Science.gov

Sample records for soil carbon content

  1. Variable carbon contents of lunar soil 74220

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Moore, C. B.

    1973-01-01

    Total carbon, sulfur, and inorganic gas release studies have been carried out on an additional split of orange soil 74220. The total carbon content was found to be 4 plus or minus 3 ppm C for this sample as compared to an earlier reported value of 100 plus or minus 10 ppm C. Gas release studies on the two splits of 74220 indicate that the carbon may be present as a surface condensate on the sample showing the higher carbon content. The 'surface condensate' evolves CO2 upon heating to temperatures below 400 C.

  2. Soil total carbon content, aggregation, bulk density, and penetration resistance of croplands and nearby grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Converting native grassland (NGL) to cropland (CL) decreases soil organic matter contents (components of soil total carbon contents, STCCs), which often leads to soil degradation. Reestablishing grass on CL generally increases soil organic matter, which improves soil conditions. This study was condu...

  3. Residue removal and climatic effects on soil carbon content of no-till soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While no-till management practices usually result in increased soil organic carbon (SOC) contents, the effect of residue removal with no-till is not well understood, especially in warmer climates. A multi-year study was conducted at six locations having a wide range of climatic conditions in centra...

  4. The Impact of Buried Horizons and Deep Soil Pedogenesis on Soil Carbon Content and Vertical Distribution

    NASA Astrophysics Data System (ADS)

    James, J. N.; Dietzen, C.; Harrison, R. B.; Gross, C.; Kirpach, A.

    2015-12-01

    The lower boundary of soil has been a point of contention among soil scientists for decades. Recent evidence suggests that soil is much deeper than is measured by many ecological studies and that arbitrary definitions of maximum soil depth unnecessarily exclude important regions of the soil profile. This paper provides illustrated examples of soil profiles that have important deep soil characteristics or buried horizons. Soil pits were excavated with a backhoe to at least 2.5 m depth at 35 sites throughout the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecoregion of the Pacific Northwest. These soils cover four orders - Andisol, Inceptisol, Alfisol, and Ultisol - and highlight the hidden diversity of subsoil characteristics throughout the region. The roots of trees and understory species often extended deep into the C horizons of soil. Despite experiencing less pedogenic development than surface horizons, C horizons are important as the frontier of soil formation, as an important resource for plant growth, and as a repository of diffuse but significant carbon storage. On average, there was 188.1 Mg C ha-1 total across all 35 sites, of which 76.3 Mg ha-1 (40.5%) was found below 0.5 m and 44.4 Mg ha-1 (23.6%) was found below 1 m. There was substantial variability in the vertical distribution of C with as little as 8.0% and as much as 58.0% of total C below 1 m. In some cases, B horizons are far deeper than the 1 or 2 m depth arbitrarily assumed to represent the whole soil. In other cases, subsoil hides buried profiles that can significantly impact total soil carbon stocks as well as aboveground plant growth. These buried horizons are important repositories of nutrients and carbon that are poorly understood and rarely sampled. Ignoring subsoil precludes incorporating soil burial or deep soil processes into biogeochemical and global carbon cycle models, and limits mechanistic understanding of carbon sequestration and mobilization in soil.

  5. Feasibility of measuring soil moisture content using the inelastic neutron scattering (INS) carbon analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of soil carbon (C) and moisture contents is vital for crop and soil management. Current techniques for measuring these components require independent techniques that could be labor intensive and time consuming. The prospect of simultaneously measuring the soil C and moisture content in rea...

  6. Factors and processes governing the C-14 content of carbonate in desert soils

    NASA Technical Reports Server (NTRS)

    Amundson, Ronald; Wang, Yang; Chadwick, Oliver; Trumbore, Susan; Mcfadden, Leslie; Mcdonald, Eric; Wells, Steven; Deniro, Michael

    1994-01-01

    A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.

  7. Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Yigini, Yusuf; Dunbar, Martha B

    2013-01-01

    Under the European Union Thematic Strategy for Soil Protection, the European Commission Directorate-General for the Environment and the European Environmental Agency (EEA) identified a decline in soil organic carbon and soil losses by erosion as priorities for the collection of policy relevant soil data at European scale. Moreover, the estimation of soil organic carbon content is of crucial importance for soil protection and for climate change mitigation strategies. Soil organic carbon is one of the attributes of the recently developed LUCAS soil database. The request for data on soil organic carbon and other soil attributes arose from an on-going debate about efforts to establish harmonized datasets for all EU countries with data on soil threats in order to support modeling activities and display variations in these soil conditions across Europe. In 2009, the European Commission's Joint Research Centre conducted the LUCAS soil survey, sampling ca. 20,000 points across 23 EU member states. This article describes the results obtained from analyzing the soil organic carbon data in the LUCAS soil database. The collected data were compared with the modeled European topsoil organic carbon content data developed at the JRC. The best fitted comparison was performed at NUTS2 level and showed underestimation of modeled data in southern Europe and overestimation in the new central eastern member states. There is a good correlation in certain regions for countries such as the United Kingdom, Slovenia, Italy, Ireland, and France. Here we assess the feasibility of producing comparable estimates of the soil organic carbon content at NUTS2 regional level for the European Union (EU27) and draw a comparison with existing modeled data. In addition to the data analysis, we suggest how the modeled data can be improved in future updates with better calibration of the model. PMID:23178783

  8. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed

    Yang, X M; Drury, C F; Reynolds, W D; Yang, J Y

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  9. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed Central

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  10. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    NASA Astrophysics Data System (ADS)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg‑1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg‑1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  11. Soils of the Tiksi area and their carbon contents; Northeastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, Iuliia; Zubrzycki, Sebastian

    2014-05-01

    Significant differences for the total organic carbon (TOC) contents in the surface horizons were found between all sites of the Tiksi area and the Lena River Delta region (Mann Whitney U, P < 0.05) suggesting higher carbon contents in the hinterland area. Since the soils of the Tiksi area were poorly studied in the past and are significantly different to soils of the well-studied Lena River Delta, this investigation was performed. Here we present preliminary results with interesting insights. All investigated soil profiles of the Tiksi area have developed on eluvial argillaceous shale. Most soil profile depths were relatively shallow (20 - 30 cm). Only several soil profiles, located to the north from Tiksi settlement, reached the depth of 40 cm and deeper. The Tiksi area was characterized by a variety of soil types. According to US Soils Taxonomy most of soils having developed in depressed micro-relief forms were described as Orthels and Histels. Soils of slopes and elevated forms of a micro relief belonged to Turbel suborder. The surface soil horizons were generally enriched by organic matter which likely reflects the inclusion of the vegetation. Minimum carbon content in surface soils amounted to 8 - 12 %. Surface soils of southern sites (remote from Tiksi settlement) were characterized by the lowest carbon content, whereas the surface horizons of eastern and western sites had particularly high in carbon. The median value of total organic carbon for these sites was 28 %. At the northern sites B-horizons were characterized by higher median values of carbon content. Similar results were found for the nitrogen content in the surface and B-horizons. The highest median values of nitrogen were found in surface soils for groups of eastern and western sites amounted to 1.2 % and 1.5 %, respectively. The highest median value of nitrogen in B-horizon was observed for soils of the northern sites group. Generally, the C/N ratio for all groups of investigation sites was

  12. Digital mapping of soil organic carbon contents and stocks in Denmark.

    PubMed

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories. PMID:25137066

  13. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    PubMed Central

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B.; Greve, Mogens H.

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0−5, 5−15, 15−30, 30−60 and 60−100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg−1 was reported for 0−5 cm soil, whereas there was on average 2.2 g SOC kg−1 at 60−100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg−1 was found at 60−100 cm soil depth. Average SOC stock for 0−30 cm was 72 t ha−1 and in the top 1 m there was 120 t SOC ha−1. In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories. PMID:25137066

  14. Environmental forcing does not lead to variation in carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, David; Egan, Jocelyn; Hall, Steven; Risk, David

    2015-04-01

    Recent studies have highlighted fluctuations in the carbon isotope content (δ13C) of CO2 produced by soil respiration. These have been correlated with diel cycles of environmental forcing (e.g., soil temperature), or with synoptic weather events (e.g., rain events and pressure-induced ventilation). We used an extensive suite of observations to examine these phenomena over two months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux site). Measurements included automated soil respiration chambers and automated measurements of the soil gas profile. We found 1) no diel change in the δ13C of the soil surface flux or the CO2 produced in the soil (despite strong diel change in surface flux rate), 2) no change in δ13C following wetting (despite a significant increase in soil flux rate), and 3) no evidence of pressure-induced ventilation of the soil. Measurements of the δ13C of surface CO2 flux agreed closely with the isotopic composition of soil CO2 production calculated using soil profile measurements. Temporal variation in the δ13C of surface flux was relatively minor and unrelated to measured environmental variables. Deep in the soil profile, results conform to established theory regarding diffusive soil gas transport and isotopic fractionation, and suggest that sampling soil gas at a depth of several tens of centimeters is a simple and effective way to assess the mean δ13C of the surface flux.

  15. Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Dryland Soil Carbon Dioxide Emission and Carbon Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce dryland soil CO2 emission and increase C sequestration that can influence global warming. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland soil surface CO2 flux, temperature and water content at the 0- to 1...

  16. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content.

    PubMed

    McKelvie, Jennifer R; Whitfield Åslund, Melissa; Celejewski, Magda A; Simpson, André J; Simpson, Myrna J

    2013-04-01

    We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida. PMID:23337355

  17. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    PubMed

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink. PMID:25903408

  18. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    NASA Astrophysics Data System (ADS)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  19. Installing artificial macropores in degraded soils to enhance vertical infiltration and increase soil carbon content

    NASA Astrophysics Data System (ADS)

    Mori, Yasushi; Fujihara, Atsushi; Yamagishi, Kazuto

    2014-12-01

    Of all terrestrial media (including vegetation and the atmosphere), soil is the largest store of carbon. Soils also have important functions such as water storage and plant support roles. However, at present, these characteristics do not fully function, because of, for example, climate-change-induced heavy rainfall would wash away the organic-rich surface soils. In this study, artificial macropores were introduced into exposed soil plots for the purpose of enhancing infiltration, and fibrous material was inserted to reinforce the macropore structure. As expected, the capillary force caused by the fibers drew surface water deeper into the soil profile before saturation. Additionally, the same capillary force promoted vertical transport, while micropores (matrix) enhanced horizontal flow. Our results show that infiltration was more effective in the fiber-containing macropores than in empty macropores. Additionally, our column experiments showed that artificial macropores reduced surface runoff when the rainfall intensities were 2, 4, and 20 mm · h-1 but not for 80 mm · h-1. In field experiments, soil moisture sensors installed at depths of 10, 30, and 50 cm responded well to rainfall, showing that artificial macropores were able to successfully introduce surface water into the soil profile. One year after the artificial macropores were installed, a field survey carried out to assess soil organic matter and plant growth showed that plant biomass had doubled and that there was a significant increase in soil carbon. This novel technique has many advantages as it mimics natural processes, is low cost, and has a simple structure.

  20. Land abandonment, fire recurrence and soil carbon content in the Macizo del Caroig, Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdá, A.; González Peñaloza, F.; Santín, C.; Doerr, S. H.

    2012-04-01

    During the last 50 years two main forces have driven the fate of Mediterranean landscapes: land abandonment and forest fires (MacDonald et al., 2000; Moreira et al., 2001). Due to the economical changes suffered by the of the Mediterranean countries after the Second World War, the population migrated from the rural to the urban areas, and from South to North Europe. The land abandonment allowed the vegetation to recover and, as a consequence, an increase in forest fire took place. The soils of the abandoned land recovered the vegetation and litter layers, and consequently changes in soil properties have being found. One of these changes is the increase of soil carbon content, which is due both to vegetation recovery and to fire occurrence that increases the ash and pyrogenic carbon content in soils. Twenty plots were selected in the Macizo del Caroig in Eastern Spain on soils developed on limestone. The period of abandonment and the forest fires that had affected each plot were determined by interviews with the owners, farmers and shepherds. In addition, six (three + three) plots were selected as forest (no plough) and cultivated control plots. Each plot was sampled (10 random samples) and the organic carbon content determined. The results show that the cultivated plots have organic matter contents of 1.02 %, and the forest (Quercus ilex sp.) plots reach the highest value: 14.98 %. Within those we found values that range from 2.34 %, in the recently abandoned plots (10 year abandonment), to values of 8.23 % in the 50 year old abandoned fields.The results demonstrate that there is a recovery of the organic carbon in abandoned soils and that the forest fires do no affect this trend. The increase of soil organic matter after abandonment is a result of the recovery of vegetation(Debussche et al., 2001), which is the consequence of the end of the disturbance of forest that have affected the Mediterranean for millennia (Barbero et al., 1990). The colonization of the

  1. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    total of 38 sampling points were selected under two management practices and six different land uses: (1) MEOW-dehesa (D); (2) MEOW-dehesa + some pine trees (D+P); (3) MEOW-dehesa + some cork oaks (D+C); (4) MEOW-dehesa + some gall oaks (D + G); (5) MEOW-dehesa after a clarified process and transformed to olive grove but maintaining isolated oaks (OG) and (6) MEOW-dehesa after a clarified process and transformed to cereal pasture with isolated oaks (C). Preliminary results showed a high heterogeneity of SOC contents along the soil profile for different climate and land use scenarios. The methods used here can be easily implemented in other Mediterranean areas with available information on climate, site, soil and land use. Keywords: CarboSOIL model, land use change, climate change, soil depth, dehesa References: Abd-Elmabod, S.K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., De la Rosa, D., 2014. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL. Geophys. Res. Abstr. vol. 16 EGU2014-295-1, EGU General Assembly.) Álvaro-Fuentes, J., Easter, M., Paustian, K., 2012. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87-94. Corral-Fernández, R., Parras-Alcántara, L., Lozano-García, B. 2013. Stratification ratio of soil organic C, N and C:N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agric. Ecosyst. Environ. 164, 252-259. Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., Ledda, L., 2012. Changes in soil organic carbon and climate change - application of the RothC model in agrosilvo-pastoral Mediterranean systems. Agric. Syst. 112, 48- 54. IPCC, 2007. Technical summary. In: Climate Change 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change http://www.ipcc.ch/. Lozano-García, B., Parras-Alcántara, L

  2. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  3. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  4. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  5. Regional prediction of soil organic carbon content over croplands using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefebvre, Josias; Chehdi, Kacem

    2015-04-01

    This study was carried out in the framework of the Prostock-Gessol3 and the BASC-SOCSENSIT projects, dedicated to the spatial monitoring of the effects of exogenous organic matter land application on soil organic carbon storage. It aims at identifying the potential of airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks which were georeferenced. Tracks were atmospherically corrected using a set of 22 synchronous field spectra of both bare soils, black and white targets and impervious surfaces. Atmospherically corrected track tiles were mosaicked at a 2 m-resolution resulting in a 66 Gb image. A SPOT4 satellite image was acquired the same day in the framework of the SPOT4-Take Five program of the French Space Agency (CNES) which provided it with atmospheric correction. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then NDVI calculation and thresholding enabled to map agricultural fields with bare soil. All 18 sampled sites known to be bare at this very date were correctly included in this map. A total of 85 sites sampled in 2013 or in the 3 previous years were identified as bare by means of this map. Predictions were made from the mosaic spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples. The use of the total sample including 27 sites under cloud shadows led to non-significant results. Considering 43 sites outside cloud shadows only, median

  6. Effects of long-term compost application on carbon content and soil physical properties

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Houot, Sabine

    2013-04-01

    Biological treatment through composting of organic wastes fulfils multiple purposes: it not only reduces the amount of waste stored in landfills but can also provide agricultural soils with organic amendments, which affect physicochemical soil properties and reduce the use of mineral fertilizers. However, the impacts of different types of amendments are not yet fully understood, as quantity and quality of the exogenous organic matter (EOM) applied vary greatly and numerous other parameters are affected as well, such as pH, heavy metal content, or nutrient availability. The objective of this project was to investigate the effect of different organic amendments - via simulations - on water holding capacity (WHC) and particularly plant available water (PAW), in regard to irrigation needs. The long-term field experiment "Qualiagro" (INRA - Veolia Environment collaboration) was established in Feucherolles, France in 1998, where five treatments were designed, each with two levels of mineral nitrogen (N) addition: minimal and optimal. Farmyard manure (FYM) and three types of compost - all applied every other year at a rate of 4 t carbon ha-1 - gave rise to varying organic carbon (OC) contents and were compared to a control treatment. The treatments changed the soil's OC content from initially ~10.5 g kg-1 to a range of 9.35 to 15.58 g kg-1. An increased OC content can enhance WHC by increasing total porosity/ reducing bulk density. The PAW - the difference between field capacity (FC) and permanent wilting point (WP); predicted with pedotransfer functions related to OC - increases, if the increase at FC is larger than that at WP. With a higher amount of PAW, the need to irrigate fields - to ensure sufficient water availability for plant growth - decreases. At the same time, soil bulk density (ρd) affects root growth; denser soils can lead to reduced rooting depth. Both of these effects were considered when employing a simple soil water balance model (BUDGET; http

  7. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  8. Effect of Charcoal Volatile Matter Content and Feedstock on Soil Microbe-Carbon-Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    McClellan, T.; Deenik, J. L.; Hockaday, W. C.; Campbell, S.; Antal, M. J., Jr.

    2010-12-01

    Charcoal has important biogeochemical implications in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of charcoal which describes its degree of thermal alteration, or carbonization. Results from greenhouse experiments have shown that plant growth can be negatively affected by charcoals with high VM content (20-35%), with and without fertilizer supplements, whereas low VM charcoal (6-9%) increased plant growth when combined with fertilizer. We conducted two laboratory studies to characterize the VM content of charcoals derived from two feedstocks (corncob and kiawe) and relate observed differences to key aspects of soil fertility. Using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (NMR), total phenol content (using a Prussian blue colorimetric assay), and gas chromatography-mass spectrometry (GC-MS), we found that the VM content of charcoal primarily consisted of alkanes, oxygen-substituted alkanes, and phenolic compounds. However, the GC-MS data indicated that charcoals can differ vastly in their extractable fraction, depending upon both VM content and feedstock. In a second set of experiments, we examined the effect of VM content and feedstock on soil microbial activity, available nitrogen (N), and soluble carbon (C). High VM corncob charcoals significantly enhanced microbial activity, coupled with net reduction in available N and soluble C. For a given feedstock, the extent of this effect was dependent upon VM content. However, the overall effect of VM content on microbial dynamics was apparently related to the composition of the acetone-extractable fraction, which was particularly important when comparing two charcoals derived from different feedstocks but with the equivalent VM contents. Removing the acetone-extractable fraction from the 23% VM corncob charcoal significantly reduced the enhancement of

  9. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Caesar-Tonthat, Thecan

    2010-01-01

    Management practices are needed to reduce dryland soil CO(2) emissions and to increase C sequestration. We evaluated the effects of tillage and cropping sequence combinations and N fertilization on dryland crop biomass (stems + leaves) and soil surface CO(2) flux and C content (0- to 120-cm depth) in a Williams loam from May to October, 2006 to 2008, in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), no-tilled malt barley-fallow (NTB-F), and conventional-tilled malt barley-fallow (CTB-F), each with 0 and 80 kg N ha(-1). Measurements were made both in Phase I (malt barley in NTCB, pea in NTB-P, and fallow in NTB-F and CTB-F) and Phase II (malt barley in all sequences) of each cropping sequence in every year. Crop biomass varied among years, was greater in the barley than in the pea phase of the NTB-P treatment, and greater in NTCB and NTB-P than in NTB-F and CTB-F in 2 out of 3 yr. Similarly, biomass was greater with 80 than with 0 kg N ha(-1) in 1 out of 3 yr. Soil CO(2) flux increased from 8 mg C m(-2) h(-1) in early May to 239 mg C m(-2) h(-1) in mid-June as temperature increased and then declined to 3 mg C m(-2) h(-1) in September-October. Fluxes peaked immediately following substantial precipitation (>10 mm), especially in NTCB and NTB-P. Cumulative CO(2) flux from May to October was greater in 2006 and 2007 than in 2008, greater in cropping than in fallow phases, and greater in NTCB than in NTB-F. Tillage did not influence crop biomass and CO(2) flux but N fertilization had a variable effect on the flux in 2008. Similarly, soil total C content was not influenced by treatments. Annual cropping increased CO(2) flux compared with crop-fallow probably by increasing crop residue returns to soils and root and rhizosphere respiration. Inclusion of peas in the rotation with malt barley in the no-till system, which have been known to reduce N fertilization rates and

  10. EFFECT OF TRENDS IN TILLAGE PRACTICES ON EROSION AND CARBON CONTENT OF SOILS IN THE U.S. CORN BELT

    EPA Science Inventory

    The EPIC model was used to simulate soil erosion and soil carbon content at 100 randomly selected sites in the US corn belt. our management scenarios were run for 100 years: (1) current mix of tillage practices maintained; (2) current trend of conversion to mulch-till and no-till...

