6. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  7. Soft X-Ray Observations of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Shelton, Robin; Kuntz, K. D.

    2003-01-01

    In this project, my co-I (K.D. Kuntz) and I plan to extract the soft X-ray spectrum emitted by the hot gas along a high latitude line of sight. We plan to subtract off the local component (garnered from other observations) in order to isolate the halo component. We then plan to combine this spectral information with the ultraviolet resonance line emission produced by slightly cooler gas along the line of sight and use the two observations as a constraint on models. My co-I, K.D., Kuntz has been working on the determination of the instrumental background. I have not yet drawn any of the funds for this project. I have just moved from J h s Hopkins University to the University of Georgia and anticipate finishing the project while at the University of Georgia.

  8. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  9. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  10. 2-D soft x-ray arrays in the EAST.

    PubMed

    Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong

    2016-06-01

    A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities. PMID:27370451

  11. 2-D soft x-ray arrays in the EAST

    NASA Astrophysics Data System (ADS)

    Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong

    2016-06-01

    A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities.

  12. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region

    SciTech Connect

    Kuang Longyu; Wang Chuanke; Wang Zhebin; Cao Leifeng; Liu Shenye; Ding Yongkun; Zhu Xiaoli; Xie Changqing

    2010-07-15

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis.

  13. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region

    NASA Astrophysics Data System (ADS)

    Kuang, Longyu; Wang, Chuanke; Wang, Zhebin; Cao, Leifeng; Zhu, Xiaoli; Xie, Changqing; Liu, Shenye; Ding, Yongkun

    2010-07-01

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis.

  14. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region.

    PubMed

    Kuang, Longyu; Wang, Chuanke; Wang, Zhebin; Cao, Leifeng; Zhu, Xiaoli; Xie, Changqing; Liu, Shenye; Ding, Yongkun

    2010-07-01

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis. PMID:20687723

  15. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  16. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  17. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  18. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  19. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  20. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  1. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  2. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  3. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  4. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  5. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  6. Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging.

    PubMed

    Eastwood, David S; Bayley, Paul M; Chang, Hee Jung; Taiwo, Oluwadamilola O; Vila-Comamala, Joan; Brett, Daniel J L; Rau, Christoph; Withers, Philip J; Shearing, Paul R; Grey, Clare P; Lee, Peter D

    2015-01-01

    The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation. PMID:24898258

  7. Fluctuation x-ray scattering from biological particles in frozen solution by using synchrotron radiation.

    PubMed Central

    Kam, Z; Koch, M H; Bordas, J

    1981-01-01

    Determination of the structure of biological particles, randomly oriented in solution, from spatial correlation analysis of fluctuations in x-ray scattering has recently been proposed. The feasibility of scattering fluctuation measurements was evaluated by using an x-ray synchrotron radiation camera to obtain the spatial correlation for a solution of tobacco mosaic virus along a line. The experimental system, analysis of data, and requirements for the determination of structures in solution are discussed using this example. PMID:6943555

  8. Chemical Mapping of Paleontological and Archeological Artifacts with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe; Manning, Phillip L.; Wogelius, Roy A.

    2012-07-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  9. Synchrotron x-ray scattering studies of rapidly evolving nanoscale interfacial systems

    NASA Astrophysics Data System (ADS)

    Dai, Yeling

    In light of the development of third-generation synchrotron sources which deliver extremely bright radiation beam over a board energy band, tremendous progress has been made in x-ray science and the diverse range of disciplines that can be studied with x-ray. The special properties of synchrotron-produced x-ray such as coherence, polarization, etc., combined with different extreme experimental conditions, can meet almost any requirement of the research for material characterization, imaging, molecular dynamics, surface/interface physics and so on. In this work we will demonstrate how outstanding properties of synchrotron x-ray can be use to study the structural and dynamic properties of rapidly evolving nano-scale interfacial systems. A large part of this thesis is devoted to the investigation of the surface capillary fluctuations of laterally confined supported polystyrene films using x-ray photon correlation spectroscopy (XPCS), a young coherent scattering technique that can probes the dynamics of matter. The structural evolution of interfacial/surface system, such as the self-assembled nanoparticle film at water-air interface and the nano-imprinted polystyrene pattern, can be studied by different time-resolved x-ray small angle scattering techniques in grazing incidence geometry (GISAXS,GIXOS,GID), as well as the conventional specular reflectivity (XR) measurement. Particularly in the case of the liquid surface research, special efforts have been made to improve a recently developed diffuse scattering technique Grazing incidence off-specular x-ray scattering (GIXOS) for probing the structure at liquid interface with much better temporal resolution compared with that of XR. In this work We will present all the experimental results together with conclusive data analysis from the studies of these evolving systems with x-ray scattering techniques. In comparison to the reciprocal space studies with x-ray scattering tools, part of this thesis is devoted to the

  10. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    SciTech Connect

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  11. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    SciTech Connect

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  12. Microbeam, timing and signal-resolved studies of nuclear materials with synchrotron X-ray sources

    SciTech Connect

    Ice, Gene E; Specht, Eliot D

    2012-01-01

    The development of ultra-brilliant synchrotron X-ray sources enables characterization methods that are particularly important for nuclear materials. Here we discuss emerging synchrotron methods with unprecedented signal-to-noise, spatial and time resolution. Microprobe methods are discussed that extend virtually any X-ray characterization measurement to ultra-small sample volumes. This ability is critical to resolve heterogeneities in nuclear materials and for studies on volumes with vastly lower activity than are needed for traditional X-ray characterization. Specific methods discussed include microdiffraction for the characterization of local crystal structure and micro-spectroscopy techniques that allow for characterization of elemental distributions with sensitivity for daughter products, oxidation states and diffusion through buffer layers. Opportunities are also discussed that exploit the high brilliance and pulsed nature of synchrotron radiation to reduce backgrounds from sample radiation and to study materials dynamics.

  13. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  14. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  15. X-ray microtomography with monochromatic synchrotron radiation

    SciTech Connect

    D'Amico, K. L.; Deckman, H. W.; Dunsmuir, J. H.; Flannery, B. P.; Roberge, W. G.

    1989-07-01

    We review results obtained with the Exxon Microtomography apparatus. The technique is based on tomographic methods widely used in medicine and nondestructive evaluation. When used with a tunable x-ray source, it is a powerful diagnostic and research tool for a wide variety of materials problems. It is capable of producing maps of the interior structure and chemical composition of samples approximately 0.5--1.0 mm in size, with spatial resolution in the map of the density variations approaching 10.0 /mu/m.

  16. ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal

    2012-10-20

    We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

  17. Chemically selective soft x-ray patterning of polymers

    SciTech Connect

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-06-19

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system.

  18. Evaluation of different synchrotron beamline configurations for X-ray fluorescence analysis of environmental samples.

    PubMed

    Barberie, Sean R; Iceman, Christopher R; Cahill, Catherine F; Cahill, Thomas M

    2014-08-19

    Synchrotron radiation X-ray fluorescence (SR-XRF) is a powerful elemental analysis tool, yet synchrotrons are large, multiuser facilities that are generally not amenable to modification. However, the X-ray beamlines from synchrotrons can be modified by simply including X-ray filters or removing monochromators to improve the SR-XRF analysis. In this study, we evaluated four easily applied beamline configurations for the analysis of three representative environmental samples, namely a thin aerosol sample, an intermediate thickness biological sample, and a thick rare earth mineral specimen. The results showed that the "white beam" configuration, which was simply the full, polychromatic output of the synchrotron, was the optimal configuration for the analysis of thin samples with little mass. The "filtered white beam" configuration removed the lower energy X-rays from the excitation beam so it gave better sensitivity for elements emitting more energetic X-rays. The "filtered white beam-filtered detector" configuration sacrifices the lower energy part of the spectrum (<15 keV) for improved sensitivity in the higher end (∼26 to 48 keV range). The use of a monochromatic beam, which tends to be the standard mode of operation for most SR-XRF analyses reported in the literature, gave the least sensitive analysis. PMID:25025342

  19. Demonstration of synchrotron x-ray phase contrast imaging computed tomography of infiltrative transitional cell carcinoma of the prostatic urethra in a dog.

    PubMed

    Montgomery, James E; Wesolowski, Michal J; Wolkowski, Bailey; Chibbar, Rajni; Snead, Elisabeth C R; Singh, Jaswant; Pettitt, Murray; Malhi, Pritpal S; Barboza, Trinita; Adams, Gregg

    2016-01-01

    Prostatic urethral transitional cell carcinoma with prostatic invasion in a dog was imaged with abdominal radiography and abdominal ultrasonography antemortem. Synchrotron in-line x-ray phase contrast imaging computed tomography (XPCI-CT) was performed on the prostate ex vivo at the Canadian Light Source Synchrotron and compared to histology. XPCI-CT imaging provides greater soft tissue contrast than conventional absorption-based x-ray imaging modalities, permitting visualization of regions of inflammatory cell infiltration, differentiation of invasive versus noninvasive tumor regions, and areas of necrosis and mineralization. This represents the first report of XPCI-CT images of an invasive prostatic urothelial neoplasm in a dog. PMID:27014719

  20. System for in situ studies of atmospheric corrosion of metal films using soft x-ray spectroscopy and quartz crystal microbalance.

    PubMed

    Forsberg, J; Duda, L-C; Olsson, A; Schmitt, T; Andersson, J; Nordgren, J; Hedberg, J; Leygraf, C; Aastrup, T; Wallinder, D; Guo, J-H

    2007-08-01

    We present a versatile chamber ("atmospheric corrosion cell") for soft x-ray absorption/emission spectroscopy of metal surfaces in a corrosive atmosphere allowing novel in situ electronic structure studies. Synchrotron x rays passing through a thin window separating the corrosion cell interior from a beamline vacuum chamber probe a metal film deposited on a quartz crystal microbalance (QCM) or on the inside of the window. We present some initial results on chloride induced corrosion of iron surfaces in humidified synthetic air. By simultaneous recording of QCM signal and soft x-ray emission from the corroding sample, correlation between mass changes and variations in spectral features is facilitated. PMID:17764316

  1. System for in situ studies of atmospheric corrosion of metal films using soft x-ray spectroscopy and quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Forsberg, J.; Duda, L.-C.; Olsson, A.; Schmitt, T.; Andersson, J.; Nordgren, J.; Hedberg, J.; Leygraf, C.; Aastrup, T.; Wallinder, D.; Guo, J.-H.

