Science.gov

Sample records for software development environments

  1. Software development environment, appendix F

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    The current status in the area of software development environments is assessed. The purposes of environments, the types of environments, the constituents of an environment, the issue of environment integration, and the problems which must be solved in preparing an environment are discussed. Some general maxims to guide near-term future work are proposed.

  2. Experimental Internet Environment Software Development

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.

    1998-01-01

    Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.

  3. The distributed development environment for SDSS software

    SciTech Connect

    Berman, E.; Gurbani, V.; Mackinnon, B.; Newberg, H.; Nicinski, T.; Petravick, D.; Pordes, R.; Sergey, G.; Stoughton, C.; Lupton, R.

    1994-04-01

    The authors present an integrated science software development environment, code maintenance and support system for the Sloan Digital Sky Survey (SDSS) now being actively used throughout the collaboration.

  4. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  5. A software development environment utilizing PAMELA

    NASA Technical Reports Server (NTRS)

    Flick, R. L.; Connelly, Richard W.

    1986-01-01

    Hardware capability and efficiency has increased dramatically since the invention of the computer, while software programmer productivity and efficiency has remained at a relatively low level. A user-friendly, adaptable, integrated software development environment is needed to alleviate this problem. The environment should be designed around the Ada language and a design methodology which takes advantage of the features of the Ada language as the Process Abstraction Method for Embedded Large Applications (PAMELA).

  6. Workflow-Based Software Development Environment

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    2013-01-01

    The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment

  7. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  8. Developing collaborative environments - A Holistic software development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; MITCHINER,JOHN L.

    2000-03-08

    Sandia National Laboratories has been developing technologies to support person-to-person collaboration and the efforts of teams in the business and research communities. The technologies developed include knowledge-based design advisors, knowledge management systems, and streamlined manufacturing supply chains. These collaborative environments in which people can work together sharing information and knowledge have required a new approach to software development. The approach includes an emphasis on the requisite change in business practice that often inhibits user acceptance of collaborative technology. Leveraging the experience from this work, they have established a multidisciplinary approach for developing collaborative software environments. They call this approach ``A Holistic Software Development Methodology''.

  9. The distributed development environment for SDSS software

    SciTech Connect

    Berman, E.; Gurbani, V.; Mackinnon, B.; Newberg, H.; Nicinski, T.; Petravick, D.; Pordes, R.; Sergey, G.; Stoughton, C.; Lupton, R.

    1994-12-31

    The authors present an integrated science software development environment, code maintenance and support system for the Sloan Digital Sky Survey (SDSS) now being actively used throughout the collaboration. The SDSS is a collaborative effort between Fermi National Accelerator Laboratory, the U. of Chicago, Princeton University, the Institute for Advanced Study, The John Hopkins University, U. of Washington, the U.S. Naval Observatory and the Japan Promotion Group. Its main results will be an imaging survey of 10{sup 4}deg{sup 2} and a red shift spectroscopic survey of 10{sup 6} galaxies and 10{sup 5} quasars producing approximately 1.2 {times} 10{sup 13} bytes of data over the 5 year running period (1995-2000). This will produce a three dimensional map of the Universe.

  10. A view of software development environment issues

    NASA Technical Reports Server (NTRS)

    Boehm, B.

    1985-01-01

    The unique and challenging nature of the Space Station Program requires that software standards be effectively used to control costs, facilitate enhancements and ensure safety. The Software Standards Panel identified and developed recommendations in four areas to help the Space Station Program achieve these objectives. The areas in which recommendations are offered are policy, organization, process and candidate software standards for the Space Station Program. The concensus process employed by the panel is given and recommendations are made.

  11. Software development environments: Present and future, appendix D

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    Computerized environments which facilitate the development of appropriately functioning software systems are discussed. Their current status is reviewed and several trends exhibited by their history are identified. A number of principles, some at (slight) variance with the historical trends, are suggested and it is argued that observance of these principles is critical to achieving truly effective and efficient software development support environments.

  12. Software Development Environment with Integrated Code Rocket Capabilities

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Paterson, David; Spark, Alan; Yu, Bruce Guoxia

    2013-08-01

    The development of software for embedded systems such as spacecraft instruments, data processing or other on-board applications, faces a number of challenges not always fully met by many of the currently available software development environments. In this paper we describe a new suite of software tools, the STAR Software Development Environment (SSDE), which is intended to address many of these challenges, and which should simplify the development of software for spacecraft applications, and for other embedded environments. The SSDE includes Code Rocket, a code visualisation and documentation tool, which provides both pseudocode and flowchart editing facilities. These are fully integrated with the code editing and debugging features of the underlying integrated development environment (IDE).

  13. Flight dynamics system software development environment (FDS/SDE) tutorial

    NASA Technical Reports Server (NTRS)

    Buell, John; Myers, Philip

    1986-01-01

    A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.

  14. Case study on selecting an environment for software development

    SciTech Connect

    Doak, J.

    1997-05-01

    To explore the various issues and options surrounding software development, the author has selected a specific Safeguards Systems Group (NIS-7) project to serve as a case study. The opinions expressed are solely those of the author and any reference to {open_quotes}we{close_quotes} or {open_quotes}our{close_quotes} refers to this single author. The goal of the selected project is to produce software that can accurately analyze data from sensors in tanks containing solutions of nuclear material (solution monitoring). This project focuses on data from Japanese reprocessing facilities. The software is to be used by International Atomic Energy Agency (IAEA) inspectors back at headquarters in Vienna after obtaining data from a site. I feel that the ideas presented in this paper may be applicable to numerous software developers whose project requirements are similar to those for this project. Two considerations for developing software for use by others are discussed. (1) What software tools should be used during the development process? (2) What is the most effective way of distributing the software and documentation? The requirements for the software environment and distribution of software and documentation include the following: portability; cross-platform compatibility; graphical user interface and builder, creating modular/reusable software components; generic libraries; environment should facilitate development of solutions to large real-world problems; no special privileges are necessary to access the software and documentation; software should be visible to a large number of people; documentation should be in a format that everyone can read and should support equations and graphics; transmission of software and documentation should be hands-off.

  15. Open environment for image processing and software development

    NASA Astrophysics Data System (ADS)

    Rasure, John R.; Young, Mark

    1992-04-01

    The main goal of the Khoros software project is to create and provide an integrated software development environment for information processing and data visualization. The Khoros software system is now being used as a foundation to improve productivity and promote software reuse in a wide variety of application domain. A powerful feature of the Khoros system is the high-level, abstract visual language that can be employed to significantly boost the productivity of the researcher. Central to the Khoros system is the need for a consistent yet flexible user interface development system that provides cohesiveness to the vast number of programs that make up the Khoros system. Automated tools assist in maintenance as well as development of programs. The software structure that embodies this system provides for extensibility and portability, and allows for easy tailoring to target specific application domains and processing environments. First, an overview of the Khoros software environment is given. Then this paper presents the abstract applications programmer interface, API, the data services that are provided in Khoros to support it, and the Khoros visualization and image file format. The authors contend that Khoros is an excellent environment for the exploration and implementation of imaging standards.

  16. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  17. The 2GCHAS: A high productivity software development environment

    NASA Technical Reports Server (NTRS)

    Babb, Larry

    1986-01-01

    To the user, the most visible feature of the Transportable Applications Executive (TAE) is its very powerful user interface. To the programmer, TAE's user interface, proc concept, standardized interface definitions, and hierarchy search provide a set of tools for rapidly prototyping or developing production software. The 2GCHAS (Second Generation Comprehensive Helicopter Analysis System) project has extended and enhanced these mechanisms, creating a powerful and high productivity programming environment where the 2GCHAS development environment is 2GCHAS itself and where a sustained rate for certified, documented, and tested software above 30 delivered source instructions per programmer day has been achieved. The 2GCHAS environment is not limited to helicopter analysis, but is applicable to other disciplines where software development is important.

  18. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  19. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  20. Ground Systems Development Environment (GSDE) software configuration management

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    This report presents a review of the software configuration management (CM) plans developed for the Space Station Training Facility (SSTF) and the Space Station Control Center. The scope of the CM assessed in this report is the Systems Integration and Testing Phase of the Ground Systems development life cycle. This is the period following coding and unit test and preceding delivery to operational use. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF. This is the last report in the series. The focus of this report is on the CM plans developed by the contractors for the Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM requirements are summarized and described in terms of operational software development. The software workflows proposed in the TSC and MSC plans are reviewed in this context, and evaluated against the CM requirements defined in earlier study reports. Recommendations are made to improve the effectiveness of CM while minimizing its impact on the developers.

  1. The Khoros software development environment for image and signal processing.

    PubMed

    Konstantinides, K; Rasure, J R

    1994-01-01

    Data flow visual language systems allow users to graphically create a block diagram of their applications and interactively control input, output, and system variables. Khoros is an integrated software development environment for information processing and visualization. It is particularly attractive for image processing because of its rich collection of tools for image and digital signal processing. This paper presents a general overview of Khoros with emphasis on its image processing and DSP tools. Various examples are presented and the future direction of Khoros is discussed. PMID:18291923

  2. Configuration management and software measurement in the Ground Systems Development Environment (GSDE)

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    A set of functional requirements for software configuration management (CM) and metrics reporting for Space Station Freedom ground systems software are described. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the Space Station Training Facility (SSTF) and the Space Station Control Center (SSCC), and the target systems for SSCC and SSTF. The focus is on the CM of the software following delivery to NASA and on the software metrics that relate to the quality and maintainability of the delivered software. The CM and metrics requirements address specific problems that occur in large-scale software development. Mechanisms to assist in the continuing improvement of mission operations software development are described.

  3. SSE software test management STM capability: Using STM in the Ground Systems Development Environment (GSDE)

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    This report is one of a series discussing configuration management (CM) topics for Space Station ground systems software development. It provides a description of the Software Support Environment (SSE)-developed Software Test Management (STM) capability, and discusses the possible use of this capability for management of developed software during testing performed on target platforms. This is intended to supplement the formal documentation of STM provided by the SEE Project. How STM can be used to integrate contractor CM and formal CM for software before delivery to operations is described. STM provides a level of control that is flexible enough to support integration and debugging, but sufficiently rigorous to insure the integrity of the testing process.

  4. The Software Management Environment (SME)

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.; Decker, William; Buell, John

    1988-01-01

    The Software Management Environment (SME) is a research effort designed to utilize the past experiences and results of the Software Engineering Laboratory (SEL) and to incorporate this knowledge into a tool for managing projects. SME provides the software development manager with the ability to observe, compare, predict, analyze, and control key software development parameters such as effort, reliability, and resource utilization. The major components of the SME, the architecture of the system, and examples of the functionality of the tool are discussed.

  5. Mapping modern software process engineering techniques onto an HEP development environment

    NASA Astrophysics Data System (ADS)

    Wellisch, J. P.

    2003-04-01

    One of the most challenging issues faced in HEP in recent years is the question of how to capitalise on software development and maintenance experience in a continuous manner. To capitalise means in our context to evaluate and apply new process technologies as they arise, and to further evolve technologies already widely in use. It also implies the definition and adoption of standards. The CMS off-line software improvement effort aims at continual software quality improvement, and continual improvement in the efficiency of the working environment with the goal to facilitate doing great new physics. To achieve this, we followed a process improvement program based on ISO-15504, and Rational Unified Process. This experiment in software process improvement in HEP has been progressing now for a period of 3 years. Taking previous experience from ATLAS and SPIDER into account, we used a soft approach of continuous change within the limits of current culture to create of de facto software process standards within the CMS off line community as the only viable route to a successful software process improvement program in HEP. We will present the CMS approach to software process improvement in this process R&D, describe lessons learned, and mistakes made. We will demonstrate the benefits gained, and the current status of the software processes established in CMS off-line software.

  6. A new practice-driven approach to develop software in a cyber-physical system environment

    NASA Astrophysics Data System (ADS)

    Jiang, Yiping; Chen, C. L. Philip; Duan, Junwei

    2016-02-01

    Cyber-physical system (CPS) is an emerging area, which cannot work efficiently without proper software handling of the data and business logic. Software and middleware is the soul of the CPS. The software development of CPS is a critical issue because of its complicity in a large scale realistic system. Furthermore, object-oriented approach (OOA) is often used to develop CPS software, which needs some improvements according to the characteristics of CPS. To develop software in a CPS environment, a new systematic approach is proposed in this paper. It comes from practice, and has been evolved from software companies. It consists of (A) Requirement analysis in event-oriented way, (B) architecture design in data-oriented way, (C) detailed design and coding in object-oriented way and (D) testing in event-oriented way. It is a new approach based on OOA; the difference when compared with OOA is that the proposed approach has different emphases and measures in every stage. It is more accord with the characteristics of event-driven CPS. In CPS software development, one should focus on the events more than the functions or objects. A case study of a smart home system is designed to reveal the effectiveness of the approach. It shows that the approach is also easy to be operated in the practice owing to some simplifications. The running result illustrates the validity of this approach.

  7. Software reuse environment user's guide

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This document describes the services provided by the prototype Software Reuse Environment, which was developed by CTA for NASA Goddard Space Flight Center, Code 520. This is one of three guides delivered by CTA as part of the environment. The other two guides are: Software Generation and Installation Guide; and SEMANTX--Defining the Schema. The Software Generation and Installation Guide describes the software source modules that make up the Reuse Environment, with instructions on how to generate and install an executable system from the source code. SEMANTX--Defining the Schema describes how a reuse database is created. Actually this guide is more general than the reuse database, as it describes how to generate a SEMANTX database. SEMANTX is an off-the-shelf tool that we have used to implement the reuse database. It is a product of Semantyk Systems, Inc. The Software Reuse Environment is built upon SEMANTX as well as on the IDE Structured Analysis Integrated Environment. (IDE is Interactive Development Environments, Inc.) SEMANTX itself is built on top of the Unify Database Management System. To use the Software Reuse Environment you should have the User's Manuals for SEMANTX, for Unify, and for the IDE software. CTA has provided all of these with the environment.

  8. Measuring software development characteristics in the local environment. [considering project requirements for spacecraft control

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Zelkowitz, M. V.