  11. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    total of 38 sampling points were selected under two management practices and six different land uses: (1) MEOW-dehesa (D); (2) MEOW-dehesa + some pine trees (D+P); (3) MEOW-dehesa + some cork oaks (D+C); (4) MEOW-dehesa + some gall oaks (D + G); (5) MEOW-dehesa after a clarified process and transformed to olive grove but maintaining isolated oaks (OG) and (6) MEOW-dehesa after a clarified process and transformed to cereal pasture with isolated oaks (C). Preliminary results showed a high heterogeneity of SOC contents along the soil profile for different climate and land use scenarios. The methods used here can be easily implemented in other Mediterranean areas with available information on climate, site, soil and land use. Keywords: CarboSOIL model, land use change, climate change, soil depth, dehesa References: Abd-Elmabod, S.K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., De la Rosa, D., 2014. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL. Geophys. Res. Abstr. vol. 16 EGU2014-295-1, EGU General Assembly.) Álvaro-Fuentes, J., Easter, M., Paustian, K., 2012. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87-94. Corral-Fernández, R., Parras-Alcántara, L., Lozano-García, B. 2013. Stratification ratio of soil organic C, N and C:N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agric. Ecosyst. Environ. 164, 252-259. Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., Ledda, L., 2012. Changes in soil organic carbon and climate change - application of the RothC model in agrosilvo-pastoral Mediterranean systems. Agric. Syst. 112, 48- 54. IPCC, 2007. Technical summary. In: Climate Change 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change http://www.ipcc.ch/. Lozano-García, B., Parras-Alcántara, L

  12. Effects of Forest Management Intensity on Carbon and Nitrogen Content in Different Soil Size Fractions of a North Florida Spodosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine plantations of the southeastern US are regional carbon sinks. In spite of huge increases in woody biomass, studies have shown little or even negative effects on the carbon content of the extremely sandy soils of this region. Hence, it is important to understand the mechanisms that determine the...

  13. Fear of predation alters soil carbon dioxide flux and nitrogen content.

    PubMed

    Sitvarin, Michael I; Rypstra, Ann L

    2014-06-01

    Predators are known to have both consumptive and non-consumptive effects (NCEs) on their prey that can cascade to affect lower trophic levels. Non-consumptive interactions often drive these effects, though the majority of studies have been conducted in aquatic- or herbivory-based systems. Here, we use a laboratory study to examine how linkages between an above-ground predator and a detritivore influence below-ground properties. We demonstrate that predators can depress soil metabolism (i.e. CO2 flux) and soil nutrient content via both consumptive and non-consumptive interactions with detritivores, and that the strength of isolated NCEs is comparable to changes resulting from predation. Changes in detritivore abundance and activity in response to predators and the fear of predation likely mediate interactions with the soil microbe community. Our results underscore the need to explore these mechanisms at large scales, considering the disproportionate extinction risk faced by predators and the importance of soils in the global carbon cycle. PMID:24966204

  14. Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy.

    PubMed

    Gao, Yin; Cui, Lijuan; Lei, Bing; Zhai, Yanfang; Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; He, Hui; Wu, Guofeng

    2014-01-01

    The selection of a calibration method is one of the main factors influencing measurement accuracy with visible-near-infrared (Vis-NIR, 350-2500 nm) spectroscopy. This study, based on both air-dried unground (DU) and air-dried ground (DG) soil samples, used nine spectral preprocessing methods and their combinations, with the aim to compare the commonly used partial least squares regression (PLSR) method with the new machine learning method of support vector machine regression (SVMR) to find a robust method for soil organic carbon (SOC) content estimation, and to further explore an effective Vis-NIR spectral preprocessing strategy. In total, 100 heterogeneous soil samples collected from Southeast China were used as the dataset for the model calibration and independent validation. The determination coefficient (R(2)), root mean square error (RMSE), residual prediction deviation (RPD), and ratio of performance to interquartile range were used for the model evaluation. The results of this study show that both the PLSR and SVMR models were significantly improved by the absorbance transformation (LOG), standard normal variate with wavelet detrending (SW), first derivative (FD), and mean centering (MC) spectral preprocessing methods and their combinations. SVMR obtained optimal models for both the DU and DG soil, with R(2), RMSE, and RPD values of 0.72, 2.48 g/kg, and 1.83 for DU soil and 0.86, 1.84 g/kg, and 2.60 for DG soil, respectively. Among all the PLSR and SVMR models, SVMR showed a more stable performance than PLSR, and it also outperformed PLSR, with a smaller mean RMSE of 0.69 g/kg for DU soil and 0.50 g/kg for DG soil. This study concludes that PLSR is an effective linear algorithm, but it might not be sufficient when dealing with a nonlinear relationship, and SVMR turned out to be a more suitable nonlinear regression method for SOC estimation. Effective SOC estimation was obtained based on the DG soil samples, but the accurate estimation of SOC with DU soil

  15. Soil Organic Carbon and Nitrogen Content and Distribution in a Vertisol under Mixed Land-Use.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils can play a significant role in the amounts of Carbon (C) sequestered from the atmosphere which can mitigate increased atmospheric CO2. The amounts of C and nitrogen (N) stored in soil is the net result of inputs and outputs, which will vary due to inherent soil properties that impart protectio...

  16. [Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield].

    PubMed

    Xu, Ke; Liu, Meng; Chen, Jing-du; Gu, Hai-yan; Dai, Qi-gen; Ma, Ke-qiang; Jiang, Feng; He, Li

    2015-02-01

    A tank experiment using conventional rice cultivar Nanjing 44 as experimental material was conducted at the Experimental Farm of Yangzhou University to investigate the dynamics of wheat straw decomposition rate and the amount of carbon release in clay and sandy soils, as well as its effects on the content of dissolved organic carbon (DOC) and rice yield. The two rates of wheat straw returning were 0 and 6000 kg · hm(-2), and three N application levels were 0, 225, 300 kg · hm(-2). The results showed that, the rate of wheat straw decomposition and the amount of carbon release in clay and sandy soils were highest during the initial 30 days after wheat straw returning, and then slowed down after, which could be promoted by a higher level of nitrogen application. The rate of wheat straw decomposition and the amount of carbon release in clay soil were higher than that in sandy soil. The DOC content in soil increased gradually with wheat straw returning into paddy soil and at the twenty-fifth day, and then decreased gradually to a stable value. The DOC content at the soil depth of 15 cm was significantly increased by wheat straw returning, but not at the soil depth of 30 cm and 45 cm. It was concluded that wheat straw returning increased the DOC content in the soil depth of 0-15 cm mainly. N application decreased the DOC content and there was no difference between the two N application levels. Straw returning decreased the number of tillers in the early growth period, resulted in significantly reduced panicles per unit area, but increased spikelets per panicle, filled-grain percentages, 1000-grain mass, and then enhanced grain yield. PMID:26094457

  17. Soil carbon dioxide emission and carbon content under dryland crops. II. Effects of tillage, cropping sequence, and nitrogen fertilization.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce soil CO2 emission and increase C sequestration under dryland cropping system. The effects of tillage, cropping sequence, and N fertilization were evaluated on soil surface CO2 flux, soil total C content at 0- to 120-cm depth, and soil temperature and water c...

  18. Soil temperature and water content drive microbial carbon fixation in grassland of permafrost area on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kong, W.; Guo, G.; Liu, J.

    2014-12-01

    Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic

  19. Linking organic carbon, water content and nitrous oxide emission in a reclaimed coal mine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure-based organic amendments can restore soil quality and allow for intensive sustained biomass production on degraded lands. However the large quantities of nitrogen and organic carbon added with such amendments could create soil conditions favorable for nitrous oxide production and emissions. T...

  20. [Effects of conservation tillage and weed control on soil water and organic carbon contents in winter wheat field].

    PubMed

    Han, Hui-Fang; Ning, Tang-Yuan; Li, Zeng-Jia; Tian, Shen-Zhong; Wang, Yu; Zhong, Wei-Lei; Tian, Xin-Xin

    2011-05-01

    Taking a long-term (since 2004) straw-returning winter wheat field as the object, an investigation was made in the wheat growth seasons of 2008-2009 and 2009-2010 to study the effects of different tillage methods (rotary tillage, harrow tillage, no-tillage, subsoil tillage, and conventional tillage) and weed management on the soil water and organic carbon contents. No matter retaining or removing weeds, the weed density under subsoil tillage and no-tillage was much higher than that under rotary tillage, harrow tillage, and conventional tillage. From the jointing to the milking stage of winter wheat, retaining definite amounts of weeds, no matter which tillage method was adopted, could significantly increase the 0-20 cm soil water content, suggesting the soil water conservation effect of retaining weeds. Retaining weeds only increased the soil organic carbon content in 0-20 cm layer at jointing stage. At heading and milking stages, the soil organic carbon contents in 0-20, 20-40, and 40-60 cm layers were lower under weed retaining than under weed removal. Under the conditions of weed removal, the grain yield under subsoil tillage increased significantly, compared with that under the other four tillage methods. Under the conditions of weed retaining, the grain yield was the highest under rotary tillage, and the lowest under conventional tillage. PMID:21812292

  1. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; Risk, D. A.

    2015-08-01

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.

  2. Spatial and temporal changes of soil organic carbon content since time of reclamation of mine soils in a semi-arid environment of Australia

    NASA Astrophysics Data System (ADS)

    Baumgartl, Thomas; Glenn, Vanessa; Erskine, Peter; Chan, Jaclyn

    2016-04-01

    Quantifying carbon fluxes in reclaimed mining environments informs about the success of rehabilitation. Increasing soil organic matter (SOM) improves crucial functional properties of soil; thus, it is highly desirable to promote SOM accumulation in rehabilitated mine soils. The carbon content is often used as a surrogate to describe the status of soil health. Organic carbon in soils contributes to nutrient storage and exchange for plant growth, but also improves water storage capacity and microbial activity. Particularly for poor quality soil substrates with low clay contents, like many spoils from open-cut mining, elevating the carbon concentration is an ideal means to improve the soil quality. The objective of the study was to investigate the change of SOC of re-established soils in mining dependent on the length of time since reclamation under different types of vegetation communities in a semi-arid environment of Central Queensland, Australia. Deviating from standard sampling programs, the SOC of the soil profile was determined in small depth sampling increments from the surface following the assumption, that fresh (green) organic matter will be highest close to the surface and that in semi-arid environments, the dislocation of organic matter to depth by precipitation and microbial activity will be limited. The investigations showed that the most recently rehabilitated sites (>3 years post rehabilitation) show a high organic carbon (OC) gradient decreasing from the surface downwards into the soil. The highest concentration of OC was generally found in the first cm from the surface. Below a depth of 5cm no increase of OC with time since reclamation (max. 25 years) could be determined. An increase of OC with time could be determined, although it appears that even after more than 20 years since reclamation the concentration and depth distribution of OC of an unmined soil could not be rebuilt. Thus, it may be inferred that introducing support practices of

  3. [Effects of land use type on soil organic carbon, total nitrogen, and microbial biomass carbon and nitrogen contents in Karst region of South China].

    PubMed

    Li, Xinai; Xiao, Heai; Wu, Jinshui; Su, Yirong; Huang, Daoyou; Huang, Min; Liu, Shoulong; Peng, Hongcui

    2006-10-01

    A total of 721 surface (0-20 cm) soil samples were collected from the paddy field, upland, and woodland in the Karst region of Dacai, Huanjiang County, Guangxi Province, and the contents of their organic carbon (Oc ), total nitrogen (TN), microbial biomass carbon (Bc) , and microbial biomass nitrogen (BN) were determined. The results showed that the Oc and BN contents and soil pH value showed the trend of paddy field = woodland > upland, while TN and Bc contents had the trend of woodland > paddy field > upland. There was a significant positive correlation between Bc and Oc, and between B5 and TN. Soil microbial biomass C and N had rapid responses to the changes of land use type, which could be used as the sensitive biological indicators in evaluating soil quality and fertility in Karst region. PMID:17209378

  4. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  5. Soil carbonates and soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of soil carbonates occurring as solidified masses or dispersed particles can alter soil water dynamics from what would be expected based on non-carbonate soil properties. Carbonate minerals in the soil can be derived from high carbonate parent material, additions in the form of carbonat...

  6. [Effects of temperature on organic carbon mineralization in paddy soils with different clay content].

    PubMed

    Ren, Xiu-E; Tong, Cheng-Li; Sun, Zhong-Lin; Tang, Guo-Yong; Xiao, He-Ai; Wu, Jin-Shui

    2007-10-01

    An incubation test with three kinds of paddy soil (sandy loam, clay loam, and silty clay soils) in subtropical region was conducted at 10, 15, 20, 25 and 30 degrees C to examine the response of the mineralization of soil organic carbon (SOC) to temperature change. The results showed that during the period of 160 d incubation, the accumulative mineralized amount of SOC in sandy loam, clay loam, and silty clay soils at 30 degrees C was 3.5, 5.2 and 4.7 times as much as that at 10 degrees C, respectively. The mineralization rate was lower and relatively stable at lower temperatures (< or = 20 C), but was higher at the beginning of incubation and decreased and became stable as the time prolonged at higher temperatures (> or = 25 degrees C). During incubation, the temperature coefficient (Q10) of SOC mineralization in test soils fluctuated, with an average Q10 in sandy loam, clay loam, and silty clay soils being 1.92, 2.37 and 2.32, respectively. There was a positive exponential correlation between SOC mineralization constant k and temperature (P < 0.01), and the response of SOC mineralization to temperature change was in the order of clay loam soil > silty clay soil > sandy loam soil. PMID:18163305

  7. Soil microbial biomass carbon measurement using microwave irradiation: effects of soil water content, texture and temperature on microbial cell kill and C release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumigation-based methods of soil microbial biomass carbon (C) have been replaced in many labs by microwave (MW) irradiation-based methods to reduce hazardous chemical use. Sine the introduction of the MW method concerns have been raised about the use of water filled porosity (WFP) for water content...

  8. [Effects of transgenic Bt rice on soil dissolved organic carbon and nitrogen contents and microbiological properties].

    PubMed

    Li, Xiu-Qiang; Chen, Fa-Jun; Liu, Man-Qiang; Hu, Feng

    2012-01-01

    A two-year field experiment (2009 and 2010) was conducted to evaluate the effects of three transgenic Bt rice lines (KMD, HH1, and BtSY63) and their non-Bt lines (XSD, MH63, and SY63) on soil dissolved organic carbon (DOC) and nitrogen (DON) and microbiological properties. All the measured indices changed significantly with sampling time. Comparing with their corresponding non-Bt lines, the test transgenic Bt lines had little effects on the soil DOC, DON, and microbial biomass nitrogen (MBN). The transgenic Bt lines had significant effects on the soil microbial biomass carbon (MBC), basal respiration (BR), and microbial metabolic quotient (qCO2) in certain periods of time in the first year, but no effects in the second year. Among the soils planted with the three non-Bt rice lines, no difference was observed in the DOC, DON, and microbiological properties, whereas in the soil planted with BtSY63, the MBC and BR were significantly higher, but the qCO2 was significantly lower, as compared with those in the soils planted with KMD and HH1. In sum, two years' planting transgenic Bt rice had little effects on the soil DOC, DON, and microbiological properties, but the differences of soil microbiological properties induced by the planting of different transgenic Bt rice lines were larger than those induced by the planting of different non-Bt lines, implying that long term monitoring would help to reveal the effects of transgenic Bt rice on the structure and function of soil ecosystem. PMID:22489485

  9. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  10. Mapping within-field variations of soil organic carbon content using UAV multispectral visible near-infrared images

    NASA Astrophysics Data System (ADS)

    Gilliot, Jean-Marc; Vaudour, Emmanuelle; Michelin, Joël

    2016-04-01

    This study was carried out in the framework of the PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME), the TOSCA-PLEIADES-CO project of the French Space Agency (CNES) and the SOERE PRO network working on environmental impacts of Organic Waste Products recycling on field crops at long time scale. The organic matter is an important soil fertility parameter and previous studies have shown the potential of spectral information measured in the laboratory or directly in the field using field spectro-radiometer or satellite imagery to predict the soil organic carbon (SOC) content. This work proposes a method for a spatial prediction of bare cultivated topsoil SOC content, from Unmanned Aerial Vehicle (UAV) multispectral imagery. An agricultural plot of 13 ha, located in the western region of Paris France, was analysed in April 2013, shortly before sowing while it was still bare soil. Soils comprised haplic luvisols, rendzic cambisols and calcaric or colluvic cambisols. The UAV platform used was a fixed wing provided by Airinov® flying at an altitude of 150m and was equipped with a four channels multispectral visible near-infrared camera MultiSPEC 4C® (550nm, 660nm, 735 nm and 790 nm). Twenty three ground control points (GCP) were sampled within the plot according to soils descriptions. GCP positions were determined with a centimetric DGPS. Different observations and measurements were made synchronously with the drone flight: soil surface description, spectral measurements (with ASD FieldSpec 3® spectroradiometer), roughness measurements by a photogrammetric method. Each of these locations was sampled for both soil standard physico-chemical analysis and soil water content. A Structure From Motion (SFM) processing was done from the UAV imagery to produce a 15 cm resolution multispectral mosaic using the Agisoft Photoscan® software. The SOC content was modelled by partial least squares regression (PLSR) between the

  11. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  12. Measurement of soil organic carbon with Vis-NIR spectroscopy as affected by moisture content and texture

    NASA Astrophysics Data System (ADS)

    Tekin, Yucel; Tumsavas, Zeynal; Mounem Mouazen, Abdul

    2013-04-01

    The aim of this study was to understand and assess the effects of moisture content (MC) and texture on the prediction accuracy of soil organic carbon (SOC) with a visible and near infrared spectroscopy (vis-NIRS). A total of 270 soil samples collected from Turkey and the UK were examined under 6 gravimetric MC levels of 0%, 5%, 10%, 15%, 20% and 25%. Then these samples were divided into two texture classes, namely, light (clay content ≤ 28%) and heavy (clay content > 28%) texture classes to understand the effect of texture and how this interacts with MC. A fiber-optic vis-NIR spectrophotometer (350 - 2500nm) (LabSpec2500 Near Infrared Analyzer, Analytical Spectral Devices, Inc, USA) was used to measure spectra of these samples in diffuse reflectance mode. The entire spectra was split randomly into 3 replicates of 80 % and 20 % for the cross-validation set and independent validation set, respectively before running the partial leas squares (PLS) regression analysis. PLS analyses with full cross-validation were carried out to establish models for SOC for individual MC level and all (mixed) MC samples in addition to models for light and heavy soils. Results showed that the prediction performance of SOC in the independent validation set was successful for model of all MC levels, with root mean square error of prediction (RMSEP) = 1.26 - 1.55% and residual prediction deviation (RPD) = 2.29 - 2.83. However, the best accuracy was obtained with dry soil samples model, confirming the negative effect on MC on prediction accuracy. In terms of the texture effect, the accuracy of the SOC models was generally higher for heavy soils (RMSEP = 1.42 % and RPD = 2.57) than for light soils (RMSEP = 1.58 % and RPD = 2.36). It can be concluded that there is a significant effect of MC on prediction accuracy of SOC and splitting samples into heavy and light soils is recommended for modelling heavy soils only, for which the mixed MC model is recommended.