    2007-08-01

    We present a versatile chamber ("atmospheric corrosion cell") for soft x-ray absorption/emission spectroscopy of metal surfaces in a corrosive atmosphere allowing novel in situ electronic structure studies. Synchrotron x rays passing through a thin window separating the corrosion cell interior from a beamline vacuum chamber probe a metal film deposited on a quartz crystal microbalance (QCM) or on the inside of the window. We present some initial results on chloride induced corrosion of iron surfaces in humidified synthetic air. By simultaneous recording of QCM signal and soft x-ray emission from the corroding sample, correlation between mass changes and variations in spectral features is facilitated.

  2. Imaging local electric fields produced upon synchrotron X-ray exposure

    PubMed Central

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; Becker, Michael; Fischetti, Robert F.; Simpson, Garth J.

    2015-01-01

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. In addition, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  3. Correlative Analysis of Hard and Soft X-ray Emissions in Solar Flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1997-01-01

    This report describes research performed under the Phase 3 Compton Gamma-Ray Observatory (CGRO) Guest Investigator Program. The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the CGRO Burst and Transient Source Experiment (BATSE) and soft X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  4. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  5. Real space soft x-ray imaging at 10 nm spatial resolution

    SciTech Connect

    Chao, Weilun; Fischer, Peter; Tyliszczak, T.; Rekawa, Senajith; Anderson, Erik; Naulleau, Patrick

    2011-04-24

    Using Fresnel zone plates made with our robust nanofabrication processes, we have successfully achieved 10 nm spatial resolution with soft x-ray microscopy. The result, obtained with both a conventional full-field and scanning soft x-ray microscope, marks a significant step forward in extending the microscopy to truly nanoscale studies.

  6. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Misra, Ranjeev; Pawar, Pramod K.

    2016-03-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II Zw 177 using a 137 ks long and another 13 ks short XMM-Newton observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing 76.9 ± 4.9 per cent in 2012 and 58.8 ± 10.2 per cent in 2001 in the 0.3-2 keV band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of ˜20 ks reveals strong correlation between the soft excess and the power-law components. The fractional variability amplitude Fvar derived from EPIC-pn light curves at different energy bands is nearly constant (Fvar ˜ 20 per cent). This is in contrast to other active galactic nuclei where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the `lamppost' model. Thus, the variations in power-law emission are most likely intrinsic to corona rather than just due to the changes of height of compact corona. The variable UV emission (Fvar ˜ 1 per cent) is uncorrelated to any of the X-ray components on short time-scales suggesting that the UV emission is not dominated by the reprocessed emission. The gradual observed decline in the UV emission in 2012 may be related to the secular decline due to the changes in the accretion rate. In this case, the short term X-ray variability is not due to the changes in the seed photons but intrinsic to the hot corona.

  7. Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array.

    PubMed

    Tianming, Song; Jiamin, Yang; Rongqing, Yi

    2012-11-01

    A method for the recovery of soft x-ray spectra in indirect-drive inertial confinement fusion experiments is presented. Virtual detection channels with bandpass responses are obtained using linear combinations of the channel response functions of a filtered x-ray diode array and a weighted correction is introduced to improve the recovery. These virtual channels can be used to calculate radiation fluxes in some specific photon energy bands and hence to recover the spectrum of the whole photon energy range from 80 eV to 4.5 keV. Examples are listed which demonstrate the capability of this method to unfold various spectra such as Planck spectra with different radiation temperatures and to obtain x-ray flux of certain narrow energy interval. PMID:23206046

  8. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    SciTech Connect

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  9. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  10. Toward a soft x-ray Fourier-transform spectrometer

    SciTech Connect

    Howells, M.R.; Frank, K.; Hussain, Z.; Moler, E.J.; Reich, T. |; Moeller, D.; Shirley, D.A.

    1993-10-29

    The use of Fourier transform spectroscopy (FTS) in the soft x-ray region is advocated as a possible route to spectral resolution superior to that attainable with a grating system. A technical plan is described for applying FTS to the study of the absorption spectrum of helium in the region of double ionization around 60--80 eV. The proposed scheme includes a Mach-Zehnder interferometer deformed into a rhombus shape to provide grazing incidence reflections. The path difference between the interfering beams is to be tuned by translation of a table carrying four mirrors over a range {+-}1 cm which, in the absence of errors generating relative tilts of the wave fronts, would provide a resolving power equal to the number of waves of path difference: half a million at 65 eV, for example. The signal-to-noise ratio of the spectrum is analyzed and for operation on an Advanced Light Source bending magnet beam line should be about 330.

  11. Soft X Ray Telescope (SXT) focus error analysis

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1991-01-01

    The analysis performed on the soft x-ray telescope (SXT) to determine the correct thickness of the spacer to position the CCD camera at the best focus of the telescope and to determine the maximum uncertainty in this focus position due to a number of metrology and experimental errors, and thermal, and humidity effects is presented. This type of analysis has been performed by the SXT prime contractor, Lockheed Palo Alto Research Lab (LPARL). The SXT project office at MSFC formed an independent team of experts to review the LPARL work, and verify the analysis performed by them. Based on the recommendation of this team, the project office will make a decision if an end to end focus test is required for the SXT prior to launch. The metrology and experimental data, and the spreadsheets provided by LPARL are used at the basis of the analysis presented. The data entries in these spreadsheets have been verified as far as feasible, and the format of the spreadsheets has been improved to make these easier to understand. The results obtained from this analysis are very close to the results obtained by LPARL. However, due to the lack of organized documentation the analysis uncovered a few areas of possibly erroneous metrology data, which may affect the results obtained by this analytical approach.

  12. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  13. Multi-energy Soft X-ray diagnostic for NSTX

    NASA Astrophysics Data System (ADS)

    Tritz, Kevin; Stutman, Dan; Finkenthal, Michael; Kumar, Deepak; Clayton, Daniel

    2010-11-01

    A high resolution, ``multi-energy'' soft X-ray (ME-SXR) diagnostic is being developed for the NSTX edge plasma. The system will measure with spatial resolution of <=1cm and with ˜10 kHz bandwidth the XUV and SXR emission from the outer NSTX regions, including the pedestal, and will serve for studies of edge particle and electron transport, of ELM dynamics, and other edge phenomena. The system comprises five tangential AXUV diode arrays, viewing the plasma between 0.5

  14. The stellar contribution to the galactic soft X-ray background

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Avni, Y.; Bookbinder, J.; Giacconi, R.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Topka, K.; Vaiana, G. S.

    1981-01-01

    Log N-log S relations for stars are constructed based on median X-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed X-ray luminosity function derived here for dM stars, and the stellar contribution to the diffuse soft X-ray background is investigated. The principal results are that stars provide approximately 20% of the soft X-ray background in the 0.28-1.0 keV passband and therefore contribute significantly to the soft X-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse X-ray background in the 0.15-0.28 keV passband is less than approximately 3%.

  15. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  16. Diamond for high-heat-load synchrotron x-ray applications

    SciTech Connect

    Lee, Wah-Keat

    1994-12-31

    Synchrotron facilities worldwide provide scientists with useful radiation in the ultraviolet to the x-ray regime. Third-generation synchrotron sources win deliver photon fluxes in the 10{sup 15} photons/s/0.1%BW range, with brilliance on the order of 10{sup 18} photons/s/0.1%BW/mrad{sup 2}/mm{sup 2}. Along with the increase in flux and brilliance is an increase in the power and power densities of the x-ray beam. Depending on the particular insertion device, the x-ray beam can have total power in excess of 10 kW and peak power, density of more than 400 W/mm{sup 2}. Such high heat loads are a major challenge in the design and fabrication of x-ray beamline components. The superior thermal and mechanical properties of diamond make it a good candidate as material in these components. Single crystal diamonds can be used as x-ray monochromators, while polycrystalline or CVD diamonds can be used in a variety of ways on the front-end beamline components. This paper discusses the issues regarding the feasibility of using diamond in third-generation synchrotron beamline components.

  17. Contemporary X-ray electron-density studies using synchrotron radiation

    PubMed Central

    Jørgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Chen, Yu-Sheng; Overgaard, Jacob; Iversen, Bo B.

    2014-01-01

    Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. PMID:25295169

  18. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries.

    PubMed

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  19. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  20. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  1. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  2. Enhancement of double auger decay probability in xenon clusters irradiated with a soft-x-ray laser pulse.

    PubMed

    Namba, S; Hasegawa, N; Nishikino, M; Kawachi, T; Kishimoto, M; Sukegawa, K; Tanaka, M; Ochi, Y; Takiyama, K; Nagashima, K

    2007-07-27

    The interaction of large Xe clusters with a soft x-ray laser pulse having a wavelength of 13.9 nm and an intensity of up to 2x10(10) W/cm2 was investigated using a time-of-flight ion mass spectrometer. The corresponding laser photon energy was sufficiently high to photoionize Xe 4d innershell electrons. It was found that Xe3+ ions (which result from double Auger decay of 4d vacancies) became the dominant final ionic product with increasing cluster size and x-ray intensity. This is in contrast to the results of synchrotron radiation experiments involving free Xe atoms, in which Xe2+ is the dominant resultant ion species. Possible mechanisms responsible for the enhancement of the double Auger transition probability in x-ray laser and cluster interaction are discussed. PMID:17678361

  3. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source

    SciTech Connect

    Bluhm, Hendrik; Andersson, Klas J.; Araki, Tohru; Benzerara, Karim; Brown, Gordon E.; Dynes, Jay J.; Ghosal, Sutapa; Gilles, Mary K.; Hansen, Hans C.; Hemminger, J. C.; Hitchcock, Adam P.; Ketteler, Guido; Kilcoyne, Arthur L.; Kneedler, Eric M.; Lawrence, John R.; Leppard, Gary G.; Majzlam, Juraj; Mun, B. S.; Myneni, Satish C.; Nilsson, Anders R.; Ogasawara, Hirohito; Ogletree, D. F.; Pecher, Klaus H.; Salmeron, Miquel B.; Shuh, David K.; Tonner, Brian; Tyliszczak, Tolek; Warwick, Tony; Yoon, T. H.