    1978-01-01

    In a brief evaluation of software-related considerations, it is found that suitable approaches for software development depend to a large degree on the characteristics of the particular project involved. An analysis is conducted of development problems in an environment in which ground support software is produced for spacecraft control. The amount of work involved is in the range from 6 to 10 man-years. Attention is given to a general project summary, a programmer/analyst survey, a component summary, a component status report, a resource summary, a change report, a computer program run analysis, aspects of data collection on a smaller scale, progress forecasting, problems of overhead, and error analysis.

  9. Exploratory research for the development of a computer aided software design environment with the software technology program

    NASA Technical Reports Server (NTRS)

    Hardwick, Charles

    1991-01-01

    Field studies were conducted by MCC to determine areas of research of mutual interest to MCC and JSC. NASA personnel from the Information Systems Directorate and research faculty from UHCL/RICIS visited MCC in Austin, Texas to examine tools and applications under development in the MCC Software Technology Program. MCC personnel presented workshops in hypermedia, design knowledge capture, and design recovery on site at JSC for ISD personnel. The following programs were installed on workstations in the Software Technology Lab, NASA/JSC: (1) GERM (Graphic Entity Relations Modeler); (2) gIBIS (Graphic Issues Based Information System); and (3) DESIRE (Design Recovery tool). These applications were made available to NASA for inspection and evaluation. Programs developed in the MCC Software Technology Program run on the SUN workstation. The programs do not require special configuration, but they will require larger than usual amounts of disk space and RAM to operate properly.

  10. Machine platform and software environment for rapid optics assembly process development

    NASA Astrophysics Data System (ADS)

    Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Zontar, Daniel

    2016-03-01

    The assembly of optical components for laser systems is proprietary knowledge and typically done by well-trained personnel in clean room environment as it has major impact on the overall laser performance. Rising numbers of laser systems drives laser production to industrial-level automation solutions allowing for high volumes by simultaneously ensuring stable quality, lots of variants and low cost. Therefore, an easy programmable, expandable and reconfigurable machine with intuitive and flexible software environment for process configuration is required. With Fraunhofer IPT's expertise on optical assembly processes, the next step towards industrializing the production of optical systems is made.

  11. Investigating the application of AOP methodology in development of Financial Accounting Software using Eclipse-AJDT Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Amita; Sarangdevot, S. S.

    2010-11-01

    Aspect-Oriented Programming (AOP) methodology has been investigated in development of real world business application software—Financial Accounting Software. Eclipse-AJDT environment has been used as open source enhanced IDE support for programming in AOP language—Aspect J. Crosscutting concerns have been identified and modularized as aspects. This reduces the complexity of the design considerably due to elimination of code scattering and tangling. Improvement in modularity, quality and performance is achieved. The study concludes that AOP methodology in Eclipse-AJDT environment offers powerful support for modular design and implementation of real world quality business software.

  12. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  13. Software Management Environment (SME): Components and algorithms

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1994-01-01

    This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'

  14. Development of an Ada programming support environment database SEAD (Software Engineering and Ada Database) administration manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    Software Engineering and Ada Database (SEAD) was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities which are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce duplication of effort while improving quality in the development of future software systems. SEAD data is organized into five major areas: information regarding education and training resources which are relevant to the life cycle of Ada-based software engineering projects such as those in the Space Station program; research publications relevant to NASA projects such as the Space Station Program and conferences relating to Ada technology; the latest progress reports on Ada projects completed or in progress both within NASA and throughout the free world; Ada compilers and other commercial products that support Ada software development; and reusable Ada components generated both within NASA and from elsewhere in the free world. This classified listing of reusable components shall include descriptions of tools, libraries, and other components of interest to NASA. Sources for the data include technical newletters and periodicals, conference proceedings, the Ada Information Clearinghouse, product vendors, and project sponsors and contractors.

  15. Software Management Environment (SME) installation guide

    NASA Technical Reports Server (NTRS)

    Kistler, David; Jeletic, Kellyann

    1992-01-01

    This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information.

  16. QUEST/Ada (Query Utility Environment for Software Testing) of Ada: The development of a program analysis environment for Ada

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1988-01-01

    A history of the Query Utility Environment for Software Testing (QUEST)/Ada is presented. A fairly comprehensive literature review which is targeted toward issues of Ada testing is given. The definition of the system structure and the high level interfaces are then presented. The design of the three major components is described. The QUEST/Ada IORL System Specifications to this point in time are included in the Appendix. A paper is also included in the appendix which gives statistical evidence of the validity of the test case generation approach which is being integrated into QUEST/Ada.

  17. A Future Astronomical Software Environment

    NASA Astrophysics Data System (ADS)

    Grosböl, P.; Tody, D.; Paioro, L.; Granet, Y.; Garilli, B.; Surace, C.; Opticon Fase Network

    2012-09-01

    Analyzing data sets in astronomy has become more and more complex and has driven the development of specific tools, functions and tasks. In order to integrate these tools in a global environment and thereby preserving them, the OPTICON Network 9.2 in coordination with US-VAO has outlined requirements, defined an architectural concept and developed a prototype of a Future Astronomical Software Environment (FASE). Important features are support for user scripting (e.g. Python), access to legacy applications (e.g. IRAF, MIDAS), integration with the Virtual Observatory (VO) for access to remote data and computation, and scalability supporting desktops to distributed cluster systems. A first prototype has been implemented and demonstrates the feasibility by offering access to numerous applications (e.g. ds9, ESO CPL pipelines, MIDAS, topcat) from a Python or Unix shell using VO-SAMP as a software bus. A simple packaging system is also provided to allow easy definition and sharing of applications at a Web portal.

  18. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  19. Automated software development tools in the MIS (Management Information Systems) environment

    SciTech Connect

    Arrowood, L.F.; Emrich, M.L.

    1987-09-11

    Quantitative and qualitative benefits can be obtained through the use of automated software development tools. Such tools are best utilized when they complement existing procedures and standards. They can assist systems analysts and programmers with project specification, design, implementation, testing, and documentation. Commercial products have been evaluated to determine their efficacy. User comments have been included to illustrate actual benefits derived from introducing these tools into MIS organizations.

  20. Experience with a software engineering environment framework

    NASA Technical Reports Server (NTRS)

    Blumberg, R.; Reedy, A.; Yodis, E.

    1985-01-01

    Experience with a software engineering environment framework tool called the Automated Product Control Environment (APCE) is described. The goals of the framework design, an overview of the major functions and features of the framework, and implementation and use of the framework are presented. Aspects of the framework discussed include automation and control; portability, distributability, and interoperability; cost/benefit analysis; and productivity. Results of using the framework are discussed and the framework approach is briefly compared to other software development environment approaches.

  1. Managing the Software Development Process

    NASA Astrophysics Data System (ADS)

    Lubelczyk, J.; Parra, A.

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  2. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  3. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  4. Virtual pools for interactive analysis and software development through an integrated Cloud environment

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.

    2011-12-01

    WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.

  5. Software development in Ada

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Katz, E. E.

    1985-01-01

    Ada will soon become a part of systems developed for the US Department of Defense. NASA must determine whether it will become part of its environment and particularly whether it will become a part fo the space station development. However, there are several issues about Ada which should be considered before this decision is made. One means of considering these issues is the examination of other developments in Ada. Unfortunately, few full scale developments have been completed or made publicly available for observation. Therefore, it will probably be necessary to study an Ada development in a NASA environment. Another means related to the first is the development of Ada metrics which can be used to characterize and evaluate Ada developments. These metrics need not be confined to full scale developments and could be used to evaluate on going projects as well. An early development in Ada, some observations from that development, metrics which were developed for use with Ada, and future directions for research into the use of Ada in software development in general and in the NASA Goddard environment in particular are described.

  6. Software Innovation in a Mission Critical Environment

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  7. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  8. The HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Meinzer, H P; Engelmann, U; Baud, R; Rassinoux, A M; Jagermann, C; Sandblad, B; Cordelle, D; Wigertz, O

    1994-10-01

    The aim of the HELIOS project is to create an integrated Software Engineering Environment (SEE) to facilitate the development and maintenance of medical applications. HELIOS is made of a set of software components, communicating through a software bus called the HELIOS Unification Bus. The object oriented paradigm is used both as the basic structure for building the software components and as the methodology for modelling, storing and retrieving the entities and procedures used in an application. Development standards include UNIX as operating system and X Window/MOTIF as windowing environment. One of the target applications for the HELIOS prototype is the development of a multimedia medical workstation as a front end to a hospital information system. PMID:7889774

  9. Software engineering environment tool set integration

    NASA Technical Reports Server (NTRS)

    Selfridge, William P.

    1986-01-01

    Space Transportation System Division (STSD) Engineering has a program to promote excellence within the engineering function. This program resulted in a capital funded facility based on a VAX cluster called the Rockwell Operational Engineering System (ROSES). The second phase of a three phase plan to establish an integrated software engineering environment for ROSES is examined. It discusses briefly phase one which establishes the basic capability for a modern software development environment to include a tool set, training and standards. Phase two is a tool set integration. The tool set is primarily off-the-shelf tools acquired through vendors or government agencies (public domain). These tools were placed into categories of software development. These categories are: requirements, design, and construction support; verification and validation support; and software management support. The integration of the tool set is being performed through concept prototyping and development of tools specifically designed to support the life cycle and provide transition from one phase to the next.

  10. Gammasphere software development

    SciTech Connect

    Piercey, R.B.

    1993-01-01

    Activities of the nuclear physics group are described. Progress was made in organizing the Gammasphere Software Working Group, establishing a nuclear computing facility, participating in software development at Lawrence Berkeley, developing a common data file format, and adapting the ORNL UPAK software to run at Gammasphere. A universal histogram object was developed that defines a file format and provides for an objective-oriented programming model. An automated liquid nitrogen fill system was developed for Gammasphere (110 Ge detectors comprise the sphere).

  11. QUEST/Ada (Query Utility Environment for Software Testing of Ada): The development of a prgram analysis environment for Ada, task 1, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1990-01-01

    The results of research and development efforts are described for Task one, Phase two of a general project entitled The Development of a Program Analysis Environment for Ada. The scope of this task includes the design and development of a prototype system for testing Ada software modules at the unit level. The system is called Query Utility Environment for Software Testing of Ada (QUEST/Ada). The prototype for condition coverage provides a platform that implements expert system interaction with program testing. The expert system can modify data in the instrument source code in order to achieve coverage goals. Given this initial prototype, it is possible to evaluate the rule base in order to develop improved rules for test case generation. The goals of Phase two are the following: (1) to continue to develop and improve the current user interface to support the other goals of this research effort (i.e., those related to improved testing efficiency and increased code reliable); (2) to develop and empirically evaluate a succession of alternative rule bases for the test case generator such that the expert system achieves coverage in a more efficient manner; and (3) to extend the concepts of the current test environment to address the issues of Ada concurrency.

  12. Software Model Of Software-Development Process

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Synott, Debra J.; Levary, Reuven R.

    1990-01-01

    Collection of computer programs constitutes software tool for simulation of medium- to large-scale software-development projects. Necessary to include easily identifiable and more-readily quantifiable characteristics like costs, times, and numbers of errors. Mathematical model incorporating these and other factors of dynamics of software-development process implemented in the Software Life Cycle Simulator (SLICS) computer program. Simulates dynamics of software-development process. In combination with input and output expert software systems and knowledge-based management software system, develops information for use in managing large software-development project. Intended to aid managers in planning, managing, and controlling software-development processes by reducing uncertainties in budgets, required personnel, and schedules.

  13. Software life cycle methodologies and environments

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest

    1991-01-01

    Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.

  14. Resource utilization during software development

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  15. Software unit testing in Ada environment

    NASA Technical Reports Server (NTRS)

    Warnock, Glenn

    1986-01-01

    A validation procedure for the Ada binding of the Graphical Kernel System (GKS) is being developed. PRIOR Data Sciences is also producing a version of the GKS written in Ada. These major software engineering projects will provide an opportunity to demonstrate a sound approach for software testing in an Ada environment. The GKS/Ada validation capability will be a collection of test programs and data, and test management guidelines. These products will be used to assess the correctness, completeness, and efficiency of any GKS/Ada implementation. The GKS/Ada developers will be able to obtain the validation software for their own use. It is anticipated that this validation software will eventually be taken over by an independent standards body to provide objective assessments of GKS/Ada implementations, using an approach similar to the validation testing currently applied to Ada compilers. In the meantime, if requested, this validation software will be used to assess GKS/Ada products. The second project, implementation of GKS using the Ada language, is a conventional software engineering tasks. It represents a large body of Ada code and has some interesting testing problems associated with automatic testing of graphics routines. Here the normal test practices which include automated regression testing, independent quality assistance, test configuration management, and the application of software quality metrics will be employed. The software testing methods emphasize quality enhancement and automated procedures. Ada makes some aspects of testing easier, and introduces some concerns. These issues are addressed.

  16. Automated Software Development Workstation (ASDW)

    NASA Technical Reports Server (NTRS)

    Fridge, Ernie

    1990-01-01

    Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.

  17. Cleanroom software development

    NASA Technical Reports Server (NTRS)

    Dyer, M.; Mills, H. D.

    1981-01-01

    The 'cleanroom' software development process is a technical and organizational approach to developing software with certifiable reliability. Key ideas behind the process are well structured software specifications, randomized testing methods and the introduction of statistical controls; but the main point is to deny entry for defects during the development of software. This latter point suggests the use of the term 'cleanroom' in analogy to the defect prevention controls used in the manufacturing of high technology hardware. In the 'cleanroom', the entire software development process is embedded within a formal statistical design, in contrast to executing selected tests and appealing to the randomness of operational settings for drawing statistical inferences. Instead, random testing is introduced as a part of the statistical design itself so that when development and testing are completed, statistical inferences are made about the operation of the system.

  18. Adaptable Computing Environment/Self-Assembling Software

    SciTech Connect

    Osbourn, Gordon C.; Bouchard, Ann M.; Bartholomew, John W.

