Sample records for soil biological activity

  1. Monitoring of bioremediation by soil biological activities

    Microsoft Academic Search

    R Margesin; A Zimmerbauer; F Schinner

    2000-01-01

    An evaluation of soil biological activities as a monitoring instrument for the decontamination process of a mineral-oil-contaminated soil was made using measurements of microbial counts, soil respiration, soil biomass and several enzyme activities. The correlations between these parameters and with the levels of hydrocarbon residues were investigated; the effects of different N- and P-sources on hydrocarbon decontamination and soil biological

  2. Soil Biological Activities in Monitoring the Bioremediation of Diesel Oil-Contaminated Soil

    Microsoft Academic Search

    R. Riffaldi; R. Levi-Minzi; R. Cardelli; S. Palumbo; A. Saviozzi

    2006-01-01

    The effects of two different biological treatments on hydrocarbon degradation and on soil biological activities were determined\\u000a during a 100-d incubation period. An evaluation of soil biological activities as a monitoring instrument for the decontamination\\u000a process of diesel-oil contaminated soil was made using measurements of organic carbon content, soil microbial respiration,\\u000a soil ATP and dehydrogenase, ?-glucosidase, lipase enzyme activities. Five

  3. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Microsoft Academic Search

    L. Roca-Pérez; S. Alcover-Sáez; S. Mormeneo; R. Boluda

    2009-01-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics,

  4. Evaluation of soil biological activity after a diesel fuel spill.

    PubMed

    Serrano, A; Tejada, M; Gallego, M; Gonzalez, J L

    2009-06-15

    Diesel fuel contamination in soils may be toxic to soil microorganisms and plants and acts as a source of groundwater contamination. The objective of this study was to evaluate the soil biological activity and phytotoxicity to garden cress (Lepidium sativum L.) in a soil polluted with diesel fuel. For this, a diesel fuel spill was simulated on agricultural soil at dose 1 l m(-2). During the experiment (400 days) the soil was not covered in vegetation and no agricultural tasks were carried out. A stress period of 18 days following the spill led to a decrease in soil biological activity, reflected by the soil microbial biomass and soil enzymatic activities, after which it increased again. The n-C(17)/Pristine and n-C(18)/Phytane ratios were correlated negatively and significantly with the dehydrogenase, arylsulphatase, protease, phosphatase and urease activities and with the soil microbial biomass during the course of the experiment. The beta-glucosidase activity indicated no significant connection with the parameters related with the evolution of hydrocarbons in the soil. Finally, the germination activity of the soil was seen to recover 200 days after the spill. PMID:19395000

  5. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate soil temperature and water storage in the arable layer thereby differentiating soil textures exclusively in main types (clay, silt, sand and loam). Similar to the BAT investigation it was of further interest to investigate how the re_clim parameter range behaves per ENZ. We will discuss the analyzed results of both strategies in a comparative manner to assess SOM turnover conditions across Europe. Both concepts help to separate different turnover activities and to indicate organic matter input in order to maintain the given SOM. The assessment could provide local recommendations for local adaptations of soil management practices. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food (Grant Agreement N° 289782).

  6. Soil Biology & Biochemistry 38 (2006) 24482460 Response of soil microbial biomass and enzyme activities to the

    E-print Network

    Minnesota, University of

    Soil Biology & Biochemistry 38 (2006) 2448­2460 Response of soil microbial biomass and enzyme as controls to monitor the chamber effect. Elevated CO2 induced mainly an increase of enzyme activities the pool of easily available substrates mainly in the upper soil layers, enzyme regulation (production

  7. Humic substances biological activity at the plant-soil interface

    PubMed Central

    Trevisan, Sara; Francioso, Ornella; Nardi, Serenella

    2010-01-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  8. Effect of Treated Wastewater Irrigation on Plant Growth and Biological Activity in Three Soil Types

    Microsoft Academic Search

    Maria Adrover; Gabriel Moyà; Jaume Vadell

    2012-01-01

    The effects of two types of treated wastewater on soil biological activity were studied in a pot experiment. Four irrigation treatments were tested on both soils sown with barley and unsown soils: distilled water (DW), half-strength Hoagland nutrient solution (NS), treated wastewater from a conventional treatment plant (CWW), and treated wastewater from a lagoon (LWW). Three types of soils were

  9. Persistence of biologically active compounds in soil: Final report

    SciTech Connect

    Williams, S.E.

    1987-02-01

    This document describes the long-term effects of soil-applied oil shale process water on the VA fungi and Rhizobium bacteria in a native soil. Techniques include assessing the VA fungal activity at field treatment plots and using treated field soils in a bioassay to determine VA infection and Rhizobium-nodulation potentials four years after process water application. 52 refs., 32 figs., 2 tabs.

  10. Detection and Investigation of Soil Biological Activity against Meloidogyne incognita

    PubMed Central

    Bent, E.; Loffredo, A.; McKenry, M. V.; Becker, J. O.; Borneman, J.

    2008-01-01

    Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay. PMID:19259527

  11. IMPACT OF HIGH SOIL PHOSPHORUS LEVELS ON SOIL BIOLOGICAL ACTIVITY AND PHYSICAL PROPERTIES OF OXISOLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the Cerrado region of Brazil to be agriculturally productive, large amount of P fertilizer must be added to overcome the P-fixation capacity of these Oxisol soils. Additions of large amounts of fertilizer affect the chemistry of the soil and may affect the soil physical and biological properties...

  12. Potential for quantification of biologically-active soil carbon with potassium permanganate (short communication)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Carbon dioxide evolution during laboratory incubation is frequently measured to estimate quantities of biologically-active soil C, but the time required and possible carbon dioxide leaks makes a rapid substitute attractive. Active soil C pools were measured using both dilute potassium perm...

  13. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity

    Microsoft Academic Search

    Mario E. Biondini; Charles D. Bonham; Edward F. Redente

    1985-01-01

    The relationship between secondary succession, soil disturbance, and soil biological activity were studied on a sagebrush community (Artemisia tridentata) in the Piceance Basin of northwestern Colorado, U.S.A. Four levels of disturbance were imposed. I: the vegetation was mechanically removed and as much topsoil as possible was left; 2: the vegetation was mechanically removed and the topsoil scarified to a depth

  14. Effects of gentle remediation technologies on soil biological and biochemical activities - a review.

    NASA Astrophysics Data System (ADS)

    Marschner, B.; Haag, R.; Renella, G.

    2009-04-01

    Remediation technologies for contaminated sites are generally designed to reduce risks for human health, groundwater or plant quality. While some drastic remediation measures such as soil excavation, thermal treatment or soil washing eliminate or strongly reduce soil life, in-situ treatments involving plants or immobilizing additives may also restore soil functionality by establishing or promoting a well structured and active community of soil organisms. Biological parameters that are sensitive to contaminants and other pedo-environmental conditions and which contribute to biogeochemical nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given remediation approaches. Data from long-term studies on re-vegetated mine spoils show that biological and biochemical activity is enhanced with increasing plant density and diversity. Among the soil amendments, most measures that introduce organic matter or alkalinity to the contaminated soils also improve microbial or faunal parameters. Only few amendments, such as phosphates and chelators have deleterious effects on soil biota. In this review, soil microbial biomass and the activity of the enzymes phosphatase and arylsulphatase are identified as suitable and sensitive biological indicators for soil health. The results and future research needs are are summarized.

  15. SOIL BIOLOGY AND ECOLOGY

    EPA Science Inventory

    The term "Soil Biology", the study of organism groups living in soil, (plants, lichens, algae, moss, bacteria, fungi, protozoa, nematodes, and arthropods), predates "Soil Ecology", the study of interactions between soil organisms as mediated by the soil physical environment. oil ...

  16. Soil Biology & Biochemistry 39 (2007) 10141022 Influence of earthworm activity on aggregate-associated carbon and

    E-print Network

    van Kessel, Chris

    2007-01-01

    Soil Biology & Biochemistry 39 (2007) 1014­1022 Influence of earthworm activity on aggregate 18 November 2006 Available online 26 December 2006 Abstract Earthworms are known to be important population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional

  17. Biologically active soil organic matter fractions in sustainable cropping systems

    Microsoft Academic Search

    T. C. Willson; E. A. Paul; R. R. Harwood

    2001-01-01

    We sampled corn (Zea mays L.), soybean (Glycine max L.), and wheat (Triticum aestivum L.) rotations, corn monocultures, and plant successional experiments in Southwest MI over a 2-year period to study the effects of alternative management practices on microbial biomass and particulate organic matter (POM) C and N in the top 20 or 25cm of soil. Microbial biomass was measured

  18. Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil

    PubMed Central

    Mehta, Preeti; Guleria, Shiwani; Chauhan, Anjali; Shirkot, C. K.

    2014-01-01

    The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0–2000?ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000?ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250?ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10?ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required. PMID:25478598

  19. Soil organic matter dynamics under Beech and Hornbeam as affected by soil biological activity

    NASA Astrophysics Data System (ADS)

    Kooijman, A. M.; Cammeraat, L. H.

    2009-04-01

    Organic matter dynamics are highly affected both the soil fauna as well as the source of organic matter, having important consequences for the spatial heterogeneity of organic matter storage and conversion. We studied oldgrowth mixed deciduous forests in Central-Luxemburg on decalcified dolomitic marl, dominated by high-degradable hornbeam (Carpinus betulus L.) or low-degradable beech (Fagus sylvatica L.). Decomposition was measured both in the laboratory and in the field. Litter decomposition was higher for hornbeam than for beech under laboratory conditions, but especially in the field, which is mainly to be attributed to macro-fauna activity, specifically to earthworms (Lumbricus terrestris and Allolobophora species). We also investigated differences between beech and hornbeam with regard to litter input and habitat conditions. Total litter input was the same, but contribution of beech and hornbeam litter clearly differed between the two species. Also, mass of the ectorganic horizon and soil C:N ratio were significantly higher for beech, which was reflected in clear differences in the development of ectorganic profiles on top of the soil. Under beech a mull-moder was clearly present with a well developed fermentation and litter horizon, whereas under hornbeam all litter is incorporated into the soil, leaving the mineral soil surface bear in late summer (mull-type of horizon). In addition to litter quality, litter decomposition was affected by pH and soil moisture. Both pH and soil moisture were higher under hornbeam than under beech, which may reflect differences in soil development and litter quality effects over longer time scales. Under beech, dense layers of low-degradable litter may prevent erosion, and increase clay eluviation and leaching of base cations, leading to acid and dry conditions, which further decrease litter decay. Under hornbeam, the soil is not protected by a litter layer, and clay eluviation and acidification may be counteracted by erosion, and earthworms bringing clay and base cations back to the surface. It may be concluded that beech and hornbeam stands show clear differences in both input and decomposition rates. They are also fixed to habitat conditions that can be clearly differentiated in the field allowing for a spatial analysis of organic matter dynamics and input.

  20. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    NASA Astrophysics Data System (ADS)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  1. [Effects of biological regulated measures on active organic carbon and erosion-resistance in the Three Gorges Reservoir region soil].

    PubMed

    Huang, Ru; Huang, Lin; He, Bing-Hui; Zhou, Li-Jiang; Yu, Chuan; Wang, Feng

    2013-07-01

    To gain a better knowledge of characteristics of soils and provide a scientific basis for soil erosion control in the Three Gorges Reservoir Area, contents of aggregates and total soil organic carbon (SOC), as well as soil active organic carbon fractions including particulate organic carbon (POC), readily oxidized organic carbon (ROC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) in the 0-30 cm soil layer under seven different biological regulated measures were studied by the field investigation combined with the laboratory analysis. Results showed that the content of the SOC and active organic carbon fractions decreased with the increasing soil depth; the content of the SOC and active organic carbon fractions in 0-10 cm was significantly higher than that in 20-30 cm. The stability of soil aggregates were also significantly influenced by biological regulated measures, the content of > 0.25 mm water-stable aggregates in seven types of biological regulated measures was in the order of Koelreuteria bipinnata + Cassia suffruticasa > hedgerows > closed forest > natural restoration > economic forest > traditional planting > control plot, moreover, the content of 0.25 mm water-stable aggregates correlated positively with the content of SOC. Soils under different biological regulated measures all demonstrated fractal features, and soil under the measure of Koelreuteria bipinnata + Cassia suffruticasa was found to have the lowest value of fractal dimension and soil erodiable K, indicating a relatively strong structure stability and erosion-resistant capacity. Negative correlation was observed when compared the content of active organic carbon fractions with the soil erodiable K. It can be concluded that properties of soil can be managed through biological regulated measures; thence had an influence on the soil erosion-resistant capacity. PMID:24028016

  2. Soil Biological Communities

    NSDL National Science Digital Library

    The Bureau of Land Management (BLM) in Idaho provides this electronic resource on soil communities. With introductory text, illustrations, and references, these pages provide a general overview of soil communities, including Biological Crusts, Fungi, Bacteria, Protozoa, Nematodes, and Arthropods. The site also introduces general readers to Soil Food Webs and Burrowing Mammals, with an emphasis on the western United States. A series of select links to soil-related resources rounds out the site.

  3. EFFECT OF NITROGEN AND METAL ADDITIONS ON NITROGEN FIXATION ACTIVITY IN BIOLOGICAL SOIL CRUSTS

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Lui, D.; Anbar, A. D.; Garcia-Pichel, F.; Hartnett, H. E.

    2009-12-01

    Biological soil crusts (BSCs) are diverse consortia of microorganisms that live in intimate association with soils in arid environments. Also called cryptogamic or microbiotic crusts, these communities can include cyanobacteria, algae, heterotrophic bacteria, fungi, lichens, and mosses. Together, these organisms provide many services to their surrounding ecosystems, including reduction of water runoff, promotion of water infiltration, and prevention of soil erosion. The cyanobacteria and algae also provide fixed carbon (C) to the soil through photosynthesis, and because atmospheric deposition of nitrogen (N) in arid environments is low, the major input of biologically available N comes from cyanobacteria capable of converting nitrogen gas (N2) to ammonium (NH4+). Biological soil crusts are easily destroyed by livestock grazing, motor vehicle travel, and many forms of recreational and agricultural land use. Loss of BSC cover can leave the soil vulnerable to intense erosion that can remove the nutrients necessary to sustain plant and animal life, thus accelerating the process of desertification. In order to preserve existing crusts and encourage the development of new crusts, it is crucial to understand the nutrient requirements of metabolism and growth in these microbial communities. This study investigated the affect of nitrogen and metal additions on N2-fixation activity in cyanobacterially-dominated crusts from the Colorado Plateau near Moab, Utah. Although N2-fixation has been studied in this system before, the affect of nutrient additions on N2-fixation activity has not been documented. The goal of this work was to understand how N and metal supplementation affects crust N metabolism. Three experiments were conducted to observe how N2-fixation activity changed with the addition of N, molybdenum (Mo), and vanadium (V). Molybdenum and vanadium were chosen because they are most commonly found at the active site of the enzyme nitrogenase, the molecule responsible for the biological conversion of N2 to NH4+. The Mo-dependent version of the enzyme is the most efficient, and it is used by the majority of N2-fixing organisms. Elements were added as aqueous solutions of NH4NO3, Na2MoO4, and Na3VO4 respectively. Nitrogen fixation potential was assayed using a modified acetylene reduction technique. Results from the N-addition experiment show that when N is provided, BSC organisms stop N2-fixation activity. This confirms that under natural conditions, the community is limited with respect to N. In general, crusts under Mo-addition fix at higher rates than crusts with no added Mo. This implies that crusts may also be limited with respect to Mo. However, contrary to our expectations, crusts fix at lower rates when V is added as compared to a no-V control. It is possible that this is the result of V-toxicity, or that V competes with the uptake and utilization of available Mo, thus exacerbating Mo-limitation. Experiments are currently underway to investigate how the geochemistry of the soil porewater changes as a result of these nutrient additions.

  4. The impact of land use on biological activity of agriculture soils. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta

    2014-05-01

    Biological activity is a crucial soil property affecting soil sustainability and crop production. The unsuitable land management can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. This can be as a consequence of high erosion rates due to the mismanagement of farmers (Cerdà et al., 2009a). However ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity (García-Orenes et al., 2010; 2013). The impact of land use in microbiological properties of agriculture soil are presented and discussed in this review. Biological activity is quantified by microbial soil communities and soil enzyme activities to interpret the effects of soil management practices (Morugán-Coronado et al., 2013). The aim of biological activity tests is to give a reliable description of the state of agricultural soils under the effect of different land uses. Numerous methods have been used to determine the impact of land uses on microbiological properties. The current used methods for detecting microbial diversity are based on molecular techniques centered on the 16S and 18S rRNA encoding sequences such as CLPP: community-level physiological profiles; T-RFLP: terminal restriction fragment length polymorphism; DGGE: denaturing gradient gel electrophoresis; OFRG: oligonucleotide fingerprinting of rRNA genes, ARISA: Automated Ribosomal intergenic spacer analysis, SSCP: single-strand conformation polymorphism. And techniques based on the cellular composition of the microbes such as PLFA: phospholipid fatty acid analysis. Other methods are based on the activity of microbes, for example, Cmic: microbial biomass carbon; SIR: substrate induced respiration; BSR: Basal soil respiration; qCO2 metabolic quotient; enzymatic activities (Urease, ß-glucosidase and phosphatase) (Deng, 2012). Agricultural land management can contribute to increased rates of erosion due to desiccation, mechanical destruction, soil compaction, reduce pore volume, and disruption of access to food resources (Cerdà et al., 2009b). Furthermore, it can lead to a loss in soil fertility and reduction in the abundance and diversity of soil microorganism (Caravaca et al., 2002). Nevertheless, some organic fertilizers, such as manure, waste water and sewage sludge, promote the activities of soil microbial communities (Morugán-Coronado et al., 2011; Balota et al., 2013; Macci et al., 2013). On the other hand, land use influences soil microbial processes by changing the quantity and quality of plant residues entering the soil and their spatial distribution, thorough changes in nutrients and inputs (García-Orenes et al., 2009; 2012). The abuse of pesticides can drastically modify the function and structure of microbial communities, altering the terrestrial ecosystems, which has important implication for soil quality (Pampulha et al., 2006). Soil quality is important for the sustainable development of terrestrial ecosystem (Paz-Ferreiro & Fu, 2013; Vasconcellos et al., 2013). This paper will review the State-of-the-Art of the scientific knowledge on the impact of land use on the biological activity in agriculture soils Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research. References Balota, E. L., Yada, I.F., Amaral, H., Nakatani, A.S., Dick, R.P., Coyne, M.S. 2013. Long-term land use influences soil microbial biomass p and s, phosphatase and arylsulfatase activities, and mineralization in a brazilian oxisol. Land degradation & development. DOI: 10.1002/ldr.2242 Caravaca F, Masciandaro G, Ceccanti B. 2002. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil and Tillage Research 68: 23-30. Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009a. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Giménez-Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards

  5. Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast

    NASA Astrophysics Data System (ADS)

    Vladychenskii, A. S.; Telesnina, V. M.; Rumyantseva, K. A.; Chalaya, T. A.

    2013-05-01

    The dynamics of the humus status (some indices) and the biological activity of agrosoddy-podzolic soils in the course of the natural forest regeneration were studied based on the example of the soils of two succession series, which differed both in their parent rock and the history of their development. Upon the overgrowing of the croplands, the humus content increased, and its distribution within the soil profile became more differentiated. As a hayfield was overgrown, the humus content decreased to some extent at the earliest stages. The parameters of the humus status more clearly changed in the succession series with the light-textured soils, which had a relatively simple history of agricultural development. The biological activity mainly decreased at the earlier succession stages and became higher with the increasing productivity and greater amounts of easily decomposing falloff entering the soil. This relationship was especially distinctly revealed in the grass communities.

  6. Soil biology for resilient healthy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    What is a resilient healthy soil? A resilient soil is capable of recovering or adapting to stress; the health of the living/biological component of the soil is crucial for soil resiliency. Soil health is tightly coupled to the concept of soil quality (Text Box 1) and the terms are frequently used ...

  7. Assessing the biological activity of oil-contaminated soddy-podzolic soils with different textures

    NASA Astrophysics Data System (ADS)

    Vershinin, A. A.; Petrov, A. M.; Akaikin, D. V.; Ignat'ev, Yu. A.

    2014-02-01

    The respiratory activity features in oil-contaminated soddy-podzolic soils of different textures have been studied. Unidirectional processes occur in contaminated loamy and loamy sandy soddy-podzolic soils; their intensities depend on the soil parameters. The mineralization rates of the oil products and the activity of the microflora in loamy soils exceed the corresponding parameters for loamy sandy soils. The long-term impact of oil and its transformation products results in more important disturbances of the microbial community in light soils. It has been shown that light soils containing 9% oil require longer time periods or more intensive remediation measures for the restoration of soil microbial cenoses disturbed by the pollutant.

  8. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis , especially from transgenic plants

    Microsoft Academic Search

    G. Stotzky

    2005-01-01

    Insecticidal proteins produced by various subspecies (kurstaki, tenebrionis, and israelensis) of Bacillus thuringiensis (Bt) bound rapidly and tightly on clays, both pure mined clay minerals and soil clays, on humic acids extracted from soil, and\\u000a on complexes of clay and humic acids. Binding reduced susceptibility of the proteins to microbial degradation. However, bound\\u000a proteins retained biological activity. Purified Cry1Ab protein

  9. Biological Soil Crusts

    NSDL National Science Digital Library

    1969-12-31

    Biological soil crust probably isn't the first thing that springs to mind when snapping that photo of the Delicate Arch at Arches National Park. However, without the algae, mosses, cyanobacteria, and other tiny organisms that inhabit the surface of desert soils, places like Arches and other arid environments would be quite different. The US Geological Survey provides an online guide to biological soil crusts in this easy-to-navigate Web site. Crust 101 contains a detailed introduction to soil crust ecology, and the Advanced feature offers an extensive technical reference. The Web site also includes a photo gallery, list of related references, and a short list of links. This site is also reviewed in the November 27, 2002 Scout Report.

  10. SOIL DISSIPATION AND BIOLOGICAL ACTIVITY OF METOLACHLOR AND S-METOLACHLOR IN FIVE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resolved isomer of metolachlor, S-metolachlor, was registered in 1997. New formulations based primarily on the S-metolachlor isomer are more active on a gram for gram metolachlor basis than formulations based on a racemic mixture of metolachlor containing a 50:50 ratio of the R and S isomers. T...

  11. Engelmann Spruce ( Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity

    Microsoft Academic Search

    Kerstin M. Witte; Richard B. Wanty; W. Ian Ridley

    2004-01-01

    Engelmann spruce (Picea engelmannii) is the dominant tree species in many abandoned mine areas of the Rocky Mountains. It is long-lived, and therefore, may act as a long term biological monitor of changes in soil chemistry caused by past mining activity. In this study, laser ablation inductively coupled mass spectrometry (LA-ICPMS) was used to analyze individual tree rings of Engelmann

  12. Ecological and geographical regularities of changes in the biological activity of automorphic soils on the foothills and adjacent plains of the Central Caucasus region (Kabardino-Balkarian Republic)

    NASA Astrophysics Data System (ADS)

    Gorobtsova, O. N.; Khezheva, F. V.; Uligova, T. S.; Tembotov, R. Kh.

    2015-03-01

    The biochemical properties inherent to the main types of automorphic soils developed in different bioclimatic conditions of Elbrus and Terek variants of the vertical zonality within Kabardino-Balkaria were compared. The natural-climatic conditions of these variants noticeably affect the soil cover pattern. The ratio of the oxidase and hydrolase activities is sensitive to the moisture conditions in which these soils are formed. The redox processes are more active in drier conditions, whereas hydrolytic processes are more active under higher moisture. The level of the biological activity of the automorphic soils is estimated using the integral index of the ecological-biological soil status.

  13. Soil invertebrate activity in biological crusts on tropical inselbergs A.VAULIK, C. KOUNDA-KIKI, C. SARTHOU & J.F. PONGE

    E-print Network

    Paris-Sud XI, Université de

    1 Soil invertebrate activity in biological crusts on tropical inselbergs A.VAÃ?ULIK, C. KOUNDA invertebrates, in particular enchytraeid worms, are important for the accumulation of organic matter on granite: Soil invertebrate activity in biological crusts Introduction Inselbergs protrude from rain forests

  14. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China

    USGS Publications Warehouse

    Zhao, Y.; Xu, M.; Belnap, J.

    2010-01-01

    Biological soil crusts (biocrusts) cover up to 60–70% of the soil surface in grasslands rehabilitated during the "Grain for Green" project implemented in the hilly Loess Plateau region in 1999. As biocrusts fix nitrogen (N), they are an important part of restoring soil fertility. We measured nitrogenase activity (NA) in biocrusts from sites rehabilitated at six different time periods to estimate 1) the effects of moisture content and temperature on NA in biocrusts of different ages and 2) the potential N contribution from biocrusts to soils and plants in this region. Results show that NA in the biocrusts was mostly controlled by the species composition, as the activity of biocrusts dominated by free-living soil cyanobacteria was significantly higher than that of moss-dominated biocrusts. Nitrogenase activity was also influenced by soil moisture content and ambient temperature, with a significant decline in activity when moisture levels were decreased to 20% field water-holding capacity. The optimal temperature for NA was 35–40 °C and 30–40 °C for cyanobacteria- and moss-dominated biocrusts, respectively. Biocrust fixed N is likely an important source of N in this ecosystem, as we estimated annual potential N inputs per hectare in these grasslands to be up to 13 kg N ha-1 and 4 kg N ha-1 for cyanobacteria- and moss-dominated biocrusts, respectively.

  15. The effect of mustard gas on the biological activity of soil.

    PubMed

    Medvedeva, N; Polyak, Yu; Kuzikova, I; Orlova, O; Zharikov, G

    2008-03-01

    A special group of substances that are very dangerous for the biosphere includes war gases such as mustard gas (bis(2-chloroethyl)sulphide). The influence of mustard gas hydrolysis products (MGHPs) on soil microbiota has been investigated. These substances bear numerous toxic effects on soil microorganisms. They change significantly the number and the specific composition of soil microbiota and inhibit the enzyme activity of soils. The main "ecological targets" of mustard and its hydrolysis products' toxic action have been determined. MGHPs affect the growth and reproduction of soil micromycetes, as well as their morphological and cultural properties. Increase in number and size of mitochondria in the fungal cells is accompanied by increase in dehydrogenases activity. Cell permeability influenced by MGHPs grows in connection with concentration of toxicants. Increase of permeability corresponds to growth of the amount of unsaturated fatty acids. The changes in the fatty acid composition of lipids in the cells of the soil micromycetes display their adaptation to adverse impact of the substances studied. MGHPs and thiodiglycol enhance synthesis of polysaccharides and pigments. PMID:17537425

  16. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, ?-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue, which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  17. Biological Soil Crusts: Characteristics and Distribution

    Microsoft Academic Search

    J. Belnap; B. Büdel; O. L. Lange

    \\u000a Biological soil crusts result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens,\\u000a and bryophytes (in different proportions) which live within, or immediately on top of, the uppermost millimeters of soil.\\u000a Soil particles are aggregated through the presence and activity of these biota, and the resultant living crust covers the\\u000a surface of the ground as a coherent

  18. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices.

    PubMed

    Dilly, Oliver; Blume, Hans-Peter; Sehy, Ulrike; Jimenez, Miguel; Munch, Jean Charles

    2003-07-01

    Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients. PMID:12738293

  19. Engelmann Spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity

    USGS Publications Warehouse

    Witte, K.M.; Wanty, R.B.; Ridley, W.I.

    2004-01-01

    Engelmann spruce (Picea engelmannii) is the dominant tree species in many abandoned mine areas of the Rocky Mountains. It is long-lived, and therefore, may act as a long term biological monitor of changes in soil chemistry caused by past mining activity. In this study, laser ablation inductively coupled mass spectrometry (LA-ICPMS) was used to analyze individual tree rings of Engelmann spruce for Fe, Zn, Cu, Cd, Mn, Pb and Sr concentrations. Cores were obtained from trees growing in tailings-impacted and control (non-tailings impacted) sites near the Waldorf mine (Waldorf, CO, USA). Zinc, Cu, Fe, Cd, Pb and Sr concentrations remained low and consistent over time in the control tree rings. However, in the tailings impacted cores, concentrations of Zn, Cu, Fe and Cd increase significantly in post-mining rings. In addition, Zn, Cu, Fe, and Cd concentrations in pre-mining rings of both the control and tailings impacted cores are similar, indicating that present day soil concentrations of these elements in the control area are a reasonable estimation of background for this area. Lead and Sr concentrations in control and tailings-impacted rings remained similar and relatively constant through time and are not useful in determining changes in soil chemistry due to past mining activity. ?? 2004 Elsevier Ltd. All rights reserved.

  20. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    EPA Science Inventory

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  1. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS AND BIOLOGICAL ACTIVITY

    EPA Science Inventory

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. olatilization and abiotic and biotic fate of the PAHs were determined using two soils not pr...

  2. Biological Soil Crusts of Australia

    Microsoft Academic Search

    D. J. Eldridge

    \\u000a Biological soil crusts and their constituent organisms are common components of landscapes in semiarid and arid Australia\\u000a (Chap. 1, Photos 57–59; Rogers 1982; Eldridge and Tozer 1997a). Crusts are generally restricted to rangelands, which occupy nearly three-quarters of the land area of Australia. The soils\\u000a in this landscape are exceptionally old, and are generally shallow, infertile, and highly weathered. Rainfall

  3. The influence of pine forests of different ages on the biological activity of layland soils in the middle Angara River basin

    NASA Astrophysics Data System (ADS)

    Sorokina, O. A.; Sorokin, N. D.

    2007-05-01

    The influence of pine forests of different ages (from 25 to 85 years) restoring on old plow land soils is reflected in the biological processes proceeding in them. The drastic decrease in the absolute and relative number of actinomycetes, along with an increase of the fungal population in the microbial complexes of the soils (within the whole profiles), indicates that the microbocenoses acquire “forest” properties. In the soils under the younger pine forests, the processes of microbiological mineralization and specific respiration activity are more active than in the soils under the older pine forests. With the age of the pine forests, the soil profiles become more differentiated according to the eluvial-illuvial type.

  4. A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert

    USGS Publications Warehouse

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.

    1989-01-01

    Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes. ?? 1989 Springer-Verlag.

  5. Biological activity of soddy-calcareous soils and cultural layers in Alanian settlements of the Kislovodsk basin

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. V.; Kashirskaya, N. N.; Korobov, D. S.; Borisov, A. V.

    2014-09-01

    Microbiological investigations of cultural layers were performed in a settlement of the Alanian culture—Podkumskoe-2 (the 2nd-4th centuries AD). The present-day soddy-calcareous soils (rendzinas) used for different purposes were also studied near this settlement. The most significant changes in the initial characteristics of the soil microbial communities occurred under the residential influence more than 1500 years ago; these changes have been preserved until the present time. In the areas subjected to the anthropogenic impact, the total microbial biomass (the weighted average of 3720 ?g C/g soil) was lower than that in the background soil. The minimal values of the microbial biomass were found in the soil of the pasture—2.5 times less than in the background soil. The urease activity of the cultural layer was higher than that of the soils nearby the settlement. Elevated values of the cellulose activity were also recorded only in the cultural layers. The current plowing has led to a significant decrease in the mycelium biomass of the microscopic fungi. In the soil of the fallow, the weighted average value of the fungal hyphae biomass along the profile was twice lower than that in the background soil and cultural layers of the settlement. The pasture first affected the active microbial biomass and, to a lesser extent, the amount of microscopic fungi.

  6. Soil Biology & Biochemistry ] (

    E-print Network

    Yakir, Dan

    of a semi-arid pine afforestation system in southern Israel, we investigated inorganic nitrogen deposition factor for ecosystem activity (Hooper and Johnson, 1999). The main effects of afforestation of shrubland

  7. Soil Biology & Biochemistry 38 (2006) 16081614 Endogeic earthworms differentially influence bacterial communities

    E-print Network

    Rilli, Matthias C.

    2006-01-01

    Soil Biology & Biochemistry 38 (2006) 1608­1614 Endogeic earthworms differentially influence November 2005 Available online 2 February 2006 Abstract Endogeic earthworm activities can strongly influence soil structure. Although soil microorganisms are thought to be central to earthworm

  8. Biologically Active Cellulose Derivatives

    Microsoft Academic Search

    A D Virnik

    1973-01-01

    The review deals with the synthesis and applications of biologically active cellulose derivatives. The synthesis of cellulose derivatives with antimicrobial and haemostatic (arresting blood flow) properties, the possible fields of application of antimicrobial and haemostatic cellulose materials, the synthesis of graft copolymers of cellulose and biologically active proteins (enzymes and antigens), and medical applications of cellulose derivatives containing ionogenic or

  9. LAND USE HISTORY, SOIL BIOLOGY, AND SOIL CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use history contributes to patterns in soil biology and nutrient cycling. In California, a range of soil types support grasslands, each consisting of specific soil factors that influence the associated grassland and microbial communities. In Monterey County in the Central Coast region, several ...

  10. An Introduction to Biological Soil Crusts

    NSDL National Science Digital Library

    USGS Canyonlands Research Station

    Biological soil crusts are the feature of this USGS Canyonlands Research Station website. The site provides an introduction to biological soil crusts with linked images, divided into the following topics: nomenclature of the crusts- crytogamic, microbiotic, crytobiotic, and microphytic crusts, structure and formation, species composition, ecological functions, response to disturbance, future, and a glossary. In addition, the site provides links to other Canyonlands Research Station webages including an advanced page with a downloadable 90-page report on soil crusts, a gallery of biological soil crust images and figures, references, the Canyon Country Ecosystems Research Site (CCERS), and other related links.

  11. Effects of Heavy Metals on Soil Enzyme Activities

    Microsoft Academic Search

    Ayten Karaca; Sema Camci Cetin; Oguz Can Turgay; Ridvan Kizilkaya

    The pollution of the soil with heavy metals is one of the worst legacies of our intensive agricultural–industrial activities,\\u000a and it negatively affects various characteristics of the soil, including soil enzyme activities. Soil enzymes are natural\\u000a molecules that catalyze soil microbial reactions and mainly originate from microorganisms and plants. Since enzyme activities\\u000a play fundamental roles in soil chemical and biological

  12. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. PMID:24742665

  13. Microbiological aspects of surfactant use for biological soil remediation

    Microsoft Academic Search

    F. Volkering; A. M. Breure; W. H. Rulkens

    1997-01-01

    Biodegradation of hydrophobic organic compounds in polluted soil is a process involving interactions among soil particles,\\u000a pollutants, water, and micro-organisms. Surface-active agents or surfactants are compounds that may affect these interactions,\\u000a and the use of these compounds may be a means of overcoming the problem of limited bioavailability of hydrophobic organic\\u000a pollutants in biological soil remediation. The effects of surfactants

  14. [Effects of biological soil crust on soil erodibility in Hilly Loess Plateau region of Northwest China].

    PubMed

    Gao, Li-Qian; Zhao, Yun-Ge; Qin, Ning-Qiang; Zhang, Guo-Xiu

    2013-01-01

    Based on the analysis of the effects of biological soil crust (biocrust) in re-vegetated grasslands on soil physical and chemical properties, and by using EPIC estimation model in combining with simulated rainfall trials, this paper studied the effects of biocrust with different biomass and different soil texture on the soil erodibility (K value) in Hilly Loess Plateau Region of Northwest China in different seasons. The results showed biocrust could significantly decrease soil erodibility, with the K value of biocrust soil decreased by about 17%, compared with subsoil. The soil erodibility decreased with the increasing biomass of biocrust. The K value of moss crust soil decreased by 21%, compared with cyanobacteria crust soil. The erodibiliy of biocrust soil differed with different seasons, being significantly higher in rainy season than before or after the rainy season due to the differences in the biological activity of the biocrust organisms. The erodibilty of biocrust soil with different texture also varied significantly, with the K value in the order of sandy loam soil > silt soil > sandy soil. The measurement under simulated rainfall showed that the development of biocrust could decrease the erodibility of biocrust soil by about 90%, compared with that of the subsoil (5-10 cm). PMID:23717997

  15. Biological Soil Crusts of North America

    Microsoft Academic Search

    R. Rosentreter; J. Belnap

    \\u000a Biological soil crusts in North America are diverse and found in many different habitats. On a broad scale, there are several\\u000a different vegetation zones or ecoregions in western North America that contain biological soil crusts as major components\\u000a (Fig. 2.1, Table 2.1). These include hot deserts (Mojave, Chihuahuan, Sonoran; see Chap. 1, Photos 34, 35), cool deserts (Great\\u000a Basin, Colorado

  16. Viking Biology Experiments and the Martian soil

    NASA Technical Reports Server (NTRS)

    Banin, Amos

    1989-01-01

    The Viking Biology Experiments (VBE) are the most informative database on the wet chemistry and reactivity of the Martian soil available today. The simulation and chemical interpretation of the results have given valuable hints towards the characterization of the soils' mineralogy, adsorption properties, pH and redox. The characterization of Mars' soil on the basis of ten years of labelled release (LR) and other VBE simulations are reviewed.

  17. Spatio-temporal evolution of soil biological characteristics based on the land consolidation

    Microsoft Academic Search

    Chang Xu; Ming Gao; Deti Xie; Chaofu Wei; Luo Yu

    The soil biological characteristic is one of the most important indicators for evaluating the comprehensive quality of soil. Building on the analysis of soil microbial biomass, microbial numbers and enzymatic activity in soils from different slope positions during 1yr (year), 3yr and 5yr after land consolidation, the spatial–temporal evolution of soil biological characteristics based on land consolidation was investigated. Results

  18. Application of two organic amendments on soil restoration: effects on the soil biological properties.

    PubMed

    Tejada, M; Hernandez, M T; Garcia, C

    2006-01-01

    One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control. PMID:16738385

  19. PARTICULATE AND BIOLOGICALLY ACTIVE SOIL CARBON POOLS UNDER GRAZED AND UNGRAZED BERMUDAGRASS IN THE SOUTHERN PIEDMONT USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of forage management strategies on carbon cycling is of importance to the understanding of greenhouse gas emissions, agronomic productivity, and changes in soil quality. Particulate organic C (POC), soil microbial biomass C (SMBC), and potential C mineralization (CMIN) were evaluated duri...

  20. The role of biological soil crusts on soil moisture

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Rodriguez-Caballero, E.; Domingo, F.

    2012-04-01

    In water-limited ecosystems, water becomes the most important driver for plant productivity. In these systems, spatial distribution of water resources is not random but organized into a mosaic of water-depletion areas linked to water-accumulation areas. In other words, water is transferred from interplant patches that act as source areas to vegetation patches that act as sinks of this resource. Thus, structure and functioning of interplant patches have a decisive role in water redistribution and distribution patterns of vegetation. Soil surface in the interplant spaces of most arid and semiarid ecosystems is covered by biological soil crusts (BSCs). These organisms regulate water fluxes into and through soils and play major roles in local hydrological processes. In the last years, the role of these organisms in infiltration and runoff has gained increased importance and a better knowledge about their effects on these processes has been acquired. However, the role of BSCs in other important components of the water balance such as evaporation or soil moisture has been scarcely studied, so that their effects on these processes remain unknown. The objective of this work is to examine the influence of BSCs on soil moisture regimes in the top profile of the soil in two semiarid ecosystems of SE Spain with contrasting soil texture and where BSCs are well-represented. Soil moisture content at 0.03 and 0.10 m was monitored under two representative types of BSCs, a dark cyanobacteria-dominated BSC and a light-coloured lichen-dominated BSC, and in soils where these BSCs were removed by scraping, at both study sites. Our results show that, under high water conditions, removal of BSCs leads to a decrease in soil moisture compared to soils covered by BSCs. Decrease in soil moisture due to BSC removal namely affects moisture in the upper layer of the soil (0.03 m), but has little impact in deeper soil (0.10 m). Evaporation is also generally faster in soils with no BSCs than in soils covered by them. The type of BSC influences soil moisture in a different way depending on soil water conditions. Under high water content conditions, soil water loss is faster and soil moisture content lower under cyanobacterial than under lichen BSCs, due to higher infiltration promoted by lichens. On the contrary, under low water content conditions, lichen-crusted soils dry out faster and exhibit less moisture than cyanobacteria-crusted ones, attributed to the larger porosity and subsequent greater evaporative losses in lichen- than in cyanobacteria-crusted soils. We found higher moisture in coarse-textured soils than in fine-textured ones, despite the higher water retention capacity of the latter soils. More favourable conditions in the coarser soils, which had greater organic matter content, aggregate stability and were subject to less water stress due to its proximity to the coast, seems to contribute to this increased soil moisture content. BSCs therefore play an important role on the maintenance of water availability in the interplant spaces, thereby strongly affecting soil physical and biological processes, and the potential for emergence establishment and survival of plants in semiarid ecosystems.