  13. Effects of land use and mineral characteristics on the organic carbon content, and the amount and composition of Na-pyrophosphate soluble organic matter in subsurface soils

    NASA Astrophysics Data System (ADS)

    Ellerbrock, R.; Kaiser, M.; Walter, K.; Sommer, M.

    2010-12-01

    Land use and mineral characteristics affect the balance of organic carbon in surface as well as in subsurface soils and related feedbacks on soil functions like their potential to mitigate the greenhouse effect. Actually, there are less information about the effects of land use as well as soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared to surface soils. Here we aimed to analyze the long-term impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na-pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils different in mineral characteristics were selected within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used >100 years. The OM(PY) fractions were analysed on their OC content (OCPY) and characterized by FTIR spectroscopy. A distinct influence of the long-term land use on the SOC contents could not be detected because only for four out of seven sites the forest subsurface soils showed larger SOC contents than the adjacent agricultural soils. A generally site independent enhanced OC sequestration in subsurface soils due to differences in land use cannot be expected in the long-term. Multiple regression analyses indicated for the arable subsurface soils significant positive relationships between the SOC contents and combined effects of the i) exchangeable Ca (Caex) and oxalate soluble Fe (Feox), and ii) the Caex and Alox contents. For the arable subsurface soils the increase of OCPY* (OCPY multiplied by the relative C=O content of OM(PY)) by increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+ cations. For the forest subsurface soils (pH <5), the OCPY contents were found to be related to the contents of Na-pyrophosphate soluble Fe and Al. The long-term arable and forest land use

  14. Soil organic carbon and water content effects on remote crop residue cover estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage (CT) systems help protect the soil and environment, and improve net farm profitability. CT methods leave increased amounts of crop residue cover (CRC) on the soil surface, minimizing soil erosion and evaporation. CT uses less fuel, disturbs soil less, and requires less fertili...

  15. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008

    NASA Astrophysics Data System (ADS)

    Fantappiè, M.; L'Abate, G.; Costantini, E. A. C.

    2011-12-01

    Soils are the biggest carbon store in the world (1500 Gt, e.g. 1.5 × 10 21 g). The European Commission indicates the accounting of soil organic carbon (SOC) variations in space and time as the first step in the strategy for soil protection. It is indeed necessary in evaluating the risk of soil organic matter decline and soil biodiversity decline, and when evaluating the role played by soils in global CO 2 accounting. Previous maps of SOC variations in Italy did not consider the direct effect of climate. There is a marked inter-dependence between SOC and climate. SOC increases with the increase in precipitations and decreases with a rise in temperatures. It is also known that land use and management have a bigger impact on SOC than climate. The aim of this work is to understand to what extent the SOC variations occurring in Italy from 1961 to 2008 could be explained by climate change. The soil database of Italy was the source of information for SOC content: 17,817 observations (3082 before and 14,735 after 31 Dec 1990). SOC content was referred to the first 50 cm of soil depth, one single data obtained by weighted horizon thickness. SOC content was expressed as percentage by weight (dag kg - 1 ) analyzed by the Walkley-Black procedure and converted to ISO standard. The CRA-CMA (Research Unit for Climatology and Meteorology Applied to Agriculture) database was the source of information for climatic data. We considered the mean annual temperature (MAT) and mean value of total annual precipitation (MAP) of the two periods 1961-1990 and 1991-2006, and we mapped them by regression kriging with elevation and latitude as predictors. The climate change between the two periods was characterized by a general MAT increase, which was greater at lower altitudes and higher latitudes. The precipitation generally decreased, with some local exceptions. Some linear regression analyses were used to investigate the relationship between SOC content and climate/land use. Temperatures

  16. Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Jiao, Shu Mei; Gao, Rong Qing; Bardgett, Richard D.

    2012-12-01

    Plant-soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3-5 years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3-5 years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.

  17. Influence of humic acid applications on modulus of rupture, aggregate stability, electrical conductivity, carbon and nitrogen content of a crusting problem soil

    NASA Astrophysics Data System (ADS)

    Gümüş, İ.; Şeker, C.

    2015-11-01

    Soil structure is often said to be the key to soil productivity since a fertile soil, with desirable soil structure and adequate moisture supply, constitutes a productive soil. Soil structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root penetration and crop yield. The objective of this work is to study humic acid (HA) application on some physical and chemical properties in weakly structured soils. The approach involved establishing a plot experiment in laboratory conditions. Different rates of HA (control, 0.5, 1, 2 and 4 %) were applied to soil during three incubation periods (21, 42 and 62 days). At the end of the each incubation period, the changes in physicochemical properties were measured. Generally, HA addition increased electrical conductivity values during all incubation periods. HA applications decreased soil modulus of rupture. Application of HA at the rate of 4 % significantly increased soil organic carbon contents. HA applications at the rate of 4 % significantly increased both mean soil total nitrogen content and aggregate stability after three incubation periods (p < 0.05). Therefore, HA has the potential to improve the structure of soil in the short term.

  18. Corn stover management effects on soil organic carbon contents from several U.S. locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover is anticipated to be a major bioenergy feedstock, which is dependent upon high quality soil. Thus, the soil resource provides the foundation for building a sustainable biofuel economy. As a bioenergy foundation, this resource must be safeguarded from overzealous residue harvest, which ca...

  19. Corn stover management effects on soil organic carbon contents from several U.S. locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover is anticipated to be a major bioenergy feedstock, which is dependent upon high quality soil. Thus, the soil resource provides the foundation for building a sustainable biofuel economy. As the foundation, this resource must be safeguarded from overzealous residue harvest, which can exacer...

  20. Spatial prediction of Soil Organic Carbon contents in croplands, grasslands and forests using environmental covariates and Generalized Additive Models (Southern Belgium)

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Stevens, Antoine; van Wesemael, Bas

    2015-04-01

    Providing spatially continuous Soil Organic Carbon data (SOC) is needed to support decisions regarding soil management, and inform the political debate with quantified estimates of the status and change of the soil resource. Digital Soil Mapping techniques are based on relations existing between a soil parameter (measured at different locations in space at a defined period) and relevant covariates (spatially continuous data) that are factors controlling soil formation and explaining the spatial variability of the target variable. This study aimed at apply DSM techniques to recent SOC content measurements (2005-2013) in three different landuses, i.e. cropland, grassland, and forest, in the Walloon region (Southern Belgium). For this purpose, SOC databases of two regional Soil Monitoring Networks (CARBOSOL for croplands and grasslands, and IPRFW for forests) were first harmonized, totalising about 1,220 observations. Median values of SOC content for croplands, grasslands, and forests, are respectively of 12.8, 29.0, and 43.1 g C kg-1. Then, a set of spatial layers were prepared with a resolution of 40 meters and with the same grid topology, containing environmental covariates such as, landuses, Digital Elevation Model and its derivatives, soil texture, C factor, carbon inputs by manure, and climate. Here, in addition to the three classical texture classes (clays, silt, and sand), we tested the use of clays + fine silt content (particles < 20 µm and related to stable carbon fraction) as soil covariate explaining SOC variations. For each of the three land uses (cropland, grassland and forest), a Generalized Additive Model (GAM) was calibrated on two thirds of respective dataset. The remaining samples were assigned to a test set to assess model performance. A backward stepwise procedure was followed to select the relevant environmental covariates using their approximate p-values (the level of significance was set at p < 0.05). Standard errors were estimated for each of

  1. The effects of land abandonment and long-term afforestation practices on the organic carbon and lignin content of a Mediteranean soil

    NASA Astrophysics Data System (ADS)

    Stijsiger, Romy; Nadal-Romero, Estela; Campo, Julian; Cammeraat, Erik

    2016-04-01

    Afforestation is an important strategy that can decrease atmospheric carbon in sequestering it in biomass and soils (Pérez-Crusado et al., 2014). In Spain an active afforestation program was adopted in the 1950s, when after wide spread land abandonment the soils were severely eroded (FAO, 2015). In this research the organic carbon and lignin content of the soils in the Araguás catchment area in the Spanish Pyrenees were examined. This research is part of a larger research examining the effect of afforestation over time (Med Afforest Project, PIEF-GA-2013-624974). The research area was afforested with both the P. sylvestris (Scotts Pine) and the P.nigra (Black Pine). Both sites were compared to bare soil (representing severely eroded soil), natural secondary succession (re-vegetation) and meadows. The method used to assess the lignin content is Curie-point pyrolysis with tetramethylammonium hydroxide (TMAH). The results showed a reducing trend for the soil organic carbon (SOC) content with depth. The highest SOC and lignin contents in the topsoil were found under P.nigra and secondary succession. This decline in lignin content corresponds with a high degradation rate (Ad/Al) in the top soil and lower degradation rates in depths of >20 cm. Meadows showed an increased SOC content in deeper horizons, which corresponds to high lignin content as well. In which the meadows showed an increase in lignin content for the soil depths of >20 cm that was unusual and could not be explained by the S/G and P/G ratios and the degradation ratio (Ad/Al). According to the results, P. nigra was the best afforestation practice for increasing the SOC and lignin contents in the soil. The P. sylvestris was considered but proved to be less successful than natural secondary succession. Acknowledgements This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974). JC also acknowledges the VALi+d postdoctoral contract (APOSTD/2014

  2. Assessment of near-surface soil carbon content across several U.S. cropland watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cropland Conservation Effects Assessment Project (CEAP) was initiated to provide a scientific basis for assessing effectiveness of conservation practices on water and soil quality. In 2006, sampling was initiated within a number of USDA-ARS experimental watersheds to measure and assess managemen...

  3. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  4. Temperature, Water Content and Wet-Dry Cycle Effects on DOC Production and Carbon Mineralization in Agricultural Peat Soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of controlled laboratory experiments were utilized to examine factors affecting dissolved organic carbon (DOC) production and C mineralization rates over a range of conditions experienced resulting from agricultural practices in peat soils from the Sacramento-San Joaquin Delta. We conclude...

  5. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    NASA Astrophysics Data System (ADS)

    Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2011-06-01

    Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).

  6. Organic Matter Stabilization in Soil Microaggregates: Implications from Spatial Heterogeneity of Organic Carbon Contents and Carbon Forms

    SciTech Connect

    Lehmann,J.; Kinyangi, J.; Solomon, D.

    2007-01-01

    This study investigates the spatial distribution of organic carbon (C) in free stable microaggregates (20-250 {mu}m; not encapsulated within macroaggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation. Two-dimensional micro- and nano-scale observations using synchrotron-based Fourier-transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded maps of the distribution of C amounts and chemical forms. Carbon deposits were unevenly distributed within microaggregates and did not show any discernable gradients between interior and exterior of aggregates. Rather, C deposits appeared to be patchy within the microaggregates. In contrast to the random location of C, there were micron-scale patterns in the spatial distribution of aliphatic C-H (2922 cm-1), aromatic C=C and N-H (1589 cm-1) and polysaccharide C-O (1035 cm-1). Aliphatic C forms and the ratio of aliphatic C/aromatic C were positively correlated (r 2 of 0.66-0.75 and 0.27-0.59, respectively) to the amount of O-H on kaolinite surfaces (3695 cm-1), pointing at a strong role for organo-mineral interactions in C stabilization within microaggregates and at a possible role for molecules containing aliphatic C-H groups in such interactions. This empirical relationship was supported by nanometer-scale observations using NEXAFS which showed that the organic matter in coatings on mineral surfaces had more aliphatic and carboxylic C with spectral characteristics resembling microbial metabolites than the organic matter of the entire microaggregate. Our observations thus support models of C stabilization in which the initially dominant process is adsorption of organics on mineral surfaces rather than occlusion of organic debris by adhering clay particles.

  7. Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia pinnata Seedlings in Degraded Forest Soil.

    PubMed

    Radhapriya, Parthasarathy; Ramachandran, Andimuthu; Anandham, Rangasamy; Mahalingam, Sundararajan

    2015-01-01

    The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies. RRALC3 was found to possess multiple plant growth promoting traits such as nitrogen accumulation (120.6ppm); it yielded a positive amplicon with nifH specific primers, tested positive for Indole Acetic Acid (IAA; 18.3μg/ml) and siderophore production, tested negative for HCN production and was observed to promote solubilization of phosphate, silicate and zinc in the plate assay. The 16S rDNA sequence of RRALC3 exhibited 99% sequence similarity to Pseudomonas aeruginosa JCM5962. Absence of virulence genes and non-hemolytic activity indicated that RRALC3 is unlikely to be a human pathogen. When the effects of RRALC3 on promotion of plant growth was tested in Pongamia pinnata, it was observed that in Pongamia seedlings treated with a combination of RRALC3 and chemical fertilizer, the dry matter increased by 30.75%. Nitrogen, phosphorus and potassium uptake increased by 34.1%, 27.08%, and 31.84%, respectively, when compared to control. Significant enhancement of total sugar, amino acids and organic acids content, by 23.4%, 29.39%, and 26.53% respectively, was seen in the root exudates of P. pinnata. The carbon content appreciated by 4-fold, when fertilized seedlings were treated with RRALC3. From the logistic equation, the rapid C accumulation time of Pongamia was computed as 43 days longer than the control when a combination of native PGPB and inorganic fertilizer was applied. The rapid accumulation time of N, P and K in Pongamia when treated with the same combination as above was 15, 40 and 33 days longer

  8. Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia pinnata Seedlings in Degraded Forest Soil

    PubMed Central

    Radhapriya, Parthasarathy; Ramachandran, Andimuthu; Anandham, Rangasamy; Mahalingam, Sundararajan

    2015-01-01

    The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies. RRALC3 was found to possess multiple plant growth promoting traits such as nitrogen accumulation (120.6ppm); it yielded a positive amplicon with nifH specific primers, tested positive for Indole Acetic Acid (IAA; 18.3μg/ml) and siderophore production, tested negative for HCN production and was observed to promote solubilization of phosphate, silicate and zinc in the plate assay. The 16S rDNA sequence of RRALC3 exhibited 99% sequence similarity to Pseudomonas aeruginosa JCM5962. Absence of virulence genes and non-hemolytic activity indicated that RRALC3 is unlikely to be a human pathogen. When the effects of RRALC3 on promotion of plant growth was tested in Pongamia pinnata, it was observed that in Pongamia seedlings treated with a combination of RRALC3 and chemical fertilizer, the dry matter increased by 30.75%. Nitrogen, phosphorus and potassium uptake increased by 34.1%, 27.08%, and 31.84%, respectively, when compared to control. Significant enhancement of total sugar, amino acids and organic acids content, by 23.4%, 29.39%, and 26.53% respectively, was seen in the root exudates of P. pinnata. The carbon content appreciated by 4-fold, when fertilized seedlings were treated with RRALC3. From the logistic equation, the rapid C accumulation time of Pongamia was computed as 43 days longer than the control when a combination of native PGPB and inorganic fertilizer was applied. The rapid accumulation time of N, P and K in Pongamia when treated with the same combination as above was 15, 40 and 33 days longer

  9. Mineral contributions to atrazine and alachlor sorption in soil mixtures of variable organic carbon and clay content

    NASA Astrophysics Data System (ADS)

    Grundl, Tim; Small, Greg

    1993-09-01

    A sediment mixing approach was taken to systematically vary the organic carbon (oc) and clay content (cm) of a suite of organic-poor, clay-rich sediments. Organic carbon content ranged from 3.2% to 0.4% and clay content ranged from 24% to 51%. Atrazine and alachlor were shown to sorb to both natural organic carbon and clay minerals. Partition coefficients to natural organic carbon ( Koc) were found to be 217 and 412 L/kg organic carbon for atrazine and alachlor, respectively. Partition coefficients to the clay fraction were found to be 3.5 and 4.9 L/kg clay for atrazine and alachlor, respectively. When expressed in terms of surface area, the partition coefficients to clay for atrazine and alachlor were 1.80·10 -5 and 2.51·10 -5 L/m 2 clay, respectively. Critical cm/oc ratios at which mineral phase sorption accounts for 50% of the total are defined. Implications for the modelling of herbicide movement in the subsurface if mineral phase sorption is ignored is discussed.

  10. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  11. Soil carbon determination by thermogravimetrics

    PubMed Central

    Pallasser, Robert; McBratney, Alex B.

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms. PMID:23638398

  12. Revealing spatial distribution of soil organic carbon contents and stocks of a disturbed bog relict by in-situ NIR and apparent EC mapping

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.