    2007-09-25

    Complex software applications are difficult to learn to use and to remember how to use. Further, the user has no control over the functionality available in a given application. The software we use can be created and modified only by a relatively small group of elite, highly skilled artisans known as programmers. "Normal users" are powerless to create and modify software themselves, because the tools for software development, designed by and for programmers, are a barrier to entry. This software, when completed, will be a user-adaptable computing environment in which the user is really in control of his/her own software, able to adapt the system, make new parts of the system interactive, and even modify the behavior of the system itself. Som key features of the basic environment that have been implemented are (a) books in bookcases, where all data is stored, (b) context-sensitive compass menus (compass, because the buttons are located in compass directions relative to the mouose cursor position), (c) importing tabular data and displaying it in a book, (d) light-weight table querying/sorting, (e) a Reach&Get capability (sort of a "smart" copy/paste that prevents the user from copying invalid data), and (f) a LogBook that automatically logs all user actions that change data or the system itself. To bootstrap toward full end-user adaptability, we implemented a set of development tools. With the development tools, compass menus can be made and customized.

  19. sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals.

    PubMed

    Lidierth, Malcolm

    2009-03-30

    This paper describes a software package, named sigTOOL, for processing biological signals. The package runs in the MATLAB programming environment and has been designed to promote the sharing of laboratory-developed software across the worldwide web. As proof-of-concept of the design of the system, sigTOOL has been used to build an analysis application for dealing with neuroscience data complete with a user-friendly graphical user interface which implements a range of waveform and spike-train analysis functions. The interface allows many commonly used neuroscience data file formats to be loaded (including those of Alpha Omega, Cambridge Electronic Design, Cyberkinetics Inc., Molecular Devices, Nex Technologies and Plexon Instruments). Waveform analysis functions selectable from the interface support waveform averaging (mean and median), auto- and cross-correlation, power spectral analysis, coherence estimation, digital filtering (feedback and feedforward) and resampling. Spike-train analyses include interspike interval distributions, Poincaré plots, event auto- and cross-correlations, spike-triggered averaging, stimulus driven and phase-related peri-event time histograms and rasters as well as frequencygrams. User-developed additions to sigTOOL that are archived and distributed electronically will be added to the sigTOOL interface on-the-fly, without the need to modify the core sigTOOL code. Full sigTOOL functionality will be provided to support the user-developed code, including the ability to record a user action history for batch processing of files and support for exporting the results of analyses to external graphics editing software and spreadsheet-based data processing packages. PMID:19056423

  20. The Future Astronomical Software Environment progress .

    NASA Astrophysics Data System (ADS)

    Paioro, L.; Garilli, B.; Grosböl, P.; Tody, D.; Surace, C.; Fenouillet, T.; Franzetti, P.; Fumana, M.; Scodeggio, M.

    The OPTICON working group 3.6 in collaboration with international partners and in coordination with the Virtual Observatory, has already identified the high level requirements and the main architectural concepts for a future software environment for astronomical data reduction and analysis (Future Astronomical Software Environment). A special attention has been payed to: a) scalability, to allow the reduction of huge data volumes exploiting the hardware and software parallel architecture, b) interoperability, in order to guarantee the interaction between software coming from different sources and make easy the access to the Virtual Observatory, c) and modularity, to separate the adopted software technology from the specific computational algorithm and allow an independent evolution of the two areas. The proposed concepts have been widely discussed and shared by the astronomical community; however a lot of work still remains to do, mainly: a) the definition of open standards, b) the verification of such standards thanks to at least one reference implementation and practical user cases, c) and the whole must be supported at least by the major international organizations that develop data reduction and analysis software. All this work has led up to the definition of a new proposal for FP7 within OPTICON (where ESO, INAF, LAM-OAMP and NRAO/NVO are actively involved) which we present describing the project in detail and adding a description of the European FASE prototype, developed by INAF-IASF Milano in collaboration with LAM-OAMP (Marseille).

  1. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  2. Speakeasy software development

    NASA Astrophysics Data System (ADS)

    Baskinger, Patricia J.; Ozarow, Larry; Chruscicki, Mary C.

    1993-08-01

    The Speakeasy Software Development Project had three primary objectives. The first objective was to perform Independent Verification and Validation (IV & V) of the software and documentation associated with the signal processor being developed by Hazeltine and TRW under the Speakeasy program. The IV & V task also included an analysis and assessment of the ability of the signal processor software to provide LPI communications functions. The second objective was to assist in the enhancement and modification of an existing Rome Lab signal processor workstation. Finally, TASC developed project management support tools and provided program management support to the Speakeasy Program Office.

  3. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  4. The development and application of composite complexity models and a relative complexity metric in a software maintenance environment

    NASA Technical Reports Server (NTRS)

    Hops, J. M.; Sherif, J. S.

    1994-01-01

    A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that noe new defects are introduced in the development phase of the software process; and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modifications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.

  5. The Development and Application of Composite Complexity Models and a Relative Complexity Metric in a Software Maintenance Environment

    NASA Astrophysics Data System (ADS)

    Hops, J. M.; Sherif, J. S.

    1994-01-01

    A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that no new defects are introduced in the development phase of the software process, and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modi fications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.

  6. Starlink Software Developments

    NASA Astrophysics Data System (ADS)

    Draper, P. W.; Allan, A.; Berry, D. S.; Currie, M. J.; Giaretta, D.; Rankin, S.; Gray, N.; Taylor, M. B.

    2005-12-01

    Various recent changes to the software produced by Starlink are demonstrated. These cover areas such as table handling, time-series analysis, pipeline processing, astrometric calibration, spectral and cube visualisation, and ports to the Mac OS X and Cygwin environments. Particular emphasis was given to the applicability to the Virtual Observatory.

  7. VOUS Software Facilitates Development Of Other Software

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Pichumani, Ramini; Ponceleon, Dulce

    1992-01-01

    Visual Object Oriented Unification System (VOUS) computer program provides facility for development of other, high-level software. Does not replace, but rather extends, preexisting software tools for development of other software. Provides comprehensive, graphical, interactive medium for all phases in development of computer code from early exploration of concepts, through detailed coding-and-error-checking process, to final reporting of finished code and compilation of instruction manual for its use. Simplifies and partly automates programmer's task.

  8. [Development of DICOM image viewing software for efficient image reading and evaluation of distributed server system for diagnostic environment].

    PubMed

    Ishikawa, K

    2000-12-01

    To construct an efficient diagnostic environment using computer displays, the author investigated the time of network transmission using clinical images. In our hospital, we introduced optical-fiber 100Base-Fx Ethernet connections between 22 HIS-segments and one RIS-segment. Although Ethernet architecture is inexpensive, the speed of image transmission becomes 2371 KB/sec. (4.6 CT-slice/sec.) in the RIS-segment and 996 KB/sec. (1.9 CT-slice/sec.) from the RIS-segment to HIS-segments. Because one examination is transmitted in one minute, it does not disturb image reading. Otherwise, a distributed server system using inexpensive personal computers helps in constructing an efficient system. This investigation showed that commercially based Digital Imaging and Communications in Medicine(DICOM) servers and RSNA Central Test Node servers are not so different in transmission speed. The author programmed and developed DICOM transmission and viewing software for Macintosh computers. This viewer includes two inventions, dynamic tiling window system (DTWS) and window binding mode(WBM). On DTWS, windows, tiles, and images are independent objects, which are movable and resizable. The tile-matrix is changeable by mouse dragging, which realizes suitable tile rectangles for wide-low or narrow-high images. The arranging window tool prevents windows from scattering. Using WBM, any operation affects each window similarly. This means that the relationship of compared images is always equivalent. DTWS and WBM contribute greatly to a filmless diagnostic environment. PMID:11197836

  9. Knowledge-based systems and NASA's software support environment

    NASA Technical Reports Server (NTRS)

    Dugan, Tim; Carmody, Cora; Lennington, Kent; Nelson, Bob

    1990-01-01

    A proposed role for knowledge-based systems within NASA's Software Support Environment (SSE) is described. The SSE is chartered to support all software development for the Space Station Freedom Program (SSFP). This includes support for development of knowledge-based systems and the integration of these systems with conventional software systems. In addition to the support of development of knowledge-based systems, various software development functions provided by the SSE will utilize knowledge-based systems technology.

  10. Adaptable Computing Environment/Self-Assembling Software

    Energy Science and Technology Software Center (ESTSC)

    2007-09-25

    Complex software applications are difficult to learn to use and to remember how to use. Further, the user has no control over the functionality available in a given application. The software we use can be created and modified only by a relatively small group of elite, highly skilled artisans known as programmers. "Normal users" are powerless to create and modify software themselves, because the tools for software development, designed by and for programmers, are amore » barrier to entry. This software, when completed, will be a user-adaptable computing environment in which the user is really in control of his/her own software, able to adapt the system, make new parts of the system interactive, and even modify the behavior of the system itself. Som key features of the basic environment that have been implemented are (a) books in bookcases, where all data is stored, (b) context-sensitive compass menus (compass, because the buttons are located in compass directions relative to the mouose cursor position), (c) importing tabular data and displaying it in a book, (d) light-weight table querying/sorting, (e) a Reach&Get capability (sort of a "smart" copy/paste that prevents the user from copying invalid data), and (f) a LogBook that automatically logs all user actions that change data or the system itself. To bootstrap toward full end-user adaptability, we implemented a set of development tools. With the development tools, compass menus can be made and customized.« less

  11. Artificial intelligence and the space station software support environment

    NASA Technical Reports Server (NTRS)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  12. A streamlined software environment for situated skills

    NASA Technical Reports Server (NTRS)

    Yu, Sophia T.; Slack, Marc G.; Miller, David P.

    1994-01-01

    This paper documents a powerful set of software tools used for developing situated skills. These situated skills form the reactive level of a three-tiered intelligent agent architecture. The architecture is designed to allow these skills to be manipulated by a task level engine which is monitoring the current situation and selecting skills necessary for the current task. The idea is to coordinate the dynamic activations and deactivations of these situated skills in order to configure the reactive layer for the task at hand. The heart of the skills environment is a data flow mechanism which pipelines the currently active skills for execution. A front end graphical interface serves as a debugging facility during skill development and testing. We are able to integrate skills developed in different languages into the skills environment. The power of the skills environment lies in the amount of time it saves for the programmer to develop code for the reactive layer of a robot.

  13. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  14. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering software development was automated using an expert system (rule-based) approach. The use of this technology offers benefits not available from current software development and maintenance methodologies. A workstation was built with a library or program data base with methods for browsing the designs stored; a system for graphical specification of designs including a capability for hierarchical refinement and definition in a graphical design system; and an automated code generation capability in FORTRAN. The workstation was then used in a demonstration with examples from an attitude control subsystem design for the space station. Documentation and recommendations are presented.

  15. Software Management Environment (SME) concepts and architecture, revision 1

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1992-01-01

    This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.

  16. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  17. Software For Simulation Of Development Of Software

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    SOFTREL is prototype software package simulating creation, detection, and repair of defects and faults during software-development project. Personnel, resources, errors, and other realistic factors represented in simulation. Available in executable form only for IBM PC. SOFTREL is copyrighted work with all copyright vested in NASA.

  18. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  19. Proceedings, Conference on the Computing Environment for Mathematical Software

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.

  20. Empirical studies of design software: Implications for software engineering environments

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.

  1. Software environment for implementing engineering applications on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K. A.; Schiff, S.

    1990-01-01

    In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.

  2. YAM- A Framework for Rapid Software Development

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Biesiadecki, Jeffrey

    2006-01-01

    YAM is a software development framework with tools for facilitating the rapid development and integration of software in a concurrent software development environment. YAM provides solutions for thorny development challenges associated with software reuse, managing multiple software configurations, the development of software product-lines, multiple platform development and build management. YAM uses release-early, release-often development cycles to allow developers to incrementally integrate their changes into the system on a continual basis. YAM facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. YAM uses modules and packages to organize and share software across multiple software products. It uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One side-benefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability as well as software reuse. YAM is in use by several mid-size software development teams including ones developing mission-critical software.

  3. The development of an Ada programming support environment database: SEAD (Software Engineering and Ada Database), user's manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    This is a manual for users of the Software Engineering and Ada Database (SEAD). SEAD was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities that are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce the duplication of effort while improving quality in the development of future software systems. The manual describes the organization of the data in SEAD, the user interface from logging in to logging out, and concludes with a ten chapter tutorial on how to use the information in SEAD. Two appendices provide quick reference for logging into SEAD and using the keyboard of an IBM 3270 or VT100 computer terminal.

  4. Implementing Software Safety in the NASA Environment

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  5. Implementing software safety in the NASA environment

    NASA Astrophysics Data System (ADS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-05-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  6. Insights into software development in Japan

    NASA Technical Reports Server (NTRS)

    Duvall, Lorraine M.

    1992-01-01

    The interdependence of the U.S.-Japanese economies makes it imperative that we in the United States understand how business and technology developments take place in Japan. We can gain insight into these developments in software engineering by studying the context in which Japanese software is developed, the practices that are used, the problems encountered, the setting surrounding these problems, and the resolution of these problems. Context includes the technological and sociological characteristics of the software development environment, the software processes applied, personnel involved in the development process, and the corporate and social culture surrounding the development. Presented in this paper is a summary of results of a study that addresses these issues. Data for this study was collected during a three month visit to Japan where the author interviewed 20 software managers representing nine companies involved in developing software in Japan. These data are compared to similar data from the United States in which 12 managers from five companies were interviewed.

  7. Software developments for gammasphere

    SciTech Connect

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P.

    1995-08-01

    This year marked the year when data acquisition development for Gammasphere evolved from planning to accomplishment, both in hardware and software. Two VME crates now contain about 10 crate-processors which are used to handle the data from VXI processors - which in turn collect the data from germanium and BGO detectors in the array. The signals from the detectors are processed and digitized in custom-built electronics boards. The processing power in the VME crates is used to digitally filter the data before they are written to tape. The goal is to have highly processed data flowing to tape, eliminating the off-line filtering and manipulation of data that was standard procedure in earlier experiments.

  8. Software systems development in petroleum engineering

    NASA Astrophysics Data System (ADS)

    Browning, D. J.; Cain, G. M.; Carmichael, N. P.; Gouldstone, F. G.; Wadsley, A. W.; Webb, S. J.; Winder, P.

    1985-10-01

    Many approaches to designing software systems have been developed for use in commercial or business environments. These development methods and procedures have improved dramatically over the last ten years although it is only recently that these have been employed in scientific and technological applications. Many of these implementations have been unsuccessful because the design methodology has been divorced from the practical requirements of the industry in which the software system is to operate. This paper discusses a modern approach to software development which directly relates to an engineering environment and which is designed to satisfy practical criteria of acceptability of the software when delivered to the petroleum engineer. Since all field developments nowadays rely heavily on associated software systems, the approach presented here can lead to improved mechanical systems reliability and shorter development/design cycles.