    2006-02-01

    We present examples of the application of synchrotron-based spectroscopies and microscopies to environmentally-relevant samples. The experiments were performed at the Molecular Environmental Science beamline (11.0.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Examples range from the study of water monolayers on Pt(111) single crystal surfaces using X-ray emission spectroscopy and the examination of alkali halide solution/water vapor interfaces using ambient pressure photoemission spectroscopy, to the investigation of actinides, river-water biofilms, Al-containing colloids and mineral-bacteria suspensions using scanning transmission X-ray spectromicroscopy. The results of our experiments show that spectroscopy and microscopy in the soft X-ray energy range are excellent tools for the investigation of environmentally relevant samples under realistic conditions, i.e. with water or water vapor present at ambient temperature.

  4. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  5. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  6. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  7. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  8. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  9. Probing nucleobase photo protection with soft x-rays

    NASA Astrophysics Data System (ADS)

    Gühr, Markus

    2013-05-01

    We [1] present a new method for ultrafast spectroscopy of molecular photoexcited dynamics. The technique uses a pair of femtosecond pulses: a photoexcitation pulse initiating excited state dynamics followed by a soft x-ray (SXR) probe pulse that core ionizes certain atoms inside the molecule. We observe the Auger decay of the core hole as a function of delay between the photoexcitation and SXR pulses. The core hole decay is particularly sensitive to the local valence electrons near the core and shows new types of propensity rules, compared to dipole selection rules in SXR absorption or emission spectroscopy. We apply the delayed ultrafast x-ray Auger probing (DUXAP) method to the specific problem of nucleobase photoprotection to demonstrate its potential. The ultraviolet photoexcited ππ * states of nucleobases are prone to chemical reactions with neighboring bases. To avoid this, the single molecules funnel the ππ * population to lower lying electronic states on an ultrafast timescale under violation of the Born-Oppenheimer approximation. The new type of propensity rule, which is confirmed by Auger decay simulations, allows us to have increased sensitivity on the direct relaxation from the ππ * state to the vibrationally hot electronic ground state. For the nucleobase thymine, we measure a decay of the ππ * state and a subsequent filling of the vibrationally hot ground state in 300 fs. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of

  10. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    SciTech Connect

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R.

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  11. CCD (charge-coupled device) sensors in synchrotron x-ray detectors

    SciTech Connect

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm/sup 2/ can be imaged on a 2 cm/sup 2/ CCD. With a conversion efficiency of approx.1 CCD electron/x-ray photon, a peak saturation capacity of >10/sup 6/ x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10/sup 6/ pixels/s and the shift rate in the parallel registers is 10/sup 6/ lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of approx.1 frame/s or a complete 3-dimensional data set from a single crystal in approx.2 min. 16 refs., 16 figs., 2 tabs.

  12. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  13. Multiple powder diffraction data for an accurate charge density study using synchrotron radiation x-ray

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Nishibori, Eiji

    2016-04-01

    In recent years multiple synchrotron radiation (SR) powder x-ray diffraction profiles have been successfully applied to advanced structural studies such as an accurate charge density study and a structure determination from powder diffraction. The results have been presented with several examples. Abilities and future prospects have been discussed using state of the art powder diffraction data.

  14. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGESBeta

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  15. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  16. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  17. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    SciTech Connect

    Liu, Chian; Ice, Gene E; Liu, Wenjun; Assoufid, Lahsen; Qian, J; Shi, B.; Khachatryan, Ruben; Wieczorek, M.; Zschack, P.; Tischler, Jonathan Zachary

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90{sup o} to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a {approx} 0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  18. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  19. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications

    NASA Astrophysics Data System (ADS)

    Stevenson, A. W.; Gureyev, T. E.; Paganin, D.; Wilkins, S. W.; Weitkamp, T.; Snigirev, A.; Rau, C.; Snigireva, I.; Youn, H. S.; Dolbnya, I. P.; Yun, W.; Lai, B.; Garrett, R. F.; Cookson, D. J.; Hyodo, K.; Ando, M.

    2003-01-01

    Since Röntgen's discovery of X-rays just over a century ago the vast majority of radiographs have been collected and interpreted on the basis of absorption contrast and geometrical (ray) optics. Recently the possibility of obtaining new and complementary information in X-ray images by utilizing phase-contrast effects has received considerable attention, both in the laboratory context and at synchrotron sources (where much of this activity is a consequence of the highly coherent X-ray beams which can be produced). Phase-contrast X-ray imaging is capable of providing improved information from weakly absorbing features in a sample, together with improved edge definition. Four different experimental arrangements for achieving phase contrast in the hard X-ray regime, for the purpose of non-destructive characterization of materials, will be described. Two of these, demonstrated at ESRF in France and AR in Japan, are based on parallel-beam geometry; the other two, demonstrated at PLS in Korea and APS in USA, are based on spherical-beam geometry. In each case quite different X-ray optical arrangements were used. Some image simulations will be employed to demonstrate salient features of hard X-ray phase-contrast imaging and examples of results from each of the experiments will be shown.

  20. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGESBeta

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  1. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  2. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  3. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated. PMID:19876245

  4. Soft-x-ray hollow fiber optics with inner metal coating.

    PubMed

    Matsuura, Yuji; Oyama, Tadaaki; Miyagi, Mitsunobu

    2005-10-10

    A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary. PMID:16237934

  5. Ground-based x-ray calibration of the Astro-H soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2014-07-01

    The X-ray astronomy satellite Astro-H, planned to be launched in 2015, will have several instruments for covering a wide energy band from a few hundreds eV to 600 keV. There are four X-ray telescopes, and two of them are soft X-ray telescopes (SXTs) covering up to about 15 keV. One is for an X-ray micro-calorimeter detector (SXS) and the other is for an X-ray CCD detector (SXI). The design of the SXTs is a conical approximation of the Wolter Type-I optics, which is also adopted for the telescopes on the previous mission Suzaku launched in 2005. It consists 203 thin-foil reflectors coated with gold monolayer (2000 Å) on the aluminum substrate (101.6 mm length) with the thickness of 0.15, 0.23 and 0.31 mm. These are nested confocally within the radius of 58 to 225 mm. The focal length of SXTs is 5.6 m. The weight is as light as ~ 43 kg per telescope. We present the current status of the calibration activity of two SXTs (SXT-1 and SXT-2). The developments of two SXTs were completed by NASA's Goddard Space Flight Center (GSFC). First X-ray measurements with a diverging beam at the GSFC 100m beamline found an angular resolution at 8.0 keV to be 1.1 and 1.0 arcmin (HPD) for SXT-1 and SXT-2, respectively. The full characterization of the X-ray performance has been now continuously calibrated with the 30m X-ray beamline facility at the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace eXploration Agency (JAXA) in Japan. We adopted a raster scan method with a narrow X-ray pencil beam with the divergence of ~ 15". X-ray characterization of the two SXTs has been measured from May and December 2013, respectively. In the case of SXT-1, the on-axis effective area was approximately 580, 445, 370, 270, 185 and 90 cm2 at energies of 1.5, 4.5, 8.0, 9.4, 11.1 and 12.9 keV respectively. The effective area of SXT-2 is 2% larger than that of SXT-1 irrespective to X-ray energy. The on-axis angular resolution of SXT-1 was evaluated as 1.3 - 1.5 arcmin (HPD) in the 1

  6. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  7. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    NASA Astrophysics Data System (ADS)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-01

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 1012-109 photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  8. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  9. Analysis of soft x-ray/VUV transmission characteristics of Si and Al filters

    NASA Astrophysics Data System (ADS)

    Joseph, Aby; Modi, Mohammed H.; Singh, Amol; Gupta, R. K.; Lodha, G. S.

    2013-02-01

    Ultrathin filters of Al (1500Å) and Si (1200Å) should exhibit more than 65% transmission above their Labsorption edges in the soft x-ray/vacuum ultra violet region(Si L-edge: 124 Å and Al L-edge: 170 Å). However, the measured transmission characteristics of these filters showed ˜40% transmission. The transmission measurements of these filters were carried at the reflectivity beamline of Indus-1 synchrotron source out over a large wavelength range of 120-360Å. In order to understand the measured transmission performance a detailed model fitting is performed using the Paratt formalism. It is found that the oxidation of the surface region of the filters is responsible for the reduced transmission performance. Effects of higher harmonics of the toroidal grating monochromator are also considered in the data analysis.

  10. Gadolinium Deposition in Nephrogenic Systemic Fibrosis: An Examination of Tissue using Synchrotron X-ray Fluorescence Spectroscopy

    SciTech Connect

    High, W.; Ranville, J; Brown, M; Punshon, T; Lanzirotti, A; Jackson, B

    2010-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder associated with gadolinium (Gd)-based contrast agents dosed during renal insufficiency. In two patients, Gd deposition in tissue affected by nephrogenic systemic fibrosis was quantified using inductively coupled plasma mass spectrometry. The presence of Gd was confirmed and mapped using synchrotron x-ray fluorescence spectroscopy. Affected skin and soft tissue from the lower extremity demonstrated 89 and 209 ppm ({micro}g/g, dry weight, formalin fixed) in cases 1 and 2, respectively. In case 2, the same skin and soft tissue was retested after paraffin embedding, with the fat content removed by xylene washes, and this resulted in a measured value of 189 ppm ({micro}g/g, dry weight, paraffin embedded). Synchrotron x-ray fluorescence spectroscopy confirmed Gd in the affected tissue of both cases, and provided high-sensitivity and high-resolution spatial mapping of Gd deposition. A gradient of Gd deposition in tissue correlated with fibrosis and cellularity. Gd deposited in periadnexal locations within the skin, including hair and eccrine ducts, where it colocalized to areas of high calcium and zinc content. Because of the difficulty in obtaining synchrotron x-ray fluorescence spectroscopy scans, tissue from only two patients were mapped. A single control with kidney disease and gadolinium-based contrast agent exposure did not contain Gd. Gd content on a gravimetric basis was impacted by processing that removed fat and altered the dry weight of the specimens. Gradients of Gd deposition in tissue corresponded to fibrosis and cellularity. Adnexal deposition of Gd correlated with areas of high calcium and zinc content.