    2013-04-01

    Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the

  13. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    PubMed Central

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2015-01-01

    Nitrogen (N) deposition is a threat to European Mediterranean ecosystems, but the evidence of real ecological impacts is still scarce. We combined data from a real N deposition gradient (4.3-7.3 kg N ha−1 yr−1) from semiarid portions of Spain with data from a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community structure. Soil organic N did not increase along the extant deposition gradient, whereas C:N ratios decreased in most locations. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Nitrogen mineralization rates were reduced by N fertilization, suggesting ecosystem N saturation. Soil organic C content and the activity of β-glucosidase decreased along the extant gradient. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions to the atmosphere when experiencing increased N deposition. PMID:23685631

  14. Positive feedback of crop residue incorporation on dissolved organic carbon contents under anaerobic conditions in temperate rice paddy soils

    NASA Astrophysics Data System (ADS)

    Said-Pullicino, Daniel; Sodano, Marcella; Bertora, Chiara; Lerda, Cristina; Sacco, Dario; Celi, Luisella

    2016-04-01

    Rice paddy soils are generally characterized by large concentrations and fluxes of DOC in comparison to other ecosystems. Our recent studies have shown that the combination of relatively high pore-water DOC concentrations under anoxic soil conditions (>10-20 mg C l‑1) and important percolation fluxes of water during field flooding may contribute significant organic C inputs into the subsoil (18-51 g C m‑2) over the cropping season. Crop residues incorporated into the soil after harvest represent the main input of organic C into paddy soils, returning about 200-300 g C m‑2 y‑1 in single-cropped rice paddies. The anaerobic decomposition of these residues may supply important amounts of DOC to soil pore waters. Moreover, the supply of electron donors with the input of residue-derived labile OM may further increase DOC contents by stimulating the microbially-catalyzed reductive dissolution of Fe and Mn oxyhydroxides under anoxic conditions, and release of DOC previously stabilized on the mineral matrix (i.e. positive feedback). This could have important implications on organic C inputs into the subsoil as well as substrate availability for methane production. We therefore hypothesized that crop residue management practices that influence the amount of labile organic matter present in the soil at the time of field flooding may strongly influence soil solution DOC concentrations as well as the positive feedback on the release of soil-derived DOC. We tested this hypothesis at field-scale by evaluating variations in the contents and quality of DOC above and beneath the plough pan over the cropping season as a function of crop residue management practices involving: tillage and crop residue incorporation in spring (SPR), tillage and crop residue incorporation in spring, dry seeding and 1 month delayed flooding (DRY), tillage and crop residue incorporation in autumn (AUT), and straw removal after harvest and tillage in spring (REM). Moreover, we linked changes in DOC

  15. Comparison of PLSR and SVM methods for predicting the organic carbon content using VNIR DRS at five locations with different soil types

    NASA Astrophysics Data System (ADS)

    Klement, Ales; Kodesova, Radka; Vasat, Radim; Fer, Miroslav; Brodsky, Lukas; Jaksik, Ondrej

    2015-04-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR DRS) is cost- and time-effective and environmentally friendly techniques method used for prediction of soil properties. There are many studies dealing with this approach for particular conditions (single locality, different area size, etc.). This study was therefore focused on evaluating the suitability of VNIR DRS (400 - 2500 nm) for predicting organic carbon content, using samples collected at 5 agricultural lands from the municipalities of Brumovice (107 samples), Hostoun (58 samples), Sedlcany (78 samples), Vidim (86 samples) and Zelezna (69 samples). In Brumovice original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been observed at other four locations Hostoun, Sedlcany, Vidim and Zelezna where the original soil types were Calcaric Leptosol, Haplic Cambisol on gneiss, Haplic Luvisol on loess and Haplic Cambisol on shales, respectively. Samples were taken from the topsoil within regular grid covering studied areas. Variable approaches may be applied to relate reflectance spectral data to particular soil property. Here were used Partial Least Square Regression (PLSR) and Support Vector Machine (SVM) with cross-validation to relate organic carbon content data to the reflectance spectral data by applying different preprocessing strategies. According to the criteria of minimal Root Mean Square Error of Prediction of Cross Validation (RMSEPcv) and maximal coefficient of determination (R2cv), the PLSR and SVMR models with raw spectra, the first and second derivative pretreatment provided the most accurate prediction for the organic carbon content from Brumovice (SVM, 1st. derivative, R2cv = 0.87, RMSEPcv = 0.11) and decreased as follows: Hostoun (PLSR, 2nd. derivative, R2cv = 0.69, RMSEPcv = 0.11), Sedlcany (SVM, 2nd. derivative, R2cv = 0.66, RMSEPcv = 0.17), Zelezna

  16. Grass roots of soil carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils rooted with perennial grasses have high organic matter content, and therefore, can contribute to an agricultural future with high soil quality; a condition that can help to mitigate greenhouse gas emissions through soil carbon sequestration and improve a multitude of other ecosystem responses,...

  17. Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering

    SciTech Connect

    Warburton, William K.

    2014-01-24

    This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

  18. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  19. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  20. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell, Alison

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
    This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached

  1. Nuclear forensics: Soil content

    SciTech Connect

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  2. Capacity of microorganisms to decompose organic carbon affected by an increasing content of reactive mineral phases in a podzolic soil chronosequence

    NASA Astrophysics Data System (ADS)

    Vermeire, Marie-Liesse; Doetterl, Sebastian; Bode, Samuel; Delmelle, Pierre; Van Oost, Kristof; Cornelis, Jean-Thomas

    2014-05-01

    Soil organic matter stabilization has received considerable interest in the last decades due to the importance of the soil organic carbon (SOC) pool in the global C budget. There is increasing evidence that the formation of organo-mineral associations play a major role in the mechanisms of organic carbon stabilization, indicating that the persistence of organic matter in soils relates primarily to soil physico-chemical and biological conditions than to intrinsic recalcitrance. Al and Fe oxy-hydroxides and short-range ordered aluminosilicates are known for their high capacity to sorb organic carbon. However, the impact of the evolution of these reactive mineral phases over short time scale on the distribution of microorganisms and their ability to decompose SOC is still poorly understood. To further study the short-term evolution of organo-mineral associations, we investigated a 500-year podzolic soil chronosequence which is characterized by an increasing amount of secondary reactive mineral phases with pedogenesis and soil age, and thus by increased organo-mineral associations. In order to determine the impact of these secondary mineral phases on the degradation of SOC by microorganisms, an incubation experiment was carried out using soil horizons up to 1m deep from 6 profiles of different ages along the chronosequence. Furthermore, we used amino sugars and phospholipid fatty acids as tracers of dead and living microbial biomass, respectively, in the incubated samples. Our results show that SOC mineralization was significantly lower in the illuvial Bh/Bhs horizons (which contain more reactive mineral phases) compared to the surface E horizons (depleted in reactive mineral phases), although the content in amino sugars is similar in these horizons. In the deeper Bw and BC horizons, as well as in the young profiles (<300 yrs) that have not yet undergone podzolization and related formation of organo-mineral associations, SOC mineralization rates were the highest. These

  3. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility

  4. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  5. Stuffing Carbon Away: Mechanisms of Carbon Sequestration in Soils

    SciTech Connect

    Reimer, P J; Masiello, C A; Southon, J R; Trumbore, S E; Harden, J W; White, A F; Chadwick, O A; Torn, M S

    2003-01-24

    Soils offer the potential to sequester large quantities of carbon from the atmosphere for decades to millennia and so may ameliorate the anthropogenic influence of fossil fuel release. However changes in climate can drastically affect the soil's ability to store carbon through changes mineralogy on time scales of human interest. It is essential to understand the major controls on soil carbon dynamics before we attempt to manage sequestration to control atmospheric CO{sub 2} buildup. Models of the terrestrial carbon cycle often use clay content to parameterize soil carbon turnover. Evidence from volcanic soils suggests that soil mineralogy is a major control on a soil's ability to store carbon, because different types of minerals have widely varying abilities to physically and chemically isolate soil organic matter from decomposition, however volcanic soils represent only a small percentage of the earth's soils. The relationship between precipitation and soil carbon storage is also complex and poorly constrained. Significantly, precipitation changes predicted as a result of atmospheric CO{sub 2} doubling include increased rainfall throughout California. We utilized {sup 14}C, {delta}{sup 13}C, and the total organic carbon, iron, and aluminum contents to address the question of the importance of mineralogy and climate on carbon storage in soils formed on a globally representative parent material. The California coastal terraces, formed over the last 500 thousand years as a result of tectonic uplift and sea level change, provide a natural laboratory to examine the effect of mineralogy and climate on carbon storage. We have focused on two terraces sequences, one near Eureka and one near Santa Cruz. Within each set of terraces only soil mineral development varies; all other variables are constant (rainfall, plant systems, and soil parent material, and land management). Annual precipitation at Eureka is twice that at Santa Cruz, allowing us to examine its role in the

  6. The greenhouse gas balance of a drained fen peatland is mainly controlled by land-use rather than soil organic carbon content

    NASA Astrophysics Data System (ADS)

    Eickenscheidt, T.; Heinichen, J.; Drösler, M.

    2015-04-01

    Drained organic soils are considered as hotspots for greenhouse gas (GHG) emissions. Particularly arable lands and intensively used grasslands have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered as peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a mollic Gleysol (named Cmedium) as well as on a sapric Histosol (named Chigh). The two soil types significantly differed in their SOC contents in the topsoil (Cmedium: 9.4-10.9% SOC; Chigh: 16.1-17.2% SOC). We determined GHG fluxes (CO2, N2O and methane (CH4)) over a period of 2 years. The daily and annual net ecosystem exchange (NEE) of CO2 was determined with the closed dynamic chamber technique and by modeling the ecosystem respiration (RECO) and the gross primary production (GPP). N2O and CH4 were determined by the close chamber technique. Estimated NEE of CO2 significantly differed between the two land-use types with lower NEE values (-6 to 1707 g CO2-C m-2 yr-1) at the arable sites and higher values (1354 to 1823 g CO2-C m-2 yr-1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23-0.86 g N m-2 yr-1) compared to the grassland sites (0.12-0.31 g N m-2 yr-1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time horizon of 100 years (GWP100) revealed a very high release of GHGs from all plots

  7. The greenhouse gas balance of a drained fen peatland is mainly controlled by land-use rather than soil organic carbon content

    NASA Astrophysics Data System (ADS)

    Eickenscheidt, T.; Heinichen, J.; Drösler, M.

    2015-09-01

    Drained organic soils are considered to be hotspots for greenhouse gas (GHG) emissions. Arable lands and intensively used grasslands, in particular, have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered to be peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a Mollic Gleysol (labeled Cmedium) as well as on a Sapric Histosol (labeled Chigh). The two soil types differed significantly in their SOC contents in the topsoil (Cmedium: 9.4-10.9 % SOC; Chigh: 16.1-17.2 % SOC). We determined GHG fluxes over a period of 1 or 2 years in case of N2O or methane (CH4) and CO2, respectively. The daily and annual net ecosystem exchange (NEE) of CO2 was determined by measuring NEE and the ecosystem respiration (RECO) with the closed dynamic chamber technique and by modeling the RECO and the gross primary production (GPP). N2O and CH4 were measured with the static closed chamber technique. Estimated NEE of CO2 differed significantly between the two land-use types, with lower NEE values (-6 to 1707 g CO2-C m-2 yr-1) at the arable sites and higher values (1354 to 1823 g CO2-C m-2 yr-1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23-0.86 g N m-2 yr-1) than at the grassland sites (0.12-0.31 g N m-2 yr-1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time

  8. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  9. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra

    NASA Astrophysics Data System (ADS)

    Vaudour, E.; Gilliot, J. M.; Bel, L.; Lefevre, J.; Chehdi, K.

    2016-07-01

    This study aimed at identifying the potential of Vis-NIR airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soil types comprised haplic luvisols, calcaric cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites sampled either in 2013 or in the 3 previous years and in 2015 were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering 74 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g Kg-1 and were ∼4 g Kg-1 in median. The most performing models in terms of coefficient of determination (R2) and Residual Prediction Deviation (RPD) values were the calibration models derived either from Kennard-Stone or conditioned Latin Hypercube sampling on smoothed spectra. The most generalizable model leading to lowest RMSE value of 3.73 g Kg-1 at the regional scale and 1.44 g Kg-1 at the within-field scale and low bias was the cross-validated leave

  10. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR. PMID:27208721

  11. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  12. Soil carbon stocks in Sarawak, Malaysia.

    PubMed

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. PMID:23541401

  13. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    PubMed

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change. PMID:23359931

  14. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  15. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  16. Carbon and carbon-14 in lunar soil 14163

    SciTech Connect

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000/sup 0/C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small (< 53 ..mu..) grains of 14163 had more combusted carbon-14 activity, 31.2 +- 2.5 dpm /kg, than the large (> 53 ..mu..) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14.

  17. Soil aggregates and their associated carbon and nitrogen content in winter annual pastures using different tillage management options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, winter annual pastures are established on grazing areas that are steeply sloping and not regarded as suitable for row-crop production. Using conventional (CT) tillage methods to prepare these fragile lands for winter annual pastures leads to increased erosion and rapid soil degradatio...

  18. Carbon content on perturbed wetlands of Yucatan

    NASA Astrophysics Data System (ADS)

    Morales Ojeda, S. M.; Orellana, R.; Herrera Silveira, J.

    2013-05-01

    The north coast of Yucatan Peninsula is a karstic scenario where the water flows mainly underground through the so called "cenotes"-ring system ("sink holes") toward the coast. This underground water system enhances the connection between watershed condition and coastal ecosystem health. Inland activities such as livestock, agriculture and urban development produce changes in the landscape, hydrological connectivity and in the water quality that can decrease wetland coverage specially mangroves and seagrasses. We conducted studies on the description of structure, biomass and carbon content of the soil, above and below ground of four different types of wetland in a perturbed region. The wetland ecological types were freshwater (Typha domingensis), dwarf mangroves (Avicenia germinans), grassland (Cyperacea) and Seagrasses. Due to the area is mainly covered by mangroves, they represent the most important carbon storage nevertheless the condition of the structure determine the carbon content in soil. Through GIS tools we explore the relationships between land use and costal condition in order to determine priority areas for conservation within the watershed that could be efficient to preserve the carbon storage of this area.

  19. Effect of gypsum content on soil water retention

    NASA Astrophysics Data System (ADS)

    Moret-Fernández, D.; Herrero, J.

    2015-09-01

    Many gypsiferous soils occur in arid lands, where the water retention capacity of the soil is vital to plant life and crop production. This study investigated the effect of gypsum content on the gravimetric soil water retention curve (WRC). We analyzed calcium carbonate equivalent (CCE), equivalent gypsum content (EG), soil organic carbon content (SOC), and electrical conductivity of 43 samples collected from various horizons in soils in the Ebro Valley, NE Spain. The WRC of the fine earth was determined using the pressure-plate method (pressure heads = 0, -33, -100, -200, -500, and -1500 kPa), and the gravimetric water retention curves were fitted to the unimodal van Genuchten function. Soil gypsum content had a significant effect on water retention. Soils that had high gypsum content made WRC with higher water retention at near saturation conditions, and steeper WRC slopes. The EG threshold at which gypsum content had an effect on WRC was about 40%, and EG was positively and negatively correlated with the α and n parameters of the WRC, respectively.

  20. Soil carbon storage controlled by interactions between geochemistry and climate

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-10-01

    Soils are an important site of carbon storage. Climate is generally regarded as one of the primary controls over soil organic carbon, but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north-south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.

  1. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  2. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  3. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05). PMID:27548977

  4. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. PMID:25216023

  5. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  6. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon

  7. Adding Clays to Sandy Soils to Increase Carbon Storage

    NASA Astrophysics Data System (ADS)

    Harper, R. J.; Sochacki, S. J.

    2011-12-01

    Soil carbon storage is often related to clay content and mineralogy. For example, in a dryland farming area (300 mm/year annual rainfall) of Western Australia, carbon storage increased systematically with increasing clay content. Carbon storage in the surface 0.1 m was 42.5 Mg CO2-e/ha in soils with 1.7% clay compared to 99.1 Mg CO2-e/ha for soils with 9.1% clay. Similar results are evident in other data-sets, with carbon storage being related to site water balance, clay content and soil chemical fertility. We thus investigated whether soil carbon storage could be manipulated in sandy soils by adding clay. Clays are often added to farmed sandy soils to overcome water repellency and to reduce nutrient losses by leaching, but are not considered as a carbon management tool. The combined effects can improve plant productivity and thus carbon inputs to soil carbon pools. Bauxite processing residue (10% clay) had been applied in 1982 to sandy soils at different rates in an area with 760 mm/year annual rainfall. Application of 25 Mg clay/ha resulted in an increase in soil carbon content of 47.7 Mg CO2-e/ha. Soils were sampled to a depth of 0.3 m, with most (65%) of the increase being in the surface 0.1 m. Globally, there are large areas of sandy soils occurring across several soil taxonomic orders. In this presentation we describe the implications of clay amendments for increasing the carbon storage in such soils, and suggest areas of further investigation.

  8. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  9. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  10. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  11. Pesticide sorption on geologic material of varying organic carbon content.

    PubMed

    Bouchard, D C; Wood, A L

    1988-09-01

    Sorption of three pesticides on geologic material ranging in organic carbon content from 0.33 to 6.9 g kg-1 was measured in soil columns using a miscible displacement technique. An octanol-water partitioning model was shown to be inappropriate for predicting sorption of the less hydrophobic pesticides on the low organic carbon materials. PMID:3255290

  12. Critical water contents of hydrophobic soils in New Zealand

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Holzinger, Ursula; Singh, Ranvir; Klik, Andreas

    2013-04-01

    Soil water repellency is an important problem for pasture farming in New Zealand which causes low infiltration rates and increased surface runoff. However, the real extent of this issue is not yet evaluated. Water repellency is thought to appear on dry soils, when the water content falls below a critical limit. The main objectives of this study was 1) to investigate the effects of different amounts of infiltration water on hydrophobicity of three selected soils under grassland in the North island of New Zealand, and 2) to determine the critical water content for ten sites with five different soil types. In April 2011 undisturbed and disturbed soil samples from a brown, gley and organic soil have been taken from sites around Mount Taranaki. Soil water repellency was determined using the Water Droplet Penetration Time Test (WDPT) and the Molarity of Ethanol Droplet Test (MED). During the lab experiment four amounts of water were applied to the 270 cm³ samples: 400, 800, 1600 and 2400 mL . One test was performed with cold and one with hot (80 °C) water. Each test was replicated four times. In the leachate the amount of dissolved organic carbon was analyzed. The experiments showed that only for the brown soil water repellency decreased significantly with increasing amount of infiltration water whereas for gley soils no correlation was found. Gley soil had initially a lower degree of hydrophobicity compared to the other soils. Possibly due to the higher bulk density of these soils, the carbon compounds directly surrounding the soil particles wre rearranged rather than leached. No clear pattern could be obtained for organic soils. This may be explained by the high initial carbon content of more than 20%. It may take a much greater amount of infiltration to affect hydrophobicity. The critical contact angle of investigated soils above which water repellency is moderately persistent, was 93.8°. In May 2012 ten more sites were sampled and five soil types were investigated

  13. CRADA Carbon Sequestration in Soils and Commercial Products

    SciTech Connect

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  14. The sorption of organic matter in soils as affected by the nature of soil carbon

    SciTech Connect

    Kaiser, K.; Haumaier, L.; Zech, W.

    2000-04-01

    Recent studies have shown that soil organic carbon (OC) may either hinder or favor the sorption of dissolved organic matter (DOM) in soils. The concept was that the nature of soil OC determines these contrasting findings. To test this hypothesis, the authors compared the DOM sorption in soils with OC derived from biomass decomposition with that in soils with OC more likely derived from biomass decomposition with that in soils with OC more likely derived from charred materials (black carbon). All the mineral soil samples in the study were from Spodosols, and the DOM was from an aqueous extract of a more forest floor layer. Sorption was determined in batch experiments. The sorption in soils that contain large amounts of black carbon was, in general, less than the sorption in soils with decomposition-derived OC. When the DOM sorption parameters of the soils were correlated to the OC content, the black carbon soils showed a positive effect of the OC content on the DOM sorption. In the soils lacking the features of black carbon residues, the DOM sorption was negatively influenced by OC. These results lead them to assume that the nature of soil OC is a soil property that needs to be considered in the DOM sorption of soils, especially when soils have large amounts of highly aromatic OC.

  15. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  16. Effects of changes in land use on soil physical properties and soil organic carbon content in a wheat-corn-sunflower crop sequence, in a loam soil of Argentina.

    NASA Astrophysics Data System (ADS)

    Aparicio, V.; Costa, J. L.