  9. Gammasphere software development. Progress report

    SciTech Connect

    Piercey, R.B.

    1994-01-01

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information.

  10. The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Gillian, Ronnie E.; Lotts, Christine G.

    1988-01-01

    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.

  11. A Software Architecture for Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.

  12. Gammasphere software development. Progress report

    SciTech Connect

    Piercey, R.B.

    1993-05-01

    Activities of the nuclear physics group are described. Progress was made in organizing the Gammasphere Software Working Group, establishing a nuclear computing facility, participating in software development at Lawrence Berkeley, developing a common data file format, and adapting the ORNL UPAK software to run at Gammasphere. A universal histogram object was developed that defines a file format and provides for an objective-oriented programming model. An automated liquid nitrogen fill system was developed for Gammasphere (110 Ge detectors comprise the sphere).

  13. Aerospace Toolbox---a flight vehicle design, analysis, simulation ,and software development environment: I. An introduction and tutorial

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.; Wells, Randy

    2001-09-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provides a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed include its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics to be covered in this part include flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this paper, to be published at a later date, will conclude with a description of how the Aerospace Toolbox is an integral part of developing embedded code directly from the simulation models by using the Mathworks Real Time Workshop and optimization tools. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment

  14. Monitoring software development through dynamic variables

    NASA Technical Reports Server (NTRS)

    Doerflinger, Carl W.; Basili, Victor R.

    1983-01-01

    Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.

  15. Monitoring software development through dynamic variables

    NASA Technical Reports Server (NTRS)

    Doerflinger, C. W.; Basili, V. R.

    1985-01-01

    Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between the projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.

  16. Monitoring software development through dynamic variables

    NASA Technical Reports Server (NTRS)

    Doerflinger, C. W.; Basili, V. R.

    1983-01-01

    Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between the projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.

  17. A toolbox for developing bioinformatics software.

    PubMed

    Rother, Kristian; Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M

    2012-03-01

    Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787

  18. A toolbox for developing bioinformatics software

    PubMed Central

    Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M.

    2012-01-01

    Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787

  19. Aerospace Toolbox--a flight vehicle design, analysis, simulation, and software development environment II: an in-depth overview

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.

    2002-07-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).

  20. QUEST/Ada (query utility environment for software testing of Ada: The development of a program analysis environment for Ada, task 1, phase 3

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1991-01-01

    The results of research and development efforts of the first six months of Task 1, Phase 3 of the project are presented. The goals of Phase 3 are: (1) to further refine the rule base and complete the comparative rule base evaluation; (2) to implement and evaluate a concurrency testing prototype; (3) to convert the complete (unit-level and concurrency) testing prototype to a workstation environment; and (4) to provide a prototype development document to facilitate the transfer of research technology to a working environment. These goals were partially met and the results are summarized.

  1. Automated Environment Generation for Software Model Checking

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  2. Development methodology for scientific software

    SciTech Connect

    Cort, G.; Goldstone, J.A.; Nelson, R.O.; Poore, R.V.; Miller, L.; Barrus, D.M.

    1985-01-01

    We present the details of a software development methodology that addresses all phases of the software life cycle, yet is well suited for application by small projects with limited resources. The methodology has been developed at the Los Alamos Weapons Neutron Research (WNR) Facility and was utilized during the recent development of the WNR Data Acquisition Command Language. The methodology emphasizes the development and maintenance of comprehensive documentation for all software components. The impact of the methodology upon software quality and programmer productivity is assessed.

  3. Managers Handbook for Software Development

    NASA Technical Reports Server (NTRS)

    Agresti, W.; Mcgarry, F.; Card, D.; Page, J.; Church, V.; Werking, R.

    1984-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described.

  4. Automated computer software development standards enforcement

    SciTech Connect

    Yule, H.P.; Formento, J.W.

    1991-01-01

    The Uniform Development Environment (UDE) is being investigated as a means of enforcing software engineering standards. For the programmer, it provides an environment containing the tools and utilities necessary for orderly and controlled development and maintenance of code according to requirements. In addition, it provides DoD management and developer management the tools needed for all phases of software life cycle management and control, from project planning and management, to code development, configuration management, version control, and change control. This paper reports the status of UDE development and field testing. 5 refs.

  5. Space Shuttle Software Development and Certification

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Henderson, Johnnie A

    2000-01-01

    Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools

  6. Educational Software: A Developer's Perspective.

    ERIC Educational Resources Information Center

    Armstrong, Timothy C.; Loane, Russell F.

    1994-01-01

    Examines the current status and short-term future of computer software development in higher education. Topics discussed include educational advantages of software; current program development techniques, including object oriented programming; and market trends, including IBM versus Macintosh and multimedia programs. (LRW)

  7. A knowledge based software engineering environment testbed

    NASA Technical Reports Server (NTRS)

    Gill, C.; Reedy, A.; Baker, L.

    1985-01-01

    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing

  8. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  9. Developing Software to “Track and Catch” Missed Follow-up of Abnormal Test Results in a Complex Sociotechnical Environment

    PubMed Central

    Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.

    2013-01-01

    Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed

  10. Web-Based Environment for Maintaining Legacy Software

    NASA Technical Reports Server (NTRS)

    Tigges, Michael; Thompson, Nelson; Orr, Mark; Fox, Richard

    2007-01-01

    Advanced Tool Integration Environment (ATIE) is the name of both a software system and a Web-based environment created by the system for maintaining an archive of legacy software and expertise involved in developing the legacy software. ATIE can also be used in modifying legacy software and developing new software. The information that can be encapsulated in ATIE includes experts documentation, input and output data of tests cases, source code, and compilation scripts. All of this information is available within a common environment and retained in a database for ease of access and recovery by use of powerful search engines. ATIE also accommodates the embedment of supporting software that users require for their work, and even enables access to supporting commercial-off-the-shelf (COTS) software within the flow of the experts work. The flow of work can be captured by saving the sequence of computer programs that the expert uses. A user gains access to ATIE via a Web browser. A modern Web-based graphical user interface promotes efficiency in the retrieval, execution, and modification of legacy code. Thus, ATIE saves time and money in the support of new and pre-existing programs.

  11. Software Development at Belle II

    NASA Astrophysics Data System (ADS)

    Kuhr, Thomas; Hauth, Thomas

    2015-12-01

    Belle II is a next generation B-factory experiment that will collect 50 times more data than its predecessor Belle. This requires not only a major upgrade of the detector hardware, but also of the simulation, reconstruction, and analysis software. The challenges of the software development at Belle II and the tools and procedures to address them are reviewed in this article.

  12. Software development without languages

    NASA Technical Reports Server (NTRS)

    Osborne, Haywood S.

    1988-01-01

    Automatic programming generally involves the construction of a formal specification; i.e., one which allows unambiguous interpretation by tools for the subsequent production of the corresponding software. Previous practical efforts in this direction have focused on the serious problems of: (1) designing the optimum specification language; and (2) mapping (translating or compiling) from this specification language to the program itself. The approach proposed bypasses the above problems. It postulates that the specification proper should be an intermediate form, with the sole function of containing information sufficient to facilitate construction of programs and also of matching documentation. Thus, the means of forming the intermediary becomes a human factors task rather than a linguistic one; human users will read documents generated from the specification, rather than the specification itself.

  13. The R software environment in reproducible geoscientific research

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer; Nüst, Daniel; Bivand, Roger

    2012-04-01

    Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible. Like science, the development of good, reliable scientific software is a social process. A mature and growing community relies on the R software environment for carrying out geoscientific research. Here we describe why people use R and how it helps in communicating and reproducing research.

  14. Documenting the Development of Software

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Some routine supervisory functions performed automatically. Program Management Facility (PMF) computer program integrated software-development and control system. Applicable to large software systems involving as many as several hundred programmers and one million lines of codes, it ensures timely and orderly planning, development, implementation, and documentation of software. Designed as support tool. Has many features providing efficient processing and utilization of space for development programmer. Incorporates security system to prevent improper maintenance. Provides full set of cross-referenced reports and supervisory functions for detailed management information. Written in assembler. IBM program TSO required.

  15. An approach to integrating and creating flexible software environments

    NASA Technical Reports Server (NTRS)

    Bellman, Kirstie L.

    1992-01-01

    Engineers and scientists are attempting to represent, analyze, and reason about increasingly complex systems. Many researchers have been developing new ways of creating increasingly open environments. In this research on VEHICLES, a conceptual design environment for space systems, an approach was developed, called 'wrapping', to flexibility and integration based on the collection and then processing of explicit qualitative descriptions of all the software resources in the environment. Currently, a simulation is available, VSIM, used to study both the types of wrapping descriptions and the processes necessary to use the metaknowledge to combine, select, adapt, and explain some of the software resources used in VEHICLES. What was learned about the types of knowledge necessary for the wrapping approach is described along with the implications of wrapping for several key software engineering issues.

  16. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; Crean, Kathleen A.; Rinker, George C.; Smith, Thomas P.; Lum, Karen T.; Hanna, Robert A.; Erickson, Daniel E.; Gamble, Edward B., Jr.; Morgan, Scott C.; Kelsay, Michael G.; Newport, Brian J.; Lewicki, Scott A.; Stipanuk, Jeane G.; Cooper, Tonja M.; Meshkat, Leila

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  17. Tailoring a software production environment for a large project

    NASA Technical Reports Server (NTRS)

    Levine, D. R.

    1984-01-01

    A software production environment was constructed to meet the specific goals of a particular large programming project. These goals, the specific solutions as implemented, and the experiences on a project of over 100,000 lines of source code are discussed. The base development environment for this project was an ordinary PWB Unix (tm) system. Several important aspects of the development process required support not available in the existing tool set.

  18. Measures and metrics for software development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The evaluations of and recommendations for the use of software development measures based on the practical and analytical experience of the Software Engineering Laboratory are discussed. The basic concepts of measurement and system of classification for measures are described. The principal classes of measures defined are explicit, analytic, and subjective. Some of the major software measurement schemes appearing in the literature are derived. The applications of specific measures in a production environment are explained. These applications include prediction and planning, review and assessment, and evaluation and selection.

  19. Prototype software reuse environment at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt

    1989-01-01

    The Goddard Space Flight Center (GSFC) work is organized into four phases and includes participation by a contractor, CTA, Inc. The first phase was an automation study, which began with a comprehensive survey of software development automation technologies. Eight technical areas were analyzed for goals, current capabilities, and obstacles. The study documented current software development practice in GSFC Mission Operations and Data Systems Directorate, and presented short- and long-term recommendations that included focus on reuse and object-oriented development. The second phase, which has been completed, developed a prototype reuse environment with tools supporting object-oriented requirements analysis and design. This phase addressed the operational concept of software reuse, i.e., it attempted to understand how software can be reused. This environment has two semantic networks: object and keywords, and includes automated search, interactive browsing and a graphical display of database contents. Phase 3 was a domain analysis of Payload Operations Control Center (POCC) software. The goal in this phase was to create an initial repository of reusable components and techniques. Seven existing Operations Control Centers at GSFC were studied, but the domain analysis proved to be very slow. A lesson learned from this was that senior people who understand the environment and the functionality of the area are needed to perform successful domain analyses.

  20. Reuseable Objects Software Environment (ROSE): Introduction to Air Force Software Reuse Workshop

    NASA Technical Reports Server (NTRS)

    Cottrell, William L.

    1994-01-01

    The Reusable Objects Software Environment (ROSE) is a common, consistent, consolidated implementation of software functionality using modern object oriented software engineering including designed-in reuse and adaptable requirements. ROSE is designed to minimize abstraction and reduce complexity. A planning model for the reverse engineering of selected objects through object oriented analysis is depicted. Dynamic and functional modeling are used to develop a system design, the object design, the language, and a database management system. The return on investment for a ROSE pilot program and timelines are charted.

  1. Impact of Agile Software Development Model on Software Maintainability

    ERIC Educational Resources Information Center

    Gawali, Ajay R.

    2012-01-01

    Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…

  2. AIDA: An Integrated Authoring Environment for Educational Software.

    ERIC Educational Resources Information Center

    Mendes, Antonio Jose; Mendes, Teresa

    1996-01-01

    Describes an integrated authoring environment, AIDA ("Ambiente Integrado de Desenvolvimento de Aplicacoes educacionais"), that was developed at the University of Coimbra (Portugal) for educational software. Highlights include the design module, a prototyping tool that allows for multimedia, simulations, and modularity; execution module; evaluation…

  3. Development and Testing of "Math Insight" Software

    ERIC Educational Resources Information Center

    Zucker, Andrew A.

    2006-01-01

    Computers running appropriate software hold great promise for teaching and learning mathematics. To this end, SRI International developed an integrated, computer-based problem solving environment called "Math Insight" that included interactive tools, such as a spreadsheet and dynamic geometric sketches, and professionally produced videos used to…

  4. Distributed agile software development for the SKA

    NASA Astrophysics Data System (ADS)

    Wicenec, Andreas; Parsons, Rebecca; Kitaeff, Slava; Vinsen, Kevin; Wu, Chen; Nelson, Paul; Reed, David

    2012-09-01

    The SKA software will most probably be developed by many groups distributed across the globe and coming from dierent backgrounds, like industries and research institutions. The SKA software subsystems will have to cover a very wide range of dierent areas, but still they have to react and work together like a single system to achieve the scientic goals and satisfy the challenging data ow requirements. Designing and developing such a system in a distributed fashion requires proper tools and the setup of an environment to allow for ecient detection and tracking of interface and integration issues in particular in a timely way. Agile development can provide much faster feedback mechanisms and also much tighter collaboration between the customer (scientist) and the developer. Continuous integration and continuous deployment on the other hand can provide much faster feedback of integration issues from the system level to the subsystem developers. This paper describes the results obtained from trialing a potential SKA development environment based on existing science software development processes like ALMA, the expected distribution of the groups potentially involved in the SKA development and experience gained in the development of large scale commercial software projects.

  5. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  6. Calculation and use of an environment's characteristic software metric set

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.