  11. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  12. The Soft X-Ray Spectrometer (SXS) for the ISAS/JAXA New Exploration X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Kilbourne, C. A.; McCammon, D.; Mushotzky, R. F.; Okajima, T.; Petre, R.; Porter, F. S.; Serlemitsos, P. J.; Smith, R. K.; Soong, Y.; Szymkowiak, A. E.; Mitsuda, K.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamasaki, N. Y.; Shinozaki, K.; Fujimoto, R.; Kawaharada, M.

    2008-03-01

    The ISAS/JAXA New Exploration X-Ray Telescope (NEXT) is now under development for launch in 2013. The observatory is designed to provide extremely high spectral resolution with large collecting area below 10 keV using an x-ray calorimeter, and a very large band pass (up to 300 keV) with extraordinary sensitivity over the range 10-80 keV using focusing x-ray optics. In this talk we will discuss plans for the Soft X-Ray Spectrometer (SXS), which uses an x-ray calorimeter array to provide the high spectral resolution. The SXS is a joint effort between ISAS and NASA and recently proposed to NASA as a Mission of Opportunity for the US participation. The SXS incorporates a 6x6 calorimeter array that has strong heritage in the Suzaku program and better than 7 eV energy resolution, with 4-5 eV expected based on recent laboratory tests. The cryogenic system will be a hybrid design with both liquid helium and mechanical coolers to provide a robust, redundant system with long life (> 3 years). The x-ray optical system (6 m focal length) uses thin-foil conical optics to provide at least 220 square cm at 6 keV. The SXS will enable a wide variety of interesting science topics to be pursued, including testing theories of structure formation using velocity measurements of clusters of galaxies and inferring the energy output from the jets and winds of active galaxies. The SXS will accurately measure metal abundances in the oldest galaxies, providing unique information on the origin of the elements, and observe matter in extreme gravitational fields, enabling time-resolved spectra from material approaching the event horizon of a black hole. Along with providing the instrument, we have proposed a well supported guest investigator program that will enable full US participation.

  13. Deconstructing the Spectrum of the Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  14. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  15. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  16. Synchrotron-based Scattered Radiation from Phantom Materials used in X-ray CT

    SciTech Connect

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Gigante, G

    2010-01-01

    Synchrotron-based scattered radiation form low-contrast phantom materials prepared from polyethylene, polystyrene, nylon, and Plexiglas is used as test objects in X-ray CT was examined with 8, 10 and 12 keV X-rays. These phantom materials of medical interest will contains varying proportions of low atomic number elements. The assessment will allowed us to estimate the fluorescence to total scattered radiation. Detected the fluorescence spectra and the associated scattered radiation from calcium hydroxyapatite phantom with 8, 10 and 12 keV synchrotron X-rays. Samples with Bonefil (60% and 70% of calcium hydroxyapatite) and Bone cream (35-45% of calcium hydroxyapatite), were used. Utilized the X-ray micro-spectroscopy beamline facility, X27A, available at NSLS, BNL, USA. The primary beam with a spot size of the order of {approx}10 {micro}m, has been used for focusing. With this spatial resolution and high flux throuput, the synchrotron-based scattered radiation from the phantom materials were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector.

  17. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    NASA Astrophysics Data System (ADS)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-08-01

    The behaviour of neutron stars in high mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7±0.2 K and inferred emitting radius of ˜0.2 - 0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  18. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    NASA Astrophysics Data System (ADS)

    Wanli, Yang; Ruimin, Qiao

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode-electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries.

  19. Dosimetry of Microdistributed Dose-Enhancing Agents in X-ray Synchrotron Binary Therapy

    NASA Astrophysics Data System (ADS)

    Hugtenburg, Richard P.

    2010-07-01

    Monte Carlo based modelling of the dose distribution in the vicinity of concentrates of iodine (I) and gold (Au) binary radiotherapy agents has been performed for monochromatised synchrotron X-rays. While the KERMA approximation, which ignores electron transport, is often acceptable for kilovoltage X-ray dosimetry in X-ray binary therapy, the range of photoelectrons and Auger electrons may be significant when compared to the microdostributed structure of the binary compound in which case corrections to the approximation may be necessary. Dose is calculated using EGSnrc for microdistributions associated with X-ray radiation synovecotomy, where iodine is taken up in the synovial lining. Dose as a function of the volume of aggregation for an Au-based contrast agent such as Au nanoparticles, ranging in diameter from 5 micron to 100 micron, were calculated using EGSnrc and Penelope, showing that the dose varies slowly for 90 keV X-rays, where much of the dose delivered by short range photoelectrons while 80 keV X-rays, just below the K-edge of Au (80.729 keV) increases linearly with diameter. In general the dose varies slowly as a function of volume suggesting that only small corrections will be needed to account for effects due to the failure of electronic equilibrium.

  20. Dosimetry of Microdistributed Dose-Enhancing Agents in X-ray Synchrotron Binary Therapy

    SciTech Connect

    Hugtenburg, Richard P.

    2010-07-23

    Monte Carlo based modelling of the dose distribution in the vicinity of concentrates of iodine (I) and gold (Au) binary radiotherapy agents has been performed for monochromatised synchrotron X-rays. While the KERMA approximation, which ignores electron transport, is often acceptable for kilovoltage X-ray dosimetry in X-ray binary therapy, the range of photoelectrons and Auger electrons may be significant when compared to the microdostributed structure of the binary compound in which case corrections to the approximation may be necessary. Dose is calculated using EGSnrc for microdistributions associated with X-ray radiation synovecotomy, where iodine is taken up in the synovial lining. Dose as a function of the volume of aggregation for an Au-based contrast agent such as Au nanoparticles, ranging in diameter from 5 micron to 100 micron, were calculated using EGSnrc and Penelope, showing that the dose varies slowly for 90 keV X-rays, where much of the dose delivered by short range photoelectrons while 80 keV X-rays, just below the K-edge of Au (80.729 keV) increases linearly with diameter. In general the dose varies slowly as a function of volume suggesting that only small corrections will be needed to account for effects due to the failure of electronic equilibrium.

  1. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGESBeta

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  2. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  3. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    SciTech Connect

    Fischer, P.; Im, M.-Y.

    2010-01-18

    Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

  4. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  5. Soft x-ray circular dichroism and scattering using a modulated elliptically polarizing wiggler and double synchronous detection

    SciTech Connect

    Sutherland, J.C.; Polewski, K.; Monteleone, D.C.

    1998-01-23

    We have constructed an experimental station (beamline) at the National Synchrotron Light Source to measure circular dichroism (CD) using soft x-rays (250 {le} hv {le} 900 eV) from a time modulated elliptically polarizing wiggler. The polarization of the soft x-ray beam switches periodically between two opposite polarizations, hence permitting the use of phase-sensitive (lock-in) detection. While the wiggler can be modulated at frequencies up to 100 Hz, switching transients limit the actual practical frequency to {approx}25 Hz. With analog detection, switching transients are blocked by a chopper synchronized to the frequency and phase of the wiggler. The CD is obtained from the ratio of the signal recovered at the frequency of polarization modulation, f, to the average beam intensity, which is recovered by synchronous detection at frequency 2f.

  6. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  7. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments.

    PubMed

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study "Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments" [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI), analyzer based imaging (CT-ABI), and in-line phase contrast imaging (CT-PCI) at standard and low dose imaging modalities. PMID:26909381

  8. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples.

    PubMed

    Fuchs, O; Weinhardt, L; Blum, M; Weigand, M; Umbach, E; Bär, M; Heske, C; Denlinger, J; Chuang, Y-D; McKinney, W; Hussain, Z; Gullikson, E; Jones, M; Batson, P; Nelles, B; Follath, R

    2009-06-01

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) microm2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min. PMID:19566192

  9. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments

    PubMed Central

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-01-01

    This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study “Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments” [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI), analyzer based imaging (CT-ABI), and in-line phase contrast imaging (CT-PCI) at standard and low dose imaging modalities. PMID:26909381

  10. Validating the scalability of soft X-ray spectromicroscopy for quantitative soil ecology and biogeochemistry research.

    PubMed

    Dynes, James J; Regier, Tom Z; Snape, Ian; Siciliano, Steven D; Peak, Derek

    2015-01-20

    Synchrotron-based soft-X-ray scanning transmission X-ray microscopy (STXM) has the potential to provide nanoscale resolution of the associations among biological and geological materials. However, standard methods for how samples should be prepared, measured, and analyzed to allow the results from these nanoscale imaging and spectroscopic tools to be scaled to field scale biogeochemical results are not well established. We utilized a simple sample preparation technique that allows one to assess detailed mineral, metal, and microbe spectroscopic information at the nano- and microscale in soil colloids. We then evaluated three common approaches to collect and process nano- and micronscale information by STXM and the correspondence of these approaches to millimeter scale soil measurements. Finally, we assessed the reproducibility and spatial autocorrelation of nano- and micronscale protein, Fe(II) and Fe(III) densities in a soil sample. We demonstrate that linear combination fitting of entire spectra provides slightly different Fe(II) mineral densities compared to image resonance difference mapping but that difference mapping results are highly reproducible between among sample replicates. Further, STXM results scale to the mm scale in complex systems with an approximate geospatial range of 3 μm in these samples. PMID:25526317

  11. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiuzbǎian, Sorin G.; Hague, Coryn F.; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm2 focal spot source with full polarization control.