    2012-04-01

    The Argentinean Humid Pampas extend over about 60 million hectares, 90% of which are agricultural lands. The Southeast of the Buenos Aires Province is part of the Humid Pampas, it covers over 1,206,162 hectares, the mean annual temperature is 13.3 °C and the climate is sub-humid. At the present only 6% of the lands are used for pasture. The main activities are agriculture and cattle production. The main crops are wheat, sunflower, corn and soybean. The tillage systems used in the area are: moldboard plow (MP), chisel plow (CP) and no-till (NT). Excessive soil cultivation under MP generates decreases in the levels of soil organic carbon (SOC). The magnitude of such decrease depends on the intensity of the tillage system, the tillage timeliness and the amount and quality of the residues. Adopting NT may reduce the effects of intensive agriculture, through the maintenance and accumulation of SOC. However, there are evidences that, under NT, the bulk density (ρb) in the superficial layers of the soil increases. The soil compaction causes degradation of the soil structure, reduces the soil water availability and reduces the soil hydraulic conductivity. With this scenario and the tendency to increase the surface under NT in the Southeast Humid Pampas, we evaluated the evolution of some soil physical properties and the SOC in a 10-year experiment with a wheat-corn-sunflower rotation. The experiment was carried out in four localities at farmerś fields under three different tillage systems: MP, CP and NT in a randomized complete block design, considering each locality as a block. Each plot had 50 m in width by 100 m length and the treatments were: NT, MP and CP. The results of this experiment have allowed us to verify that: i) the wheat-corn-sunflower crop sequence showed a tendency to reduce the values of bulk density (ρb) but NT increased ρb in the superficial soil layers; ii) the more intensive the tillage system, the higher the change in the mean weight diameter

  17. [Effects of straw application and earthworm inoculation on soil labile organic carbon].

    PubMed

    Yu, Jian-Guang; Li, Hui Xin; Chen, Xiao-Yun; Hu, Feng

    2007-04-01

    A six-year field plot experiment of rice-wheat rotation was conducted to study the effects of straw application and earthworm inoculation on cropland soil organic carbon and labile organic carbon. Five treatments were installed, i.e., CK, straw mulch (M), straw mulch plus earthworm inoculation (ME), incorporated straw with soil (I), and incorporated straw with soil plus earthworm inoculation (IE). The results showed that soil organic carbon content increased significantly after six years straw application, and treatment I was more efficient than treatment M. Earthworm inoculation under straw application had no significant effects on soil organic carbon content. Straw application, whether straw mulch or incorporated straw with soil, increased the content of soil labile organic carbon, and incorporated straw with soil was more beneficial to the increase of the contents of hot water-extractable carbon, potentially mineralizable carbon, acid-extractable carbon, readily oxidizable carbon, particulate organic carbon, and light fraction organic carbon. There was a little relationship between the quantitative variations of soil dissoluble organic carbon and microbial biomass carbon and the patterns of straw application. Among the treatments, the activity of soil organic carbon was decreased in the order of IF > I > M > ME > CK. Straw application pattern was the main factor affecting soil organic carbon and labile organic carbon, while earthworm inoculation was not universally significanfly effective to all kinds of soil labile organic carbon. PMID:17615878

  18. Elevated atmospheric carbon dioxide increases soil carbon

    SciTech Connect

    Norby, Richard J; Jastrow, Julie D; Miller, Michael R; Matamala, Roser; Boutton, Thomas W; Rice, Charles W; Owensby, Clenton E

    2005-01-01

    In a study funded by the U.S. Department of Energy's Office of Science, researchers from Argonne and Oak Ridge National Laboratories and Kansas State and Texas A&M Universities evaluated the collective results of earlier studies by using a statistical procedure called meta-analysis. They found that on average elevated CO2 increased soil carbon by 5.6 percent over a two to nine year period. They also measured comparable increases in soil carbon for Tennessee deciduous forest and Kansas grassland after five to eight years of experimental exposure to elevated CO2.

  19. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  20. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  1. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    PubMed

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes. PMID:26662659

  2. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  3. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.

    PubMed

    Andrić, Filip; Šegan, Sandra; Dramićanin, Aleksandra; Majstorović, Helena; Milojković-Opsenica, Dušanka

    2016-08-01

    Soil-water partition coefficient normalized to the organic carbon content (KOC) is one of the crucial properties influencing the fate of organic compounds in the environment. Chromatographic methods are well established alternative for direct sorption techniques used for KOC determination. The present work proposes reversed-phase thin-layer chromatography (RP-TLC) as a simpler, yet equally accurate method as officially recommended HPLC technique. Several TLC systems were studied including octadecyl-(RP18) and cyano-(CN) modified silica layers in combination with methanol-water and acetonitrile-water mixtures as mobile phases. In total 50 compounds of different molecular shape, size, and various ability to establish specific interactions were selected (phenols, beznodiazepines, triazine herbicides, and polyaromatic hydrocarbons). Calibration set of 29 compounds with known logKOC values determined by sorption experiments was used to build simple univariate calibrations, Principal Component Regression (PCR) and Partial Least Squares (PLS) models between logKOC and TLC retention parameters. Models exhibit good statistical performance, indicating that CN-layers contribute better to logKOC modeling than RP18-silica. The most promising TLC methods, officially recommended HPLC method, and four in silico estimation approaches have been compared by non-parametric Sum of Ranking Differences approach (SRD). The best estimations of logKOC values were achieved by simple univariate calibration of TLC retention data involving CN-silica layers and moderate content of methanol (40-50%v/v). They were ranked far well compared to the officially recommended HPLC method which was ranked in the middle. The worst estimates have been obtained from in silico computations based on octanol-water partition coefficient. Linear Solvation Energy Relationship study revealed that increased polarity of CN-layers over RP18 in combination with methanol-water mixtures is the key to better modeling of

  4. True Value of Carbon in Agricultural Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon (CO2) in the soil plays a critical role in the development of a stable soil aggregate and contributes to the formation of soil particles that are resistant to the destructive forces from wind and water. The dynamics of carbon in the soil are complex because the amount of carbon is affected b...

  5. Soil Carbon and Nitrogen Cycle Modeling

    NASA Astrophysics Data System (ADS)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  6. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  7. [Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region].

    PubMed

    Tang, Guoyon; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Xiao, Heai; Su, Yirong; Wu, Jinshui

    2006-03-01

    In this paper, 535 soil samples (0 to approximately 20 cm) were taken from the woodland, orchard, upland, and paddy field in the hilly red soil region of south China, and the quantitative characteristics of soil organic carbon (SOC) and soil microbial biomass carbon (SMB-C) were studied. The results showed that SOC content was the highest (16.0 g x kg(-1)) in paddy field and the lowest (8.4 g x kg(-1)) in woodland, while SMB-C content was the highest in paddy field (830 mg x kg(-1)) and the lowest in orchard (200 mg x kg(-1)). There was a highly significant positive correlation (P < 0.01) between the contents of SOC and SMB-C in the four land-use types. It was suggested that the changes of SMB-C content could sensitively indicate the dynamics of SOC. The transition from woodland to orchard or cultivated land in hilly red soil region would not decrease the SOC content. PMID:16724737

  8. Australian climate-carbon cycle feedback reduced by soil black carbon

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Skjemstad, Jan; Sohi, Saran; Carter, John; Barson, Michele; Falloon, Pete; Coleman, Kevin; Woodbury, Peter; Krull, Evelyn

    2008-12-01

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together. Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils, creating a positive feedback. Current models of global climate change that recognize this soil carbon feedback are inaccurate if a larger fraction of soil organic carbon than postulated has a very slow decomposition rate. Here we show that by including realistic stocks of black carbon in prediction models, carbon dioxide emissions are reduced by 18.3 and 24.4% in two Australian savannah regions in response to a warming of 3∘C over 100 years. This reduction in temperature sensitivity, and thus the magnitude of the positive feedback, results from the long mean residence time of black carbon, which we estimate to be approximately 1,300 and 2,600 years, respectively. The inclusion of black carbon in climate models is likely to require spatially explicit information about its distribution, given that the black carbon content of soils ranged from 0 to 82% of soil organic carbon in a continental-scale analysis of Australia. We conclude that accurate information about the distribution of black carbon in soils is important for projections of future climate change.

  9. The distribution in lunar soil of carbon released by pyrolysis

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Hayes, J. M.; Meinschein, W. G.

    1973-01-01

    The carbon contents of various lunar soil particle types and sieve fractions of Apollo 15 and 16 samples have been determined by the pyrolysis method. The mineral, glass, and high-grade breccia fragments in the soils examined contain relatively low amounts of carbon (approximately 8, 25, and 25 microg C/g sample respectively in 149-250 micron grains). Most low-grade breccias and all agglutinates examined have high carbon contents (approximately 52 and 80 microg C/g sample respectively), and agglutinate abundance is indicative of the carbon content and maturity of a soil. The distribution of carbon with respect to particle size in mature soils generally reveals a minimum in carbon content at about 100 micron particle diameter. At smaller particle diameters, carbon content is directly proportional to particle surface area and therefore increases with the ratio (surface area)/(particle mass). A model relating the cycle of comminution and aggregation of soil particles to the redistribution of surface implanted carbon is developed.

  10. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  11. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  12. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  13. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  14. Windthrows increase soil carbon stocks in a Central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, L. T.; Magnabosco Marra, D.; Trumbore, S.; Camargo, P. B.; Chambers, J. Q.; Negrón-Juárez, R. I.; Lima, A. J. N.; Ribeiro, G. H. P. M.; dos Santos, J.; Higuchi, N.

    2015-12-01

    Windthrows change forest structure and species composition in Central Amazon forests. However, the effects of widespread tree mortality associated with wind-disturbances on soil properties have not yet been described. In this study, we investigated short-term effects (seven years after disturbance) of a windthrow event on soil carbon stocks and concentrations in a Central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 4.18 Mg ha-1, mean ± standard error) was marginally higher (p = 0.009) than that from undisturbed plots (47.7 ± 6.95 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.08 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.12 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r = 0.575 and p = 0.019) and with tree mortality intensity (r = 0.493 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. Higher nutrient availability in soils from large canopy gaps created by wind disturbance may increase vegetation resilience and favor forest recovery.

  15. SOIL CARBON SEQUESTRATION/MARKETS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  16. Soil Carbon Sequestration/Markets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  17. Hyperspectral Mapping of Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid methods of measuring soil carbon such as near-infrared (NIR) spectroscopy have gained interest but problems of accurate and precise measurement still persist resulting from the high spatial variability. Tillage and airborne-based spectral sensors can provide means to capture the spatial distr...

  18. Biogeochemistry: Soil carbon in a beer can

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2015-10-01

    Decomposition of soil organic matter could be an important positive feedback to climate change. Geochemical properties of soils can help determine what fraction of soil carbon may be protected from climate-induced decomposition.

  19. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  20. [Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau].

    PubMed

    Wei, Xiao-Rong; Shao, Ming-An; Gao, Jian-Lun

    2008-10-01

    Understanding the distribution of organic carbon fractions in soils and their relationships with environmental factors are very important for appraising soil organic carbon status and assessing carbon cycling in the Loess Plateau. In this research, through field investigation and laboratory analysis, we studied the relationships between soil organic carbon and environmental factors in a gully watershed of the Loess Plateau. The environmental factors are landforms, land use conditions and soil types. The results showed that total soil organic carbon presented less variance, while high labile organic carbon presented greater variance. The variation coefficients of them are 34% and 43%, respectively, indicating that the variability of organic carbon in soils increased with the increasing of their activities. Total soil organic carbon, labile organic carbon, middle and high labile organic carbon were highly interrelated and presented similar distribution trend with environmental factors. Among different landforms, land uses, and soil types, the highest contents of organic carbon in different fractions were observed in plateau land, forest and farm lands, and black loessial soils, while the lowest contents of them were observed in gully bottom, grass land, and rubified soils, respectively. The relationships between organic carbon and environmental factors indicate that environmental factors not only directly influence the distribution of soil organic carbon, but also indirectly influence them through affecting the relationships among organic carbon fractions. The relationship between total organic carbon and labile organic carbon responses rapidly to environmental factors, while that between middle labile organic carbon and high labile organic carbon responses slowly to environmental factors. PMID:19143389

  1. Niobium content of soils from West Africa

    USGS Publications Warehouse

    Grimaldi, F.S.; Berger, I.A.

    1961-01-01

    Analysis of twenty lateritic soil samples from West Africa has shown them to contain an average 24 p.p.m. of niobium; four similar samples taken from within a few miles from a niobium deposit contain from 79 to 87 p.p.m. niobium. It has been shown that as the aluminum content of the soils increases, the following depletion sequence is obtained: Si > Nb > Al = Fe The data indicate that, in general, high enrichments of niobium are not to be expected in lateritic soils. ?? 1961.

  2. Mapping Soil Organic Carbon in the U.S. Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon sequestration in the U.S. Con Belt was studied to evaluate the impact of land-use, soil and crop management that can play a significant role in promoting the mitigation of atmospheric CO2 and improve soil quality such as reduced erosion and also increase soil organic carbon (SOC) content...

  3. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning. PMID:19637584

  4. Estimating and mapping of soil carbon stock using satellite data

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Tamura, E.; Aijima, K.; Niwa, K.

    2014-12-01

    Recently, the carbon capture and storage has been attracting attention as a method for the mitigation of the global warming in agricultural sphere. In Japan, since its topography is complicated, precision monitoring and investigation has a limit. So, utilization of the remote sensing is expected as a precise and effective investigation method. Previous research in Japan, Sekiya et al. (2010) estimated the soil carbon stock from soil surface down to 100 cm depth in Hokkaido. However, the estimated values may not reflect current situation, because in this research relatively old soil survey data from the 1960's to the 1970's were used to estimate the soil carbon stock. Under this background, we developed an estimation method using satellite data to evaluate the soil carbon stocks in the agricultural field covering wide area to be used as the fundamental data. Result of our study suggests that there is a significant correlation between the amount of soil carbon and the reflectance value from visible to near-infrared wavelength region. This is the reason that the color of the soil becomes dark and electromagnetic wave absorbency from visible to near-infrared wavelength increases corresponding with increment of the soil carbon content. Especially, a high negative correlation is found between the reflectance value of red wavelength and the soil carbon stock in the SPOT satellite data of 2013.

  5. Effect of soil organic matter composition on unfrozen water content of frozen soils, and their heterotrophic CO2 production

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Schleucher, J.; Sparrman, T.; Nilsson, M.; Oquist, M. G.

    2009-04-01

    Heterotrophic microbial processes and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. The ability of soil to retain unfrozen water at below-zero temperatures is integral for this activity. The soil organic matter (SOM) is believed to play an important role for the soil liquid water contents in frozen bulk soil, but the specific factors contributing to this control are presently unknown. Here we evaluate the effect of the organic chemical composition on the amount of unfrozen water and the microbial heterotrophic activity at below zero temperatures in boreal forest soils. To achieve this, we have characterized the chemical composition of SOM in boreal pine and spruce forest soils using solid state CP-MAS (cross polarization magic angle spinning) NMR spectroscopy. We then use acquired data on SOM composition to elucidate to what extent it can explain the observed variation in unfrozen water content and biogenic CO2 production rates among the soil samples under frozen conditions (-4°C). We conclude that aromatic carbon, O-aromatic carbon, methoxy/N-alkyl carbon, and alkyl carbon are the major SOM components affecting frozen boreal forest soils' ability to retain unfrozen water and their microbial CO2 production. Surprisingly, our results reveal that solid carbohydrates have a negative impact on CO2 production in frozen boreal forest soils. More recalcitrant SOM compounds, mainly aromatic carbon and alkyl carbon, need to be considered to fully understand winter biogeochemical processes and carbon dynamics in frozen soil. In addition, SOM-associated controls on the unfrozen water content differed between samples originating from Pine forests as compared to Spruce dominated forests. Given the strong link between unfrozen water content and SOM mineralization during winter this may represent a previously unrecognized potential feedback mechanism of global climate change, and

  6. Measuring Carbon Sequestration in Pasture Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of croplands to pasture can greatly increase sequestration of carbon in soil organic matter, removing carbon dioxide from the atmosphere and helping to reduce the impacts of climate change. The measurement of soil carbon, and its limitations, could impact future carbon credit programs. ...

  7. Linking soil functions to carbon fluxes and stocks

    NASA Astrophysics Data System (ADS)

    Olesen, Jørgen E.

    2014-05-01

    Farming practices causing declining returns and inputs of carbon (C) to soils pose threats to sustainable soil functioning by reducing availability of organic matter for soil microbial activities and by affecting soil structure, and soil C stocks that contribute to regulating greenhouse gas emissions. Declines in soil C also affect availability and storage capacity of a range of essential plant nutrients thus affecting needs for external inputs. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by agricultural activity with intensive cultivation in arable and mixed farming system contributing to several soil threats. About 45% of European soils are estimated to have low SOM content, principally in southern Europe, but also in areas of France, UK and Germany. The European SOC stocks follow a clear north to south gradient with cooler temperatures favouring higher stocks. However, SOC stocks strongly depend on soil and land management, and there is thus a potential to both increase and lose SOC, although the potential to increase SOC strongly depends on incentives and structures for implementing improved management. Understanding the role of soil C may be better conceptualised by using a soil C flow and stocks concept to assess the impact of C management on crop productivity, soil organic C stocks and other ecosystem services. This concept distinguishes C flows and stocks, which may be hypothesized to have distinctly different effects on biological, chemical and physical soil functions. By separating the roles of carbon flows from the role of carbon stocks, it may become possible to better identify critical levels not only of soil carbon stocks, but also critical levels of carbon inputs, which directly relate to needs for crop and soil management measures. Such critical soil carbon stocks may be linked to soil mineralogy through complexed organic carbon on clay and silt surfaces. Critical levels of soil carbon

  8. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    PubMed

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions. PMID:26915193

  9. Radar measurement of soil moisture content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1973-01-01

    The effect of soil moisture on the radar backscattering coefficient was investigated by measuring the 4-8 GHz spectral response from two types of bare-soil fields: slightly rough and very rough, in terms of the wavelength. An FM-CW radar system was used to measure the return at 10 frequency points across the 4-8 GHz band, at different look angles, and for all polarization combinations. The results indicate that the radar response to soil moisture content is highly dependent on the surface roughness, microwave frequency, and look angle. The response seems to be linear over the range 15%-30% moisture content for all angles, frequencies, polarizations and surface conditions.

  10. Plant soil interactions alter carbon cycling in an upland grassland soil

    PubMed Central

    Thomson, Bruce C.; Ostle, Nick J.; McNamara, Niall P.; Oakley, Simon; Whiteley, Andrew S.; Bailey, Mark J.; Griffiths, Robert I.