    1985-01-01

    Since both cost/quality and production environments differ, this study presents an approach for customizing a characteristic set of software metrics to an environment. The approach is applied in the Software Engineering Laboratory (SEL), a NASA Goddard production environment, to 49 candidate process and product metrics of 652 modules from six (51,000 to 112,000 lines) projects. For this particular environment, the method yielded the characteristic metric set (source lines, fault correction effort per executable statement, design effort, code effort, number of I/O parameters, number of versions). The uses examined for a characteristic metric set include forecasting the effort for development, modification, and fault correction of modules based on historical data.

  7. The Milan-Marseille Future Astronomical Software Environment Prototype

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Paioro, L.; Fenouillet, T.; Surace, C.

    2007-10-01

    The European OPTICON Network 3.6, in collaboration with theUS National Virtual Observatory, is working on the definition of requirements and general architecture of a new scalable and interoperable software environment. Such environment, named the Future Astronomical Software Environment (FASE), is intended to be a common platform for data reduction and analysis applications, supporting and exploiting (but not replacing) new technologies like Virtual Observatory and Grids. The advanced status of the study and design has led to the need of putting such ideas in a concrete form, implementing a first prototype. We present the FASE prototype developed by INAF-IASF Milano and LAM Marseille and the practical application of its engineering to the VIPGI data reduction package. We show the technologies adopted, the problems solved and to be tackled, and possible future developments.

  8. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  9. Evolving impact of Ada on a production software environment

    NASA Technical Reports Server (NTRS)

    Mcgarry, F.; Esker, L.; Quimby, K.

    1988-01-01

    Many aspects of software development with Ada have evolved as our Ada development environment has matured and personnel have become more experienced in the use of Ada. The Software Engineering Laboratory (SEL) has seen differences in the areas of cost, reliability, reuse, size, and use of Ada features. A first Ada project can be expected to cost about 30 percent more than an equivalent FORTRAN project. However, the SEL has observed significant improvements over time as a development environment progresses to second and third uses of Ada. The reliability of Ada projects is initially similar to what is expected in a mature FORTRAN environment. However, with time, one can expect to gain improvements as experience with the language increases. Reuse is one of the most promising aspects of Ada. The proportion of reusable Ada software on our Ada projects exceeds the proportion of reusable FORTRAN software on our FORTRAN projects. This result was noted fairly early in our Ada projects, and experience shows an increasing trend over time.

  10. Post-Modern Software Development

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    The history of software development includes elements of art, science, engineering, and fashion(though very little manufacturing). In all domains, old ideas give way or evolve to new ones: in the fine arts, the baroque gave way to rococo, romanticism, modernism, postmodernism, and so forth. What is the postmodern programming equivalent? That is, what comes after object orientation?

  11. Software development methodology for high consequence systems

    SciTech Connect

    Baca, L.S.; Bouchard, J.F.; Collins, E.W.; Eisenhour, M.; Neidigk, D.D.; Shortencarier, M.J.; Trellue, P.A.

    1997-10-01

    This document describes a Software Development Methodology for High Consequence Systems. A High Consequence System is a system whose failure could lead to serious injury, loss of life, destruction of valuable resources, unauthorized use, damaged reputation or loss of credibility or compromise of protected information. This methodology can be scaled for use in projects of any size and complexity and does not prescribe any specific software engineering technology. Tasks are described that ensure software is developed in a controlled environment. The effort needed to complete the tasks will vary according to the size, complexity, and risks of the project. The emphasis of this methodology is on obtaining the desired attributes for each individual High Consequence System.

  12. Managing MDO Software Development Projects

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  13. System Management Software for Virtual Environments

    SciTech Connect

    Vallee, Geoffroy R; Naughton, III, Thomas J; Scott, Stephen L

    2007-01-01

    Recently there has been an increased interest in the use of system-level virtualization using mature solutions such as Xen, QEMU, or VMWare. These virtualization platforms are being used in distributed and parallel environments including high performance computing. The use of virtual machines within such environments introduces new challenges to system management. These include tedious tasks such as deploying para-virtualized host operating systems to support virtual machine execution or virtual overlay networks to connect these virtual machines. Additionally, there is the problem of machine definition and deployment, which is complicated by differentiation in the underlying virtualization technology. This paper discusses tools for the deployment and management of both host operating systems and virtual machines in clusters. We begin with an overview of system-level virtualization and move on to a description of tools that we have developed to aid with these environments. These tools extend prior work in the area of cluster installation, configuration and management.

  14. Software Development as Music Education Research

    ERIC Educational Resources Information Center

    Brown, Andrew R.

    2007-01-01

    This paper discusses how software development can be used as a method for music education research. It explains how software development can externalize ideas, stimulate action and reflection, and provide evidence to support the educative value of new software-based experiences. Parallels between the interactive software development process and…

  15. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    ERIC Educational Resources Information Center

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  16. Distribution and communication in software engineering environments. Application to the HELIOS Software Bus.

    PubMed Central

    Jean, F. C.; Jaulent, M. C.; Coignard, J.; Degoulet, P.

    1991-01-01

    Modularity, distribution and integration are current trends in Software Engineering. To reach these goals HELIOS, a distributive Software Engineering Environment dedicated to the medical field, has been conceived and a prototype implemented. This environment is made by the collaboration of several, well encapsulated Software Components. This paper presents the architecture retained to allow communication between the different components and focus on the implementation details of the Software Bus, the communication and integration vector of the currently running prototype. PMID:1807652

  17. Software based controls module development

    SciTech Connect

    Graves, v.b.; kelley, g; welch, j.c.

    1999-12-10

    A project was initiated at the Oak Ridge Y-12 Plant to implement software geometric error compensation within a PC-based machine tool controller from Manufacturing Data Systems, Inc. This project may be the first in which this type of compensation system was implemented in a commercially available machine tool controller totally in software. Previous implementations typically required using an external computer and hardware to interface through the position feedback loop of the controller because direct access to the controller software was not available. The test-bed machine for this project was a 2-axis Excello 921 T-base lathe. A mathematical error model of the lathe was created using homogeneous transformation matrices to relate the positions of the machine's slides to each other and to a world reference system. Equations describing the effects of the geometric errors were derived from the model. A software architecture was developed to support geometric error compensation for machine tools with up to 3 linear axes. Rotary axes were not supported in this implementation, but the developed architecture would not preclude their support in the future. Specific implementations will be dependent upon the configuration of the machine tool. A laser measuring system from Automated Precision, Inc. was used to characterize the lathe's geometric errors as functions of axis position and direction of motion. Multiple data files generated by the laser system were combined into a single Error File that was read at system startup and used by the compensation system to provide real-time position adjustments to the axis servos. A Renishaw Ballbar was used to evaluate the compensation system. Static positioning tests were conducted in an attempt to observe improved positioning accuracy with the compensation system enabled. These tests gave inconsistent results due to the lathe's inability to position the tool repeatably. The development of the architecture and compensation

  18. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  19. A Legal Guide for the Software Developer.

    ERIC Educational Resources Information Center

    Minnesota Small Business Assistance Office, St. Paul.

    This booklet has been prepared to familiarize the inventor, creator, or developer of a new computer software product or software invention with the basic legal issues involved in developing, protecting, and distributing the software in the United States. Basic types of software protection and related legal matters are discussed in detail,…

  20. [Development of software for the verification of patient flow through a daily clinical environment by use of the radiology information system (RIS)].

    PubMed

    Nose, Hideo; Shiraishi, Junji

    2012-01-01

    In order to manage relationship between patients' movements and operating efficiency, we developed a special software which can make patient flow visible on a display monitor by use of actual data obtained from the radiology information system (RIS). In this software, a simple floor map of the radiology department in our hospital was drawn on the monitor and each patient was indicated with a small figure. This software was developed with commercialized computer software [Excel 2007 visual basic applications (VBA) Microsoft]. Movements of the patient figures were simulated by use of actual time data such as registration of radiology department, and start and ending time of examinations. The patient figures were moved along with predetermined flow lines every second. The movements of the patient figures were controlled by several buttons (i.e., play and stop) and setting switches for determining reproduction date and time. In conclusion, by use of this software, the patient flows could be analyzed systematically by checking efficient operation such as average waiting time of the patients and/or standby time of radiological technologists. PMID:23089836

  1. Open Source Software Reuse in the Airborne Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Khudikyan, S. E.; Hart, A. F.; Hardman, S.; Freeborn, D.; Davoodi, F.; Resneck, G.; Mattmann, C. A.; Crichton, D. J.

    2012-12-01

    Earth science airborne missions play an important role in helping humans understand our climate. A challenge for airborne campaigns in contrast to larger NASA missions is that their relatively modest budgets do not permit the ground-up development of data management tools. These smaller missions generally consist of scientists whose primary focus is on the algorithmic and scientific aspects of the mission, which often leaves data management software and systems to be addressed as an afterthought. The Airborne Cloud Computing Environment (ACCE), developed by the Jet Propulsion Laboratory (JPL) to support Earth Science Airborne Program, is a reusable, multi-mission data system environment for NASA airborne missions. ACCE provides missions with a cloud-enabled platform for managing their data. The platform consists of a comprehensive set of robust data management capabilities that cover everything from data ingestion and archiving, to algorithmic processing, and to data delivery. Missions interact with this system programmatically as well as via browser-based user interfaces. The core components of ACCE are largely based on Apache Object Oriented Data Technology (OODT), an open source information integration framework at the Apache Software Foundation (ASF). Apache OODT is designed around a component-based architecture that allows for selective combination of components to create highly configurable data management systems. The diverse and growing community that currently contributes to Apache OODT fosters on-going growth and maturation of the software. ACCE's key objective is to reduce cost and risks associated with developing data management systems for airborne missions. Software reuse plays a prominent role in mitigating these problems. By providing a reusable platform based on open source software, ACCE enables airborne missions to allocate more resources to their scientific goals, thereby opening the doors to increased scientific discovery.

  2. CAPS Simulation Environment Development

    NASA Technical Reports Server (NTRS)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  3. Software Development Group. Software Review Center. Microcomputing Working Paper Series.

    ERIC Educational Resources Information Center

    Perkey, Nadine; Smith, Shirley C.

    Two papers describe the roles of the Software Development Group (SDG) and the Software Review Center (SRC) at Drexel University. The first paper covers the primary role of the SDG, which is designed to assist Drexel faculty with the technical design and programming of courseware for the Apple Macintosh microcomputer; the relationship of the SDG…

  4. Embracing Open Software Development in Solar Physics

    NASA Astrophysics Data System (ADS)

    Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.

    2012-12-01

    We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We

  5. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  6. Reliable software and communication 2: Controlling the software development process

    NASA Astrophysics Data System (ADS)

    Dalal, Siddhartha R.; Horgan, Joseph R.; Kettenring, Jon R.

    1994-01-01

    The software created by industrial, educational, and research organizations is increasingly large and complex. It also occupies a central role in the reliability and safety of many essential services. We examine the software development process and suggest opportunities for improving the process by using a combination of statistical and other process control techniques. Data, analysis of data, and tools for collecting data are crucial to our approach. Although our views are based upon experiences with large telecommunications systems, they are likely to be useful to many other developers of large software systems.

  7. Autonomous robot software development using simple software components

    NASA Astrophysics Data System (ADS)

    Burke, Thomas M.; Chung, Chan-Jin

    2004-10-01

    Developing software to control a sophisticated lane-following, obstacle-avoiding, autonomous robot can be demanding and beyond the capabilities of novice programmers - but it doesn"t have to be. A creative software design utilizing only basic image processing and a little algebra, has been employed to control the LTU-AISSIG autonomous robot - a contestant in the 2004 Intelligent Ground Vehicle Competition (IGVC). This paper presents a software design equivalent to that used during the IGVC, but with much of the complexity removed. The result is an autonomous robot software design, that is robust, reliable, and can be implemented by programmers with a limited understanding of image processing. This design provides a solid basis for further work in autonomous robot software, as well as an interesting and achievable robotics project for students.

  8. Software Development Plan for DESCARTES and CIDER

    SciTech Connect

    Eslinger, P.W.

    1992-12-08

    This Software Development Plan (SDP) outlines all software activities required to obtain functional environmental accumulation and individual dose codes for the Hanford Environmental Dose Reconstruction (HEDR) project. The modeling activities addressed use the output of the air transport-code HATCHET to compute radionuclide concentrations in environmental pathways, and continue on through calculations of dose for individuals. The Hanford Environmental Dose Reconstruction (HEDR) Project has a deliverable in the June 1993 time frame to be able to start computing doses to individuals from nuclear-related activities on the Hanford Site during and following World War II. The CIDER code will compute doses and their uncertainties for individuals living in the contaminated environment computed by DESCARTES. The projected size of the code is 3000 lines.

  9. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  10. Measuring Ada as a software development technology in the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.

    1985-01-01

    An experiment is in progress to measure the effectiveness of Ada in the National Aeronautics and Space Administration/Goddard Space Flight Center flight dynamics software development environment. The experiment features the parallel development of software in FORTRAN and Ada. The experiment organization, objectives, and status are discussed. Experiences with an Ada training program and data from the development of a 5700-line Ada training exercise are reported.

  11. A model driven testing environment for embedded software

    NASA Astrophysics Data System (ADS)

    Yang, Shunkun; Fu, Jianping

    2013-03-01

    This paper presents a hardware-in-loop (HIL) real-time simulation environment for embedded software testing, namely the Embedded Software Simulation Test Environment (ESSTE). We give a detailed description of methods, architecture and critical components of ESSTE. For validation purposes, the proposed real-time HIL testing approach and ESSTE is applied in experiments and some application examples. Experiment results show that the test environment employed in this paper can be applied to systems in practice. And different domain of applications approved that the proposed ESSTE can go far forward to improve the reliability and quality of the embedded software.

  12. Formal methods in the development of safety critical software systems

    SciTech Connect

    Williams, L.G.