  12. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  13. Plane-grating flat-field soft x-ray spectrometer

    SciTech Connect

    Hague, C.F.; Underwood, J.H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.

    2005-02-01

    We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of {<=}5 {mu}m is planned at SOLEIL which, according to simulations, should ensure a resolving power {>=}1000 over the whole energy range. A 1024x1024 pixel charge-coupled device (CCD) with a 13 {mu}mx13 {mu}m pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.

  14. Soft X-Ray Beam line for Industry Application in Saga

    SciTech Connect

    Kamada, M.; Azuma, J.; Takahashi, K.; Kondo, Y.; Miyata, H.; Tsuji, J.; Hashimoto, H.; Yamashige, H.; Kurisaki, S.; Wakita, H.; Furuya, K.; Harata, A.; Tochihara, H.; Matsuo, S.; Watanabe, T.; Inaba, M.; Okajima, T.; Setoyama, H.; Yoshimura, D.; Fujimoto, H.

    2007-01-19

    The varied line spacing plane grating monochromator (VLS-PGM) has been constructed for an industry application beamline using soft x-rays from the 1.4 GeV storage ring in Saga, which is the first synchrotron in Kyushu Island. The design aim of the VLS-PGM is to cover the wide-energy range from 40-1,000 eV and also to have medium resolving power, high throughput, better reproducibility and suppression of higher-order light. In order to cover the wide energy range with suppressing higher-order light, a set of three focusing mirrors and one grating is installed. The resolving power expected from the ray-tracing calculation using SHADOW is more than 5,000 with 10 micron slits. The conventional photoelectron spectrometer is installed with an ion gun, a flood gun and a twin-anode x-ray source. The instrument for XAFS measurement is also attached to the main chamber.

  15. The soft X-ray absorption spectrum of the allyl free radical.

    PubMed

    Alagia, M; Bodo, E; Decleva, P; Falcinelli, S; Ponzi, A; Richter, R; Stranges, S

    2013-01-28

    The first experimental study of the X-ray absorption spectrum (XAS) of the allyl free radical, CH(2)CHCH(2), is reported. A supersonic He seeded beam of hyperthermal allyl radicals was crossed by a high resolution synchrotron radiation (SR) in the focus of a 3D ion momentum imaging time-of-flight (TOF) spectrometer to investigate the soft X-ray absorption and fragmentation processes. The XAS, recorded as Total-Ion-Yield (TIY), is dominated by C1s electron excitations from either the central carbon atom, C(C), or the two terminal carbon atoms, C(T), to the frontier orbitals, the semi-occupied-molecular-orbital (SOMO) and the lowest-unoccupied-molecular-orbital (LUMO). All of the intense features in the XAS could only be assigned with the aid of ab initio spectral simulation at the Multi-Configuration Self-Consistent-Field (MCSCF) level of theory, this level being required because of the multi-reference nature of the core-excited state wavefunctions of the open shell molecule. The ionization energies (IEs) of the singlet and triplet states of the C1s ionized allyl radical (XPS) were also calculated at the MCSCF level. PMID:23232557

  16. Design of Molecular Solar Cells via Feedback from Soft X-ray Spectroscopy

    SciTech Connect

    Himpsel, Franz J.

    2015-06-12

    Spectroscopy with soft X-rays was used to develop new materials and novel designs for solar cells and artificial photosynthesis. In order to go beyond the widely-used trial-and-error approach of gradually improving a particular design, we started from the most general layout of a solar cell (or a photo-electrochemical device) and asked which classes of materials are promising for best performance. For example, the most general design of a solar cell consists of a light absorber, an electron donor, and an electron acceptor. These are characterized by four energy levels, which were measured by a combination of spectroscopic X-ray techniques. Tuning synchrotron radiation to the absorption edges of specific elements provided element- and bond-selectivity. The spectroscopic results were complemented by state-of-the-art calculations of the electronic states. These helped explaining the observed energy levels and the orbitals associated with them. The calculations were extended to a large class of materials (for example thousands of porphyrin dye complexes) in order to survey trends in the energy level structure. A few highlights serve as examples: 1) Organic molecules combining absorber, donor, and acceptor with atomic precision. 2) Exploration of highly p-doped diamond films as inert, transparent electron donors. 3) Surface-sensitive characterization of nanorod arrays used as photoanodes in water splitting. 4) Computational design of molecular complexes for efficient solar cells using two photons.

  17. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory.

    PubMed

    Tancharakorn, Somchai; Tanthanuch, Waraporn; Kamonsutthipaijit, Nuntaporn; Wongprachanukul, Narupon; Sophon, Methee; Chaichuay, Sarunyu; Uthaisar, Chunmanus; Yimnirun, Rattikorn

    2012-07-01

    The first microbeam synchrotron X-ray fluorescence (µ-SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X-ray capillary half-lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters-sized beam to a micrometer-sized beam. This beamline was originally designed for deep X-ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ-SXRF and synchrotron X-ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X-ray beam (for SXPD), a fixed aperture and three gate valves. Two end-stations incorporating optics and detectors for µ-SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ-SXRF station utilizes a polycapillary half-lens for X-ray focusing. This optic focuses X-ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end-station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single-element Si (PIN) solid-state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in-house to generate a series of single-column data which are compatible with available XRF data-processing software. Finally, to test the performance of the µ-SXRF beamline, an elemental surface profile has been obtained for

  18. Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

    PubMed

    Suzuki, Motohiro

    2014-11-01

    X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning

  19. The Interrelation of Soft and Hard X-ray Emission During Solar Flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1997-01-01

    The objective of this project is to determine the characteristics of flare energy transport processes through the study of soft X-rays, hard X-rays, and their interrelationships through analysis of Yohkoh SXT, HXT, and BCS data, and comparison with theoretical models. The personnel involved in the research include SSL Assistant Research Physicists Dr. Peng Li and Dr. James McTiernan.

  20. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  1. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    SciTech Connect

    Tomczak, M.; Chmielewska, E. E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

  2. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    PubMed

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or close to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water-vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike

  3. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  4. A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions

    SciTech Connect

    Honda, M. Baba, Y.; Shimoyama, I.; Sekiguchi, T.

    2015-03-15

    X-ray absorption fine structure (XAFS) measurements are widely used for the analysis of electronic structure. Generally, XAFS in the soft X-ray region is measured under vacuum, but chemical structures under vacuum are typically different from those under operando conditions, where chemical species exhibit their function. Here, we developed an XAFS measurement instrument, as a step toward operando fluorescent, which yields XAFS measurement using synchrotron radiation in the soft X-ray region. We applied this method to analyze the local electronic structure of the sulfur atoms in L-cysteine in different pH solutions. In water at pH 7, the hydrogen atom does not dissociate from the thiol (-SH) group in L-cysteine, which forms a structure surrounded by and interacting with water molecules. The XAFS spectrum of L-cysteine in solution was altered by changing the pH. At pH 9, the hydrogen atom dissociated and a thiolate anion was formed. Although the -SH group was oxidized to SO{sub 4}{sup 2−} when L-cysteine was adsorbed on a metal surface and dried, no oxidation was observed in solution. This may be because the water molecules were densely packed and protected the -SH group from oxidation. Our results show that this instrument aimed toward operando fluorescence XAFS measurements in the soft X-ray region is useful for structural analysis of sulfur atoms in organic molecules in air and in solution. The instrument will be applied to the structural analysis of materials containing elements that have absorption edges in soft X-ray region, such as phosphorus and alkali metals (potassium and cesium). It will be also particularly useful for the analysis of samples that are difficult to handle under vacuum and materials that have specific functions in solution.

  5. A fluorescence XAFS measurement instrument in the soft X-ray region toward observation under operando conditions.

    PubMed

    Honda, M; Baba, Y; Shimoyama, I; Sekiguchi, T

    2015-03-01

    X-ray absorption fine structure (XAFS) measurements are widely used for the analysis of electronic structure. Generally, XAFS in the soft X-ray region is measured under vacuum, but chemical structures under vacuum are typically different from those under operando conditions, where chemical species exhibit their function. Here, we developed an XAFS measurement instrument, as a step toward operando fluorescent, which yields XAFS measurement using synchrotron radiation in the soft X-ray region. We applied this method to analyze the local electronic structure of the sulfur atoms in L-cysteine in different pH solutions. In water at pH 7, the hydrogen atom does not dissociate from the thiol (-SH) group in L-cysteine, which forms a structure surrounded by and interacting with water molecules. The XAFS spectrum of L-cysteine in solution was altered by changing the pH. At pH 9, the hydrogen atom dissociated and a thiolate anion was formed. Although the -SH group was oxidized to SO4 (2-) when L-cysteine was adsorbed on a metal surface and dried, no oxidation was observed in solution. This may be because the water molecules were densely packed and protected the -SH group from oxidation. Our results show that this instrument aimed toward operando fluorescence XAFS measurements in the soft X-ray region is useful for structural analysis of sulfur atoms in organic molecules in air and in solution. The instrument will be applied to the structural analysis of materials containing elements that have absorption edges in soft X-ray region, such as phosphorus and alkali metals (potassium and cesium). It will be also particularly useful for the analysis of samples that are difficult to handle under vacuum and materials that have specific functions in solution. PMID:25832271

  6. A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions

    NASA Astrophysics Data System (ADS)

    Honda, M.; Baba, Y.; Shimoyama, I.; Sekiguchi, T.