  1. Microbial Activity in Frozen Soils

    Microsoft Academic Search

    Nicolai S. Panikov

    This chapter is a review on metabolic activity of microorganisms in permafrost and frozen tundra soils. Several noteworthy\\u000a limitations resulted from critical analysis of available techniques, in particular regarding soil respiration: the apparent\\u000a CO2 flux from frozen soil was shown to overestimate the actual microbial activity due to abiotic release of CO2 accumulated in the sample. Even acidic non-carbonaceous soils

  2. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer [Washington State University; Schadt, Christopher Warren [ORNL; Carpenter-Boggs, Lynne [Washington State University; Kang, S. [University of Oklahoma; Zhou, Jizhong [University of Oklahoma, Norman; Reganold, John P. [Washington State University

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  3. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient supply in organic systems is dependent on mineralization of organic matter; however, the intensive cultivation commonly used to control weeds can disrupt biological processes and cause undue loss of organic matter. Here we address the often-competing goals of organic fertility and weed con...

  4. Influence of organic and mineral fertilisers on soil biological and physical properties

    Microsoft Academic Search

    S Marinari; G Masciandaro; B Ceccanti; S Grego

    2000-01-01

    The aim of this research was to study in a field experiment the influence of different fertiliser applications on soil biological and physical properties. Vermicompost (VC) from biological sludge, stabilised dairy manure or mineral nitrogen fertiliser (NH4NO3) were applied to a corn crop (Zea mays L.) at 200 kg N ha?1. Soil enzyme activity (acid phosphatase, dehydrogenase and protease BAA)

  5. Humic Acid Toxicity in Biologically Treated Soil Contaminated with Polycyclic Aromatic Hydrocarbons and Pentachlorophenol

    Microsoft Academic Search

    J. K. C. Nieman; R. C. Sims; D. L. Sorensen; J. E. McLean

    2005-01-01

    Contaminated soil from a land treatment unit at the Libby Groundwater Superfund Site in Libby, MT, was amended with 14C pyrene and incubated for 396 days to promote biodegradation and the formation of soil-associated bound residues. Humic and fulvic acids were extracted from the treated soil microcosms and analyzed for the presence of pyrene residues. Biologic activity promoted 14C association

  6. Disturbance and Recovery of Biological Soil Crusts

    Microsoft Academic Search

    J. Belnap; D. Eldridge

    \\u000a Disturbance can profoundly affect the cover, species composition, and the physiological functioning of biological soil crusts.\\u000a The disturbances we discuss include air pollution; exposure to oil, herbicides, and pesticides; invasion by annual exotic\\u000a weeds; mechanical disturbances such as human and livestock trampling (see Chap. 29), off-road driving, mining, and hiking;\\u000a and, briefly, wildfire (for extensive discussion, see Chap. 28). Studies

  7. Soil transport driven by biological processes over millennial time scales

    NASA Astrophysics Data System (ADS)

    Roering, Joshua J.; Almond, Peter; Tonkin, Philip; McKean, James

    2002-12-01

    Downslope soil transport in the absence of overland flow has been attributed to numerous mechanisms, including particle-by-particle creep and disturbances associated with biological activity. Process stochasticity and difficulties associated with field measurement have obscured the characterization of relevant long-term soil transport rates and mechanisms. In a series of incised fluvial terraces along the Charwell River, South Island, New Zealand, we documented vertical profiles of tephra concentration and topographic derivatives along a hillslope transect to quantify soil transport processes. Along the undissected hilltop, we observed a thin primary tephra layer (ca. 22.6 ka) within loess deposits ˜80 cm below the landscape surface. In the downslope direction, the depth to the highly concentrated tephra layer decreases, coincident with an increase in hillslope convexity (which is proportional to landscape lowering rate if soil flux varies linearly with hillslope gradient). Exhumation of the tephra layer results from landscape lowering due to disturbance-driven soil transport. Approximately 20 m downslope of the interfluve, the depth to the tephra layer declines to 40 50 cm, peak tephra concentrations decrease by a factor of 4, and tephra is distributed uniformly within the upper 40 cm of soil. The transition from a thin, highly concentrated tephra layer at depth to less concentrated, widely distributed tephra in the upper soil may result from soil mixing and transport by biological disturbances. Along our transect, the depth to this transition is ˜50 cm, coincident with the rooting depth of podocarp and Nothofagus trees that populated the region during much of the Holocene. Our observations can be used to calibrate the linear transport model, but, more important, they suggest that over geomorphic time scales, stochastic bioturbation may generate a well-mixed and mobile soil layer, the depth of which is primarily determined by flora characteristics.

  8. [Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China].

    PubMed

    Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui

    2013-03-01

    By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts. PMID:23755477

  9. Active Microwave Soil Moisture Research

    Microsoft Academic Search

    M. CRAIG DOBSON; FAWWAZ T. ULABY

    1986-01-01

    This paper summarizes the progress achieved in the active microwave remote sensing of soil moisture during the four years of the AgRISTARS program. Within that time period, from about 1980 to 1984, significant progress was made toward understanding 1) the fundamental dielectric properties of moist soils, 2) the influence of surface boundary conditions, and 3) the effects of intervening vegetation

  10. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  11. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (inventor.); Henninger, Donald L. (inventor.); Allen, Earl R. (inventor.); Golden, Dadigamuwage C. (inventor.)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  12. Biological and Environmental Engineering Soil & Water Research Group

    E-print Network

    Walter, M.Todd

    for generating maps of soil topographic index (STI) from TI maps and soil data. The procedure for generating a topographic index (TI) map from DEM is described in "Creating TI map". #12;Biological and Environmental Engineering Soil & Water Research Group ·STI grids are soil topographic index grids, derived from digital

  13. Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

    2014-05-01

    Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

  14. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    PubMed Central

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m?2 s?1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m?2 s?1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m?3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  15. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    PubMed

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  16. Biological and Physico-chemical Processes of Soil Organic Matter Cycling in Diverse Soils

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Post, W. M.; Wang, G.

    2011-12-01

    Soils comprise the largest biologically active terrestrial pool of organic carbon (OC). The top meter of soil contains 1500 Pg of OC which is 3 times that present in vegetation and two times the CO2-C present in atmosphere. Current soil C models simulate soil C pool sizes and turnover rates on post-hoc basis and the mechanisms governing soil OC cycling have not been integrated in such models. Therefore the scale of applicability and accuracy of predictions of current C models are questionable. Our current efforts are focused on developing a mechanistic framework of soil C cycling processes and its linkage to global C model. As part of this effort, we seek to understand the important cycling and interactive processes of OC compounds with the soil minerals and microbial community on a global suite of soils from temperate, tropical and arctic ecosystems. The selected OC compounds are glucose, cellulose, stearic acid and vanillic acid which are representative of SOM composition that contains 5-15% sugars, 20-50% starch, 10% proteins, 20-30% lignin and 2-5% lipids. We hypothesize that physico-chemical interactions between OC compounds and soil minerals determines the biological stability and distribution of such compounds in soils. Cycling of the selected 14C-labeled OC compounds were investigated as a function of soil type, soil depth and functional components of SOM (dissolved organic carbon, DOC; particulate organic matter, POM; and mineral associated organic matter, MAOM). This presentation will consist of the results from sorption and long-term incubation experiments conducted on diverse soils by the addition of 14C-glucose. Sorption of 14C-glucose on soil minerals was determined by batch equilibration experiments of MAOM fraction at a solid-to-solution ratio of 1:60 for 8 hours. A series of initial glucose solutions containing 0-100 mg C/L unlabeled C and 4000 dpm/ml labeled C were used. Maximum sorption capacity (Qmax) and affinity coefficient (K) were determined by fitting the experimental data to the Langmuir model. Results indicated that C sorption potential varies across different climates, soil types and soil horizons. Tropical Oxisol from Costa Rica exhibited the lowest Qmax (12 mgC kg-1) and temperate Alfisols from United States exhibited the highest Qmax (4893 mgC kg-1) for the added glucose. Another interesting finding is that the MAOM derived from the surface soil likely possess higher sorption capacity than that of subsoil. The biological cycling of C through microbes via microbial uptake and mineralization processes are currently being undertaken by monitoring the 14CO2 evolution from the long-term incubation experiments. Additionally, the evidence of priming as a result of glucose addition will also be tested and presented at the meeting. The ultimate outcome of this study is the development of a mechanistically-based and globally-relevant soils C model that is linkable into widely-used global circulation models.

  17. Application Sequence and soil biology influence anaerobic soil disinfestation induced disease suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD) and mustard seed meal (MSM) soil amendments can yield significant control of a diversity of soil-borne pests and pathogens. The mechanisms functional in disease suppression are diverse and with regard to MSM amendment, soil biology has been shown to have a signif...

  18. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relationships among biological indicators of soil quality and soil organic matter characteristics in a claypan soil were evaluated across a continuum of long-term agricultural practices in Missouri, USA. In addition to chemical and physical soil quality indicators, dehydrogenase and phenol oxidase a...

  19. Soil Biology & Biochemistry 40 (2008) 8596 Microbially available carbon in buried riparian soils

    E-print Network

    Gurwick, Noel P.

    Soil Biology & Biochemistry 40 (2008) 85­96 Microbially available carbon in buried riparian soils 2007 Available online 9 August 2007 Abstract Buried horizons and lenses in riparian soil profiles 14 riparian zones Rhode Island, USA, where soil profiles are characterized by glacial outwash

  20. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes

    Microsoft Academic Search

    K. A. S MITH; F. C ONEN; K. E. D OBBIE; A. R EY

    2003-01-01

    Summary This review examines the interactions between soil physical factors and the biological processes respon- sible for the production and consumption in soils of greenhouse gases. The release of CO2 by aerobic respiration is a non-linear function of temperature over a wide range of soil water contents, but becomes a function of water content as a soil dries out. Some

  1. Influence of Herbicide-Desiccated Cover Crops on Biological Soil Quality in the Mississippi Delta

    Microsoft Academic Search

    S. C. Wagner; R. M. Zablotowicz; M. A. Locke; R. J. Smeda; C. T. Bryson

    The effect of crop residue management (CRM) systems on selected biological properties (microbial biomass\\/populations and soil enzyme activity) of Dundee soils under two cropping systems was investigated. In a cotton (Gossypium hirsutum L.) study, the influence of conventional tillage (CT) and no-tillage (NT) with and without an annual ryegrass cover crop (Lolium multiforum Lam.) on these properties was determined. Annual

  2. Biological activities of alginate.

    PubMed

    Ueno, Mikinori; Oda, Tatsuya

    2014-01-01

    To gain insight into the structure-activity relationship of alginate, we examined the effect of alginates with varying molecular weights and M/G ratio on murine macrophage cell line, RAW264.7 cells in terms of induction of tumor necrosis factor-? (TNF-?) secretion. Among the alginates tested, alginate with the highest molecular weight (MW 38,000, M/G 2.24) showed the most potent TNF-?-inducing activity. Alginates having higher M/G ratio tended to show higher activity. These results suggest that molecular size and M/G ratio are important structural parameters influencing the TNF-?-inducing activity. Interestingly, enzymatic depolymerization of alginate with bacterial alginate lyase resulted in dramatic increase in the TNF-?-inducing activity. The higher activity of enzymatically digested alginate oligomers to induce nitric oxide production from RAW264.7 cells than alginate polymer was also observed. On the other hand, alginate polymer and oligomer showed nearly equal hydroxyl radical scavenging activities. PMID:25081079

  3. Biological activities of Annona glabra

    Microsoft Academic Search

    V. Padmaja; V. Thankamany; N. Hara; Y. Fujimoto; A. Hisham

    1995-01-01

    On a preliminary screening, substantial antimicrobial, antifungal and moderate insecticidal, sporicidal and cytotoxic activities were observed for the hexane extract of the stem bark of Annona glabra L. Chromatographic fractionation of this extract led to the isolation of kaur-16-en-19-oic acid in a large amount as the main constituent, which was found to be largely responsible for the biological activities possessed

  4. FLUSH OF CO2 AS A SOIL BIOLOGICAL QUALITY INDICATOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial biomass is an active part of soil organic matter that plays a key role in the decomposition of organic materials, nutrient cycling, and formation of soil structure. Measurement of soil microbial biomass has been proposed with a number of biochemical procedures, which vary in their sen...

  5. Biological and biochemical soil indicators: monitoring tools of different agricultural managements

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Sultana, Salma; Scelza, Rosalia; Marzaioli, Rossana; D'Ascoli, Rosaria; Rao, Maria A.

    2010-05-01

    The intensive agricultural managements, increased in the last twenty years, have resulted in a decrease in fertility of soils, representing a serious threat to agricultural productivity due to both the increase in production cost, mainly for intensive use of mineral fertilizers, and the loss of the quality of crops themselves. Organic matter content is closely related to the soil fertility and its progressive reduction in cultivates soils, without a satisfactory recovery, could make agriculture untenable, resulting in a high detrimental effect on environment. But an appropriate soil management practices can improve soil quality by utilizing organic amendments as alternative to mineral fertilizers to increase soil quality and plant growth. In this context, demand of suitable indicators, whose are able to assess the impact of different agricultural managements on soil quality, has increased. It has shown that soil biological and biochemical properties are able to respond to small changes in soil conditions, thus providing information on subtle alterations in soil quality. Aim of this study was to evaluate the use of soil biological and biochemical properties as fertility indicators in agricultural soils under different agricultural managements, sited in Campania Region (Southern Italy). After a preliminary monitoring phase of soil fertility on different farms sited in five agricultural areas of Campania Region, we have selected two farms in two different study areas to assess the effect on soil quality of different organic amendments. In particular, a compost from municipal solid waste and wood from scraps of poplars pruning were supplied in different doses and ratios. Soil samplings after one month from the amendment addition and then every 4 months until a year were carried out. All collected soil samples were characterized by main physical, chemical, biochemical and biological properties. In general, the use of different organic amendments showed a positive effect on fertility of both soils under intensive farming. In general, all enzymatic activities and organic carbon content increased after 1 month, and they were still higher after 4 months from amendment application. Microbial biomass and soil potential activity (respiration) showed significantly higher values in soils added with organic amendments, for both farms and samplings, with more marked effects on respiration in the first sampling. In conclusion results showed, in general, a quick response as indicators of the assayed biological and biochemical soil properties and a good recovery in fertility of the studied agricultural soils. The project was founded by CCIIAA of Salerno

  6. Molecular Biology Concepts and Activities

    NSDL National Science Digital Library

    Ingrid Waldron

    This overview reviews key concepts and learning activities to help students understand how genes influence our traits by molecular processes. Topics covered include basic understanding of the important roles of proteins and DNA; DNA structure, function and replication; the molecular biology of how genes influence traits, including transcription and translation; and the molecular biology of mutations. To help students understand the relevance of these molecular processes, the suggested learning activities link alleles of specific genes to human characteristics such as albinism, sickle cell anemia and muscular dystrophy. This overview provides links to suggested activities which include hands-on laboratory and simulation activities, web-based simulations, discussion activities and a vocabulary review game.

  7. Wildfire effects on biological properties of soils in forest-steppe ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Maksimova, E.; Abakumov, E.

    2014-01-01

    Soils affected by forest wildfires in 2010 in Russia were studied on postfire and mature plots near the Togljatty city, Samara region. Soil biological properties and ash composition dynamics were investigated under the forest fire affect: a place of local forest fire, riding forest fire and unaffected site by fire-control (mature) during 3 yr of restoration. Soil samples were collected at 0-15 cm. Soil biological properties was measured by the fumigation method. The analytical data obtained shows that wildfires lead to serious changes in a soil profile and soil chemistry of upper horizons. Wildfires change a chemical composition of soil horizons and increase their ash-content. Fires lead to accumulation of biogenic elements' content (P and K) in the solum fine earth. Calcium content is increased as a result of fires that leads to an alkaline pH of the solum. The values of nutrients decreased as a result of leaching out with an atmospheric precipitation during the second year of restoration. Thus, when the upper horizons are burning the ash arriving on a soil surface enrich it with nutrients. The mature (unaffected by fire) soils is characterized by the greatest values of soil microbial biomass in the top horizon and, respectively, the bigger values of basal respiration whereas declining of the both parameters was revealed on postfire soils. Nevertheless this influence does not extend on depth more than 10 cm. Thus, fire affect on the soil were recognized in decreasing of microbiological activity.

  8. Effects of Cd and Pb on soil microbial community structure and activities

    Microsoft Academic Search

    Sardar Khan; Abd El-Latif Hesham; Min Qiao; Shafiqur Rehman; Ji-Zheng He

    2010-01-01

    Background, aim, and scope  Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have\\u000a long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic\\u000a activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly,\\u000a microbial biomass carbon

  9. Diversity and Activity of Denitrifiers of Chilean Arid Soil Ecosystems

    PubMed Central

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular. PMID:22493591

  10. Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S; Singh, Surender

    2013-01-01

    Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO(4)-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO(4)-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO(4)-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO(4)-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities. PMID:22350447

  11. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  12. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    Microsoft Academic Search

    Brian J. Darby; Deborah A. Neher; Jayne Belnap

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature

  13. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use

    Microsoft Academic Search

    K. R. Islam; M. A. Stine; J. B. Gruver; S. E. Samson-Liebig; R. R. Weil

    2003-01-01

    A simple method of estimating changes in biologically active soil carbon (C) could help evaluate soil quality impacts of alternative management practices. Most reports of permanganate for active C determination use highly concentrated solutions (0.333 M) that are difficult to work with and tend to react with a large fraction of soil C that is not well distinguished from total

  14. Diverse biological activities of dandelion.

    PubMed

    González-Castejón, Marta; Visioli, Francesco; Rodriguez-Casado, Arantxa

    2012-09-01

    Dandelion (Taraxacum officinale Weber) is a member of the Asteraceae (Compositae) family, native to Europe but widely distributed in the warmer temperate zones of the Northern Hemisphere. Dandelion and its parts are habitually consumed as plant foods in several areas of the world, where they are also employed in phytotherapy. Indeed, dandelion contains a wide array of phytochemicals whose biological activities are actively being explored in various areas of human health. In particular, emerging evidence suggests that dandelion and its constituents have antioxidant and anti-inflammatory activities that result in diverse biological effects. The present review provides a comprehensive analysis of the constituents of dandelion, an assessment of the pharmacological properties of dandelion, and a description of relevant studies that support the use of dandelion as a medicinal plant. PMID:22946853

  15. Biological activity of ionene polymers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1973-01-01

    Ionene polymers are polyammonium salts with positive nitrogens in the backbone, resulting from the polycondensation of diamines with dihalides or from the polycondensation of halo amines. The mechanism of formation of ionene polymers of different structures and their biological activity is reviewed. The antimicrobial and antifungal properties are compared with low molecular weight ammonium salts. Ionenes were found to combine with DNA by means of ionic bonds to yield similar complexes to those obtained with polyamines (spermine and spermidine). They also combine with nerve cell receptors and exercise a more powerful and longer duration ganglionic blocking action than their monomeric analogs. The antiheparin activity of ionenes and the thromboresistance of elastomeric ionene heparin coatings is described. The enhanced biological activity of ionenes as compared with low molecular weight compounds is attributed to a cooperative effect of a large number of positive charges on the polymeric chains.

  16. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    PubMed

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global carbon budget. PMID:25471988

  17. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    Microsoft Academic Search

    Jayne Belnap

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by

  18. FIRE AND GRAZING EFFECTS ON VEGETATION AND BIOLOGICAL SOIL CRUSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological soil crusts increase soil water retention and may enhance plant establishment. Crusts may be sensitive to disturbances, but little information is available on their response to fire and grazing in the Northern Plains. We measured cover on permanent plots in grazed, burned, and non-graze...

  19. A new index for mapping lichen-dominated biological soil crusts in desert areas

    E-print Network

    Wang, Le

    A new index for mapping lichen-dominated biological soil crusts in desert areas Jin Chena,*, Ming is applicable to identification of lichen-dominated biological soil crusts, and therefore has good potential reserved. Keywords: Lichen; Biological soil crust; Desert 1. Introduction Biological soil crusts1

  20. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    USGS Publications Warehouse

    Belnap, J.

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (26??C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1??C and 26??C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha-1 year-1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha-1 year-1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha-1 year-1. The rates in light crusts are expected to be highly variable, as disturbance history will determine cyanobacterial biomass and therefore N fixation rates.

  1. Neutron-Activation Soil Analysis in Ecological Investigations

    Microsoft Academic Search

    Sh. Khatamov; A. Zhumamuratov; B. Ibragimov; T. Tillaev

    2000-01-01

    The scientific-technical base and instrumentation for neutron-activation analysis has reached a level such that today such an analysis can be used to find more than 70 chemical elements in soil and other biological objects. The method is widely used in various fields of science and industry. At the same time, as noted in [1], unsolved methodological and metrological problems are

  2. Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic Temperate Soils

    E-print Network

    Neher, Deborah A.

    Microbial Ecology Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic, and fungi. Although crusts are a dominant source of nitrogen (N) in arid ecosystems, this study is among

  3. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Pöschl, U.

    2015-02-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in southeast Wyoming, we found ice-nucleation-active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). To our knowledge this is the first report of ice nucleation activity in a zygomycotic fungi because the few known INA fungi all belong to the phyla Ascomycota and Basidiomycota. M. alpina is known to be saprobic and widespread in soil, and Mortierella spores are present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, < 300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  4. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  5. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    NASA Astrophysics Data System (ADS)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: ?-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as compared to control soil. Results concerning biochemical indicators revealed that phosphatase and ?-glycosidase were significantly reduced, while activities of urease and FDA were improved in all amended plots in comparison to the control, regardless of amendment type. Data demonstrated the efficiency, the high sensitivity and a quick response of the biochemical indicators in assessing soil quality changes. As a conclusion, it is possible to emphasize that alternative and common soil organic amendments behave similarly in enhancing the chemical, biochemical and biological properties. The alternative soil organic amendments could, then, be candidates for substituting some commonly used one which are currently showing shortage in their supply and a lowering in their quality. Keywords: Organic agriculture, Soil quality, Enzymatic activities, Olive mill wastewater, Residues of mushroom cultivation, Coffee chaff.

  6. ALTERNATIVE BIOLOGICAL AMENDMENTS: EFFECTS ON SOIL BIOLOGY AND SOILBORNE DISEASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of biological amendments, including commercial biocontrol organisms, microbial inoculants, and biostimulants, were evaluated in greenhouse and field tests for efficacy in controlling soilborne diseases of potato. The commercial biocontrol agents Bacillus subtilis (Bsub), Burkhoderia cepaci...

  7. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  8. Molecular characteristics versus biological activity

    USGS Publications Warehouse

    Applegate, Vernon C.; Smith, Manning A.; Willeford, Bennett R.

    1967-01-01

    The molecular characteristics of mononitrophenols containing halogens not only play a key role in their biological activity but provide a novel example of selective toxicity among vertebrate animals. It has been reported that efforts to control the parasitic sea lamprey in the Great Lakes are directed at present to the applications of a selective toxicant to streams inhabited by lamprey larvae. Since 1961, the larvicide that has been used almost exclusively in the control program has been 3-trifluoromethyl-4-nitrophenol (TFM). However, this is only one of about 15 closely related compounds, all halogen-containing mononitrophenols, that display a selectively toxic action upon lampreys. Although not all of the halogenated mononitrophenols are selectively toxic to lampreys (in fact, fewer than half of those tested), no other group of related compounds has displayed any useful larvicidal activity except for the substituted nitrosalicylanilides.

  9. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Cantón, Yolanda; Lázaro, Roberto; Domingo, Francisco

    2013-05-01

    The interplant soil surfaces in most arid and semiarid ecosystems are covered by biological soil crusts (BSCs). These crusts regulate water inputs and losses through soils and play major roles in local hydrological regimes. In recent years, the role of BSCs in infiltration and runoff has gained increasing importance and better knowledge of their effects on these processes has been acquired. However, the role of BSCs in other important components of the water balance, such as evaporation or soil moisture has hardly been studied, so their effects on these processes remain unknown. The aim of this study was to explore the influence of BSCs on soil moisture regimes in the top layer of the soil in two semiarid ecosystems in SE Spain with different particle-size distributions. At both study sites, soil moisture was monitored at 0.03 and 0.10 m under two types of BSCs, a cyanobacteria-dominated BSC and a lichen-dominated BSC, and in adjacent soils where they had been removed. Our results showed that during wet soil periods, removal of BSCs led to decreased soil moisture, especially in the upper layer (0.03 m), compared to soils covered by BSCs. Decrease in soil moisture was more noticeable after removal of lichens than cyanobacterial BSCs, and more so in fine than in coarse-textured soils. Soil water loss was also generally faster in soils with no BSCs than in soils covered by them. However, no difference was found in soil moisture under either crusted or scalped soils during soil drying periods. The type of BSC influenced soil moisture differently depending on soil water content. During wet soil periods, soil water loss was faster and soil moisture lower under cyanobacterial than under lichen BSCs. On the contrary, during soil drying periods, soils covered by lichens lost water faster and showed lower moisture than those covered by cyanobacteria. Our results show the major role of the presence of BSCs, as well as the types, in soil water content in semiarid ecosystems.

  10. Untangling the biological contributions to soil stability in semiarid shrublands

    USGS Publications Warehouse

    Chaudhary, V. Bala; Bowker, Matthew A.; O'Dell, Thomas E.; Grace, James B.; Redman, Andrea E.; Rillig, Matthias C.; Johnson, Nancy C.

    2009-01-01

    Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification.

  11. Untangling the biological contributions to soil stability in semiarid shrublands.

    PubMed

    Chaudhary, V Bala; Bowker, Matthew A; O'Dell, Thomas E; Grace, James B; Redman, Andrea E; Rillig, Matthias C; Johnson, Nancy C

    2009-01-01

    Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification. PMID:19323176

  12. Microorganisms of Biological Crusts on Soil Surfaces

    Microsoft Academic Search

    Burkhard Büdel

    Our knowledge of the biodiversity of soil crust biota from different geographical regions is rather dissimilar. This, on the one hand, is based on different methods applied by most floristic studies (e.g., determination is only rarely based on cultured material in the case of cyanobacteria, algae and fungi). On the other hand, the species concept, especially of cyanobacteria, is currently

  13. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  14. Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils

    Microsoft Academic Search

    Géraldine Bullinger-Weber; Renée-Claire Le Bayon; Claire Guenat; Jean-Michel Gobat

    2007-01-01

    This study examines the role of abiotic (texture, calcium carbonates or iron) and biotic parameters (earthworm and enchytraeid activities) on the initial phases of soil aggregation. Our research focused on humus forms in alluvial soils, which are considered as young and heterogeneous environments. We hypothesized that the soil structure formation is determined by both the nature of the recent alluvial

  15. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    PubMed Central

    Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567?km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  16. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    PubMed Central

    Feng, Wei; Zhang, Yu-qing; Wu, Bin; Zha, Tian-shan; Jia, Xin; Qin, Shu-gao; Shao, Chen-xi; Liu, Jia-bin; Lai, Zong-rui; Fa, Ke-yu

    2013-01-01

    Soil respiration (Rs) is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss), as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration. PMID:24453845

  17. Environmental implications of herbicide resistance: soil biology and ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial community structure and activity are clearly linked to plant communities established in natural and agricultural ecosystems. A limited number of studies confirm that weeds alter their soil environment and select for specific microbial communities in the rhizosphere. Such rhizosphere m...

  18. NO gas loss from biologically crusted soils in Canyonlands National Park, Utah

    E-print Network

    Barger, Nichole

    the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over

  19. Strigolactones: structures and biological activities.

    PubMed

    Yoneyama, Koichi; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2009-05-01

    Strigolactones released from plant roots induce seed germination of root parasitic weeds, witchweeds (Striga spp.) and broomrapes (Orobanche spp.), and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. In addition to these functions in the rhizosphere, strigolactones have recently been shown to be a novel class of plant hormones regulating shoot outgrowth. The natural strigolactones identified so far have the common C-D ring moiety, which is thought to be the essential structure for exhibiting biological activity. The introduction of substitutions on the A-B ring moiety of 5-deoxystrigol, the basic strigolactone, affords various strigolactones, e.g. hydroxylation on C-4, C-5 and C-9 leads to orobanchol, strigol and sorgomol respectively. Then, acetylation and probably other derivatisations of these hydroxy-strigolactones would occur. Although the C-2'-(R) stereochemistry was thought to be an important structural feature for potent germination stimulation activity, 2'-epi-strigolactones were found in root exudates of tobacco, rice, pea and other plant species, indicating that at least some plants produce both epimers. PMID:19222028

  20. [Impact of biological soil crusts on soil water repellence in the hilly Loess Plateau region, China].

    PubMed

    Zhang, Pei-Pei; Zhao, Yun-Ge; Wang, Yuan; Yao, Chun-Zhu

    2014-03-01

    By using water drop penetration time (WDPT) and molarity of ethanol droplet (MED) methods, the soil water repellence of undisturbed biological soil crusts (biocrusts) in five successional stages, from the hilly Loess Plateau region of China was tested. The five stages of biocrusts were light cyanobacterial crust, dark cyanobacterial crust, cyanobacterial with sparse moss crust, moss and tiny cyanobacteria patches crust and moss dominated crust. The results showed that 1) the soil water repellence was markedly increased both in the intensity and persistence since the formation of biocrusts. 2) The soil water repellence showed a decrease trend along with the successional stages of biocrusts. The soil water repellence of the biocrusts with the moss coverage above 20% was significantly lower than that of the cyanobacterial crusts. 3) The soil water repellence of the biocrusts was closely related to soil moisture and the dominant organism. The soil water repellence increased with the decrease of soil water content for the moss dominated biocrusts, while changed in a bimodal curve with the decrease of soil water content for the cyanobacterial biocrusts. PMID:24984480

  1. Response of desert biological soil crusts to alterations in precipitation frequency

    Microsoft Academic Search

    Jayne Belnap; Susan L. Phillips; Mark E. Miller

    2004-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, and mosses that live on the soil surface, occur in deserts throughout the world. They are a critical component of desert ecosystems, as they are important contributors to soil fertility and stability. Future climate scenarios predict alteration of the timing and amount of precipitation in desert environments. Because biological soil crust organisms

  2. Heavy metal pollution and soil enzymatic activity

    Microsoft Academic Search

    Germund Tyler

    1974-01-01

    The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu+Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas ß-glucosidase activity was not

  3. Biological Soil Crusts: Webs of Life in the Desert

    USGS Publications Warehouse

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  4. Microbiological activity of soils populated by Lasius niger ants

    NASA Astrophysics Data System (ADS)

    Golichenkov, M. V.; Neimatov, A. L.; Kiryushin, A. V.

    2009-07-01

    Ants are the most widespread colonial insects assigned to the Hymenoptera order. They actively use soil as a habitat; being numerous, they create a specific microrelief. It is shown that ants affect microbiological processes of the carbon and nitrogen cycles. The carbon content in anthills remains stable throughout the growing season, and the respiration intensity is about three times higher as compared with that in the control soil. The highest methane production (0.08 nmol of CH4/g per day) in the anthill is observed at the beginning of the growing season and exceeds that in the control soil by four times. The most active nitrogen fixation (about 4 nmol of C2H4/g per h) in the anthill takes place in the early growing season, whereas, in the control soil, it is observed in the middle of the growing season. At the same time, the diazotrophic activity is higher in the control soil. The lowest denitrification in the anthill is observed at the beginning and end of the growing season. The dynamics of the denitrification in the anthill are opposite to the dynamics of the diazotrophic activity. We suppose that these regularities of the biological activity in the anthill are related to the ecology of the ants and the changes in their food preferences during the growing season.

  5. Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China

    Microsoft Academic Search

    Ha-Lin Zhao; Yi-Rui Guo; Rui-Lian Zhou; Sam Drake

    2010-01-01

    Physical and chemical properties (including coverage, thickness, hardness, moisture, particle size distribution, organic matter and nutrient contents etc.) of biological soil crust and 0–5.0cm surface soil under the crust in three types of vegetation (semi-shrub Artemisia frigida, shrub Salix gordejevii and tree Populus simonii) were surveyed in 2005 and 2006 in Horqin Sand Land to understand the effects of different

  6. Hands-on Activities for Teaching Biology

    NSDL National Science Digital Library

    Ingrid Waldron

    These hands-on, minds-on activities engage students in experiments or simulation activities and incorporate multiple questions designed to foster student understanding of important concepts in the life sciences. Topics covered include biological molecules, diffusion, metabolism, cell division, genetics, molecular biology, evolution, diversity, human physiology and design and interpretation of experiments. These activities were designed for teaching high school or middle school students, but many of these activities can also be used in non-major introductory college biology classes. To accommodate limited budgets, most of these activities can be carried out with minimum equipment and expense for supplies. Additional minds-on activities for teaching biology, including discussion activities, are available at http://serendip.brynmawr.edu/exchange/bioactivities. Most of the activities are described in student handouts and teacher notes; the student handouts are available as Word files for teachers to customize for their students.

  7. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    USGS Publications Warehouse

    Zelikova, Tamara J.; Housman, David C.; Grote, Ed E.; Neher, Deborah A.; Belnap, Jayne

    2012-01-01

    Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.

  8. The Soil Moisture Active Passive (SMAP) Mission

    E-print Network

    Entekhabi, Dara

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

  9. Combined chemical and biological treatment of oil contaminated soil

    Microsoft Academic Search

    Anna Goi; Niina Kulik; Marina Trapido

    2006-01-01

    Combined chemical (Fenton-like and ozonation) and biological treatment for the remediation of shale oil and transformer oil contaminated soil has been under study. Chemical treatment of shale oil and transformer oil adsorbed in peat resulted in lower contaminants’ removal and required higher addition of chemicals than chemical treatment of contaminants in sand matrix. The acidic pH (3.0) conditions favoured Fenton-like

  10. Organic matter components, aggregate stability and biological activity in a horticultural soil fertilized with different rates of two sewage sludges during ten years

    Microsoft Academic Search

    R Albiach; R Canet; F Pomares; F Ingelmo

    2001-01-01

    The effects of the application as fertilizer during ten years of two sewage sludges (aerobically and anaerobically digested, at rates of 400, 800, and 1200 kg of N\\/ha yr), on the aggregate stability and contents of related organic matter components, microbial biomass and levels of five enzymatic activities (alkaline phosphomonoesterase, phosphodiesterase, urease, arylsulphatase and dehydrogenase) were investigated. The application of

  11. The biological factors influence on the conversion of mineral components of Extremely Arid Desert Soils (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Kutovaya, Olga; Vasilenko, Elena; Lebedeva, Marina; Tkhakakhova, Azida

    2013-04-01

    Extremely arid soils of stony deserts (hamadas) along the southern periphery of the Ili Depression are considered to be analogous to extremely arid soils of Mongolia, also named as "ultra-arid primitive gray-brown soils." In general, the morphology of extremely arid soils of hamadas in the Ili Depression is similar to that of the soils of stony deserts in other parts of the world, including the Gobi, Atacama, and Tarim deserts. The diagnostics of the active communities of microorganisms were performed according to the method of Rybalkina-Kononenko. The exact identification of the living forms of microorganisms to the species level is not always possible with the use of this method. However, it allows us to study the physiological role of the microorganisms and their ecological functions, including the relationships with the soil matrix and other organisms. In particular, it is possible to estimate the contribution of the microorganisms to the transformation of mineral soil components. The obtained materials allow us to conclude that the extremely arid desert soils are characterized by the very high biological activity during short periods of the increased soil moistening after rare and strong rains. The diversity of living forms is very considerable; both prokaryotes (cyanobacteria, actinomycetes, and iron bacteria) and protists (green algae, diatoms, and dinoflagellates) are developed in the soil. Thus, during a short period after the rains, these microorganisms pass from the stage of anabiosis to the stage of active growth and reproduction. Then, upon drying of the soil, the biotic activity of the soil slows down and, finally, terminates. The organisms remain in the state of anabiosis until the next rain. During the period of active growth, the microorganisms compose a specific consortium of different species and exert a profound impact on the soil properties. They participate in the transformation of the soil minerals with the formation of amorphous substances that are clearly seen in biofilms on the surface of gravels of the desert pavement and on the walls of vesicular pores in the crust and subcrust (AKL) horizons of the soil. The organomineral compounds are accumulated in the vesicular pores due to the synthesis and mineralization of the microbial biomass. This is a specific feature of the humus-accumulative process in the extremely arid desert soils. The biogenic transformation of iron-containing minerals, the mobility of iron, and its accumulation in films and coagulated microforms is largely due to the living activity of iron bacteria. These iron pedofeatures are specific of the extremely arid desert soils. We suppose that some part of vesicular pores in the AKL horizon has a microbiological origin, because separate bacterial cells may form intracellular gas vacuoles and extracellular gas bulbs, as well as membrane sacs and cell dilatations that can shape the vesicular pores. In general, our data indicate that soils, including extremely arid desert soils, serve as reservoirs of the microbial diversity and ensure the development and preservation of diverse microorganisms with specific mechanisms of adaptation to the sharp changes in the environmental conditions. This biota-protecting role of soils is particularly well pronounced during the climatic pessimum. This study was supported by the Russian Foundation for Basic Research, project no. 12-04-00990a.

  12. Combined chemical and biological treatment of oil contaminated soil.

    PubMed

    Goi, Anna; Kulik, Niina; Trapido, Marina

    2006-06-01

    Combined chemical (Fenton-like and ozonation) and biological treatment for the remediation of shale oil and transformer oil contaminated soil has been under study. Chemical treatment of shale oil and transformer oil adsorbed in peat resulted in lower contaminants' removal and required higher addition of chemicals than chemical treatment of contaminants in sand matrix. The acidic pH (3.0) conditions favoured Fenton-like oxidation of oil in soil. Nevertheless, it was concluded that remediation of contaminated soil using in situ Fenton-like treatment will be more feasible at natural soil pH. Both investigated chemical processes (Fenton-like and ozonation) allowed improving the subsequent biodegradability of oil. Moderate doses of chemical oxidants (hydrogen peroxide, ozone) should be applied in combination of chemical treatment (both, Fenton-like or ozonation) and biotreatment. For remediation of transformer oil and shale oil contaminated soil Fenton-like pre-treatment followed by biodegradation was found to be the most efficient. PMID:16293288

  13. Minds-On Activities for Teaching Biology

    NSDL National Science Digital Library

    Ingrid Waldron

    These minds-on activities include analysis and discussion activities, experiments, and simulation activities to foster student understanding of important concepts in the life sciences. Topics covered include biological molecules, membranes and osmosis, cellular respiration and photosynthesis, cell structure and function, cell division, genetics, molecular biology, evolution, diversity, human physiology and health, and design and interpretation of experiments. These activities were designed for teaching high school and middle school students, but many of them can also be used in non-major introductory college biology classes. Most of the activities are described in student handouts and teacher notes; the student handouts are available as Word files for teachers to customize for their students. The hands-on experiments and simulation activities are available at http://serendip.brynmawr.edu/sci_edu/waldron/. To accommodate limited budgets, most of the hands-on activities can be carried out with minimum equipment and expense for supplies.