    1991-11-15

    As the use of computers in critical control systems such as aircraft controls, medical instruments, defense systems, missile controls, and nuclear power plants has increased, concern for the safety of those systems has also grown. Much of this concern has focused on the software component of those computer-based systems. This is primarily due to historical experience with software systems that often exhibit larger numbers of errors than their hardware counterparts and the fact that the consequences of a software error may endanger human life, property, or the environment. A number of different techniques have been used to address the issue of software safety. Some are standard software engineering techniques aimed at reducing the number of faults in a software protect, such as reviews and walkthroughs. Others, including fault tree analysis, are based on identifying and reducing hazards. This report examines the role of one such technique, formal methods, in the development of software for safety critical systems. The use of formal methods to increase the safety of software systems is based on their role in reducing the possibility of software errors that could lead to hazards. The use of formal methods in the development of software systems is controversial. Proponents claim that the use of formal methods can eliminate errors from the software development process, and produce programs that are probably correct. Opponents claim that they are difficult to learn and that their use increases development costs unacceptably. This report discusses the potential of formal methods for reducing failures in safety critical software systems.

  13. Software requirements: Guidance and control software development specification

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward; Rich, Don C.; Lowman, Douglas S.; Buckland, R. C.

    1990-01-01

    The software requirements for an implementation of Guidance and Control Software (GCS) are specified. The purpose of the GCS is to provide guidance and engine control to a planetary landing vehicle during its terminal descent onto a planetary surface and to communicate sensory information about that vehicle and its descent to some receiving device. The specification was developed using the structured analysis for real time system specification methodology by Hatley and Pirbhai and was based on a simulation program used to study the probability of success of the 1976 Viking Lander missions to Mars. Three versions of GCS are being generated for use in software error studies.

  14. Environments for Development

    ERIC Educational Resources Information Center

    Grabinski, C. Joanne

    2005-01-01

    This chapter considers Robert Kegan's concept of holding environments, as well as six steps necessary for creation of new or adaptation of existing learning environments that facilitate adult development across the life course.

  15. Software Management Environment (SME) release 9.4 user reference material

    NASA Technical Reports Server (NTRS)

    Hendrick, R.; Kistler, D.; Manter, K.

    1992-01-01

    This document contains user reference material for the Software Management Environment (SME) prototype, developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides an overview of the SME, a description of all functions, and detailed instructions concerning the software's installation and use.

  16. Developing Software for Corpus Research

    ERIC Educational Resources Information Center

    Mason, Oliver

    2008-01-01

    Despite the central role of the computer in corpus research, programming is generally not seen as a core skill within corpus linguistics. As a consequence, limitations in software for text and corpus analysis slow down the progress of research while analysts often have to rely on third party software or even manual data analysis if no suitable…

  17. Designing Distributed Learning Environments with Intelligent Software Agents

    ERIC Educational Resources Information Center

    Lin, Fuhua, Ed.

    2005-01-01

    "Designing Distributed Learning Environments with Intelligent Software Agents" reports on the most recent advances in agent technologies for distributed learning. Chapters are devoted to the various aspects of intelligent software agents in distributed learning, including the methodological and technical issues on where and how intelligent agents…

  18. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  19. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  20. IMAGE information monitoring and applied graphics software environment. Volume 2. Software description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent.

  1. LISP as an Environment for Software Design: Powerful and Perspicuous

    PubMed Central

    Blum, Robert L.; Walker, Michael G.

    1986-01-01

    The LISP language provides a useful set of features for prototyping knowledge-intensive, clinical applications software that is not found In most other programing environments. Medical computer programs that need large medical knowledge bases, such as programs for diagnosis, therapeutic consultation, education, simulation, and peer review, are hard to design, evolve continually, and often require major revisions. They necessitate an efficient and flexible program development environment. The LISP language and programming environments bullt around it are well suited for program prototyping. The lingua franca of artifical intelligence researchers, LISP facllitates bullding complex systems because it is simple yet powerful. Because of its simplicity, LISP programs can read, execute, modify and even compose other LISP programs at run time. Hence, it has been easy for system developers to create programming tools that greatly speed the program development process, and that may be easily extended by users. This has resulted in the creation of many useful graphical interfaces, editors, and debuggers, which facllitate the development of knowledge-intensive medical applications.

  2. Continuous Software Integration and Quality Control during Software Development

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Brisken, W.; Dassing, R.

    2012-12-01

    Modern software has to be stable, portable, fast, and reliable. This requires a sophisticated infrastructure supporting and providing the developers with additional information about the state and the quality of the project. That is why we have created a centralized software repository, where the whole code-base is managed and version controlled on a centralized server. Based on this, a hierarchical build system has been developed where each project and their sub-projects can be compiled by simply calling the top level Makefile. On the top of this, a nightly build system has been created where the top level Makefiles of each project are called every night. The results of the build including the compiler warnings are reported to the developers using generated HTML pages. In addition, all the source code is automatically checked using a static code analysis tool, called "cppcheck". This tool produces warnings, similar to those of a compiler, but more pedantic. The reports of this analysis are translated to HTML and reported to the developers similar to the nightly builds. Armed with this information,the developers can discover issues in their projects at an early development stage. In combination it reduces the number of possible issues in our software to ensure quality of our projects at different development stages. These checks are also offered to the community. They are currently used within the DiFX software correlator project.

  3. On the Prospects and Concerns of Integrating Open Source Software Environment in Software Engineering Education

    ERIC Educational Resources Information Center

    Kamthan, Pankaj

    2007-01-01

    Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…

  4. SOFIA's CORBA Experiences: Instances of Software Development

    NASA Astrophysics Data System (ADS)

    Graybeal, J.; Krzaczek, R.; Milburn, J.

    Developing data systems for special purpose applications---like one-of-a-kind telescopes---is a singular, if not idiosyncratic, process. Developers must master and wisely use rapidly changing software technologies to produce systems faster, better, and cheaper, meanwhile keeping up with iterative requirements and schedules. Architectural standards such as CORBA may help---or may lead to slow, hard to change, and expensive data systems. The Stratospheric Observatory for Infrared Astronomy (SOFIA) will use CORBA in several different environments---the airborne mission systems (MCS), the ground support system (DCS), and a Facility Science Instrument (FLITECAM). A review of CORBA development experiences on the MCS reflects the challenges and choices made, while comparison with other SOFIA implementations shows the variety of CORBA applications and benefits.

  5. Manager's handbook for software development, revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.

  6. Recommended approach to software development, revision 3

    NASA Technical Reports Server (NTRS)

    Landis, Linda; Waligora, Sharon; Mcgarry, Frank; Pajerski, Rose; Stark, Mike; Johnson, Kevin Orlin; Cover, Donna

    1992-01-01

    Guidelines for an organized, disciplined approach to software development that is based on studies conducted by the Software Engineering Laboratory (SEL) since 1976 are presented. It describes methods and practices for each phase of a software development life cycle that starts with requirements definition and ends with acceptance testing. For each defined life cycle phase, guidelines for the development process and its management, and for the products produced and their reviews are presented.

  7. Software development: A paradigm for the future

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1989-01-01

    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented.

  8. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  9. Software development predictors, error analysis, reliability models and software metric analysis

    NASA Technical Reports Server (NTRS)

    Basili, Victor

    1983-01-01

    The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.

  10. Software Development Life Cycle Security Issues

    NASA Astrophysics Data System (ADS)

    Kaur, Daljit; Kaur, Parminder

    2011-12-01

    Security is now-a-days one of the major problems because of many reasons. Security is now-a-days one of the major problems because of many reasons. The main cause is that software can't withstand security attacks because of vulnerabilities in it which are caused by defective specifications design and implementation. We have conducted a survey asking software developers, project managers and other people in software development about their security awareness and implementation in Software Development Life Cycle (SDLC). The survey was open to participation for three weeks and this paper explains the survey results.

  11. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  12. AF-GEOSpace Version 2.5: Space Environment Software

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Hall, T.; Roth, C.; Ling, A.; Ginet, G. P.; Madden, D.

    2010-12-01

    AF-GEOSpace is a graphics-intensive software program with space environment models and applications developed by the Space Weather Center of Excellence at AFRL. The software addresses a wide range of physical domains, e.g., solar disturbance propagation, geomagnetic field and radiation belt configurations, auroral particle precipitation, and ionospheric scintillation. AF-GEOSpace has become a platform for developing and prototyping space weather visualization products. The new AF-GEOSpace Version 2.5 (release scheduled for 2010) expands on the content of Version 2.1 by including modules addressing the following new topics: (1) energetic proton maps for the South Atlantic Anomaly (from Ginet et al. [2007]), (2) GPS scintillation outage simulation tools, (3) magnetopause location determination (Shue et al. [1998]), (4) a plasmasphere model (Global Core Plasma Model, 2009 version based on Gallagher et al. [2000]), (5) a standard ionospheric model (International Reference Ionosphere 2007), (6) the CAMMICE/MICS model of inner magnetosphere plasma population (based on Roeder et al. [2005]), (7) magnetic field models (e.g., Tsyganenko and Sitnov [2005]), and (8) loading and displaying externally-produced 3D gridded data sets within AF-GEOSpace. Improvements to existing Version 2.1 capabilities include: (1) a 2005 update to the geomagnetic cutoff rigidity model of Smart and Shea [2003], (2) a 2005 update to the ionospheric scintillation Wide-Band Model (WBMOD) of Secan and Bussey [1994], and (3) improved magnetic field flux mapping options for the existing set of AF-GEOSpace radiation belt models. A basic review of these new AF-GEOSpace capabilities will be provided. To obtain a copy of the software, please contact the first author.

  13. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  14. Software Development Management: Empirical and Analytical Perspectives

    ERIC Educational Resources Information Center

    Kang, Keumseok

    2011-01-01

    Managing software development is a very complex activity because it must deal with people, organizations, technologies, and business processes. My dissertation consists of three studies that examine software development management from various perspectives. The first study empirically investigates the impacts of prior experience with similar…

  15. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  16. Software Architecture for Simultaneous Process Control and Software Development/Modification

    SciTech Connect

    Lenarduzzi, Roberto; Hileman, Michael S; McMillan, David E; Holmes Jr, William; Blankenship, Mark; Wilder, Terry

    2011-01-01

    A software architecture is described that allows modification of some application code sections while the remainder of the application continues executing. This architecture facilitates long term testing and process control because the overall process need not be stopped and restarted to allow modifications or additions to the software. A working implementation using National Instruments LabVIEW{trademark} sub-panel and shared variable features is described as an example. This architecture provides several benefits in both the program development and execution environments. The software is easier to maintain and it is not necessary to recompile the entire program after a modification.

  17. Developing Confidence Limits For Reliability Of Software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1991-01-01

    Technique developed for estimating reliability of software by use of Moranda geometric de-eutrophication model. Pivotal method enables straightforward construction of exact bounds with associated degree of statistical confidence about reliability of software. Confidence limits thus derived provide precise means of assessing quality of software. Limits take into account number of bugs found while testing and effects of sampling variation associated with random order of discovering bugs.

  18. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  19. Standardized development of computer software. Part 1: Methods

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1976-01-01

    This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change.

  20. Computer-aided software development process design

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Levary, Reuven R.

    1989-01-01

    The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.

  1. COSTMODL: An automated software development cost estimation tool

    NASA Technical Reports Server (NTRS)

    Roush, George B.

    1991-01-01

    The cost of developing computer software continues to consume an increasing portion of many organizations' total budgets, both in the public and private sector. As this trend develops, the capability to produce reliable estimates of the effort and schedule required to develop a candidate software product takes on increasing importance. The COSTMODL program was developed to provide an in-house capability to perform development cost estimates for NASA software projects. COSTMODL is an automated software development cost estimation tool which incorporates five cost estimation algorithms including the latest models for the Ada language and incrementally developed products. The principal characteristic which sets COSTMODL apart from other software cost estimation programs is its capacity to be completely customized to a particular environment. The estimation equations can be recalibrated to reflect the programmer productivity characteristics demonstrated by the user's organization, and the set of significant factors which effect software development costs can be customized to reflect any unique properties of the user's development environment. Careful use of a capability such as COSTMODL can significantly reduce the risk of cost overruns and failed projects.

  2. Educational Software--New Guidelines for Development.

    ERIC Educational Resources Information Center

    Gold, Patricia Cohen

    1984-01-01

    Discusses standards developed by the Educational Computer Service of the National Education Association that incorporate technical, educational, and documentation components to guide authors in the development of quality educational software. (Author/MBR)

  3. Towards Archetypes-Based Software Development

    NASA Astrophysics Data System (ADS)

    Piho, Gunnar; Roost, Mart; Perkins, David; Tepandi, Jaak

    We present a framework for the archetypes based engineering of domains, requirements and software (Archetypes-Based Software Development, ABD). An archetype is defined as a primordial object that occurs consistently and universally in business domains and in business software systems. An archetype pattern is a collaboration of archetypes. Archetypes and archetype patterns are used to capture conceptual information into domain specific models that are utilized by ABD. The focus of ABD is on software factories - family-based development artefacts (domain specific languages, patterns, frameworks, tools, micro processes, and others) that can be used to build the family members. We demonstrate the usage of ABD for developing laboratory information management system (LIMS) software for the Clinical and Biomedical Proteomics Group, at the Leeds Institute of Molecular Medicine, University of Leeds.

  4. Issues in Software Development in Composition.

    ERIC Educational Resources Information Center

    Barker, Thomas T.

    Noting the increase in the number of teachers developing computer software for composition instruction, this paper explores the issues that are shaping the direction of computer assistance in writing instruction. The first half of the paper deals with specific questions teachers must consider as they design software. These are divided into…

  5. Interactive Programming Support for Secure Software Development

    ERIC Educational Resources Information Center

    Xie, Jing

    2012-01-01

    Software vulnerabilities originating from insecure code are one of the leading causes of security problems people face today. Unfortunately, many software developers have not been adequately trained in writing secure programs that are resistant from attacks violating program confidentiality, integrity, and availability, a style of programming…

  6. Critical Considerations for WORM Software Development.

    ERIC Educational Resources Information Center

    Berg, Brian A.