    2015-03-01

    X-ray absorption fine structure (XAFS) measurements are widely used for the analysis of electronic structure. Generally, XAFS in the soft X-ray region is measured under vacuum, but chemical structures under vacuum are typically different from those under operando conditions, where chemical species exhibit their function. Here, we developed an XAFS measurement instrument, as a step toward operando fluorescent, which yields XAFS measurement using synchrotron radiation in the soft X-ray region. We applied this method to analyze the local electronic structure of the sulfur atoms in L-cysteine in different pH solutions. In water at pH 7, the hydrogen atom does not dissociate from the thiol (-SH) group in L-cysteine, which forms a structure surrounded by and interacting with water molecules. The XAFS spectrum of L-cysteine in solution was altered by changing the pH. At pH 9, the hydrogen atom dissociated and a thiolate anion was formed. Although the -SH group was oxidized to SO42- when L-cysteine was adsorbed on a metal surface and dried, no oxidation was observed in solution. This may be because the water molecules were densely packed and protected the -SH group from oxidation. Our results show that this instrument aimed toward operando fluorescence XAFS measurements in the soft X-ray region is useful for structural analysis of sulfur atoms in organic molecules in air and in solution. The instrument will be applied to the structural analysis of materials containing elements that have absorption edges in soft X-ray region, such as phosphorus and alkali metals (potassium and cesium). It will be also particularly useful for the analysis of samples that are difficult to handle under vacuum and materials that have specific functions in solution.

  7. Soft X-ray betatron radiation characterization for warm-dense matter studies at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Cordamine, F.; Fry, A.; Galtier, E.; Granados, E.; Heimann, P.; Kotick, J.; Lee, Hae Ja; Glenzer, S. H.; Barbrel, B.; Sanders, A.; Falcone, R.; Ravarsio, A.; Gaudin, J.; Pollock, B. B.; Albert, F.

    2015-11-01

    Laser wakefield acceleration (LWFA) can produce high-energy (>100 MeV) electron beams with ultra-short durations (<100 fs) in a compact, mm-scale plasma. Transverse motion of the electrons in the wakefield leads to the emission of synchrotron-like X-ray beams, called betatron radiation, with peak photon energies >10 keV and source sizes of a few microns. These X-ray beams are presumed to retain the short-pulse characteristic of the electrons, resulting in high peak brightness and peak energy, making the source an excellent candidate for ultrafast temporally resolved pump-probe applications, especially for free-electron laser (FEL) and high-energy density (HED) experiments. Presented here are some of first experimental measurements of betatron in the soft X-ray regime (<1 keV) using X-ray mirrors and a grating spectrometer to collect, transport, and focus betatron X-rays for pump-probe experiments at the LCLS Matter-in-Extreme Conditions (MEC) facility.

  8. The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients

    NASA Astrophysics Data System (ADS)

    Wu, Yuxiang; Yu, Wenfei; Li, Tipei

    2010-01-01

    Recent studies of black hole and neutron star low mass X-ray binaries (LMXBs) show a positive correlation between the X-ray flux at which the low/hard(LH)-to-high/soft(HS) state transition occurs and the peak flux of the following HS state. By analyzing the data from the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE), we show that the HS state flux after the source reaches its HS flux peak still correlates with the transition flux during soft X-ray transient (SXT) outbursts. By studying large outbursts or flares of GX 339-4, Aql X-1 and 4U 1705-44, we have found that the correlation holds up to 250, 40, and 50 d after the LH-to-HS state transition, respectively. These time scales correspond to the viscous time scale in a standard accretion disk around a stellar mass black hole or a neutron star at a radius of ˜104-5 R g, indicating that the mass accretion rates in the accretion flow either correlate over a large range of radii at a given time or correlate over a long period of time at a given radius. If the accretion geometry is a two-flow geometry composed of a sub-Keplerian inflow or outflow and a disk flow in the LH state, the disk flow with a radius up to ˜105 R g would have contributed to the nearly instantaneous non-thermal radiation directly or indirectly, and therefore affects the time when the state transition occurs.

  9. Soft X-ray results from the Wisconsin experiment on OSO-8

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1978-01-01

    Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.

  10. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  11. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    SciTech Connect

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-15

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-{mu}m-wide beam to a width of 80 {mu}m with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  12. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    SciTech Connect

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-19

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  13. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1993-01-28

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond monochromator system. In this paper, we consider various aspects, advantages and disadvantages, and promises and pitfalls of such a system and evaluate the comparative performance of a diamond monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of a diamond-based monochromator is within present technical means.

  14. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means.

  15. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang, Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  16. Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy

    SciTech Connect

    Rose, Volker; Freeland, John W.

    2010-06-23

    The combination of synchrotron radiation with scanning tunneling microscopy provides a promising new concept for chemical imaging of nanoscale structures. It employs detection of local x-ray absorption, which directly yields chemical, electronic, and magnetic sensitivity. The study of the tip current in the far field (800 nm tip/sample separation) shows that insulator-coated tips have to be considered in order to reduce the background from stray photoelectron. A picture of the different channels contributing to the x-ray enhanced STM process is proposed. If during electron tunneling the sample is illuminated with monochromatic x-rays, characteristic absorption will arise, and core electrons are excited, which might modulate the conventional tunnel current and facilitate chemical imaging at the nanoscale.

  17. Concentration of synchrotron beams by means of monolithic polycapillary x-ray optics

    SciTech Connect

    Ullrich, J.B.; Klotzko, I.L. |; Huang, K.G.; Owens, S.M.; Aloisi, D.C.; Hofmann, F.A.; Gao, N.; Gibson, W.M.

    1995-08-01

    Capillary Optics have proven to be a valuable tool for concentrating synchrotron radiation. Single tapered capillaries are used at several facilities. However, most of these optics collect only over a small area. this can be overcome by using larger capillary structures. Polycapillary optics can deflect x-rays by larger angles than other x-ray optics that use only one or two reflections. Conventional x-ray optics that achieve similar deflections, are much more energy selective than capillaries. Therefore, capillaries achieve very short focal distances for a wide range of energies. The measurements shown here represent first tests performed with polycapillaries of large input diameter. The performance with respect to transmission efficiency and spot size was evaluated for a set of four very different prototypes. It is shown that a significant gain may be achieved if a spot size of the order of 0.1 mm is required. Further, some characteristics of the different optics are discussed.

  18. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  19. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  20. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  1. A new soft x-ray pulse height analysis array in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.

    2009-12-15

    A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p/b{>=}3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.

  2. Solar-terrestrial coupling: Solar soft X-rays and thermospheric nitric oxide

    NASA Astrophysics Data System (ADS)

    Barth, Charles A.; Bailey, Scott M.; Solomon, Stanley C.

    Simultaneous measurements were made of the solar soft x-ray irradiances and the thermospheric nitric oxide density in the tropics from the Student Nitric Oxide Explorer (SNOE) satellite. The analysis of these observations for 44 days of low geomagnetic activity in the spring of 1998 show that there is a correlation between the solar soft x-ray irradiances and thermospheric nitric oxide densities in the tropics. Photochemical model calculations that used the measured solar soft x-ray irradiances as input parameters adequately reproduce the magnitude of the time-varying component of the thermospheric nitric oxide in the tropics. An additional amount of nitric oxide is present in the tropics that does not vary with the time period of the solar rotation. The conclusion of this analysis is that solar soft x-rays are the primary cause of the variation in the thermospheric nitric oxide densities in the tropics during times of low geomagnetic activity.

  3. Homogeneous focusing with a transient soft X-ray laser for irradiation experiments

    NASA Astrophysics Data System (ADS)

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, B.; Koslová, M.; Stupka, M.; Mocek, T.; Douillet, D.; Zeitoun, Ph.; Joyeux, D.; Phalippou, D.

    2006-07-01

    We report the work done on a transient soft X-ray laser (SXRL) beam to deliver a proper extreme UV irradiation source for applications. The same optical tool was first demonstrated on a quasi stationnary state (QSS) soft X-Ray laser at the PALS Institute in Prague. The problem set by the transient soft X-Ray laser developed by the LIXAM at the LULI installation in Palaiseau is more crucial, first because the beam spatial profile is more irregular secondly because high repetition rate soft X-ray laser facilities in the future are based on this SXRL type. The spots obtained show a 20 micron average diameter and a rather homogeneous and smooth profile that make them a realistic irradiation source to interact with targets requiring relatively high fluence (near 1 J/cm 2) or intensity (near 10 11 W/cm 2) in the extreme UV domain.

  4. Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

    NASA Astrophysics Data System (ADS)

    Wessels, P.; Ewald, J.; Wieland, M.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Vogel, A.; Neumann, A.; Viefhaus, J.; Oepen, H. P.; Meier, G.; Wilhein, T.; Drescher, M.

    2014-04-01

    We present first time-resolved measurements of a new mobile full-field transmission microscope [1] obtained at the soft X-ray beamline P04 at the high brilliance synchrotron radiation source PETRA III. A nanostructured magnetic permalloy (Ni80Fe20) sample can be excited by the magnetic field of a 400 ps full width at half maximum (FWHM) long electric current pulse in a coplanar waveguide. The full-field soft X-ray microscope successively probes the time evolution of the sample magnetization via X-ray magnetic circular dichroism (XMCD) [2] spectromicroscopy in a pump-probe scheme by varying the delay between pump and probe pulses electronically. Static and transient magnetic fields of a permanent magnet and a coil are available in the sample plane to reset the system and to provide external offset fields. The microscope generates a flat-top illumination field of 20 μm diameter by using a grating condenser [3] and the sample plane is directly imaged by a micro zone plate with 60 nm resolution onto a 2D gateable X-ray detector to select the particular bunch in the storage ring that contains the dynamic information. The setup is built into a mobile endstation vacuum system with in-house developed three-axis piezo motorized stages for high accuracy positioning of all microscopy-components inside the chambers.

  5. On the source function of the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Kraft, Ralph P.

    1993-01-01

    Radiation transfer theory has been used recently to derive the source function of the soft X-ray diffuse background, resulting in the claim of evidence for 10 exp 6 K gas in the Galactic halo. We show that this analysis has several errors that invalidate its conclusions. We argue that the case for an extensive hot halo remains open, pending further work, but may be settled by the continuing series of Rosat observations of high-latitude soft X-ray shadows.