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope (13C) labeled substrate assays and molecular analyses of bacterial communities. Vegetated soils had higher C and N contents, biomass, and substrate-specific respiration rates. Conversely, following substrate addition unlabeled, native soil C cycling was accelerated in bare soil and retarded in vegetated soil; indicative of differential priming effects. Functional differences were reflected in bacterial biodiversity with Alphaproteobacteria and Acidobacteria dominating vegetated and bare soils, respectively. Significant isotopic enrichment of soil RNA was found after substrate addition and rates varied according to substrate type. However, assimilation was independent of plant presence which, in contrast to large differences in 13CO2 respiration rates, indicated greater substrate C use efficiency in bare, Acidobacteria-dominated soils. Stable isotope probing (SIP) revealed most community members had utilized substrates with little evidence for competitive outgrowth of sub-populations. Our findings support theories on how plant-mediated soil resource availability affects the turnover of different pools of soil carbon, and we further identify a potential role of soil microbial biodiversity. Specifically we conclude that emerging theories on the life histories of dominant soil taxa can be invoked to explain changes in soil carbon cycling linked to resource availability, and that there is a strong case for considering microbial biodiversity in future studies investigating the turnover of different pools of soil

  11. Controls of soil carbon stock development – comparison of Swedish forest soil carbon inventory measurements and two process based models

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina; Stendahl, Johan; Hashimoto, Shoji; Dahlgren, Jonas; Lehtonen, Aleksi

    2015-04-01

    The key question in greenhouse gas research, whether the soils continue to sequester carbon under the conditions of climate change, is mainly evaluated by process based modelling. However, the models based on key processes of carbon cycle ignore more complex environmental effects for the sake of simplicity. In our study, based on extensive measurements of Swedish forest soil carbon inventory, we used the recursive partitioning and boosted regression trees methods to identify the governing controls of soil carbon stocks, and for these controls we compared the carbon stocks of measurements with carbon estimates of Yasso07 and CENTURY state of art models. The models were strongly vegetation and weather driven, whereas the soil carbon stocks of measurements were controlled mainly by the soil factors (e.g. cation exchange capacity, C/N ratio). Contrary to our expectation, the more complex CENTURY, which indirectly accounted for the exchangeable cations by incorporating the clay content into the model structure, still heavily depended on the amount of litter input and generally performed worse, than simpler Yasso07, that ignored the soil properties. When estimating the carbon stock for the specific soil type management, the soil properties should be considered while keeping the plant-weather related processes and parameters in their calibrated optimum.

  12. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements.

    PubMed

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2016-07-01

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight percent in ~10cm layer for any carbon depth profile is demonstrated using Monte-Carlo simulation (Geant4). Comparison of INS and dry combustion measurements confirms this conclusion. Thus, INS measurements give the value of this soil carbon parameter. PMID:27124122

  13. Soil Aggregation and Carbon Sequestration as affected by Long-Term Tillage Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil structure is an important property that mediates many soil physical and biological processes and controls soil organic carbon (SOC) content. Cultivation affects soil structure due to the destruction of soil aggregates and the lost of SOC. Different management practices...

  14. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  15. Conservation practices to enhance soil carbon sequestration across southeastern Coastal Plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coastal Plain soils consist of highly weathered Ultisols with coarse textures, poor structure, and soil organic carbon (SOC) contents below 0.5 %, which decreases crop productivity across the region. Two separate experiments were established in Central (Prattville) and Southeast (Wiregrass) Alabama...

  16. Windthrows increase soil carbon stocks in a central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, Leandro T.; Magnabosco Marra, Daniel; Trumbore, Susan; de Camargo, Plínio B.; Negrón-Juárez, Robinson I.; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro

    2016-03-01

    Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 8.2 Mg ha-1, mean ±95 % confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 ± 13.6 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r2 = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r2 = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.

  17. Ectomycorrhizal fungi slow soil carbon cycling.

    PubMed

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. PMID:27335203

  18. Ecological value of soil carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of soil carbon is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic carbon is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...

  19. Evolution of black carbon properties in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black carbon deposited in soil from natural or deliberate wildfires and engineered black carbon products (biochar) intentionally added to soil are known to have significant effects on soil biogeochemical processes and in many cases to influence the yield and quality of crops and to enhance the abili...

  20. [Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China].

    PubMed

    Wu, Yan; Jiang, Chang-sheng; Hao, Qing-ju

    2012-08-01

    The seasonal dynamics of soil organic carbon (SOC), readily oxidized carbon (ROC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in a purple paddy soil were studied in a long-term field experimental station in Chongqing, China. The results showed that the seasonal variations of the contents of SOC, ROC and MBC had similar trends in the rape growing season. The contents were much higher in the early and late stages than in the middle stage of the rape growth. SOC, ROC and MBC all achieved the highest values of 16.20 g x kg(-1), 3.58 g x kg(-1) and 309.70 mg x kg(-1) at the end of the growing period, respectively. The seasonal change of DOC content presented as a single peak and reached to the highest value of 37.64 mg x kg(-1) at the middle stage of the rape growth. The temporal dynamics of the allocation ratios of ROC, MBC and DOC were similar to that of their contents. The allocation ratios of ROC, MBC and DOC were 15.49%-23.93%, 1.44%-2.06% and 0.11%-0.32% during the rape growing season, respectively. The influencing factors of SOC and ROC contents were the soil temperature at 5 cm soil depth, soil total nitrogen content and pH. MBC content was jointly impacted by the soil temperature at 5 cm soil depth, root biomass and its C and N contents. DOC content was mainly affected by soil moisture. PMID:23213908

  1. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  2. Ecological controls over global soil carbon storage

    SciTech Connect

    Schimel, D.S.

    1995-09-01

    Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

  3. Modelling and mapping the topsoil organic carbon content for Tanzania

    NASA Astrophysics Data System (ADS)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  4. Role of carbonates in soil organic matter stabilization in agricultural Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Apesteguía, Marcos; Virto, Iñigo; Plante, Alain

    2016-04-01

    Carbonated soils are present in many semiarid areas, where lithogenic and secondary carbonates are important constituents of the soil mineral matrix. The presence of CaCO3 in calcareous soils has been described as an organic matter stabilization agent mainly due to chemical stabilization mechanisms. In two recent studies in the north of Spain the importance of CaCO3 on soil physical characteristics was highlighted, as they were observed to be acting as macroaggregates stabilization agents. A third study was carried out on the same experimental site, with the hypothesis that the observed differences in aggregation may favor organic matter stabilization in carbonate-containing soils. With that aim we studied the soil physical characteristics (water retention and porosity) and the bioavailability of soil organic matter (SOM) in the two contrasting soils in that site, one Typic Calcixerept (CALC) and one Calcic Haploxerept (DECALC). Bioavailability was evaluated trough the measurement of mineralization rates in a 30 days soil incubations. Intact and disaggregated samples were incubated to evaluate the effect of physical protection on SOM bioavailability in whole soil and macroaggregates 2-5 mm samples. Therefore, four fractions of each soil were studied: intact whole soil < 5 mm (I-WS), disaggregated whole soil (D-WS), intact macroaggregates 2-5 mm (I-Magg), and disaggregated macroaggregates (D-Magg). Soil organic carbon content was greater in CALC and had smaller mineralization rates during incubation, indicating a smaller organic matter bioavailability for microbial decomposition. However, the greater increment of mineralization observed in DECALC after disaggregation, together with the scarce differences observed in physical characteristics among both soils, indicate that physical protection was not responsible of greater SOM stability in CALC soil. New hypotheses are needed to explain the observed better protection of organic matter in carbonate-rich Mediterranean

  5. Biochar and biological carbon cycling in temperate soils

    NASA Astrophysics Data System (ADS)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  6. Seasonal variation in soil organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic carbon in soil is most often measured at a single point in time, under the assumption that the major pools of organic carbon change so slowly that variation over weeks or months will be insignificant. The validity of this assumption has implications for accurate comparison of soil carbon bet...

  7. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  8. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  9. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  10. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  11. Soil Carbon Fractionation under Perennial Forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop management practices can improve soil quality. Forage type and N-sources might also affect soil organic matter, especially soil carbon fractionation. The objective of this study is to evaluate the impact of legume inter-planting and compost application on soil C pools under a perennial grass mi...

  12. Revisiting soil carbon and nitrogen sampling: quantitative pits versus rotary cores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing atmospheric carbon dioxide and its feedbacks with global climate have sparked renewed interest in quantifying ecosystem carbon (C) budgets, including quantifying belowground pools. Belowground nutrient budgets require accurate estimates of soil mass, coarse fragment content, and nutrient ...

  13. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. PMID:25918852

  14. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  15. Assessment of Organic Matter Content in Highland Forest Soils in Central Anatolia of Turkey

    NASA Astrophysics Data System (ADS)

    Göl, C.; Erşahin, S.

    2012-04-01

    Forest soils are important pool for organic carbon worldwide. Global warming is expected to influence forest soils due to that it may alter the balance between addition and decomposition of litter. Orographic effect of climate on organic matter in forest soils may be a good indicator of likely impact of climate change on these forest soils. This study was conducted to assess the relations between organic matter content of forest soils and elevation. Data of organic matter content from previous studies conducted on different elevations in semi-arid regions of Central Anatolia region of Turkey were used. A significant positive correlation occurred between elevation and organic matter content. The relation could be modeled with a fist degree linear regression equation. We concluded that topographic attributes may be used to forecast adequately likely impact of climate change on carbon emissions from forest soils in mountainous regions.

  16. [Effects of land use change on soil labile organic carbon in Central Jiangxi of China].

    PubMed

    Du, Man-Yi; Fan, Shao-Hui; Liu, Guang-Lu; Qi, Liang-Hua; Guo, Bao-Hu; Tang, Xiao-Lu; Xiao, Fu-Ming

    2013-10-01

    Selecting the 15-year abandoned land (AL) and three forest lands [Phyllostachys edulis plantation (PE), Schima superba secondary forest (SS), and Cunninghamia Lanceolata plantation (CL)] in Anfu County of Jiangxi Province as test objects, this paper studied the effects of land use change on the soil organic carbon (SOC) pool and soil labile organic carbon (SLOC) contents. The soil organic carbon (SOC), microbial biomass carbon (MBC), hot- water extractable carbon (HWC), and readily oxidizable carbon (ROC) contents in the test lands were all in the order of PE>CL>SS>AL. As compared with those in AL, the SOC content, soil carbon stock, and soil labile organic carbon (SLOC) contents in the three forest lands all decreased with increasing soil depth, and had an obvious accumulation in surface soil. The proportions of different kinds of SLOC to soil total organic carbon differed markedly, among which, ROC had the highest proportion, while MBC had the smallest one. There existed significant relationships between SOC, MBC, HWC, and ROC. The MBC, HWC, and ROC contained higher content of active carbon, and were more sensitive to the land use change, being able to be used as the indicators for evaluating the soil quality and fertility in central Jiangxi Province. PMID:24483085

  17. Quantifying Carbon Bioavailability in Northeast Siberian Soils

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Chandra, S.; Sobczak, W. V.; Spektor, V.; Davydova, A.; Holmes, R. M.; Bulygina, E. B.; Schade, J. D.; Frey, K. E.; Bunn, A. G.; Walter Anthony, K.; Zimov, S. A.; Zimov, N.

    2010-12-01

    Soils in Northeast Siberia, particularly carbon-rich yedoma (Pleistocene permafrost) soils, have the potential to release large amounts of carbon dioxide and methane due to permafrost thaw and thermokarst activity. In order to quantify the amount of carbon release potential in these soils, it is important to understand carbon bioavailability for microbial consumption in the permafrost. In this study we measured amounts of bioavailable soil carbon across five locations in the Kolyma River Basin, NE Siberia. At each location, we sampled four horizons (top active layer, bottom active layer, Holocene optimum permafrost, and Pleistocene permafrost) and conducted soil extracts for each sample. Filtered and unfiltered extracts were used in biological oxygen demand experiments to determine the dissolved and particulate bioavailable carbon potential for consumption in the soil. Concentrations of bioavailable carbon were 102-608 mg C/kg dry soil for filtered extracts and 115-703 mg C/kg dry soil for unfiltered extracts. Concentrations of carbon respired per gram of dry soil were roughly equal for both the DOC and POC extracts (P<0.001), suggesting that bioavailable soil carbon is predominately in the dissolved form or the presence of an additional unknown limitation preventing organisms from utilizing carbon in the particulate form. Concentrations of bioavailable carbon were similar across the different sampling locations but differed among horizons. The top active layer (102-703 mg C/kg dry soil), Holocene optimum permafrost (193-481 mg C/kg dry soil), and Pleistocene permafrost (151-589 mg C/kg dry soil) horizons had the highest amounts of bioavailable carbon, and the bottom active layer (115-179 mg C/kg dry soil) horizon had the lowest amounts. For comparison, ice wedges had bioavailable carbon concentrations of 23.0 mg C/L and yedoma runoff from Duvyanni Yar had concentrations of 306 mg C/L. Pleistocene permafrost soils had similar concentrations of bioavailable carbon

  18. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  19. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  20. Deep Soil: Quantifying and Modeling Subsurface Carbon

    NASA Astrophysics Data System (ADS)

    James, J. N.; Devine, W.; Harrison, R. B.

    2014-12-01

    Some soil carbon datasets that are spatially rich, such as the USDA Forest Service Inventory and Analysis National Program dataset, sample soil to only 20 cm (8 inches), despite evidence that substantial stores of soil C can be found deeper in the soil profile. The maximum extent of tree rooting is typically many meters deep and provides: direct exchange with the soil solution; redistribution of water from deep horizons toward the surface during times of drought; resources for active microbial communities in deep soil around root channels; and direct carbon inputs through exudates and root turnover. This study examined soil carbon to a depth of 2.5 meters across 22 soils in Pacific Northwest Douglas-fir forests. Excavations at 20 additional sites took place in summer 2014, greatly expanding the spatial coverage and extent of the data set. Forest floor and mineral soil bulk density samples were collected at depths of 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 meters. Pool estimates from systematic sampling depths shallower than 1.5 m yielded significantly smaller estimates than the total soil stock to 2.5 meters (P<0.01). On average, only 5% of soil C was found in the litter layer, 35% was found below 0.5 meter, and 21% was found below 1.0 meter. Due to the difficulty of excavating and measuring deep soil carbon, a series of nonlinear mixed effect models were fit to the data to predict deep soil carbon stocks given sampling to 1.0 meter. A model using an inverse polynomial function predicted soil carbon to 2.5 meters with -5.6% mean error. The largest errors occurred in Andisols with non-crystalline minerals, which can adsorb large quantities of carbon on mineral surfaces and preserve it from decomposition. An accurate spatial dataset of soil depth to bedrock would be extremely useful to constrain models of the vertical distribution of soil carbon. Efforts to represent carbon in spatial models would benefit from considering the vertical distribution of carbon in soil. Sampling

  1. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  2. Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration

    SciTech Connect

    Garten Jr, Charles T; Ashwood, Tom L

    2002-12-01

    The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

  3. Redistribution of soil and soil organic carbon on agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budgets for agricultural systems especially for landscapes where water, tillage, and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion r...

  4. Impacts of soil organic carbon on soil physical behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management-induced changes in soil organic carbon (SOC) concentration can affect soil physical behavior. Specifically, removal of crop residues as biofuel may thus adversely affect soil attributes by reducing SOC concentration as crop residues are the main source of SOC. Implications of crop residue...

  5. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  6. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  7. Carbosoil, a land evaluation model for soil carbon accounting

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, M.; Muñoz-Rojas, M.; Pino, R.; Jordan, A.; Zavala, L. M.; De la Rosa, D.

    2012-04-01

    The belowground carbon content is particularly difficult to quantify and most of the time is assumed to be a fixed fraction or ignored for lack of better information. In this respect, this research presents a land evaluation tool, Carbosoil, for predicting soil carbon accounting where this data are scarce or not available, as a new component of MicroLEIS DSS. The pilot study area was a Mediterranean region (Andalusia, Southern Spain) during 1956-2007. Input data were obtained from different data sources and include 1689 soil profiles from Andalusia (S Spain). Previously, detailed studies of changes in LU and vegetation carbon stocks, and soil organic carbon (SOC) dynamic were carried out. Previous results showed the influence of LU, climate (mean temperature and rainfall) and soil variables related with SOC dynamics. For instance, SCS decreased in Cambisols and Regosols by 80% when LU changed from forest to heterogeneous agricultural areas. Taking this into account, the input variables considered were LU, site (elevation, slope, erosion, type-of-drainage, and soil-depth), climate (mean winter/summer temperature and annual precipitation), and soil (pH, nitrates, CEC, sand/clay content, bulk density and field capacity). The available data set was randomly split into two parts: training-set (75%), and validation-set (25%). The model was built by using multiple linear regression. The regression coefficient (R2) obtained in the calibration and validation of Carbosoil was >0.9 for the considered soil sections (0-25, 25-50, and 50-75 cm). The validation showed the high accuracy of the model and its capacity to discriminate carbon distribution regarding different climate, LU and soil management scenarios. Carbosoil model together with the methodologies and information generated in this work will be a useful basis to accurately quantify and understanding the distribution of soil carbon account helpful for decision makers.

  8. Infrared warming affects intrarow soil carbon dioxide efflux during early vegetative growth of spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming will likely affect carbon cycles in agricultural soils. Our objective was to deploy infrared (IR) warming to characterize the effect of global warming on soil temperature (Ts), volumetric soil-water content ('s), and intrarow soil CO2 efflux (Fs) of an open-field spring wheat (Triticu...

  9. Variations of organic carbon stock in reclaimed estuarine soils (Villaviciosa estuary, NW Spain).

    PubMed

    Santín, Cristina; Otero, Xose Luis; Fernández, Susana; González-Pérez, Martha; Alvarez, Miguel Angel

    2007-05-25

    A study was carried out in the Villaviciosa Estuary (Asturias, NW Spain) to determine the effects of polderization on soil properties and soil organic carbon content. The results showed that the polderized soils were more acidic and contained less carbonates and a higher soil organic carbon (SOC) content than the natural soils. The organic carbon stock in the reclaimed soils ranged from 83.2 to 91.8 t ha(-1), whereas in natural soils was approximately 43.7 t ha(-1). The degree of humification of the surface humic acids also indicated that the stability and degree of decomposition of the organic matter was higher in the reclaimed soils than in natural soils. PMID:17374546

  10. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    NASA Astrophysics Data System (ADS)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  11. Fact Sheet: Soil Carbon Sequestration in Pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sequestration of carbon as soil organic matter is one way to remove carbon dioxide from the atmosphere and lower the potential for global climate change. Cultivation typically caused the loss of 20 to 50% the native soil organic matter. Establishing pasture on former croplands is expected to a...

  12. Soil carbon cycling in pasture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon accumulation in soil under pastures occurs to various degrees depending upon management and length of time. This presentation describes research results on soil carbon sequestration under pastures from the southeastern USA to help inform the scientific basis for development of a protocol to ...

  13. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod

  14. BOREAS TGB-12 Soil Carbon Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  15. How to Enhance Soil Organic Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing crop yields and reducing soil erosion can enhance soil organic carbon (SOC) sequestration. The influence of management practices on crop residue C and N inputs to the soil, SOC sequestration, and NO3-N leaching potential under irrigated, continuous crop production in northern Texas was e...

  16. Microbial contents of soil from fire pits

    NASA Astrophysics Data System (ADS)

    Moon, K.; Esparza, V.; de Sandre, J.; Cheney, S.; Anderson, A.; White, M. A.