  14. Size adjustable separation of biologically active molecules

    E-print Network

    Gutierrez, Mauricio R. (Mauricio Roberto)

    2004-01-01

    Separation of biologically active molecules (BAM's) is a problem for the pharmaceutical and biotechnology industries. Current technologies addressing this problem require too many techniques, toxic additives, and time to ...

  15. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  16. Changes in the biological diversity and concentration of total DNA under the influence of mineral fertilizers in agrochernozemic soils

    NASA Astrophysics Data System (ADS)

    Tkhakakhova, Azida; Kutovaya, Olga; Ivanova, Ekaterina; Pavlyuchenko, Anatoly

    2014-05-01

    Chernozems represent the most valuable soil resource for Russian agriculture. Their sustainable use in intensive farming systems with preservation of the biological diversity and biological activity of these soils is of crucial importance for the agri-environmental security of Russia. We studied the influence of different rates of mineral fertilizers on the biological activity of chernozems on experimental fields of the Dokuchaev Research Institute of Agriculture in Kamennaya Steppe (Voronezh oblast). Soil samples were taken at the end of April 2013 from the plow horizon on trials with different rates of fertilization: NPK-0, NPK-60, and NPK-120 (kg/ha); a long-term fallow plot was used as an absolute control. The biological activity was analyzed by routine inoculation methods and by the molecular biology techniques based on DNA isolation from the soil samples. Quantitative parameters of the isolated and purified DNA were determined by measuring the fluorescence of the DNA preparations with added intercalating dyes; GelDoc XR system and Image Lab and TotalLab Quant. software were used. Microbiological studies showed the high biological activity of the chernozems soil in all the trials. No significant differences were found between the trials for the microbiological processes of the carbon cycle. There was a weakly expressed tendency for an increase in the activity of actinomycetes from the soil with zero fertilization (5.11 log10CFU/g) to the soil with maximum (NPK-120) fertilization (5.69 log10CFU/g) and the fallow soil (5.73 log10CFU/g); the number of cultivated micromycetes decreased from the soil with zero fertilization (4.76 log10CFU/g) to the soil with maximum fertilization (4.14 log10CFU/g) and to the fallow soil (4.1 log10CFU/g). A less equilibrium state is typical of the microorganisms participating in the nitrogen cycle. The number of cultivated aerobic and anaerobic nitrogen-fixing bacteria somewhat increased in the fertilized trials (NPK-60, NPK-120). The most active development of denitrifiers was in the fallow soil. It is known that cultivated forms comprise only about 1 to 10% of the total number of soil microorganisms. Quantitative analysis by the methods of molecular biology makes it possible to consider the full range of microorganisms. The concentration of extracted DNA can serve as an indicator of the total "biogenity" of the soil, as we isolated the genetic material of all organisms living in the soil. The highest concentration of DNA found in the samples from the fallow soil. Much lower values were found in the soils treated with mineral fertilizers: 38.9% in trial NPK-60 and 53.3% in trials NPK-120 and NPK-0. Thus, to sustain biota in cultivated chernozems and to improve the ecological state of the fields, the rates of mineral fertilizers have to be properly controlled. Moderate rates can be recommended. Features of the soil microbiome can serve as universal and sensitive indicators of the state of the soils under different farming systems. The quantitative analysis of isolated total DNA is an efficient tool to control the ecological state of the soils, especially those involved in agriculture.

  17. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation.

    PubMed

    Dos Santos, Jessé Valentim; de Melo Rangel, Wesley; Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Rufini, Márcia; Marra, Leandro Marciano; Varón López, Maryeimy; Pereira da Silva, Michele Aparecida; Fonsêca Sousa Soares, Cláudio Roberto; de Souza Moreira, Fatima Maria

    2013-12-01

    Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient. PMID:24114185

  18. Stabilization of labile organic C along a chronosequence of soil development: mineralogical vs. biological controls

    NASA Astrophysics Data System (ADS)

    McFarland, J. W.; Waldrop, M. P.; Strawn, D.; Harden, J. W.

    2010-12-01

    Soil organic matter (SOM) represents an important reservoir for carbon (C), nitrogen (N), and other essential nutrients. Consequently, variation in SOM turnover rates regulates resource availability for soil microbial activity and plant growth. Long-term SOM stabilization generally involves restricted microbial access to SOM through a variety of processes including complexation with soil minerals. These organo-mineral interactions are influenced by mineral composition and texture, often related to soil age. Soil microorganisms also influence the stabilization of C inputs to the pedosphere through the production of refractory residues controlled in part by C allocation patterns during metabolism. In this study we examined, simultaneously, the contribution of these two C stabilizing mechanisms by ‘tracing’ the fate of two 13C-labeled substrates (glucose and p-hydroxybenzoic acid) along a 1600Kya chronosequence of soil development along the Cowlitz River in southwest Washington. Our objective was to evaluate the relationship between mineralogical and biological controls over C sequestration in soils. Mineralogical analyses were done using the selective dissolutions ammonium oxalate (AOD), and dithionite-citrate extraction (CBD). In this cool, humid environment, intermediate aged soils derived from the late Wisconsin Evans Creek drift (24ka) had the highest AOD extractable Al, Fe, and Si, indicating a higher concentration of poorly crystalline minerals relative to other terraces. Correspondingly, CBD extractable Fe increases with soil age, further supporting the idea that crystalline iron oxides are also more prevalent with weathering. Turnover of both 13C-labeled substrates was rapid (< 12.5 hrs) However, the proportion of substrate mineralized to CO2 varied among terraces. Mineralization to CO2 was significantly lower at 24ka than that for the other three age classes (0.25k, 220k, and 1,600k years bp), corresponding to higher recovery of 13C in bulk soil for this age class. In similar studies, soils containing a higher proportion of poorly crystalline minerals typically have a higher degree of hydration, surface area, and variable charge, which can increase microbial yield, reducing the amount of CO2 produced per unit biomass and increasing potential for soil C sequestration. Additionally, total flux of 13CO2 was significantly higher and recovery of 13C in microbial pools trended lower for the phenolic than for glucose for all soils types excluding the 24ka terrace. The broader implication, which may warrant consideration in models of terrestrial C flux, is that altering the constituency of labile C inputs to these soil environments could similarly influence the degree to which C is stabilized in soil mineral assemblages.

  19. Long-term effects of fertilizer on soil enzymatic activity of wheat field soil in Loess Plateau, China.

    PubMed

    Hu, Weigang; Jiao, Zhifang; Wu, Fasi; Liu, Yongjun; Dong, Maoxing; Ma, Xiaojun; Fan, Tinglu; An, Lizhe; Feng, Huyuan

    2014-12-01

    The effects of long-term (29 years) fertilization on local agro-ecosystems in the Loess Plateau of northwest China, containing a single or combinations of inorganic (Nitrogen, N; Phosphate, P) and organic (Mature, M Straw, S) fertilizer, including N, NP, SNP, M, MNP, and a control. The soil enzymes, including dehydrogenase, urease, alkaline phosphatase, invertase and glomalin, were investigated in three physiological stages (Jointing, Dough, and Maturity) of wheat growth at three depths of the soil profile (0-15, 16-30, 31-45 cm). We found that the application of farmyard manure and straw produced the highest values of soil enzymatic activity, especially a balanced applied treatment of MNP. Enzymatic activity was lowest in the control. Values were generally highest at dough, followed by the jointing and maturity stages, and declined with soil profile depth. The activities of the enzymes investigated here are significantly correlated with each other and are correlated with soil nutrients, in particular with soil organic carbon. Our results suggest that a balanced application of fertilizer nutrients and organic manure (especially those containing P) has positive effects on multiple soil chemical parameters, which in turn enhances enzyme activity. We emphasize the role of organic manure in maintaining soil organic matter and promoting biological activity, as its application can result in a substantial increase in agricultural production and can be sustainable for many years. PMID:25134679

  20. The biological detoxication of 2: 4-dichlorophenoxyacetic acid in soil

    Microsoft Academic Search

    L. J. Audus

    1949-01-01

    Summary By making use of a soil perfusion technique it has been shown that the detoxication of 2: 4-dichlorophenoxyacetic acid in garden loam is due almost entirely to the activity of microorganisms. Preliminary experiments suggest that the process does not involve oxidation. There are also indications that the decomposition products may include a root growth stimulant.

  1. The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Spivakova, N. A.; Kazeev, K. Sh.

    2011-09-01

    Model soil contamination with Cr, Cu, Ni, and Pb in the dry steppes and semideserts of southern Russia has worsened the biological soil properties. With respect to the degree of deterioration of the biological properties, the soils can be arranged in the following sequence: dark chestnut soils > chestnut soils > light chestnut soils > brown semidesert soils > sandy brown semidesert soils. The sequence of metal oxides according to the adverse effect on the biological soil properties is as follows: CrO3 > CuO ? PbO ? NiO.

  2. Active Biological Materials Daniel A. Fletcher1

    E-print Network

    Geissler, Phillip

    Active Biological Materials Daniel A. Fletcher1 and Phillip L. Geissler2 Departments of 1,2 Physical Biosciences, 2 Materials Sciences, and 2 Chemical Sciences, Lawrence Berkeley National Laboratory transitions between distinct material states. This review discusses the basic characteristics of these active

  3. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  4. Biological soil crusts in subtropical China and their influence on initial soil erosion

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas

    2014-05-01

    Soil is one of the most valuable resources we have on our planet. The erosion of this resource is a major environmental problem, in particular in subtropical China where high rainfall intensity causes severe and continuous soil losses. One of the main mechanisms controlling soil erosion is surface coverage, typically by vegetation, litter, stones and biological soil crusts (BSCs). BSCs play significant functional roles in soil systems, such as accelerating soil formation, changing water and nutrient cycling rates, enhancing soil stability and thus preventing erosion by wind or water. In initial ecosystems, cyanobacteria, algae, fungi, mosses and lichens are the first organisms to colonize the substrate; they form a biological crust within the first millimetres of the surface. BSCs and their effect on erosion are rarely mentioned in literature and most of the work done focussed on arid and semi-arid environments. This study aims to investigate the role of BSCs controlling the amount of runoff generated and sediment detached during soil erosion events in an initial ecosystem in subtropical China. The study took place on a deforested experimental site (BEF China) near Xingangshan, Jiangxi Province, PR China. We used a total number of 350 runoff plots (ROP, 40cmx40cm) to measure sediment discharge and surface runoff. BSC cover in each ROP was determined photogrammetrically in 4 time steps (autumn 2011, spring 2012, summer 2012 and summer 2013). Perpendicular images were taken and then processed to measure the coverage of BSCs using a 1 cm² digital grid overlay. Additionally BSCs were sampled in the field and identified by their taxonomy. In our ROPs we found 65 different moos, algae and lichen species, as well as cyanobacteria's. Mean BSC cover per ROP in 2013 was 17 % with a maximum of 62 % and a minimum of 0 %. Compared to stone cover with 3 %, our findings highlight the role of BSC in soil erosion processes. The total BSC covered area is slightly decreasing since our first measurements in 2011. Further results show that BSCs have an influence on sediment discharge and runoff volume and there is a considerable link to tree and shrub growth in our sampling area. BSCs disappear as trees and shrubs grow and hide them from sunlight.

  5. Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: Resistance in different U.S. deserts

    USGS Publications Warehouse

    Belnap, J.

    2002-01-01

    Biological soil crusts are an important component of desert ecosystems, as they influence soil stability and fertility. This study examined and compared the short-term vehicular impacts on lichen cover and nitrogenase activity (NA) of biological soil crusts. Experimental disturbance was applied to different types of soil in regions throughout the western U.S. (Great Basin, Colorado Plateau, Sonoran, Chihuahuan, and Mojave deserts). Results show that pre-disturbance cover of soil lichens is significantly correlated with the silt content of soils, and negatively correlated with sand and clay. While disturbance appeared to reduce NA at all sites, differences were statistically significant at only 12 of the 26 sites. Cool desert sites showed a greater decline than hot desert sites, which may indicate non-heterocystic cyanobacterial species are more susceptible to disturbance than non-heterocystic species. Sandy soils showed greater reduction of NA as sand content increased, while fine-textured soils showed a greater decline as sand content increased. At all sites, higher NA before the disturbance resulted in less impact to NA post-disturbance. These results may be useful in predicting the impacts of off-road vehicles in different regions and different soils. ?? 2002 Published by Elsevier Science Ltd.

  6. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN).

    PubMed

    Büdel, Burkhard; Colesie, Claudia; Green, T G Allan; Grube, Martin; Lázaro Suau, Roberto; Loewen-Schneider, Katharina; Maier, Stefanie; Peer, Thomas; Pintado, Ana; Raggio, José; Ruprecht, Ulrike; Sancho, Leopoldo G; Schroeter, Burkhard; Türk, Roman; Weber, Bettina; Wedin, Mats; Westberg, Martin; Williams, Laura; Zheng, Lingjuan

    2014-01-01

    Here we report details of the European research initiative "Soil Crust International" (SCIN) focusing on the biodiversity of biological soil crusts (BSC, composed of bacteria, algae, lichens, and bryophytes) and on functional aspects in their specific environment. Known as the so-called "colored soil lichen community" (Bunte Erdflechtengesellschaft), these BSCs occur all over Europe, extending into subtropical and arid regions. Our goal is to study the uniqueness of these BSCs on the regional scale and investigate how this community can cope with large macroclimatic differences. One of the major aims of this project is to develop biodiversity conservation and sustainable management strategies for European BSCs. To achieve this, we established a latitudinal transect from the Great Alvar of Öland, Sweden in the north over Gössenheim, Central Germany and Hochtor in the Hohe Tauern National Park, Austria down to the badlands of Tabernas, Spain in the south. The transect stretches over 20° latitude and 2,300 m in altitude, including natural (Hochtor, Tabernas) and semi-natural sites that require maintenance such as by grazing activities (Öland, Gössenheim). At all four sites BSC coverage exceeded 30 % of the referring landscape, with the alpine site (Hochtor) reaching the highest cyanobacterial cover and the two semi-natural sites (Öland, Gössenheim) the highest bryophyte cover. Although BSCs of the four European sites share a common set of bacteria, algae (including cyanobacteria) lichens and bryophytes, first results indicate not only climate specific additions of species, but also genetic/phenotypic uniqueness of species between the four sites. While macroclimatic conditions are rather different, microclimatic conditions and partly soil properties seem fairly homogeneous between the four sites, with the exception of water availability. Continuous activity monitoring of photosystem II revealed the BSCs of the Spanish site as the least active in terms of photosynthetic active periods. PMID:24954978

  7. Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different metal threshold levels on soil microbial activity

    Microsoft Academic Search

    J. L. Moreno; F. Bastida; M. Ros; T. Hernández; C. García

    2009-01-01

    Traditionally, three threshold levels have been accepted for heavy metal concentrations in agricultural soils, depending on soil pH. The aim of this work was to ascertain how the three threshold values proposed for Cd (3, 6.5, and 12.5 mg kg?1) and Zn (300, 650, and 1300 mg kg?1) really affect soil microbial activity. Two soils, a scrubland soil and a forest soil, differing widely

  8. Biological soil crusts: a fundamental organizing agent in global drylands

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the cycle back towards U, and recovery (R) drives it towards L/M. Larger disturbances and dispersal of biocrust organisms among the larger circles result in mosaics that shift in space as well. The bar chart shows the proportion of smooth (left side) and rough (right side) seeds under different crust types.

  9. Biological activity of liposomal vanillin.

    PubMed

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle. PMID:23767864

  10. Interactions Between Xenobiotics and Microbial and Enzymatic Soil Activity

    Microsoft Academic Search

    Liliana Gianfreda; Maria A. Rao

    2008-01-01

    In the second half of the twentieth century, the indiscriminate release of xenobiotic chemicals of different chemical and structural complexity into the environment provoked serious and most often irreversible alterations of the natural environmental balance. Indeed, soil contamination by highly toxic compounds has greatly increased, with negative, irreversible effects on soil quality and health. Several chemical, biological, and biochemical soil

  11. [Phytotoxic activity of chernozem saprophytic micromycetes: specificity, sorption and stability of phytotoxins in soil].

    PubMed

    Svistova, I D; Shcherbakov, A P; Frolova, L O

    2003-01-01

    Micromycetes of the complex of typical chernozem saprotrophic fungi released phytotoxic metabolites into medium. The metabolites displayed their phytotoxic activities directly in soil. Evaluation of the toxicities, range of biological effects activities, and stabilities of phytotoxins in soil and the rates of their biodegradation allowed the species that can serve as indicators of chernozem microbial toxicosis to be selected, namely, Aspergillus clavatus, Fusarium solani, Talaromyces flavus, Penicillium rubrum, and P. funiculosum. PMID:14520964

  12. Biological reduction of uranium in groundwater and subsurface soil.

    PubMed

    Abdelouas, A; Lutze, W; Gong, W; Nuttall, E H; Strietelmeier, B A; Travis, B J

    2000-04-24

    Biological reduction of uranium is one of the techniques currently studied for in situ remediation of groundwater and subsurface soil. We investigated U(VI) reduction in groundwaters and soils of different origin to verify the presence of bacteria capable of U(VI) reduction. The groundwaters originated from mill tailings sites with U concentrations as high as 50 mg/l, and from other sites where uranium is not a contaminant, but was added in the laboratory to reach concentrations up to 11 mg/l. All waters contained nitrate and sulfate. After oxygen and nitrate reduction, U(VI) was reduced by sulfate-reducing bacteria, whose growth was stimulated by ethanol and trimetaphosphate. Uranium precipitated as hydrated uraninite (UO2 x xH2O). In the course of reduction of U(VI), Mn(IV) and Fe(III) from the soil were reduced as well. During uraninite precipitation a comparatively large mass of iron sulfides formed and served as a redox buffer. If the excess of iron sulfide is large enough, uraninite will not be oxidized by oxygenated groundwater. We show that bacteria capable of reducing U(VI) to U(IV) are ubiquitous in nature. The uranium reducers are primarily sulfate reducers and are stimulated by adding nutrients to the groundwater. PMID:10811248

  13. Six Siderophore-Producing Microorganisms Identified in Biological Soil Crusts

    NASA Astrophysics Data System (ADS)

    Noonan, K.; Anbar, A. D.; Garcia-Pichel, F.; Poret-peterson, A. T.; Hartnett, H. E.

    2011-12-01

    Biological soil crusts (BSCs) are diverse microbial communities that colonize soils in arid and semi-arid environments. Cyanobacteria in BSCs are pioneer organisms that increase ecosystem habitability by providing fixed carbon (C) and nitrogen (N) as well as by reducing water run-off and increasing infiltration. Photosynthesis and N fixation, in particular, require a variety of metals in large quantities, and yet, metals are predominantly insoluble in the environments where BSCs thrive. Therefore, BSC organisms must have efficient strategies for extracting metals from soil minerals. We hypothesized that BSC microbes, particularly the cyanobacteria, produce siderophores to serve their metal-acquisition needs. Siderophores are small organic compounds that bind Fe with high affinity and are produced by a variety of microorganisms, including cyanobacteria. Most siderophores bind Fe, primarily; however, some can also bind Mo, V, and Cu. Soil siderophores are released by microbes to increase the solubility of metals from minerals and to facilitate microbial uptake. Thus, siderophores serve as chemical weathering agents and provide a direct link between soil microbes and minerals. Studying siderophore production in BSCs provides insight into how BSCs tackle the challenge of acquiring insoluble metals, and may help conservationists determine useful fertilizers for BSC growth by facilitating metal acquisition. Biological soil crusts were collected near Moab, UT. Soil slurries were prepared in deionized water and transferred to modified BG-11 agar plates. The O-CAS agar plate assay was used to screen organisms for siderophore production. Siderophore producing microbes were isolated and identified by16S rRNA gene sequencing. Cultures were then grown in 3 L batch cultures under metal limitation, and siderophore presence was monitored using the traditional liquid CAS assay. After siderophore detection, cells were removed by centrifugation, organic compounds were separated using Amberlite° XAD° 2 resin and a C-18 column, and siderophores were detected with electrospray-ionization mass spectrometry (ESI-MS). Column eluants were analyzed with and without Fe addition. Siderophores were identified as those peaks that decreased upon Fe addition (unbound) with a corresponding increase in the mass plus Fe peak (Fe-bound). Of the organisms isolated, 42 out of 182 produce siderophores (23%). At this time 6 unique siderophore-producing organisms have been identified in the genera Balneimonas, Microvirga, Bacillus, and the Group IV cyanobacteria. Siderophore production in BSCs is performed by both heterotrophs and phototrophs, and we present phylogenetic data for these isolates. A comparison with organisms previously identified in BSC communities indicates that the siderophore-producers represent some of the dominant crust microbes (i.e., Nostoc sp.). This is the first report of siderophore production in BSCs, and thus it is a significant step towards understanding biologically-mediated metal cycling in arid ecosystems.

  14. Biological activities of heparan sulfate.

    PubMed

    Arumugam, Muthuvel; Giji, Sadhasivam

    2014-01-01

    Heparan sulfate was isolated from two bivalve mollusks such as Tridacna maxima and Perna viridis. The isolated heparin was quantified in crude as well as purified samples and they were estimated as 2.72 and 2.2g/kg (crude) and 260 and 248 mg/g (purified) in T. maxima and P. viridis, respectively. Both the bivalves showed the anticoagulant activity of the crude and purified sample as 20,128 USP units/kg and 7.4 USP units/mg, 39,000 USP units/kg and 75 USP units/mg, 9460 USP units/kg and 4.3 USP units/mg, and 13,392 USP units/kg and 54 USP units/mg correspondingly in T. maxima and P. viridis. The antiproliferative activity that was studied with pulmonary artery smooth muscle cells using RPMI media reported that the result is in a dose-dependent manner. Among the two clams, P. viridis showed more antiproliferative activity than that of T. maxima. PMID:25081081

  15. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  16. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey.

    PubMed

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, ?-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. ?-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  17. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    PubMed Central

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, ?-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. ?-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  18. Elsholtzia: phytochemistry and biological activities

    PubMed Central

    2012-01-01

    Plants of the genus Elsholtzia (Lamiaceae) have a long history of medicinal use in folk. The phytochemical investigations revealed the presence of flavonoids, phenylpropanoids, terpenoids, and other compounds. Abundant volatile components are also identified. Pure compounds, volatile constituents and crude extracts from the genus exhibited a wide spectrum of in vitro and in vivo pharmacological activities. The aims of this review hopefully provide comprehensive information on the distribution, phytochemistry, volatile components, and pharmacological research of Elsholtzia for exploring the potential and advance researches. PMID:23216850

  19. Perylenequinones: Isolation, Synthesis, and Biological Activity

    PubMed Central

    Mulrooey, Carol A.; O'Brien, Erin M.; Morgan, Barbara J.

    2013-01-01

    The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided. PMID:24039544

  20. In Search of a Better Bean: A Simple Activity to Introduce Plant Biology

    ERIC Educational Resources Information Center

    Spaccarotella, Kim; James, Roxie

    2014-01-01

    Measuring plant stem growth over time is a simple activity commonly used to introduce concepts in growth and development in plant biology (Reid & Pu, 2007). This Quick Fix updates the activity and incorporates a real-world application: students consider possible effects of soil substrate and sunlight conditions on plant growth without needing…

  1. Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel.

    PubMed

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Drahorad, Sylvie L; Berkowicz, Simon M; Felix-Henningsen, Peter; Kaplan, Aaron

    2014-11-20

    Cyanobacteria occur worldwide but play an important role in the formation and primary activity of biological soil crusts (BSCs) in arid and semi-arid ecosystems. The cyanobacterial diversity in BSCs of the northwest Negev desert of Israel was surveyed at three fixed sampling stations situated along a precipitation gradient in the years 2010 to 2012. The three stations also are characterized by marked differences in soil features such as soil carbon, nitrogen, or electrical conductivity. The cyanobacterial biodiversity was analyzed by sequencing inserts of clone libraries harboring partial 16S rRNA gene sequences obtained with cyanobacteria-specific primers. Filamentous, non-diazotrophic strains (subsection III), particularly Microcoleus-like, dominated the cyanobacterial community (30 % proportion) in all years. Specific cyanobacterial groups showed increased (e.g., Chroococcidiopsis, Leptolyngbya, and Nostoc strains) or decreased (e.g., unicellular strains belonging to the subsection I and Scytonema strains) abundances with declining water availability at the most arid, southern station, whereas many cyanobacterial strains were frequently found in the soils of all three stations. The cyanobacterial diversity at the three sampling stations appears dependent on the available precipitation, whereas the differences in soil chemistry were of lower importance. PMID:25408227

  2. Quinaldine derivatives: preparation and biological activity.

    PubMed

    Jampilek, Josef; Dolezal, Martin; Kunes, Jiri; Buchta, Vladimir; Silva, Luis; Kralova, Katarina

    2005-11-01

    The series of quinaldine derivatives were prepared, some of them by means of novel synthetic methods. The synthetic approach, analytical and spectroscopic data of all newly synthesized compounds are presented. The prepared compounds were tested for their in vitro antifungal activity as well as for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Structure-activity relationships among the chemical structure, the physical properties and the biological activities of the evaluated compounds are discussed in the article. PMID:16787342

  3. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils

    Microsoft Academic Search

    M. Belén Hinojosa; José A. Carreira; Roberto García-Ruíz; Richard P. Dick

    2004-01-01

    Heavy metal contamination can inhibit soil functions but it is often difficult to determine the degree of pollution or when soil reclamation is complete. Enzyme assays offer potential as indicators of biological functioning of soils. However, antecedent water content of soil samples may affect the outcome of biological measurements. In Mediterranean regions, for much of the year ‘field moist’ surface

  4. Harnessing the Biological Activity of Natural Products

    Cancer.gov

    Researchers have been intrigued by the potent and beneficial biological activity shown by some natural products and are testing ways to incorporate them into standard and experimental cancer treatment regimens, both to enhance the anticancer effects of therapy and reduce side effects.

  5. Monitoring Biological Activity at Geothermal Power Plants

    Microsoft Academic Search

    Peter A. Pryfogle

    2005-01-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry,

  6. Daily dynamics of cellulase activity in arable soils depending on management practices

    NASA Astrophysics Data System (ADS)

    Lavrent'eva, E. V.; Semenov, A. M.; Zelenev, V. V.; Chzhun, Yu.; Semenova, E. V.; Semenov, V. M.; Namsaraev, B. B.; van Bruggen, A. H. C.

    2009-08-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic fertilizers alone) in a microfield experiment. The regular oscillatory dynamics of the cellulase activity were revealed and confirmed by the harmonic (Fourier) analysis. The oscillatory dynamics of the cellulase activity had a self-oscillatory nature and was not directly caused by the disturbing impacts of both the uncontrolled (natural) changes in the temperature and moisture (rainfall) and the controlled ones (the application of different fertilizers). The disturbing impacts affected the oscillation amplitude of the cellulase activity but not the frequency (periods) of the oscillations. The periodic oscillations of the cellulase activity were more significant in the soil under the high-input management compared to the soil under the biological farming system.

  7. Cellulolytic activity of aerobic soil actinomycetes.

    PubMed

    Lamot, E; Voets, J P

    1976-01-01

    The cellulolytic activity of several aerobic soil actinomycetes against insoluble cellulose and soluble cellulose derivatives (CMC-carboxymethylcellulose) was studied. From the soil, 8 actinomycete strains were isolated after enrichment growth and purification on the same synthetic medium. The actinomycete strains were able to degrade insoluble cellulose, with the production of cellobiose and various oligosaccharide intermediates as degradation products, indicating the random attack of the cellulose chain. The actinomycete strains showed also a great activity against soluble cellulose (CMC). The viscosity of CMC solutions decreased rapidly and was followed by an increase in reducing compounds. The degree of substitution of CMC solutions had an effect on the degradation by the actinomycetes. The degree of polymerization did not affect the rate of hydrolysis, however. PMID:969580

  8. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and soil biological classes). Physical soil characteristics remained unchanged after the first year from the earthworks and did not change under grass cover. Chemical analysis only indicated a significant effect of earthworks. Over the 2010-2013 period, the new vineyard showed a slight increase of TOC and total N contents; as compared to the old vineyard, it averaged lower TOC and total N, and higher CaCO3 contents, suggesting still evolving equilibrium conditions. Microarthropod analysis showed significant different abundances and communities' structures both by management system and by year, increasing where the land use pressure was reduced by permanent grass cover and along with the aging of vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis showed a different structure of eubacterial communities and a lower microbial activity in the new vineyard, especially during 2010-2012. In contrast, significant differences were not observed between the two vineyards in 2013, and grass cover effect was controversial. To sum up, the consequence of deep earthworks on chemical and biological properties were still evident after four years from planting and more time was needed to recover soil functions. Permanent grass cover did not always show a consistent positive effect.

  9. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  10. ORIGINAL PAPER Soil enzyme activities as potential indicators

    E-print Network

    Paris-Sud XI, Université de

    , and biodegradability (Burton et al. 2007a). Thus, the mechanisms responsible for generating soil SON include complexORIGINAL PAPER Soil enzyme activities as potential indicators of soluble organic nitrogen pools on soil nitrogen status. As a major process affecting the soil-soluble organic nitrogen pool, degradation

  11. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  12. Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and

    E-print Network

    Post, Wilfred M.

    2000-01-01

    Global Change Biology (2000) 6, 317­328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration

  13. Runoff generation fostered by physical and biological crusts in semi-arid sandy soils

    Microsoft Academic Search

    O. Malam Issa; C. Valentin; J. L. Rajot; O. Cerdan; J.-F. Desprats; T. Bouchet

    2011-01-01

    Biological soil crusts occur extensively in semi-arid regions. In the western part of Niger, they are associated with various types of physical soil crusts in fallows and in the “tiger bush ecosystem” (a landscape with a typical banded pattern consisting of densely vegetated bands of small trees and shrubs alternating with bare soil bands). Despite their widespread occurrence, not much

  14. Remote sensing of biological soil crust under simulated climate change manipulations in the Mojave Desert

    Microsoft Academic Search

    Susan L. Ustin; Phillip G. Valko; Shawn C. Kefauver; Maria J. Santos; Jeff F. Zimpfer; Stanley D. Smith

    2009-01-01

    Earth's arid and semiarid ecosystems are subject to novel combinations of disruptive factors and unprecedented rates of change. Biotic soil crust is believed to be sensitive to impacts caused by land use and climate changes. This study examined the potential for spectral detection of different biological soil crusts (BSC: cyanobacteria, moss and lichen) and bare soil components at a long-term

  15. Field management effects on soil enzyme activities

    Microsoft Academic Search

    Anna K. Bandick; Richard P. Dick

    1999-01-01

    There is growing recognition for the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. Eleven soil enzymes assays were investigated relative to soil management and soil quality at two study sites. Soils were sampled from the Vegetable Crop Rotation Plots

  16. Biological soil crusts (BSC) in the Sahelian zone. Can they impact soil C and N cycles?

    NASA Astrophysics Data System (ADS)

    Ehrhardt, F.; Bertrand, I.; Joulian, C.; Valentin, C.; Alavoine, G.; Malam Issa, O.

    2012-04-01

    Biological soil crusts (BSC) are key component of arid and semiarid ecosystems due to their ability to incorporate C and N from atmosphere to soil. However, while BSC characteristics and impact on water cycle or N fixation fluxes in Sahelian zone were studied, the turnover of the fixed C and N in soils was not studied yet. The aim of this study is to assess the quantitative impact of BSC on C and N cycles through the contribution of both autotrophic and heterotrophic microorganisms. Our research is also based on the distinction between the impact of the abiotic part (underlying physical crust) and that of the biotic part of BSC (microbial components). Biological crust and soils were sampled (up to 5 cm depth) in February 2009 at two locations according a climatic gradient (500 and 700 mm/year) in Western Niger. The samples were characterised before incubation for their C and N contents, particle size, C biomass, mineral N, chlorophyll a content and sugar monomers contents. The microbial diversity of BSC was also determined. C and N fluxes of fixation and mineralization were measured by incubating BSC at 28 ° C in dark and light conditions with adapted moisture. Higher C and N content and C biomass were found in superficial crust samples compared to the underlying soil samples. Values obtained on BSC for C ranged from 6.88 to 15.74 g.kg-1 vs 1.10 to 4.14 g.kg-1 within soils. We demonstrated that C fixed under light conditions by autotrophic biomass from BSC is either assimilated or accumulated under a polysaccharide form, with C fixation fluxes values ranging from 7.41 to 24.65 ?gC.m-2.s-1 in average. These polysaccharides are partly mineralized with a related rate comprised between 2.95 and 5.83 ?gC.m-2.s-1. Therefore, the net C balance is positive, contrary to net N balance. Indeed, N fixation fluxes measured with an isotopic method, ranged from 1.32.10-3 to 8.47.10-2 mgN.m-2.h-1, whereas mineralization fluxes were from 0.47 to 1.01 mgN.m-2.h-1. Carbon cycle was related with the presence of Proteobacteria and Actinobacteria for the fixation part and rather of Chloroflexi for the mineralization part. The distribution of both of these species was correlated with BSC fine particles content. Interestingly, the distribution of Cyanobacteria, the major specie encountered within BSC (45.3 to 70.9 %) was not related either to C or N fluxes.

  17. Biologically active dichapetalins from Dichapetalum gelonioides.

    PubMed

    Jing, Shu-Xi; Luo, Shi-Hong; Li, Chun-Huan; Hua, Juan; Wang, Yan-Li; Niu, Xue-Mei; Li, Xiao-Nian; Liu, Yan; Huang, Chun-Shuai; Wang, Ying; Li, Sheng-Hong

    2014-04-25

    A phytochemical investigation of the toxic tropical plant Dichapetalum gelonioides led to the isolation and identification of 14 new dichapetalins (1-14) and the known dichapetalins A (15) and K (16). The structures of the new compounds were determined by analyses of their NMR, MS, electronic circular dichroism, and X-ray diffraction data. The esterification at C-25 by 4-hydroxyphenylpropanoic acid and the hydroxylation at C-2' are unique in this unusual class of natural products. In addition to the known cytotoxicity, an array of biological activities, including antifeedant, nematicidal, antifungal, and NO and AChE inhibitory activities, were observed for this class of compounds. These findings suggested that dichapetalin hybrid triterpenoids as a class have broad biologically active cellular functions including defense against insect herbivores and pathogens. PMID:24597894

  18. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Abdul Kadir, Habsah

    2013-01-01

    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus. PMID:24109490

  19. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.; Woeller, F.; Lehwalt, M.

    1978-01-01

    The evolution of N2, Ar, O2, and CO2 from Martian soil as a function of humidity in the Gas Exchange Experiment are correlated with the mean level of water vapor in the Martian atmosphere. All but O2 are associated with desorption. The evolution of oxygen is consistent with the presence of alkaline earth and alkali metal superoxides; and their peroxides and the gamma-Fe2O3 in the soil can account for the generation of radioactive gas in the Labeled Release Experiment. The slower evolution of CO2 from both the Gas Exchange Experiment and the Labeled Release Experiment are associated with the direct oxidation of organics by gamma-Fe2O3. The Pyrolytic Release Experiment's second peak may be carbon suboxide as demonstrated by laboratory experiments. A necessary condition is that the polymer exists in the Martian soil. We ascribe the activity of the surface samples to the reaction of Martian particulates with an anhydrous CO2 atmosphere activated by uv and ionizing radiations. The surface particles are ultimately altered by exposure to small but significant amounts of water at the sites. From the working model, we have predicted the peculiar nature of the chemical entities and demonstrated that the model is justified by laboratory data. The final confirmation of this model will entail a return to Mars, but the nature and implications of this chemistry for the Martian surface is predicted to reveal even more about Mars with further simulations in the laboratory.

  20. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  1. [Chemical nature and biological activity of miliacine].

    PubMed

    Olifson, L E; Osadchaia, N D; Nuzov, B G; Galkovich, K G; Pavlova, M M

    1991-01-01

    Chemical nature and biological activity of miliacine that is contained in millet oil have been studied. It produces moderate anti-inflammatory effect, stimulates sexual resistance in female rats, increases summary gonadotropic activity of the hypophysis in infantile female rats; in case of acute intoxication with carbon tetrachloride, it promotes normalization of enzyme activity in the liver and blood serum. Miliacine is of practical importance in meat cattle breeding as a growth stimulator. With the use of miliacine the mean daily animal's gain in weight grows, and the coefficient of the food ration digestibility rises. In contrast to other growth stimulators used in cattle breeding miliacine possesses no toxic properties. PMID:1862628

  2. Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA)

    NASA Astrophysics Data System (ADS)

    Williams, Amanda J.; Buck, Brenda J.; Soukup, Deborah A.; Merkler, Douglas J.

    2013-08-01

    Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses explored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert (USA). These results were used to develop a conceptual model that explains the spatial distribution of BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which constrains the development of three surface cover types and biogeomorphic feedbacks across intermontane basins. (1) Cyanobacteria crusts grow where abundant fine sand and negligible rocks form saltating sand sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and lichens. (2) Extensive tall moss-lichen pinnacled crusts are favored on early to late Holocene surfaces composed of mixed rock and fine sand. Moss-lichen crusts induce a dust capture feedback mechanism that promotes further crust propagation and forms biologically-mediated vesicular (Av) horizons. The presence of thick biogenic vesicular horizons supports the interpretation that BSCs are long-lived surface features. (3) Low to moderate density moss-lichen crusts grow on early Holocene and older geomorphic surfaces that display high rock cover and negligible surficial fine sand. Desert pavement processes and abiotic vesicular horizon formation dominate these surfaces and minimize bioturbation potential. The biogeomorphic interactions that sustain these three surface cover trajectories support unique biological communities and soil conditions, thereby sustaining ecological stability. The proposed conceptual model helps predict BSC distribution within intermontane basins to identify biologically sensitive areas, set reference conditions for ecological restoration, and potentially enhance arid landscape models, as scientists address impacts of climate change and anthropogenic disturbances.

  3. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, M? Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. ß-glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  4. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  5. Biologically active compounds from Aphyllophorales (polypore) fungi.

    PubMed

    Zjawiony, Jordan K

    2004-02-01

    This review describes biologically active natural products isolated from Aphyllophorales, many of which are known as polypores. Polypores are a large group of terrestrial fungi of the phylum Basdiomycota (basidiomycetes), and they along with certain Ascomycota are a major source of pharmacologically active substances. There are about 25 000 species of basidiomycetes, of which about 500 are members of the Aphyllophorales, a polyphyletic group that contains the polypores. Many of these fungi have circumboreal distributions in North America, Europe, and Asia and broad distributions on all inhabited continents and Africa; only a small number of the most common species with the most obvious fruiting bodies (basidiocarps) have been evaluated for biological activity. An estimated 75% of polypore fungi that have been tested show strong antimicrobial activity, and these may constitute a good source for developing new antibiotics. Numerous compounds from these fungi also display antiviral, cytotoxic, and/or antineoplastic activities. Additional important components of this vast arsenal of compounds are polysaccharides derived from the fungal cell walls. These compounds have attracted significant attention in recent years because of their immunomodulatory activities, resulting in antitumor effects. These high molecular weight compounds, often called biological response modifiers (BRM), or immunopotentiators, prevent carcinogenesis, show direct anticancer effects, and prevent tumor metastasis. Some of the protein-bound polysaccharides from polypores and other basidiomycetes have found their way to the market in Japan as anticancer drugs. Finally, numerous compounds with cardiovascular, phytotoxic, immunomodulatory, analgesic, antidiabetic, antioxidant, insecticidal, and nematocidal activities, isolated from polypores, are also presented. In fact many of the fungi mentioned in this paper have long been used in herbal medicine, including polypores such as Ganoderma lucidum (Reishi or Ling Zhi), Laetiporus sulphureus (Chicken-of-the-Woods), Trametes versicolor (Yun Zhi), Grifola umbellata (Zhu Lin), Inonotus obliquus (Chaga), and Wolfiporia cocos (Hoelen). PMID:14987072

  6. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  7. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  8. [Biologically active substances of preparation avercom].