    1987-01-01

    Addresses advantages and disadvantages of write-once read-many (WORM) optical disks and other software considerations resulting from the write-once nature of WORM media to provide guidelines for determining whether this technology is appropriate for an application. Three brief case studies describe WORM software development efforts. (MES)

  7. A Formal Approach to Domain-Oriented Software Design Environments

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper describes a formal approach to domain-oriented software design environments, based on declarative domain theories, formal specifications, and deductive program synthesis. A declarative domain theory defines the semantics of a domain-oriented specification language and its relationship to implementation-level subroutines. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that guides them in creating diagrams denoting formal specifications. The diagrams also serve to document the specifications. Deductive program synthesis ensures that end-user specifications are correctly implemented. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory, which includes an axiomatization of JPL's SPICELIB subroutine library. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development. Furthermore, AMPHION synthesizes one to two page programs consisting of calls to SPICELIB subroutines from these specifications in just a few minutes. Test results obtained by metering AMPHION's deductive program synthesis component are examined. AMPHION has been installed at JPL and is currently undergoing further refinement in preparation for distribution to hundreds of SPICELIB users worldwide. Current work to support end-user customization of AMPHION's specification acquisition subsystem is briefly discussed, as well as future work to enable domain-expert creation of new AMPHION applications through development of suitable domain theories.

  8. Perspex Machine X: software development

    NASA Astrophysics Data System (ADS)

    Noble, Sam; Thomas, Benjamin A.; Anderson, James A. D. W.

    2007-01-01

    The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.

  9. Project management in the development of scientific software

    NASA Astrophysics Data System (ADS)

    Platz, Jochen

    1986-08-01

    This contribution is a rough outline of a comprehensive project management model for the development of software for scientific applications. The model was tested in the unique environment of the Siemens AG Corporate Research and Technology Division. Its focal points are the structuring of project content - the so-called phase organization, the project organization and the planning model used, and its particular applicability to innovative projects. The outline focuses largely on actual project management aspects rather than associated software engineering measures.

  10. QUICK - An interactive software environment for engineering design

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1989-01-01

    QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.

  11. Designing Prediction Tasks in a Mathematics Software Environment

    ERIC Educational Resources Information Center

    Brunström, Mats; Fahlgren, Maria

    2015-01-01

    There is a recognised need in mathematics teaching for new kinds of tasks which exploit the affordances provided by new technology. This paper focuses on the design of prediction tasks to foster student reasoning about exponential functions in a mathematics software environment. It draws on the first iteration of a design based research study…

  12. Musical Composition and Creativity in an Advanced Software Environment

    ERIC Educational Resources Information Center

    Reynolds, Nicholas

    2002-01-01

    This paper serves as a brief description of research into the use of professional level music software as a learning tool for creativity and composition by primary school children. The research formed the basis of a Master of Information Technology in Education degree at the University of Melbourne. The paper examines the physical environment, the…

  13. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    NASA Astrophysics Data System (ADS)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  14. Development of Software Correlator for KJJVC

    NASA Astrophysics Data System (ADS)

    Yeom, J. H.; Oh, S. J.; Roh, D. G.; Kang, Y. W.; Park, S. Y.; Lee, C. H.; Chung, H. S.

    2009-12-01

    Korea-Japan Joint VLBI Correlator (KJJVC) is being developed by collaborating KASI (Korea Astronomy and Space Science Institute), Korea, and NAOJ(National Observatory of Japan), Japan. In early 2010, KJJVC will work in normal operation. In this study, we developed the software correlator which is based on VCS (VLBI Correlation Subsystem) hardware specification as the core component of KJJVC. The main specification of software correlator is 8 Gbps, 8192 output channels, and 262,144-points FFT (Fast Fourier Transform) function same as VCS. And the functional algorithm which is same as specification of VCS and arithmetic register are adopted in this software correlator. To verify the performance of developed software correlator, the correlation experiments were carried out using the spectral line and continuum sources which were observed by VERA (VLBI Exploration of Radio Astrometry), NAOJ. And the experimental results were compared to the output of Mitaka FX correlator by referring spectrum shape, phase rate, and fringe detection and so on. Through the experimental results, we confirmed that the correlation results of software correlator are the same as Mitaka FX correlator and verified the effectiveness of it. In future, we expect that the developed software correlator will be the possible software correlator of KVN (Korean VLBI Network) with KJJVC by introducing the correlation post-processing and modifying the user interface as like GUI (Graphic User Interface).

  15. Autonomous Aerobraking Development Software: Phase 2 Summary

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David

    2013-01-01

    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.

  16. Developing Software that Supports State Competencies.

    ERIC Educational Resources Information Center

    Burney, James D.; And Others

    1988-01-01

    Discusses Alabama's attempt to provide computer aided instruction in remedial and initial instruction. Describes the program's funding, obstacles, and mileposts. Lists five phases for program development of competency software. Notes that 125 mathematics and five reading programs are available. (MVL)

  17. Concept Development for Software Health Management

    NASA Technical Reports Server (NTRS)

    Riecks, Jung; Storm, Walter; Hollingsworth, Mark

    2011-01-01

    This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health Management (CDSHM) program was a NASA funded effort sponsored by the Integrated Vehicle Health Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured approach to software health management (SHM) through the development of a comprehensive failure taxonomy that is used to characterize the fundamental failure modes of safety-critical software.

  18. Software Engineering Approaches to Ontology Development

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    Ontologies, as formal representations of domain knowledge, enable knowledge sharing between different knowledge-based applications. Diverse techniques originating from the field of artificial intelligence are aimed at facilitating ontology development. However, these techniques, although well known to AI experts, are typically unknown to a large population of software engineers. In order to overcome the gap between the knowledge of software engineering practitioners and AI techniques, a few proposals have been made suggesting the use of well-known software engineering techniques, such as UML, for ontology development (Cranefield 2001a).

  19. Framework Support For Knowledge-Based Software Development

    NASA Astrophysics Data System (ADS)

    Huseth, Steve

    1988-03-01

    The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.

  20. Developing Generic Software for Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Smith, Joseph

    2003-01-01

    A proposed approach to the development of software for spacecraft avionics is based partly on a concept of generic software that could be tailored to satisfy requirements for specific missions. The proposed approach would stand in contrast to the conventional approach of first defining avionics requirements for a specific mission, then developing software specific to those requirements. The proposed approach might also be adaptable to programming computers that control and monitor other complex equipment systems that range in scale from automobiles to factories. The concept of a spacecraft avionics functional model (SAFM) is a major element of the proposed approach. An SAFM would be, essentially, a systematic and hierarchical description of the functionality required of the avionics software (and hardware) for a given mission. Although the initial input information used to start the construction of an SAFM would typically amount to a high-level description, the SAFM would thereafter be decomposed to a low level. The resulting low-level version of the model would be used to develop a set of generic requirements that could be expected to include a large fraction of all requirements for a large fraction of all missions. The generic requirements would be used to develop software modules that could be included in, or excluded from, the final flight software to satisfy the requirements of a specific mission.

  1. Image analysis library software development

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Bryant, J.

    1977-01-01

    The Image Analysis Library consists of a collection of general purpose mathematical/statistical routines and special purpose data analysis/pattern recognition routines basic to the development of image analysis techniques for support of current and future Earth Resources Programs. Work was done to provide a collection of computer routines and associated documentation which form a part of the Image Analysis Library.

  2. Advanced Software Development Workstation Project, phase 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ACCESS provides a generic capability to develop software information system applications which are explicitly intended to facilitate software reuse. In addition, it provides the capability to retrofit existing large applications with a user friendly front end for preparation of input streams in a way that will reduce required training time, improve the productivity even of experienced users, and increase accuracy. Current and past work shows that ACCESS will be scalable to much larger object bases.

  3. Framework for Development of Object-Oriented Software

    NASA Technical Reports Server (NTRS)

    Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan

    2004-01-01

    The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.

  4. CORE (Common Operating Response Environment) Software Technology Suite

    SciTech Connect

    Gelston, Gariann; Rohlfing, Kerrie

    2015-05-26

    Agencies that oversee complex, multi-stakeholder programs need efficient, secure ways to link people and knowledge within and across organizations. The Common Operating Response Environment (CORE), a software suite developed by PNNL researchers does just that. The CORE tool—which is customizable for a multitude of uses—facilitates situational awareness by integrating diverse data streams without the need to reformat them, summarizing that information, and providing users with the information they need to rapidly understand and appropriately respond to situations. It is mobile device-ready, has a straightforward interface for ease of use across organizations and skill sets, and is incredibly configurable to the needs of each specific user, whether they require data summaries for high-level decision makers or tactical maps, operational data, or weather information for responders in the field. Information can be input into CORE and queried in a variety of ways—using customized forms, reports, visuals, or other organizational templates—according to the needs of each user’s organization, teams, and business processes. CORE data forms, for instance, could be accessed and used in real-time to capture information about vessels being inspected for nuclear material.

  5. A framework for teaching software development methods

    NASA Astrophysics Data System (ADS)

    Dubinsky, Yael; Hazzan, Orit

    2005-12-01

    This article presents a study that aims at constructing a teaching framework for software development methods in higher education. The research field is a capstone project-based course, offered by the Technion's Department of Computer Science, in which Extreme Programming is introduced. The research paradigm is an Action Research that involves cycles of data collection, examination, evaluation, and application of results. The research uses several research tools for data gathering, as well as several research methods for data interpretation. The article describes in detail the research background, the research method, and the gradual emergence process of a framework for teaching software development methods. As part of the comprehensive teaching framework, a set of measures is developed to assess, monitor, and improve the teaching and the actual process of software development projects.

  6. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  7. Evaluating software development by analysis of changes - Some data from the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Weiss, D. M.; Basili, V. R.

    1985-01-01

    Basili and Weiss (1984) have discussed an approach for obtaining valid data which may be used to evaluate software development methodologies in a production environment. The methodology consists of five elements, including the identification of goals, the determination of questions of interest from the goals, the development of a data collection form, the development of data collection procedures, and the validation and analysis of the data. The current investigation is concerned with the presentation of the results from such an evaluation. The presented data were collected as part of studies reported by Basili et al. (1977). These studies had been conducted by NASA's Software Engineering Laboratory (SEL). Attention is given to an overview of the SEL, the application of the considered methodology, the results of a data analysis, and conclusions about the SEL environment.

  8. Engineering software development with HyperCard

    NASA Technical Reports Server (NTRS)

    Darko, Robert J.

    1990-01-01

    The successful and unsuccessful techniques used in the development of software using HyperCard are described. The viability of the HyperCard for engineering is evaluated and the future use of HyperCard by this particular group of developers is discussed.

  9. Development Process for Science Operation Software

    NASA Astrophysics Data System (ADS)

    Ballester, Pascal

    2015-12-01

    Scientific software development at ESO involves defined processes for the main phases of project inception, monitoring of development performed by instrument consortia, application maintenance, and application support. We discuss the lessons learnt and evolution of the process for the next generation of tools and observing facilities.

  10. Object-oriented Information System in the HELIOS Medical Software Engineering Environment.

    PubMed

    Jean, F C; Thelliez, T; Mascart, J J; Degoulet, P

    1992-01-01

    This paper presents the architecture of the Information System of HELIOS, a medical Software Engineering Environment. It is an object oriented framework for the development of medical applications which puts particular emphasis on tools and techniques favouring reuse of previous work and enhancing collaboration between developers. PMID:1482942

  11. Software development tools for the CDF MX scanner

    SciTech Connect

    Stuermer, W.; Turner, K.; Littleton-Sestini, S.

    1991-11-01

    This paper discuses the design of the high level assembler and diagnostic control program developed for the MX, a high speed, custom designed computer used in the CDF data acquisition system at Fermilab. These programs provide a friendly productive environment for the development of software on the MX. Details of their implementation and special features, and some of the lessons learned during their development are included.

  12. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  13. Developing educational software for publisher vendors.

    PubMed

    Joseph, L S; Joseph, A F

    1985-09-01

    This article has provided the principles of CAI development, marketing strategies, information on getting started with CAI, and how to approach publisher vendors. Guidelines for software development proposals have been synthesized from major software publishers in nursing. There is a great demand for courseware that teaches critical thinking skills, problem solving, application, and analysis. Tutorials and simulations are much needed. Computer-assisted testing courseware will also be highly used by teachers at all levels in the future. Opportunity awaits the CAI author in the publishing arena! PMID:3903670

  14. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  15. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  16. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications. PMID:7882667

  17. Rapid Development of Interferometric Software Using MIRIAD and Python

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.; Law, Casey J.; Bower, Geoffrey C.

    2012-06-01

    State-of-the-art radio interferometers are complex systems that unleash torrents of data. If current and planned instruments are to routinely meet their performance goals, standard analysis techniques must be significantly improved, becoming simultaneously more sophisticated, more automatic, and more scalable. While there is no shortage of ideas for next-generation algorithms, there is a shortage of development resources, so it is vital that programming environments for interferometric software allow for rapid, flexible development. We present an open-source software package, miriad-python, that provides access to the MIRIAD interferometric reduction system in the Python programming language. The modular design of MIRIAD and the high productivity and accessibility of Python provide an excellent foundation for rapid development of interferometric software. Several other projects with similar goals exist, and we describe them and compare miriad-python with them in detail. Along with an overview of the package design, we present sample code and applications, including the detection of millisecond astrophysical transients, determination and application of nonstandard calibration parameters, interactive data visualization, and a reduction pipeline using a directed acyclic graph dependency model analogous to that of the traditional UNIX tool make. The key aspects of the miriad-python software project are documented. We find that miriad-python provides an extremely effective environment for prototyping new interferometric software, though certain existing packages provide far more infrastructure for some applications. While equivalent software written in compiled languages can be much faster than Python, there are many situations in which execution time is profitably exchanged for speed of development, code readability, accessibility to nonexpert programmers, quick interlinking with foreign software packages, and other virtues of the Python language.

  18. Environment and alternative development

    SciTech Connect

    Kothari, R.

    1980-01-01

    This global review stresses the present-day human predicament, marked by the inequity of simultaneous material abundance and overdevelopment in some regions or sections and underdevelopment, increasing poverty, and deprivation in some others. It seeks to examine the dynamics of a global structure that forces a continual flow of resources away from non-industrialized into industrialized countries, and from a steady and sustainable to an accelerating use and rapacious use of resources in the service of a wasteful life-style that is now spreading to the developing countries. The science and technology that sets this process in motion and sustains it leads to the domination of man by machine, blights the life chances of future generations, and posits development and environment in an adversary relationship. The paper examines the philosophical, historical, cultural and ethnic underpinnings of modern science and technology and points to the urgent need for rediscovering the other traditions that take an integrated and holistic view of life as a whole, in which science and technology and development and environment all merge in a symbiotic relationship. This entails the search for an alternative concept of both development and technology as well as of life-styles, so as to ensure diversity in consonance with local resource endowments (human, material and technical), foster self-reliance and autonomy, and promote equity and participation, not only in economic and political processes, but also in giving meaning and content to human dignity at various levels. At the end, the paper spells out the policy implications of such an approach.