    2006-12-01

    Forest fires generate polycylic aromatic hydrocarbons (PAHs) that can lead to carcinogenic compounds, which are potential health risks. PAHs can be degraded to water and carbon dioxide by certain soil microbes. Thus, during participation in a NASA-funded summer research experience at Utah State University, our high school student team sampled soils from a month-old fire pit in which plant materials had been burnt. We detected in soil samples, from surface, 10 and 20 cm depths, microbes that would grow on a defined minimal medium source. Other microbes were cultured from the roots of plants that had established at the fire pit. A diversity of microbes was present in all samples based on visible differences in cell shape and color. It was surprising that the surface ash, although exposed to sunlight over the month interval, had culturable colonies. Many of these culturable bacteria were pigmented perhaps as a protection against UV radiation from the sun. We searched for genes in the microbes that encoded enzymes called dioxygenases that in other bacteria are involved in degradation of PAHs. This test involved using polymerase chain reactions to detect the genes. PCR products were found in two of the fifteen isolates tested although their sizes differed from the control gene product from a PAH-degrading mycobacterium isolate. These results suggest that the soils did contain microbes with the possible potential to alter the PAH compounds generated from vegetation fires. Our findings serve as a starting point for future studies looking at recovery and remediation of fired acreages.

  17. Ultrasound Algorithm Derivation for Soil Moisture Content Estimation

    NASA Technical Reports Server (NTRS)

    Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.

    1997-01-01

    Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.

  18. Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar.

    PubMed

    Rombolà, Alessandro G; Meredith, Will; Snape, Colin E; Baronti, Silvia; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele

    2015-09-15

    The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils, while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs changed and impacted differently the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha(-1)) gave rise to a sharp increase in soil organic carbon, which could be accounted for by an increase in BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g(-1) and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 μg g(-1) in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils and decreased with time from 153 to 78 ng g(-1) remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes. PMID:26263378

  19. Drivers of organic carbon stock of agricultural soils in eastern Australia

    NASA Astrophysics Data System (ADS)

    Rabbi, Sheikh M. F.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Cowie, Annette; Robertson, Fiona; Dalal, Ram; Page, Kathryn; Crawford, Doug; Wilson, Brian; Schwenke, Graeme; Mcleod, Malem; Badgery, Warwick; Dang, Yash; Bell, Mike; Baldock, Jeff

    2015-04-01

    Assessing the factors that control carbon storage is the key to formulating conservation policies and sustainable soil management under changing environments. Here, we evaluate the major drivers of soil organic carbon storage in eastern Australia. To do this, we used a regional dataset including 1482 sites and targeting key land uses and soil management practices on major soils of New South Wales (NSW), Queensland (QLD) and Victoria (VIC). Structural equation modeling (SEM) and conditional inference tree (CTREE) analyses were performed to evaluate the relative importance of climate, topography, soil properties, land use and soil management practices on soil organic carbon stocks in 0-30 cm. The results showed that aridity, the most important factor controlling carbon storage, had a strong negative (r = -0.82, p<0.01), whereas clay content had a strong positive (r = 0.42, p<0.01) relationship with soil carbon stock. Only a small portion (<1%) of total variation in carbon stock could be explained by land use. The results of CTREE analysis showed that pastures, and pasture dominant crop-pasture rotations had positive influence on soil carbon stocks. The CTREE results also indicated that aridity regulates the amount of carbon present in the soil under different land uses. Using a novel multivariate technique the current work identified that aridity and clay content of soil are the main drivers of carbon storage at a regional scale over others factors such as land uses and soil management practices.

  20. Soil Organic Carbon Stocks in Depositional Landscapes of Bavaria

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2016-04-01

    Erosion leads to redistribution and accumulation of soil organic matter (SOM) within agricultural landscapes. These fluvic and colluvic deposits are characterized by a highly diverse vertical structure and can contain high amounts of soil organic carbon (SOC) over the whole soil profile. Depositional landscapes are therefore not only productive sites for agricultural use but also influence carbon dynamics which is of great interest with regard on the recent climate change debate. The aim of our study is to elucidate the spatial distribution of organic carbon stocks, as well as its depth function and the role of these landscapes as a reservoir for SOM. Therefore we compare two representative depositional landscapes in Bavaria composed of different parent materials (carbonate vs. granitic). We hypothesize that the soils associated with different depositional processes (fluvial vs. colluvial) differ in SOC contents and stocks, also because of different hydromorphic regimes in fluvic versus colluvic soil profiles. Sampling sites are located in the Alpine Foreland (quaternary moraines with carbonatic parent material) and the foothills of the Bavarian Forest (Granite with Loess) with the main soil types Fluvisols, Gleysols and Luvisols. At both sites we sampled twelve soil profiles up to 150 cm depth, six in the floodplain and six along a vertical slope transect. We took undisturbed soil samples from each horizon and analyzed them for bulk density, total Carbon (OC and IC) and total Nitrogen (N) concentrations. This approach allows to calculate total OC contents and OC stocks and to investigate vertical and horizontal distribution of OC stocks. It will also reveal differences in OC stocks due to the location of the soil profile in fluvic or colluvic deposition scenarios.

  1. [Modeling Soil Spectral Reflectance with Different Mass Moisture Content].

    PubMed

    Sun, Yue-jun; Zheng, Xiao-po; Qin, Qi-ming; Meng, Qing-ye; Gao, Zhong-ling; Ren, Hua-zhong; Wu, Ling; Wang, Jun; Wang, Jian-hua

    2015-08-01

    The spatio-temporal distribution and variation of soil moisture content have a significant impact on soil temperature, heat balance between land and atmosphere and atmospheric circulation. Hence, it is of great significance to monitor the soil moisture content dynamically at a large scale and to acquire its continuous change during a certain period of time. The object of this paper is to explore the relationship between the mass moisture content of soil and soil spectrum. This was accomplished by building a spectral simulation model of soil with different mass moisture content using hyperspectral remote sensing data. The spectra of soil samples of 8 sampling sites in Beijing were obtained using ASD Field Spectrometer. Their mass moisture contents were measured using oven drying method. Spectra of two soil samples under different mass moisture content were used to construct soil spectral simulation model, and the model was validated using spectra of the other six soil samples. The results show that the accuracy of the model is higher when the mass water content of soil is below field capacity. At last, we used the spectra of three sampling points on campus of Peking University to test the model, and the minimum value of root mean square error between simulated and measured spectral reflectance was 0.0058. Therefore the model is expected to perform well in simulating the spectrum reflectance of different types of soil when mass water content below field capacity. PMID:26672301

  2. Comparing global soil models to soil carbon profile databases

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Harden, J. W.; He, Y.; Lawrence, D. M.; Nave, L. E.; O'Donnell, J. A.; Treat, C.; Sulman, B. N.; Kane, E. S.

    2015-12-01

    As global soil models begin to consider the dynamics of carbon below the surface layers, it is crucial to assess the realism of these models. We focus on the vertical profiles of soil C predicted across multiple biomes form the Community Land Model (CLM4.5), using different values for a parameter that controls the rate of decomposition at depth versus at the surface, and compare these to observationally-derived diagnostics derived from the International Soil Carbon Database (ISCN) to assess the realism of model predictions of carbon depthattenuation, and the ability of observations to provide a constraint on rates of decomposition at depth.

  3. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    PubMed

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland. PMID:27396128

  4. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue

  5. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    NASA Astrophysics Data System (ADS)

    Peterson, Fox S.; Lajtha, Kate J.

    2013-07-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil characteristics, and current and historical vegetation composition and structure versus SOM fractions and DOC pools and leaching on a small catchment (WS1) in the H.J. Andrews Experimental Forest, located in the western Cascades Range of Oregon, USA. We predicted that aboveground net primary productivity (ANPP), litter fall, and nitrogen mineralization would be positively correlated with SOM, DOC, and carbon (C) content of the soil based on the principle that increased C inputs cause C stores in and losses from in the soil. We expected that in tandem, certain microtopographical and microclimatic characteristics might be associated with elevated C inputs and correspondingly, soil C stores and losses. We confirmed that on this site, positive relationships exist between ANPP, C inputs (litter fall), and losses (exportable DOC), but we did not find that these relationships between ANPP, inputs, and exports were translated to SOM stores (mg C/g soil), C content of the soil (% C/g soil), or DOC pools (determined with salt and water extractions). We suggest that the biogeochemical processes controlling C storage and lability in soil may relate to longer-term variability in aboveground inputs that result from a heterogeneous and evolving forest stand.

  6. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  7. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  8. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. PMID:22959898

  9. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  10. Can Earthworm "mix up" Soil Carbon Budgets in Temperate Forests Under Elevated Carbon Dioxide?

    NASA Astrophysics Data System (ADS)

    Sánchez-de León, Y.; González-Meler, M.; Sturchio, N. C.; Wise, D. H.; Norby, R. J.

    2008-12-01

    The effects of global change on earthworms and their associated feedbacks on soil and ecosystem processes have been largely overlooked. We studied how the responses of a temperate deciduous forest to elevated carbon dioxide atmospheric concentrations (e[CO2]) influence earthworms and the soil processes affected by them. Our objectives were to: i) identify soil layers of active soil mixing under e[CO2] and current carbon dioxide atmospheric concentrations (c[CO2]) using fallout cesium (137Cs), ii) study how e[CO2] affects earthworm populations, iii) understand the relationship between soil mixing and earthworms at our study site, and iv) identify the implications of earthworm-mediated soil mixing for the carbon budget of a temperate forest. To study soil mixing, we measured vertical 137Cs activity in soil cores (0-24 cm depth) collected in replicated e[CO2] and c[CO2] sweetgum (Liquidambar styraciflua) plots (n = 2) in a Free Air CO2 Enrichment (FACE) ecosystem experiment at Oak Ridge National Laboratory. We measured earthworm density and fresh weight in the plots in areas adjacent to where soil cores were taken. Preliminary results on the vertical distribution of 137Cs in the c[CO2] treatments showed that higher 137Cs activity was located from 8-16 cm depth and no 137Cs activity was measured below 20 cm. In contrast, in the e[CO2] treatment, peak 137Cs activity was slightly deeper (10-18 cm), and 137Cs activity was still measured below 22 cm. Mean earthworm density was higher in e[CO2] than c[CO2] treatments (168 m-2 and 87 m-2, respectively; p = 0.046); earthworm fresh weights, however, did not differ significantly between treatments (32 g m-2 and 18 g m-2, respectively; p = 0.182). The 137Cs vertical distribution suggest that soil mixing occurs deeper in e[CO2] than in c[CO2] treatments, which is consistent with higher earthworm densities in e[CO2] than in c[CO2] treatments. Mixing deeper low carbon content soil with shallower high carbon soil may result in a

  11. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    replications. In one variant the area of a plot was 300 m2. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration; the daily average is lower at no-tillage (315-1914 mmoli m-2s-1), followed by minimum tillage (318-2395 mmoli m-2s-1) and is higher in the conventional tillage (321-2480 mmol m-2s-1). An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of long-term soil fertility. By determining the humus content after 3 years, it can be observed an increasing tendency when applying the minimum tillage (the increase was up to 0.41%) and no-tillage systems tillage (the increase was up to 0.64%). Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soil without organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity, and that way it reduces the soil capacity for carbon sequestration. Acknowledgments This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change.

  12. Dynamic replacement and loss of soil carbon on eroding cropland

    USGS Publications Warehouse

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  13. Pyrogenic Carbon in forest soils across climate and soil property gradients in Switzerland

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; González Domínguez, Beatriz R.; Hagedorn, Frank; Abiven, Samuel

    2016-04-01

    Soil organic carbon (SOC) is an important measure for soil quality. Usually a high organic matter content in soils is favourable for most ecosystems. As a very stable component, pyrogenic organic carbon (PyC) can be of major interest to investigate to potential of organic matter, to persist very long in soils. Recent studies have shown, that the mean residence time of organic matter is not only due to its intrinsic chemical nature, but also to a variety of abiotic and biotic variables set by the ecosystem. Especially for PyC it is unclear, whether its content is related to fire regime, soil properties or other climatic conditions. In this study we wanted to investigate, how climatic and soil-related conditions are influencing the persistence of PyC in soils. Therefore we used a sample set from Swiss forest soil (n = 54), which was designed for the purpose of having most differing climatic conditions (aridity and temperature) and a large range of soil properties (pH between 3.4 and 7.6; clay content between 4.7 % and 60 %). The soils were sampled in the first 20 cm of the mineral horizon on a representative plot area of 40 x 40 m. The soils were sieved to 2 mm and dried prior to the analysis. We used the benzene polycarboxylic acids (BPCA) molecular marker method to quantify and characterize PyC in these soil samples. Despite the large span in environmental conditions, we observed rather small differences in the contribution of PyC to SOC between warmer and colder, as well as between wetter and dryer soils. The PyC content in SOC lies well in range with a global average for forest soils estimated in other studies. Stocks of PyC vary more than the content, because of the large range of SOC contents in the samples. The influence of other parameters like soil properties is still under investigation. Qualitative investigation of the BPCAs showed that the degree of condensation, defined by the relative amount of B6CA in the total BPCA, was higher in warmer soils. This

  14. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  15. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  16. Soil carbon sequestration estimated with the soil conditioning index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and reliable assessments of the potential of different agricultural management systems to sequester soil organic carbon are needed to promote conservation and help mitigate greenhouse gas emissions. The soil conditioning index (SCI) is a relatively simple model to parameterize and is currentl...

  17. Soil carbon changes influenced by soil management and calculation method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing bulk density ('b). This study evaluates the temporal changes in SOC caused by two factors: (i) changing SOC concentrati...

  18. Biophysical Properties as Determinants for Soil Organic Carbon and Total Nitrogen in Grassland Salinization

    PubMed Central

    Pan, Chengchen; Zhao, Halin; Zhao, Xueyong; Han, Huibang; Wang, Yan; Li, Jin

    2013-01-01

    Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions. PMID:23372776

  19. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation

    NASA Astrophysics Data System (ADS)

    Ma, Wenming; Li, Zhongwu; Ding, Keyi; Huang, Jinquan; Nie, Xiaodong; Zeng, Guangming; Wang, Shuguang; Liu, Guiping

    2014-12-01

    Water erosion governs soil carbon reserves and distribution across the watershed or ecosystem. The dynamics of dissolved organic carbon (DOC) under water erosion in red agricultural soil is not clear. To determine the effect of tillage management and water erosion on vertical and lateral transportation of soil organic carbon (SOC) and DOC production under distinct rainfall intensities in the hilly red soil region of southern China, a chisel tillage plot with low rainfall intensity (CT-L) and two no-tillage plots with high (NT-H) and low rainfall intensity (NT-L) studies were conducted. Soil samples were collected from 0-5, 5-10, 10-20, and 20-40 cm soil layers from triplicate soil blocks pre- and post-rainfall for determining concentration of SOC and DOC. Runoff samples were collected at every 6 min for determining concentration of DOC and sediments during rainfall simulations on runoff plots (2 m × 5 m) with various intensities. No fertilizer was applied in any plots. Results clearly show that runoff volumes, sediments and SOC entrained with sediment, and laterally mobilized DOC were significantly larger on NT-H compared to other plots, coinciding with changes in rainfall intensity; and the extent of roughness of the plot surface (CT vs. NT) was the variation in runoff DOC concentration. During the simulated rainfall events, DOC exports average 0.76, 0.64, and 0.27 g C m- 2 h- 1; SOC exports average 3.52, 1.08, and 0.07 g m- 2 h- 1 in the NT-H, NT-L, and CT-L soils, respectively. The maximum export of DOC was obtained under a high intensity rainfall plot, which lagged behind maximum runoff volumes, sediments, and SOC losses with sediment. Export of DOC was proportional to SOC content of soil loss. The least DOC losses in surface runoff and SOC losses with sediment were observed in CT-L plots. Vertical DOC mobilization achieved its maximum with low intensity rainfall under CT treatment. The DOC did not accumulate at the soil surface and was distributed mainly in

  20. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanuel, W.R.; Olson, J.S.

    1984-05-01

    A compilation of soil carbon and nitrogen storage data for more than 3500 soil profiles from under natural vegetation or relatively undisturbed sites is presented in this report. A summary table of the carbon and nitrogen storage in a pedon of surface cubic meter for each soil profile, as well as location, elevation, climate, parent material, and vegetation information, are presented. The data were used to determine average carbon and nitrogen storage on land surfaces of the world. Calculations were also made of storage related to climatic classifications, ecosystem clasifications, and latitudinal increments from the equator to 75/sup 0/. Carbon (kg.m/sup -3/) varies from 2 in hot dry climates, through 10 in many cold dry or seasonally moist (warm or hot) climates, to more than 30 in wet alpine or subpolar climates. Nitrogen storage, an order of magnitude smaller than carbon storage in soils, shows broad parallels but exceeds 1600 g.m/sup -3/ for subtropical/tropical premontane or lower montane soils, as well as alpine or subpolar wet soils. Such limiting conditions, defined by a balance of income and loss rates for mature soil profiles, also explain much of the variation among major ecosystem complexes whose soils are partly disturbed, incompletely recovered, or imperfectly known regarding their maturity and stability. Classifying profiles into Holdridge life zones and using appropriate life zone areas, we estimate 1309 x 10/sup 15/ g carbon and 92 x 10/sup 15/ g nitrogen in the world's soils. Alternatively, using average organic carbon and nitrogen densities from one degree latitude bands multiplied by the earth's surface area in the respective bands, we arrive at 1728 x 10/sup 15/ g of carbon and 117 x 10/sup 15/ g of nitrogen. Inadequacies that lead to the disparate estimates are discussed. 123 references, 5 figures, 7 tables.

  1. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    SciTech Connect

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  2. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K. M.

    2012-12-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for biospheric modeling. The UNASM combines state-of-the-art U.S. STATSGO and Soil Landscape of Canada (SLCs) databases, and for areas not covered by these datasets is filled with the Harmonized World Soil Database (HWSD). The UNASM contains seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, with the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon mass between the UNASM and HWSD, but the UNASM overall provides more detailed and higher-confidence information particularly in Alaska and central Canada. The estimate of the total soil organic carbon mass in the upper 100 cm soil profile based on the UNASM is 328.21Pg, of which 63.4% is from forest and 22.8% is from shrubland and grassland. This UNASM will help to provide more reliable estimates for the effects of global climate change and land use management on the terrestrial carbon cycle.

  3. Soil Organic Carbon Mapping by Geostatistics in Europe Scale

    NASA Astrophysics Data System (ADS)

    Aksoy, E.; Panagos, P.; Montanarella, L.

    2013-12-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because SOC is an important soil component that plays key roles in the functions of both natural ecosystems and agricultural systems. The SOC content varies from place to place and it is strongly related with climate variables (temperature and rainfall), terrain features, soil texture, parent material, vegetation, land-use types, and human management (management and degradation) at different spatial scales. Geostatistical techniques allow for the prediction of soil properties using soil information and environmental covariates. In this study, assessment of SOC distribution has been predicted with Regression-Kriging method in Europe scale. In this prediction, combination of the soil samples which were collected from the LUCAS (European Land Use/Cover Area frame statistical Survey) & BioSoil Projects, with local soil data which were collected from six different CZOs in Europe and ten spatial predictors (slope, aspect, elevation, CTI, CORINE land-cover classification, parent material, texture, WRB soil classification, annual average temperature and precipitation) were used. Significant correlation between the covariates and the organic carbon dependent variable was found. Moreover, investigating the contribution of local dataset in watershed scale into regional dataset in European scale was an important challenge.

  4. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    SciTech Connect

    Garten Jr, Charles T; Classen, Aimee T; Norby, Richard J

    2009-01-01

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

  5. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China.