    PubMed

    Beliavskaia, L A; Kozyritskaia, V E; Valagurova, E V; Iutinskaia, G A

    2012-01-01

    The preparation avercom created on the basis of ethanol extracts from the biomass of Streptomyces avermitilis UCM Ac-2179, contains an antiparasitic antibiotic avermectin, as well as a complex of biologically active substances: amino acids, lipids, including nonsaturated fatty acids, and phytohormones, particularly: auxins, cytokinins, hybberellins. The above mentioned complex is characterized by nematocidical, phytostimulating and elicitor effect upon plants which has been confirmed with the results of production experiments on the cucumber variety Angelina. PMID:22830191

  9. Simple flavones possessing complex biological activity

    Microsoft Academic Search

    S. Tahara; J. L. Ingham

    2000-01-01

    Two simple flavones, each of which exhibits distinct biological activity despite their closely related structures, have been recognized by detailed bioassays, and bioassay-orientated isolation procedures. The identity of both flavones has been confirmed by synthesis. One of these compounds, 5-methoxy-6,7-methylenedioxyflavone has been found in an extract of Polygonum lapathifolium L. subsp. nodosum (Polygonaceae) using a screening test devised to detect

  10. Distribution and biological activity of ? -thymosins

    Microsoft Academic Search

    M. Miheli?; W. Voelter

    1994-01-01

    ß-Thymosins, a group of highly homologous peptides consisting of about 40 amino acid residues, were found to be distributed from mammals up to echinoderms. Althogh they have first been isolated from mammalian thymus tissue preparations, their occurrance is not organ-specific and they are present even in different types of cells. For thymosinß4 several biological activities have been reported, stating that

  11. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of rhizosphere and the favorable soil moisture conditions under tree canopy on soil microbial activities. TOC, BR and MB-C values were considerably lower in soil depth of 10-40cm compared with 0-10 cm in both irrigated and rainfed soil parcels. Moreover BR and MB-C was higher in irrigated soil parcels compared with rainfed ones suggesting that the periodic irrigation significantly enhances the soil microbial activity. There were no considerable differences in TOC. For this the TOC and potential activity of microbial community can contribute in the soil nutrient and irrigation management guidelines in order to exploit the utilization of productive soils in the region under studied.

  12. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  13. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil management induced variability, there was a strong interaction with soil type and climate conditions. There was also a relatively high variability within the same soil management and soil type class, indicating farm to farm variability in conditions and history of soil management. Based on this dataset two different approaches were taken to: A) evaluate the risk of soil degradation based on a limited set of soil properties, B) assess the effect of changes in SMS on soil biodiversity by using terminal restriction profiles (TRFs) derived from T-RFLP analysis of amplified 16S rDNA as. The results indicates the potential of both approaches to assess the risk of soil degradation (A) and the impact on soil biodiversity (B) upon appropriate benchmarking to characterize the interaction between soil management and soil type References Álvarez, S., Soriano, M.A., Landa, B.B., and Gómez, J.A. 2007. Soil properties in organic olive orchards compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use Manage 23:404-416. Gómez, J.A., Álvarez, S., and Soriano, M.A. 2009. Development of a soil degradation assessment tool for organic olive groves in southern Spain. Catena 79:9-17. Landa, B.B., Montes-Borrego, M., Aranda, S., Soriano, M.A., Gómez, J.A., and Navas-Cortés, J.A. 2013. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain. Environmental Microbiology Reports (accepted) Soriano, M.A., Álvarez, S., Landa, B.B., and Gómez, J.A. 2013. Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renew Agr Food Syst (in press), doi:10.1017/S1742170512000361.

  14. NASA's Soil Moisture Active Passive (SMAP) observatory

    NASA Astrophysics Data System (ADS)

    Kellogg, K.; Thurman, S.; Edelstein, W.; Spencer, M.; Chen, Gun-Shing; Underwood, M.; Njoku, E.; Goodman, S.; Jai, Benhan

    The Soil Moisture Active Passive (SMAP) mission, one of the first-tier missions recommended by the 2007 U.S. National Research Council Committee on Earth Science and Applications from Space, was confirmed in May 2012 by NASA to proceed into Implementation Phase (Phase C) with a planned launch in October 2014. SMAP will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band. Major challenges addressed by the observatory design include: (1) achieving global coverage every 2-3 days with a single observatory; (2) producing both high resolution and high accuracy soil moisture data, including through moderate vegetation; (3) using a mesh reflector antenna for L-band radiometry; (4) minimizing science data loss from terrestrial L-band radio frequency interference; (5) designing fault protection that also minimizes science data loss; (6) adapting planetary heritage avionics to meet SMAP's unique application and data volume needs; (7) ensuring observatory electromagnetic compatibility to avoid degrading science; (8) controlling a large spinning instrument with a small spacecraft; and (9) accommodating launch vehicle selection late in the observatory's development lifecycle.

  15. Rapid Recovery of Cyanobacterial Pigments in Desiccated Biological Soil Crusts following Addition of Water

    PubMed Central

    Abed, Raeid M. M.; Polerecky, Lubos; Al-Habsi, Amal; Oetjen, Janina; Strous, Marc; de Beer, Dirk

    2014-01-01

    We examined soil surface colour change to green and hydrotaxis following addition of water to biological soil crusts using pigment extraction, hyperspectral imaging, microsensors and 13C labeling experiments coupled to matrix-assisted laser desorption and ionization time of flight-mass spectrometry (MALD-TOF MS). The topsoil colour turned green in less than 5 minutes following water addition. The concentrations of chlorophyll a (Chl a), scytonemin and echinenon rapidly increased in the top <1 mm layer while in the deeper layer, their concentrations remained low. Hyperspectral imaging showed that, in both wet and dehydrated crusts, cyanobacteria formed a layer at a depth of 0.2–0.4 mm and this layer did not move upward after wetting. 13C labeling experiments and MALDI TOF analysis showed that Chl a was already present in the desiccated crusts and de novo synthesis of this molecule started only after 2 days of wetting due to growth of cyanobacteria. Microsensor measurements showed that photosynthetic activity increased concomitantly with the increase of Chl a, and reached a maximum net rate of 92 µmol m?2 h?1 approximately 2 hours after wetting. We conclude that the colour change of soil crusts to green upon water addition was not due to hydrotaxis but rather to the quick recovery and reassembly of pigments. Cyanobacteria in crusts can maintain their photosynthetic apparatus intact even under prolonged periods of desiccation with the ability to resume their photosynthetic activities within minutes after wetting. PMID:25375172

  16. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid co-culture against A. flav...

  17. DIVISION S-3--SOIL BIOLOGY & BIOCHEMISTRY A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly

    E-print Network

    Fierer, Noah

    DIVISION S-3--SOIL BIOLOGY & BIOCHEMISTRY A Proposed Mechanism for the Pulse in Carbon Dioxide pro-The rapid rewetting of a dry soil often yields a pulse in soil CO2 posed mechanism in surface soils, yet the mechanism responsible for produc- result of the mineralization of nonbiomass soil

  18. The influence of biological soil crusts on mineral uptake by associated vascular plants

    USGS Publications Warehouse

    Harper, K.T.; Belnap, Jayne

    2001-01-01

    Soil surfaces dominated by cyanobacteria and cyanolichens (such as Collema sp.) are widespread in deserts of the world. The influence of these biological soil crusts on the uptake of bioessential elements is reported for the first time for six seed plants of the deserts of Utah. This sample almost doubles the number of species for which the influence of biological soil crusts on mineral uptake of associated vascular plants is known. These new case studies, and others previously published, demonstrate that cyanobacterial or cyanobacteria- Collema crusts significantly alter uptake by plants of many bioessential elements. In studies now available, these crusts always increase the N content of associated seed plants. Uptake of Cu, K, Mg, and Zn is usually (>70% of reported cases) increased in the presence of the biological soil crusts. Soil crusts are generally negatively associated with Fe and P levels in associated seed plant tissue, while plant tissue levels of Ca, Mn, and Na are positively as often as negatively associated with the presence of soil crusts. Increases in bioessential elements in vascular plant tissue from biologically-crusted areas are greatest for short-lived herbs that are rooted primarily within the surface soil, the horizon most influenced by crustal organisms. The mineral content of a deeply rooted shrub (Coleogyne ramosissima) was less influenced by co-occurrence of biological soil crusts.

  19. A microcosm approach to assessing the effects of earthworm inoculation and oat cover cropping on CO2 fluxes and biological properties in an amended semiarid soil.

    PubMed

    Caravaca, F; Pera, A; Masciandaro, G; Ceccanti, B; Roldán, A

    2005-06-01

    We designed a microcosm experiment to assess the influence of inoculation with Eisenia foetida earthworms and the establishment of an Avena sativa cover crop on biological (enzyme activities and labile carbon fractions) soil quality indicators in a soil treated with a composted organic residue, and to determine the contribution of these treatments to carbon dioxide emissions from the soil to the atmosphere of the microcosm. The microcosms were incubated for 53 days under 28 degrees C/18 degrees C day/night temperatures. The addition of earthworms and the planting of A. sativa increased dehydrogenase activity of compost amended soil by about 44% after 23 days of incubation. The metabolic potential, calculated as the ratio dehydrogenase activity/water soluble C, was higher in the compost amended soil planted with A. sativa. The highest total amount of CO2-C evolved occurred in the soil treated with composted residue and earthworms (about 40% of the total amount of CO2 evolved came from earthworm activity). The planting of A. sativa increased the decomposition rate constant of organic matter in the amended soil but decreased the potentially mineralizable C pool. In conclusion, the establishment of an A. sativa cover crop and the addition of E. foetida to a degraded agricultural soil treated with composted residue were effective treatments for improving the biological and biochemical quality and the metabolic potential of the soil. PMID:15894048

  20. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10 days after shoot cutting and decreased thereafter. In conclusion, the study showed that fresh root detritus stimulates enzyme activities much stronger than living roots, probably because of the high pulse input of C and N from dying roots compared to slow continuous release of rhizodeposits. Taken together, soil zymography is a very promising novel technique to gain insights the effects of roots on the spatial and temporal dynamic of exoenzyme activity in soil. References Spohn, M., Carminati, A., Kuzyakov, Y. (2013). Zymography - A novel in situ method for mapping distribution of enzyme activity in soil. Soil Biology and Biochemistry 58, 275-280. Spohn, M., Kuzyakov, Y. (2013): Distribution of microbial- and root- derived phosphatase activities in the rhizosphere depending on P availability and C allocation - Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry 67, 106-113. Spohn, M., Kuzyakov, Y. (accepted): Spatial and temporal dynamics of hotspots of enzyme activity as affected by living and dead roots - A soil zymography analysis. Plant and Soil

  1. Effect of glyphosate on the microbial activity of two Romanian soils.

    PubMed

    Sumalan, R M; Alexa, E; Negrea, M; Sumalan, R L; Doncean, A; Pop, G

    2010-01-01

    Glyphosate applied to soils potentially affect microbial activity. A series of field and laboratory experiments assessed the effect of this herbicide on soil microorganisms. The aim of experiments was to evaluate the effect of glyphosate application on the soil microbial community structure, function and their activity. We studied "in vitro", changes in the microbial activity of typical Chernozem and Gleysol soils, with and without applied glyphosate. The herbicide was applied at a rate of 2, respectively 4 mg kg(-1) of soil and microbial activity were measured by fluorescein diacetate (FDA) hydrolysis. We found an increase of 9 to 13% in FDA hydrolyses in the presence of glyphosate in rate of 2 mg kg (-1) compared with the same type of soil which had never received herbicide. The double quantity of glyphosate decrease soil microbial activity; the amount of hydrolyzed fluorescein is lower than the addition of 2 ppm. The greater decrease was observed in the Gleysol type where the fluorescein hydrolyzed is with 4, 85% lower than version control without glyphosate. Chemical characters of soil, influence soil biological activity when herbicide is added. In Chemozem case, rich in humus, whose predominant micro flora is represented by actinomycetes through glyphosate treatment these organisms growths of as major producers of antibiotics actinomycetes determine an inhibitory effect on eubacteria and micromycetes growth, which is highlighted by estimating a relatively small number of them. After 10 days, once with decreasing of glyphosate content in soil, decreases the number of active actinomycetes, therefore we are witnessing to a numerical growth of bacterial population. In Gleysol type the indigenous micro flora is represented by eubacteria, so when the glyphosate is added it was registered a high growth of these organisms fraction. PMID:21542479

  2. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  3. Thiol-derivatized minihepcidins retain biological activity.

    PubMed

    Fung, Eileen; Chua, Kristine; Ganz, Tomas; Nemeth, Elizabeta; Ruchala, Piotr

    2015-02-15

    Minihepcidins are small peptides that mimic biological activity of the iron-regulatory hormone hepcidin. Structurally, they contain thiol-free-cysteine residue in position 7 which is crucial for their bioactivity. Nonetheless, free sulfhydryl group is not desirable in pharmaceutical entities as it may lead to dermatological side effects. Moreover free thiol moiety is quite reactive and depending on conditions/reagents may be alkylated and/or oxidized giving various Cys-derivatives: S-alkyl cysteines, sulfoxides, sulfones, disulfides, cysteinesulfinic and cysteic acids. To limit such reactivity and maintain bioactivity of minihepcidin(s) we used thiol-protection strategy based on activated vinyl thioethers. Novel S-protected analogs of physiologically active minihepcidin PR73 were synthesized and tested in vitro showing activity comparable to parental molecule. The most active compound, PR73SH was also tested in vivo showing activity profile analogous to PR73. Collectively, our findings suggest that S-vinyl-derivatization of minihepcidin(s) may be a suitable approach in the development of physiologically active agonists of hepcidin. PMID:25599838

  4. [Physicochemical and biological characteristics of coastal saline soil under different vegetation cover].

    PubMed

    Zhou, Jian; Li, Gang; Zhou, Jian; Qin, Pei

    2011-04-01

    Taking seven plots of coastal saline soil under different vegetation cover in North Jiangsu as study sites, this paper studied the seasonal fluctuations of soil basic physicochemical and biological characteristics, and analyzed the relationships between these fluctuations and vegetation cover. In the test plots, there was a greater variability of soil basic physicochemical and biological characteristics. The average soil electrical conductivity was lower in crop plots (0.95 dS m(-1)) than in natural vegetation plots (2.77 dS m(-1)), but parts of the crop plots showed an increased soil electrical conductivity compared with pre-planting. Overall, the soil fertility of the plots was generally at a low level, with the hydrolysable nitrogen content averagely lower than 50 mg kg(-1), available phosphorus content (except fertilized plots) lower than 3 mg kg(-1), and organic matter content less than 1%. Due to fertilization, the soil conditions in crop plots somewhat improved. For the test coastal saline soil, its electrical conductivity and nutrient level were the key factors affecting the vegetation distribution and plant growth, and soil electrical conductivity was most important. There existed close correlations between soil nitrogen and phosphorus contents and soil microbial amount. The seasonal fluctuations of soil characteristics were closely related with vegetation type and human disturbance, being relatively stable under higher vegetation coverage and lesser human disturbance, and dramatic in bare land and castor experimental plots. PMID:21774319

  5. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  6. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  7. Accommodating Students with Disabilities in Soil Science Activities

    ERIC Educational Resources Information Center

    Langley-Turnbaugh, S. J.; Murphy, Kate; Levin, E.

    2004-01-01

    Soil science education is lacking in terms of accommodations for persons with disabilities. Individuals with disabilities are often excluded from soil science activities in school, and from soil science careers. GLOBE (Global Learning Observations to Benefit the Environment) is a worldwide, hands-on primary and secondary school-based education and…

  8. Recombinant glucagon: a differential biological activity.

    PubMed

    Basso, Angelina M M; Pelegrini, Patrícia B; Mulinari, Fernanda; Costa, Michelle C; Viana, Antonio B; Silva, Luciano P; Grossi-de-Sa, Maria Fatima

    2015-01-01

    In Brazil, there is a growing demand for specialised pharmaceuticals, and the high cost of their importation results in increasing costs, reaching US$ 1.34 billion in 2012 and US$ 1.61 billion in 2013. Worldwide expenses related to drugs could reach US$ 1.3 trillion in 2018, especially due to new treatments for hepatitis C and cancer. Specialised or high-cost pharmaceutical drugs used for the treatment of viral hepatitis, multiple sclerosis, HIV and diabetes are distributed free of charge by the Brazilian government. The glucagon peptide was included in this group of high-cost biopharmaceuticals in 2008. Although its main application is the treatment of hypoglycaemia in diabetic patients, it can also be used with patients in an alcoholic coma, for those patients with biliary tract pain, and as a bronchodilator. Therefore, in order to reduce biopharmaceutical production costs, the Brazilian government passed laws focusing on the development and increase of a National Pharmaceutical Industrial Centre, including the demand for the national production of glucagon. For that reason and given the importance and high cost of recombinant glucagon, the purpose of this study was to develop methods to improve production, purification and performance of the biological activity of recombinant glucagon. Glucagon was recombined into a plasmid vector containing a Glutathione S-transferase tag, and the peptide was expressed in a heterologous Escherichia coli system. After purification procedures and molecular analyses, the biological activity of this recombinant glucagon was examined using in vivo assays and showed a highly significant (p?biological activity. PMID:25852997

  9. Evidence for biological mediation of K and P weathering inferred from a new process-based soil evolution model and soil chronosequences from Hawaii

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Gloor, E.

    2012-12-01

    The productivity of many tropical forests is limited by the availability of nutrients such as phosphorus (P). Nutrient limitation thus has consequences for the global climate because it alters the response of vegetation productivity to changing CO2 concentrations. The amount of mineral derived nutrients available to vegetation depends upon a number of factors such as the age of the soil, the weatherability of rock minerals, the mechanism of nutrient uptake by the vegetation and the leaching intensity of the soils. An understanding of the interactions between pedogenetic processes and nutrient cycling can therefore enhance our understanding of ecosystem dynamics. Studies examining the interactions between soil processes and nutrient availability are limited, mainly because of the long timescales over which many of these processes operate and of the difficulty in isolating individual soil processes. Data from soil climate-sequences and chronosequences can potentially shed light on these interactions when combined with a model which includes soil forming processes over pedogenic timescales. We have developed a process-based soil evolution model which can be evaluated with measurements of soil properties in order to understand such biogeochemical cycles. The mechanistic, soil evolution model presented includes the major processes of soil formation including i) mineral weathering, ii) percolation of rainfall, iii) leaching of solutes, iv) surface erosion, v) bioturbation and vi) vegetation-soil interactions. The specific properties the model simulates over timescales of tens to hundreds of thousand years are, soil depth, vertical profiles of elemental composition, soil solution pH and organic carbon distribution. Modelled soil properties are compared with measured soil properties from basaltic soil chronosequences in Hawaii. The model generally agrees well with the soil chronosequences. Here we focus on one particularly interesting result regarding the role of the biosphere on weathering. Model results demonstrate that the biosphere greatly influences modelled soil properties. A good agreement is observed between measured and modelled Na, which is not a plant nutrient and Mg and Ca which are less strongly cycled, across both an age and rainfall gradient, suggesting a good understanding of modelled soil processes. However, the model underestimates the relative depletion of K and P from the soil profiles. Nutrient uptake in the model is controlled by the rate of evapotranspiration and the concentration of the nutrient in the soil solution. Independently, there is experimental evidence for roots actively inducing the release of non-exchangeable nutrients from minerals. The differences between measured and modelled K and P profiles therefore indirectly provides evidence for this mechanism of nutrient acquisition and highlights the important role vegetation and mycorrhiza play in accelerating the release of specific nutrients from minerals. This result suggests that biologically enhanced mineral weathering should be recognized when interpreting soil properties in order to understand soil-vegetation interactions.

  10. EFFECTS OF BIOLOGICAL AMENDMENTS ON SOIL MICROBIOLOGY AND SOILBORNE POTATO DISEASES IN DIFFERENT CROPPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various biological amendments, including commercial and research biocontrol agents, microbial inoculants, mycorrhizae, aerobic compost tea (ACT), and a biostimulant were evaluated for their effects on soil microbial community characteristics (SMCC) and soilborne diseases of potato in greenhouse and ...

  11. ADSORPTION, MOVEMENT, AND BIOLOGICAL DEGRADATION OF LARGE CONCENTRATIONS OF SELECTED PESTICIDES IN SOILS

    EPA Science Inventory

    Because of the importance of soil in biologically reducing the quantity and retarding the rate of pollutant movement into groundwater, this laboratory study was initiated to evaluate the adsorption, mobility, and degradation of large concentrations of the pesticide atrazine, meth...

  12. Biological Activities of Polyphenols from Grapes

    PubMed Central

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  13. Milk Inhibits the Biological Activity of Ricin

    PubMed Central

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-01-01

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food. PMID:22733821

  14. ECONOMICS AND POLICY CONTEXT FOR THE BIOLOGICAL MANAGEMENT OF SOIL FERTILITY (BMSF) IN ETHIOPIA

    Microsoft Academic Search

    HABTAMU T. KASSAHUN; CHARLES F. NICHOLSON; DAWIT SOLOMON; AMY S. COLLICK; TAMMO S. STEENHUIS

    2009-01-01

    Many developing countries implement programs and policies to increase or maintain soil fertility, with the objectives of increased crop yields and decreased poverty. However, few countries give emphasis to the biological management of soil fertility (BMSF) compared to more traditional approaches. Ethiopia emphasizes the use synthetic fertilizers to increase food security and reduce poverty, with little attention to BMSF. This

  15. Application of biological indicators to assess recovery of hydrocarbon impacted soils

    Microsoft Academic Search

    J. J. C. Dawson; E. J. Godsiffe; I. P. Thompson; T. K. Ralebitso-Senior; K. S. Killham; G. I. Paton

    2007-01-01

    Remediation programmes are considered complete when human risk-based criteria are met. These targets are unrelated to the ecological parameters that may be important with regard to future soil uses. As a consequence, there has been a move towards the consideration of biological indicators for hazard assessment in conjunction with the remediation of contaminated soils. This study uses a range of

  16. Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub

    Microsoft Academic Search

    Rebecca R. Hernandez; Darren R. Sandquist

    Biological soil crusts (BSCs) are comprised of soil particles, bacteria, cyanobacteria, green algae, microfungi, lichens,\\u000a and bryophytes and confer many ecosystem services in arid and semiarid ecosystems worldwide, including the highly threatened\\u000a California sage scrub (CSS). These services, which include stabilizing the soil surface, can be adversely affected when BSCs\\u000a are disturbed. Using field and greenhouse experiments, we tested the

  17. Role of organic acids in the mechanisms of biological soil disinfestation (BSD)

    Microsoft Academic Search

    Noriaki Momma; Kazuhiro Yamamoto; Peter Simandi; Masahiro Shishido

    2006-01-01

    Biological soil disinfestation (BSD), or reductive soil disinfestation, achieved by amendment with organic materials such\\u000a as wheat bran followed by flooding and covering the soil surface, has been used to control some soilborne diseases including\\u000a Fusarium wilt and bacterial wilt of tomato. During a BSD treatment, accumulation of acetic acid and\\/or butyric acid was detected\\u000a with high-performance liquid chromatography. Survival

  18. Biological activities of Brucella abortus lipopolysaccharides.

    PubMed Central

    Moreno, E; Berman, D T; Boettcher, L A

    1981-01-01

    Purified lipopolysaccharide (LPS) from smooth (s) and rough (R) strains of Brucella abortus and lipid A isolated from S-LPS by mild acid hydrolysis were examined in several assays of biological activity. Brucella S- and R-LPSs and Brucella lipid A activated the complement cascade. Previously reported mitogenic activation by Brucella LPSs of spleen cells from endotoxin-resistant C3H/HeJ mice was confirmed and also produced by isolated Brucella lipid A. Mitogenicity was not inhibited by polymyxin B, and amino acid analysis showed no binding of polymyxin B to Brucella LPS under conditions in which mitogenicity of phenol-water-extracted Escherichia coli LPS was inhibited. S and R Brucella LPSs and lipid A all produced equivalent polyclonal stimulation of C3H/HeJ and C3H/HeAU spleen cells. Crude and purified LPS from S but not from R B. abortus was toxic for outbred mice, with 50% lethal doses approximately six times greater than that for E. coli LPS. S- and R-LPSs were abortifacient in pregnant outbred mice. S Brucella LPS was lethal for carrageenen-pretreated C3H/HeJ and C3H/HeAU mice, whereas only C3H/HeAU mice were killed by E. coli LPS. The data are consistent with the hypothesis that the unique fatty acid composition of Brucella lipid A is responsible for its biological activity in endotoxin-resistant C3H/HeJ mice. The participation of the protein strongly bound to the lipid A cannot be excluded, but its mode of action, if any, is different from that of the lipid A-associated protein of enterobacterial LPS. PMID:6783538

  19. [Nonequilibrium state of electrochemically activated water and its biological activity].

    PubMed

    Petrushanko, I Iu; Lobyshev, V I

    2001-01-01

    Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing. PMID:11449536

  20. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    PubMed

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils. PMID:24875876

  1. Impact of Long-Term Forest Enrichment Planting on the Biological Status of Soil in a Deforested Dipterocarp Forest in Perak, Malaysia

    PubMed Central

    Karam, D. S.; Arifin, A.; Radziah, O.; Shamshuddin, J.; Majid, N. M.; Hazandy, A. H.; Zahari, I.; Nor Halizah, A. H.; Rui, T. X.

    2012-01-01

    Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20?m × 20?m) were established within each enrichment planting (F1) and secondary forest (F2) plots, after which soil was sampled at depths of 0–15?cm (topsoil) and 15–30?cm (subsoil). Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters. PMID:22606055

  2. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  3. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  4. The Production of Active Nitrogen in the Soil.

    E-print Network

    Fraps, G. S. (George Stronach)

    1908-01-01

    :AS AGRICULTURAL EXPERIMENT STAT1 'ON. BULLETIN NO. 106 JULY, 1908 oduction of Active Nitrogen in the Soil. By G. S. FRAPS, Ph. D., Chemist. Post Office COLLEGE STATION, BRAZOS COUNTY, TEX-,. CULTUF IAL EXF 'ERIMENT STATIONS. OFFICERS... of Introduction .......................................................... 4 Methods of Work ..................................................... 5 ............... I Nature of Soil on Production of Active Nitrogen 6...

  5. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    PubMed Central

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  6. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation.

    PubMed

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P

    2011-04-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  7. BIOLOGICAL ACTIVITIES OF C1 INHIBITOR

    PubMed Central

    Davis, Alvin E.; Mejia, Pedro; Lu, Fengxin

    2008-01-01

    Broadly speaking, C1 inhibitor plays important roles in the regulation of vascular permeability and in the suppression of inflammation. Vascular permeability control is exerted largely through inhibition of two of the proteases involved in the generation of bradykinin, factor XIIa and plasma kallikrein (the plasma kallikrein-kinin system). Anti-inflammatory functions, however, are exerted via several activities including inhibition of complement system proteases (C1r, C1s, MASP2) and the plasma kallikrein-kinin system proteases, in addition to interactions with a number of different proteins, cells and infectious agents. These more recently described, as yet incompletely characterized, activities serve several potential functions, including concentration of C1 inhibitor at sites of inflammation, inhibition of alternative complement pathway activation, inhibition of the biologic activities of gram negative endotoxin, enhancement of bacterial phagocytosis and killing, and suppression of the influx of leukocytes into a site of inflammation. C1 inhibitor has been shown to be therapeutically useful in a variety of animal models of inflammatory diseases, including gram negative bacterial sepsis and endotoxin shock, suppression of hyperacute transplant rejection, and treatment of a variety of ischemia-reperfusion injuries (heart, intestine, skeletal muscle, liver, brain). In humans, early data appear particularly promising in myocardial reperfusion injury. The mechanism (or mechanisms) of the effect of C1 inhibitor in these conditions is (are) not completely clear, but involve inhibition of complement and contact system activation, in addition to variable contributions from other C1 inhibitor activities that do not involve protease inhibition. PMID:18674818

  8. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah

    Microsoft Academic Search

    J. Belnap; D. A. Gillette

    1997-01-01

    Friction threshold velocities (FTVs) were determined for biological soil crusts in diÄerent stages of recovery. Particles on the surface of crusts that had been relatively undisturbed for at least 20 years were found to have significantly higher FTVs than those that had been disturbed 5, 10 or 1 years previously (376, 87, and 46 cm sec?1, respectively). FTV's for crust

  9. Soil and Litter Animals.

    ERIC Educational Resources Information Center

    Lippert, George

    1991-01-01

    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  10. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    NASA Astrophysics Data System (ADS)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  11. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    SciTech Connect

    Smith, E.D.

    1995-12-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms.

  12. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  13. Activity of Arylsulphatase in Soil Contaminated with Polycyclic Aromatic Hydrocarbons.

    PubMed

    Lipi?ska, Aneta; Kucharski, Jan; Wyszkowska, Jadwiga

    2014-01-01

    An experiment has been performed to determine the activity of arylsulphatase in soil submitted to pressure of four polycyclic aromatic hydrocarbons: naphthalene, phenanthrene, anthracene, and pyrene, in the amount of: 0, 1,000, 2,000, and 4,000 mg kg(-1) dm of soil. Soil samples were also applied some organic substances, such as: cellulose, sucrose, and compost, in the amount of 0 and 9 g kg(-1) dm of soil. The experiment was run under laboratory conditions. It was established on soil which belonged to loamy sand. The soil resistance (RS) and resilience (RL) indices were computed. It has been discovered that the PAHs stimulated arylsulphatase activity, with anthracene raising the activity of the enzyme to the highest degree. The activity of arysulphatase depended significantly on the dose of a PAH, duration of pressure, and type of organic substances added to soil. The highest resistance (RS) was determined in soil exposed to phenanthrene, and the lowest one-in soil polluted with pyrene. Low values of the RL index prove that polycyclic aromatic hydrocarbons cause lasting disorders in the activity of arylsulphatase. PMID:25221368

  14. Pyran and Polyribonucleotides: Differences in Biological Activities

    PubMed Central

    Morahan, Page S.; Regelson, William; Munson, Albert E.

    1972-01-01

    Maleic anhydride-divinyl ether copolymer (pyran) and the polyribonucleotides are both large polyanions with potent antiviral activity. However, they are biologically quite different. Interferon levels of 100 units or more/ml were associated with antiviral activity of polyribonucleotides. Interferon induction by pyran compounds was not primarily involved in antiviral resistance because preparations that did not induce interferon possessed antiviral activity equal to that of interferoninducing preparations. Both polyriboinosinic-cytidylic acid [poly (rI.rC)] and pyran increased the immune response to sheep erythrocytes in the Jerne hemolytic plaque-forming cell (PFC) assay, but their modes of immunoadjuvant action differed. On peak day, poly (rI.rC)-treated mice demonstrated 5.1 × 104 PFC/spleen (557 PFC/106 nucleated cells) and pyran-treated mice exhibited 4.5 × 104 PFC/spleen (299 PFC/106 nucleated cells), as compared with 2.7 × 104 PFC/spleen (261 PFC/106 nucleated cells) in controls. The compounds also differed in phagocytic alteration; polyribonucleotides did not affect phagocytosis whereas pyran produced a biphasic response. Both polyanions exhibited toxic inhibition of liver microsomal enzyme metabolism of type I and type II drugs. However, whereas pyran sensitized mice 50-fold to the lethal effects of endotoxin, the polyribonucleotides did not significantly sensitize mice to endotoxin. PMID:4670655

  15. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come: Europés ZT/CA area is 1.35 million hectares, while the world area is now some 125 million and growing at a rate of 7 million hectares per year. More scientific measurements of the benefits of this system are required, both to assist adoption and to trigger policy measures. In the EEC, CAP reform (greening) needs to consider making environmental services payments for these social benefits since a reduction in single farm payments is ineluctable and carbon footprint reduction is of the essence, in the face of constantly-rising fuel prices and the need to cut GHG emissions. Therefore, as the principal farm tool which offers an effective and immediate solution towards positive changes in soil quality, productivity and sustainability, ZT/CA adoption needs financial incentives, which have high economic and environmental returns to society.

  16. Correlation of unsupported ²¹?Pb activity in soil and moss.

    PubMed

    Krmar, M; Radnovi?, D; Hansman, J

    2014-03-01

    The activities of unsupported (210)Pb, a naturally occurring radionuclide, were measured in samples of soil and terrestrial mosses collected in Serbia. Considering that clay particles in soil have a high affinity for Pb adsorption, and that mosses usually capture aerosol particles to obtain necessary nutrients, measurable amounts of airborne (210)Pb, the daughter of (222)Rn, can be registered in both soil and mosses. The objective of the present study was to determine if it is possible to compare the activity of unsupported (210)Pb in soil and moss collected at the same sampling site, and to establish if a correlation exists between these measured values. PMID:24333638

  17. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  18. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    SciTech Connect

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  19. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacterial-lichen soil crusts

    USGS Publications Warehouse

    Belnap, Jayne

    1996-01-01

    CyanobacteriaMichen soil crusts can be a dominant source of nitrogen for cold-desert ecosystems. Effects of surface disturbance from footprints, bike and vehicle tracks on the nitrogenase activity in these crusts was investigated. Surface disturbances reduced nitrogenase activity by 30-100%. Crusts dominated by the cyanobacterium Microcoleus vaginatus on sandy soils were the most susceptible to disruption; crusts on gypsiferous soils were the least susceptible. Crusts where the soil lichen Collema tenax was present showed less immediate effects; however, nitrogenase activity still declined over time. Levels of nitrogenase activity reduction were affected by the degree of soil disruption and whether sites were dominated by cyanobacteria with or without heterocysts. Consequently, anthropogenic surface disturbances may have serious implications for nitrogen budgets in these ecosystems.

  20. Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment

    PubMed Central

    2013-01-01

    Soil bacterial composition, as influenced by biological soil disinfestation (BSD) associated with biomass incorporation was investigated to observe the effects of the treatment on the changes and recovery of the microbial community in a commercial greenhouse setting. Chloropicrin (CP) was also used for soil disinfestation to compare with the effects of BSD. The fusarium wilt disease incidence of spinach cultivated in the BSD- and CP-treated plots was reduced as compared with that in the untreated control plots, showing effectiveness of both methods to suppress the disease. The clone library analyses based on 16S rRNA gene sequences showed that members of the Firmicutes became dominant in the soil bacterial community after the BSD-treatment. Clone groups related to the species in the class Clostridia, such as Clostridium saccharobutylicum, Clostridium tetanomorphum, Clostridium cylindrosporum, Oxobacter pfennigii, etc., as well as Bacillus niacini in the class Bacilli were recognized as the most dominant members in the community. For the CP-treated soil, clones affiliated with the Bacilli related to acid-tolerant or thermophilic bacteria such as Tuberibacillus calidus, Sporolactobacillus laevolacticus, Pullulanibacillus naganoensis, Alicyclobacillus pomorum, etc. were detected as the major groups. The clone library analysis for the soil samples collected after spinach cultivation revealed that most of bacterial groups present in the original soil belonging to the phyla Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, TM7, etc. were recovered in the BSD-treated soil. For the CP-treated soil, the recovery of the bacterial groups belonging to the above phyla was also noted, but some major clone groups recognized in the original soil did not recover fully. PMID:23958081

  1. Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment.

    PubMed

    Mowlick, Subrata; Inoue, Takashi; Takehara, Toshiaki; Kaku, Nobuo; Ueki, Katsuji; Ueki, Atsuko

    2013-01-01

    Soil bacterial composition, as influenced by biological soil disinfestation (BSD) associated with biomass incorporation was investigated to observe the effects of the treatment on the changes and recovery of the microbial community in a commercial greenhouse setting. Chloropicrin (CP) was also used for soil disinfestation to compare with the effects of BSD. The fusarium wilt disease incidence of spinach cultivated in the BSD- and CP-treated plots was reduced as compared with that in the untreated control plots, showing effectiveness of both methods to suppress the disease. The clone library analyses based on 16S rRNA gene sequences showed that members of the Firmicutes became dominant in the soil bacterial community after the BSD-treatment. Clone groups related to the species in the class Clostridia, such as Clostridium saccharobutylicum, Clostridium tetanomorphum, Clostridium cylindrosporum, Oxobacter pfennigii, etc., as well as Bacillus niacini in the class Bacilli were recognized as the most dominant members in the community. For the CP-treated soil, clones affiliated with the Bacilli related to acid-tolerant or thermophilic bacteria such as Tuberibacillus calidus, Sporolactobacillus laevolacticus, Pullulanibacillus naganoensis, Alicyclobacillus pomorum, etc. were detected as the major groups. The clone library analysis for the soil samples collected after spinach cultivation revealed that most of bacterial groups present in the original soil belonging to the phyla Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, TM7, etc. were recovered in the BSD-treated soil. For the CP-treated soil, the recovery of the bacterial groups belonging to the above phyla was also noted, but some major clone groups recognized in the original soil did not recover fully. PMID:23958081

  2. Microbial biomass and activity in lead-contaminated soil

    SciTech Connect

    Konopka, A.; Zakharova, T.; Bischoff, M.; Oliver, L.; Nakatsu, C.; Turco, R.F. [Purdue Univ., West Lafayette, IN (United States)

    1999-05-01

    Microbial community diversity, potential microbial activity, and metal resistance were determined in three soils whose lead contents ranged from 0.00039 to 48 mmol of Pb kg of soil{sup {minus}1}. Biomass levels were directly related to lead content. A molecular analysis of 16S rRNAs suggested that each soil contained a complex, diverse microbial community. A statistical analysis of the phospholipid fatty acids indicated that the community in the soil having the highest lead content was not related to the communities in the other soils. All of the soils contained active microbial populations that mineralized [{sup 14}C]glucose. In all samples, 10 to 15% of the total culturable bacteria were Pb resistant and had MCI of Pb for growth of 100 to 150 {micro}M.

  3. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    NASA Astrophysics Data System (ADS)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and intrasoil pulsed continuous-discrete irrigation provide environmentally safe disposal of municipal, industrial, biological and agricultural wastes. Hazardous chemical and biological agents are under the soil surface. It provided a medical and veterinary safety of environment. Biogeosystem technic controls the equilibria in the soil and soil solution, prevents excessive mineralization of organic matter in the surface layers of soil. Simultaneously a soil chemical reduction excluded, biological substance do not degrade to gases. Products of organic matter decomposition are directed to the food chain, 100% waste recycling is obtained. Biogeosystems technique allows producing more biological products hence to recycle excessive amount of man-made CO2 and other substances. Biogeosystems technique increases the rate of photosynthesis of the biosphere, the degree of air ionization. This enhances the formation of rains over land, ensures stability of the ionosphere, magnetosphere and atmosphere of Earth. The nowadays technologies allow applying technical solutions based on Biogeosystem technique, there is unique opportunity to accelerate the noosphere new technological platform.