  6. Generation of soft X rays in a vircator with exploding anode foil

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Efimova, I. A.; Kargin, V. I.; Ryaslov, E. A.; Selemir, V. D.

    2007-06-01

    A soft X-ray generator is designed on the basis of a vircator the plasma anode of which is formed by electrical explosion of anode foil. The intensity of soft X-ray radiation (E γ > 20 eV) produced by vircators with a metal and plasma anode is measured. Microwave pulses indicating the presence of a virtual cathode in the plasma beam are detected.

  7. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  8. Running Shanghai Soft x-ray FEL with the EEHG scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    With the nominal beam parameters (beam energy: 0.84 GeV, slice energy spread: 168 keV, peak current: 600 A, normalized emittance: 2 mm mrad) of the Shanghai soft X-ray Free Electron Laser (SXFEL) project, we show that using the echo-enabled harmonic generation (EEHG) scheme, 9 nm coherent soft x-ray with peak power exceeding 400 MW can be generated directly from the 270 nm seeding laser.

  9. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  10. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents. PMID:26636984

  11. Image Alignment for Tomography Reconstruction from Synchrotron X-Ray Microscopic Images

    PubMed Central

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the “projected feature points” in the sequence of images. The matched projected feature points in the - plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  12. High resolution hard x-ray microscope on a second generation synchrotron source

    SciTech Connect

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-10-15

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  13. High resolution hard x-ray microscope on a second generation synchrotron source.

    PubMed

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed. PMID:19044720

  14. High resolution hard x-ray microscope on a second generation synchrotron source

    NASA Astrophysics Data System (ADS)

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  15. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Sheromov, M. A.; Sokolov, A. S.

    1986-05-01

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring ( f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4.

  16. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    SciTech Connect

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Astolfo, Alberto; Menk, Ralf-Hendrik; Juurlink, Bernhard H. J.

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  17. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  18. Synchrotron X-ray diffraction characterization of healthy and fluorotic human dental enamel

    NASA Astrophysics Data System (ADS)

    Colaço, M. V.; Barroso, R. C.; Porto, I. M.; Gerlach, R. F.; Costa, F. N.; Braz, D.; Droppa, R.; de Sousa, F. B.

    2012-10-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory—LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data.

  19. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    PubMed

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  20. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  1. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  2. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  3. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  4. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed. PMID:20400833

  5. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  6. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  7. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  8. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  9. Characterization of Nano and Mesoscale Deformation Structures with Intense X-ray Synchrotron Sources

    SciTech Connect

    Ice, G.E.; Barabash, R.I.; Walker, F.J.

    2010-07-19

    Advanced polychromatic microdiffraction is sensitive to the organization of dislocations and other defects that rotate the lattice planes. Using ultra-brilliant third-generation synchrotron sources and non-dispersive X-ray focusing optics, it is now possible to analyze individual dislocation cells and walls at a submicron scale that cannot be probed by traditional methods. The method is applied to an Ir weld sample to illustrate how microdiffraction can be used to determine the locally active dislocation system.

  10. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  11. Synchrotron X-ray and ab initio studies of beta-Si3N4.

    PubMed

    du Boulay, D; Ishizawa, N; Atake, T; Streltsov, V; Furuya, K; Munakata, F

    2004-08-01

    Almost absorption- and extinction-free single-crystal synchrotron X-ray diffraction data were measured at 150, 200 and 295 K for beta-Si3N4, silicon nitride, at a wavelength of 0.7 A. The true symmetry of this material has been the subject of minor controversy for several decades. No compelling evidence favouring the low-symmetry P6(3) model was identified in this study. PMID:15258397

  12. Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials

    SciTech Connect

    Perry, D.L.

    1996-12-31

    Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials are presented regarding dopant metal ions in the crystal matrices. Types of samples that are amenable to the technique will be discussed, along with sample format and experimental conditions. The chemical information that one can obtain from samples will be presented, and examples of copant contaminant studies in crystals will be given. New types of samples that are possible to study using this technique will be presented.

  13. A tunable wedge-shaped absorber for hard X-ray synchrotron applications.

    PubMed

    Krywka, C; Brix, M; Müller, M

    2014-07-01

    The concept of a concave aluminium wedge-shaped absorber for hard X-ray synchrotron beamlines is presented. Unlike the commonly used absorber types (fixed-thickness absorber sheets or binary exchangers of individual fixed absorbers), this concept allows a compact system, controlled with a single linear positioner, and provides a wide attenuation range as well as a precise tunability over a large energy range. Data were recorded at the Nanofocus Endstation of the MINAXS beamline, PETRA III, Hamburg, Germany. PMID:24971979

  14. Tracking picosecond molecular dynamics in solution using a suite of synchrotron-x-ray spectroscopic tools

    NASA Astrophysics Data System (ADS)

    March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Lehmann, Stefan; Moonshiram, Dooshaye; Southworth, Stephen H.; Young, Linda; Assefa, Tadesse A.; Bressler, Christian; Gawelda, Wojciech; Németh, Zoltán; Vankó, György

    2015-03-01

    Laser-pump, X-ray-probe techniques are powerful tools for exploring molecular structural changes that occur in complex environments such as solutions, during a photo-initiated reaction. We are developing such methods using hard x-rays from the Advanced Photon Source, combining x-ray emission spectroscopy and x-ray absorption spectroscopy as probes of electronic and geometric structure and using high-power, MHz lasers as pumps. The high-duty-cycle pump-probe measurements efficiently utilize the synchrotron x-ray flux and enable high-fidelity measurements of the structures of transient intermediates. We present measurements on the model system [Fe(II)(CN)6]4- (ferrocyanide) in an aqueous solution after excitation with 355 nm and 266 nm laser light. The system undergoes two wavelength dependent reactions: photooxidation and photoaquation. Iron K-edge absorption spectra were obtained along with iron emission spectra. Our data support the presence of a previously unobserved pentacoordinated intermediate species in the photoaquation reaction. Its lifetime has been measured to be 4.6 ns and details of its structure will be discussed. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  15. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Spanne, P. ); Rivers, M.L.; Sutton, S.R. )

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

  16. Synchrotron X-ray muprobe and its application to human hair analysis

    NASA Astrophysics Data System (ADS)

    Iida, Atsuo; Noma, Takashi

    1993-07-01

    A synchrotron X-ray muprobe system based on Kirkpatrick-Baez optics has been developed. Double-crystal and synthetic multilayer monochromators are used for high energy resolution experiments and for highly sensitive X-ray fluorescence analysis, respectively. The characteristics of the X-ray muprobe were experimentally examined. A beam size of around 5 μm was obtained; the X-ray photon flux at the storage ring current of 300 mA is of the order of 10 7-8 photons/s and 10 9-10 photons/s for the double-crystal and multilayer monochromators, respectively. The concentration distributions of trace elements in cross sections of human hair were measured using an X-ray mubeam with the multilayer monochromator. Inhomogeneous distributions of trace elements in thin cross-section samples show that two-dimensional imaging is effective and indispensable both for the determination of the elemental concentration in hair and for investigating the incorporation mechanism of trace elements into hair from the body.

  17. Progress and prospects in soft x-ray holographic microscopy

    SciTech Connect

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab.

  18. Soft X-ray astronomy using grazing incidence optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.

    1989-01-01

    The instrumental background of X-ray astronomy with an emphasis on high resolution imagery is outlined. Optical and system performance, in terms of resolution, are compared and methods for improving the latter in finite length instruments described. The method of analysis of broadband images to obtain diagnostic information is described and is applied to the analysis of coronal structures.

  19. POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.

    SciTech Connect

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

    2007-07-01

    New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

  20. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  1. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  2. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the

  3. Electronic Structures of Uranium Compounds Studied by Soft X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2016-06-01

    The electronic structures of uranium-based compounds have been studied by photoelectron spectroscopy with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays has made it possible to directly observe their bulk band structures and Fermi surfaces. It has been shown that the band structures and Fermi surfaces of itinerant compounds such as UB2, UN, and UFeGa5 are quantitatively described by a band-structure calculation treating all U 5f electrons as itinerant. Furthermore, the overall electronic structures of heavy-fermion compounds such as UPd2Al3, UNi2Al3, and URu2Si2 are also explained by a band-structure calculation, although some disagreements exist, which might originate from the electron correlation effect. This suggests that the itinerant description of U 5f states is an appropriate starting point for the description of their electronic structures. The situation is similar for ferromagnetic superconductors such as UGe2, URhGe, UCoGe, and UIr, although the complications from their low-symmetry crystal structures make it more difficult to describe their detailed electronic structures. The local electronic structures of the uranium site have been probed by core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of heavy-fermion compounds with typical itinerant and localized compounds suggest that the local electronic structures of most itinerant and heavy-fermion compounds are close to the U 5f3 configuration except for UPd2Al3 and UPt3. The core-level spectrum of UPd2Al3 has similarities to those of both itinerant and localized compounds, suggesting that it is located at the boundary between the itinerant and localized states. Moreover, the spectrum of UPt3 is very close to that of the localized compound UPd3, suggesting that it is nearly localized, although there are narrow quasi-particle bands in the vicinity of EF.

  4. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    SciTech Connect

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  5. Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams

    SciTech Connect

    Sandberg, Richard L.; Paul, Ariel; Raymondson, Daisy A.; Haedrich, Steffen; Gaudiosi, David M.; Holtsnider, Jim; Tobey, Ra'anan I.; Cohen, Oren; Murnane, Margaret M.; Kapteyn, Henry C.; Song, Changyong; Miao Jianwei; Liu Yanwei; Salmassi, Farhad

    2007-08-31

    We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size. These patterns reconstruct to images with 214 nm resolution. This work demonstrates a practical tabletop lensless microscope that promises to find applications in materials science, nanoscience, and biology.

  6. Progress in compact soft x-ray lasers and their applications

    SciTech Connect

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers.