    PubMed

    Zhang, Shiping; Wang, Lei; Hu, Jiajun; Zhang, Wenquan; Fu, Xiaohua; Le, Yiquan; Jin, Fangming

    2011-01-01

    We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B. PMID:21476345

  6. Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey

    NASA Astrophysics Data System (ADS)

    Assad, E. D.; Pinto, H. S.; Martins, S. C.; Groppo, J. D.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Camargo, P. B.; Martinelli, L. A.

    2013-10-01

    In this paper we calculated soil carbon stocks in Brazil studying 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58 to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10, 30 and 60 cm soil depth were equal to approximately 29, 64, and 92 Mg ha-1, respectively. In the paired sites, carbon losses of 7.5 Mg ha-1 and 11.6 Mg ha-1 in CPS systems were observed at 10 cm and 30 cm soil depths, respectively. In pasture soils, carbon losses were similar and equal to 7.5 Mg ha-1 and 11.0 Mg ha-1 at 10 cm and 30 cm soil depths, respectively. Differences at 60 cm soil depth were not significantly different between land uses. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to -25.4‰ and -24.0‰, increasing to -19.6‰ and -17.7‰ in CPS, and to -18.9‰, and -18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha-1, with an average δ13C value of -19.67‰. Key controllers of soil carbon stock in pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha-1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and plot-level paired study sites in estimating soil carbon stocks

  7. Soil water repellency characteristic curves for soil profiles with natural organic carbon gradients

    NASA Astrophysics Data System (ADS)

    Kawamoto, Ken; Müller, Karin; Moldrup, Per; de Jonge, Lis; Clothier, Brent; Hiradate, Syuntaro; Komatsu, Toshiko

    2014-05-01

    Soil water repellency (SWR) is a phenomenon that influences many soil hydrologic processes such as reduction of infiltration, increase in overland flow, and enhanced preferential flow. SWR has been observed in various soil types and textures, and the degree of SWR is greatly controlled by soil moisture content and levels of organic matter and clay. One of the key topics in SWR research is how to describe accurately the seasonal and temporal variation of SWR with the controlling factors such as soil moisture, organic matter, and clay contents for soil profiles with natural organic carbon gradients. In the present study, we summarize measured SWR data for soil profiles under different land uses and vegetation in Japan and New Zealand, and compared these with literature data. We introduce the contact angle-based evaluation of SWR and predictive models for soil water repellency characteristic curves, in which the contact angle is a function of the moisture content. We also discuss a number of novel concepts, including i) the reduction in the contact angle with soil-water contact time to describe the time dependence of SWR, ii) the relationship between the contact angles from the measured scanning curves under controlled wetting and drying cycles, and iii) the initial contact angles measured by the sessile drop method.

  8. Environmental analyse of soil organic carbon stock changes in Slovakia

    NASA Astrophysics Data System (ADS)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    The content and quality of soil organic matter is one of the basic soil parameters on which soil production functioning depends as well as it is active in non production soil functions like an ecological one especially. Morphologic segmentation of Slovakia has significant influence of structure in using agricultural soil in specific areas of our territory. Also social changes of early 90´s of 20´th century made their impact on change of using of agricultural soil (transformation from large farms to smaller ones, decreasing the number of livestock). This research is studying changes of development of soil organic carbon stock (SOC) in agricultural soil of Slovakia as results of climatic as well as social and political changes which influenced agricultury since last 40 years. The main goal of this research is an analysis of soil organic carbon stock since 1970 until now at specific agroclimatic regions of Slovakia and statistic analysis of relation between modelled data of SOC stock and soil quality index value. Changes of SOC stock were evaluated on the basis SOC content modeling using RothC-26.3 model. From modeling of SOC stock results the outcome is that in that time the soil organic carbon stock was growing until middle 90´s years of 20´th century with the highest value in 1994. Since that year until new millennium SOC stock is slightly decreasing. After 2000 has slightly increased SOC stock so far. According to soil management SOC stock development on arable land is similar to overall evolution. In case of grasslands after slight growth of SOC stock since 1990 the stock is in decline. This development is result of transformational changes after 1989 which were specific at decreasing amount of organic carbon input from organic manure at grassland areas especially. At warmer agroclimatic regions where mollic fluvisols and chernozems are present and where are soils with good quality and steady soil organic matter (SOM) the amount of SOC in monitored time is

  9. Agglutinates and carbon accumulation in Apollo 17 lunar soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Meinschein, W. G.

    1976-01-01

    A critical review of maturity with respect to the abundance of implanted solar wind elements (SWE) in lunar soils indicates: (1) that the Rosiwal Principle has limited applicability in determining implantation of SWE in lunar soils, and (2) that despite a depletion of SWE in agglutinitic glass, agglutinates are enriched in SWE due to the presence of buried surfaces of numerous clasts within agglutinates. A statistical analysis of published data of several Apollo 17 soils indicates that the abundance of carbon and, by analogy, the abundance of other SWE are correlatable with the agglutinate content and the mean grain size of lunar soils. Microscopic examination of more than 5000 grains of agglutinates in polished thin sections reveals a wide range of variability in the mineralogy, grain size distribution, degree of recycling, etc., of the clast population in agglutinates. This indicates that the volume-correlated SWE content of agglutinates may vary and need not be constant.

  10. Soil Organic Matter Content: A Non-linear Control on Microbial Respiration in Soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Grandy, S.

    2015-12-01

    Decomposition of soil organic matter (SOM) and the amount of CO2 respired from soil largely depends on the amount of substrate available to microbes. Soils with high SOM concentrations will have higher respiration rates than soils with low SOM concentrations given similar environmental conditions. It is widely assumed that microbial activity and respiration rates respond linearly to substrate concentrations. This assumption remains however largely untested. In a lab incubation experiment, we amended a mixture of agricultural soil and sand with increasing amounts of one of three plant residues differing in their C/N ratio (clover 14; rye 23 and wheat straw 110). We used 9 levels of organic carbon (OC) content ranging from 0.25% to 5.7%. The mixtures were then incubated at constant temperature and water contents for 63 days. Our results show that across substrates CO2 production increased with increasing OC content following a quadratic function instead of the expected linear one up to 2.2% OC. Above that point CO2 production leveled off and increased linearly. We hypothesize that the probability that a microbe meets a substrate also increases with increasing amounts of plant residues. At all substrate concentrations, samples amended with clover had the highest carbon losses, followed by rye and straw. Differences between the three kinds of plant residue might have been caused by their C/N ratios and thus the amount of available N. High amounts of N might have led to an increase in microbial biomass, which could occupy more space and is thus more likely to meet new substrate. Additional analysis of microbial biomass, enzyme activities and N pools will help to understand the mechanism leading to the observed CO2 patterns. A non-linear relation of CO2 production and OC content indicates that spatial separation as an inherent property of SOM content is an important control on decomposition at low OC contents. Knowledge of this controlling effect could be used to enhance

  11. Carbon Management Response curves: estimates of temporal soil carbon dynamics.

    PubMed

    West, Tristram O; Marland, Gregg; King, Anthony W; Post, Wilfred M; Jain, Atul K; Andrasko, Kenneth

    2004-04-01

    Measurement of the change in soil carbon that accompanies a change in land use (e.g., forest to agriculture) or management (e.g., conventional tillage to no-till) can be complex and expensive, may require reference plots, and is subject to the variability of statistical sampling and short-term variability in weather. In this paper, we develop Carbon Management Response (CMR) curves that could be used as an alternative to in situ measurements. The CMR curves developed here are based on quantitative reviews of existing global analyses and field observations of changes in soil carbon. The curves show mean annual rates of soil carbon change, estimated time to maximum rates of change, and estimated time to a new soil carbon steady state following the initial change in management. We illustrate how CMR curves could be used in a carbon accounting framework while effectively addressing a number of potential policy issues commonly associated with carbon accounting. We find that CMR curves provide a transparent means to account for changes in soil carbon accumulation and loss rates over time, and also provide empirical relationships that might be used in the development or validation of ecological or Earth systems models. PMID:15453404

  12. Soil organic carbon fractionation for improving agricultural soil quality diagnosis in different management practices.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Chartin, Caroline; Kruger, Inken; Carnol, Monique; Van Oost, Kristof; van Wesemael, Bas

    2016-04-01

    Preserving ecosystem functions of soil organic matter (SOM) in soils is a key challenge. The need for an efficient diagnosis of SOM state in agricultural soils is a priority in order to facilitate the detection of changes in soil quality as a result of changes in management practices. The nature of SOM is complex and cannot readily be monitored due to the heterogeneity of its components. Assessment of the SOM level dynamics, typically characterized as the bulk soil organic carbon (SOC), can be refined by taking into account carbon pools with different turnover rates and stability. Fractionating bulk SOC in meaningful soil organic fractions helps to better diagnose SOC status. By separating carbon associated with clay and fine silt particles (stable carbon with slow turnover rate) and carbon non-associated with this fraction (labile and intermediate carbon with higher turnover rates), effects of management can be detected more efficiently at different spatial and temporal scales. Until now, most work on SOC fractionation has focused on small spatial scales along management or time gradients. The present case study focuses on SOC fractionation applied in order to refine the interpretation of organic matter turnover and SOC sequestration for regional units in Wallonia with comparable climate, management and, to a certain extent, soil conditions. In each unit, random samples from specific land uses are analyzed in order to assess the Normal Operative Ranges (NOR) of SOC fraction contents for each unit and land use combination. Thus, SOC levels of the different fractions of a specific field in a given unit can be compared to its corresponding NOR. It will help to better diagnose agricultural soil quality in terms of organic carbon compared to a bulk SOC diagnosis.

  13. Soil carbon sequestration: Quantifying this ecosystem service

    EPA Science Inventory

    Soils have a crucial role in supplying many goods and services that society depends upon on a daily basis. These include food and fiber production, water cleansing and supply, nutrient cycling, waste isolation and degradation. Soils also provide a significant amount of carbon s...

  14. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  15. Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey

    NASA Astrophysics Data System (ADS)

    Assad, E. D.; Pinto, H. S.; Martins, S. C.; Groppo, J. D.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Camargo, P. B.; Martinelli, L. A.

    2013-03-01

    In this paper we calculated soil carbon stocks in Brazil using 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58° S to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10 and 30 cm soil depth were equal to approximately 33 and 65 Mg ha-1, respectively. In the paired sites, carbon losses of 7.5 Mg ha-1 and 11.9 Mg ha-1 in CPS systems were observed at 10 cm and 30 cm soil depth averages, respectively. In pasture soils, carbon losses were similar and equal to 8.3 Mg ha-1 and 12.2 Mg ha-1 at 10 cm and 30 cm soil depths, respectively. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to -25.4‰ and -24.0‰, increasing to -19.6 ‰ and -17.7‰ in CPS, and to -18.9‰, and -18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha-1, with an average δ13C value of -19.6‰. Key controllers of soil carbon stock at pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha-1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and local paired study sites in estimating soil carbon stocks changes due to land use changes.

  16. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy

  17. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this

  18. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.

    2012-10-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  19. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    SciTech Connect

    Liu, Shishi; Wei, Yaxing; Post, Wilfred M; Cook, Robert B; Schaefer, Kevin; Thornton, Michele M

    2013-01-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  20. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote

  1. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  2. Remote sensing of soil water content at large scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at the near surface is a critical parameter for understanding land surface atmosphere interactions, influencing surface energy balances. Using microwave radiometry, an accurate global map of surface soil water content can be generated on a near daily basis. The accuracy of the p...

  3. Functional soil organic carbon pools for major soil units and land uses in southern Germany

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Wiesmeier, Martin

    2015-04-01

    Soil management, especially the type and intensity of land use, affect the carbon cycle to a high extent as they modify carbon sequestration in a specific soil. Thus man is intervening in the natural carbon cycle on a global scale. In our study, the amount of active, intermediate and passive SOC pools was determined for major soil types and land uses of Bavaria in southern Germany. Our SOC inventory revealed only slightly lower total SOC stocks in cropland soils compared to forest soils, when both top- and subsoils were considered. In cropland and grassland soils around 90% of total SOC stocks can be assigned to the intermediate and passive SOC pool. High SOC stocks in grassland soils are partly related to a higher degree of soil aggregation compared to cropland soils. The contribution of intermediate SOC in cropland soils was similar to that in grassland soils due to an increased proportion of SOM associated with silt and clay particles. The cultivation-induced loss of SOC due to aggregate disruption is at least partly compensated by increased formation of organo-mineral associations as a result of tillage that continuously promotes the contact of crop residues with reactive mineral surfaces. Contrary, forest soils were characterized by distinctly lower proportions of intermediate and passive SOC and a high amount of active SOC in form of litter and particulate organic matter which accounted for almost 40% of total SOC stocks. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. The high

  4. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    NASA Astrophysics Data System (ADS)

    Huygens, D.; Boeckx, P.; Van Cleemput, O.; Oyarzún, C.; Godoy, R.

    2005-06-01

    Extreme sensitivity of soil organic carbon (SOC) to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2) than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2) was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively) were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer). In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use sites. Al

  5. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas. PMID:26114917

  6. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany

    NASA Astrophysics Data System (ADS)

    Medinski, T.; Freese, D.

    2012-04-01

    Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.

  7. Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern.

    PubMed

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-11-01

    This work investigates the correlations existing among soil organic carbon (C), nitrogen (N), phosphorous (P), potassium (K), and physicochemical properties like clay mineralogy, textural components, soil aggregation, and land use pattern. Seven different locations were chosen in the tropical rainforest climate region of Assam, India, for the work. The soil texture classifications were clay, sandy clay loam, and sandy loam with mixed clay mineralogy consisting of tectosilicates and phylosilicates. Two distinct compositions of total Fe/Al oxides≥11.5 and <10.8% were observed along with two distinct groups of water stable soil aggregates of mean weight diameter≈6.42 and ≤3.26 mm. The soil clay and sand had positive and negative contributions respectively to the soil organic carbon (SOC) protection, which was observed to be dependent on lesser sand content, higher silt+clay content, and the presence of higher percentages of total Fe/Al oxides. Soil clay mineralogy suggested that the mineral, chlorite, favored retention of higher SOC content in a particular site. Under similar climatic and mineralogical conditions, both natural and anthropogenic soil disturbances destabilized SOC protection through SOM mineralization and soil aggregate destabilization as indicated by SOC protective capacity studies. Urbanization resulting in soil compaction contributed to enhanced SOC level through increased contact between the occluded organic carbon and the soil mineralogical constituents. PMID:26553358

  8. Shrub Expansion Effects on Soil Carbon Dynamics in the Arctic

    NASA Astrophysics Data System (ADS)

    Holden, S. R.; Mortero, G.; Welker, J. M.; Czimczik, C. I.

    2015-12-01

    Shrubs are increasing in abundance in the Arctic in response to climate warming, but the consequences of shrub expansion for the vast soil carbon (C) stocks in the Arctic are poorly understood. Increases in productivity and associated increases in soil C inputs may augment soil C stocks. Alternatively, labile C exudates from shrub roots may stimulate decomposition of existing soil C and decrease C stocks. We used two complementary approaches to characterize the potential impacts of shrub expansion on soil C dynamics in the Arctic. First, in graminoid and shrub tundra near Toolik Lake, AK we surveyed thaw depth, measured depth profiles of %C, %N, δ13C, and Δ14C, and inventoried soil C stocks to 1 m. We found that the thaw depth was 42% shallower under shrubs compared to graminoid tundra. In addition, mineral soils from shrub tundra had a significantly higher C content than graminoid tundra. Similarly, mineral soils from shrub tundra had lower (depleted) δ13C values compared to graminoid tundra, indicating that this soil has undergone less microbial processing. We also found that C under shrub tundra was on average older, and shrub tundra had significantly higher C stocks to 1 m than graminoid tundra. Second, we conducted a priming experiment with graminoid soil from Toolik Lake, AK. We incubated organic soil, the top 10 cm of mineral soil, and the lower 10 cm of active layer mineral soil with supplemental sucrose at 7°C and 22°C. We found that the addition of labile C did not increase microbial decomposition of existing C in mineral soils. Taken together, our findings suggest that shrub expansion may augment soil C storage in the Arctic because a greater proportion of soil C is frozen in permafrost, soil C under shrubs turns over more slowly, and existing C in mineral soil does not appear to be vulnerable to loss via priming. The observed impacts of shrub expansion on soil C stocks should be incorporated into earth system models that predict the carbon

  9. Monitoring soil organic carbon in croplands using imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B.

    2009-04-01

    Conventional soil sampling techniques are often too expensive and time consuming to meet the amount of quantitative data required in soil monitoring or modelling studies. The emergence of portable and flexible spectrometer operating in the visible and near infrared range of the electro-magnetic spectrum could provide the large amount of spatial data needed. To this regard, the ability of airborne imaging spectroscopy to cover large surfaces in a single flight campaign and study the spatial distribution of soil properties with a high spatial resolution represents an opportunity for improving the monitoring of soils. The potential of quantitative spectral analysis has been repeatedly demonstrated in soil science either in the laboratory or with remote sensors. However, imaging spectroscopy for soil applications has been generally applied over small areas or homogeneous soil types and surface conditions. Here, five hyperspectral images acquired with the AHS-160 sensor were analysed to predict Soil Organic Carbon (SOC) in an area (350 km2) in Luxembourg characterized by different soil types and a large variation in SOC contents. Reflectance data were related to surface SOC contents of bare cropland by means of 3 different multivariate calibration techniques: Partial Least Square Regression (PLSR), Penalized-spline Signal Regression (PSR) and Least Square Support Vector Machine (LS-SVM). The stability of the methods across different agropedological zones, soil types or soil surface conditions were tested by comparing their performance under different combinations of calibration/validation sets (global and local calibrations). A lack of fit at high SOC content was observed under global calibrations, yielding a relatively high Root Mean Square Error in the Predictions (RMSEP) of 4.7-6.2 g C kg-1. PSR showed a greater ability to handle noisy spectral features, resulting in more robust calibrations than PLSR. Local calibrations based on soil types and agro

  10. [Variability of soil water soluble organic carbon content and its response to temperature change in green spaces along urban-to-rural gradient of Nanchang, China].

    PubMed

    Li, Pei-qing; Fang, Xiang-min; Chen, Fu-sheng; Wang, Fang-chao; Yu, Jin-rong; Wan, Song-ze; Li, Zu-yao

    2015-11-01

    Topsoil of green space including typical forest, shrub and grassland were collected to measure their water soluble organic carbon ( WSOC) before and after incubation of 30 days at 5, 15, 25, 35 and, 45 °C. The results showed the average values of WSOC were higher in urban than in rural green spaces, but the percentage of WSOC to total organic carbon (TOC) showed an opposite trend. No significant changes were found among the three green space types in WSOC and WSOC/TOC. Response of WSOC in green space to incubation temperature was generally highest in urban sites, followed by suburban sites, and lowest in rural sites at the incubation temperature of 5 °C, but showed an opposite trend at the temperature of 45 °C. Response coefficient of WSOC to temperature change was lower in forest and shrub than in grassland, but increased along the urban-rural gradient. Further analysis showed that WSOC positively correlated with TOC, total nitrogen and available phosphorus, and the response coefficient of WSOC to temperature change negatively correlated with available phosphorus. In summary, exogenous substances input might lead to the accumulation of WSOC in urban green space, however, urban environment was helpful to maintain the stability of WSOC, which might be due to the enrichment of available phosphorus in urban sites. PMID:26915196