  4. Winter biotic activity and production of CO2 in Siberian soils: A factor in the greenhouse effect

    Microsoft Academic Search

    S. A. Zimov; G. M. Zimova; S. P. Daviodov; A. I. Daviodova; Y. V. Voropaev; Z. V. Voropaeva; S. F. Prosiannikov; O. V. Prosiannikova; I. V. Semiletova; I. P. Semiletov

    1993-01-01

    Soil CO2 emissions at latitudes near 70°N in northeastern Siberia have been measured and occur at levels high enough to account for the observed winter maximum in atmospheric CO2 concentrations in this latitude. This CO2 is produced by biological activity at the bottom of the active layer above the permafrost. Ecological and anthropological factors may play a role in stimulating

  5. AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment

    Microsoft Academic Search

    Erika Andersson; Anna Rotander; Thomas von Kronhelm; Anna Berggren; Per Ivarsson; Henner Hollert; Magnus Engwall

    2009-01-01

    Background, aim, and scope  Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is\\u000a not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated\\u000a luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally

  6. Earthworm activities and the soil system

    Microsoft Academic Search

    P. Lavelle

    1988-01-01

    Earthworms find in soil the energy, nutrient resources, water and buffered climatic conditions that they need. According to the food resource they exploit and the general environmental conditions, earthworms can be grouped into different functional categories which differ essentially in morphology, size, pigmentation, distribution in the soil profile, ability to dig galleries and produce surface casts, demographic profiles and relationships

  7. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  8. Changes in chemical and biological soil properties as induced by anthropogenic disturbance: A case study of an agricultural soil under recurrent flooding by wastewaters

    Microsoft Academic Search

    Antonio Gelsomino; Luigi Badalucco; Roberto Ambrosoli; Carmine Crecchio; Edoardo Puglisi; Salvatore M. Meli

    2006-01-01

    Monitoring the environmental impact of anthropogenic disturbance on soil ecosystem is of great importance for optimizing strategies for soil use, conservation and remediation. The aim of this study was to assess whether and to what extent a long-term, human-induced disturbance could have affected main chemical and biological properties in an agricultural soil. The study site was a hazel (Corylus avellana

  9. Succession of N cycling processes in biological soil crusts on a Central European inland dune.

    PubMed

    Brankatschk, Robert; Fischer, Thomas; Veste, Maik; Zeyer, Josef

    2013-01-01

    Biological soil crusts (BSCs) are microbial assemblages that occur worldwide and facilitate ecosystem development by nitrogen (N) and carbon accumulation. N turnover within BSC ecosystems has been intensively studied in the past; however, shifts in the N cycle during BSC development have not been previously investigated. Our aim was to characterise N cycle development first by the abundance of the corresponding functional genes (in brackets) and second by potential enzyme activities; we focussed on the four processes: N fixation (nifH), mineralisation as proteolysis and chitinolysis (chiA), nitrification (amoA) and denitrification (nosZ). We sampled from four phases of BSC development and from a reference located in the rooting zone of Corynephorus canescens, on an inland dune in Germany. BSC development was associated with increasing amounts of chlorophyll, organic carbon and N. Potential activities increased and were highest in developed BSCs. Similarly, the abundance of functional genes increased. We propose and discuss three stages of N process succession. First, the heterotrophic stage (mobile sand without BSCs) is dominated by mineralisation activity. Second, during the transition stage (initial BSCs), N accumulates, and potential nitrification and denitrification activity increases. Third, the developed stage (established BSCs and reference) is characterised by the dominance of nitrification. PMID:22816620

  10. BIOLOGICALLY-MEDIATED REMOVAL AND RECOVERY OF PLUTONIUM FROM CONTAMINATED SOIL

    SciTech Connect

    Jerger, Douglas E., Ph.D.,; Alperin, Edward S., QEP,; Holmes, Robert G., Ph.D.

    2003-02-27

    An innovative biological treatment technology successfully reduced plutonium concentration in soil from the Nevada Test Site (NTS) by over 80%. The final volume of plutonium-contaminated material that required disposal was reduced by over 90%. These results, achieved by an independent testing laboratory, confirm the results reported previously using NTS soil. In the previous test a 2530-gram sample of soil (350 to 400 pCi/g Pu) resulted in production of 131 grams of sludge (6,320 pCi/ g Pu) and a treated soil containing 72 pCi/g of Pu. The technology is based on the biological acidification of the soil and subsequent removal of the plutonium and other dissolved metals by a low volume, low energy water leaching process. The leachate is treated in a sulfate-reducing bioreactor to precipitate the metals as metal sulfides. Water may be recycled as process water or disposed since the treatment process removes over 99% of the dissolved metals including plutonium from the water. The plutonium is contained as a stable sludge that can be containerized for final disposal. Full-scale process costs have been developed which employ widely used treatment technologies such as aerated soil piles (biopiles) and bioreactors. The process costs were less than $10 per cubic foot, which were 40 to 50% lower than the baseline costs for the treatment of the NTS soil. The equipment and materials for water and sludge treatment and soil handling are commercially available.

  11. Mechanisms for Soil Moisture Effects on Activity of Nitrifying Bacteria

    Microsoft Academic Search

    JOHN M. STARK; ANDMARY K. FIRESTONE

    1995-01-01

    Moisture may limit microbial activity in a wide range of environments including salt water, food, wood, biofilms, and soils. Low water availability can inhibit microbial activity by lowering intracellular water potential and thus reducing hydration and activity of enzymes. In solid matrices, low water content may also reduce microbial activity by restricting substrate supply. As pores within solid matrices drain

  12. Measurements of microbial community activities in individual soil macroaggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for ß-glucosidase, N-acetyl-ß-D-glucosaminidase, lipase, and leucine...

  13. Studying the Activities of Microorganisms in Soil Using Slides.

    ERIC Educational Resources Information Center

    Cullimore, D. Roy; Pipe, Annette E.

    1980-01-01

    Two implanted slide techniques are described by which activity of proteolylic bacteria and the growth of algae in the soil can be readily studied by school students using simple apparatus and methods. Variations are suggested for studying the effects of agricultural practices and environmental conditions on the soil bacteria and algae. (Author/DS)

  14. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  15. Activation energies and temperature effects from electrical spectra of soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent permittivity often has soil-specific temperature responses as well as soil water responses. Variations of permittivity as a function of frequency and temperature can be used to calculate activation energies. The purpose of this study was to examine permittivity-temperature responses for six...

  16. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  17. Proteomic profiling: a novel approach to understanding the biological causes of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Doerr, Stefan H.; Urbanek, Emilia; Jones, Alun; Dudley, Ed

    2010-05-01

    Soil water repellency is a common phenomenon affecting a wide range of soil and land use types in different climates and is considered "the norm rather than the exception with its degree being variable". In all but the most severe cases, soil water repellency is transient with soils wetting eventually after prolonged wet weather and returning, when soil moisture content falls below the critical value. Despite the far-reaching environmental and (agro-)economic consequences, the fundamental biological causes of soil water repellency and its transient behaviour remain poorly understood. It is widely accepted that soil water repellency is caused by organic compounds coating soil particle surfaces. This reduces the particle's surface tension to values lower than that of water, which, as a net effect, inhibits the intrusion of liquid water into the soil pore space. Microbial as well as plant-derived substances have been implicated as sources of these organic materials, while some microbes have also been identified as degraders and/or emulsifiers of hydrophobic compounds. Common hydrophobic compounds and metabolites (e.g. alkanes and fatty acids) have been isolated from both wettable and water repellent soils in similar amounts indicating that their relevance is ambiguous. Even greater uncertainty exists about the role of soil micro-organisms in the development, reduction and temporal variability of soil water repellency. Importantly, certain filamentous fungi and actinomycete bacteria are able to render their hydrophilic cell surface hydrophobic, for example, during spore formation and hyphal foraging through air-containing pores in soil, by producing extracellular hydrophobic proteins. Beyond their own cell surface, the extracellular proteins can form highly recalcitrant hydrophobic surfaces on the hydrophilic side of amphiphilic, i.e. air-water or soil particle, interfaces. Remarkably, the proteins from fungi can also adhere to hydrophobic surfaces under drying conditions rendering them hydrophilic. The dynamics of production of these proteins and the formation of these hydrophobic protein surfaces in soils are not known. Other, yet unknown, proteins may also contribute to development, reduction and temporal variability of soil water repellency. Here we present the first steps of a new NERC funded project aimed at exploring the relationship between the presence and/or absence of (hydrophobic) protein and soil water repellency. It involves isolation and characterisation of hydrophobic protein and the temporal metaproteomic profiles in UK grassland and dune soils with varying degrees of water repellency. This contributes to identifying the proteomic dynamics, which may influence soil hydrology and structure, and ultimately the ability of soils to absorb water, support biomass growth, store carbon, and to capture and degrade pollutants.

  18. Does soil biodiversity depend upon metabiotic activity and influences?

    Microsoft Academic Search

    John Saville Waid

    1999-01-01

    A central tenet of biological science is that living organisms modify their environments. Metabiosis is a form of ecological dependence in which one organism or a functional group of organisms must modify the environment before another organism or functional group of organisms can live or thrive in it. Soil ecosystems are modified by metabionts to create habitats or supply resources

  19. Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts

    Microsoft Academic Search

    Lynell Deines; Roger Rosentreter; David J. Eldridge; Marcelo D. Serpe

    2007-01-01

    Biological soil crusts dominated by lichens are common components of shrub-steppe ecosystems in northwestern US. We conducted\\u000a growth chamber experiments to investigate the effects of these crusts on seed germination and initial seedling establishment\\u000a of two annual grasses; the highly invasive exotic Bromus tectorum L. and the native Vulpia microstachys Nutt. We recorded germination time courses on bare soil and

  20. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil

    Microsoft Academic Search

    C. R. Chen; L. M. Condron; M. R. Davis; R. R. Sherlock

    2000-01-01

    Selected chemical, biochemical and biological properties of mineral soil (0–30 cm) were measured under a 19 year old forest\\u000a stand (mixture of Pinus ponderosa and Pinus nigra) and adjacent unimproved grassland at a site in South Island, New Zealand. The effects of afforestation on soil properties\\u000a were confined to the 0–10 cm layer, which reflected the distribution of fine roots

  1. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and ?-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil samples by land use, but were unable to group correctly the 100% of the samples. Surprisingly, when the scarce variance presents in components 5 to 40 was also used, the 100% of the samples were grouped by land use, as it was observed with PLFAs. But PLFAs analysis is expensive and time-consuming (some weeks). In contrast, only some minutes are needed for the obtainment of the NIR spectra. Additionally, no chemicals are need, decreasing the costs. The NIR spectrum of a soil contains relevant information about physical, chemical and biochemical properties. NIR spectrum could be considered as an integrated vision of soil quality, and as consequence offers an integrated vision of perturbations. Thus, NIR spectroscopy could be used as tool to monitoring soil quality in large areas. Acknowledgements: Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPRO"

  2. Unexpected Stereochemical Tolerance for the Biological Activity of Tyroscherin

    PubMed Central

    Tae, Hyun Seop; Hines, John; Schneekloth, Ashley R.; Crews, Craig M.

    2011-01-01

    Here we describe the concise syntheses of the 15 diastereomers and key analogs of the natural product tyroscherin. While systematic analysis of the analogs clearly demonstrated that the hydrocarbon tail is important for biological activity, structure-activity relationship studies of the complete tyroscherin diastereoarray revealed a surprisingly expansive stereochemical tolerance for the cytotoxic activity. Our results represent a departure from the tenet that biological activity is constrained to a narrow pharmacophore, and highlight the recently emerging appreciation for stereochemical flexibility in defining the essential structural elements of biologically active small molecules. PMID:21315614

  3. The Infusion of Environmental Activities into a Secondary Biology Curriculum

    ERIC Educational Resources Information Center

    Foster, Helen M.

    1976-01-01

    Reviewed are "adventure-type" environmental education activities incorporated into a secondary level biology course. Student wilderness experiences included 24 weekend activities of hiking, bird watching, camping, and cross-country skiing. (SL)

  4. Biological Remediation of Soil: An Overview of Global Market and Available Technologies

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Kuhad, Ramesh C.; Ward, Owen P.

    Due to a wide range of industrial and agricultural activities, a high number of chemical contaminants is released into the environment, causing a significant concern regarding potential toxicity, carcinogenicity, and potential for bioaccumulation in living systems of various chemicals in soil. Although microbial activity in soil accounts for most of the degradation of organic contaminants, chemical and physical mechanisms can also provide significant transformation pathways for these compounds. The specific remediation processes that have been applied to clean up contaminated sites include natural attenuation, landfarming, biopiling or composting, contained slurry bioreactor, bioventing, soil vapor extraction, thermal desorption, incineration, soil washing and land filling (USEPA 2004).

  5. Synthesis, reactivity and biological activity of 5-alkoxymethyluracil analogues

    PubMed Central

    Brulikova, Lucie

    2011-01-01

    Summary This review article summarizes the results of a long-term investigation of 5-alkoxymethyluracil analogues and is aimed, in particular, at methods of syntheses. Most of the presented compounds were synthesized in order to evaluate their biological activity, therefore, a brief survey of biological activity, especially antiviral, cytotoxic and antibacterial, is also reported. PMID:21804865

  6. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  7. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5?100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5?100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  8. The NASA Soil Moisture Active Passive (SMAP) mission: Overview

    E-print Network

    O'Neill, Peggy

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. Its mission design consists of L-band ...

  9. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  10. The biological detoxication of hormone herbicides in soil

    Microsoft Academic Search

    L. J. Audus

    1951-01-01

    Summary (1) The results of experiments on the continuous perfusion of aerated solutions of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D), 2, Methyl-4, chlorophenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) through garden soil indicate that the kinetics of their breakdown are essentially similar.

  11. Ecology and biology of microfungi from Antarctic rocks and soils

    Microsoft Academic Search

    Silvano Onofri; Massimiliano Fenice; Anna Rita Cicalini; Solveig Tosi; Anna Magrino; Sabina Pagano; Laura Selbmann; Laura Zucconi; Helen S. Vishniac; E. Imre Friedmann

    2000-01-01

    Cryptoendolithic microbial communities, living in porous sandstone rocks in the McMurdo Dry Valleys (Ross Desert) of Southern Victoria Land, Antarctica, were found within weathered pegmatite rocks in Northern Victoria Land, and the first endemic Antarctic fungal genus Friedmanniomyces endolithicus anam.?gen. and sp. nov. was isolated from this community. Selected microfungi from these communities and from soil were examined for the

  12. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    NASA Astrophysics Data System (ADS)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be detected at some agricultural fields by SOC measurements (Jüschke 2009). Therefore attention has to be drawn especially on the carbon content and quality of the used TWW for irrigation purposes.

  13. Variation of Water Retention in Various Soils of Kuwait

    Microsoft Academic Search

    M. Abdal; M. Suleiman; M. Albaho

    2002-01-01

    Soil properties varied in water retention; due to soil texture and organic matter content. Variations of texture in many soils are effected mostly to soil forming factors of parent materials of the soil; biological activities; climactic variation; and duration of soil reaction. While the organic matter contents are affected totally by the environmental conditions of the soils. Water holding capacity

  14. Variation Of Water Retention In Various Soils Of Kuwait

    Microsoft Academic Search

    M. Abdal; M. Suleiman; S. Al-Ghawas

    2002-01-01

    Soil properties varied in water retention; due to soil texture and organic matter content. Variations of texture in many soils are effected mostly to soil forming factors of parent materials of the soil, biological activities, climactic variation, and duration of soil reaction. While the organic matter contents are affected totally by the environmental conditions of the soils. Water holding capacity

  15. A new extreme environment for aerobic anoxygenic phototrophs: biological soil crusts.

    PubMed

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-01-01

    Biological soil crusts improve the health of arid or semiarid soils by enhancing water content, nutrient relations and mechanical stability, facilitated largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs were known from soil crusts. A recent study has demonstrated the presence of aerobic representatives of Earth's second major photosynthetic clade, the evolutionarily basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting pigment bacteriochlorophyll a. At relative abundances of 0.1-5.9% of the cultivable bacterial community, they were comparable in density to aerobic phototrophs in other documented habitats. 16S rDNA sequence analysis revealed the isolates to be related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result adds a new type of harsh habitat, dry soil environments, to the environments known to support aerobic anoxygenic phototrophs. PMID:20532732

  16. Accommodating Students with Disabilities in Soil Science Activities

    NSDL National Science Digital Library

    S. Langley-Turnbaugh

    Soil science education is lacking in terms of accommodations for persons with disabilities to the extent that these individuals are often excluded from soil science activities in school, and from careers in the discipline. This article describes a study whose goal was to develop accommodations to the soils protocols currently being used in the GLOBE (Global Learning Observations to Benefit the Environment) program. These new materials are based on the principles of universal design in education (UDE), so that GLOBE activities and materials can be accessible to a broad range of students, including students with disabilities.

  17. Fate and activity of microorganisms introduced into soil.

    PubMed Central

    van Veen, J A; van Overbeek, L S; van Elsas, J D

    1997-01-01

    Introduced microorganisms are potentially powerful agents for manipulation of processes and/or components in soil. Fields of application include enhancement of crop growth, protection of crops against plant-pathogenic organisms, stimulation of biodegradation of xenobiotic compounds (bioaugmentation), and improvement of soil structure. Inoculation of soils has already been applied for decades, but it has often yielded inconsistent or disappointing results. This is caused mainly by a commonly observed rapid decline in inoculant population activity following introduction into soil, i.e., a decline of the numbers of inoculant cells and/or a decline of the (average) activity per cell. In this review, we discuss the available information on the effects of key factors that determine the fate and activity of microorganisms introduced into soil, with emphasis on bacteria. The factors addressed include the physiological status of the inoculant cells, the biotic and abiotic interactions in soil, soil properties, and substrate availability. Finally, we address the possibilities available to effectively manipulate the fate and activity of introduced microorganisms in relation to the main areas of their application. PMID:9184007

  18. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbour? growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an open steppe dominated by Stipa tenacissima. In February 2009 representative soil samples from the top 10 cm were taken beneath grass tussock and from bare soil. Soil samples in three replicates were incubated after rewetting with distilled water (basal microbial activities) and after rewetting with the glucose solution and with the mixture of glucose and peptone solution (potential microbial activities). The CO2, C2H4 evolved under controlled conditions (60% WHC, 24°C) during a 37-day aerobic incubation were determined. Ammonia and nitrate nitrogen were estimated in percolates after simulated rainfall (on the 16th day of incubation) and in the incubated soil samples at the end of incubation. Net ammonification and net nitrification rates were determined by subtracting initial soil mineral N from both mineral N in percolates plus final mineral N contents at 37th day. Basal, potential microbial respiration and net nitrification in the soils beneath S. tenacissima were, in general, not significantly different from the bare soils. The differences between plant-covered soil and bare soil in cumulative values of CO2 production and in amounts of accumulated NO3--N (net nitrification) were less than ± 10%. Greater differences were found in the net ammonification, which were higher beneath S. tenacissima, mainly in the control (basal activities) variant (about 38 %). Significantly less ethylene produced by microbial activity in soils beneath S. tenacissima after the addition of glucose indicates the dependence of rhizospheric microbial communities on available carbon compounds mainly from root exudates. It can be concluded, similarly as published Goberna et al., (2007), that the distribution of soil microbial properties in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  19. Active and total prokaryotic communities in dryland soils.

    PubMed

    Angel, Roey; Pasternak, Zohar; Soares, M Ines M; Conrad, Ralf; Gillor, Osnat

    2013-10-01

    The relationship between total and metabolically active soil microbial communities can change drastically with environment. In dry lands, water availability is a key factor limiting cells' activity. We surveyed the diversity of total and active Archaea and Bacteria in soils ranging from arid desert to Mediterranean forests. Thirty composited soil samples were retrieved from five sites along a precipitation gradient, collected from patches located between and under the dominant perennial plant at each site. Molecular fingerprinting was used to site-sort the communities according of their 16S rRNA genes (total community) and their rRNA (active community) amplified by PCR or RT-PCR from directly extracted soil nucleic acids. The differences between soil samples were much higher in total rather than active microbial communities: differences in DNA fingerprints between sites were 1.2 and 2.5 times higher than RNA differences (for Archaea and Bacteria, respectively). Patch-type discrepancies between DNA fingerprints were on average 2.7-19.7 times greater than RNA differences. Moreover, RNA-based community patterns were highly correlated with soil moisture but did not necessarily follow spatial distribution pattern. Our results suggest that in water-limited environments, the spatial patterns obtained by the analysis of active communities are not as robust as those drawn from total communities. PMID:23730745

  20. 77 FR 35323 - National Environmental Policy Act: Categorical Exclusions for Soil and Water Restoration Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ...Policy Act: Categorical Exclusions for Soil and Water Restoration Activities AGENCY...the potential environmental effects of soil and water restoration projects that are...exclusions for activities that achieve soil and water restoration objectives....

  1. Lung biological activity of American attapulgite

    SciTech Connect

    Begin, R.; Masse, S.; Rola-Pleszczynski, M.; Geoffroy, M.; Martel, M.; Desmarais, Y.; Sebastien, P.

    1987-04-01

    Attapulgite is a fibrous mineral industrially consumed at the rate of over a million tons per year but the biological activity of the material is not fully known. To evaluate the in vivo toxicity of the fibrous materials, they exposed the tracheal lobe of 16 sheep to a single exposure of either 100 ml saline, 100 mg UICC asbestos fibers in 100 ml saline, 100 mg short asbestos fibers in 100 ml saline, or 100 mg attapulgite in 100 ml saline. The animals were studied by bronchoalveolar lavage (BAL) at Days 2, 12, 24, 40, and 60 and by autopsy at Day 60. In the saline-exposed sheep, BAL and lung histology did not change. In the UICC asbestos-exposed animals, they reproduced the BAL changes previously reported. In the short asbestos-exposed sheep, there were no significant BAL changes. In the attapulgite sheep, they found significant and sustained increases in total BAL cells, macrophages, neutrophils, fibronectin, lactate dehydrogenase, ..beta..-glucuronidase, but BAL cellularity returned to control levels by Day 60 whereas in the UICC asbestos-exposed sheep, it remained significantly above control. Lung histology demonstrated the characteristic peribronchiolar fibrosing alveolitis in the UICC asbestos-exposed sheep, whereas macrophagic alveolitis with minimal airway distortion was seen in the short asbestos-exposed sheep, whereas macrophagic alveolitis with minimal airway distortion was seen in the short asbestos-exposed sheep and in all of the attapulgite-exposed sheep but three which had typical peribronchiolar alveolitis quite similar to that observed in UICC-exposed sheep, but of lower intensity.

  2. DYNAMICS OF SOIL FLORA AND FAUNA IN BIOLOGICAL CONTROL OF SOIL INHABITING PLANT PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cropland soil, which is comprised of spermosphere, rhizosphere and bulk soil, is populated by a wide array of microbial inhabitants. These microbial inhabitants include the microflora, represented by bacteria, actinomyces, archaea, fungi and algae and the micro- and mesofauna, such as protozoa, ...

  3. Soil Biology & Biochemistry 38 (2006) 30013002 A synthesis of soil biodiversity and ecosystem functioning in

    E-print Network

    Wall, Diana

    and ecosystem functioning in Victoria Land, Antarctica Since the 1970s, ecological research on the ice and nutritional resources. These ecosystems are taxonomically and functionally simple, thus providing and comprehensively than is normally the case for soils and to link soil species explicitly with ecosystem functioning

  4. Soil Biology & Biochemistry 39 (2007) 21382149 Heterogeneity of soil nutrients and subsurface biota

    E-print Network

    Neher, Deborah A.

    ecology concerns itself with the flow of energy and materials through organisms and their environment, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity; Soil food webs 1. Introduction Ecologists have long considered how the distribution of abiotic

  5. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  6. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.

  7. Metal-accumulating plants: The biological resource and its commercial exploitation is soil clean-up technology

    SciTech Connect

    Baker, A.J.M. [Univ. of Sheffield (United Kingdom); Reeves, R.D. [Massey Univ., Palmerston North (New Zealand)

    1996-12-31

    This presentation provides a broad overview of metal hyperaccumulator plants and biological accumulation technology. Plants that have been identified as having the greatest potentials for development as phytoremediator crops for metal-contaminated soils are very briefly discussed. Phytoextraction, rhizofiltration, and phytostabilization are briefly defined. Issues pertinent to large scale phytoremediation of soils are discussed, including biological and technological constraints.

  8. ASSESSMENT OF GENOTOXIC ACTIVITY OF PETROLEUM HYDROCARBON-BIOREMEDIATED SOIL

    SciTech Connect

    BRIGMON, ROBIN

    2004-10-20

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays: SOS chromotest and umu-test with and without metabolic activation (S-9 mixture) were used to evaluate genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czor Polish oil refinery. The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2 mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, umu-test was more sensitive than SOS-chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81 percent of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  9. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon content and the effective control of its key components. PMID:23487951

  10. Biology of soil-transmitted helminths: the massive infection.

    PubMed

    Beaver, P C

    1975-04-01

    Soil-transmitted helminth infections when light-to-moderate usually are well tolerated, but heavy-to massive infections invariably cause disease. A massive infection with Ascaris lumbricoides may cause intestinal obstruction, liver abscess, or some other condition requiring surgical treatment; more regularly, however, ascaris disease is a form of malnutrition. Trichuris trichiura causes diarrhea and dysentery and, at times, rectal prolapse. The hookworms, Necator americanus and Ancylostoma duodenale, cause blood-loss from the intestine resulting in anemia. Necator infection is acquired percutaneously, and is more frequently massive than is that of Ancylostoma which may be acquired percutaneously or orally. Estimates of egg output in the feces, based on egg-counts by dilution, direct smear, or thick-film techniques, provide a reliable index of light, medium, or heavy infection. Acquisition of heavy infection with Ascaris and Trichuris depends on favorable qualities of the soil, and on the sorting action of rain which transports and concentrates the eggs of helminths in locations where survival and transmission are favored. The high frequency of heavy hookworm infection in southeastern United States and probably elsewhere may depend largely on the presence of feces-burying dung beetles. Human infection with soil-transmitted helminths of dogs and cats has become a serious public health problem attributable to the persistence of rural mores in the urban setting. PMID:1052507

  11. Global High Resolution Soil Moisture Product from the Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Das, N. N.; Entekhabi, D.; Njoku, E. G.

    2013-12-01

    The SMAP mission is under development with a target launch date in late 2014. The SMAP mission will provide high resolution (~9 km) and frequent revisit (2-3 days) soil moisture product at a global extent. The SMAP instrument architecture incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer that share a single feedhorn and parabolic mesh reflector. The SMAP radiometer and radar instruments are capable of measuring surface soil moisture under moderate vegetation cover individually, however, the instruments suffer from limitations on spatial resolution (radiometer) and sensitivity (radar), respectively. To overcome the limitations of the individual passive and active approaches, the SMAP mission will combine the two data streams to generate an active-passive intermediate resolution and accuracy soil moisture product. The baseline active-passive algorithm disaggregates the coarse resolution (~36 km) radiometer brightness temperature (Tb) measurements using the spatial pattern within the radiometer footprint as inferred from the high resolution coincident radar co-pol and cross-pol backscatter measurements, and then inverts the disaggregated Tb to retrieve soil moisture.Studies are conducted to evaluate the baseline and optional active-passive algorithms at a global extent using a SMAP orbit simulator that provides capability for end-to-end simulation environment. Various aspects of the baseline active/passive algorithm are evaluated that are to be included in the 9 km global soil moisture product. Soil moisture retrieval results from global-extent study area demonstrate that the mission will meet its requirements of global coverage with an accuracy of <0.04 cm3/cm3 in soil moisture for region below 5 kg/m2 vegetation water content having ~9 km spatial and 3 days temporal resolution.The presentation will introduce the scientific community on the SMAP combined active-passive soil moisture product by especially focusing on product accuracy, retrieval characteristics, flags, retrieval thresholds and masks. SMAP

  12. Comparison of Soil Properties and Microbial Activities between Air-Dried and Rewetted Desert and Oasis Soils in Northwest China

    Microsoft Academic Search

    Chen-Hua Li; Yan Li; Li-Song Tang

    2011-01-01

    An air-drying and rewetting (AW) experiment was used to examine the responses of soil properties and microbial activities to abrupt alteration of water availability between desert and oasis soils in northwest China. The results revealed that AW increased soil pH and available nitrogen and phosphorus but decreased soil organic matter in the desert, while available phosphorus increased and available nitrogen

  13. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    Microsoft Academic Search

    D. C. Housman; H. H. Powers; A. D. Collins; J. Belnap

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal

  14. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated

  15. [Ecological and biological features of soils in the forests defoliated by the siberian moth in the southern taiga of middle Siberia].

    PubMed

    Krasnoshchekov, Iu N; Vishniakova, Z V; Perevoznikova, V D; Baranchikov, Iu N

    2003-01-01

    Experimental data are analyzed that concern the effect of zoogenic debris on the properties of soddy deep podzolic soils and raw-humus brown soils characteristic of southern taiga forests in the Yenisei region of Siberia. It is shown that the influence of excrements of Siberian moth larvae on the soil microflora lasts for two or, at most, three growing seasons. Zoogenic plant debris falling on the ground surface during tree stand defoliation is a short-acting but powerful stimulant of biological activity in the litter; hence, it has a considerable effect on soil properties. This effect is enhanced by changes in ecological conditions that occur upon defoliation. The influence of the cenotic factor on biogenic soil properties is manifested more strongly in the organogenic horizons. The communities of microorganisms involved in the nitrogen and carbon cycles are dominated by prototrophic forms in the normal fir forest and by pedotrophic forms in the forest defoliated by pests. PMID:14735796

  16. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; D?uga, Joanna; Socha, Jaros?aw

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  17. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    PubMed Central

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  18. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  19. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities.

    PubMed

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  20. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases material, like allergens (Schäppi et al., 1999). As a consequence allergenic material was found in aerosol particles smaller than 5 µm, which contained no pollen or bigger fragments (Solomon et al., 1983). The release of material by bursting of wet pollen has been observed by electron microscopy (Swoboda et al., 2001). Not only allergens, but also sugars originating from pollen can be detected in the atmosphere (Yttri et al., 2007). These authors see pollen rupture and wood burning as their main sources in the atmosphere. The contrast between the hydrophilic properties of many of the surface components and the relative hydrophobia of the sporopollenin boosts the suspension of surface components in water droplets. According to that we conclude that the impact of pollen on the global atmosphere might have been underestimated. Additionally, our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds.

  1. HYDROGEN PEROXIDE DECAY IN WATERS WITH SUSPENDED SOILS: EVIDENCE FOR BIOLOGICALLY MEDIATED PROCESSES

    EPA Science Inventory

    Hydrogen peroxide decay studies have been conducted in suspensions of several well-characterized soils and in natural water samples. inetic and product studies indicated that the decay was biologically mediated and could be described by psuedo first-order rate expressions. t an i...

  2. Mature watermelon vine decline: evidence for the biological nature of a soil-borne problem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature watermelon vine decline (MWVD) is a late-season disease of unknown etiology, characterized by vine collapse and discolored, reduced root systems. To test for a biological cause of MWVD, soil was collected from two southern Indiana fields with a history of the disease for microplot and greenho...

  3. Soil Biology & Biochemistry 38 (2006) 33723379 Saprotrophic fungi transform organic phosphorus

    E-print Network

    Janouskova, Martina

    Soil Biology & Biochemistry 38 (2006) 3372­3379 Saprotrophic fungi transform organic phosphorus litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did

  4. Soil Biology & Biochemistry 40 (2008) 978985 Belowground nematode herbivores are resistant to elevated atmospheric

    E-print Network

    Wall, Diana

    Soil Biology & Biochemistry 40 (2008) 978­985 Belowground nematode herbivores are resistant in these typically dry ecosystems. Moreover, grasslands support large populations of belowground herbivores that consume a major portion of plant biomass. The direct trophic link between herbivores and plants suggests

  5. Effects of Altered Temperature and Precipitation on Desert Protozoa Associated with Biological Soil Crusts

    E-print Network

    Neher, Deborah A.

    -third of the earth's land surface area. Global circulation models predict overall temperatures in the southwestEffects of Altered Temperature and Precipitation on Desert Protozoa Associated with Biological Soil and test the response of protozoa to increased temperature and precipitation as is predicted by some global

  6. Long-term Tillage influences on soil carbon, nitrogen, physical, chemical, and biological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term tillage influences physical, chemical, and biological properties of the soil environment and thereby crop production and quality. We evaluated the effect of long-term (>20 yrs) tillage no-till, spring till, and fall plus spring till under continuous spring wheat (Triticum aestivum L.) on s...

  7. Resident biology restricts proliferation of Macrophomina phaseolina in brassicaceae seed meal meal amended soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    M. phaseolina is a pathogen of emerging importance in strawberry production systems. Studies were conducted to assess the efficacy of brassicaceae seed meal amendments for control of this pathogen and to determine the relative importance of soil biology and chemistry in any observed disease suppres...

  8. INITIAL STUDIES ON SOIL NITROGEN MANAGEMENT, SOYBEAN NITROGEN RELATIONS,AND BEAN LEAF BEETLE BIOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean leaf beetles (Cerotoma trifurcata) are serious insect pests of soybeans (Glycine max). This study was conducted to determine if soil nitrogen (N) input treatments would impact the biology of this emerging pest species. The experiment was conducted in the soybean phase of a long-term corn/soyb...

  9. Watering, Fertilization, and Slurry Inoculation Promote Recovery of Biological Crust Function in Degraded Soils

    Microsoft Academic Search

    Fernando T. Maestre; Noelia Martín; Beatriz Díez; Rosario López-Poma; Fernando Santos; Ignacio Luque; Jordi Cortina

    2006-01-01

    Biological soil crusts are very sensitive to human-induced disturbances and are in a degraded state in many areas throughout their range. Given their importance in the functioning of arid and semiarid ecosystems, restoring these crusts may contribute to the recovery of ecosystem functionality in degraded areas. We conducted a factorial microcosm experiment to evaluate the effects of inoculation type (discrete

  10. METHODS FOR EVALUATING THE BIOLOGICAL IMPACT OF POTENTIALLY TOXIC WASTE APPLIED TO SOILS

    EPA Science Inventory

    The study was designed to evaluate two methods that can be used to estimate the biological impact of organics and inorganics that may be in wastes applied to land for treatment and disposal. The two methods were the contact test and the artificial soil test. The contact test is a...

  11. Selection of biological control agents for controlling soil and seed-borne diseases in the field

    Microsoft Academic Search

    I. M. B. Knudsen; J. Hockenhull; D. Funck Jensen; B. Gerhardson; M. Hökeberg; R. Tahvonen; E. Teperi; L. Sundheim; B. Henriksen

    1997-01-01

    Different screening methods for selection of biological control agents (BCAs), for controlling soil and seed-borne diseases, are discussed. The shortcomings of laboratory methods focused on mechanism of action are discussed and we conclude that these methods should be used with caution if candidates with multifactorial or plant mediated mechanisms of control are to be obtained. In vitro screens may be

  12. Biological Soil Crusts of Sand Dunes in Cape Cod National Seashore, Massachusetts, USA

    Microsoft Academic Search

    S. M. Smith; R. M. M. Abed; F. Gercia-Pichel

    2004-01-01

    Biological soil crusts cover hundreds of hectares of sand dunes at the northern tip of Cape Cod National Seashore (Massachusetts, USA). Although the presence of crusts in this habitat has long been recognized, neither the organisms nor their ecological roles have been described. In this study, we report on the microbial community composition of crusts from this region and describe

  13. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity

    PubMed Central

    Tavares, Rose Luiza Moraes; Nahas, Ely

    2014-01-01

    Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932

  14. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity.

    PubMed

    Tavares, Rose Luiza Moraes; Nahas, Ely

    2014-01-01

    Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture = maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932

  15. Seed water status and root tip characteristics of two annual grasses on lichen-dominated biological soil crusts

    Microsoft Academic Search

    Marcelo D. Serpe; Shawna J. Zimmerman; Lynell Deines; Roger Rosentreter

    2008-01-01

    Biological soil crusts can affect seed germination and seedling establishment. We have investigated the effect of biological\\u000a soil crusts on seed water status as a potential mechanism affecting seed germination. The seed water potential of two annual\\u000a grasses, one exotic Bromus tectorum L. and another native Vulpia microstachys Nutt., were analyzed after placing the seeds on bare soil, on a

  16. The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China

    Microsoft Academic Search

    Rongyi Chen; Yuanming Zhang; Yuan Li; Wenshou Wei; Jing Zhang; Nan Wu

    2009-01-01

    Increasingly complex life forms were found in older biological soil crusts in the Gurbantaunggut Desert in Northwestern China.\\u000a These crusts may play a critical role in mineral erosion and desert soil formation by modifying the weathering environment\\u000a and ultimately affecting mineralogical variance. To test this hypothesis, variations in the morphological features and mineralogical\\u000a components of successional biological soil crusts at

  17. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts.

    PubMed

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-10-01

    Phototrophic microorganisms are critical to the carbon cycling and productivity of biological soil crusts, which enhance water content, nutrient relations and mechanical stability of arid soils. Only oxygen-producing phototrophs, including cyanobacteria and algae, are known from soil crusts, but Earth's second major branch of photosynthetic organisms, the evolutionarily earlier anoxygenic phototrophs, is unreported. We announce the discovery of aerobic anoxygenic phototrophs in three Canadian soil crust communities. We found in a culture-based study that they comprised 0.1-5.9% of the cultivable bacterial community in moss-, lichen- and cyanobacteria-dominated crust from sand dunes and sandy soils. Comparable in density to aerobic phototrophs in other habitats, the bacteriochlorophyll a-possessing pink and orange isolates were related to species of Methylobacterium (99.0-99.5%), Belnapia (97.4-98.8%), Muricoccus (94.4%) and Sphingomonas (96.6-98.5%), based on 16S rRNA gene sequences. Our results demonstrate that proteobacterial anoxygenic phototrophs may be found in dry soil environments, implying desiccation resistance as yet unreported for this group. By utilizing sunlight for part of their energy needs, aerobic phototrophs can accelerate organic carbon cycling in nutrient-poor arid soils. Their effects will be especially important as global climate change enhances soil erosion and consequent nutrient loss. PMID:23766251

  18. Biological Degradation of Black Carbon in Temperate Forest Soils: Effects of Clay Mineralogy and Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Santos, F.; Torn, M. S.

    2008-12-01

    A critical knowledge gap in soil organic carbon (SOC) cycling concerns the SOC portion collectively known as pyrogenic C or black carbon (BC), which is a chemically heterogeneous class of highly reduced compounds produced by incomplete combustion. While the stocks of BC are significant in surface soils worldwide, this SOC pool has been considered to be relatively inert with negligible biologically mediated degradation of BC occurring. We will present findings from a laboratory incubation of dual-labeled (13C/15N) BC and its precursor wood (Pinus ponderosa) in two temperate soils (Haploxeralfs) that differ in their clay mineralogy (granitic versus andesitic parent material) and organic C content. In addition, we used N additions in the granitic soil to investigate the effects of N availability on soil and substrate C and N cycling. Sterile controls were used to demonstrate that the BC turnover observed was biotic. The laboratory incubations were carried out at 25°C and at 55% of soil water holding capacity. We are measuring the flux of mineralized 13C in respired CO2, dissolved organic C, soil microbial biomass, specific microbial groups (13C-phospholipid fatty acids) and density-defined soil organic matter fractions. The overall flux of 15N is being observed in the microbial biomass, soluble organic and inorganic pools, and organic matter fractions. We will present rates of biologically-mediated decomposition of BC and its precursor wood, as well as the effects of soil mineralogy and N availability on these rates and on products of decomposition. We will also present decomposition rates of native SOM in incubations with and without substrate to investigate C priming.