  7. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  8. An extreme ultraviolet telescope with no soft X-ray response

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    While EUV grazing incidence telescopes of conventional design exhibit a substantial X-ray response as well as an extreme UV response, and existing bandpass filters for the transmission of radiation longward of 400 A also transmit soft X-rays, the grazing incidence telescope presented suppresses this soft X-ray throughput through the incorporation of a Wolter Schwarzschild Type II mirror with large graze angles. The desirable features of an EUV photometric survey telescope are retained. An instrument of this design will be flown on the EUE mission, in order to make a survey of the sky at wavelengths longer than 400 A.

  9. Calibration of a compact XUV soft X-ray monochromator with a digital autocollimator in situ.

    PubMed

    Yuh, Jih Young; Lin, Shang Wei; Huang, Liang Jen; Lee, Long Life

    2016-09-01

    A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra-high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X-ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on-site beamline diagnostics of highly precise multi-axis optical manipulating instruments at synchrotron facilities and in-house laboratories. PMID:27577780

  10. Optical converters for circularly polarized VUV and soft-x-ray radiation (invited)(abstract)

    NASA Astrophysics Data System (ADS)

    Höchst, Hartmut

    1995-02-01

    During the last few years considerable effort was spent at various laboratories to evaluate the possibilities of optical devices to generate circularly polarized synchrotron radiation. These instruments convert linearly polarized radiation by utilizing the phase-shifting properties of multiple reflectors or multilayer transmission optics. In the VUV and soft-x-ray range, the figure of merit TP2, where P is the degree of circular polarization and T the optical transmission, of specially tailored reflection coatings or multilayer structures can be considerably higher than what can be achieved with conventional insertion devices such as the crossed field undulator. In addition to being considerably less expensive, the various optical designs have the great advantage of not being an integral part of the storage ring and, as such, completely transparent to the operation and other users of the storage ring. Various phase-shifter designs will be discussed in terms of their performance, e.g., optical throughput, degree of polarization, and capabilities to modulate between left and right circular light. Recent MCD experiments utilizing optical phase shifters not only demonstrate the proof of principle, but also provide strong evidence of the potential capabilities of ``optical insertion'' devices as an alternative tool to generate variably polarized synchrotron radiation.

  11. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    SciTech Connect

    Ribeiro, T.; Lopes de Oliveira, R.

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  12. Characterization of an x-ray phase contrast imaging system based on the miniature synchrotron MIRRORCLE-6X

    SciTech Connect

    Heekeren, Joop van; Kostenko, Alexander; Hanashima, Takayasu; Yamada, Hironari; Stallinga, Sjoerd; Offerman, S. Erik; Vliet, Lucas J. van

    2011-09-15

    Purpose: The implementation of in-line x-ray phase contrast imaging (PCI) for soft-tissue patient imaging is hampered by the lack of a bright and spatially coherent x-ray source that fits into the hospital environment. This article provides a quantitative characterization of the phase-contrast enhancement of a PCI system based on the miniature synchrotron technology MIRRORCLE-6X. Methods: The phase-contrast effect was measured using an edge response of a plexiglass plate as a function of the incident angle of radiation. We have developed a comprehensive x-ray propagation model based on the system's components, properties, and geometry in order to interpret the measurement data. Monte-Carlo simulations are used to estimate the system's spectral properties and resolution. Results: The measured ratio of the detected phase-contrast to the absorption contrast is currently in the range 100% to 200%. Experiments show that with the current implementation of the MIRRORCLE-6X, a target smaller than 30-40 {mu}m does not lead to a larger phase-contrast. The reason for this is that the fraction of x-rays produced by the material (carbon filament and glue) that is used for mounting the target in the electron beam is more than 25% of the total amount of x-rays produced. This increases the apparent source size. The measured phase-contrast is at maximum two times larger than the absorption contrast with the current set-up. Conclusions: Calculations based on our model of the present imaging system predict that the phase-contrast can be up to an order of magnitude larger than the absorption contrast in case the materials used for mounting the target in the electron beam do not (or hardly) produce x-rays. The methods described in this paper provide vital feedback for guiding future modifications to the design of the x-ray target of MIRRORCLE-type system and configuration of the in-line PCI systems in general.

  13. Soft X-ray observations of the interacting galaxies NGC 1808 and NGC 1792

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Hartner, Gisela D.; Junkes, Norbert

    1994-01-01

    The soft X-ray emission from both galaxies NGC 1808 and NGC 1792, which we investigated using the ROSAT HRI and Position Sensitive Proportional Counter (PSPC), comes most probably from X-ray binaries and/or from hot ionized gas in powerful supernovae and supernova remnants. The distribution of the soft X-ray emission in NGC 1808, which is very well correlated with the distribution of 'radio knots' in the central starburst, suggests that hot gas dominates the emission in the ROSAT band. This is consistent with the results of PSPC observations by Junkes et al. The total soft X-ray luminosity in the ROSAT band of NGC 1808 of 1.2 x 10(exp 41) ergs/s is relatively high compared with other nearby starburst galaxies. Soft X-ray emission of diffuse hot ionized gas that is associated with the outflow traced by the conspicuous dust filaments protruding from the plane has been detected. Its luminosity in the ROSAT band is greater than or equal to 3 x 10(exp 39) ergs/s, i.e., several percent of the total soft X-ray luminosity. Thus, NGC 1808 is another example for a 'superwind' galaxy. The soft X-ray radiation from NGC 1792 is more likely to be dominated by a population of high-mass X-ray binaries or young powerful supernovae which are associated with the high-level star formation going on in the very prominent H II regions along its spiral arms, with possibly an additional contribution of diffuse hot ionized gas. The soft X-ray luminosities of individual sources lie in the range of 5 x 10(exp 38) to 2.7 x 10(exp 39) ergs/s, thus exceeding by far the Eddington luminosity of an accreting neutron star. The peaks of some of these soft X-ray luminous sources are offset with respect to the H II regions by a few hundred parsecs. Accordingly, if the soft X-ray sources should originate from the H II regions, their relative velocities with respect to the ambient medium have to be as high as approximately 100 km/s.

  14. Synchrotron-based crystal structure, associated morphology of snail and bivalve shells by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Gigante, G. E.; Kumar, Y. Manoj; Cesareo, R.; Brunetti, A.; Schiavon, N.; Akatsuka, T.; Yuasa, T.; Takeda, T.

    2016-10-01

    Synchrotron-based high-resolution X-ray powder diffraction spectra from the body parts of a snail and bivalve (CaCO3), have been recorded with Pilatus area detector. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ=0.82666 Å). The external shell of these living organisms, is composed of calcium carbonate, which carries strong biological signal. It consists of some light elements, such as, Ca, C and O, which constitute part of the soft tissue and other trace elements. The knowledge of these diffraction patterns and hence the understanding of structures at molecular level are enormous. The application of synchrotron radiation to powder diffraction is well suited for samples of biological nature via changes in their patterns and also to investigate crystallographic phase composition. With the use of Rietveld refinement procedure, to the high-resolution diffraction spectra, we were able to extract the lattice parameters of orthorhombic polymorph of CaCO3, the most abundant mineral produced by these living organisms. The small size of the crystallite is a very important factor related to the biological structure. The natural model presents a combination of organic and inorganic phases with nanometer size. For the present study, we also used the scanning electron microscopy (SEM) to explore the associated morphology of the snail and bivalve.

  15. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  16. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  17. On the Lack of a Soft X-Ray Excess from Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Lloyd-Davies, Edward J.

    2006-06-01

    A soft X-ray excess has been claimed to exist in and around a number of galaxy clusters, and this emission has been attributed to the warm-hot intergalactic medium that may constitute most of the baryons in the local universe. We have reexamined a study of the XMM-Newton observations on this topic by Kaastra and coworkers and find that the X-ray excess (or deficit) depends on Galactic latitude and appears to be most closely related to the surface brightness of the 1/4 keV emission, which is largely due to emission from the local hot bubble and the halo of the Milky Way. We suggest that the presence of the soft X-ray excess is due to incorrect subtraction of the soft X-ray background. An analysis is performed for which we choose a 1/4 keV background that is similar to the background near the cluster (and a similar H I column). We find that the soft X-ray excess largely disappears using our background subtraction and conclude that these soft X-ray excesses are not associated with the target clusters. We also show that the detections of ``redshifted'' O VII lines claimed by Kaastra and coworkers are correlated with solar system charge exchange emission, suggesting that they are not extragalactic either.

  18. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant

  19. Streak cameras for soft x-ray and optical radiation

    SciTech Connect

    Medecki, H.

    1983-09-01

    The principal component of a streak camera is the image converter tube. A slit-shaped photocathode transforms the radiation into a proportional emission of electrons. An electron - optics arrangement accelerates the electrons and projects them into a phosphor screen creating the image of the slit. A pair of deflection plates deflects the electronic beam along a direction perpendicular to the main dimension of the slit. Different portions of the phosphor screen show the instantaneous image of the slit with brightness proportional to the number of emitted electrons and, consequently, to the intensity of the radiation. For our x-ray streak cameras, we use the RCA C73435A image conventer tube intended for the measurement of the radiation of light and modified to have an x-ray sensitive photocathode. Practical considerations lead to the use of transparent rather than reflecting photocathodes. Several of these camera tubes are briefly described.

  20. The Soft X-Ray Emission Component of Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, Giuseppina

    1998-01-01

    Work included the analysis of the HRJ observations of the Sombrero galaxy (Fabbiano and Juda) published in Ap.J. This paper discussed the discovery of a point-like x-ray source at the nucleus of the galaxy, which is suspected to host a massive black hole. More work was done on the analysis of the Observation of M94 in support of an AXAF proposal. We have also analyzed the M81 data by adding to our observation the entire set of the archival ROSAT data. We plan to write up the results for publication. Both galaxies have nuclei optically similar to that of the Sombrero galaxy. The nucleus of M81 is a known x-ray source. The M94 data has revealed a point-like nuclear source superposed on more diffuse emission.