  19. [Environment and rural development].

    PubMed

    Dufumier, M

    1992-01-01

    Management of natural resources and preservation of ecological balance are perceived today as essential elements of rural development. The recently multiplying environmental ministries in developing countries are intended not only to correct the damages resulting from uncontrolled urbanization and industrialization, but to address ecosystemic degradation in the countryside. The aptitude demonstrated by numerous peasant societies for exploiting their environments over the long term while preserving their potential should be recognized and their specific, detailed knowledge incorporated into environmental protection projects. It is a mistake to conclude that peasants do not care about environmental problems; they often lack the resources to take needed action. Active participation of impoverished rural dwellers requires that measures taken do not reduce their incomes or resources in the short term. Rural development projects must assure protection of the environment while taking into account the interests of diverse categories of rural dwellers, such as farmers, herders, or wood cutters. There has been considerable progress in the past 2 decades in understanding the functioning of cultivated and pasture ecosystems and in developing techniques to limit damage to them. A vast effort is now needed to understand the economic, social, and cultural functions of customs and practices of different social groups involved in agricultural development and territorial management in order to prioritize problems and arrive at a consensus of all those affected concerning environmental protection. Social science research is needed into marketing of agricultural products, circulation of cooking fuels, village-town relations, and migration in order to determine the effects of these phenomena on management and conservation of natural resources in rural areas. Experimental research should be directed toward finding practical solutions to problems encountered by rural cultivators

  20. CONNJUR Workflow Builder: A software integration environment for spectral reconstruction

    PubMed Central

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O.; Ellis, Heidi J.C.; Gryk, Michael R.

    2015-01-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses. PMID:26066803

  1. Developing Software For Monitoring And Diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1993-01-01

    Expert-system software shell produces executable code. Report discusses beginning phase of research directed toward development of artificial intelligence for real-time monitoring of, and diagnosis of faults in, complicated systems of equipment. Motivated by need for onboard monitoring and diagnosis of electronic sensing and controlling systems of advanced aircraft. Also applicable to such equipment systems as refineries, factories, and powerplants.

  2. Software Tools for Empowering Instructional Developers.

    ERIC Educational Resources Information Center

    Gayeski, Diane M.

    1991-01-01

    Software systems are being created to assist both novice and expert instructional technologists in response to perceived need of organizations to increase their training. Underlying philosophies and goals of instructional developer automation tools and their potential effects upon the organizations who adopt them must be examined so they will help…

  3. Communal Resources in Open Source Software Development

    ERIC Educational Resources Information Center

    Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit

    2008-01-01

    Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…

  4. A Framework for Teaching Software Development Methods

    ERIC Educational Resources Information Center

    Dubinsky, Yael; Hazzan, Orit

    2005-01-01

    This article presents a study that aims at constructing a teaching framework for software development methods in higher education. The research field is a capstone project-based course, offered by the Technion's Department of Computer Science, in which Extreme Programming is introduced. The research paradigm is an Action Research that involves…

  5. Selecting Software for a Development Information Database.

    ERIC Educational Resources Information Center

    Geethananda, Hemamalee

    1991-01-01

    Describes software selection criteria considered for use with the bibliographic database of the Development Information Network for South Asia (DEVINSA), which is located in Sri Lanka. Highlights include ease of database creation, database size, input, editing, data validation, inverted files, searching, storing searches, vocabulary control, user…

  6. Development of a flight software testing methodology

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Andrews, D. M.

    1985-01-01

    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.

  7. Development of the PCAL Reconstruction Software

    NASA Astrophysics Data System (ADS)

    King, Craig; Wood, Michael; CLAS Collaboration

    2013-10-01

    The 12-GeV upgrade at the Thomas Jefferson National Accelerator Facility requires that the CLAS in Hall B be upgraded for the new kinematics at the higher beam energies. The new CLAS12 detector will include a component called the Pre-shower Calorimeter or PCAL. The PCAL will enhance the capabilities of the existing calorimeters and allow for greater acceptance over a wider range of momenta of particles like the neutral pion. The responsibility of the group at Canisius College is the PCAL reconstruction software. This poster will describe the software development and how it utilizes the Service-Oriented Architecture of CLAS12.

  8. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    ERIC Educational Resources Information Center

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  9. Lean Development with the Morpheus Simulation Software

    NASA Technical Reports Server (NTRS)

    Brogley, Aaron C.

    2013-01-01

    The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.

  10. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    NASA Technical Reports Server (NTRS)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to

  11. The image related services of the HELIOS software engineering environment.

    PubMed

    Engelmann, U; Meinzer, H P; Schröter, A; Günnel, U; Demiris, A M; Makabe, M; Evers, H; Jean, F C; Degoulet, P

    1995-01-01

    This paper describes the approach of the European HELIOS project to integrate image processing tools into ward information systems. The image processing tools are the result of the basic research in image analysis in the Department Medical and Biological Informatics at the German Cancer Research Center. These tools for the analysis of two-dimensional images and three-dimensional data volumes with 3D reconstruction and visualization ae part of the Image Related Services of HELIOS. The HELIOS software engineering environment allows to use the image processing functionality in integrated applications. PMID:7743775

  12. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  13. Conceptions of Software Development by Project Managers: A Study of Managing the Outsourced Development of Software Applications for United States Federal Government Agencies

    ERIC Educational Resources Information Center

    Eisen, Daniel

    2013-01-01

    This study explores how project managers, working for private federal IT contractors, experience and understand managing the development of software applications for U.S. federal government agencies. Very little is known about how they manage their projects in this challenging environment. Software development is a complex task and only grows in…

  14. Creating a flexible environment for testing scientific software

    SciTech Connect

    Smith, M. C.; Kelsey, R. L.; Riese, J. M.; Young, G. A.

    2004-01-01

    When writing scientific modeling and simulation software, frequent regression tests can expose bugs that would otherwise create future obstacles. For this reason, regression testing should be a fundamental part of any development process in medium to large-sized projects. In order to implement a flexible solution to this problem, a software testing framework that is based on simple one-to-one comparisons was designed. The comparisons are performed between two different representations of a simulation with one representation considered valid and the other unknown. Using a simple framework has proven to be advantageous in several ways. One of the biggest advantages is that of portability for testing other software. Implementing standardized design patterns allows a degree of flexibility which keeps it from being bound to specific software. For output, the framework is designed to use the eXtensible Markup Language (XML). This results in the ability to publish results in several different formats, archive into a database, and maintain compatibility with other simulation outputs. The preliminary results of implementing this framework have proven promising. Using object-oriented design has not only simplified development but has allowed for a more user friendly approach to testing. Future improvements include user-customized test cases, ad hoc queries for archived results, and automatic test result publication.

  15. Software development tools: A bibliography, appendix C.

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    A bibliography containing approximately 200 citations on tools which help software developers perform some development task (such as text manipulation, testing, etc.), and which would not necessarily be found as part of a computing facility is given. The bibliography comes from a relatively random sampling of the literature and is not complete. But it is indicative of the nature and range of tools currently being prepared or currently available.

  16. Development of a software security assessment instrument to reduce software security risk

    NASA Technical Reports Server (NTRS)

    Gilliam, D. P.; Kelly, J. C.; Powell, J. D.; Bishop, M.

    2001-01-01

    This paper discusses development of a security assessment instrument for the software development and maintenance life cycle. The assessment instrument is a collection of tools and procedures to support development of secure software.

  17. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect

    Samuel James Miller

    2006-08-09

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  18. Ethics and Morality in Software Development: A Developer's Perspective

    ERIC Educational Resources Information Center

    Stephenson, James H.

    2010-01-01

    Computers and other digital devices have become ubiquitous in our lives. Almost all aspects of our lives are in part or wholly impacted by computers and the software that runs on them. Unknowingly, we are placing our livelihoods and even our lives in the hands unknown software developers. Ethical and moral decisions made during software…

  19. Advanced program development management software system. Software description and user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives of this project were to apply emerging techniques and tools from the computer science discipline of paperless management to the activities of the Space Transportation and Exploration Office (PT01) in Marshall Space Flight Center (MSFC) Program Development, thereby enhancing the productivity of the workforce, the quality of the data products, and the collection, dissemination, and storage of information. The approach used to accomplish the objectives emphasized the utilization of finished form (off-the-shelf) software products to the greatest extent possible without impacting the performance of the end product, to pursue developments when necessary in the rapid prototyping environment to provide a mechanism for frequent feedback from the users, and to provide a full range of user support functions during the development process to promote testing of the software.

  20. Software safety analysis activities during software development phases of the Microwave Limb Sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Shaw, Hui-Yin; Sherif, Joseph S.

    2004-01-01

    This paper describes the MLS software safety analysis activities and documents the SSA results. The scope of this software safety effort is consistent with the MLS system safety definition and is concentrated on the software faults and hazards that may have impact on the personnel safety and the environment safety.

  1. Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les

    1991-01-01

    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.

  2. Chaste: using agile programming techniques to develop computational biology software.

    PubMed

    Pitt-Francis, Joe; Bernabeu, Miguel O; Cooper, Jonathan; Garny, Alan; Momtahan, Lee; Osborne, James; Pathmanathan, Pras; Rodriguez, Blanca; Whiteley, Jonathan P; Gavaghan, David J

    2008-09-13

    Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating cardiac electrical activity. We consider the software development methods used in producing codes of this type, and discuss their use of numerical algorithms, relative computational efficiency, usability, robustness and extensibility. We then go on to describe a class of software development methodologies known as test-driven agile methods and argue that such methods are more suitable for scientific software development than the traditional academic approaches. A case study is a project of our own, Cancer, Heart and Soft Tissue Environment, which is a library of computational biology software that began as an experiment in the use of agile programming methods. We present our experiences with a review of our progress thus far, focusing on the advantages and disadvantages of this new approach compared with the development methods used in some existing packages. We conclude by considering whether the likely wider needs of the cardiac modelling community are currently being met and suggest that, in order to respond effectively to changing requirements, it is essential that these codes should be more malleable. Such codes will allow for reliable extensions to include both detailed mathematical models--of the heart and other organs--and more efficient numerical techniques that are currently being developed by many research groups worldwide. PMID:18565813

  3. Documenting the decision structure in software development

    NASA Technical Reports Server (NTRS)

    Wild, J. Christian; Maly, Kurt; Shen, Stewart N.

    1990-01-01

    Current software development paradigms focus on the products of the development process. Much of the decision making process which produces these products is outside the scope of these paradigms. The Decision-Based Software Development (DBSD) paradigm views the design process as a series of interrelated decisions which involve the identification and articulation of problems, alternates, solutions and justifications. Decisions made by programmers and analysts are recorded in a project data base. Unresolved problems are also recorded and resources for their resolution are allocated by management according to the overall development strategy. This decision structure is linked to the products affected by the relevant decision and provides a process oriented view of the resulted system. Software maintenance uses this decision view of the system to understand the rationale behind the decisions affecting the part of the system to be modified. D-HyperCase, a prototype Decision-Based Hypermedia System is described and results of applying the DBSD approach during its development are presented.

  4. SCaN Testbed Software Development and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  5. New softwares for automated microsatellite marker development.

    PubMed

    Martins, Wellington; de Sousa, Daniel; Proite, Karina; Guimarães, Patrícia; Moretzsohn, Marcio; Bertioli, David

    2006-01-01

    Microsatellites are repeated small sequence motifs that are highly polymorphic and abundant in the genomes of eukaryotes. Often they are the molecular markers of choice. To aid the development of microsatellite markers we have developed a module that integrates a program for the detection of microsatellites (TROLL), with the sequence assembly and analysis software, the Staden Package. The module has easily adjustable parameters for microsatellite lengths and base pair quality control. Starting with large datasets of unassembled sequence data in the form of chromatograms and/or text data, it enables the creation of a compact database consisting of the processed and assembled microsatellite containing sequences. For the final phase of primer design, we developed a program that accepts the multi-sequence 'experiment file' format as input and produces a list of primer pairs for amplification of microsatellite markers. The program can take into account the quality values of consensus bases, improving success rate of primer pairs in PCR. The software is freely available and simple to install in both Windows and Unix-based operating systems. Here we demonstrate the software by developing primer pairs for 427 new candidate markers for peanut. PMID:16493138

  6. The Web Interface Template System (WITS), a software developer`s tool

    SciTech Connect

    Lauer, L.J.; Lynam, M.; Muniz, T.

    1995-11-01

    The Web Interface Template System (WITS) is a tool for software developers. WITS is a three-tiered, object-oriented system operating in a Client/Server environment. This tool can be used to create software applications that have a Web browser as the user interface and access a Sybase database. Development, modification, and implementation are greatly simplified because the developer can change and test definitions immediately, without writing or compiling any code. This document explains WITS functionality, the system structure and components of WITS, and how to obtain, install, and use the software system.

  7. Software Quality Perceptions of Stakeholders Involved in the Software Development Process

    ERIC Educational Resources Information Center

    Padmanabhan, Priya

    2013-01-01

    Software quality is one of the primary determinants of project management success. Stakeholders involved in software development widely agree that quality is important (Barney and Wohlin 2009). However, they may differ on what constitutes software quality, and which of its attributes are more important than others. Although, software quality…

  8. General object-oriented software development

    NASA Technical Reports Server (NTRS)

    Seidewitz, Edwin V.; Stark, Mike

    1986-01-01

    Object-oriented design techniques are gaining increasing popularity for use with the Ada programming language. A general approach to object-oriented design which synthesizes the principles of previous object-oriented methods into the overall software life-cycle, providing transitions from specification to design and from design to code. It therefore provides the basis for a general object-oriented development methodology.

  9. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  10. APPLICATION OF SOFTWARE QUALITY ASSURANCE CONCEPTS AND PROCEDURES TO ENVIORNMENTAL RESEARCH INVOLVING SOFTWARE DEVELOPMENT

    EPA Science Inventory

    As EPA’s environmental research expands into new areas that involve the development of software, quality assurance concepts and procedures that were originally developed for environmental data collection may not be appropriate. Fortunately, software quality assurance is a ...