  19. Biological soil crusts as key drivers for CO2 fluxes in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Miralles, Isabel; Rodríguez-Caballero, Emilio; Ortega, Raúl; Ladrón de Guevara, Mónica; Luna, Lourdes; Cantón, Yolanda

    2014-05-01

    The quantification of carbon (C) fluxes for the different ecosystems and the knowledge of whether they act as sources or sinks of C has acquired especial importance during the last years. This is particularly demanding for arid and semiarid ecosystems, for which the available information is very scarce. In these ecosystems, the interplant spaces are commonly covered by a thin layer of organisms including cyanobacteria, green algae, lichens and mosses, which are known as biological soil crusts (BSCs) and, though practically negligible, play a fundamental role in regulating gas exchange into and from soil. BSCs represent the main organisms capable of respiration and photosynthesis in the interplant spaces and are considered the main source of organic carbon in many arid and semiarid areas. Although several studies have pointed to the predominant role of BSCs as sources of CO2, on the contrary, other studies have emphasized their important role as sinks of CO2, being required to establish their precise effect regulating CO2 fluxes. The main purpose of this study was to enlighten the role of BSCs on CO2 fluxes. With this aim, CO2 fluxes were measured on different BSC types (cyanobacteria-, lichen- and moss-dominated BSCs) after several rainfalls and periods of soil drying in two semiarid ecosystems of SE Spain. CO2 exchange was measured using infrared gas analyzers (IRGA): net flux was measured with a transparent custom chamber attached to a Licor Li-6400, and respiration with a respirometer EGM-4 (PPsystems). Photosynthesis was determined as the difference between both measurements. Our results showed that moisture was the major factor controlling CO2 fluxes in BSCs. During the summer season, when soil was dry, all BSCs showed CO2 fluxes close to 0. However, once it rains and BSCs become active, a significant increase in photosynthesis and respiration rates was found. Whereas respiration was the main CO2 flux in bare soils, in BSCs regardless respiration was higher, these CO2 emissions were compensated, during several days following the rain, by CO2 fixation through photosynthesis, thus resulting in a positive net flux or net uptake of CO2. However, differences were observed between BSC types. Moss-dominated BSCs, regardless being more developed than cyanobacteria and lichen BSCs, showed lower net photosynthesis rates because of their higher respiration rates. These findings support the idea that BSCs act as important C sinks during the periods when they are active, although the rate of CO2 assimilation may greatly depend on the type of BSC. The results of this study demonstrate the need to consider the effect of different types of BSC in C balance models on local to global scales to improve our knowledge on C quantification and to make more accurate predictions of the effects of climate change in arid and semiarid regions where this type of soil cover is a key ecosystem component.

  20. Leaching of radionuclides from activated soil into groundwater.

    PubMed

    La Torre, F P; Silari, M

    2015-05-01

    Soil samples collected from the CERN site were irradiated by secondary radiation from the 400 GeV/c SPS proton beam at the H4IRRAD test area. Water samples were also irradiated at the same time. Detailed gamma spectrometry measurements and water scintillation analysis were performed to measure the radioactivity induced in the samples. FLUKA Monte Carlo simulations were performed to benchmark the induced radioactivity in the samples and to estimate the amount of tritium produced in the soil. Two leaching procedures were used and compared to quantify the radioactivity leached by water from the activated soil. The amount of tritium coming from both the soil moisture and the soil bulk was estimated. The present results are compared with literature data for the leaching of (3)H and (22)Na. PMID:25703432

  1. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    PubMed Central

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.

    2009-01-01

    Background Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin?N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin?N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Conclusions/Significance Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils. PMID:19536334

  2. Role of Biological Soil Crusts on hydrological cycle drivers of semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Canton, Y.; Chamizo, S.; Rodriguez-Caballero, E.; Miralles, I.; Lazaro, R.; Sole-Benet, A.; Domingo, F.

    2012-04-01

    In arid and semiarid ecosystems, where plant cover is scarce, other surface components like soil crusts or stones acquire a very relevant role on local hydrologic regimes, controlling infiltration rates and they also affect erosion. The interplant spaces of these ecosystems are very often covered by biological soil crusts (BSCs), which are a community of microorganisms, including cyanobacteria, algae, fungi, lichens and mosses living in the soil surface. These BSCs regulate the horizontal and vertical fluxes of water, carbon, and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. We analyse the role of BSCs on the different components of the water balance (infiltration-runoff, evaporation and soil moisture) in two representative semiarid ecosystems of SE Spain. The influence of BSCs on runoff-infiltration and erosion has been studied by rainfall simulations and with field plots under natural rainfall at different spatial scales, on BSCs in different stages of their development. Results show higher infiltration in BSCs than in physical crusts and different responses among BSCs depending on soil and rainfall properties and the considered spatial scale but, as a general trend, the greater the development of the BSCs, the greater the infiltration rate and the lower the sediment yield. In addition, given that BSCs modify many soil surface properties, such as surface stability, cohesiveness, cracking, porosity or micro-topography, which also affect runoff and erosion processes, we have examined the relative importance of BSCs features (cover, composition, roughness, water repellency, etc) on runoff and erosion and their direct and indirect relationships and how they interact with rainfall characteristics. By using microlysimeters, similar evaporative losses were measured among crust types in late spring when ambient conditions were quite warm and all crust types lost water very quickly. However, monitoring of soil moisture during a whole year shows differences in soil moisture content and soil water loss between the types of BSCs depending on the moment of the year. Thus, during wet periods higher soil moisture and slower soil water losses were recorded in lichen-covered than in cyanobacteria-covered soils. While during dry periods, faster soil water depletion and lower soil moisture occurred under lichen than in soils covered by cyanobacterial BSCs. In conclusion, our results show the important roles of BSCs modulating the water cycle in semiarid ecosystems.

  3. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities

    PubMed Central

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents. PMID:24159359

  4. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities.

    PubMed

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents. PMID:24159359

  5. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities

    PubMed Central

    Maestre, Fernando T.; Bowker, Matthew A.; Escolar, Cristina; Puche, María D.; Soliveres, Santiago; Maltez-Mouro, Sara; García-Palacios, Pablo; Castillo-Monroy, Andrea P.; Martínez, Isabel; Escudero, Adrián

    2010-01-01

    Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions. PMID:20513714

  6. Effects of CO[sub 2] and climate change on forest trees: Soil biology and enzymology

    SciTech Connect

    Moldenke, A.R.; Baumeister, N.; Caldwell, B.A.; Griffith, R.; Ingham, E.R.; Wernz, J. (Oregon State Univ., Corvallis, OR (United States)); Johnson, M.G.; Rygiewicz, P.T.; Tingey, D.T. (Environmental Protection Agency, Corvallis, OR (United States))

    1994-06-01

    Samples of Teracosm soils were analyzed shortly after initial setup to determine whether initial conditions were equivalent and matched expected values for local soils. Total and active fungal biomass, active bacterial biomass and protozoan numbers were reduced, with greatest decreases occurring in the A horizon. No effect was observed on total bacterial biomass, nematode or anthropod densities, but changes in nematode and arthropod species composition occurred. Significant differences in total density and species composition occurred between the enclosed Teracosms and the open controls. Arthropod and nematode community structure in the three altitudinal field sites had significantly diverged. No significant differences in activities of key soil enzymes in C- and N-cycling (acid phosphatase, protease, B-glucosidase, phenol oxidase and peroxidase) were found between initial samples relative to treatment, but all levels were significantly difference relative to depth in soil profile. Activities were within ranges previously observed in forests of the Pacific Northwest.

  7. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  8. Changes in populations of soil microorganisms, nematodes, and enzyme activity associated with application of powdered pine bark

    Microsoft Academic Search

    Nancy Kokalis-Burelle; Rodrigo Rodríguez-Kábana

    1994-01-01

    Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg-1. Total fungal populations did not

  9. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.

    PubMed

    Rivera-Becerril, Facundo; Juárez-Vázquez, Lucía V; Hernández-Cervantes, Saúl C; Acevedo-Sandoval, Otilio A; Vela-Correa, Gilberto; Cruz-Chávez, Enrique; Moreno-Espíndola, Iván P; Esquivel-Herrera, Alfonso; de León-González, Fernando

    2013-02-01

    The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues. PMID:23124167

  10. Simulation of Viking biology experiments suggests smectites not palagonites, as martian soil analogues

    NASA Technical Reports Server (NTRS)

    Banin, A.; Margulies, L.

    1983-01-01

    An experimental comparison of palagonites and a smectite (montmorillonite) was performed in a simulation of the Viking Biology Labelled Release (LR) experiment in order to judge which mineral is a better Mars soil analog material (MarSAM). Samples of palagonite were obtained from cold weathering environments and volcanic soil, and the smectite was extracted from Wyoming Bentonite and converted to H or Fe types. Decomposition reaction kinetics were examined in the LR simulation, which on the Lander involved interaction of the martian soil with organic compounds. Reflectance spectroscopy indicated that smectites bearing Fe(III) in well-crystallized sites are not good MarSAMS. The palagonites did not cause the formate decomposition and C-14 emission detected in the LR, indicating that palagonites are also not good MarSAMS. Smectites, however, may be responsible for ion exchange, molecular adsorption, and catalysis in martian soil.

  11. Phage Display of a Biologically Active Bacillus thuringiensis Toxin

    Microsoft Academic Search

    LAURA M. KASMAN; ANDREW A. LUKOWIAK; STEPHEN F. GARCZYNSKI; REBECCA J. MCNALL; PHIL YOUNGMAN; MICHAEL J. ADANG

    1998-01-01

    Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To

  12. Sensitive bioassay for detection of biologically active ricin in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of ricin as an agent of biological warfare highlights the need to develop fast and effective methods to detect biologically active ricin. The current “gold standard” for ricin detection is an in vivo mouse bioassay; however, this method is not practical to test on a large number of...

  13. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  14. THE BIOLOGICAL ACTIVITY OF CAROTENOID METABOLITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review deals with biologically formed metabolites of carotenoids, other than the retinoids such as retinol (vitamin A), retinal and retinoic acid. These latter compounds are formed by central cleavage of beta-carotene. However, there is increasing evidence that other, non-central cleavage mecha...

  15. Land Data Assimilation Activities in Preparation of the NASA Soil Moisture Active Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2013, the NASA Soil Moisture Active/Passive mission represents a generational advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiome...

  16. Summary Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and

    E-print Network

    Cohen, Ronald C.

    may accelerate global warming by acting as a positive feed- back in the global carbon cycle (Jenkinson in the soil carbon pool may significantly affect the global carbon cycle and climate system. Soil respiration and spatial variation in soil respi- ration caused by natural factors, human disturbance and man- agement

  17. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  18. Diversity and dynamics of eco-units in the biological reserves of the Fontainebleau forest (France): Contribution of soil biology to a functional

    E-print Network

    Paris-Sud XI, Université de

    communities (Lumbricidae and Nematoda) pointed out two key aspects of forest functioning. First, the renewal / humus dynamics / biodiversity / soil biology / Lumbricidae / Nematoda / beech grove / ecosystem comportement des peuplements d'invertébrés du sol (Lumbricidae, Nematoda) mettent en avant deux points

  19. New antibiotics, trichopolyns A and B: Isolation and biological activity

    Microsoft Academic Search

    K. Fuji; E. Fujita; Y. Takaishi; T. Fujita; I. Arita; M. Komatsu; N. Hiratsuka

    1978-01-01

    Summary Polypeptide antibiotics, trichopolyns A and B, were isolated from the culture broth ofTrichoderma polysporum (Link ex Pers) Rifai (TMI 60146). Assessment of biological activity of the antibiotics against microorganisms was made.

  20. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  1. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  2. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  3. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  4. Biofilm processes in biologically active carbon water purification

    Microsoft Academic Search

    David R. Simpson

    2008-01-01

    This review paper serves to describe the composition and activity of a biologically active carbon (BAC) biofilm used in water purification. An analysis of several physical–chemical, biochemical and microbiological methods (indicators) used to characterize the BAC biofilm's composition and activity is provided. As well, the ability of the biofilm to remove and biodegrade waterborne organic substances and pollutants will be

  5. Climate effect on soil enzyme activities and dissolved organic carbon in mountain calcareous soils: a soil-transplant experiment

    NASA Astrophysics Data System (ADS)

    Puissant, Jérémy; Cécillon, Lauric; Mills, Robert T. E.; Gavazov, Konstantin; Robroek, Bjorn J. M.; Spiegelberger, Thomas; Buttler, Alexandre; Brun, Jean-Jacques

    2013-04-01

    Mountain soils store huge amounts of carbon as soil organic matter (SOM) which may be highly vulnerable to the strong climate changes that mountain areas currently experience worldwide. Climate modifications are expected to impact microbial activity which could change the rate of SOM decomposition/accumulation, thereby questioning the net C source/sink character of mountain soils. To simulate future climate change expected in the 21st century in the calcareous pre-Alps, 15 blocks (30 cm deep) of undisturbed soil were taken from a mountain pasture located at 1400 m a.s.l. (Marchairuz, Jura, Switzerland) and transplanted into lysimeters at the same site (control) and at two other sites located at 1000 m a.s.l. and 600 m a.s.l. (5 replicates per site). This transplantation experiment which started in 2009 simulates a climate warming with a temperature increase of 4° C and a decreased humidity of 40 % at the lowest site. In this study, we used soil extracellular enzyme activities (EEA) as functional indicators of SOM decomposition to evaluate the effect of climate change on microbial activity and SOM dynamics along the seasons. Dissolved organic carbon (DOC) was also measured to quantify the assimilable carbon for microorganism. In autumn 2012, a first sampling step out of four (winter, spring and summer 2013) has been realized. We extracted 15 cm deep soil cores from each transplant (x15) and measured (i) DOC and (ii) the activities of nine different enzymes. Enzymes were chosen to represent the degradation of the most common classes of biogeochemical compounds in SOM. ?-glucosidase, ?-D-cellubiosidase, ?-Xylosidase, N-acetyl-?-glucosaminidase, leucine aminopeptidase, lipase, phenoloxidase respectively represented the degradation of sugar, cellulose, hemicellulose, chitin, protein, lipid and lignin. Moreover, the fluorescein diacetate (FDA) hydrolysis was used to provide an estimate of global microbial activity and phosphatase was used to estimate phosphorus mineralization. The autumn results showed no differences for global microbial activity along the climate gradient (0.37 nKatal g-1 dry soil), no differences and a very low activity for leucine aminopeptidase and ?-glucosidase and ?-Xylosidase (about 0.09 nKatal g-1 dry soil) and no differences for cellulose, chitin and phosphorus mineralization. Conversely, we measured a greater activity at the highest elevation site for lipase and phenoloxydase (ANOVA test, p

  6. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils. PMID:25172460

  7. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    B?o?ska, Ewa; Lasota, Jaros?aw

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  8. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    SciTech Connect

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  9. Biology Research Activities: Teacher's Edition (with Answers).

    ERIC Educational Resources Information Center

    Newman, Barbara

    This book is part of the series "Explorations in Science" which contains enrichment activities for the general science curriculum. Each book in the series contains innovative and traditional projects for both the bright and average, the self-motivated, and those who find activity motivating. Each activity is self-contained and provides everything…

  10. Stratification of soil organic matter and its importance on soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many important soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infilt...

  11. DEPTH DISTRIBUTION OF SOIL ORGANIC MATTER AND ITS CONSEQUENCES ON SOIL PROPERTIES AND CROP PRODUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many key soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infiltration...

  12. Depth distribution of soil organic carbon as a signature of soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many key soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infiltration...

  13. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust.

    PubMed

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-11-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1?h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  14. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust

    PubMed Central

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-01-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1?h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  15. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    PubMed Central

    Tyc, Olaf; van den Berg, Marlies; Gerards, Saskia; van Veen, Johannes A.; Raaijmakers, Jos M.; de Boer, Wietse; Garbeva, Paolina

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics. PMID:25389421

  16. The environmental biological signature: NGS profiling for forensic comparison of soils.

    PubMed

    Giampaoli, S; Berti, A; Di Maggio, R M; Pilli, E; Valentini, A; Valeriani, F; Gianfranceschi, G; Barni, F; Ripani, L; Romano Spica, V

    2014-07-01

    The identification of the source of a specific soil sample is a crucial step in forensic investigations. Rapid advances in next generation sequencing (NGS) technology and the strong reduction of the cost of sequencing have recently opened new perspectives. In the present work a metabarcoding approach has been successfully applied to forensic and environmental soil samples, allowing the accurate and sensitive analysis of microflora (mfDNA), plants, metazoa, and protozoa DNA. The identification of the biological component by DNA metabarcoding is a strong element for the discrimination of samples geologically very similar but coming for distinct environments. PMID:24807707

  17. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming

    Microsoft Academic Search

    Andreas Fließbach; Hans-Rudolf Oberholzer; Lucie Gunst; Paul Mäder

    2007-01-01

    Organic farming systems often comprise crops and livestock, recycle farmyard manure for fertilization, and preventive or biocontrol measures are used for plant protection. We determined indicators for soil quality changes in the DOK long-term comparison trial that was initiated in 1978. This replicated field trial comprises organic and integrated (conventional) farming systems that are typical for Swiss agriculture. Livestock based

  18. The effect of burning on soil enzyme activities in natural grasslands in southern India

    Microsoft Academic Search

    Kurunthachalam Senthilkumar; Sellamuthu Manian; Karuthamuthu Udaiyan

    1997-01-01

    Soil amylase, cellulase, invertase and phosphatase activities were determined following wildfire in a savanna type grassland\\u000a in southern India. Activities of these enzymes increased substanially in burned soils compared to those in adjacent unburned\\u000a soils. Surface soil (0–10 cm) exhibited a greater increase in enzyme activities than subsurface soil (10–20 cm). Amylase activity\\u000a was more pronounced following fire than the

  19. Measurement of dinitrogen fixation by Biological soil crust (BSC) from the Sahelian zone: an isotopic method.

    NASA Astrophysics Data System (ADS)

    Ehrhardt, F.; Alavoine, G.; Bertrand, I.

    2012-04-01

    Amongst the described ecological roles of Biological Soil Crust, N fixation is of importance for soil fertility, especially in arid and semi-arid ecosystems with low inputs. In BSC, the quantification of N fixation fluxes using an indirect method is widespread, usually with the Acetylene Reduction Assay (ARA) which consists in measuring the nitrogenase activity through the process of acetylene reduction into ethylene. A converting factor, still discussed in the literature and greatly depending of the constitutive organisms of the BSC, is the tool used to convert the amount of reduced ethylene into quantitative fixed Nitrogen. The aim of this poster is to describe an isotopic direct method to quantify the atmospheric dinitrogen fixation fluxes in BSC, while minimizing the variability due to manipulations. Nine different BSC from the Sahelian zone were selected and placed in an incubation room at 28° C in dark and light conditions during three days, while moisture equivalent to pF=2 was regularly adjusted using the gravimetric method with needles and deionized water, in order to activate and reach a dynamic stability of their metabolisms. Subsequently, each crust was placed into a gas-tight glass vial for incubation with a reconstituted 15N2 enriched atmosphere (31.61 % atom 15N, while the proportion of each main gas present in the air was conserved, i.e. 78% N2, 21% O2 and 0.04% CO2). Principal difficulties are to guarantee the airtighness of the system, to avoid crust desiccation and to keep the crust metabolically active under stable conditions for six hours. Several tests were performed to determine the optimum time for 15N2 incubation. Three replicated control samples per crust were also stabilized for three days and then dried at 105° C, without any incubation with 15N2 enriched atmosphere. Total N and 15N were then measured in the grounded (80?m) and dried (105° C) crust, using a Flash EA elemental analyzer (Eurovector, Milan, Italy) coupled to a DeltaPlus Advantage mass spectrometer (Finnigan Thermo Fisher Scientific, Bremen, Germany). N2fixation fluxes were calculated from the difference between the amount of 15N in incubated and in control samples. Mean values ranged from 1.32.10-3 ± 1.02.10-4 to 8.47.10-2 ± 2.63.10-3 mgN.m-2.h-1. Concerning the variability, differences observed between crusts and between replicates are probably related to the characteristic of each crust as well as to field sampling which integrates the important heterogeneity and sensitivity of the material.

  20. Biological activity of the humus horizon of ordinary chernozems as an indicator of the ecological state of agroecosystems in Bashkortostan

    NASA Astrophysics Data System (ADS)

    Khasanova, R. F.; Suyundukov, Ya. T.; Semenova, I. N.

    2014-08-01

    A comparative analysis of the biological activity has been performed in the soils of Transural Bashkiria developing under natural perennial grasses and under sown herbs. It is shown that the structure of the microbial community in the soils under natural perennial grasses (fescue, brome grass, and couch grass) prevents the removal of nitrogen from the ecosystem and favors nitrogen fixation in the microbial pool of the trophic chain. The method of multisubstrate testing points to certain differences between the metabolic potentials of the microbial communities of the soils under natural grasses and sown herbs. The high values of the integral index of health of the microbial system in the soils under natural perennial grasses attests to their efficiency in sustaining the soil fertility.

  1. Activities of N-mineralization enzymes associated with soil aggregates in three different tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil enzymes released by microorganisms play a significant role in N mineralization process that determines N availability for plant growth. Soil aggregates of different sizes provide diverse microhabitats for microorganisms and therefore influence soil enzyme activities. We hypothesize that enzyme ...

  2. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils

    NASA Astrophysics Data System (ADS)

    Koch, Oliver; Tscherko, Dagmar; Kandeler, Ellen

    2007-12-01

    Investigations focusing on the temperature sensitivity of microbial activity and nutrient turnover in soils improve our understanding of potential effects of global warming. This study investigates the temperature sensitivity of C mineralization, N mineralization, and potential enzyme activities involved in the C and N cycle (tyrosine amino-peptidase, leucine amino-peptidase, ß-glucosidase, ß-xylosidase, N-acetyl-ß-glucosaminidase). Four different study sites in the Austrian alpine zone were selected, and soils were sampled in three seasons (summer, autumn, and winter). A simple first-order exponential equation was used to calculate constant Q10 values for the C and N mineralization over the investigated temperature range (0-30°C). The Q10 values of the C mineralization (average 2.0) for all study sites were significantly higher than for the N mineralization (average 1.7). The Q10 values of both activities were significantly negatively related to a soil organic matter quality index calculated by the ratios of respiration to the organic soil carbon and mineralized N to the total soil nitrogen. The chemical soil properties or microbial biomass did not affect the Q10 values of C and N mineralization. Moreover, the Q10 values showed no distinct pattern according to sampling date, indicating that the substrate quality and other factors are more important. Using a flexible model function, the analysis of relative temperature sensitivity (RTS) showed that the temperature sensitivity of activities increased with decreasing temperature. The C and N mineralization and potential amino-peptidase activities (tyrosine and leucine) showed an almost constant temperature dependence over 0-30°C. In contrast, ß-glucosidase, ß-xylosidase, and N-acetyl-ß-glucosaminidase showed a distinctive increase in temperature sensitivity with decreasing temperature. Low temperature at the winter sampling date caused a greater increase in the RTS of all microbial activities than for the autumn and summer sampling dates. Our results indicate (1) a disproportion of the RTS for potential enzyme activities of the C and N cycle and (2) a disproportion of the RTS for easily degradable C compounds (ß-glucose, ß-xylose) compared with the C mineralization of soil organic matter. Thus temperature may play an important role in regulating the decay of different soil organic matter fractions due to differences in the relative temperature sensitivities of enzyme activities.

  3. Changes in soil nutrient content and enzymatic activity under conventional and zero-tillage practices in an Indian sandy clay loam soil

    Microsoft Academic Search

    B. L. Mina; Supradip Saha; Narendra Kumar; A. K. Srivastva; H. S. Gupta

    2008-01-01

    For 3 years we studied the impact of different tillage practices on biological activity, major nutrient transformation potential\\u000a in a sandy clay loam soil and crop yield in a Himalayan subtemperate region. Field agroecosystems with a rotation of two grain\\u000a crops per year (lentil-finger millet) received four different tillage practices: zero–zero (ZZ), conventional–conventional\\u000a (CC), zero–conventional (ZC), and conventional–zero (ZC) tillage. Most

  4. Effect of mineralogical, geochemical and biological properties on soils reflectance to assess temporal and spatial dynamics of BSCs in Sahelian ecosystems

    NASA Astrophysics Data System (ADS)

    Bourguignon, A.; Cerdan, O.; Desprats, J. F.; Marin, B.; Malam Issa, O.; Valentin, C.; Rajot, J. L.

    2012-04-01

    Land degradation and desertification are among the major environmental problems, resulting in reduced productivity and development of bare surfaces in arid and semi-arid areas of the world. One important factor that acts to increase soil stability and nutrient content, and thus to prevent water and wind erosion and enhance soil productivity of arid environment, is the presence of biological soil crusts (BSCs). They are the dominant ground cover and a key component of arid environments built up mainly by cyanobacteria. They enhance degraded soil quality by providing a stable and water-retaining substratum and increasing fertility by N and C fixations. The BioCrust project, funded by ANR (VMCS 2008), focuses on BSCs in the Sahelian zone of West Africa (Niger), a highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic pressure on land use. Unlike arid areas of developed countries (USA, Australia and Israel) or China where BSCs have been extensively studied, studies from Sahelian zone (Africa) are limited (neither the inventory of their different form nor the estimation of their spatial extension has been carried out). The form, structure and composition of BSCs vary depending on characteristics related to soils and biological composition. This study focuses on the soils characterisation using ground-based spectroradiometry. An extensive database was built included spectral measurements on BSCs, bare soils and vegetation that occur in the same area, visual criteria, in situ and laboratory measurements on the physical, chemical and biological characteristics of BSCs and their substratum. The work is carried out on geo-statistical processing of data acquired in sites along a north-south climatic gradient and three types of representative land uses. The investigated areas are highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic pressure on land use Soil surface disturbances due to the intensification of human activities. Spectral field and laboratory data were acquired in 2009, 2010 and 2011 with the FieldSpec Pro®. The spectra of soils with respect to different parameters are studied in details and their separability from BSCs, vegetation and vegetation residue as well are be analysed. First, the effect of the mineralogy and the geochemical variables on the soil reflectance properties is studied and then the feasibility to resolve some of these effects with satellite imagery (e. g., ASTER) will be tested in order to define the potential capability for identifying the locations of sensitive areas affected by soil degradation and appearance of BSCs.

  5. Synthesis and biological activities of 2-oxocycloalkylsulfonamides.

    PubMed

    Li, Xinghai; Yang, Xinling; Liang, Xiaomei; Kai, Zhenpeng; Yuan, Huizu; Yuan, Dekai; Zhang, Jianjun; Wang, Ruiqing; Ran, Fuxiang; Qi, Shuhua; Ling, Yun; Chen, Fuheng; Wang, Daoquan

    2008-04-15

    A series of novel 2-oxocycloalkylsulfonamides (4) were synthesized and their structures confirmed by IR, (1)H NMR, and elemental analysis. The bioassay showed that they have fair to excellent fungicidal activities against Botrytis cinerea Pers and Sclerotinia sclerotiorum. Among them, compounds 4A(10), 4A(11), 4A(12), 4B(2), and 4B(3), the EC(50) values of which were 2.12, 3.66, 3.96, 2.38, and 2.43 microg/mL, respectively, displayed excellent fungicidal activity against B. cinerea Pers, and are comparable with commercial fungicide procymidone (the EC(50) value is 2.45 microg/mL). 3D QSAR against B. cinerea Pers was studied, a statistically significant and chemically meaningful CoMFA model was developed and some compounds which have a high predicted activity were forecasted. In addition, the bioassay also showed that the compounds have good inhibitory activities against human tumor cells HL-60, BGC-823, Bel-7402 and KB. It is interesting to point out that the antitumor activities of compounds 4 are in accordance with their fungicidal activity to a great extent: compounds having relatively best antitumor activities (4A(10), 4A(11), 4A(12), and 4B(3)) also displayed excellent fungicidal activity. PMID:18331796

  6. Relationship between phosphatase active bacteria and phosphatase activities in forest soils

    Microsoft Academic Search

    J. Hy´sek

    1997-01-01

    Acid phosphatase and alkaline phosphatase active colonies of bacteria, isolated from forest soils, were stained. The activity\\u000a of acid and alkaline phosphatase and other soil properties (the number of aerobic bacteria, basal respiration, the level of\\u000a ammonification, the number of bacteria active in ammonification, the level of nitrification, the number of micromycetes) were\\u000a compared with the number of bacteria belonging

  7. Impacts of Grazing and Browsing by Large Herbivores on Soils and Soil Biological Properties

    Microsoft Academic Search

    Kathryn A. Harrison; Richard D. Bardgett

    Herbivores can have a wide range of effects on terrestrial ecosystems. Some of these effects are direct, such as the removal\\u000a and consumption of herbage—which can vary some 100-fold across terrestrial ecosystems from less than 1% to greater than 60%\\u000a (McNaughton et al. 1989)—treading on soil and vegetation, and the return of excreta (Floate 1981). Herbivores also have important\\u000a indirect

  8. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China)

    Microsoft Academic Search

    Shubin LanLi; Li Wu; Delu Zhang; Chunxiang Hu

    In order to investigate succession of biological soil crusts (BSCs) and their microstructure variability, we conducted this\\u000a work in Shapotou revegetation region at the southeast edge of Tengger Deser. The results showed that BSCs generally succeeded\\u000a as a pathway of “Algae crusts, algae–lichen crusts, lichen crusts, lichen–moss crusts and moss crusts”. Occasionally mosses\\u000a directly occurred on algae crusts, and BSCs

  9. Microbial Diversity and Structure Are Drivers of the Biological Barrier Effect against Listeria monocytogenes in Soil

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment. PMID:24116193

  10. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-02-11

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). PMID:25262485

  11. Biotoxicity assessment of pyrene in soil using a battery of biological assays.

    PubMed

    Khan, Muhammad Imran; Cheema, Sardar Alam; Tang, Xianjin; Shen, Chaofeng; Sahi, Shahbaz Talib; Jabbar, Abdul; Park, Joonhong; Chen, Yingxu

    2012-11-01

    A test battery, composed of a range of biological assays, was applied to evaluate the ecological health of soil aged for 69 days and spiked with a range of pyrene levels (1.04, 8.99, 41.5, 72.6, 136, and 399 ?g g(-1) dry soil; Soxhlet-extracted concentrations after 69 days of aging). Chinese cabbage (Brassica rapa), earthworm (Eisenia fetida), and bacteria (Vibrio fischeri) were used as test organisms to represent different trophic levels. Among the acute ecotoxicity bioassays used, the V. fischeri luminescence inhibition assay was the most sensitive indicator of pyrene toxicity. We observed >8 % light inhibition at the lowest concentration (1.04 ?g g(-1)) pyrene, and this inhibition increased to 60 % at 72.6 ?g g(-1). The sensitivity ranking for toxicity of the pyrene-contaminated soil in the present study was in the following decreasing order: root elongation of Chinese cabbage < earthworm mortality (14 days) < earthworm mortality (28 days) < luminescence inhibition (15 min) < luminescence inhibition (5 min). In addition, genotoxic effects of pyrene were also evaluated by using comet assay in E. fetida. The strong relationship between DNA damage and soil pyrene levels showed that comet assay is suitable for testing the genotoxicity of pyrene-polluted soil. In addition, tail moment was well correlated with soil pyrene levels (r (2) = 0.99). Thus, tail moment may be the most informative DNA-damage parameter representing the results of comet assay. Based on these results, the earthworm DNA damage assay and Microtox test are rapid and sensitive bioassays and can be used to assess the risk of soil with low to high levels of hydrocarbon pollution. Furthermore, an analysis of the toxic effects at several trophic levels is essential for a more comprehensive understanding of the damage caused by highly contaminated soil. PMID:22941450

  12. Biologically active traditional medicinal herbs from Balochistan, Pakistan

    Microsoft Academic Search

    Mudassir A. Zaidi; Sidney A. Crow

    2005-01-01

    The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were

  13. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  14. Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe

    USGS Publications Warehouse

    Dettweiler-Robinson, E.; Bakker, J.D.; Grace, J.B.

    2013-01-01

    Successional stage may determine strength and causal direction of interactions among abiotic and biotic factors; e.g., species that facilitate the establishment of other species may later compete with them. We evaluated multivariate hypotheses about abiotic and biotic factors shaping biological soil crusts (BSCs) in early and late successional stages. We surveyed vegetation and BSC in the shrub-steppe ecosystem of the Columbia Basin. We analyzed the relationships with bryophyte and lichen covers using structural equation models, and analyzed the relationships with BSC composition using Indicator Species Analysis and distance-based linear models. Cover, indicator species, and composition varied with successional stage. Increasing elevation and bryophyte cover had higher lichen cover early in succession; these relationships were negative in the later successional stage. Lichen cover did not appear to impede B. tectorum cover, but B. tectorum appeared to strongly negatively affect lichen cover in both stages. Biological soil crust composition varied with bunchgrass cover in the early successional stage, but with elevation and B. tectorum cover later in succession. Our findings support the hypotheses that as succession progresses, the strength and direction of certain community interactions shift, and B. tectorum leads to reductions in biological soil crust cover regardless of successional stage.

  15. Local knowledge and perception of biological soil crusts by land users in the Sahel (Niger)

    NASA Astrophysics Data System (ADS)

    J-M Ambouta, K.; Hassan Souley, B.; Malam Issa, O.; Rajot, J. L.; Mohamadou, A.

    2012-04-01

    Local knowledge, i.e. knowledge based on accumulation of observations is of great interest for many scientific fields as it can help for identification, evaluation and selection of relevant indicators and furthermore for progress through conservation goals. This study aimed at gathering and understanding the local knowledge and perception of biological soil crusts (BSC) by users of land, pastoralists that cross the Sahel and sedentary farmers. The methodological approach is based on a semi-direct surveys conducted on a north-south rainfall gradient (350 to 650 mm/year) including agricultural- and pastoral-dominated areas in western Niger. Denomination, formation processes, occurrence, distribution and role of biological soil crusts are among the major issues of the inquiry. The results of the surveys showed that BSC are mainly identified by the names of "Bankwado" and "Korobanda", respectively in hausa and zarma langages, what means "toad back". Other denominations varying according to region, ethnic groups and users are used. They are all related to the aspects, colors and behaviour of BSC with regard wetting and drying cycle. From the point of view of users depressed areas and land lied fallow are favourable places for the occurrence of BSC, while cultivation and observed changes in rainfall regimes represent negative factors. The formation processes of BSC are mainly related to the occurrence and the impact of rain and wind on soil surface. Their roles in protecting soil against degradation or as an indicator of soil fertility were recognised by at least 83% of farmers and breeders. This study reveals significant aspects of BSC already validated by scientific knowledge. Integrating the two forms of knowledge will help to define relevant indicators of soil surface dynamics and to perform practices to minimize farming and grazing impacts on BSCs.

  16. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter

    Microsoft Academic Search

    YuanPeng Wang; JiYan Shi; Hui Wang; Qi Lin; XinCai Chen; YingXu Chen

    2007-01-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results

  17. Amazing Soil Stories: Adventure and Activity Book [and] Teacher's Guide to the Activity Book.

    ERIC Educational Resources Information Center

    California Association of Resource Conservation Districts, Sacramento.

    The student activity book offers a variety of written exercises and "hands on" experiments and demonstrations for students at the fourth grade level. The book begins with a cartoon story that follows the adventures of a student investigating a soil erosion crisis and what her community can do to prevent soil erosion. Interspersed within the story…

  18. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  19. Soil moisture active/passive (SMAP) mission concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active/Passive (SMAP) Mission is one of the first satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. ...

  20. Overview of the NASA soil moisture active/passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  1. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  2. Aminocyclopyrachlor sorption in biochar and activated charcoal amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminocyclopyrachlor is a new herbicide active ingredient, classified as a member of the new chemical class “pyrimidine carboxylic acids”. It is used for control of broadleaf weeds and brush on non-cropland. Due to its potential mobility in some soils, there is interest in whether aminocyclopyrachlor...

  3. Biological activities of derivatized D-glucans: a review.

    PubMed

    Kagimura, Francini Yumi; da Cunha, Mário Antônio A; Barbosa, Aneli M; Dekker, Robert F H; Malfatti, Carlos Ricardo Maneck

    2015-01-01

    D-Glucans have triggered increasing interest in commercial applications in the chemical and pharmaceutical sectors because of their technological properties and biological activities. The glucans are foremost among the polysaccharide groups produced by microorganisms with demonstrated activity in stimulating the immune system, and have potential in treating human disease conditions. Chemical alterations in the structure of D-glucans through derivatization (sulfonylation, carboxymethylation, phosphorylation, acetylation) contributes to their increased solubility that, in turn, can alter their biological activities such as antioxidation and anticoagulation. This review surveys and cites the latest advances on the biological and technological potential of D-glucans following chemical modifications through sulfonylation, carboxymethylation, phosphorylation or acetylation, and discusses the findings of their activities. Several studies suggest that chemically modified d-glucans have potentiated biological activity as anticoagulants, antitumors, antioxidants, and antivirals. This review shows that in-depth future studies on chemically modified glucans with amplified biological effects will be relevant in the biotechnological field because of their potential to prevent and treat numerous human disease conditions and their clinical complications. PMID:25239192

  4. Biological activities of ‘noninfectious’ influenza A virus particles

    PubMed Central

    Brooke, Christopher B

    2014-01-01

    Only a small fraction of influenza A virus (IAV) particles within a viral population register as infectious by traditional infectivity assays. Despite constituting the most abundant product of influenza infection, the role that the ‘noninfectious’ particle fraction plays in the biology of the virus has largely been ignored. This review shines a light on this oft-ignored population by highlighting studies, both old and new, that describe the unique biological activities of these particles, and discussing what this population can tell us about the biology of IAV evolution and disease. PMID:25067941

  5. Photo-activated biological processes as quantum measurements

    E-print Network

    Atac Imamoglu; K. Birgitta Whaley

    2014-08-21

    We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.

  6. Chemistry and biological activity of oasomycin macrolactones

    Microsoft Academic Search

    Gerhard Kretzschmar; Manfred Krause; Lajos Radics

    1997-01-01

    Several chemoselective derivatizations of the 42-membered macrolactones oasomycin A (1) and B (2) were achieved. In particular, the selective side chain amidation at the polyketide starter unit proved highly useful to elucidate structure-activity relationships in comparison to related marginolactones and provided libraries of modified antiobiotics by incorporation of different amine moieties. Novel 44-membered macrolactones were prepared by a ring enlargement

  7. Recovery of soil base saturation following termination of N deposition: Increased biological weathering?

    NASA Astrophysics Data System (ADS)

    Lucas, R. W.; Högberg, P.

    2012-12-01

    Current models suggest the removal rate of base cations (i.e. calcium, magnesium, potassium, and sodium) from forest soils due to forest growth or forest management practices is greater than the resupply rate in many areas of North America and Europe. This is particularly concerning given the recent historical depletion of base cations from forest soils during times of high acid deposition and their critical role in buffering against acidity changes in both soils and surface waters. Because base cations are not easily replaced in soil, being primarily supplied through slow processes such as the primary weathering of parent minerals or the decomposition of organic materials, rapid removals of base cations can jeopardize the long-term fertility of forests. Using a long-term nitrogen (N) addition experiment in a Pinus sylvestris forest that has been ongoing since 1970, we examined how the availability of inorganic N mediates the recovery of base cations in forest soil and tree pools in a boreal forest in northern Sweden. Contrary to model projections, exchangeable base cations in the top 10 cm of mineral soils recovered much faster than predicted. The base saturation of mineral soils in the high N addition treatment (90 kg N ha-1), which was applied annually from 1970-1990 and has been allowed to recover for the last 22 years, was 120% of that of soil in the control treatment. Similarly, the base saturation of the upper 10 cm of mineral soil in the medium N treatment (60 kg N ha-1 yr-1) increased from 30% of that of the control in 2007 following 37 years of N addition to 80% of that of the control in 2010 following two years of recovery. Importantly, the base saturation of the low N treatment (30 kg N ha-1 yr-1) continually declined from 1970 to 2007 and remained low in 2010. Furthermore, the total calcium pool in the top 10 cm of mineral soil was significantly lower in the high and medium N treatments than in the control treatment. These results suggest there may have been an increase in the weathering rate of base cations following the termination of N addition. Such an increase may be biologically mediated by the soil microbial community receiving increased allocation of recent photosynthate below ground following the termination of N addition and is not accounted for in current biogeochemical models.

  8. Studies on Speciation of Antimony in Soil Contaminated by Industrial Activity

    Microsoft Academic Search

    Joseph Lintschinger; Bernhard Michalke; Sigurd Schulte-hostede; Peter Schramel

    1998-01-01

    Antimony is a toxic trace element of growing environmental interest due to its increased anthropogenic input into the environment. Very little is known about the chemical and biological behavior of antimony compounds in soils and sediments. Three soil samples with substantially elevated Sb concentrations (area contaminated by extensive industrial use of Sb compounds), and a soil standard reference material have

  9. Biological activities of freshwater algae, Spirogyra singularis Nordstedt

    Microsoft Academic Search

    Naser Jafari; Seyed Mohammad Nabavi; Seyed Fazel Nabavi; Mohammad Ali Ebrahimzadeh; Saber Yazdanpanah

    2012-01-01

    Spirogyra is commonly found as accessible algae in freshwater areas all over the world. Some medical uses have been reported from this genus. Biological activities of Spirogyra singularis were investigated employing eight in vitro assays. The extract showed different antioxidant activity. IC50 for DPPH radical-scavenging was 4.71± 0.11 ?g ml. The extract showed very strong nitric oxide-scavenging activity with IC50

  10. Methods for evaluating the biological impact of potentially toxic waste applied to soils

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1985-12-01

    The study was designed to evaluate two methods that can be used to estimate the biological impact of organics and inorganics that may be in wastes applied to land for treatment and disposal. The two methods were the contact test and the artificial soil test. The contact test is a 48 hr test using an adult worm, a small glass vial, and filter paper to which the test chemical or waste is applied. The test is designed to provide close contact between the worm and a chemical similar to the situation in soils. The method provides a rapid estimate of the relative toxicity of chemicals and industrial wastes. The artificial soil test uses a mixture of sand, kaolin, peat, and calcium carbonate as a representative soil. Different concentrations of the test material are added to the artificial soil, adult worms are added and worm survival is evaluated after two weeks. These studies have shown that: earthworms can distinguish between a wide variety of chemicals with a high degree of accuracy.

  11. TECHNOLOGY EVALUATION REPORT: PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL

    EPA Science Inventory

    This report documents a pilot-scale test of a slurry-phase biological reactor for treatment of creosote-contaminated soil. he technology used was a reactor system in which an aqueous slurry of soil was mixed with appropriate nutrients and seeded with microorganisms to enhance the...

  12. Structure and biological activity of lipiarmycin B.

    PubMed

    Cavalleri, B; Arnone, A; Di Modugno, E; Nasini, G; Goldstein, B P

    1988-03-01

    Actinoplanes deccanensis ATCC 21983, the producer of antibiotics lipiarmycin A3 and A4, furnished also a related antibiotic designated lipiarmycin B, active against Gram-positive bacteria, including anaerobes, and against Neisseria. The structures of the two major components, B3 and B4, were elucidated from their physico-chemical properties, 1H and 13C NMR spectra and fast atom bombardment mass spectra data in comparison with lipiarmycins A3 and A4. PMID:3366689

  13. Field-Scale Cleanup of Atrazine and Cyanazine Contaminated Soil with a Combined Chemical-Biological Approach

    Microsoft Academic Search

    M. Waria; S. D. Comfort; S. Onanong; T. Satapanajaru; H. Boparai; C. Harris; D. D. Snow; D. A. Cassada

    2009-01-01

    A former agrichemical dealership in western Nebraska was suspected of having contaminated soil. Our objective was to characterize and remediate the contaminated site by a combined chemical-biological approach. Th is was accomplished by creating contour maps of the on-site contamination, placing the top 60 cm of contaminated soil in windrows and mixing with a mechanical high-speed mixer. Homogenized soil containing

  14. Biologically active withanolides from Withania coagulans.

    PubMed

    Ihsan-ul-Haq; Youn, Ui Joung; Chai, Xingyun; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Borris, Robert P; Mirza, Bushra; Pezzuto, John M; Chang, Leng Chee

    2013-01-25

    Bioassay-directed isolation and purification of the crude extract of Withania coagulans, using two assays for cancer chemopreventive mechanisms, led to the isolation of three new steroidal lactones, withacoagulin G (1), withacoagulin H (2), and withacoagulin I (3), along with six known derivatives (4-9). The structures and absolute stereochemistry of these compounds were determined on the basis of spectroscopic analyses, including 1D and 2D NMR, mass spectrometry, and CD analyses. The structure of 1 was confirmed using X-ray diffraction methods. Compounds 1-9 inhibited nitric oxide production in lipopolysaccharide-activated murine macrophage RAW 264.7 cells with IC(50) values in the range of 1.9-38.2 ?M. Compounds 1 and 2 were the most active (IC(50) 3.1 and 1.9 ?M, respectively). Withanolides 1-9 exhibited inhibition of tumor necrosis factor-? (TNF-?)-induced nuclear factor-kappa B (NF-?B) activation with IC(50) values in the range of 1.60-12.4 ?M. PMID:23316950

  15. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    PubMed

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. PMID:22344901

  16. Investigating biological activity spectrum for novel quinoline analogues.

    PubMed

    Musiol, Robert; Jampilek, Josef; Kralova, Katarina; Richardson, Des R; Kalinowski, Danuta; Podeszwa, Barbara; Finster, Jacek; Niedbala, Halina; Palka, Anna; Polanski, Jaroslaw

    2007-02-01

    The lack of the wide spectrum of biological data is an important obstacle preventing the efficient molecular design. Quinoline derivatives are known to exhibit a variety of biological effects. In the current publication, we tested a series of novel quinoline analogues for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Moreover, antiproliferative activity was measured using SK-N-MC neuroepithelioma cell line. We described the structure-activity relationships (SAR) between the chemical structure and biological effects of the synthesized compounds. We also measured the lipophilicity of the novel compounds by means of the RP-HPLC and illustrate the relationships between the RP-HPLC retention parameter logK (the logarithm of capacity factor K) and logP data calculated by available programs. PMID:17142046

  17. Changes in plant communities along soil pollution gradients: responses of leaf antioxidant enzyme activities and phytochelatin contents.

    PubMed

    Dazy, Marc; Béraud, Eric; Cotelle, Sylvie; Grévilliot, Frédérique; Férard, Jean-François; Masfaraud, Jean-François

    2009-10-01

    This work describes an ecological and ecotoxicological study of polluted wasteland plant communities in a former coke-factory located in Homécourt (France). Ecological analyses were performed along two transects to investigate changes in plant community structure through species richness (S), biological diversity (H') and evenness (J). Five species (Arrhenatherum elatius, Bromus tectorum, Euphorbia cyparissias, Hypericum perforatum and Tanacetum vulgare) were then selected to assess cellular responses through antioxidant enzyme activities and phytochelatins (PCs) contents. The results showed that species richness and biological diversity correlated negatively to Cd and Hg concentrations in soil suggesting that soil concentration of non-essential heavy metals was the primary factor governing vegetation structure in the industrial wasteland. Moreover, for all studied species, abundances were partly related to metal levels in the soils, but also to plant antioxidant systems, suggesting their role in plant establishment success in polluted areas. Data for PC contents led to less conclusive results. PMID:19692108

  18. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received water only once in two weeks (D=dry). Both groups received same water totals for each soil. At the end of each two week drying period, greenhouse gas fluxes were measured via an open-chamber-system (CO2, NO) and a closed-chamber-approach (CH4, N2O, CO2). Additional cylinders were harvested destructively to quantify inorganic N forms, microbial biomass C, N and extracellular enzyme activity (Cellulase, Xylanase, Protease, Phenoloxidase, Peroxidase). We hypothesize that after rewetting (1) rates of greenhouse gas fluxes will generally increase, as well as (2) extracellular enzyme activity indicating enhanced microbial activity. However, response may be different for gases and enzymes involved in the C and N cycle, respectively, as drying/rewetting stress may uncouple microbial mediated biogeochemical cycles. Results will be presented at the EGU General Assembly. Reference: Schimel, J., Balser, T.C., and Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386-1394.

  19. Soils Activity Mobility Study: Methodology and Application

    SciTech Connect

    Silvas, Alissa; Yucel, Vefa

    2014-09-29

    This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected as the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex and labor- and data-intensive methods. For the watersheds analyzed in this report using the Level 1 PSIAC method, the risk of erosion is low. The field reconnaissance surveys of these watersheds confirm the conclusion that the sediment yield of undisturbed areas at the NNSS would be low. The climate, geology, soils, ground cover, land use, and runoff potential are similar among these watersheds. There are no well-defined ephemeral channels except at the Smoky and Plutonium Valley sites. Topography seems to have the strongest influence on sediment yields, as sediment yields are higher on the steeper hill slopes. Lack of measured sediment yield data at the NNSS does not allow for a direct evaluation of the yield estimates by the PSIAC method. Level 2 MUSLE estimates in all the analyzed watersheds except Shasta are a small percentage of the estimates from PSIAC because MUSLE is not inclusive of channel erosion. This indicates that channel erosion dominates the total sediment yield in these watersheds. Annual sediment yields for these watersheds are estimated using the CHAN-SEDI and CHAN-SEDII channel sediment transport models. Both transport models give similar results and exceed the estimates obtained from PSIAC and MUSLE. It is recommended that the total watershed sediment yield of watersheds at the NNSS with flow channels be obtained by adding the washload estimate (rill and inter-rill erosion) from MUSLE to that obtained from channel transport models (bed load and suspended sediment). PSIAC will give comparable results if factor scores for channel erosion are revised towards the high erosion level. Application of the Level 3 process-based models to estimate sediment yields at the NNSS cannot be recommended at this time. Increased model complexity alone will not improve the certainty of the sediment yield estimates. Models must be calibrated against measured data before model results are accepted as certain. Because no measurements of sediment yields at the NNSS are available, model validation cannot be performed. This is also true for the models used in the L

  20. Quantification of Microbial Activities in Near-Surface Soils

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Nauer, P.; Zeyer, J.

    2007-12-01

    Microbial processes in near-surface soils play an important role in carbon and nutrient cycling, and specifically in the turnover of greenhouse gases such as CO2 and CH4. We modified a recently developed technique, the gas push-pull test (GPPT), to allow for the in-situ quantification of microbial activities in near-surface soils. A GPPT consists of the controlled injection of a gas mixture containing reactive gases (e.g., CH4, O2, CO2) and nonreactive tracer gases (e.g., Ar, Ne) into the soil, followed by the extraction of the gas mixture/soil-air blend from the same location. Rates of microbial activities are computed from the gases" breakthrough curves obtained during the GPPT's extraction phase. For a GPPT to be applied successfully, it is important that sufficient mass of the injected gases can be recovered during the test, even after prolonged incubation in soil. But this may be difficult to achieve during GPPTs performed in near- surface soils, where gas loss to the atmosphere can be substantial. Our modification consisted of performing GPPTs within a steel cylinder (8.4-cm radius), which was previously driven into the soil to a depth of 50 cm. During the GPPTs, the cylinder was temporarily closed with a removable lid to minimize gas loss to the atmosphere. We performed a series of numerical simulations as well as laboratory experiments to test the usefulness of this modification. Numerical simulations confirmed that without use of the cylinder, typical near- surface GPPTs (e.g., injection/extraction depth 20 cm below soil surface) are subject to extensive gas loss to the atmosphere (mass recovery < 20% for most gases), whereas mass recovery of injected gases increased dramatically when the cylinder was employed (mass recovery > 90% for most gases). Results from laboratory experiments confirmed this observation. We will also present results of a first field application, in which a near- surface GPPT was successfully conducted in a sandy soil to quantify in-situ rates of CH4 oxidation.

  1. Probing the Activities of Soil Invertebrates Using Stable Isotope Approaches

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.

    2004-12-01

    Soil dwelling invertebrates play a vital role in determining the physical properties and nutrient cycling in soil. Their diverse behaviours influence organic litter, water and gas transport. They impact on other soil biota, e.g. microbes, plants, other invertebrates, etc. via their various grazing and predatory activities, and their role in the comminution of litter influences the activities of other decomposer organisms. However, major challenges exist in the study of the activities of such invertebrates due to the small sizes of many of the key organisms and the opaque nature of soil. This paper will provide an overview of a number of new approaches that have been developed to investigate the behaviours of soil invertebrates. The techniques we employ are based on the use of stable isotopes, exploiting both natural abundance labelling and artificially isotopically enriched tracers. Experiments range from simple feeding and choice experiments in laboratory arenas to pot-based microcosm studies, and field experiments (Chamberlain et al., 2004; Black et al. in press). The philosophy underpinning this research is to exploit fundamental biochemical information to determine the activities of organisms. Thus, compound-specific stable isotope determinations are one of our major goals since these yield high specificity stable isotopic information, often at the biochemical building block level. Compound-specific approaches also have the virtue of enhancing analytical sensitivity, such that the ? 13C values of the biochemical components of individual specimens of low microgram-sized organisms, i.e. mesoinvertebrates, can be recorded their behaviours investigated (Evans et al., 2003; Black et al. in press).

  2. An Inquiry Laboratory Activity for Biology

    NSDL National Science Digital Library

    Nancy Contolini (Brookfield High School REV)

    1994-07-30

    The "cookbook " style approach to studying biochemical reactions mediated by enzymes is changed to an inquiry approach. Cooperative teams are each given two questions about the types of living materials that contain the enzymes that break down hydrogen peroxide, and under what conditions the enzyme works best. They write hypotheses and design and conduct experiments to test these hypotheses. The activity provides students the opportunity to engage in meaningful scientific inquiry because they must truly understand the problem in order to attempt to solve it, to construct meaning in performing experiments, to practice observational skills, and to communicate in writing and in reporting orally to the class on their group results.

  3. Synthesis and biological activities of 2-oxocycloalkylsulfonamides

    Microsoft Academic Search

    Xinghai Li; Xinling Yang; Xiaomei Liang; Zhenpeng Kai; Huizu Yuan; Dekai Yuan; Jianjun Zhang; Ruiqing Wang; Fuxiang Ran; Shuhua Qi; Yun Ling; Fuheng Chen; Daoquan Wang

    2008-01-01

    A series of novel 2-oxocycloalkylsulfonamides (4) were synthesized and their structures confirmed by IR, 1H NMR, and elemental analysis. The bioassay showed that they have fair to excellent fungicidal activities against Botrytis cinerea Pers and Sclerotinia sclerotiorum. Among them, compounds 4A10, 4A11, 4A12, 4B2, and 4B3, the EC50 values of which were 2.12, 3.66, 3.96, 2.38, and 2.43?g\\/mL, respectively, displayed

  4. [Biological activity of Penicillium sp. 10-51 exometabolites].

    PubMed

    Savchuk, Ia I; Za?chenko, A M; Tsyganenko, E S

    2012-01-01

    Silica gel column chromatography (silica gel "L" II kind of activity 100/160 mkm) of the chloroform extract from the cultural filtrate of Penicillium sp. 10-51 gave two fractions (chloroform and chloroform-acetone, 5:1) having biological activity. Recrystallization yielded two compounds. On the basis of physico-chemical and spectral data these compounds were identified as curvularin and hydroxycurvularin, which have a large spectrum of biological action as to bacteria, yeast, blue-green algae and phytopathogenic micromycetes. PMID:23088100

  5. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and ground processing designs.

  6. Generation of biologically active substances in a natural gas flame.

    PubMed Central

    Braun, A G; Pakzaban, P; Toqan, M A; Beér, J M

    1987-01-01

    Samples of gaseous and solid species taken from the central axis of a 1 megawatt heat-input natural gas flame were tested in vitro for mutagenic activity and teratogenic potential. Mutagenicity was determined by a Salmonella typhimurium forward mutation assay. Potential teratogenicity was indicated by the ability of samples to interfere with the attachment of mammalian cells to a lectin coated surface. Both the mutagenic and anti-attachment activities were found to peak in samples originating from the flame regions where the total polyaromatic compound (PAC) species concentration reached a maximum, indicating a strong correlation between PAC presence in the samples and biological activity. Additional anti-attachment activity was found close to the injection nozzle. No biologically active material was detected beyond the luminous portion of the flame. PMID:3622438

  7. The biological activity of structurally defined inositol glycans

    PubMed Central

    Goel, Meenakshi; Azev, Viatcheslav N; d’Alarcao, Marc

    2009-01-01

    Background The inositol glycans (IGs) are glycolipid-derived carbohydrates produced by insulin-sensitive cells in response to insulin treatment. IGs exhibit an array of insulin-like activities including stimulation of lipogenesis, glucose transport and glycogen synthesis, suggesting that they may be involved in insulin signal transduction. However, because the natural IGs are structurally heterogeneous and difficult to purify to homogeneity, an understanding of the relationship between structure and biological activity has relied principally on synthetic IGs of defined structure. Discussion This article briefly describes what is known about the role of IGs in signal transduction and reviews the specific biological activities of the structurally defined IGs synthesized and tested to date. Conclusion A pharmacophore for IG activity begins to emerge from the reviewed data and the structural elements necessary for activity are summarized. PMID:20390053

  8. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  9. Biosynthesis, Synthesis and Biological Activities of Pyrrolobenzodiazepines

    PubMed Central

    Gerratana, Barbara

    2014-01-01

    Pyrrolobenzodiazepines (PBDs) are sequence selective DNA alkylating agents with remarkable antineoplastic activity. They are either naturally produced by actinomycetes or synthetically produced. The remarkable broad spectrum of activities of the naturally produced PBDs encouraged the synthesis of several PBDs, including dimeric and hybrid PBDs yielding to an improvement in the DNA binding sequence specificity and in the potency of this class of compounds. However, limitation in the chemical synthesis prevented the testing of one of the most potent PBDs, sibiromycin, a naturally produced glycosylated PBDs. Only recently the biosynthetic gene clusters for PBDs have been identified opening the doors to the production of glycosylated PBDs by mutasynthesis and biosynthetic engineering. The present review describes the recent studies on the biosynthesis of naturally produced pyrrolobenzodiazepines. In addition, it provides an overview on the isolation and characterization of naturally produced PBDs, on the chemical synthesis of PBDs, on the mechanism of DNA alkylation, and on the DNA binding affinity and cytotoxic properties of both naturally produced and synthetic pyrrolobenzodiazepines. PMID:20544978

  10. Identification of Factors Influencing the Restoration of Cyanobacteria-Dominated Biological Soil Crusts

    PubMed Central

    Bu, Chongfeng; Wu, Shufang; Yang, Yongsheng; Zheng, Mingguo

    2014-01-01

    Biological soil crusts (BSCs) cover >35% of the Earth’s land area and contribute to important ecological functions in arid and semiarid ecosystems, including erosion reduction, hydrological cycling, and nutrient cycling. Artificial rapid cultivation of BSCs can provide a novel alternative to traditional biological methods for controlling soil and water loss such as the planting of trees, shrubs, and grasses. At present, little is known regarding the cultivation of BSCs in the field due to lack of knowledge regarding the influencing factors that control BSCs growth. Thus, we determined the effects of various environmental factors (shade; watering; N, P, K, and Ca concentrations) on the growth of cyanobacteria-dominated BSCs from the Sonoran Desert in the southwestern United States. The soil surface changes and chlorophyll a concentrations were used as proxies of BSC growth and development. After 4 months, five factors were found to impact BSC growth with the following order of importance: NH4NO3 ? watering frequency>shading>CaCO3 ? KH2PO4. The soil water content was the primary positive factor affecting BSC growth, and BSCs that were watered every 5 days harbored greater biomass than those watered every 10 days. Groups that received NH4NO3 consistently exhibited poor growth, suggesting that fixed N amendment may suppress BSC growth. The effect of shading on the BSC biomass was inconsistent and depended on many factors including the soil water content and availability of nutrients. KH2PO4 and CaCO3 had nonsignificant effects on BSC growth. Collectively, our results indicate that the rapid restoration of BSCs can be controlled and realized by artificial “broadcasting” cultivation through the optimization of environmental factors. PMID:24625498

  11. [Effects of forest type on soil organic matter, microbial biomass, and enzyme activities].

    PubMed

    Lu, Shun-bao; Zhou, Xiao-qi; Rui, Yi-chao; Chen, Cheng-rong; Xu, Zhi-hong; Guo, Xiao-min

    2011-10-01

    Taking the typical forest types Pinus elliottii var. elliotttii, Araucaria cunninghamii, and Agathis australis in southern Queensland of Australia as test objects, an investigation was made on the soil soluble organic carbon (SOC) and nitrogen (SON), microbial biomass C (MBC) and N (MBN), and enzyme activities, aimed to understand the effects of forest type on soil quality. In the three forests, soil SOC content was 552-1154 mg kg(-1), soil SON content was 20.11-57.32 mg kg(-1), soil MBC was 42-149 mg kg(-1), soil MBN was 7-35 mg kg(-1), soil chitinase (CAS) activity was 2.96-7.63 microg g(-1) h(-1), soil leucine aminopeptidase (LAP) activity was 0.18-0.46 microg g(-1) d(-1), soil acid phosphatase (ACP) activity was 16.5-29.6 microg g(-1) h(-1), soil alkaline phosphatase (AKP) activity was 0.79-3.42 microg g(-1) h(-1), and soil beta-glucosidase (BG) activity was 3.71-9.93 microg g(-1) h(-1). There was a significant correlation between soil MBC and MBN. Soil SOC content and soil CAS and LAP activities decreased in the order of P. elliottii > A. cunninghamii > A. australis, soil SON content decreased in the order of A. cunninghamii > A. australis > P. elliottii and was significantly higher in A. cunninghamii than in P. elliottii forest (P < 0.05), soil MBC and MBN and AKP activity decreased in the order of A. australis > P. elliottii > A. cunninghamii, and soil ACP and BG activities decreased in the order of P. elliottii > A. australis > A. cunninghamii. Among the test soil biochemical factors, soil MBC, MBN, SON, and LAP had greater effects on the soil quality under the test forest types. PMID:22263459

  12. Teaching Systems Biology: An Active-learning Approach

    PubMed Central

    2005-01-01

    With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed “systems biology,” presents the biology educator with both opportunities and obstacles: The benefit of exposing students to this cutting-edge scientific methodology is manifest, yet how does one convey the breadth and advantage of systems biology while still engaging the student? Here, I describe an active-learning approach to the presentation of systems biology. In graduate classes at the University of Michigan, Ann Arbor, I divided students into small groups and asked each group to interpret a sample data set (e.g., microarray data, two-hybrid data, homology-search results) describing a hypothetical signaling pathway. Mimicking realistic experimental results, each data set revealed a portion of this pathway; however, students were only able to reconstruct the full pathway by integrating all data sets, thereby exemplifying the utility in a systems biology approach. Student response to this cooperative exercise was extremely positive. In total, this approach provides an effective introduction to systems biology appropriate for students at both the undergraduate and graduate levels. PMID:16341259

  13. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition

    USGS Publications Warehouse

    Belnap, Jayne; Wilcox, Bradford P.; Van Scoyoc, Matthew V.; Phillips, Susan L.

    2013-01-01

    Biological soil crusts are a key component of many dryland ecosystems. Following disturbance, biological soil crusts will recover in stages. Recently, a simple classification of these stages has been developed, largely on the basis of external features of the crusts, which reflects their level of development (LOD). The classification system has six LOD classes, from low (1) to high (6). To determine whether the LOD of a crust is related to its ecohydrological function, we used rainfall simulation to evaluate differences in infiltration, runoff, and erosion among crusts in the various LODs, across a range of soil depths and with different wetting pre-treatments. We found large differences between the lowest and highest LODs, with runoff and erosion being greatest from the lowest LOD. Under dry antecedent conditions, about 50% of the water applied ran off the lowest LOD plots, whereas less than 10% ran off the plots of the two highest LODs. Similarly, sediment loss was 400 g m-2 from the lowest LOD and almost zero from the higher LODs. We scaled up the results from these simulations using the Rangeland Hydrology and Erosion Model. Modelling results indicate that erosion increases dramatically as slope length and gradient increase, especially beyond the threshold values of 10 m for slope length and 10% for slope gradient. Our findings confirm that the LOD classification is a quick, easy, nondestructive, and accurate index of hydrological condition and should be incorporated in field and modelling assessments of ecosystem health.

  14. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Housman, D.C.; Zaki, A.M.; Shamout, Y.; Adl, S.M.; Belnap, J.; Neher, D.A.

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37??C. Cysts survived the upper end of daily temperatures (37-55??C), and could be stimulated to excyst if temperatures were reduced to 15??C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime. ?? 2006 by the International Society of Protistologists.

  15. Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea

    Microsoft Academic Search

    J. G. Xu; R. L. Johnson

    1995-01-01

    Biological properties of soil are not only essential for the maintenance of soil fertility and the sustainability of the plant-soil ecosystems, but also indicators of land reclamation of contaminated or disturbed soils. This experiment involves two plants (barley and field pea) growing in four soils with different hydrocarbon contents. The objective was to study the effect of hydrocarbons on plant

  16. Effects of activated sludge on the degradation of chlorate in soils under varying environmental conditions

    Microsoft Academic Search

    Chunxiao Jiang; Huashou Li; Chuxia Lin

    2009-01-01

    Incubation experiments were conducted to examine the effects of activated sludge on degradation of chlorate in soils. The results show that application of activated sludge could significantly promote the decomposition of soil chlorate though the degradation rate of chlorate did not necessarily increase with increasing application rate of the sludge. The effectiveness of activated sludge on soil chlorate degradation was

  17. Molecular and chemical features of the excreted extracellular polysaccharides in Induced Biological Soil Crusts of different ages

    NASA Astrophysics Data System (ADS)

    Rossi, Federico; Lanzhou, Chen; Liu, Yongding; Adessi, Alessandra; De Philippis, Roberto

    2014-05-01

    Biological Soil Crusts (BSCs) are complex microbial associations widely distributed in arid and semiarid environments. These microbial associations have recently been acknowledged as important in restoration ecology (Bowker 2007). The primary colonization of cyanobacteria and other crust organisms after events such as fire or cessation of plowing is considered critical for later vascular plant establishment, due to the control of seed germination and due to the complex pathways that BSCs are capable to establish between plants and crust organisms and exudates (Rossi et al. 2013). In a ten year study carried out in the hyper-arid region of Inner Mongolia (China), introduction of man - made BSCs (induced BSCs, IBSCs) proved to be effective in producing a shift of the ecosystem state from high abiotic to low abiotic stress, evidenced by an increase in photothrophic abundance and subshrub cover. The prerequisite for an efficient exploitation of crust organisms as soil colonizers is their capability to secrete large amount of exopolysaccharides (EPS) which are important, among the reasons, as they lead to soil and BSC stabilization and represent a noticeable source of C that can be respired by the crustal community. By these means, a deep chemical and physiological knowledge concerning these exudates is required. Notwithstanding the large amount of literature available, recently thoroughly reviewed by Mager and Thomas (2011), the chemical characteristics of EPS from BSCs, and in particular from IBSCs, have not been investigated yet. We analyzed the monosaccharidic composition and the molecular weight distribution of two EPS fractions, the more soluble fraction and the fraction more tightly bound to cells, extracted from IBSCs collected in the Inner Mongolian desert, inoculated in different years (namely 4, 6 and 8 years before the sampling), thus characterized by different developmental stages. We thereafter investigated the degradation processes involving EPS, assessing the activity of two key enzymes for sugar degradation: dehydrogenase and sucrase. The results obtained demonstrated a high complexity in terms of monosaccharidic composition and molecular weight, the latter resulting differently distributed between the two fractions. Enzymatic activity resulted mainly directed to the more soluble, low - molecular weight carbohydrates. The data presented represent a first study of the biochemical processes involving carbon from EPS released by IBSCs on bare substrates after the colonization of soils by the inoculated cyanobacteria. Bowker MA (2007) Biological soil crusts rehabilitation in theory and practice: an underexploited opportunity. Restoration Ecology 15(1): 13 - 23. Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. Journal of Arid Environments 75: 91 - 97. Rossi F, Diels L, Olguin E, De Philippis R (2013) Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology. DOI: . http://dx.doi.org/10.1016/j.nbt.2013.12.002.

  18. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  19. Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Phillips, S.L.

    2005-01-01

    Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water-nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils than on shale-derived soils. At a microscale, mosses and lichens are overrepresented in microhabitats under the north sides of shrub canopies, where water and nutrients are more available. At two spatial scales, and at the individual species and community levels, our data are consistent with the hypothesis that distributions of BSC organisms are determined largely by soil fertility. The micronutrients Mn and Zn figured prominently and consistently in the various analyses, strongly suggesting that these elements are previously unstudied limiting factors in BSC development. Structural-equation modeling of our data is most consistent with the hypothesis of causal relationships between the availability of micronutrients and the abundance of the two major nitrogen (N) fixers of BSCs. Specifically, higher Mn availability may determine greater Collema tenax abundance, and both Mn and Zn may limit Collema coccophorum; alternative causal hypotheses were less consistent with the data. We propose experimental trials of micronutrient addition to promote the restoration of BSC function on disturbed lands. Arid lands, where BSCs are most prevalent, cover ???40% of the terrestrial surface of the earth; thus the information gathered in this study is potentially useful in many places worldwide. ?? 2005 by the Ecological Society of America.

  20. Influence of biological soil crusts at different successional stages in the implantation of biogeochemical cycles in arid and semiarid zones

    NASA Astrophysics Data System (ADS)

    Gil-Sotres, F.; Miralles, I.; Canton-Castilla, Y.; Domingo, F.; Leiros, M. C.; Trasar-Cepeda, C.

    2012-04-01

    Influence of biological soil crusts at different successional stages in the implantation of biogeochemical cycles in arid and semiarid zones I. Miralles1, F. Gil-Sotres2, Y. Cantón-Castilla3, F. Domingo1, M.C. Leirós2, C. Trasar-Cepeda4 1 Experimental Estation of Arid Zones (CSIC), E-04230 La Cañada de San Urbano, Almería, Spain. 2 Departamento Edafología y Química Agrícola, Grupo de Evaluación de la Calidad del Suelo, Unidad Asociada CSIC, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain. 3 University of Almería, Departamento de Edafología y Química Agrícola, E-04230-La Cañada de San Urbano, Almería, Spain. 4 Departamento Bioquímica del Suelo, IIAG-CSIC, Apartado 122, E-15708 Santiago de Compostela, Spain. Crusts (BSCs) are formed by a close association between soil particles and cyanobacteria, algae, lichens, bryophytes and microfungi in varying proportions. Their habitat is within or immediately on top of the uppermost millimetres of the soil and are the predominant surface cover in arid and semiarid zones. Among the diverse functions developed by BSCs in the ecosystem (hydrology, erosion, soil properties, etc.), one of the most important is its role in nutrient cycling. Within arid and semiarid environments, BSCs have been termed 'mantles of fertility' being considered hotspots of biogeochemical inputs, fixing C, N and P above- and below-ground. However, there are differences in N and C fixation rates between BSCs types. Early successional BSCs, dominated by cyanobacterial species, fix lower quantities of C and N than mature BSCs dominated by lichens. Although the positive effects of BSCs on biogeochemical soil cycles are widely accepted, no previous studies have evaluated the activities of the enzymes involved in C, N and P cycles of BSCs and how they are affected by the successional stage of the BSC. In this work, performed in the Tabernas desert (SE Spain), we studied the hydrolase enzymes involved in C (invertase, CM-cellulase, ?-glucosidase), N (urease, BAA-protease, casein-protease) and P (phosphomonoesterase) cycles in BSCs at different successional stages (cyanobacteria represents the first successional stage, lichen Diploschistes diacapsis in an intermediate state and lichen Lepraria crassissima, with the greatest successional state). Our results show that BSCs at lower successional stage enriched the surface geological substrate in hydrolase enzymes to a lesser extent than mature BSCs (Lepraria crassissima), which show the highest values in all enzymatic activities. In contrast, the specific enzyme activities (activity values expressed per unit of carbon) were higher in the BSCs at lower successional stage, decreasing in the direction: cyanobacteria > Diploschistes diacapsis-lichen > Lepraria crassissima-lichen. These results suggest a different role of BSCs depending on their successional stage with regard to the implantation of biogeochemical cycles during the surface substrate colonization. Our conclusions are highly relevant to improve the knowledge of biogeochemical cycles in arid and semiarid areas. Keywords: Biological Soil Crusts, arid ecosystems, hydrolytic enzymes, biochemical activity

  1. Soil Biology & Biochemistry 39 (2007) 16551663 Relation between oak tree phenology and the secretion of organic

    E-print Network

    Bruns, Tom

    2007-01-01

    and economically. Tree phenology changes seasonally due to both climate and endogenous rhythms. In oak, a ring to be significantly related to tree reactivation and climate. All these activities can help the formation of new and Lassoie, 1981). Primary root elongation, related to changes in external climatic variables (soil

  2. Biological activities and medicinal properties of neem (Azadirachta indica)

    Microsoft Academic Search

    Kausik Biswas; Ishita Chattopadhyay; Ranajit K. Banerjee; Uday Bandyopadhyay

    Neem (Azadirachta indica A. Juss) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the neem com- pounds, considerable progress has been achieved regarding the biological activity and medicinal appli - cations of neem.

  3. Biology and biochemistry of platelet-activating factor

    Microsoft Academic Search

    Joseph T. O’Flaherty; Robert L. Wykle

    1983-01-01

    Platelet-activating factor (PAF) is an endogenously formed phospholipid with extremely toxic actions, whose chemical characterization was completed in 1979. This article reviews its biology and biochemistry. We start with some classical studies on anaphylaxis because it was in this potentially lethal allergic reaction that PAF was first discovered and implicated in self-injury. ~ Anaphylaxis In 1894, Flexner reported that dogs

  4. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  5. Biological activity of common mullein, a medicinal plant

    Microsoft Academic Search

    Arzu Ucar Turker; N. D Camper

    2002-01-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays—brine shrimp

  6. Learning Activity Package, Biology 103, (LAP) Study 19.

    ERIC Educational Resources Information Center

    Rhoden, Bruce

    Presented is a Learning Activity Package (LAP) study concerned with the study of biological reproduction. The LAP begins with the rationale for studying the reproductive process and is then divided into two sections. Contained within each section are student objectives (stated in behavioral terms), a list of resources (readings and problems,…

  7. Protected Resources Division This Biological Opinion is no longer active.

    E-print Network

    ://www.nero.noaa.gov/Protected/section7/BiOps/ to find active Biological Opinions. IN AC TIVE #12;ENDANGERED SPECIES ACT SECTION 7: Endangered Species Act Section 7 Consultation on the Federal Atlantic Mackerel, Squid and Atlantic Butterfish of Species Likely to be Adversely Affected 19 3.2.1 Loggerhead Sea Turtles 20 3.2.2 Leatherback Sea Turtle

  8. BIOLOGICAL ACTIVITY AND POTENTIAL REMEDIATION INVOLVING GEOTEXTILE LANDFILL LEACHATE FILTERS

    EPA Science Inventory

    This paper presents the results of a biological growth study in geotextile filters used in landfill leachate collection systems. fter reviewing the first year's activity, a completely new experimental approach has been taken. sing 100 mm diameter columns for the experimental incu...

  9. The microbiology of biological phosphorus removal in activated sludge systems

    Microsoft Academic Search

    Robert J Seviour; Takashi Mino; Motoharu Onuki

    2003-01-01

    Activated sludge systems are designed and operated globally to remove phosphorus microbiologically, a process called enhanced biological phosphorus removal (EBPR). Yet little is still known about the ecology of EBPR processes, the microbes involved, their functions there and the possible reasons why they often perform unreliably. The application of rRNA-based methods to analyze EBPR community structure has changed dramatically our

  10. On the biological activity of drug molecules: Busulfan and nabumetone

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kova?, Branka

    2010-10-01

    The electronic structures of drug molecules busulfan (BSU) and nabumetone (NAB) have been investigated by HeI and HeII UV photoelectron spectroscopy (UPS), quantum chemical calculations and virtual docking studies. Their biological activities are discussed in the framework of their electronic and molecular structures, reactivity and drug-enzyme binding.

  11. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  12. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  13. Secondary metabolites from Inula britannica L. and their biological activities.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Hamayun, Muhammad; Gilani, Syed Abdullah; Ahmad, Shabir; Rehman, Gauhar; Kim, Yoon-Ha; Kang, Sang-Mo; Lee, In-Jung

    2010-03-01

    Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica. PMID:20336001

  14. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Yeager, C.M.; Kornosky, J.L.; Housman, D.C.; Grote, E.E.; Belnap, J.; Kuske, C.R.

    2004-01-01

    The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.

  15. A versatile system for biological and soil chemical tests on a planetary landing craft. I - Scientific objectives

    NASA Technical Reports Server (NTRS)

    Radmer, R. J.; Kok, B.; Martin, J. P.

    1976-01-01

    We describe an approach for the remote detection and characterization of life in planetary soil samples. A mass spectrometer is used as the central sensor to monitor changes in the gas phase in eleven test cells filled with soil. Many biological assays, ranging from general 'in situ' assays to specific metabolic processes (such as photosynthesis, respiration, denitrification, etc.) can be performed by appropriate additions to the test cell via attached preloaded injector capsules. The system is also compatible with a number of chemical assays such as the analysis of atmospheric composition (both chemical and isotopic), the status of soil water, and the determination of compounds of carbon, nitrogen and sulfur in the soil.

  16. Molecular and Biological Diagnostic Tests for Monitoring Benzimidazole Resistance in Human Soil-Transmitted Helminths

    PubMed Central

    Diawara, Aïssatou; Schwenkenbecher, Jan M.; Kaplan, Ray M.; Prichard, Roger K.

    2013-01-01

    In endemic countries with soil-transmitted helminths mass drug administration with albendazole or mebendazole are being implemented as a control strategy. However, it is well known in veterinary helminths that the use of the same benzimidazole drugs can place selection on the ?-tubulin gene, leading to resistance. Given the concern that resistance could arise in human soil-transmitted helminths, there is an urgent need to develop accurate diagnostic tools for monitoring resistance. In this study, we developed molecular assays to detect putative resistance genetic changes in Ascaris lumbricoides, Trichuris trichiura, and hookworms, and we optimized an egg hatch assay for the canine hookworm Ancylostoma caninum and applied it to Necator americanus. Both assays were tested on field samples. The molecular assays demonstrated their reproducibility and capacity to detect the presence of worms carrying putative resistance-associated genetic changes. However, further investigations are needed to validate our molecular and biological tests on additional field isolates. PMID:23458960

  17. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States.

    PubMed

    Bates, Scott T; Nash, Thomas H; Garcia-Pichel, Ferran

    2012-01-01

    Molecular methodologies were used to investigate fungal assemblages of biological soil crusts (BSCs) from arid lands in the southwestern United States. Fungal diversity of BSCs was assessed in a broad survey that included the Chihuahuan and Sonoran deserts as well as the Colorado Plateau. At selected sites samples were collected along kilometer-scale transects, and fungal community diversity and composition were assessed based on community rRNA gene fingerprinting using PCR-denaturing gradient gel electrophoresis (DGGE). Individual phylotypes were characterized through band sequencing. The results indicate that a considerable diversity of fungi is present within crusted soils, with higher diversity being recovered from more successionally mature BSCs. The overwhelming majority of crust fungi belong to the Ascomycota, with the Pleosporales being widespread and frequently dominant. Beta diversity patterns of phylotypes putatively representing dominant members of BSC fungal communities suggest that these assemblages are specific to their respective geographic regions of origin. PMID:22123652

  18. Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice

    Microsoft Academic Search

    Ranjith P. Udawatta; Robert J. Kremer; Brandon W. Adamson; Stephen H. Anderson

    2008-01-01

    Agroforestry and grass buffers have been shown to improve soil properties and overall environmental quality. The objective of this study was to examine management and landscape effects on water stable soil aggregates (WSA), soil carbon, soil nitrogen, enzyme activity, and microbial community DNA content. Treatments were row crop (RC), grass buffer (GB), agroforestry buffer (AG), and grass waterways (GWW). A

  19. Soil Enzyme Activities as Affected by Manure Types, Application Rates and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of manure can restore soil ecosystem services related to nutrient cycling and soil organic matter (SOM) dynamics through biochemical transformations mediated by soil enzymes. Enzyme activities are very crucial in soil metabolic functioning as they drive the decomposition of organic r...

  20. Heterotrophic Microbes, Microbial and Enzymatic Activity in Antarctic Soils

    Microsoft Academic Search

    M. Bölter; E. Kandeler; S. J. Pietr; R. D. Seppelt

    \\u000a Defining the soil microbial community or its activity is often like a fight against Servante's windmills. Despite the many\\u000a methods which are available for describing individual figures of this 'black box', many uncertainties remain in this important\\u000a ecological compartment. Today's methodologies still do not allow us to obtain the full picture of the microbial world. The\\u000a approach to understanding the

  1. Analysis of carbon soil content by using tagged neutron activation

    NASA Astrophysics Data System (ADS)

    Obhodas, Jasmina; Sudac, Davorin; Matjacic, Lidija; Valkovic, Vladivoj

    2012-06-01

    Here we describe a prototype for non-destructive, in-situ, accurate and cost-effectively measurement procedure of carbon in soil based on neutron activation analysis using 14 MeV tagged neutron beam. This technology can be used for carbon baseline assessment on regional scale and for monitoring of its surface and depth storage due to the changes in agricultural practices undertaken in order to mitigate global climate change.

  2. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  3. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  4. Comparative tolerance of Pinus radiata and microbial activity to copper and zinc in a soil treated with metal-amended biosolids.

    PubMed

    Jeyakumar, Paramsothy; Loganathan, Paripurnanda; Anderson, Christopher W N; Sivakumaran, Sivalingam; McLaren, Ronald G

    2014-03-01

    A study was conducted to evaluate the effects of elevated concentrations of copper (Cu) and zinc (Zn) in a soil treated with biosolids previously spiked with these metals on Pinus radiata during a 312-day glasshouse pot trial. The total soil metal concentrations in the treatments were 16, 48, 146 and 232 mg Cu/kg or 36, 141, 430 and 668 mg Zn/kg. Increased total soil Cu concentration increased the soil solution Cu concentration (0.03-0.54 mg/L) but had no effect on leaf and root dry matter production. Increased total soil Zn concentration also increased the soil solution Zn concentration (0.9-362 mg/L). Decreased leaf and root dry matter were recorded above the total soil Zn concentration of 141 mg/kg (soil solution Zn concentration, >4.4 mg/L). A lower percentage of Cu in the soil soluble?+?exchangeable fraction (5-12 %) and lower Cu(2+) concentration in soil solution (0.001-0.06 ?M) relative to Zn (soil soluble?+?exchangeable fraction, 12-66 %; soil solution Zn(2+) concentration, 4.5-4,419 ?M) indicated lower bioavailability of Cu. Soil dehydrogenase activity decreased with every successive level of Cu and Zn applied, but the reduction was higher for Zn than for Cu addition. Dehydrogenase activity was reduced by 40 % (EC40) at the total solution-phase and solid-phase soluble?+?exchangeable Cu concentrations of 0.5 mg/L and 14.5 mg/kg, respectively. For Zn the corresponding EC50 were 9 mg/L and 55 mg/kg, respectively. Based on our findings, we propose that current New Zealand soil guidelines values for Cu and Zn (100 mg/kg for Cu; 300 mg/kg for Zn) should be revised downwards based on apparent toxicity to soil biological activity (Cu and Zn) and radiata pine (Zn only) at the threshold concentration. PMID:24217968

  5. Field Trial Assessment of Biological, Chemical, and Physical Responses of Soil to Tillage Intensity, Fertilization, and Grazing

    NASA Astrophysics Data System (ADS)

    Vargas Gil, Silvina; Becker, Analia; Oddino, Claudio; Zuza, Mónica; Marinelli, Adriana; March, Guillermo

    2009-08-01

    Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize ( Zea mays L.), sunflower ( Heliantus annuus L.), and soybean ( Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.

  6. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    PubMed

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. PMID:24121674

  7. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  8. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute to the stability and fertility of soils in dryland regions. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  9. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management

    Microsoft Academic Search

    J. W Doran; E. T Elliott; K Paustian

    1998-01-01

    Two experiments were established in 1969 and 1970 near Sidney, NE, to determine the effect of moldboard plow (plow), sub-tillage (sub-till), and no-tillage (no-till) fallow management on soil properties, biological activities, and carbon and nitrogen cycling. One experiment was on land which had been broken from sod in 1920, seeded to crested wheatgrass [Agropyron cristatum (L.) Gaertn.] from 1957 to

  10. Effects of long term irrigation with polluted water and sludge amendment on some soil enzyme activities

    SciTech Connect

    Topac, F.O.; Baskaya, H.S.; Alkan, U.; Katkat, A.V. [Uludag University, Bursa (Turkey)

    2008-01-15

    The objective of this study was to determine the effects of wastewater sludge-fly ash mixtures on urease, dehydrogenase, alkaline phosphatase and beta-glucosidase activities in soils. In order to evaluate the probable effects of previous soil management practices (irrigation with polluted water) on soil enzymes, two different soil samples which were similar in physical properties, but different in irrigation practice were used. The application of wastewater sludges supplemented with varying doses of fly ash increased potential enzyme activities for a short period of time (3 months) in comparison to unamended soils. However, the activity levels generally showed a decreasing trend with increasing ash ratios indicating the inhibitory effect of fly ash. The urease and dehydrogenase activities were particularly lower in soils irrigated from a polluted stream, indicating the negative effects of the previous soil management on soil microbial activity.

  11. Biological activity in Technosols as a key factor of their structure

    NASA Astrophysics Data System (ADS)

    Watteau, Françoise; Villemin, Geneviève; Bouchard, Adeline; Monserié, Marie-France; Séré, Geoffroy; Schwartz, Christophe; Morel, Jean-Louis

    2010-05-01

    The studies of the dynamics of organic matters within soils, show that their structural stability depends on the biological activity bound to the degradation of organic products. We wondered what it was for Technosols there. We then tried to specify the contribution of this biological activity to the structure of three contrasted technosols : - Technosol 1: a material originated from a former steel industry containing steel and coke residues, which was deposited two years ago in lysimetric plots - Technosol 2: a constructed soil (30 months) resulting from the combination of paper-mill sludge, thermally treated soil material excavated from a former coking plant site, and green-waste compost - Technosol 3: 30 years old technosol developed on flotation ponds of a former steel mill with strong metallic pollution, on which grows a forest ecosystem If these 3 technosols presented initially a similar organic carbon content (around 70 g.kg-1), the origin of organic matters was different A follow-up of the structural stability of these 3 systems, based on techniques of granulometric soil fractionation and morphological/analytical characterization at ultrastructural scale (TEM/EDX), was realized. Results showed the specific contribution of organic matters to the formation of stable organo-mineral associations, in particular those belonging to (0-50 ?m) fraction. They mainly involved organic matter from vegetal origin coming from the spontaneous colonization of these 3 sites, but also from microbial origin corresponding to rhizospheric bacteria producing exopolymers. Organic matters from the compost and cellulosic fibers from the paper-mill sludge also contributed to the formation of organo-mineral associations all the more that compost was also a source of microorganisms. Organic matters were also associated to pollutant metallic elements (Pb, Zn, Mn) initially brought by the materials, then highlighting their possible transfer and questioning about their (bio)availability. HAP also contributed to the aggregation of technogenic constituents in Technosol 1. The biological activity generated by the presence of exogenous organic matter is thus in short (0-2 years) and mean (30 years) terms, a key factor of the structuration and by there of the pedogenesis of Technosols.

  12. Biological activities of xanthatin from Xanthium strumarium leaves.

    PubMed

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63?µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100?µg/mL and 97?µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04?µg/mL and 44.70?µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6?h of treatment with 100?µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. PMID:21953905

  13. ENZYME ACTIVITIES AS AFFECTED BY SOIL PROPERTIES AND LAND USE IN A TROPICAL WATERSHED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for un...

  14. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for microbial biomass, was significantly higher in topsoil organic horizons than in cryoturbated and mineral horizons. Changes in the microbial community composition were mainly caused by the relative amount of fungal biomarkers. Within the fungal community the biomarker 18:2w6, which is often associated with ectomycorrhiza, was negatively correlated to the general fungal biomarker 18:1w9. This negative correlation indicates a shift from mycorrhizal to saprotrophic fungi from topsoil towards cryoturbatad and mineral subsoil horizons. In summary, the measured oxidative and hydrolytic (potential) enzyme activities cannot explain the previously observed retarded decomposition in cryoturbated horizons. The measured actual cellulase activity however was strongly reduced in cryoturbated material compared to topsoil horizons. A possible explanation for the observed strong reduction of actual cellulase activity could lie within the fungal community structure which shifted towards saprotrophic fungi from topsoil to cryoturbated horizons.

  15. Chemical properties and toxicity of soils contaminated by mining activity.

    PubMed

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Boles?aw Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and <1-10% for lead. In 1 mol HCl dm(-3), the solubility of the studied metals was much higher and obtained values depending on the collection site, from 45 to 92% for zinc, from 74 to 99%, and from 79 to 99% for lead. The lower solubility of the heavy metals in 1 mol dm(-3) NH4NO3 than 1 mol HCl dm(-3) is connected with that, the ammonium nitrate has low extraction power, and it is used in determining the bioavailable (active) form of heavy metals. Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ? 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them. PMID:24903806

  16. Hydraulic conductivity of compacted soils controlled by microbial activity.

    PubMed

    Glatstein, Daniel Alejandro; Francisca, Franco Matías

    2014-08-01

    The hydraulic conductivity defines the displacement of liquids inside porous media and affects the fate and transport of contaminants in the environment. In this research the influence of microbial growth and decay inside soil pores on hydraulic conductivity is analysed. Long-term tests performed in silt-bentonite mixtures permeated with distilled water and a nutrients solution demonstrated that hydraulic conductivity of compacted silt-bentonite samples decreases with time of permeation as a bioclogging mechanism develops. The injection of antibiotics and antifungals in the specimens produces a rebound in the hydraulic conductivity associated with the decay of microbial activity. These results show that biomediated reactions can be used to control the flow rate through compacted soil liners. PMID:24956782

  17. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems

    Microsoft Academic Search

    Miguel A. Altieri; Clara I. Nicholls

    2003-01-01

    Cultural methods such as crop fertilization can affect susceptibility of plants to insect pests by altering plant tissue nutrient levels. Research shows that the ability of a crop plant to resist or tolerate insect pests and diseases is tied to optimal physical, chemical and mainly biological properties of soils. Soils with high organic matter and active soil biology generally exhibit

  18. Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon–Contaminated Soil Before and After Biological Treatment

    PubMed Central

    Hu, Jing; Adrion, Alden C.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.

    2014-01-01

    Abstract Contaminated soil from a former manufactured-gas plant site was treated in a laboratory-scale bioreactor. Desorbability and biodegradability of 14 polycyclic aromatic hydrocarbons (PAHs) and 4 oxygenated PAHs (oxy-PAHs) were investigated throughout a treatment cycle. Desorbability was determined using a mixed-function sorbent (Oasis® HLB) or a hydrophobic sorbent (Tenax®) in dialysis tubing suspended in the soil slurry. Toxicity and genotoxicity of the whole soil and the desorbable fractions were determined by DNA damage response analysis with the chicken DT40 B-lymphocyte isogenic cell line and its DNA repair-deficient mutant Rad54?/?. Biological treatment significantly removed both PAHs and oxy-PAHs, and their desorbability decreased throughout the bioreactor treatment cycle. Collectively, oxy-PAHs were more desorbable and biodegradable than the corresponding PAHs; for example, the oxy-PAH present at the highest concentration, 9,10-anthraquinone, was more desorbable and biodegradable than anthracene. For both PAHs and oxy-PAHs, the percentage removed in the bioreactor significantly exceeded the percentage desorbed from untreated soil, indicating that desorption did not control the extent of biodegradation. Consistent with previous results on the same soil, genotoxicity of the whole soil slightly increased after biological treatment. However, both toxicity and genotoxicity of the desorbable constituents in the soil decreased after treatment, suggesting that any genotoxic constituents that may have formed during treatment were primarily associated with less accessible domains in the soil. PMID:24803838

  19. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    PubMed Central

    Aschenbach, Katrin; Conrad, Ralf; ?eháková, Klára; Doležal, Ji?í; Janatková, Kate?ina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw?1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  20. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas.

    PubMed

    Aschenbach, Katrin; Conrad, Ralf; Reháková, Klára; Doležal, Ji?í; Janatková, Kate?ina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~10(3) gdw(-1) soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  1. The Biological Activity of Zeise's Salt and its Derivatives.

    PubMed

    Meieranz, Sandra; Stefanopoulou, Maria; Rubner, Gerhard; Bensdorf, Kerstin; Kubutat, Dominic; Sheldrick, William S; Gust, Ronald

    2015-02-23

    With the aim to design new biologically active bioinorganic drugs of aspirin, whose mode of action is based on the inhibition of the cyclooxygenase(COX) enzymes, derivatives of Zeise's salt were synthesized in this structure-activity relationship study. Surprisingly, not only these Zeise-aspirin compounds but also Zeise's salt itself showed high inhibitory potency against COX enzymes in in?vitro assays. In contrast, potassium tetrachloroplatinate and cisplatin did not influence the enzyme activity at equimolar concentrations. It was demonstrated by LC-ESI tandem-mass spectrometry that Zeise's salt platinates the essential amino acids Tyr385 (active site of the enzyme) and Ser516 (will be acetylated by aspirin) of COX-1, thereby strongly impairing the function of the enzyme. This finding demonstrates for the first time that Zeise's salt is pharmacologically active and is a potent enzyme inhibitor. PMID:25604474

  2. Biological activities and phytochemicals of Swietenia macrophylla King.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Goh, Bey Hing; Chan, Chim Kei; Shabab, Tara; Kadir, Habsah Abdul

    2013-01-01

    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance. PMID:23999722

  3. Fostering applications opportunities for the NASA Soil Moisture Active Passive (SMAP) mission

    E-print Network

    Moran, M. Susan

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement ...

  4. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    E-print Network

    Entekhabi, Dara

    The soil moisture active and passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle ...

  5. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  6. Secretion of biologically active murine interleukin-10 by Lactococcus lactis.

    PubMed

    Schotte; Steidler; Vandekerckhove; Remaut

    2000-12-01

    We investigated the ability of Lactococcus lactis to secrete biologically active, murine interleukin-10 (mIL-10). mIL-10 was synthesized as a fusion protein, consisting of the mature part of the eukaryotic protein fused to the secretion signal of the lactococcal Usp45 protein. The secreted protein was analyzed by PAGE, ELISA and bioassay.We show that L. lactis can efficiently secrete biologically active, murine IL-10. Determination of the N-terminal amino acid sequence confirmed correct processing of the fusion polypeptide by the lactococcal signal peptidase. The amount of mIL-10, accumulating in the medium, could be increased by a factor of ten by growing the cells in an optimized medium, buffered at near-neutral pH. Under these conditions, up to 30 mg of mIL-10 was obtained from a 10-litre fermentation. PMID:11118583

  7. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    PubMed

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details. PMID:22247887

  8. Marine sponge lectins: actual status on properties and biological activities.

    PubMed

    Gomes Filho, Sandro Mascena; Cardoso, Juscélio Donizete; Anaya, Katya; Silva do Nascimento, Edilza; de Lacerda, José Thalles Jucelino Gomes; Mioso, Roberto; Santi Gadelha, Tatiane; de Almeida Gadelha, Carlos Alberto

    2015-01-01

    Marine sponges are primitive metazoans that produce a wide variety of molecules that protect them against predators. In studies that search for bioactive molecules, these marine invertebrates stand out as promising sources of new biologically-active molecules, many of which are still unknown or little studied; thus being an unexplored biotechnological resource of high added value. Among these molecules, lectins are proteins that reversibly bind to carbohydrates without modifying them. In this review, various structural features and biological activities of lectins derived from marine sponges so far described in the scientific literature are discussed. From the results found in the literature, it could be concluded that lectins derived from marine sponges are structurally diverse proteins with great potential for application in the production of biopharmaceuticals, especially as antibacterial and antitumor agents. PMID:25549059

  9. Ultrasound assisted reactions of steroid analogous of anticipated biological activities.

    PubMed

    Bejan, Vasilichia; Moldoveanu, Costel; Mangalagiu, Ionel I

    2009-03-01

    A new, fast, efficient and general method for preparation of steroid analogous of anticipated biological activity under ultrasound irradiation and classical heating is reported. The reaction pathway involves two steps: quaternization of phthalazine heterocycle followed by a 3+2 dipolar cycloaddition of cycloimmonium ylides to dienophiles. Under ultrasound the reaction time decreases substantially, the yields are higher, the reaction conditions are milder. A comparative study ultrasound verses classical heating has been done. PMID:19081283

  10. Amendment application in a multi-contaminated mine soil: effects on soil enzymatic activities and ecotoxicological characteristics.

    PubMed

    Manzano, Rebeca; Esteban, Elvira; Peñalosa, Jesús M; Alvarenga, Paula

    2014-03-01

    Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, ?-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil. PMID:24337998

  11. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  12. Integrity and biological activity of DNA after UV exposure.

    PubMed

    Lyon, Delina Y; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m(2)s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity. PMID:20446869

  13. [Surface roughness characteristics of biological soil crusts and its influencing factors in the hilly Loess Plateau region, China].

    PubMed

    Wang, Yuan; Zhao, Yun-Ge; Yao, Chun-Zhu; Zhang, Pei-Pei

    2014-03-01

    Soil surface roughness exerts profound influence on runoff and sediments yield from slopes. Biological soil crusts (BSCs) are ubiquitous living cover in the open spaces between plants in arid and semiarid ecosystems, which considerably impact the surface roughness. Aimed to determine the effect of biological crusts on the surface roughness and its influence factors, this study investigated the surface roughness of soil with BSCs at their different successional stages by using the chain method. Besides, the impacts of slope aspects, soil water content and freezing and thawing on surface roughness were also investigated. Then, the correlations between roughness and soil chemical and physical properties were evaluated. The results showed that soil surface roughness decreased at the initial successional stage of BSCs but increased along with BSCs' development in the region. Soil roughness tended to be stabile since BSCs developed ten years later. The roughness was reduced by 47.0% by the light cyanobacteria-dominated crust and 20.4% by the dark cyanobacteria-dominated crust (moss coverage < 20%), compared with the bare soil. Soil moisture significantly impacted surface roughness. The surface roughness of BSCs changed obviously with soil moisture in the early development, but only slightly in their later succession. Freezing-thawing also affected surface roughness with BSCs. Roughness was more susceptible to freezing-thawing in the early de- velopment of BSCs, with an increase of 29.7% compared with the bare soil. The surface roughness of late successional BSCs exhibited a slight change only after repeated freezing-thawing. The surface roughness of BSCs showed a statistically significant relationship with the coverage of moss (P < 0.1). PMID:24984479

  14. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  15. Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation

    PubMed Central

    2013-01-01

    The literature strongly suggests that daily physical activity is genetically and biologically regulated. Potential identities of the responsible mechanisms are unclear, but little has been written concerning the possible evolutionary selection pressures leading to the development of genetic/biological controls of physical activity. Given the weak relationship between exercise endurance and activity levels and the differential genomic locations associated with the regulation of endurance and activity, it is probable that regulation of endurance and activity evolved separately. This hypothesis paper considers energy expenditures and duration of activity in hunter/gatherers, pretechnology farmers, and modern Western societies and considers the potential of each to selectively influence the development of activity regulation. Food availability is also considered given the known linkage of caloric restriction on physical activity as well as early data relating food oversupply to physical inactivity. Elucidating the selection pressures responsible for the genetic/biological control of activity will allow further consideration of these pressures on activity in today's society, especially the linkages between food and activity. Further, current food abundance is removing the cues for activity that were present for the first 40,000 years of human evolution, and thus future research should investigate the effects of this abundance upon the mechanisms regulating activity. PMID:24455728

  16. [Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato].

    PubMed

    Meng, Pin-Pin; Liu, Xing; Qiu, Hui-Zhen; Zhang, Wen-Ming; Zhang, Chun-Hong; Wang, Di; Zhang, Jun-Lian; Shen, Qi-Rong

    2012-11-01

    Continuous cropping obstacle is one of the main restriction factors in potato industry. In order to explore the mechanisms of potato's continuous cropping obstacle and to reduce the impact on potato's tuber yield, a field experiment combined with PCR-DGGE molecular fingerprinting was conducted to investigate the fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. With the increasing year of potato' s continuous cropping, the numbers of visible bands in rhizosphere fungal DGGE profiles increased obviously. As compared with that of CK (rotation cropping), the operational taxonomic unit (OTU) in treatments of one to five years continuous cropping was increased by 38.5%, 38.5%, 30.8%, 46.2%, and 76.9% respectively, indicating that potato's continuous cropping caused an obvious increase in the individual numbers of dominant fungal populations in rhizosphere soil. Also with the increasing year of potato's continuous cropping, the similarity of the fungal population structure among the treatments had a gradual decrease. The sequencing of the fungal DGGE bands showed that with the increasing year of continuous cropping, the numbers of the potato's rhizosphere soil-borne pathogens Fusarium oxysporum and F. solani increased obviously, while the number of Chaetomium globosum, as a biocontrol species, had a marked decrease in the fifth year of continuous cropping. It was suggested that potato' s continuous cropping caused the pathogen fungal populations become the dominant microbial populations in rhizosphere soil, and the rhizosphere micro-ecological environment deteriorated, which in turn affected the root system, making the root vigor and its absorption area reduced, and ultimately, the tuber yield decreased markedly. PMID:23431794

  17. Active and passive microwave measurements of soil moisture in FIFE

    SciTech Connect

    Wang, J.R. (NASA Goddard Space Flight Center, Greenbelt, MD (United States)); Gogineni, S.P.; Ampe, J. (Univ. of Kansas, Lawrence (United States))

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on the application of active and passive microwave measurement systems to the simultaneous determination of soil moisture. These systems have been tested on common targets very few times. Here C and X band scatterometer data from a helicopter base is compared with L band push broom microwave radiometer (PBMR) data taken from the NASA C-130 aircraft. The regions sampled over FIFE encompass areas with different surface treatments. The scatterometers proved to be sensitive to soil moisture over most of the areas studied, while the radiometer lost sensitivity in regions which had been unburned for years, and which thus had substantial dead organic accumulation. The correlation of soil moisture and backscattered signal was observed to increase with off normal angles.

  18. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.

    PubMed

    Nayak, Soumya; Mishra, C S K; Guru, B C; Rath, Monalisa

    2011-09-01

    Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities. PMID:22319877

  19. Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure

    NASA Astrophysics Data System (ADS)

    Wang, Jinhua; Lu, Yitong; Shen, Guoqing

    2007-02-01

    The combined effects of cadmium (Cd, 10 mg/kg of soil) and butachlor (5, 10 and 50 mg/kg of soil) on enzyme activities and microbial community structure were assessed in phaeozem soil. The result showed that phosphatase activities were decreased in soils with Cd (10 mg/kg of soil) alone whereas urease acitivities were unaffected by Cd. Urease and phosphatase activities were significantly reduced by high butachlor concentration (50 mg/kg of soil). When Cd and butachlor concentrations in soils were added at milligram ratio of 2:1 or 1:2, urease and phosphatase activities were decreased, while enzyme activities were greatly improved at the ratio of 1:5. This study indicates that the combined effects of Cd and butachlor on soil urease and phosphatase activities depend largely on the addition concentration ratios to soils. The random amplified polymorphic DNA (RAPD) analysis showed that the changes occurring in RAPD profiles of different treated samples included variation in loss of normal bands and appearance of new bands compared with the control soil. The RAPD fingerprints showed substantial differences between the control and treated soil samples, with apparent changes in the number and size of amplified DNA fragments. The results showed that the addition of high concentration butachlor and the combined applied Cd and butachlor significantly affected the diversity of microbial community. The present results suggest that RAPD analysis in conjunction with other biomarkers such as soil enzyme parameter etc. would prove a powerful ecotoxicological tool.

  20. Effect of roundup ultra on microbial activity and biomass from selected soils.

    PubMed

    Haney, R L; Senseman, S A; Hons, F M

    2002-01-01

    Herbicides applied to soils potentially affect soil microbial activity. The quantity and frequency of Roundup Ultra [RU; N-(phosphonomethyl)glycine; Monsanto, St. Louis, MO] applications have escalated with the advent of Roundup-tolerant crops. The objective of this study was to determine the effect of Roundup Ultra on soil microbial biomass and activity across a range of soils varying in fertility. The isoproplyamine salt of glyphosate was applied in the form of RU at a rate of 234 mg active ingredient kg(-1) soil based on an assumed 2-mm glyphosate-soil interaction depth. Roundup Ultra significantly stimulated soil microbial activity as measured by C and N mineralization, as well as soil microbial biomass. Cumulative C mineralization as well as mineralization rate increased above background levels for all soils tested with addition of RU. There were strong linear relationships between C and N mineralized, as well as between soil microbial C and N (r2 = 0.96 and 0.95, respectively). The slopes of the relationships with RU addition approximated three. Since the isopropylamine salt of glyphosate has a C to N ratio of 3:1, the data strongly suggest that RU was the direct cause of the enhanced microbial activity. An increase in the C mineralization rate occurred the first day following RU addition and continued for 14 d. Roundup Ultra appeared to be rapidly degraded by soil microbes regardless of soil type or organic matter content, even at high application rates, without adversely affecting microbial activity. PMID:12026075

  1. Biological activity of bleached kraft pulp mill effluents before and after activated sludge and ozone treatments.

    PubMed

    Lopes, Alessandra Cunha; Mounteer, Ann H; Stoppa, Teynha Valverde; Aquino, Davi Santiago

    2013-01-01

    Eucalyptus bleached kraft pulp production, an important sector of the Brazilian national economy, is responsible for generating large volume, high pollutant load effluents, containing a considerable fraction of recalcitrant organic matter. The objectives of this study were to quantify the biological activity of the effluent from a eucalyptus bleached kraft pulp mill, characterize the nature of compounds responsible for biological activity and assess the effect of ozone treatment on its removal. Primary and secondary effluents were collected bimonthly over the course of one year at a Brazilian bleached eucalypt kraft pulp mill and their pollutant loads (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), adsorbable organic halogen (AOX), lignin, extractives) and biological activity (acute and chronic toxicity and estrogenic activity) quantified. The effluent studied did not present acute toxicity to Daphnia, but presented the chronic toxicity effects of algal growth inhibition and reduced survival and reproduction in Ceriodaphnia, as well as estrogenic activity. Chronic toxicity and estrogenic activity were reduced but not eliminated during activated sludge biological treatment. The toxicity identification evaluation revealed that lipophilic organic compounds (such as residual lignin, extractives and their byproducts) were responsible for the toxicity and estrogenic activity. Ozone treatment (50 mg/L O(3)) of the secondary effluent eliminated the chronic toxicity and significantly reduced estrogen activity. PMID:23168632

  2. Biologically active traditional medicinal herbs from Balochistan, Pakistan.

    PubMed

    Zaidi, Mudassir A; Crow, Sidney A

    2005-01-01

    The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were determined against 12 fungal and 12 bacterial strains by agar well diffusion and disk diffusion assays. The extract of Zygophyllum fabago was found to be highly effective against Candida albicans and Escherichia coli. The extract of Vincetoxicum stocksii was also found to be significantly active against Candida albicans, Bacillus subtilis and Bacillus cereus. Extracts of Hymenocrater sessilifolius and Grewia erythraea showed good activity only against Pseudomonas aeruginosa. PMID:15588685

  3. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

    PubMed Central

    Le, Thi Hong Van; Lee, Seo Young; Kim, Tae Ryong; Kim, Jae Young; Kwon, Sung Won; Nguyen, Ngoc Khoi; Park, Jeong Hill; Nguyen, Minh Duc

    2013-01-01

    Background This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods Samples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies. Results Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenosides such as Rg3, Rg5, Rk1, Rk3, and Rh4 were increased as reported previously. However, ocotillol type saponins, which have no glycosyl moiety at the C-20 position, were relatively stable on steaming. The radical scavenging activity was increased continuously up to 20 h of steaming. Similarly, the antiproliferative activity against A549 lung cancer cells was also increased. Conclusion It seems that the antiproliferative activity is closely related to the contents of ginsenoside Rg3, Rg5, and Rk1. PMID:24748840

  4. Biological activities of water-soluble fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  5. New Strategy for the Search of Natural Biologically Active Substances

    PubMed Central

    Dushenkov, V.; Raskin, I.

    2008-01-01

    The modern pharmaceutics actively screens an immense diversity of substances occurring in plants and other natural resources in the search for new effective medicinal agents. The Global Institute for Bioexploration (GIBEX) established by joint efforts of Rutgers University and the University of Illinois (United States) represents the organizational core of international scientific community whose activity is directed towards the search and development of new medicinal preparations from natural raw materials. The basis of GIBEX activity is the transfer of modern screening technologies to countries and geographical regions characterized by remarkable biodiversity. The GIBEX goals are to encourage the search for new natural biologically active substances, to maintain biodiversity, and to monitor the natural resources conservation. PMID:19578478

  6. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    PubMed Central

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nano-silver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nano-silver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over four orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by pre-oxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and release inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through bacterial inhibition zone assay carried out on selected formulations of controlled release nano-silver. PMID:20968290

  7. Microbial populations responsible for specific soil suppressiveness to plant pathogens

    Microsoft Academic Search

    David M. Weller; Jos M. Raaijmakers; Brian B. McSpadden Gardener; Linda S. Thomashow

    2002-01-01

    Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and is not transferable between soils. Specific suppression owes its activity to the effects of individual or select

  8. Radionuclide Activities in Contaminated Soils: Effects of Sampling Bias on Remediation of Coarse-Grained Soils in Hanford Formation

    SciTech Connect

    Mattigod, Shas V.; Martin, Wayne J.

    2001-08-28

    Only a limited set of particle size-contaminant concentration data is available for soils from the Hanford Site. These data are based on bench-scale tests on single soil samples from one waste site each in operable units 100-BC-1, 100-DR-1, and 100-FR-1, and three samples from the North Pond 300-FF-1 operable unit. The objective of this study was to 1) examine available particle size-contaminant of concern activity and concentration data for 100 and 300 Area soils, 2) assess the effects of sampling bias, 3) suggest sampling protocols, and 4) formulate a method to determine the contaminant of concern activities and concentrations of the whole soil based on the measurements conducted on a finer size fraction of the whole soil.

  9. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  10. Multi-bioindicators to assess soil microbial activity in the context of an artificial groundwater recharge with treated wastewater: a large-scale pilot experiment.

    PubMed

    Michel, Caroline; Joulian, Catherine; Ollivier, Patrick; Nyteij, Audrey; Cote, Rémi; Surdyk, Nicolas; Hellal, Jennifer; Casanova, Joel; Besnard, Katia; Rampnoux, Nicolas; Garrido, Francis

    2014-06-28

    In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil. PMID:24608565

  11. Biological soil crusts are the main contributor to winter soil respiration in a temperate desert ecosystem of China

    NASA Astrophysics Data System (ADS)

    He, M. Z.

    2012-04-01

    Aims Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. However, most studies carried out to date on carbon (fluxes) in these ecosystems, such as soil respiration (RS), have neglected them. Also, winter RS is reported to be a significant component of annual carbon budget in other ecosystems, however, we have less knowledge about winter RS of BSCs in winter and its contribution to carbon cycle in desert regions. Therefore, the specific objectives of this study were to: (i) quantify the effects of different BSCs types (moss crust, algae crust, physical crust) on the winter RS; (ii) explore relationships of RS against soil temperature and water content for different BSCs, and (iii) assess the relative contribution of BSCs to the annual amount of C released by RS at desert ecosystem level. Methods Site Description The study sites are located at the southeast fringe of the Tengger Desert in the Shapotou region of the Ningxia Hui Autonomous Region [37°32'N and 105°02'E, at 1340 m above mean sea level (a.m.s.l.)], western China. The mean daily temperature in January is -6.9°C , while it is 24.3°C in July. The mean annual precipitation is 186 mm, approximately 80% of which falls between May and September. The annual potential evaporation is 2800 mm. The landscape of the Shapotou region is characterized by large and dense reticulate barchans chains of sand dunes that migrate south-eastward at a velocity of 3-6 m per year. The soil is loose, infertile and mobile and can thus be classified as orthic sierozem and Aeolian sandy soil. Additionally, the soil has a consistent gravimetric water content that ranges from 3 to 4%. The groundwater in the study area is too deep (>60 m) to support large areas of the native vegetation cover; therefore, precipitation is usually the only source of freshwater. The predominant native plants are Hedysarum scoparium Fisch. and Agriophyllum squarrosum Moq., Psammochloa cillosa Bor, which scattered distribute with cover about 1% of the entire study area. Prior to revegetation, straw-checkerboards approximately 1×1 m2 in area were constructed using wheat or rice straw to stabilize the dune surface and allow time for the planted xerophytic shrubs to adapt to the new environment. In 1956, the following 2-year-old xerophytic shrub seedlings were planted within the checkerboard at a density of 16 individuals per 100 m2 and grown without irrigation: Artemisia ordosica Krasch, H. scoparium Fisch, Calligonum mongolicum Turc'z, Caragana microphylla Lam., Caragana korshinskii Kom, Salix gordejevii and Atraphaxis bracteata A.Los. The stabilized area was then expanded to parallel areas in 1964 and 1982 using the same method and species. As a result, the initial stages of change that have occurred at these sites were similar. After more than fifties years succession, the predominant plants are semi-shrubs, shrubs, forbs, and grasses at present and BSCs formed. The common BSCs in the region may be dominated by cyanobacteria, algae, lichens and mosses, or any combination of these organisms. Cyanobacteria species include Microcolous vaginatus Gom., Hydrocoleus violacens Gom., Lyngbya crytoraginatus Schk., Phormidium amblgum Gom., P. autumnale (Ag.) Gom., P. foveolarum (Mont.) Gom. and Phormidium luridum (Kutz) Gom. etc; algal species mainly include Anabaena azotica Ley, Euglena sp., Hantzschia amphioxys var capitata Grum, Oscillatoria obscura Gom., O. pseudogeminate G. Schm. And Scytonema javanicum (Kutz) Bornet Flash etc; lichen species include Collema tenax (Sw.) Ach., Endocarpon pusillum Hedw.; and moss species are dominated by Bryum argenteum Hedw., Didymodon constrictus (Mitt.) Saito., Tortula bidentata Bai Xue Liang and T. desertorum Broth.. Experimental Design and Rs measurements On October 2010, We selected the moss-dominated BSCs at four revegetation sites and natural vegetation sites, in which 3 replicated plots were selected randomly. In each plot, olyvinyl chloride (PVC) collar (lenth 10 cm, internal diameter 10cm ) were inserted 7 cm into the soil. During the

  12. Effects of graphene oxides on soil enzyme activity and microbial biomass.

    PubMed

    Chung, Haegeun; Kim, Min Ji; Ko, Kwanyoung; Kim, Jae Hyeuk; Kwon, Hyun-Ah; Hong, Inpyo; Park, Nari; Lee, Seung-Wook; Kim, Woong

    2015-05-01

    Due to recent developments in nanotechnology, nanomaterials (NMs) such as graphene oxide (GO) may enter the soil environment with mostly unknown consequences. We investigated the effects of GO on soil microbial activity in a 59-day soil incubation study. For this, high-purity GO was prepared and characterized. Soils were treated with up to 1mgGOg(-1) soil, and the changes in the activities of 1,4-?-glucosidase, cellobiohydrolase, xylosidase, 1,4-?-N-acetyl glucosaminidase, and phosphatase and microbial biomass were determined. 0.5-1mg GOg(-1) soil lowered the activity of xylosidase, 1,4-?-N-acetyl glucosaminidase, and phosphatase by up to 50% when compared to that in the control soils up to 21days of incubation. Microbial biomass in soils treated with GO was not significantly different from that in control soils throughout the incubation period, and the soil enzyme activity and microbial biomass were not significantly correlated in this study. Our results indicate that soil enzyme activity can be lowered by the entry of GO into soils in short term but it can be recovered afterwards. PMID:25668283

  13. Soil Biology & Biochemistry 40 (2008) 986994 Potential fluxes of N2O and CH4 from soils of three forest

    E-print Network

    Moore, Tim

    types in Eastern Canada. Soil samples collected from deciduous, black spruce and white pine forests were-response to mineral N additions. Soils in deciduous, boreal and white pine forests consumed CH4 when incubated under an elevated headspace CH4 concentration, except the poorly drained soils in the deciduous forest, which

  14. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stod?lková, Eva; Císa?ová, Ivana; Kola?ík, Miroslav; Chudí?ková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavl?, Barbora; ?erný, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  15. Preparation and characterization of new biologically active polyurethane foams.

    PubMed

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non-toxic materials with high affinity to the tissue body, self-adhesive properties and local anesthetic effect. PMID:25491811

  16. Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L.-S., Meerts, P., 2006. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biology

    E-print Network

    Paris-Sud XI, Université de

    of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biology and Fertility of Soils 42, 481 enhances P turnover rates in invaded ecosystems. Keywords Biological invasion, Early goldenrod-489. Accepted version Last version before publication Effect of the exotic invasive plant Solidago gigantea

  17. Soil lichen and moss cover and species richness can be highly dynamic: The effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah

    Microsoft Academic Search

    Jayne Belnap; Susan L. Phillips; Tonya Troxler

    2006-01-01

    Biological soil crusts are an essential part of desert ecosystems throughout the world, as they are important in soil stabilization and soil fertility. Despite their importance, there have been few efforts to examine the population dynamics of the dominant species comprising these crusts or the effect of exotic plant invasions on these dynamics. In this study, we followed changes in

  18. Biological activities of aqueous extract from Cinnamomum porrectum

    NASA Astrophysics Data System (ADS)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  19. The role of macrosymbiont genotypes and earthworms in the enrichment of soil with biological nitrogen

    NASA Astrophysics Data System (ADS)

    Nazaryuk, V. M.; Kalimullina, F. R.; Klenova, M. I.

    2010-06-01

    The specific features of the symbiotic apparatus and the accumulation of the plant biomass under the influence of different genotypes of peas ( Pisum sativum L.) on gray forest soils were studied in field conditions. With the alternation of legume and grass cultures, the genotypes of plants with supernodulation were found to affect the microbial nitrogen content in the soil to a greater extent than the concentration of ammonium and nitrate nitrogen. For the growing period, the N content in the microbial biomass increased, on the average, by 1.3 to 1.5 times. The consumption of nitrogen by the plants of the supernodular mutant K-301a was found to be 2.6 and 3.0 times greater than that by the pea plants of the Ramonskii-77 variety and of the K-562a line, respectively. During the after effect of the symbiotically bound air nitrogen, a significant uptake of this element was observed only by the oat plants grown after the K-56 2a. The nitrogen fixation by these plants was 1.3 times more active than that by the peas of the Ramonskii-77 variety. The importance of earthworms (Lumbricidae) and plant residues of different genotypes for the processes of mineralization of organic compounds and accumulation of ammonium, nitrate, and microbial nitrogen in the soils under optimal hydrothermal conditions was revealed. In the experiment, two maximums of the CO2 emission were recorded; they may be related to the periodic production of organic mass by the earthworms and the creation of favorable conditions for microbial activity by them. The accumulation of nitrate nitrogen (up to 150 mg/kg) in the soil was the greatest owing to the interaction between the earthworms and the residues of the supernodular K-301a mutant.

  20. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils

    Microsoft Academic Search

    STEVEN D. A LLISON; K. T RESEDER

    2008-01-01

    Climate warming is expected to have particularly strong effects on tundra and boreal ecosystems, yet relatively few studies have examined soil responses to temperature change in these systems. We used closed-top greenhouses to examine the response of soil respiration, nutrient availability, microbial abundance, and active fungal communities to soil warming in an Alaskan boreal forest dominated by mature black spruce.